WO2003043499A1 - X-ray ct device, and method for preparing tomographic image thereof - Google Patents

X-ray ct device, and method for preparing tomographic image thereof Download PDF

Info

Publication number
WO2003043499A1
WO2003043499A1 PCT/JP2002/012063 JP0212063W WO03043499A1 WO 2003043499 A1 WO2003043499 A1 WO 2003043499A1 JP 0212063 W JP0212063 W JP 0212063W WO 03043499 A1 WO03043499 A1 WO 03043499A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
reconstruction
ray
reconstructed image
reconstructed
Prior art date
Application number
PCT/JP2002/012063
Other languages
French (fr)
Japanese (ja)
Inventor
Taiga Goto
Osamu Miyazaki
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Publication of WO2003043499A1 publication Critical patent/WO2003043499A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]

Definitions

  • the present invention relates to a computer tomography apparatus (X-ray CT apparatus) that obtains a tomographic image by performing image processing by a computer on measurement data obtained by detecting transmitted X-rays from a subject irradiated with X-rays.
  • the present invention relates to an X-ray CT apparatus having a feature in reconstructing calculation of measurement data and a method of creating a tomographic image thereof.
  • an X-ray source and an arc-shaped detector pointing at the focal point of the X-ray source are arranged at positions facing each other with the subject interposed therebetween.
  • the X-rays from the X-ray source are collimated to form a fan-shaped X-ray beam, and this X-ray beam is applied to the imaging section of the subject to rotate the transmitted X-rays attenuated by the subject.
  • the photographing operation is performed by measuring.
  • the measurement operation during the rotation of the scanner is performed at angular intervals of about 0.1 to 0.5 degrees, for example, to acquire projection data of about 600 to 1200 angles in total.
  • the detector is composed of a large number of detection elements, and the output of each element is collected as digital data by a measurement circuit, and data (views) for the number of elements is formed for each measurement angle (hereinafter, as described below).
  • the configured measurement system for acquiring view data is called a scanner).
  • the view data measured by the scanner is transferred to an image processing device, subjected to pre-processing such as characteristic correction of a detection element, radiation quality correction and log conversion, and then reconstructed as tomographic image data by a reconstruction algorithm. You. Then, post-processing such as filtering is performed on the reconstructed image data to create a tomographic image, and the tomographic image is displayed on a display device.
  • pre-processing such as characteristic correction of a detection element, radiation quality correction and log conversion
  • post-processing such as filtering is performed on the reconstructed image data to create a tomographic image, and the tomographic image is displayed on a display device.
  • the method of acquiring view data by the scanner includes fixing an object table on which an object is placed at the time of rotation of an X-ray source and a detector at an imaging position.
  • an object table on which an object is placed at the time of rotation of an X-ray source and a detector at an imaging position There are known a normal scan in which scanning is performed while standing still, and a spiral scan in which the subject table is moved at the same time as the rotation of the X-ray source and the detector, that is, scanning is performed while moving the subject (Japanese Patent Laid-Open No. 2001-346794). No. gazette).
  • the detector has a single-row detector, and a single-slice X-ray CT apparatus that obtains a tomographic image by capturing one cross section (one slice plane) in one scan, 2.
  • a multi-slice type X-ray CT apparatus having a row of detectors and capturing a large number of slice planes in one scan is known (Japanese Patent Application Laid-Open No. 2001-346794).
  • Japanese Patent Application Laid-Open No. 2001-346794 Japanese Patent Application Laid-Open No. 2001-346794.
  • there are various types of X-ray CT systems depending on the scanning method and the number of rows of detectors, and each type is applied according to the diagnostic application by taking advantage of the respective advantages.
  • the reconstruction algorithm includes a filter-corrected backprojection method (described in pl07, pl26-pl27 of "Kindai Kagakusha: Image Processing Algorithm, First Edition, March 10, 1993") and a Fourier reconstruction method ("Kindai Kagakusha” : Image processing algorithm, described in pl07 of "March 10, 1993, first edition", 3D back projection method ("Modern Science Inc .: Image processing algorithm, first edition of March 10, 1993,” described in pl55 to pl60 ), And a known reconstruction method such as a weighted spiral correction reconstruction method (Japanese Patent Laid-Open No. 2001-346794).
  • multi-slice X-ray CT systems which are expected to become mainstream in the future, use the weighted spiral correction reconstruction method and the three-dimensional backprojection method, but these have advantages and disadvantages. is there.
  • the weighted spiral correction reconstruction method has a high calculation speed and a high measurement throughput, but has a large error.
  • the three-dimensional backprojection method has a small error but a long calculation time, so that the measurement throughput is low.
  • high-speed imaging and high-speed calculation are required for examination patients and emergency patients, and high image quality is especially required for close-up inspection patients, so only a single reconstruction algorithm is used. In some cases, it was not possible to obtain a tomographic image under desired conditions.
  • the present invention has been made in view of such circumstances, and has as its object to provide an X-ray CT apparatus that can obtain a tomographic image under desired conditions. Disclosure of the invention
  • an X-ray CT apparatus comprises: an X-ray source; and an X-ray source.
  • An X-ray detector for detecting X-rays transmitted through the subject, and scanning the X-ray source and the X-ray detector around the subject relative to the subject.
  • An X-ray CT apparatus comprising: a scanner that processes the data measured by the scanner to create a tomographic image; and a display device that displays the tomographic image, wherein the image processing apparatus includes: A plurality of reconstructed image creating means having different reconstruction algorithms; and a reconstructing selecting means for selecting the reconstructed image creating means in accordance with preset conditions. Is created.
  • the preset condition is at least one of a scan condition of the scanner and / or a measurement parameter. Specifically, there are an imaging region, a measurement mode determined by a moving speed of the object table and an effective slice thickness, a region of interest, an exposure dose, and a reconstruction mode.
  • the plurality of reconstructed image creating means are a first reconstructed image creating means having a high-speed reconstructing operation algorithm, and a high-precision reconstruction operation having higher accuracy than the first reconstructed image creating means.
  • a region of interest is set in an image created by the first reconstructed image creating unit, and the set region of interest is locally set by the second reconstructed image creating unit.
  • a region of interest can be set in the image created by the first reconstructed image creating unit, and a reconstructed image can be created from the set region of interest by the second reconstructed image creating unit.
  • a third reconstructed image creating means having a reconstructing algorithm whose reconstruction operation is faster than the first reconstructed image creating means is provided.
  • the reconstructed image created by the reconstructed image creating means can be displayed on the display device as a preview image.
  • the plurality of reconstructed image creating means assigns priorities to a plurality of images having different effective fields of view and image sizes according to reconstruction accuracy, and replaces or assigns weights according to the priorities. It is also possible to set a local region of the set tomographic image on the display image and create a reconstructed image with the set local region as an effective field of view.
  • the tomographic image creating method of the present invention includes: an X-ray source; and an X-ray source that faces the subject with the X-ray source sandwiching the X-ray source.
  • a tomographic image creating method of displaying a tomographic image created by the image processing device on a display device, wherein the image processing device has a plurality of different reconstruction algorithms.
  • a step of setting a region of interest in a cross-sectional image displayed on the display device, and creating the set region of interest as a local image by the selected reconstruction selecting means Replacing the region of interest of the tomographic image with the local image, and synthesizing the replaced local image with the tomographic image. Replacing the region of interest with the local image, Can be used as high-definition images to enhance diagnostic performance.
  • the selected reconstructed image creating means is a reconstructed image creating means having a high-speed reconstruction operation algorithm
  • the another reconstructed image creating means is a reconstructed image having the high-speed reconstruction operation algorithm.
  • This is a reconstructed image creating means having a high-precision reconstruction operation algorithm with higher accuracy than the composed image creating means.
  • a step of setting at least two or more regions of interest in the tomographic image displayed on the display device, and the setting performed by the reconstructed image creating means different from the selected reconstruction selecting means A step of creating a region of interest as a local image; and a step of replacing the region of interest in the tomographic image with the local image, and combining the replaced local image with the tomographic image.
  • the selected reconstructed image creating unit is a reconstructed image creating unit having a fast reconstruction operation algorithm
  • the another reconstructed image creating unit is more than a reconstructed image creating unit having the fast reconstruction operation algorithm. This is a reconstructed image creating means having a highly accurate high-precision reconstruction operation algorithm.
  • a step of setting at least two or more regions of interest in the tomographic image displayed on the display device and the step of setting the reconstructed image by a reconstructed image creating means different from the selected reconstruction selecting means Creating a region of interest as a local image; and displaying the created local image on the display device.
  • the selected reconstructed image creating means is a reconstructed image creating means having a fast reconstruction operation algorithm
  • the another reconstructed image creating means is a reconstructed image creating means having the high speed reconstruction operation algorithm
  • the local image is created by a reconstructed image creating unit having a high-precision reconstruction operation algorithm having higher accuracy than the reconstructed image creation unit having the high-accuracy reconstruction operation algorithm.
  • the plurality of reconstructed image creating means have higher accuracy than a reconstructed image creating means having at least one or more high-speed reconstruction arithmetic algorithm, and a reconstructed image creating means having the high-speed reconstruction arithmetic algorithm. And a reconstructed image creating means having at least one high-precision reconstruction operation algorithm.
  • a plurality of reconstructed image creating means having different reconstruction algorithms and a reconstructing selecting means for selecting the reconstructed image creating means according to a preset condition are provided.
  • a corresponding tomographic image under desired conditions can be obtained.
  • FIG. 1 is a diagram showing the overall configuration of an X-ray CT apparatus including a tomographic image creating apparatus according to an embodiment of the present invention
  • FIG. 2 is a diagram showing the configuration of a tomographic image creating apparatus of the X-ray CT apparatus shown in FIG. Fig. 3
  • Fig. 3 is a flowchart of tomographic image creation by the tomographic image creating apparatus shown in Fig. 2
  • Fig. 4 is an explanatory diagram showing a specific example of tomographic image creation by the flowchart of Fig. 3
  • Fig. 5 is shown in Fig. 2.
  • FIG. 2 is a diagram showing the overall configuration of an X-ray CT apparatus including a tomographic image creating apparatus according to an embodiment of the present invention
  • FIG. 2 is a diagram showing the configuration of a tomographic image creating apparatus of the X-ray CT apparatus shown in FIG. Fig. 3
  • Fig. 4 is an explanatory diagram showing a specific example of tomographic image creation by the flowchart
  • FIG. 6 is an explanatory diagram showing a specific example of tomographic image creating by the flowchart of FIG. 5, and FIG. 7 is another tomographic image creating by the tomographic image creating apparatus shown in FIG. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the force s for describing the case where the present invention is applied to a helical scan type X-ray CT apparatus equipped with a multi-row (multi-slice) detector and the present invention is not limited to this.
  • the present invention can be applied to a spiral scan type X-ray CT device equipped with a single slice detector and a normal scan type X-ray CT device equipped with a single slice detector.
  • FIG. 1 is a diagram showing an overall configuration of a spiral scan type X-ray CT apparatus including a multi-row detector to which an embodiment of the present invention is applied.
  • the X-ray CT apparatus shown in FIG. 1 includes an X-ray generator 1 that generates X-rays, a collimator 2 that collimates the X-rays generated by the X-ray generator 1 and irradiates the object 4 with an X-ray.
  • the scanner 13 includes an X-ray detector 5 for detecting X-rays transmitted through the subject 4.
  • the scanner 13 is rotated around the subject 4 by the scanner driving device 6, and the subject 4 is placed on the subject table 3 such that the body axis of the subject substantially matches the center axis of the rotation. .
  • the subject table 3 can be moved along the scanner rotation axis by a subject table moving mechanism (not shown), and is moved based on a control signal from a table controller (see FIG. 2).
  • Operation signals such as scan conditions and measurement parameters set by the input device 11 are input to a system control device 23 for controlling the entire system, and generate operation signals of the scanner 13, and these signals are transmitted to the scanner controller 7 and an image to be described later.
  • the input device 11 includes input devices such as a keyboard, a mouse, and a touch panel (not shown). Further, input scan conditions and measurement parameters are stored in a memory provided in the input device 11 (FIG. 2). Parameter table).
  • the X-ray generator 1 is supplied with a high voltage for generating X-rays from a high-voltage generator 10.
  • the scanner driving device 6, the object table moving mechanism (not shown) and the high voltage generator 10 are controlled by the scanner controller 7, and the collimator 2 is controlled by the collimator controller 8 included in the scanner controller 7. .
  • the detector 5 has a plurality of detection element rows arranged in the body axis direction of the subject 4 (the rotation center axis direction of the scanner 13).
  • the detectors 5 arranged in a two-dimensional manner have a number of columns of, for example, 4 to 16 rows, and each of the detection element rows is composed of a plurality of detection elements.
  • the image processing device 9 includes a pre-processing arithmetic unit 91 that performs pre-processing such as characteristic correction of a detection element, line quality correction, and log conversion on the projection data, and a pre-processing data by a reconstruction algorithm. It is composed of a reconstruction operation device 92 for reconstructing as tomographic image data, and a post-processing operation device 93 for performing post-processing such as a filter on the reconstructed image data.
  • the tomographic image reconstructed by the image processing device 9 is displayed on the display device 12.
  • FIG. 2 is a diagram showing a configuration of a tomographic image creating apparatus of the X-ray CT apparatus shown in FIG.
  • Measurement parameters slice thickness, helical pitch, scan speed, scan range, effective field of view, voltage of X-ray tube of X-ray generator 1) during imaging and post-processing after imaging (Tube voltage), current (tube current), etc. and reconstruction parameters
  • Reconstruction filter function, reconstruction slice interval, effective field of view, reconstruction algorithm, etc. are stored in the parameter table 22.
  • the measurement and reconstruction parameters from the parameter table 22 are transmitted to the subject tape via the system controller 23.
  • the scanner 13 and the sample tape holder 3 are controlled under the scanning conditions output from the input device 11 to perform a spiral scan.
  • the data detected by the multi-row detector 6 of the scanner 13 by the spiral scan is stored in the projection data buffer memory 31 of the data collection device 30. This stored data is input to the pre-processing arithmetic unit 91 when there is no addition signal from the system control unit 23, and is added by the addition unit 32 when there is an addition signal from the system control unit 23, and It is input to the processing operation unit 91.
  • the addition signal means, for example, an addition command signal in a case where the number of rows of the multi-row detector is 16, and four rows are added to each other to obtain a 4-slice tomographic image.
  • the preprocessing arithmetic unit 91 includes a logarithmic conversion unit 34 and a ring artifact correction unit 35, and the projection data output from the data collection unit 30 is used for various types of correction such as characteristic correction of a detection element and line quality correction.
  • the reconstruction operation device 92 includes two reconstruction algorithms, a high-speed reconstruction means 37 having a high-speed reconstruction algorithm and a high-precision reconstruction means 61 having a high-precision reconstruction algorithm. These reconstructing means are configured by a reconfiguration switch A48 and a reconfiguration switch B49 based on conditions (such as measurement parameters) preset in the input device 11 by a switching signal generated by the system controller 23. Switch the selector switch to select.
  • the reconfiguration switch A48 When the high-speed reconfiguration means 37 is selected, the reconfiguration switch A48 is connected to the a side, and the reconfiguration switch 49B is connected to the c side. On the other hand, when the high-precision reconfiguration means 61 is selected, the reconfiguration switch A48 is connected to the b side, and the reconfiguration switch 49B is connected to the d side. In the case of normal scan, spiral correction is not necessary, The configuration switch A48 is connected to the b side and executes the following processing.
  • the high-speed reconstruction means 37 includes a spiral correction means 39 for performing a spiral correction using a weighted addition memory 38 in which a weighting function is stored, a rearrangement processing means 27, a reconstruction filter processing means 40, a two-dimensional reconstruction means 62,
  • the high-precision reconstruction means 61 is composed of a rearrangement processing means 27, a reconstruction filter processing means 40, a cone angle correction means 41, a three-dimensional reconstruction means 42, and an image data memory 43.
  • the spiral correction is a process for interpolating the data obtained by the spiral scan into circular data by the normal scan. This is for dimensional reconstruction.
  • high-precision reconstruction such as three-dimensional reconstruction, a high-quality reconstructed image can be created without performing interpolation processing or correction processing by the helical correction.
  • the rearrangement processing means 27, the reconstruction filter processing means 40, and the image data memory 43 are common to the high-speed reconstruction means 37 and the high-precision reconstruction means 61.
  • the rearrangement processing means 27 is means for performing rearrangement from fan beam data to parallel beam data, and the reconstruction filter processing means 40 performs filter processing on the rearranged parallel beam data to reduce blur. It is a means to reduce it.
  • the image data memory 43 is a memory for storing reconstructed tomographic image data.
  • the projection data from the pre-processing unit 91 is input to the spiral correction unit 39, and the spiral correction is performed using the weighting function stored in the weighted addition memory 38.
  • the projection data corrected by the helical correction unit 39 rearranges the fan beam into a parallel beam by the rearrangement processing unit 27 and performs a filtering process on the next reconstruction filter processing unit 40 to reduce blur.
  • two-dimensional reconstructed image data is created by the two-dimensional reconstructing means 62 using the projection data subjected to the blurring process, and stored in the image data memory 43.
  • the projection data from the preprocessing arithmetic unit 91 is processed by the rearrangement processing means 27 and the reconstruction filter processing means 40 to rearrange the fan beams into parallel beams, respectively. Perform filter processing.
  • the projection data subjected to this filter processing is used to correct the error due to the X-ray tilt angle
  • the corrected projection data is used to generate three-dimensional reconstructed image data by the three-dimensional reconstruction means 42, and this is stored in the image data memory 43.
  • the two-dimensional or three-dimensional reconstructed image data created and stored in this way is used to create a two-dimensional or three-dimensional image by the post-processing operation device 93 and display the image on the display device 12.
  • the post-processing arithmetic unit 93 includes various processing means such as three-dimensional image processing, image analysis, and image filter processing, and performs processing in accordance with an operation command from the input device 11.
  • the three-dimensional image processing means 45 described above uses a volume rendering method, a maximum intensity projection method, or the like to display a pseudo three-dimensional image.
  • the image filter processing means 47 performs processing for reducing noise and artifacts when they are large.
  • the process of replacing the high-precision reconstructed image of the local portion of the reconstructed image obtained by the high-speed reconstructing means 37 described later with the reconstructed image obtained by the high-speed reconstructing means 37 includes post-processing operations. Performed by device 93.
  • the scanner 13 is stopped, and the X-ray beam from the X-ray generator 1 is irradiated onto the imaging section of the object while moving the object table to capture a scanogram image.
  • the imaging region of the subject is determined from the scanogram image, and the subject 4 is moved linearly with respect to the rotation axis while rotating the scanner 13 around the subject 4 with respect to the determined region.
  • the X-ray tube 1 irradiates the subject 4 with X-rays having a three-dimensional spread from the X-ray tube 1 and detects X-rays transmitted through the subject 4 using the X-ray detectors 5 arranged two-dimensionally. .
  • the detected data is subjected to various corrections to obtain projection data, and the projection data is used to create a tomographic image by the image processing device and display the tomographic image on a display device.
  • the reconstruction algorithm of the reconstruction processor of the image processing apparatus is selected by the following scan conditions, measurement parameters, and reconstruction modes set by the input device 11 in (1) to (5).
  • Imaging site Bed moving speed and effective slice thickness
  • the imaging conditions (scanning conditions, measurement parameters) and reconstruction modes described in (1) to (5) above and the reconstruction mode When input from the input device 11 before the start of imaging, the reconstruction used by the system controller 23 according to these input signals The mode is determined. In the case of FIG. 2, it is determined whether the mode is the high-speed reconstruction mode or the high-precision reconstruction mode. When the high-speed reconfiguration mode is selected, the reconfiguration switches # 48 and # 49 are switched to the high-speed reconfiguration means 37 (a side, c side). Switch A48 and reconstruction switch B49 are switched to the high-precision reconstruction means 61 side and d side).
  • the high-precision reconstruction means 61 is selected via the system controller 23.
  • the high-precision reconstruction means 61 can perform reconstruction even when performing a spiral scan at the set bed moving speed.
  • a signal for selecting the high-precision reconfiguration means 61 is transmitted from the system controller 23 to the reconfiguration switch A48 and the reconfiguration switch B49.
  • the reconstruction algorithm is changed according to the area to be photographed.
  • the high-precision reconstruction means 61 is used for the head, and the high-speed reconstruction is performed for the abdomen, using the existing modes such as the head and abdomen.
  • Select means 37 As described above, the reconfiguration algorithm is selected by the system controller 23 according to the part, and a signal is sent to the reconfiguration switch A48 and the reconfiguration switch B49.
  • the high-speed reconstruction means 37 shown in FIG. 2 performs a weighted spiral correction re-run at a higher operation speed for a system with a relatively small X-ray beam inclination of about 4 or 8 rows in a multi-slice CT.
  • a construction algorithm spiral correction means 39, weighted addition memory 38
  • This weighted spiral correction reconstruction algorithm is based on the X-ray generator 1 shown in FIG.
  • Focus of X-ray tube (not shown) Force ⁇ Beam tilted in the irradiated Z direction (direction of relative movement of the subject; also known as: body axis direction, slice direction, couch movement direction), and a beam parallel to the reconstructed image
  • the reconstructed image data is created by interpolation, and reconstructed by the two-dimensional reconstruction algorithm (two-dimensional reconstruction means 62) used in the single-row X-ray detector CT (single-slice CT).
  • the feature of the weighted spiral correction reconstruction algorithm is that interpolation can be performed using a weight function (weight function), so reconstruction can be performed in the same time as image reconstruction time in single-slice CT, and multi-slice CT
  • the operation is the fastest among the reconstruction algorithms in. However, when the accuracy in the z direction is poor and the relative movement speed of the subject is high, the error increases.
  • the weighted spiral correction reconstruction algorithm allows the spiral pitch (the ratio of the distance the subject moves during one rotation of the scanner 13 to the distance between the detector rows) to be twice as large as the number of X-ray detector rows.
  • Japanese Unexamined Patent Publication No. 2001-346794 Japanese Unexamined Patent Publication No. 2001-346794
  • the above weighted spiral correction reconstruction algorithm is applied to a multi-slice CT using a 4-row X-ray detector, the number of rows is small and the effect of X-ray beam tilt is small, so there is little effect on image quality. Calculation and high throughput are possible.
  • a three-dimensional reconstruction algorithm which is a high-precision reconstruction algorithm of the high-precision reconstruction means 61 shown in FIG.
  • the above three-dimensional reconstruction algorithm reconstructs each reconstruction point using only data that passes through or reappears at each reconstruction point.
  • the calculation takes a lot of time.
  • the reconstruction algorithm in multi-slice CT requires computation time and throughput is low, but image quality is good.
  • the imaging site is the heart, the change in the reconstructed image is larger than in other imaging sites due to the movement accompanying the pulse. Apply the configuration algorithm (cardiac synchronous reconstruction means). Therefore, the ECG-gated reconstructing means may be incorporated in the reconstruction calculation device shown in FIG.
  • the imaging region, the bed moving speed, the effective slice thickness, the region of interest, and the reconstruction mode are set by the input device 11 of FIG. 2, and the set measurement parameters are input to the system controller 23 and used.
  • the reconstruction means to be performed an optimal tomographic image corresponding to the purpose of the inspection can be obtained.
  • Figure 3 shows a flowchart.
  • the scanner 13 is stopped, and the X-ray beam from the X-ray generator 1 is applied to the imaging section of the object while moving the object table 3 to capture a scanogram image (step 51).
  • the imaging range of the subject is set from the scanogram image.
  • measurement parameters for creating a tomographic image are set (step 53).
  • the setting of the photographing range and the setting of the measurement parameters are performed by the input device 11.
  • a spiral scan is performed, projection data is collected by the data collection device 91, and various correction processes are performed by the preprocessing arithmetic device 91 to obtain preprocessed projection data.
  • Step 54 shows a flowchart.
  • the system controller 23 determines whether to use the high-speed reconstruction means 37 or the high-precision reconstruction means 61 as the reconstruction means of the reconstruction operation device 92 based on the imaging region set before the imaging and the measurement parameters. to decide.
  • tomographic image data is created by a high-speed reconstruction algorithm, and this tomographic image data is stored in the image data memory 43 and is processed by the post-processing arithmetic unit 93 as desired.
  • the processed image is displayed on the display device 12 as a tomographic image (step 55).
  • the region of interest of the displayed image is set with the mouse or the like of the input device 11 (step 56), and the set region of interest is input to the reconstruction arithmetic unit 92 via the system controller 23. Since the reconstruction means in this case is reconstruction of the region of interest, high-precision reconstruction is performed. The configuration means 61 is selected. Then, the set region of interest is reconstructed using a high-precision reconstruction algorithm to create a high-quality local image. (Step 57). Finally, the region of interest in the tomographic image created by the high-speed reconstruction means is replaced by the local image by the post-processing arithmetic unit 93 (step 58).
  • an algorithm speeded up by approximation or thinning may be used.
  • the processing speed becomes faster.
  • the helical pitch can be larger than that in the high-precision algorithm, so that a wider range of images can be generated with the same dose, and the effective dose is reduced. That is, according to the embodiment shown in FIG. 3, a high-accuracy tomographic image of the region of interest can be obtained, and a portion other than the region of interest is tomographic image corresponding to the purpose of the inspection at a high speed with a low exposure dose. An image can be obtained, and a tomographic image under desired conditions can be obtained.
  • FIG. 4 is an explanatory diagram of creating a tomographic image according to the flowchart of FIG. 3 described above.
  • a region of interest is set in an image reconstructed by the high-speed reconstruction means, and a local image in the region of interest is precisely reconstructed by the high-precision reconstruction means.
  • FIG. 8 is an explanatory diagram of a case where the local image reconstructed is replaced with a region of interest of the image reconstructed by the high-speed reconstruction means.
  • the high-speed reconstruction algorithm 101 (the spiral correction means 39 including the weighted addition memory 38 in FIG. 2), the rearrangement processing means 27, the reconstruction filter processing means 40, and the two-dimensional reconstruction means 62) in the reconstruction arithmetic unit 92 provide: Reconstruct and create a tomographic image.
  • the high-precision reconstruction algorithm 104 of the reconstruction operation device 92 (the rearrangement processing means 27, the reconstruction filter processing means 40, the cone angle correction means 41 and Artifacts using three-dimensional reconstruction A local image 106 in which 102 does not occur is created. Then, the region of interest 103 is replaced with the local image 106 by the post-processing arithmetic unit 93, and a high-quality tomographic image with few artifacts 102 can be created as the composite image 105 in the region of interest 103 at high speed.
  • the local image is an image obtained by reconstructing a part of the preview image created first, and is reconstructed by reducing the image size and the effective visual field size.
  • the other is also determined.
  • the method of determination can be determined from the selected local area using an input device such as a mouse in the preview image displayed on the screen, or entered manually using a touch panel or keyboard. Good. Since the algorithm used needs to reconstruct the local image with higher accuracy, it is necessary to use a higher-precision reconstruction algorithm than the single preview image. At present, a three-dimensional reconstruction algorithm is equivalent.
  • the input device 11 and the display device 12 shown in FIG. That is, a tomographic image having a highly accurate local image can be obtained.
  • Figure 5 shows the flowchart.
  • the reconstruction algorithm of the tomographic image creation method according to the flowchart of FIG. 5 is determined based on the set measurement parameters.
  • the scanning of the scanogram (step 71), the determination of the imaging range (step 72), the setting of the measurement parameters (step 73), and the spiral scan (step 75) are performed in accordance with the embodiment shown in FIG. Is the same.
  • the determination of the reconstruction algorithm is performed based on the measurement parameters (step 74).
  • the reconstruction algorithm is used for the moving speed of the object table 3, which is one of the measurement parameters.
  • the algorithm shall be determined. Since a high-speed algorithm such as the weighted spiral correction method can increase the moving speed of the subject table 3, when the moving speed of the subject table is set to high, the moving speed of the subject table 3 is applied by the system controller 23. The range is wide, the high-speed reconstruction means 37 is selected (step 76), and a high-precision algorithm such as three-dimensional reconstruction can reduce the moving speed of the object table 3, so that the moving speed of the object table 3 can be reduced. If the speed is low, the application range of the moving speed of the object table 3 is narrow, but the high-precision reconstruction means 61 having higher image quality is selected and reconstruction is performed (step 77), and a tomographic image is created. You.
  • the obtained local images are combined by the post-processing arithmetic unit 93 to create a tomographic image (step 78).
  • a high-speed and high-precision reconstructed algorithm is simultaneously processed in parallel, so that a high-speed and high-precision tomographic image suitable for preset conditions can be obtained.
  • FIG. 6 is a diagram showing a specific application example in which a tomographic image is created according to the flow of FIG. 5, which is an embodiment of the present invention.
  • FIG. 6 it is an explanatory diagram of a method of setting a plurality of regions of interest and obtaining a plurality of local images by a plurality of high-precision reconstruction operations.
  • FIG. 6 shows an example in which a region of interest (local region) is known before reconstruction. If the region of interest (the region reconstructed with high image quality) is known in advance, the region is input in advance, and the region is divided into the region of interest and other regions. Then, the region of interest is created as a new image by a high-precision reconstruction algorithm. The other regions are reconstructed by the fast reconstruction algorithm, and after this reconstruction, the reconstructed images are combined (replace the region of interest) to create the final reconstructed image.
  • the region of interest the region reconstructed with high image quality
  • the region of interest A113 uses the high-precision reconstruction algorithm A111 to create a high-accuracy image A116 with few artifacts, Is used to create a high-speed image 119 using a high-speed reconstruction algorithm 117.
  • a high-quality composite image 115 with little artifact in the region of interest is created at high speed.
  • the region of interest A113 and the different region of interest B114 shown in FIG. A high-precision image B118 is obtained by the construction algorithm B112.
  • a composite image 115 which is a tomographic image under desired conditions, that is, a tomographic image including a plurality of high-precision images A116 and B118, and a high-speed image 119 of the other non-interest area. Can be.
  • the high-speed reconstruction algorithm 117, the high-precision reconstruction algorithm Alll, and the high-precision reconstruction algorithm B112 are executed by the reconstruction operation device 92 shown in FIGS.
  • the region of interest A113 and the region of interest B114 are set by the input device 11 shown in FIGS.
  • the composite image 115 is obtained by the post-processing operation device 93 shown in FIG. 1 and FIG.
  • high-speed processing can be performed by performing reconfiguration simultaneously using a plurality of CPUs and ending the reconfiguration at the same time.
  • priorities are assigned to images having different effective fields of view and image sizes created by a plurality of reconstruction algorithms according to reconstruction accuracy, and replaced or weighted and added according to the priorities. As a result, diagnosis can be performed with an optimal image corresponding to the purpose of the inspection.
  • FIG. 7 shows the flowchart.
  • a plurality of reconstructions are performed by the system controller 23 according to the conditions input in advance for the preset conditions, that is, the region divided into the region of interest and the other region.
  • the algorithm is selected simultaneously (step 84) and executes a plurality of fast and high precision reconstruction algorithms of the reconstruction unit 92 (steps 86 and 87).
  • a tomographic image is created by combining a plurality of local images obtained at the same time by the post-processing arithmetic unit 93 (step 88).
  • the scanning of the scanogram (step 81), the determination of the shooting range (step 82), and the spiral scan (step 85) are the same as those in the flowchart of FIG. That is, determining the shooting range (step 82) and setting the measurement parameters (step 83)
  • the plurality of regions of interest are determined by the input device 11, and the corresponding reconstruction algorithm is selected and executed by the system controller 23 (step 84).
  • a plurality of local images can be simultaneously created by a plurality of reconstruction algorithms, so that tomographic images under desired conditions, that is, a plurality of highly accurate tomographic images corresponding to the purpose of the inspection, can be obtained.
  • a tomographic image can be obtained at high speed.
  • the reconstruction algorithm is determined according to the bed moving speed in the measurement parameters, but there is a method of determining the reconstruction algorithm according to the slice thickness.
  • the present invention is not limited to the combination of these, and the high-speed high-speed Three or more types of reconstruction algorithms such as a reconstruction algorithm, a high-precision high-precision reconstruction algorithm, and a reconstruction algorithm effective for reducing exposure may be combined.
  • the X-ray tube used in the X-ray CT apparatus including the tomographic image creation device of the present invention is one embodiment of the X-ray source, and is not limited to the X-ray tube, but may be a radiation source (radioisotope) or the like. However, it is clear that a similar effect can be obtained. Industrial applicability
  • the image processing apparatus for creating the tomographic image includes a plurality of reconstructed image creating means having different reconstruction algorithms, A reconstructing selection means for selecting a reconstructed image creating means in accordance with the set conditions, so that a reconstructing algorithm suitable for creating a required image from among the plurality of reconstructed image creating means is provided. Since the constituent image creating means can be selected, an optimal tomographic image corresponding to the purpose of the inspection can be obtained.

Abstract

An X-ray CT device comprises a scanner including an X-ray source and an X-ray detector for detecting the X-ray irradiated on a body to be detected from the X-ray source and transmitted through the body and performing scanning by rotating the X-ray source and the X-ray detector around the axis of rotation relatively to the body an image processor for processing the data measured by the scanner and preparing a tomographic image, and a display device for displaying the tomographic image. The image processor comprises a plurality of re-configuration image preparing means of different re-configuration algorithms and a re-configuration selecting means for selecting the re-configuration image preparing means according to a preset condition, and prepares the tomographic image by the selected re-configuration image preparing means. Since there are provided the plurality of re-configuration image preparing means and the re-configuration selecting means, the tomographic image of a desired condition can be obtained by adequately selecting the re-configuration image preparing means corresponding to the purpose of the inspection, and preparing the tomographic image.

Description

明 細 書  Specification
X線 CT装置及びその断層画像の作成方法 技術分野 X-ray CT apparatus and method for creating tomographic image thereof
本発明は、 X線を照射した被検体からの透過 X線を検出して得た計測データを コンピュータにより画像処理して断層画像を得るコンピュータ断層撮影装置 (X 線 CT装置) に係り、 特に、 計測データの再構成演算に特徴を有する X線 CT装置 及びその断層画像の作成方法に関する。 背景技術  The present invention relates to a computer tomography apparatus (X-ray CT apparatus) that obtains a tomographic image by performing image processing by a computer on measurement data obtained by detecting transmitted X-rays from a subject irradiated with X-rays. The present invention relates to an X-ray CT apparatus having a feature in reconstructing calculation of measurement data and a method of creating a tomographic image thereof. Background art
X線 CT装置は、 X線源と、 この X線源の焦点を指向する円弧状の検出器が被検 体を挟んで互いに対向する位置に配置されている。  In the X-ray CT apparatus, an X-ray source and an arc-shaped detector pointing at the focal point of the X-ray source are arranged at positions facing each other with the subject interposed therebetween.
X線源からの X線はコリメートされて扇状の X線ビームを形成し、 この X線ビ 一ムを被検体の撮影断面に照射して、 被検体により減弱した透過 X線を回転しな がら計測することで撮影動作は行われる。  The X-rays from the X-ray source are collimated to form a fan-shaped X-ray beam, and this X-ray beam is applied to the imaging section of the subject to rotate the transmitted X-rays attenuated by the subject. The photographing operation is performed by measuring.
前記スキャナの回転中の計測動作は 0. 1〜0. 5度程度の角度間隔で行われ、例え ば合計で 600〜1200角度程度の投影データを取得する。  The measurement operation during the rotation of the scanner is performed at angular intervals of about 0.1 to 0.5 degrees, for example, to acquire projection data of about 600 to 1200 angles in total.
検出器は多数の検出素子で構成され、それぞれの素子の出力が計測回路によつ てデジタルデータとして収集され、 計測角度毎に素子数分のデータ (ビュー) を 構成する (以下、 このように構成されたビューデータ取得のための計測系をスキ ャナと呼ぶ) 。  The detector is composed of a large number of detection elements, and the output of each element is collected as digital data by a measurement circuit, and data (views) for the number of elements is formed for each measurement angle (hereinafter, as described below). The configured measurement system for acquiring view data is called a scanner).
前記スキヤナで計測されたビューデータは画像処理装置に転送されて検出素子 の特性補正、 線質補正やログ変換などの前処理が施された後、 再構成ァルゴリズ ムによって断層画像データとして再構成される。 そして、 前記再構成された画像 データにフィルタなどの後処理が施されて断層画像を作成し、 この断層画像を表 示装置に表示する。  The view data measured by the scanner is transferred to an image processing device, subjected to pre-processing such as characteristic correction of a detection element, radiation quality correction and log conversion, and then reconstructed as tomographic image data by a reconstruction algorithm. You. Then, post-processing such as filtering is performed on the reconstructed image data to create a tomographic image, and the tomographic image is displayed on a display device.
前記スキャナによるビューデータの取得方法には、 X線源と検出器の回転時に 被検体を載置する被検体テーブルを撮影位置に固定して、 すなわち前記被検体を 静止させてスキャンするノーマルスキャンと、 X線源と検出器との回転と同時に 被検体テーブルを移動、 すなわち被検体を移動させながらスキャンする螺旋スキ ヤンとが知られている (特開 2001-346794号公報など) 。 The method of acquiring view data by the scanner includes fixing an object table on which an object is placed at the time of rotation of an X-ray source and a detector at an imaging position. There are known a normal scan in which scanning is performed while standing still, and a spiral scan in which the subject table is moved at the same time as the rotation of the X-ray source and the detector, that is, scanning is performed while moving the subject (Japanese Patent Laid-Open No. 2001-346794). No. gazette).
また、検出器においても、単一の列からなる検出器を有し、 1回のスキャンで 1 断面(1スライス面)を撮影して断層像を得るシングルスライス型 X線 CT装置と、 複数の列からなる検出器を有し、 1 回のスキャンで多数のスライス面を撮影する マルチスライス型 X線 CT装置とが知られている(特開 2001-346794号公報など)。 このように、 X線 CT装置は、 スキャン方法と検出器の列数によって各種の方式 があるが、 それぞれのメリットを活かして診断用途に応じて適用されている。 そして、これらの X線 CT装置の断層画像データを再構成するための再構成演算 には単一の再構成アルゴリズムが用いられている。前記再構成アルゴリズムには、 フィルタ補正逆投影法 ( "近代科学社:画像処理アルゴリズム、 1993年 3月 10 日初版発行" の pl07、 pl26〜pl27に記載) 、 フーリエ再構成法 ( "近代科学社: 画像処理アルゴリズム、 1993年 3月 10 日初版発行" の pl07に記載) 、 三次元逆 投影法 ( "近代科学社:画像処理アルゴリズム、 1993年 3月 10日初版発行" の pl55〜pl60に記載) 、 重み付け螺旋補正再構成法 (特開 2001-346794号公報) 、 などの公知の再構成法がある。  In addition, the detector has a single-row detector, and a single-slice X-ray CT apparatus that obtains a tomographic image by capturing one cross section (one slice plane) in one scan, 2. Description of the Related Art A multi-slice type X-ray CT apparatus having a row of detectors and capturing a large number of slice planes in one scan is known (Japanese Patent Application Laid-Open No. 2001-346794). As described above, there are various types of X-ray CT systems depending on the scanning method and the number of rows of detectors, and each type is applied according to the diagnostic application by taking advantage of the respective advantages. Then, a single reconstruction algorithm is used for the reconstruction operation for reconstructing the tomographic image data of these X-ray CT apparatuses. The reconstruction algorithm includes a filter-corrected backprojection method (described in pl07, pl26-pl27 of "Kindai Kagakusha: Image Processing Algorithm, First Edition, March 10, 1993") and a Fourier reconstruction method ("Kindai Kagakusha" : Image processing algorithm, described in pl07 of "March 10, 1993, first edition", 3D back projection method ("Modern Science Inc .: Image processing algorithm, first edition of March 10, 1993," described in pl55 to pl60 ), And a known reconstruction method such as a weighted spiral correction reconstruction method (Japanese Patent Laid-Open No. 2001-346794).
特に、今後主流になることが予想されるマルチスライス型 X線 CT装置には、重 み付け螺旋補正再構成法や三次元逆投影法が用いられているが、 これらには一長 一短がある。  In particular, multi-slice X-ray CT systems, which are expected to become mainstream in the future, use the weighted spiral correction reconstruction method and the three-dimensional backprojection method, but these have advantages and disadvantages. is there.
すなわち、 重み付け螺旋補正再構成法は、 演算が高速であり計測スループット は高いが、 誤差が大きい。 これに対して、 三次元逆投影法は、 誤差は小さいが演 算時間が長くなるために、 計測スループッ卜が低い。 X線 CT撮影においては、 検 診患者や緊急患者に対しては高速撮影、 高速演算が要求され、 精密検査患者に対 しては高い画質が特に要求されるので、 単一の再構成アルゴリズムのみでは所望 の条件の断層画像を得ることができない場合があった。  In other words, the weighted spiral correction reconstruction method has a high calculation speed and a high measurement throughput, but has a large error. On the other hand, the three-dimensional backprojection method has a small error but a long calculation time, so that the measurement throughput is low. In X-ray CT imaging, high-speed imaging and high-speed calculation are required for examination patients and emergency patients, and high image quality is especially required for close-up inspection patients, so only a single reconstruction algorithm is used. In some cases, it was not possible to obtain a tomographic image under desired conditions.
本発明は、 このような事情に鑑みてなされたもので、 所望の条件の断層画像を 得ることができる X線 CT装置を提供することを目的とする。 発明の開示 The present invention has been made in view of such circumstances, and has as its object to provide an X-ray CT apparatus that can obtain a tomographic image under desired conditions. Disclosure of the invention
前記目的を達成するために、 本発明の X線 CT装置は、 X線源と、 この X線源に 被検体を挟んで向かレ、合レ、、 前記 X線源から前記被検体に照射され前記被検体を 透過した X線を検出する X線検出器と、 を含み、 前記 X線源及び前記 X線検出器 を前記被検体に対して相対的に周回軸を中心に周回させてスキャンするスキャナ と、 このスキャナで計測したデータを処理して断層画像を作成する画像処理装置 と、前記断層画像を表示する表示装置と、 を含む X線 CT装置であって、前記画像 処理装置に、 再構成アルゴリズムの異なる複数の再構成画像作成手段と、 予め設 定された条件に応じて再構成画像作成手段を選択する再構成選択手段とを備え、 前記選択した再構成画像作成手段で断層画像を作成する、 ことを特徴とする。 前 記予め設定された条件は、 前記スキヤナのスキヤン条件及び/又は計測パラメ一 タのうちの少なくとも一つである。 具体的には、 撮影部位、 被検体テーブルの移 動速度と実効スライス厚で決定される計測モード、 関心領域、 被曝線量及び再構 成モードなどである。  In order to achieve the above object, an X-ray CT apparatus according to the present invention comprises: an X-ray source; and an X-ray source. An X-ray detector for detecting X-rays transmitted through the subject, and scanning the X-ray source and the X-ray detector around the subject relative to the subject. An X-ray CT apparatus, comprising: a scanner that processes the data measured by the scanner to create a tomographic image; and a display device that displays the tomographic image, wherein the image processing apparatus includes: A plurality of reconstructed image creating means having different reconstruction algorithms; and a reconstructing selecting means for selecting the reconstructed image creating means in accordance with preset conditions. Is created. The preset condition is at least one of a scan condition of the scanner and / or a measurement parameter. Specifically, there are an imaging region, a measurement mode determined by a moving speed of the object table and an effective slice thickness, a region of interest, an exposure dose, and a reconstruction mode.
好ましくは、 前記複数の再構成画像作成手段は、 高速再構成演算アルゴリズム を有する第一の再構成画像作成手段と、 この第一の再構成画像作成手段よりも精 度が高い高精度再構成演算アルゴリズムを有する第二の再構成画像作成手段との 少なくとも二つ以上の異なる再構成アルゴリズムを有する再構成画像作成手段を 備え、 これらの中から目的に応じた再構成画像作成手段を選択して断層画像を作 成する。  Preferably, the plurality of reconstructed image creating means are a first reconstructed image creating means having a high-speed reconstructing operation algorithm, and a high-precision reconstruction operation having higher accuracy than the first reconstructed image creating means. A second reconstructed image creating unit having an algorithm, and a reconstructed image creating unit having at least two different reconstructing algorithms. Create an image.
前記 X線 CT装置の一つの利用形態として、前記第一の再構成画像作成手段で作 成した画像に関心領域を設定し、 この設定した関心領域を前記第二の再構成画像 作成手段で局所画像を作成し、 前記第一の再構成画像作成手段で作成した画像の 関心領域を前記局所画像に置き換えることにより、 関心領域のみを高精細な画像 とすることができ、 診断能を高くすることができる。  As one use mode of the X-ray CT apparatus, a region of interest is set in an image created by the first reconstructed image creating unit, and the set region of interest is locally set by the second reconstructed image creating unit. By creating an image and replacing the region of interest of the image created by the first reconstructed image creating unit with the local image, only the region of interest can be a high-definition image, and diagnostic performance can be enhanced. Can be.
また、 前記第一の再構成画像作成手段で作成した画像に関心領域を設定し、 こ の設定した関心領域を前記第二の再構成画像作成手段で再構成画像を作成するこ とができる。 さらに、 前記第一の再構成画像作成手段よりも再構成演算が高速で ある再構成アルゴリズムを有する第三の再構成画像作成手段を設け、 この第三の 再構成画像作成手段で作成した再構成画像をプレビュー画像として上記表示装置 に表示することができる。 Also, a region of interest can be set in the image created by the first reconstructed image creating unit, and a reconstructed image can be created from the set region of interest by the second reconstructed image creating unit. Further, a third reconstructed image creating means having a reconstructing algorithm whose reconstruction operation is faster than the first reconstructed image creating means is provided. The reconstructed image created by the reconstructed image creating means can be displayed on the display device as a preview image.
さらにまた、 前記複数の再構成画像作成手段で複数の異なる有効視野及び画像 サイズの画像を再構成精度に応じて優先順位をつけ、優先順位に応じて置き換え、 又は重み付け加算することや、 再構成された断層画像の局所領域を表示画像上に 設定し、 設定された局所領域を有効視野として再構成画像を作成することもでき る。 また、 本発明の断層画像作成方法は、 X線源と、 この X線源に被検体を挟ん で向かい合い、 前記 X線源から前記被検体に照射され前記被検体を透過した X線 を検出する X線検出器と、 を含み、 前記 X線源及び前記 X線検出器を前記被検体 に対して相対的に周回軸を中心に周回させてスキャンするスキャナと、 このスキ ャナで計測したデータを処理して断層画像を作成する画像処理装置と、 この画像 処理装置で作成した断層画像を表示装置に表示する断層画像作成方法であって、 前記画像処理装置は、再構成アルゴリズムの異なる複数の再構成画像作成手段と、 予め設定された条件に応じて再構成画像作成手段を選択する再構成選択手段と、 を有し、 スキヤノグラム画像を撮影するステップと、 このスキヤノグラム画像か ら被検体の撮影範囲を設定するステップと、 断層画像を作成するためのスキャン 条件及び計測パラメータを設定するステップと、 前記スキヤナで投影データを得 るステップと、 前記スキヤン条件及び/又は計測パラメータにより前記再構成選 択手段で前記複数の再構成画像作成手段の中から一つ以上の再構成画像作成手段 を選択するステップと、 前記選択した再構成画像作成手段で断層画像を作成し、 この断層画像を前記表示装置に表示するステップと、から成ることを特徴とする。 前記断層画像作成方法の一つの利用形態として、 前記表示装置に表示された断 層画像に関心領域を設定するステップと、 前記選択した再構成選択手段で前記設 定した関心領域を局所画像として作成するステップと、 前記断層画像の関心領域 を前記局所画像に置き換え、 この置き換えた局所画像と前記断層画像とを合成す るステップと、 から成り、 前記関心領域を前記局所画像に置き換えて、 関心領域 を高精細な画像として、 診断能を高くすることができる。 前記選択した再構成画 像作成手段は、高速再構成演算アルゴリズムを有する再構成画像作成手段であり、 前記別の再構成画像作成手段は、 前記高速再構成演算アルゴリズムを有する再構 成画像作成手段よりも精度が高い高精度再構成演算アルゴリズムを有する再構成 画像作成手段である。 Furthermore, the plurality of reconstructed image creating means assigns priorities to a plurality of images having different effective fields of view and image sizes according to reconstruction accuracy, and replaces or assigns weights according to the priorities. It is also possible to set a local region of the set tomographic image on the display image and create a reconstructed image with the set local region as an effective field of view. In addition, the tomographic image creating method of the present invention includes: an X-ray source; and an X-ray source that faces the subject with the X-ray source sandwiching the X-ray source. A scanner for scanning the X-ray source and the X-ray detector by rotating the X-ray source and the X-ray detector around a rotation axis relative to the subject; and data measured by the scanner. And a tomographic image creating method of displaying a tomographic image created by the image processing device on a display device, wherein the image processing device has a plurality of different reconstruction algorithms. A reconstructed image creating means, and a reconstructing selecting means for selecting the reconstructed image creating means according to a preset condition, wherein a step of taking a scanogram image; and taking a subject from the scanogram image. Setting a range, setting scan conditions and measurement parameters for creating a tomographic image, obtaining projection data with the scanner, and selecting the reconstruction based on the scan conditions and / or measurement parameters. Means for selecting one or more reconstructed image creating means from among the plurality of reconstructed image creating means; creating a tomographic image with the selected reconstructed image creating means; and displaying the tomographic image on the display device. And the step of displaying the information. As one use form of the tomographic image creating method, a step of setting a region of interest in a cross-sectional image displayed on the display device, and creating the set region of interest as a local image by the selected reconstruction selecting means Replacing the region of interest of the tomographic image with the local image, and synthesizing the replaced local image with the tomographic image. Replacing the region of interest with the local image, Can be used as high-definition images to enhance diagnostic performance. The selected reconstructed image creating means is a reconstructed image creating means having a high-speed reconstruction operation algorithm, and the another reconstructed image creating means is a reconstructed image having the high-speed reconstruction operation algorithm. This is a reconstructed image creating means having a high-precision reconstruction operation algorithm with higher accuracy than the composed image creating means.
さらに別の利用形態として、 前記表示装置に表示された断層画像に少なくとも 二つ以上の関心領域を設定するステツプと、 前記選択した再構成選択手段とは別 の再構成画像作成手段で前記設定した関心領域を局所画像として作成するステツ プと、 前記断層画像の関心領域を前記局所画像に置き換え、 この置き換えた局所 画像と前記断層画像とを合成するステップと、 カ ら成ることを特徴とする。 前記選択した再構成画像作成手段は、 高速再構成演算アルゴリズムを有する再 構成画像作成手段であり、 前記別の再構成画像作成手段は、 前記高速再構成演算 アルゴリズムを有する再構成画像作成手段よりも精度が高い高精度再構成演算ァ ルゴリズムを有する再構成画像作成手段である。  As still another use form, a step of setting at least two or more regions of interest in the tomographic image displayed on the display device, and the setting performed by the reconstructed image creating means different from the selected reconstruction selecting means A step of creating a region of interest as a local image; and a step of replacing the region of interest in the tomographic image with the local image, and combining the replaced local image with the tomographic image. The selected reconstructed image creating unit is a reconstructed image creating unit having a fast reconstruction operation algorithm, and the another reconstructed image creating unit is more than a reconstructed image creating unit having the fast reconstruction operation algorithm. This is a reconstructed image creating means having a highly accurate high-precision reconstruction operation algorithm.
また別の利用形態として、 前記表示装置に表示された断層画像に少なくとも二 つ以上の関心領域を設定するステップと、 前記選択した再構成選択手段とは別の 再構成画像作成手段で前記設定した関心領域を局所画像として作成するステップ と、 前記作成した局所画像を前記表示装置に表示するステップと、 から成ること を特徴とする。 前記選択した再構成画像作成手段は、 高速再構成演算アルゴリズ ムを有する再構成画像作成手段であり、 前記別の再構成画像作成手段は、 前記高 速再構成演算アルゴリズムを有する再構成画像作成手段よりも精度が高い高精度 再構成演算アルゴリズムを有する再構成画像作成手段であって、 前記高精度再構 成演算アルゴリズムを有する再構成画像作成手段で前記局所画像を作成する。 そして、 前記複数の再構成画像作成手段は、 少なくとも一つ以上の高速再構成 演算アルゴリズムを有する再構成画像作成手段と、 前記高速再構成演算アルゴリ ズムを有する再構成画像作成手段よりも精度が高い少なくとも一つ以上の高精度 再構成演算アルゴリズムを有する再構成画像作成手段とを有することを特徴とす る。  As another usage form, a step of setting at least two or more regions of interest in the tomographic image displayed on the display device, and the step of setting the reconstructed image by a reconstructed image creating means different from the selected reconstruction selecting means Creating a region of interest as a local image; and displaying the created local image on the display device. The selected reconstructed image creating means is a reconstructed image creating means having a fast reconstruction operation algorithm, and the another reconstructed image creating means is a reconstructed image creating means having the high speed reconstruction operation algorithm The local image is created by a reconstructed image creating unit having a high-precision reconstruction operation algorithm having higher accuracy than the reconstructed image creation unit having the high-accuracy reconstruction operation algorithm. The plurality of reconstructed image creating means have higher accuracy than a reconstructed image creating means having at least one or more high-speed reconstruction arithmetic algorithm, and a reconstructed image creating means having the high-speed reconstruction arithmetic algorithm. And a reconstructed image creating means having at least one high-precision reconstruction operation algorithm.
本発明によれば、 再構成アルゴリズムの異なる複数の再構成画像作成手段と、 予め設定された条件に応じて再構成画像作成手段を選択する再構成選択手段とを 備えたので、 検査の目的に対応した所望の条件の断層画像を得ることができる。 図面の簡単な説明 According to the present invention, a plurality of reconstructed image creating means having different reconstruction algorithms and a reconstructing selecting means for selecting the reconstructed image creating means according to a preset condition are provided. A corresponding tomographic image under desired conditions can be obtained. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の実施の形態である断層画像作成装置を含む X線 CT装置の全体構 成を示す図、図 2は図 1に示した X線 CT装置の断層画像作成装置の構成を示す図、 図 3は図 2に示した断層画像作成装置による断層画像作成のフローチヤ一ト、 図 4は図 3のフローチャートによる断層画像作成の具体例を示す説明図、図 5は図 2 に示した断層画像作成装置による他の断層画像作成のフローチャート、 図 6は図 5のフローチャートによる断層画像作成の具体例を示す説明図、 図 7は図 2に示 した断層画像作成装置による他の断層画像作成のフローチャート図である。 発明を実施するための最良の形態  FIG. 1 is a diagram showing the overall configuration of an X-ray CT apparatus including a tomographic image creating apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing the configuration of a tomographic image creating apparatus of the X-ray CT apparatus shown in FIG. Fig. 3, Fig. 3 is a flowchart of tomographic image creation by the tomographic image creating apparatus shown in Fig. 2, Fig. 4 is an explanatory diagram showing a specific example of tomographic image creation by the flowchart of Fig. 3, and Fig. 5 is shown in Fig. 2. Flow chart of another tomographic image creation by the tomographic image creating apparatus, FIG. 6 is an explanatory diagram showing a specific example of tomographic image creating by the flowchart of FIG. 5, and FIG. 7 is another tomographic image creating by the tomographic image creating apparatus shown in FIG. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、添付図面に従って本発明の好ましい実施の形態について詳述する。なお、 以下の実施の形態は、 多列 (マルチスライス) 検出器を備えた螺旋スキャン方式 の X線 CT装置に本発明を適用した場合について説明する力 s、本発明はこれに限定 するものではなく、シングルスラィス検出器を備えた螺旋スキャン方式の X線 CT 装置やシングルスライス検出器を備えたノーマルスキャン方式の X線 CT装置など にも適用可能である。  Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following embodiments, the force s for describing the case where the present invention is applied to a helical scan type X-ray CT apparatus equipped with a multi-row (multi-slice) detector, and the present invention is not limited to this. However, the present invention can be applied to a spiral scan type X-ray CT device equipped with a single slice detector and a normal scan type X-ray CT device equipped with a single slice detector.
《システム構成》  "System configuration"
図 1は本発明の実施の形態が適用される多列検出器を備えた螺旋スキャン方式 の X線 CT装置の全体構成を示す図である。 図 1に示す X線 CT装置は、 X線を発 生する X線発生器 1 と、 X線発生器 1によって発生された X線をコリメートして 被検体 4に照射するコリメータ 2と、 照射されて被検体 4を透過した X線を検出 する X線検出器 5とから構成されるスキャナ 13を備えている。 スキャナ 13は、 スキャナ駆動装置 6によって、 被検体 4の周囲を回転し、 被検体 4は、 被検体の 体軸が前記回転の中心軸と略一致するように、被検体テーブル 3上に載せられる。 被検体テーブル 3は、 図示省略の被検体テーブル移動機構によって、 スキャナ回 転軸に沿って移動可能であり、 テーブルコントローラ (図 2参照) からの制御信 号に基づいて移動される。入力装置 11で設定したスキャン条件や計測パラメータ などの操作信号は、 システム全体を制御するシステム制御装置 23に入力されて、 スキャナ 13の動作信号を生成し、この信号はスキャナコントローラ 7と後述の画 像処理装置 9に入力される。 入力装置 11は、 図示省略のキーボード、 マウス、 タ ツチパネルのような入力装置を含み、 更に、 入力したスキャン条件や計測パラメ 一タ等は入力装置 11に備えられたメモリに格納される(図 2のパラメータテープ ル) 。 FIG. 1 is a diagram showing an overall configuration of a spiral scan type X-ray CT apparatus including a multi-row detector to which an embodiment of the present invention is applied. The X-ray CT apparatus shown in FIG. 1 includes an X-ray generator 1 that generates X-rays, a collimator 2 that collimates the X-rays generated by the X-ray generator 1 and irradiates the object 4 with an X-ray. The scanner 13 includes an X-ray detector 5 for detecting X-rays transmitted through the subject 4. The scanner 13 is rotated around the subject 4 by the scanner driving device 6, and the subject 4 is placed on the subject table 3 such that the body axis of the subject substantially matches the center axis of the rotation. . The subject table 3 can be moved along the scanner rotation axis by a subject table moving mechanism (not shown), and is moved based on a control signal from a table controller (see FIG. 2). Operation signals such as scan conditions and measurement parameters set by the input device 11 are input to a system control device 23 for controlling the entire system, and generate operation signals of the scanner 13, and these signals are transmitted to the scanner controller 7 and an image to be described later. Input to the image processing device 9. The input device 11 includes input devices such as a keyboard, a mouse, and a touch panel (not shown). Further, input scan conditions and measurement parameters are stored in a memory provided in the input device 11 (FIG. 2). Parameter table).
X線発生器 1は、 X線を発生させるための高電圧を高電圧発生装置 10から供給 される。 スキャナ駆動装置 6、 被検体テーブル移動機構 (図示省略) 及び高電圧 発生装置 10は、 スキャナコントローラ 7によって制御され、 コリメータ 2は、 ス キヤナコントローラ 7に含まれているコリメータコントローラ 8によって制御さ れる。  The X-ray generator 1 is supplied with a high voltage for generating X-rays from a high-voltage generator 10. The scanner driving device 6, the object table moving mechanism (not shown) and the high voltage generator 10 are controlled by the scanner controller 7, and the collimator 2 is controlled by the collimator controller 8 included in the scanner controller 7. .
検出器 5は、被検体 4の体軸方向 (スキャナ 13の回転中心軸方向) に並べられ た複数の検出素子列を有する。 この二次元的に配列された検出器 5は、 列数が、 例えば、 4〜16列のものが用いられ、 検出素子列のそれぞれは、 複数の検出素子 から構成される。  The detector 5 has a plurality of detection element rows arranged in the body axis direction of the subject 4 (the rotation center axis direction of the scanner 13). The detectors 5 arranged in a two-dimensional manner have a number of columns of, for example, 4 to 16 rows, and each of the detection element rows is composed of a plurality of detection elements.
検出素子のそれぞれは、 入射する X線ビームの強度を示す電気信号を生成して 画像処理装置 9に出力する。 これらの電気信号は被検体 4を透過した X線ビーム の減衰度を表わすデータ (以下、 投影データと呼ぶ) である。 前記画像処理装置 9 は、 前記投影データに検出素子の特性補正、 線質補正やログ変換などの前処理 を施す前処理用演算装置 91と、前処理されたデータを再構成アルゴリズムによつ て断層画像データとして再構成する再構成演算装置 92と、前記再構成された画像 データにフィルタなどの後処理を施す後処理用演算装置 93で構成される。画像処 理装置 9で再構成された断層画像は表示装置 12上に表示される。  Each of the detection elements generates an electric signal indicating the intensity of the incident X-ray beam and outputs the signal to the image processing device 9. These electric signals are data representing the attenuation of the X-ray beam transmitted through the subject 4 (hereinafter, referred to as projection data). The image processing device 9 includes a pre-processing arithmetic unit 91 that performs pre-processing such as characteristic correction of a detection element, line quality correction, and log conversion on the projection data, and a pre-processing data by a reconstruction algorithm. It is composed of a reconstruction operation device 92 for reconstructing as tomographic image data, and a post-processing operation device 93 for performing post-processing such as a filter on the reconstructed image data. The tomographic image reconstructed by the image processing device 9 is displayed on the display device 12.
《断層画像作成装置の構成と動作》  《Configuration and operation of tomographic image creation device》
図 2は図 1に示した X線 CT装置の断層画像作成装置の構成を示す図である。 撮影時、及び撮影後の後処理時に、入力装置 11により入力された計測パラメ一 タ (スライス厚、 螺旋ピッチ、 スキャン速度、 スキャン範囲、 有効視野、 X線発 生器 1の X線管の電圧 (管電圧) 、 電流 (管電流) など) 及び再構成パラメータ FIG. 2 is a diagram showing a configuration of a tomographic image creating apparatus of the X-ray CT apparatus shown in FIG. Measurement parameters (slice thickness, helical pitch, scan speed, scan range, effective field of view, voltage of X-ray tube of X-ray generator 1) during imaging and post-processing after imaging (Tube voltage), current (tube current), etc. and reconstruction parameters
(再構成フィルタ関数、 再構成スライス間隔、 有効視野、 再構成演算アルゴリズ ムなど) はパラメータテーブル 22に格納される。 このパラメータテーブル 22か らの計測及び再構成パラメータは、システム制御装置 23を介して、被検体テープ ル 3を制御するテーブルコントローラ 25 とスキャナ 13を制御するスキャナコン トローラ 7 に入力されて、 被検体テーブル 3の位置及び移動速度とスキャナ 13 の回転速度 (スキャン時間) 、 X線発生装置 1の管電流、 管電圧、 及びコリメ一 タ 2のコリメート幅などのスキャンパラメータを制御する。 (Reconstruction filter function, reconstruction slice interval, effective field of view, reconstruction algorithm, etc.) are stored in the parameter table 22. The measurement and reconstruction parameters from the parameter table 22 are transmitted to the subject tape via the system controller 23. Input to the table controller 25 that controls the scanner 3 and the scanner controller 7 that controls the scanner 13, the position and movement speed of the object table 3, the rotation speed (scan time) of the scanner 13, and the tube of the X-ray generator 1. It controls scan parameters such as current, tube voltage, and collimator 2 collimation width.
上記の入力装置 11から出力されたスキャン条件でスキャナ 13と被検体テープ ノレ 3は制御されて螺旋スキャンが行われる。 この螺旋スキャンによりスキャナ 13 の多列検出器 6で検出したデータは、データ収集装置 30の投影データ用バッファ メモリ 31に記憶される。 この記憶されたデータは、 システム制御装置 23からの 加算信号が無い場合は前処理用演算装置 91に入力され、 システム制御装置 23か らの加算信号が有る場合は加算手段 32によって加算されて前処理用演算装置 91 に入力される。  The scanner 13 and the sample tape holder 3 are controlled under the scanning conditions output from the input device 11 to perform a spiral scan. The data detected by the multi-row detector 6 of the scanner 13 by the spiral scan is stored in the projection data buffer memory 31 of the data collection device 30. This stored data is input to the pre-processing arithmetic unit 91 when there is no addition signal from the system control unit 23, and is added by the addition unit 32 when there is an addition signal from the system control unit 23, and It is input to the processing operation unit 91.
前記加算信号とは、例えば多列型検出器の列数が 16で、 このうちの 4列ずつ加 算して 4スライスの断層画像を得る場合における加算指令信号のことを意味する。 前処理用演算装置 91 は、 対数変換手段 34 とリングアーチファタト補正手段 35 とを有し、前記データ収集装置 30から出力された投影データは、検出素子の特性 補正、線質補正などの各種の補正処理を行った後に、対数変換手段 34で対数変換 され、リングアーチファタト補正手段 35で前記対数変換されたデータにリングァ ーチファタト補正処理が施されて前処理投影データを作成し、 このデータは再構 成演算装置 92に入力されると共に前処理投影データメモリ 36に記憶される。 再構成演算装置 92は、高速再構成アルゴリズムを有する高速再構成手段 37と、 高精度再構成アルゴリズムを有する高精度再構成手段 61 の二つの再構成ァルゴ リズムを備えている。これらの再構成手段は、入力装置 11で予め設定した条件 (計 測パラメータなど)に基づいて、 システム制御装置 23で生成された切替信号によ り再構成スイッチ A48と再構成スィッチ B49による二つの切替スイッチを切り替 えて選択される。  The addition signal means, for example, an addition command signal in a case where the number of rows of the multi-row detector is 16, and four rows are added to each other to obtain a 4-slice tomographic image. The preprocessing arithmetic unit 91 includes a logarithmic conversion unit 34 and a ring artifact correction unit 35, and the projection data output from the data collection unit 30 is used for various types of correction such as characteristic correction of a detection element and line quality correction. After performing the above correction processing, the data subjected to logarithmic conversion by the logarithmic conversion means 34 and the logarithmically converted data by the ring artifat correction means 35 are subjected to ring artifact correction processing to create preprocessed projection data, and Is input to the reconstruction processor 92 and stored in the pre-processing projection data memory 36. The reconstruction operation device 92 includes two reconstruction algorithms, a high-speed reconstruction means 37 having a high-speed reconstruction algorithm and a high-precision reconstruction means 61 having a high-precision reconstruction algorithm. These reconstructing means are configured by a reconfiguration switch A48 and a reconfiguration switch B49 based on conditions (such as measurement parameters) preset in the input device 11 by a switching signal generated by the system controller 23. Switch the selector switch to select.
高速再構成手段 37を選択したときは、 再構成スイッチ A48は a側に接続され、 再構成スィッチ 49Bは c側に接続される。一方、高精度再構成手段 61を選択した ときは、 再構成スイッチ A48は b側に接続され、 再構成スィッチ 49Bは d側に接 続される。 なお、 ノーマルスキャンの場合は螺旋補正は必要ないので、 前記再構 成スィツチ A48は b側に接続されて次の処理を実行する。 When the high-speed reconfiguration means 37 is selected, the reconfiguration switch A48 is connected to the a side, and the reconfiguration switch 49B is connected to the c side. On the other hand, when the high-precision reconfiguration means 61 is selected, the reconfiguration switch A48 is connected to the b side, and the reconfiguration switch 49B is connected to the d side. In the case of normal scan, spiral correction is not necessary, The configuration switch A48 is connected to the b side and executes the following processing.
高速再構成手段 37は、 加重関数が記憶されている加重加算メモリ 38を用いて 螺旋補正を行う螺旋補正手段 39、並べ替え処理手段 27、再構成フィルタ処理手段 40、 二次元再構成手段 62及び画像データメモリ 43からなり、 高精度再構成手段 61は、並べ替え処理手段 27、再構成フィルタ処理手段 40、 コーン角補正手段 41、 三次元再構成手段 42、 及び画像データメモリ 43からなる。  The high-speed reconstruction means 37 includes a spiral correction means 39 for performing a spiral correction using a weighted addition memory 38 in which a weighting function is stored, a rearrangement processing means 27, a reconstruction filter processing means 40, a two-dimensional reconstruction means 62, The high-precision reconstruction means 61 is composed of a rearrangement processing means 27, a reconstruction filter processing means 40, a cone angle correction means 41, a three-dimensional reconstruction means 42, and an image data memory 43.
なお、高精度再構成手段 61で螺旋補正を行わない理由は、螺旋補正は螺旋スキ ヤンによって得られたデ一タをノ一マルスキャンによる円データに補間するため の処理であり、 これは 2次元再構成するためのものである。 3次元再構成などの 高精度再構成では、 前記螺旋補正による補間処理又は補正処理をしなくても高画 質の再構成画像を作成できる。  The reason why the high-precision reconstruction means 61 does not perform the spiral correction is that the spiral correction is a process for interpolating the data obtained by the spiral scan into circular data by the normal scan. This is for dimensional reconstruction. In high-precision reconstruction such as three-dimensional reconstruction, a high-quality reconstructed image can be created without performing interpolation processing or correction processing by the helical correction.
並べ替え処理手段 27と再構成フィルタ処理手段 40及び画像データ用メモリ 43 は、 高速再構成手段 37と高精度再構成手段 61に共通である。  The rearrangement processing means 27, the reconstruction filter processing means 40, and the image data memory 43 are common to the high-speed reconstruction means 37 and the high-precision reconstruction means 61.
並べ替え処理手段 27は、ファンビームデータからパラレルビームデータへの並 ベ替えを行なうための手段であり、再構成フィルタ処理手段 40は、前記並べ替え たパラレルビームデータにフィルタ処理を施してぼけを低減するための手段であ る。  The rearrangement processing means 27 is means for performing rearrangement from fan beam data to parallel beam data, and the reconstruction filter processing means 40 performs filter processing on the rearranged parallel beam data to reduce blur. It is a means to reduce it.
そして、画像データ用メモリ 43は、再構成された断層画像データを記憶するメ モリである。 高速再構成手段 37が選択されたときは、 前処理演算装置 91からの 投影データは螺旋補正手段 39に入力され、 加重加算メモリ 38に記憶されている 重み付け関数を用いて螺旋補正が行われる。螺旋補正手段 39で補正された投影デ ータは、並べ替え処理手段 27でファンビームをパラレルビームに並べ替えて、次 の再構成フィルタ処理手段 40でフィルタ処理を施してぼけを低減する。  The image data memory 43 is a memory for storing reconstructed tomographic image data. When the high-speed reconstruction unit 37 is selected, the projection data from the pre-processing unit 91 is input to the spiral correction unit 39, and the spiral correction is performed using the weighting function stored in the weighted addition memory 38. The projection data corrected by the helical correction unit 39 rearranges the fan beam into a parallel beam by the rearrangement processing unit 27 and performs a filtering process on the next reconstruction filter processing unit 40 to reduce blur.
そして、 ぼけ処理を施した投影データを用いて二次元再構成画像データを二次 元再構成手段 62で作成し、 これを画像データ用メモリ 43に格納する。  Then, two-dimensional reconstructed image data is created by the two-dimensional reconstructing means 62 using the projection data subjected to the blurring process, and stored in the image data memory 43.
一方、 高精度再構成手段 61が選択されたときは、 前処理演算装置 91からの投 影データは、 並べ替え処理手段 27、 再構成フィルタ処理手段 40でそれぞれファ ンビームをパラレルビームに並べ替える処理、 フィルタ処理を行う。 このフィル タ処理を施した投影データをコーン角補正手段 41で X線の傾斜角度による誤差を 補正し、この補正した投影データを用いて三次元再構成手段 42で三次元の再構成 画像データを生成し、 これを画像データメモリ 43に格納する。 On the other hand, when the high-precision reconstruction means 61 is selected, the projection data from the preprocessing arithmetic unit 91 is processed by the rearrangement processing means 27 and the reconstruction filter processing means 40 to rearrange the fan beams into parallel beams, respectively. Perform filter processing. The projection data subjected to this filter processing is used to correct the error due to the X-ray tilt angle The corrected projection data is used to generate three-dimensional reconstructed image data by the three-dimensional reconstruction means 42, and this is stored in the image data memory 43.
このようにして作成され記憶された二次元や三次元の再構成画像データは、 後 処理用演算装置 93で二次元や三次元の画像を作成し、 これを表示装置 12に表示 する。  The two-dimensional or three-dimensional reconstructed image data created and stored in this way is used to create a two-dimensional or three-dimensional image by the post-processing operation device 93 and display the image on the display device 12.
後処理用演算装置 93には、三次元画像処理、画像解析及び画像フィルタ処理等 の各処理手段を備えており、入力装置 11からの操作指令に応じた処理を行う。前 記三次元画像処理手段 45は、ポリュームレンダリングゃ最大値投影法等による疑 似 3次元画像表示をするために、画像解析手段 46は、パヒユージョン等の機能解 析ゃコンピュータによる肺癌診断支援処理を行うために、 そして画像フィルタ処 理手段 47は、ノイズやアーチファタトの多い場合にこれらを低減するための処理 を行うものである。  The post-processing arithmetic unit 93 includes various processing means such as three-dimensional image processing, image analysis, and image filter processing, and performs processing in accordance with an operation command from the input device 11. The three-dimensional image processing means 45 described above uses a volume rendering method, a maximum intensity projection method, or the like to display a pseudo three-dimensional image. In order to perform the processing, the image filter processing means 47 performs processing for reducing noise and artifacts when they are large.
なお、後述の高速再構成手段 37によって得られた再構成画像の局所部の高精度 再構成画像を前記高速再構成手段 37 によって得られた再構成画像への置き換え 処理等は、 後処理用演算装置 93によって行なわれる。  Note that the process of replacing the high-precision reconstructed image of the local portion of the reconstructed image obtained by the high-speed reconstructing means 37 described later with the reconstructed image obtained by the high-speed reconstructing means 37 includes post-processing operations. Performed by device 93.
このような構成の X線 CT装置において、 スキャナ 13を静止させ、 被検体テー ブルを移動させながら X線発生装置 1からの X線ビームを被検体撮影断面に照射 してスキヤノグラム画像を撮影する。 このスキヤノグラム画像から被検体の撮影 領域を決定し、 この決定した領域に対して、スキャナ 13を被検体 4の周りを周回 させながら被検体 4を周回軸に対して直線的に移動させる。 被検体 4に対して X 線管 1から三次元的に広がりを有する X線を照射し、 被検体 4を透過した X線を 二次元的に配列された X線検出器 5を用いて検出する。 この検出データに各種の 補正を加えて投影データを得、 この投影データを上記画像処理装置で断層画像を 作成し、 これを表示装置に表示する。  In the X-ray CT apparatus having such a configuration, the scanner 13 is stopped, and the X-ray beam from the X-ray generator 1 is irradiated onto the imaging section of the object while moving the object table to capture a scanogram image. The imaging region of the subject is determined from the scanogram image, and the subject 4 is moved linearly with respect to the rotation axis while rotating the scanner 13 around the subject 4 with respect to the determined region. The X-ray tube 1 irradiates the subject 4 with X-rays having a three-dimensional spread from the X-ray tube 1 and detects X-rays transmitted through the subject 4 using the X-ray detectors 5 arranged two-dimensionally. . The detected data is subjected to various corrections to obtain projection data, and the projection data is used to create a tomographic image by the image processing device and display the tomographic image on a display device.
《再構成ァルゴリズムの選択》  《Selection of reconstruction algorithm》
画像処理装置の再構成演算装置の再構成アルゴリズムは、 以下の (1) から (5) の入力装置 11で設定したスキャン条件、計測パラメータ及び再構成モードで選択 される。  The reconstruction algorithm of the reconstruction processor of the image processing apparatus is selected by the following scan conditions, measurement parameters, and reconstruction modes set by the input device 11 in (1) to (5).
(1) 撮影部位 (2) 寝台移動速度及び実効スライス厚 (1) Imaging site (2) Bed moving speed and effective slice thickness
(3) 関心領域か関心領域でないかの指定  (3) Designation of region of interest or non-region of interest
(4) 被曝量  (4) Exposure dose
(5) 再構成モードの指定  (5) Specifying the reconfiguration mode
(高速再構成モード、 高精度再構成モード、 その他のモード)  (High-speed reconstruction mode, high-precision reconstruction mode, other modes)
上記 (1) 〜 (5) の撮影条件(スキャン条件、 計測パラメータ)や再構成モード 撮影開始前に入力装置 11から入力すると、 これらの入力信号に応じてシステ ム制御装置 23で使用する再構成モードの判別が行われる。図 2の場合は、高速再 構成モードか高精度再構成モードかの判別がなされる。 高速再構成モードが選択 されると、再構成スィッチ Α48及び再構成スィッチ Β49は高速再構成手段 37側 (a 側、 c側) に切り替えられ、 高精度再構成モードが選択されると、 再構成スイツ チ A48及び再構成スィッチ B49は高精度再構成手段 61側 側、 d側) に切り替 えられる。  The imaging conditions (scanning conditions, measurement parameters) and reconstruction modes described in (1) to (5) above and the reconstruction mode When input from the input device 11 before the start of imaging, the reconstruction used by the system controller 23 according to these input signals The mode is determined. In the case of FIG. 2, it is determined whether the mode is the high-speed reconstruction mode or the high-precision reconstruction mode. When the high-speed reconfiguration mode is selected, the reconfiguration switches # 48 and # 49 are switched to the high-speed reconfiguration means 37 (a side, c side). Switch A48 and reconstruction switch B49 are switched to the high-precision reconstruction means 61 side and d side).
ここで、 再構成アルゴリズムの選択について、 例をあげて説明する。  Here, the selection of the reconstruction algorithm will be described with an example.
(a) 再構成モードによる選択  (a) Selection by reconstruction mode
再構成アルゴリズム選択条件の 1つとして、 高精度再構成モード (高画質モー ド) を入力装置 11より入力すると、 システム制御装置 23を介して高精度再構成 手段 61が選択される。  When a high-precision reconstruction mode (high-quality mode) is input from the input device 11 as one of the reconstruction algorithm selection conditions, the high-precision reconstruction means 61 is selected via the system controller 23.
(b) 寝台の移動速度による選択  (b) Selection based on bed moving speed
高速再構成手段 37と比較して、 高精度再構成手段 61の処理範囲は狭いので、 設定した寝台の移動速度で螺旋スキャンを行っても高精度再構成手段 61 で再構 成が可能である場合には、 システム制御装置 23から高精度再構成手段 61を選択 する信号が再構成スィツチ A48及び、 再構成スィツチ B49に送信される。  Since the processing range of the high-precision reconstruction means 61 is narrower than that of the high-speed reconstruction means 37, the high-precision reconstruction means 61 can perform reconstruction even when performing a spiral scan at the set bed moving speed. In this case, a signal for selecting the high-precision reconfiguration means 61 is transmitted from the system controller 23 to the reconfiguration switch A48 and the reconfiguration switch B49.
(c) 撮影部位による選択  (c) Selection by imaging site
撮影を行なう領域に応じて、 再構成アルゴリズムを変更する。 具体的には、 撮 影条件の一つである撮影部位による選択として、 頭部、 腹部などの既存するモー ドを利用して、 頭部では高精度再構成手段 61を、 腹部では高速再構成手段 37を 選択する。 このように、部位に応じてシステム制御装置 23で再構成アルゴリズム を選択して、 再構成スィッチ A48、 及び再構成スィッチ B49に信号を送る。 なお、 図 2に示す高速再構成手段 37は、 マルチスライス CTにおいて 4列や 8 列程度の比較的、 X線ビームの傾斜の小さなシステムに対しては、 より演算速度 の高速な重み付け螺旋補正再構成アルゴリズム (螺旋補正手段 39、加重加算メモ リ 38) を用いる。 The reconstruction algorithm is changed according to the area to be photographed. To be more specific, using the existing modes such as the head and abdomen, the high-precision reconstruction means 61 is used for the head, and the high-speed reconstruction is performed for the abdomen, using the existing modes such as the head and abdomen. Select means 37. As described above, the reconfiguration algorithm is selected by the system controller 23 according to the part, and a signal is sent to the reconfiguration switch A48 and the reconfiguration switch B49. Note that the high-speed reconstruction means 37 shown in FIG. 2 performs a weighted spiral correction re-run at a higher operation speed for a system with a relatively small X-ray beam inclination of about 4 or 8 rows in a multi-slice CT. A construction algorithm (spiral correction means 39, weighted addition memory 38) is used.
この重み付け螺旋補正再構成ァルゴリズムは、 図 1に示した X線発生装置 1の This weighted spiral correction reconstruction algorithm is based on the X-ray generator 1 shown in FIG.
X線管の焦点 (図示省略) 力 ^照射される Z方向 (被検体の相対移動方向。 別名 : 体軸方向、 スライス方向、寝台移動方向)に傾斜したビームを、再構成画像に平行 なビームと見なして、 再構成画像データを補間により作成し、 単列 X線検出器型 CT (シングルスライス CT)で使用されている二次元再構成アルゴリズム(二次元再 構成手段 62) によって再構成を行なう。 Focus of X-ray tube (not shown) Force ^ Beam tilted in the irradiated Z direction (direction of relative movement of the subject; also known as: body axis direction, slice direction, couch movement direction), and a beam parallel to the reconstructed image As a result, the reconstructed image data is created by interpolation, and reconstructed by the two-dimensional reconstruction algorithm (two-dimensional reconstruction means 62) used in the single-row X-ray detector CT (single-slice CT). .
上記重み付け螺旋補正再構成アルゴリズムの特徴は、 加重関数 (重み関数)を用 いて補間ができることから、シングルスライス CTでの画像再構成時間と同等の時 間で再構成が可能であり、マルチスライス CTにおける再構成アルゴリズムの中で は、 最も演算が高速である。 ただし、 z 方向の精度が悪く被検体の相対移動速度 が高速になると誤差が大きくなる。  The feature of the weighted spiral correction reconstruction algorithm is that interpolation can be performed using a weight function (weight function), so reconstruction can be performed in the same time as image reconstruction time in single-slice CT, and multi-slice CT The operation is the fastest among the reconstruction algorithms in. However, when the accuracy in the z direction is poor and the relative movement speed of the subject is high, the error increases.
また、 重み付け螺旋補正再構成アルゴリズムは、 螺旋ピッチ (スキャナ 13が 1 回転する間に被検体が移動する距離の検出器列の間隔に対する比) が X線検出器 列数の 2倍まで可能であり (特開 2001-346794号公報) 、 マルチスライス CTにお ける再構成アルゴリズムの中では最も高速であり、 スループットが高い。 上記重 み付け螺旋補正再構成アルゴリズムを 4列 X線検出器を用いたマルチスライス CT に適用すれば、 列数が少なく X線ビーム傾斜の影響が小さいために画質への影響 が少ないので、 高速演算及び高スループッ卜が可能となる。  In addition, the weighted spiral correction reconstruction algorithm allows the spiral pitch (the ratio of the distance the subject moves during one rotation of the scanner 13 to the distance between the detector rows) to be twice as large as the number of X-ray detector rows. (Japanese Unexamined Patent Publication No. 2001-346794), which is the fastest among the reconstruction algorithms in multi-slice CT and has a high throughput. If the above weighted spiral correction reconstruction algorithm is applied to a multi-slice CT using a 4-row X-ray detector, the number of rows is small and the effect of X-ray beam tilt is small, so there is little effect on image quality. Calculation and high throughput are possible.
さらに、 16列以上の X線ビーム傾斜の影響が顕著となるシステムにおいては、 図 2に示す高精度再構成手段 61の高精度再構成アルゴリズムである、三次元再構 成アルゴリズムが適用される。 なお、 上記の三次元再構成アルゴリズムは、 各再 構成点を通過、 もしくは再近接するデータのみを使用して再構成点毎に再構成す ることから、 最も高精度、 高画質である反面、 演算に多くの時間を要する。 マル チスライス CTにおける再構成アルゴリズムとしては、演算時間を要し、スループ ットは低いが、 画質は良い。 さらに、 撮影部位が心臓の場合は、 脈拍に伴う動きがあるために、 他の撮影部 位と比較して、 再構成画像の変化が大きくなるので、 これを改善した心電波形に 同期した再構成アルゴリズム (心電同期再構成手段) を適用する。 そこで、 図 2 の再構成演算装置に心電同期再構成手段を組み込み、 撮影部位を心臓として前記 心電同期再構成手段を選択できるようにすれば良い。 Further, in a system in which the influence of the X-ray beam inclination of 16 rows or more is remarkable, a three-dimensional reconstruction algorithm, which is a high-precision reconstruction algorithm of the high-precision reconstruction means 61 shown in FIG. Note that the above three-dimensional reconstruction algorithm reconstructs each reconstruction point using only data that passes through or reappears at each reconstruction point. The calculation takes a lot of time. The reconstruction algorithm in multi-slice CT requires computation time and throughput is low, but image quality is good. In addition, when the imaging site is the heart, the change in the reconstructed image is larger than in other imaging sites due to the movement accompanying the pulse. Apply the configuration algorithm (cardiac synchronous reconstruction means). Therefore, the ECG-gated reconstructing means may be incorporated in the reconstruction calculation device shown in FIG.
このように、 図 2の入力装置 11で撮影部位、 寝台移動速度、 実効スライス厚、 関心領域及び再構成モードを設定し、 これらの設定した計測パラメータをシステ ム制御装置 23に入力して、使用する再構成手段を適宜選択することで、検査の目 的に対応した最適な断層画像を得ることができる。  As described above, the imaging region, the bed moving speed, the effective slice thickness, the region of interest, and the reconstruction mode are set by the input device 11 of FIG. 2, and the set measurement parameters are input to the system controller 23 and used. By appropriately selecting the reconstruction means to be performed, an optimal tomographic image corresponding to the purpose of the inspection can be obtained.
《断層画像の作成例》  << Example of creating a tomographic image >>
(1)高速再構成手段で再構成した画像中に関心領域を設定し、 この関心領域を高 精度再構成手段で再構成する例  (1) Example of setting a region of interest in an image reconstructed by high-speed reconstruction means and reconstructing this region of interest by high-precision reconstruction means
図 3にフローチャートを示す。スキャナ 13を静止させ、被検体テーブル 3を移 動させながら X線発生装置 1からの X線ビームを被検体撮影断面に照射してスキ ヤノグラム画像を撮影する (ステップ 51) 。 このスキヤノグラム画像から被検体 の撮影範囲を設定する。 (ステップ 52)。 そして、 断層画像を作成するための計測 パラメータを設定する(ステップ 53)。 上記撮影範囲の設定、 及び計測パラメータ の設定は入力装置 11で行う。 これらの設定後、螺旋スキャンを行ない、データ収 集装置 91で投影データを収集し、 さらに前処理用演算装置 91で各種の補正処理 等を行って前処理投影データを得る。 (ステップ 54)。  Figure 3 shows a flowchart. The scanner 13 is stopped, and the X-ray beam from the X-ray generator 1 is applied to the imaging section of the object while moving the object table 3 to capture a scanogram image (step 51). The imaging range of the subject is set from the scanogram image. (Step 52). Then, measurement parameters for creating a tomographic image are set (step 53). The setting of the photographing range and the setting of the measurement parameters are performed by the input device 11. After these settings, a spiral scan is performed, projection data is collected by the data collection device 91, and various correction processes are performed by the preprocessing arithmetic device 91 to obtain preprocessed projection data. (Step 54).
次に、 撮影に先立って設定した撮影部位、 及び計測パラメータによりシステム 制御装置 23で再構成演算装置 92の再構成手段に高速再構成手段 37か高精度再構 成手段 61のいずれを用いるかを判断する。 本例では高速再構成手段 37を用いる ので、 高速再構成アルゴリズムで断層画像データを作成し、 この断層画像データ は画像データ用メモリ 43に記憶されると共に後処理用演算装置 93で所望の後処 理が施されて断層画像として表示装置 12に表示する(ステップ 55)。  Next, the system controller 23 determines whether to use the high-speed reconstruction means 37 or the high-precision reconstruction means 61 as the reconstruction means of the reconstruction operation device 92 based on the imaging region set before the imaging and the measurement parameters. to decide. In this example, since the high-speed reconstruction means 37 is used, tomographic image data is created by a high-speed reconstruction algorithm, and this tomographic image data is stored in the image data memory 43 and is processed by the post-processing arithmetic unit 93 as desired. The processed image is displayed on the display device 12 as a tomographic image (step 55).
この表示された画像の関心領域を入力装置 11 のマウス等で設定し (ステップ 56) 、 この設定された関心領域はシステム制御装置 23 を介して再構成演算装置 92に入力される。 この場合の再構成手段は関心領域の再構成であるので高精度再 構成手段 61が選択される。そして、設定した関心領域を高精度再構成ァルゴリズ ムを用いて再構成し、 高画質な局所画像を作成する。 (ステップ 57)。 最後に、 後 処理用演算装置 93によって、高速再構成手段で作成した断層画像内の前記関心領 域を前記局所画像に置き換える(ステップ 58)。 The region of interest of the displayed image is set with the mouse or the like of the input device 11 (step 56), and the set region of interest is input to the reconstruction arithmetic unit 92 via the system controller 23. Since the reconstruction means in this case is reconstruction of the region of interest, high-precision reconstruction is performed. The configuration means 61 is selected. Then, the set region of interest is reconstructed using a high-precision reconstruction algorithm to create a high-quality local image. (Step 57). Finally, the region of interest in the tomographic image created by the high-speed reconstruction means is replaced by the local image by the post-processing arithmetic unit 93 (step 58).
なお、 関心領域を設定するためには、 全体の断層画像(プレビュー画像)を高速 に演算し、 これを表示装置 12に表示する必要があるが、 この高速演算には上記の 外に、 簡易再構成アルゴリズムとして逐次近似法あるいは、 二次元フーリエ変換 法がある。  Note that in order to set the region of interest, it is necessary to calculate the entire tomographic image (preview image) at high speed and display it on the display device 12. As a construction algorithm, there is a successive approximation method or a two-dimensional Fourier transform method.
また、 3次元再構成アルゴリズムにおいては、 近似や間引きをして高速化した ものを使用しても良い。  Also, in the three-dimensional reconstruction algorithm, an algorithm speeded up by approximation or thinning may be used.
. このように、 全体像を把握する場合には高速なアルゴリズムを、 詳細を把握す る場合には高精度アルゴリズムを使用することで、 全領域を高精度アルゴリズム で再構成する場合に比べて、 処理速度は高速になる。 そして、 高速なァルゴリズ ムでは、高精度アルゴリズムよりも螺旋ピッチを大きくすることができるために、 同じ被曝線量で、より広い範囲の画像が生成でき、実効的な被曝線量は低減する。 すなわち、 図 3に示した実施の形態によれば、 関心領域が高精度な断層画像が得 られ、 関心領域でない部分は、 高速に、 被曝線量の少ない条件で、 検査の目的に 対応した断層写真像を得ることができ、 所望の条件の断層画像を得ることができ る。  Thus, by using a high-speed algorithm to grasp the whole picture and a high-precision algorithm to grasp the details, compared with the case where the whole area is reconstructed by the high-precision algorithm, The processing speed becomes faster. In a high-speed algorithm, the helical pitch can be larger than that in the high-precision algorithm, so that a wider range of images can be generated with the same dose, and the effective dose is reduced. That is, according to the embodiment shown in FIG. 3, a high-accuracy tomographic image of the region of interest can be obtained, and a portion other than the region of interest is tomographic image corresponding to the purpose of the inspection at a high speed with a low exposure dose. An image can be obtained, and a tomographic image under desired conditions can be obtained.
図 4は上記図 3のフローチヤ一卜にしたがって断層画像を作成する説明図で、 高速再構成手段で再構成した画像中に関心領域を設定し、 この関心領域における 局所画像を高精度再構成手段で再構成し、 この再構成した局所画像と前記高速再 構成手段で再構成した画像の関心領域部とを置き換える場合の説明図である。 再 構成演算装置 92にある高速再構成アルゴリズム 101 (図 2の加重加算メモリ 38 を含む螺旋補正手段 39) 、 並べ替え処理手段 27、 再構成フィルタ処理手段 40、 二次元再構成手段 62) により、 再構成して断層画像を作成する。 さらに、 アーチ ファクト 102の発生している関心領域 103について、再構成演算装置 92の高精度 再構成アルゴリズム 104 (図 2の並べ替え処理手段 27、 再構成フィルタ処理手段 40、 コーン角補正手段 41及び三次元再構成手段 42) を用いて、 アーチファクト 102が発生しない局所画像 106を作成する。 そして、 後処理用演算装置 93により 関心領域 103を局所画像 106で置き替え、 関心領域 103において、 アーチファク ト 102の少ない高画質な断層画像を合成画像 105として高速に作成することがで さる。 FIG. 4 is an explanatory diagram of creating a tomographic image according to the flowchart of FIG. 3 described above. A region of interest is set in an image reconstructed by the high-speed reconstruction means, and a local image in the region of interest is precisely reconstructed by the high-precision reconstruction means. FIG. 8 is an explanatory diagram of a case where the local image reconstructed is replaced with a region of interest of the image reconstructed by the high-speed reconstruction means. The high-speed reconstruction algorithm 101 (the spiral correction means 39 including the weighted addition memory 38 in FIG. 2), the rearrangement processing means 27, the reconstruction filter processing means 40, and the two-dimensional reconstruction means 62) in the reconstruction arithmetic unit 92 provide: Reconstruct and create a tomographic image. Further, for the region of interest 103 where the artifact 102 occurs, the high-precision reconstruction algorithm 104 of the reconstruction operation device 92 (the rearrangement processing means 27, the reconstruction filter processing means 40, the cone angle correction means 41 and Artifacts using three-dimensional reconstruction A local image 106 in which 102 does not occur is created. Then, the region of interest 103 is replaced with the local image 106 by the post-processing arithmetic unit 93, and a high-quality tomographic image with few artifacts 102 can be created as the composite image 105 in the region of interest 103 at high speed.
ここで、 局所画像は、 初めに作成したプレビュー画像の一部を再構成した画像 であり、 画像サイズと有効視野サイズを小さくして再構成する。  Here, the local image is an image obtained by reconstructing a part of the preview image created first, and is reconstructed by reducing the image size and the effective visual field size.
この場合は、 画像サイズと有効視野サイズ (画像の縦横サイズ)の、 どちらかを 決定すれば他方も決定される。 決定の仕方は、 画面上に表示されたプレビュー画 像において、 マウス等の入力装置を用いて、 選択された局所領域から求めてもよ く、 タツチパネルやキーボード等を用いて手動で入力してもよい。 使用するアル ゴリズムは、 局所画像をより高精度に再構成する必要があることから、 プレビュ 一画像に比べ、 より高精度な再構成アルゴリズムを使用する必要がある。 現状で は三次元再構成アルゴリズムがそれに相当する。  In this case, if one of the image size and the effective visual field size (the vertical and horizontal sizes of the image) is determined, the other is also determined. The method of determination can be determined from the selected local area using an input device such as a mouse in the preview image displayed on the screen, or entered manually using a touch panel or keyboard. Good. Since the algorithm used needs to reconstruct the local image with higher accuracy, it is necessary to use a higher-precision reconstruction algorithm than the single preview image. At present, a three-dimensional reconstruction algorithm is equivalent.
このように、図 3、図 4の実施の形態によれば、図 1に示した入力装置 11及び、 表示装置 12によって、比較的容易な操作で、 関心領域の設定が可能となり、所望 の条件の断層画像、 すなわち、 高精度な局所画像を有する断層画像を得ることが できる。  As described above, according to the embodiments of FIGS. 3 and 4, the input device 11 and the display device 12 shown in FIG. , That is, a tomographic image having a highly accurate local image can be obtained.
この場合、 もし、 高精度な再構成アルゴリズムの演算時間が膨大であっても、 局所領域という狭い領域に限定されるので、 画像全体を再構成する場合に比べて 高速化を図ることが可能となる。  In this case, even if the calculation time of the high-precision reconstruction algorithm is enormous, it is limited to a narrow region such as a local region, so that it is possible to achieve a higher speed than when reconstructing the entire image. Become.
(2)計測パラメータにより関心領域を決定し、高速再構成演算と高精度再構成演 算を同時に並列処理して再構成する例  (2) Example of determining a region of interest based on measurement parameters, and simultaneously performing parallel reconstruction for high-speed reconstruction and high-precision reconstruction
図 5にフローチャートを示す。 図 5のフローチャートによる断層画像作成方法 の再構成アルゴリズムは、 設定された計測パラメータを基に決定する。 ここで、 スキヤノグラムの撮影(ステップ 71)、撮影範囲の決定(ステップ 72)、計測パラメ ータの設定 (ステップ 73) 、及び螺旋スキャン(ステップ 75)は、 図 3に示した実 施の形態と同じである。  Figure 5 shows the flowchart. The reconstruction algorithm of the tomographic image creation method according to the flowchart of FIG. 5 is determined based on the set measurement parameters. Here, the scanning of the scanogram (step 71), the determination of the imaging range (step 72), the setting of the measurement parameters (step 73), and the spiral scan (step 75) are performed in accordance with the embodiment shown in FIG. Is the same.
再構成アルゴリズムの決定は計測パラメータによって行なう(ステップ 74)。 こ こでは、 計測パラメータの一つである被検体テーブル 3の移動速度で再構成アル ゴリズムを決定するものとする。重み付け螺旋補正法などの高速アルゴリズムは、 被検体テーブル 3の移動速度を高くできるので、 被検体テーブル移動速度を高速 に設定した場合には、システム制御装置 23によって被検体テーブル 3の移動速度 の適用範囲が広レ、高速再構成手段 37が選択され (ステップ 76)、 3次元再構成など の高精度アルゴリズムは、 被検体テーブル 3の移動速度を低くできるので、 被検 体テーブル 3の移動速度が低速な場合には、 被検体テーブル 3の移動速度の適用 範囲は狭いが、より高画質である高精度再構成手段 61が選択されて再構成が実行 され (ステップ 77)、 断層画像が作成される。 The determination of the reconstruction algorithm is performed based on the measurement parameters (step 74). Here, the reconstruction algorithm is used for the moving speed of the object table 3, which is one of the measurement parameters. The algorithm shall be determined. Since a high-speed algorithm such as the weighted spiral correction method can increase the moving speed of the subject table 3, when the moving speed of the subject table is set to high, the moving speed of the subject table 3 is applied by the system controller 23. The range is wide, the high-speed reconstruction means 37 is selected (step 76), and a high-precision algorithm such as three-dimensional reconstruction can reduce the moving speed of the object table 3, so that the moving speed of the object table 3 can be reduced. If the speed is low, the application range of the moving speed of the object table 3 is narrow, but the high-precision reconstruction means 61 having higher image quality is selected and reconstruction is performed (step 77), and a tomographic image is created. You.
そして、得られた複数の局所画像を、後処理用演算装置 93によって合成するこ とで断層写真像を作成する(ステップ 78)。 また、 高速及び高精度の再構成ァルゴ リズムを、 同時に並列処理することにより、 予め設定された条件に適合した、 高 速で、 高精度の断層写真像を得ることができる。  Then, the obtained local images are combined by the post-processing arithmetic unit 93 to create a tomographic image (step 78). In addition, a high-speed and high-precision reconstructed algorithm is simultaneously processed in parallel, so that a high-speed and high-precision tomographic image suitable for preset conditions can be obtained.
次に、 図 6は、 本発明の実施の形態である、 図 5のフローに従って断層画像を 作成する場合の具体的な適用例を示す図である。 図 6に示す適用例では、 複数の 関心領域を設定し、 複数の高精度再構成演算によって、 複数の局所画像を得る方 法の説明図である。  Next, FIG. 6 is a diagram showing a specific application example in which a tomographic image is created according to the flow of FIG. 5, which is an embodiment of the present invention. In the application example shown in FIG. 6, it is an explanatory diagram of a method of setting a plurality of regions of interest and obtaining a plurality of local images by a plurality of high-precision reconstruction operations.
また、 図 6では、 再構成前に予め関心領域 (局所領域)が分かっている場合にお ける例である。 予め関心領域 (高画質に再構成をしたレ、領域)が分かっている場合 には、 その領域を予め入力しておき、 関心領域とそれ以外の領域に分けておく。 そして、 関心領域は、 高精度再構成アルゴリズムによって新規画像として作成 する。 また、 それ以外の領域は、 高速再構成アルゴリズムで再構成し、 この再構 成後に各々の再構成画像を組合せて(関心領域を置き換える)、 最終的な再構成画 像を作成する。  FIG. 6 shows an example in which a region of interest (local region) is known before reconstruction. If the region of interest (the region reconstructed with high image quality) is known in advance, the region is input in advance, and the region is divided into the region of interest and other regions. Then, the region of interest is created as a new image by a high-precision reconstruction algorithm. The other regions are reconstructed by the fast reconstruction algorithm, and after this reconstruction, the reconstructed images are combined (replace the region of interest) to create the final reconstructed image.
そして、予め設定された関心領域 A113とそれ以外の非関心領域に対し、関心領 域 A113は高精度再構成アルゴリズム A111を用いてアーチファタ トの少ない高精 度画像 A116を作成し、同時に非関心領域を高速再構成アルゴリズム 117を用いて 高速画像 119を作成する。 得られた各局所画像を組み合わせることにより、 関心 領域においてアーチファク トの少ない高画質な合成画像 115を高速に作成する。 さらに、 図 6に示した、 関心領域 A113と、 異なる関心領域 B114を、 高精度再 構成アルゴリズム B112によって、 高精度画像 B118を得る。 これにより、 所望の 条件の断層写真像である合成画像 115、 すなわち、複数の高精度画像 A116と高精 度画像 B118、及びそれ以外の非関心領域の高速画像 119を含む断層写真像を得る ことができる。 Then, for the preset region of interest A113 and other non-interest regions, the region of interest A113 uses the high-precision reconstruction algorithm A111 to create a high-accuracy image A116 with few artifacts, Is used to create a high-speed image 119 using a high-speed reconstruction algorithm 117. By combining the obtained local images, a high-quality composite image 115 with little artifact in the region of interest is created at high speed. Furthermore, the region of interest A113 and the different region of interest B114 shown in FIG. A high-precision image B118 is obtained by the construction algorithm B112. As a result, it is possible to obtain a composite image 115 which is a tomographic image under desired conditions, that is, a tomographic image including a plurality of high-precision images A116 and B118, and a high-speed image 119 of the other non-interest area. Can be.
ここで、 高速再構成アルゴリズム 117、 高精度再構成アルゴリズム Alll、 及び 高精度再構成アルゴリズム B112は、 図 1及び図 2に示した再構成演算装置 92に よって実行される。 また、 関心領域 A113及び関心領域 B114は、 図 1及び図 2に 示した入力装置 11によって設定される。  Here, the high-speed reconstruction algorithm 117, the high-precision reconstruction algorithm Alll, and the high-precision reconstruction algorithm B112 are executed by the reconstruction operation device 92 shown in FIGS. The region of interest A113 and the region of interest B114 are set by the input device 11 shown in FIGS.
そして、合成画像 115は、図 1及び図 2に示した後処理用演算装置 93によって 得られる。  Then, the composite image 115 is obtained by the post-processing operation device 93 shown in FIG. 1 and FIG.
この図 6に示した、 実施の形態の場合も、 複数の CPUを使用し同時に再構成を 行ない、 同時に再構成を終了させることで、 高速処理が可能となる。 また、 複数 の再構成ァルゴリズムによつて作成した複数の異なる有効視野及び画像サイズの 画像を再構成精度に応じて優先順位をつけ、 優先順位に応じて置き換え、 又は重 み付け加算する。 これにより、 検査の目的に対応した最適な画像で診断が可能と なる。  In the embodiment shown in FIG. 6 as well, high-speed processing can be performed by performing reconfiguration simultaneously using a plurality of CPUs and ending the reconfiguration at the same time. In addition, priorities are assigned to images having different effective fields of view and image sizes created by a plurality of reconstruction algorithms according to reconstruction accuracy, and replaced or weighted and added according to the priorities. As a result, diagnosis can be performed with an optimal image corresponding to the purpose of the inspection.
(3)設定した複数の関心領域を高精度再構成演算によって複数の局所画像を得る 例  (3) Example of obtaining multiple local images by performing high-precision reconstruction operation on multiple set regions of interest
図 7にフローチヤ一トを示す。  Figure 7 shows the flowchart.
図 7の断層画像作成方法は、 予め設定された条件、 すなわち、 関心領域とそれ 以外の領域に分割された領域について、入力装置 11で入力された条件によりシス テム制御装置 23で複数の再構成アルゴリズムが同時に選択され(ステップ 84)、 再構成演算装置 92 の複数の高速再構成アルゴリズム及び高精度再構成アルゴリ ズムを実行する(ステップ 86及び 87)。 そして、 同時に得られた複数の局所画像 を後処理用演算装置 93 によって合成することで断層画像を作成する(ステップ 88)。  In the tomographic image creation method shown in FIG. 7, a plurality of reconstructions are performed by the system controller 23 according to the conditions input in advance for the preset conditions, that is, the region divided into the region of interest and the other region. The algorithm is selected simultaneously (step 84) and executes a plurality of fast and high precision reconstruction algorithms of the reconstruction unit 92 (steps 86 and 87). Then, a tomographic image is created by combining a plurality of local images obtained at the same time by the post-processing arithmetic unit 93 (step 88).
ここで、 スキヤノグラムの撮影(ステップ 81)、 撮影範囲の決定(ステップ 82)、 及び螺旋スキャン(ステップ 85)は、 図 3のフローチャートと同じ内容である。 す なわち、 撮影範囲の決定(ステップ 82)、 計測パラメータの設定(ステップ 83)は、 入力装置 11で行い、 複数の関心領域の決定は入力装置 11で決定され、 システム 制御装置 23で対応する再構成アルゴリズムが選択され実行される(ステップ 84)。 そして; 図 7に示すように、 複数の再構成アルゴリズムによって、 複数の局所 画像を同時に作成することができるので、 所望の条件の断層画像、 すなわち、 検 査の目的に対応した高精度の複数の断層画像を高速に得ることができる。 Here, the scanning of the scanogram (step 81), the determination of the shooting range (step 82), and the spiral scan (step 85) are the same as those in the flowchart of FIG. That is, determining the shooting range (step 82) and setting the measurement parameters (step 83) The plurality of regions of interest are determined by the input device 11, and the corresponding reconstruction algorithm is selected and executed by the system controller 23 (step 84). As shown in FIG. 7, a plurality of local images can be simultaneously created by a plurality of reconstruction algorithms, so that tomographic images under desired conditions, that is, a plurality of highly accurate tomographic images corresponding to the purpose of the inspection, can be obtained. A tomographic image can be obtained at high speed.
なお、以上、本発明の実施の形態を詳細にわたって記述すると共に図示したが、 これらは、 説明及び例示のみを意図したものであって、 これらに限定されるもの ではない。 例えば、 上記実施の形態では、 計測パラメータにおける寝台移動速度 に応じて再構成アルゴリズムを決定したが、 スライス厚によって再構成アルゴリ ズムを決定する方法もある。  Although the embodiments of the present invention have been described and illustrated in detail, they are intended only for explanation and illustration, and are not intended to limit the scope of the present invention. For example, in the above embodiment, the reconstruction algorithm is determined according to the bed moving speed in the measurement parameters, but there is a method of determining the reconstruction algorithm according to the slice thickness.
また、 実施の形態では、 高速再構成アルゴリズムと高精度再構成アルゴリズム の 2種類を用いた例を示したが、 本発明は、 これらの組合わせに限定するもので はなく、 演算が高速な高速再構成アルゴリズム、 精度が高い高精度再構成ァルゴ リズム、 及び被曝低減に有効な再構成アルゴリズム等の 3種類以上の再構成アル ゴリズムを組合わせても良い。 さらに、 本発明の断層画像の作成装置を含む X線 CT装置に使用する X線管は、 X線源の一つの実施形態であり、 X線管に限定され ず、 放射線源(ラジオアイソトープ)等でも、 同様な効果が得られることは明らか である。 産業上の利用可能性  Further, in the embodiment, an example using two types of the high-speed reconstruction algorithm and the high-precision reconstruction algorithm has been described. However, the present invention is not limited to the combination of these, and the high-speed high-speed Three or more types of reconstruction algorithms such as a reconstruction algorithm, a high-precision high-precision reconstruction algorithm, and a reconstruction algorithm effective for reducing exposure may be combined. Further, the X-ray tube used in the X-ray CT apparatus including the tomographic image creation device of the present invention is one embodiment of the X-ray source, and is not limited to the X-ray tube, but may be a radiation source (radioisotope) or the like. However, it is clear that a similar effect can be obtained. Industrial applicability
以上説明したように、本発明に係る X線 CT装置及びその断層画像作成方法によ れば、 断層画像を作成する画像処理装置に、 再構成アルゴリズムの異なる複数の 再構成画像作成手段と、 予め設定された条件に応じて再構成画像作成手段を選択 する再構成選択手段とを備えたので、 前記複数の再構成画像作成手段の中から必 要な画像の作成に適した再構成アルゴリズムの再構成画像作成手段を選択できる ので、 検査の目的に対応した最適な断層画像を得ることができる。  As described above, according to the X-ray CT apparatus and the tomographic image creating method thereof according to the present invention, the image processing apparatus for creating the tomographic image includes a plurality of reconstructed image creating means having different reconstruction algorithms, A reconstructing selection means for selecting a reconstructed image creating means in accordance with the set conditions, so that a reconstructing algorithm suitable for creating a required image from among the plurality of reconstructed image creating means is provided. Since the constituent image creating means can be selected, an optimal tomographic image corresponding to the purpose of the inspection can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1. X線源と、 この X線源に被検体を挟んで向かい合レヽ、 前記 X線源から前記被検 体に照射され前記被検体を透過した X線を検出する X線検出器と、 を含み、 前記 X線源及び前記 X線検出器を前記被検体に対して相対的に周回軸を中心 に周回させてスキャンするスキャナと、 このスキャナで計測したデータを処 理して断層画像を作成する画像処理装置と、 前記断層画像を表示する表示装 置と、 を含む X線 CT装置であって、 1. an X-ray source; and an X-ray detector that detects the X-rays that are emitted from the X-ray source onto the subject and transmitted through the subject, A scanner for rotating the X-ray source and the X-ray detector around the orbit relative to the subject for scanning, and processing data measured by the scanner to form a tomographic image. An X-ray CT apparatus, comprising: an image processing device to be created; and a display device to display the tomographic image.
前記画像処理装置に、 再構成アルゴリズムの異なる複数の再構成画像作成 手段と、 予め設定された条件に応じて再構成画像作成手段を選択する再構成 選択手段とを備え、 前記選択した再構成画像作成手段で断層画像を作成する、 ことを特徴とする X線 CT装置。  The image processing apparatus further includes: a plurality of reconstructed image creation units having different reconstruction algorithms; and a reconstruction selection unit that selects a reconstructed image creation unit according to a preset condition. An X-ray CT apparatus, wherein a tomographic image is created by creating means.
2.. 前記予め設定された条件は、 上記スキャナのスキャン条件及び Z又は計測 パラメータのうちの少なくとも一つであることを特徴とする請求項 1 に記載 の X線 CT装置。 2. The X-ray CT apparatus according to claim 1, wherein the preset condition is at least one of a scan condition of the scanner and Z or a measurement parameter.
3. 前記予め設定された条件は、 撮影部位であることを特徴とする請求項 1 に 記載の X線 CT装置。  3. The X-ray CT apparatus according to claim 1, wherein the preset condition is an imaging part.
4. 前記予め設定された条件は、 被検体テーブルの移動速度及び実効スライス 厚で決定される計測モードであることを特徴とする請求項 1に記載の X線 CT  4. The X-ray CT according to claim 1, wherein the preset condition is a measurement mode determined by a moving speed of the object table and an effective slice thickness.
5. 前記予め設定された条件は、 関心領域であることを特徴とする請求項 1 に 記載の X線 CT装置。 5. The X-ray CT apparatus according to claim 1, wherein the preset condition is a region of interest.
6. 前記予め設定された条件は、 被曝 X線量であることを特徴とする請求項 1 に記載の X線 CT装置。  6. The X-ray CT apparatus according to claim 1, wherein the preset condition is an exposure X-ray dose.
7. 前記予め設定された条件は、再構成モードであることを特徴とする請求項 1 に記載の X線 CT装置。  7. The X-ray CT apparatus according to claim 1, wherein the preset condition is a reconstruction mode.
8. 前記複数の再構成画像作成手段は、 高速再構成演算アルゴリズムを有する 第一の再構成画像作成手段と、 この第一の再構成画像作成手段よりも精度が 高い高精度再構成演算アルゴリズムを有する第二の再構成画像作成手段との 少なくとも二つ以上の異なる再構成アルゴリズムの再構成画像作成手段を備 えたことを特徴とする請求項 1に記載の X線 CT装置。 8. The plurality of reconstructed image creating means includes a first reconstructed image creating means having a high-speed reconstruction operation algorithm, and a high-precision reconstruction operation algorithm having higher accuracy than the first reconstructed image creating means. With the second reconstructed image creating means 2. The X-ray CT apparatus according to claim 1, further comprising means for creating reconstructed images of at least two or more different reconstruction algorithms.
9. 前記第一の再構成画像作成手段で作成した画像に関心領域を設定し、 この 設定した関心領域を前記第二の再構成画像作成手段で局所画像を作成し、 前 記第一の再構成画像作成手段で作成した画像の関心領域を前記局所画像に置 き換えることを特徴とする請求項 8に記載の X線 CT装置。  9. A region of interest is set in the image created by the first reconstructed image creating means, and a local image is created from the set area of interest by the second reconstructed image creating means. 9. The X-ray CT apparatus according to claim 8, wherein a region of interest of the image created by the constituent image creating means is replaced with the local image.
10. 前記第一の再構成画像作成手段で作成した画像に関心領域を設定し、この設 定した関心領域を前記第二の再構成画像作成手段で再構成画像を作成するこ とを特徴とする請 求項 8に記載の X線 CT装置。  10. A region of interest is set in the image created by the first reconstructed image creating means, and the set region of interest is created by the second reconstructed image creating means to create a reconstructed image. X-ray CT apparatus according to claim 8.
11. 第一の再構成画像作成手段よりも再構成演算が高速である再構成アルゴリ ズムを有する第三の再構成画像作成手段を設け、 この第三の再構成画像作成 手段で作成した再構成画像をプレビュー画像として上記表示装置に表示する ことを特徴とする請求項 8に記載の X線 CT装置。  11. A third reconstructed image creating means having a reconstructing algorithm whose reconstructing operation is faster than the first reconstructed image creating means is provided, and the reconstructed image created by the third reconstructed image creating means is provided. 9. The X-ray CT apparatus according to claim 8, wherein an image is displayed on the display device as a preview image.
12. 前記複数の再構成画像作成手段で複数の異なる有効視野及び画像サイズの 画像を再構成精度に応じて優先順位をつけ、 優先順位に応じて置き換え、 又 は重み付け加算する手段を設けたことを特徴とする請求項 1に記載の X線 CT  12. A means for prioritizing a plurality of images having different effective visual fields and image sizes in the plurality of reconstructed image creating means according to reconstruction accuracy, replacing the images according to the priority order, or adding weights is provided. X-ray CT according to claim 1, characterized in that:
13. 再構成された断層画像の局所領域を選択する手段を有し、選択された局所領 域を有効視野として再構成画像を作成する手段を有することを特徴とする請 求項 1に記載の X線 CT装置。 13. The method according to claim 1, further comprising means for selecting a local area of the reconstructed tomographic image, and means for creating a reconstructed image using the selected local area as an effective field of view. X-ray CT device.
14. 上記表示装置に表示した表示画像上で局所画像を選択する手段を有するこ とを特徴とする請求項 1に記載の X線 CT装置。  14. The X-ray CT apparatus according to claim 1, further comprising means for selecting a local image on a display image displayed on the display device.
15. X線源と、 この X線源に被検体を挟んで向かい合レヽ、前記 X線源から前記被 検体に照射され前記被検体を透過した X線を検出する X線検出器と、を含み、 前記 X線源及び前記 X線検出器を前記被検体に対して相対的に周回軸を中心 に周回させてスキャンするスキャナと、 このスキャナで計測したデータを処 理して断層画像を作成する画像処理装置と、 この画像処理装置で作成した断 層画像を表示装置に表示する断層画像作成方法であって、  15. An X-ray source, and an X-ray detector that detects an X-ray that has been irradiated from the X-ray source onto the subject and transmitted through the subject, facing the X-ray source with the subject sandwiched therebetween. A scanner for rotating the X-ray source and the X-ray detector relative to the subject around an orbital axis and scanning, and processing data measured by the scanner to create a tomographic image And a tomographic image creating method for displaying a cross-sectional image created by the image processing device on a display device, comprising:
前記画像処理装置は、 再構成アルゴリズムの異なる複数の再構成画像作成 手段と、 予め設定された条件に応じて再構成画像作成手段を選択する再構成 選択手段と、 を有し、 The image processing apparatus may generate a plurality of reconstructed images having different reconstruction algorithms. Means, and a reconstruction selecting means for selecting a reconstructed image creating means according to a preset condition,
スキヤノグラム画像を撮影するステップと、  Taking a scanogram image;
このスキヤノグラム画像から被検体の撮影範囲を設定するステップと、 断層画像を作成するためのスキャン条件及び計測パラメータを設定するス テツプと、  A step of setting an imaging range of the subject from the scanogram image; a step of setting scan conditions and measurement parameters for creating a tomographic image;
前記スキャナで投影データを得るステップと、  Obtaining projection data with the scanner;
前記スキャン条件及び/又は計測パラメータにより前記再構成選択手段で 前記複数の再構成画像作成手段の中から一つ以上の再構成画像作成手段を選 択するステップと、  Selecting one or more reconstructed image creating means from the plurality of reconstructed image creating means by the reconstruction selecting means according to the scan conditions and / or measurement parameters;
前記選択した再構成画像作成手段で断層画像を作成し、 この断層画像を前 記表示装置に表 するステツプと、  Creating a tomographic image with the selected reconstructed image creating means, and displaying the tomographic image on the display device;
カゝら成ることを特徴とする断層画像作成方法。  A tomographic image creation method characterized by comprising:
16. 前記表示装置に表示された断層画像に関心領域を設定するステップと、 前記選択した再構成選択手段で前記設定した関心領域を局所画像として作 成するステップと、 16. setting a region of interest in the tomographic image displayed on the display device; and creating the set region of interest as a local image by the selected reconstruction selecting means;
前記断層画像の関心領域を前記局所画像に置き換え、 この置き換えた局所 画像と前記断層画像とを合成するステップと、  Replacing the region of interest of the tomographic image with the local image, and combining the replaced local image with the tomographic image;
から成る請求項 15に記載の断層画像作成方法。  16. The tomographic image creation method according to claim 15, comprising:
17. 前記選択した再構成画像作成手段は、高速再構成演算アルゴリズムを有する 再構成画像作成手段であり、 前記別の再構成画像作成手段は、 前記高速再構 成演算アルゴリズムを有する再構成画像作成手段よりも精度が高い高精度再 構成演算アルゴリズムを有する再構成画像作成手段である、 17. The selected reconstructed image creating means is a reconstructed image creating means having a fast reconstructing operation algorithm, and the another reconstructed image creating means is a reconstructed image creating means having the fast reconstructing operation algorithm Reconstructed image creation means having a high-precision reconstruction operation algorithm with higher accuracy than means
ことを特徴とする請求項 16に記載の断層画像作成方法。  17. The tomographic image creation method according to claim 16, wherein:
18. 前記表示装置に表示された断層画像に少なくとも二つ以上の関心領域を設 定するステップと、 18. setting at least two or more regions of interest on the tomographic image displayed on the display device;
前記選択した再構成選択手段とは別の再構成画像作成手段で前記設定した 関心領域を局所画像として作成するステップと、  Creating the set region of interest as a local image by a reconstructed image creating means different from the selected reconstruction selecting means,
前記断層画像の関心領域を前記局所画像に置き換え、 この置き換えた局所 画像と前記断層画像とを合成するステップと、 Replacing the region of interest of the tomographic image with the local image; Synthesizing an image and the tomographic image;
から成る請求項 15に記載の断層画像作成方法。  16. The tomographic image creation method according to claim 15, comprising:
19. 前記選択した再構成画像作成手段は、高速再構成演算アルゴリズムを有する 再構成画像作成手段であり、 前記別の再構成画像作成手段は、 前記高速再構 成演算アルゴリズムを有する再構成画像作成手段よりも精度が高い高精度再 構成演算アルゴリズムを有する再構成画像作成手段である、  19. The selected reconstructed image creating unit is a reconstructed image creating unit having a fast reconstruction operation algorithm, and the another reconstructed image creating unit is a reconstructed image creation unit having the fast reconstruction operation algorithm. Reconstructed image creation means having a high-precision reconstruction operation algorithm with higher accuracy than means
ことを特徴とする請求項 18に記載の断層画像作成方法。  19. The tomographic image creation method according to claim 18, wherein:
20. 前記表示装置に表示された断層画像に少なくとも二つ以上の関心領域を設 定するステップと、  20. setting at least two or more regions of interest in the tomographic image displayed on the display device;
前記選択した再構成選択手段とは別の再構成画像作成手段で前記設定した 関心領域を局所画像として作成するステップと、  Creating the set region of interest as a local image by a reconstructed image creating means different from the selected reconstruction selecting means,
前記作成した局所画像を前記表示装置に表示するステップと、  Displaying the created local image on the display device;
から成る請求項 15に記載の断層画像作成方法。  16. The tomographic image creation method according to claim 15, comprising:
21. 前記選択した再構成画像作成手段は、高速再構成演算アルゴリズムを有する 再構成画像作成手段であり、 前記別の再構成画像作成手段は、 前記高速再構 成演算アルゴリズムを有する再構成画像作成手段よりも精度が高い高精度再 構成演算アルゴリズムを有する再構成画像作成手段で って、 前記高精度再 構成演算アルゴリズムを有する再構成画像作成手段で前記局所画像を作成す る、 ことを特徴とする請求項 20に記載の断層画像作成方法。  21. The selected reconstructed image creating unit is a reconstructed image creating unit having a fast reconstruction operation algorithm, and the another reconstructed image creating unit is a reconstructed image creation unit having the fast reconstruction operation algorithm. Reconstructed image creating means having a high-precision reconstruction operation algorithm higher in accuracy than the means, wherein the reconstructed image creation means having the high-accuracy reconstruction operation algorithm creates the local image. 21. The tomographic image creation method according to claim 20, wherein:
22. 前記複数の再構成画像作成手段は、少なくとも一つ以上の高速再構成演算ァ ルゴリズムを有する再構成画像作成手段と、 前記高速再構成演算アルゴリズ ムを有する再構成画像作成手段よりも精度が高い少なくとも一つ以上の高精 度再構成演算アルゴリズムを有する再構成画像作成手段と、  22. The plurality of reconstructed image creating units have a higher accuracy than a reconstructed image creating unit having at least one or more fast reconstruction algorithm, and a reconstructed image creating unit having the fast reconstruction algorithm. Reconstructed image creating means having at least one or more high-precision reconstruction algorithm,
を有することを特徴とする請求項 15に記載の断層画像作成方法。  16. The tomographic image creating method according to claim 15, comprising:
PCT/JP2002/012063 2001-11-21 2002-11-19 X-ray ct device, and method for preparing tomographic image thereof WO2003043499A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001355833A JP2003153893A (en) 2001-11-21 2001-11-21 Apparatus for forming tomographic image
JP2001-355833 2001-11-21

Publications (1)

Publication Number Publication Date
WO2003043499A1 true WO2003043499A1 (en) 2003-05-30

Family

ID=19167463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012063 WO2003043499A1 (en) 2001-11-21 2002-11-19 X-ray ct device, and method for preparing tomographic image thereof

Country Status (2)

Country Link
JP (1) JP2003153893A (en)
WO (1) WO2003043499A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10345073A1 (en) * 2003-09-26 2005-05-04 Siemens Ag Multislice tomographic imaging unit control procedure uses display of volume rendered overview for selection of relevant area for calculation of final image
CN109259779A (en) * 2018-11-30 2019-01-25 上海联影医疗科技有限公司 The generation method and magic magiscan of medical image

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8774355B2 (en) * 2004-06-30 2014-07-08 General Electric Company Method and apparatus for direct reconstruction in tomosynthesis imaging
JP5199541B2 (en) * 2006-01-31 2013-05-15 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Radiation tomography equipment
JP5097355B2 (en) * 2006-03-29 2012-12-12 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Radiation tomography equipment
JP5426075B2 (en) * 2007-01-31 2014-02-26 株式会社東芝 X-ray CT system
JP5484664B2 (en) * 2007-09-28 2014-05-07 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Image display apparatus and radiation CT apparatus
JP5464799B2 (en) * 2007-11-16 2014-04-09 キヤノン株式会社 Image processing apparatus, image processing method, and program
JP5525697B2 (en) * 2008-03-31 2014-06-18 株式会社東芝 Image processing apparatus and X-ray diagnostic apparatus
JP5613366B2 (en) * 2008-07-08 2014-10-22 株式会社東芝 X-ray CT system
JP2010131044A (en) * 2008-12-02 2010-06-17 Aloka Co Ltd X-ray image forming apparatus
US9050003B2 (en) 2010-03-30 2015-06-09 Hitachi Medical Corporation Reconstruction computing device, reconstruction computing method, and X-ray CT apparatus
US8917922B2 (en) * 2012-06-15 2014-12-23 Kabushiki Kaisha Toshiba Concurrent update iterative reconstruction (IR) method and system
US9737279B2 (en) 2012-08-31 2017-08-22 Toshiba Medical Systems Corporation X-ray CT apparatus
WO2014123041A1 (en) * 2013-02-05 2014-08-14 株式会社 日立メディコ X-ray ct device and image reconstruction method
CN105103194B (en) 2013-04-10 2019-01-29 皇家飞利浦有限公司 Reconstructed image data visualization
JP2014228443A (en) * 2013-05-23 2014-12-08 株式会社東芝 Nuclear medicine diagnosis device and nuclear medicine image generation program
WO2014192831A1 (en) 2013-05-28 2014-12-04 株式会社東芝 Medical diagnostic imaging equipment and control method
JP6466079B2 (en) * 2014-04-21 2019-02-06 キヤノンメディカルシステムズ株式会社 X-ray computed tomography apparatus and scan plan setting support apparatus
CN106456092B (en) * 2014-06-05 2019-09-03 株式会社日立制作所 Image processing apparatus and reconstruction condition setting method
JP6460125B2 (en) * 2015-01-09 2019-01-30 株式会社島津製作所 Radiation image generation method and image processing apparatus
JP2019013268A (en) * 2017-07-03 2019-01-31 キヤノン株式会社 Image generation device, image generation method, and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215189A (en) * 1995-02-10 1996-08-27 Toshiba Medical Eng Co Ltd X-ray ct device and its image reconstruction method
JPH09192126A (en) * 1996-01-24 1997-07-29 Toshiba Corp Image reconstitution processor
JPH09262229A (en) * 1996-03-29 1997-10-07 Toshiba Corp Radioactive ray tomographic apparatus
JPH09313476A (en) * 1996-03-28 1997-12-09 Toshiba Corp Photographing condition determination device for computerized tomograph
JPH1119082A (en) * 1997-06-30 1999-01-26 Toshiba Corp Image reconstructing apparatus
JP2000093422A (en) * 1998-09-24 2000-04-04 Koninkl Philips Electronics Nv Computed tomography using conical radiation beam
JP2000175903A (en) * 1998-12-16 2000-06-27 Toshiba Corp Radio-ct instrument

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215189A (en) * 1995-02-10 1996-08-27 Toshiba Medical Eng Co Ltd X-ray ct device and its image reconstruction method
JPH09192126A (en) * 1996-01-24 1997-07-29 Toshiba Corp Image reconstitution processor
JPH09313476A (en) * 1996-03-28 1997-12-09 Toshiba Corp Photographing condition determination device for computerized tomograph
JPH09262229A (en) * 1996-03-29 1997-10-07 Toshiba Corp Radioactive ray tomographic apparatus
JPH1119082A (en) * 1997-06-30 1999-01-26 Toshiba Corp Image reconstructing apparatus
JP2000093422A (en) * 1998-09-24 2000-04-04 Koninkl Philips Electronics Nv Computed tomography using conical radiation beam
JP2000175903A (en) * 1998-12-16 2000-06-27 Toshiba Corp Radio-ct instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10345073A1 (en) * 2003-09-26 2005-05-04 Siemens Ag Multislice tomographic imaging unit control procedure uses display of volume rendered overview for selection of relevant area for calculation of final image
CN109259779A (en) * 2018-11-30 2019-01-25 上海联影医疗科技有限公司 The generation method and magic magiscan of medical image

Also Published As

Publication number Publication date
JP2003153893A (en) 2003-05-27

Similar Documents

Publication Publication Date Title
WO2003043499A1 (en) X-ray ct device, and method for preparing tomographic image thereof
US6141398A (en) Protocol driven image reconstruction, display, and processing in a multislice imaging system
US6665370B2 (en) Computed tomography method and apparatus for acquiring images dependent on a time curve of a periodic motion of the subject
JP4360817B2 (en) Radiation tomography equipment
JP4639143B2 (en) X-ray CT apparatus and control method thereof
JP2007236662A (en) X-ray ct system, its x-ray ct image reconstitution method and x-ray ct image photographing method
JP5537132B2 (en) X-ray computed tomography apparatus, medical image processing apparatus, and medical image processing program
KR20060135569A (en) X-ray ct method and x-ray ct apparatus
KR20070011176A (en) X-ray ct apparatus
JP2006068523A (en) Method for producing slice image of subject to be examined by tomography and computer tomographic apparatus
JPH08117220A (en) Radioscopic photographing method and x-ray apparatus
US7583782B2 (en) X-ray CT apparatus and an image controlling method thereof
JP2007000408A (en) X-ray ct apparatus
JP2008006032A (en) X-ray ct scanner and x-ray ct scanning method
JP5022690B2 (en) Radiography equipment
JP2000157533A (en) Method for re-constituting computer tomographic image
EP0989521A2 (en) Fluoroscopy image reconstruction
JPH10305027A (en) Radiation tomography method and system therefor
JP2003010168A (en) X-ray ct apparatus
JP2006187453A (en) X-ray ct apparatus
JP2001212133A (en) Synthetic tomographic image generating method
JP4025530B2 (en) X-ray CT system
JP4467873B2 (en) Tomography equipment
JP4406106B2 (en) X-ray CT system
JP3636545B2 (en) Imaging condition calculation method and X-ray CT apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase