WO2003042537A1 - Linear compressor - Google Patents

Linear compressor Download PDF

Info

Publication number
WO2003042537A1
WO2003042537A1 PCT/JP2002/011927 JP0211927W WO03042537A1 WO 2003042537 A1 WO2003042537 A1 WO 2003042537A1 JP 0211927 W JP0211927 W JP 0211927W WO 03042537 A1 WO03042537 A1 WO 03042537A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil spring
piston
compression chamber
cylinder
compression
Prior art date
Application number
PCT/JP2002/011927
Other languages
French (fr)
Japanese (ja)
Inventor
Teruyuki Akazawa
Sadao Kawahara
Nobuaki Ogawa
Hiroshi Hasegawa
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to KR10-2004-7007312A priority Critical patent/KR20040066120A/en
Publication of WO2003042537A1 publication Critical patent/WO2003042537A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • F04B17/04Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids

Definitions

  • the present invention relates to a linear compressor for compressing gas by reciprocating a piston fitted in a cylinder by a linear motor.
  • the HC-based refrigerant has no lubricity as a refrigerant itself and has a property of easily dissolving in a lubricant.
  • oil-poor compressor Linear compressors that have a small load in the direction perpendicular to the axis of the piston and low sliding surface pressure are reciprocating compressors, rotary compressors, and scroll compressors that have been widely used in the past.
  • the oil-less type is easier to use, and the piston movable part is a free piston stroke where the piston position is freely determined by the motor thrust applied to the motor and the operating pressure conditions Also known as a compressor.
  • the linear compressor has a sliding surface between the cylinder and the piston, and the sliding performance of this sliding surface affects the efficiency and durability of the linear compressor.
  • Further linear pressure In order to make a compressor compact without oil, only a simple one-way axial force acts between the cylinder and the piston.For example, it is important to minimize the generation of twisting force due to the coil spring supporting the piston. is there.
  • an object of the present invention is to provide a highly reliable compressor that prevents collision between a piston and a cylinder end face even during operation and transportation.
  • Another object of the present invention is to provide a linear compressor suitable for downsizing by reducing the size of the coil spring. Disclosure of the invention
  • a compression mechanism for compressing a gas and a linear motor for operating the compression mechanism are provided in a closed container, the compression mechanism includes a cylinder and a piston, and the cylinder
  • the linear motor has a fixed part connected to the cylinder and a movable part connected to the piston, and one end of the linear motor is connected to the piston or the movable part. And the other end is pressed against the cylinder or the fixed part, and the other end is pressed against the piston or the movable part and the other end is connected to the cylinder or the opposite side of the compression chamber.
  • the biston end face and the piston when the compression chamber-side coil spring is most compressed It is obtained by securing a gap between the cylinder end face.
  • the piston behavior is suddenly changed due to a pressure change during operation and a disturbance force at the time of transportation, and the amplitude of the piston is regulated by the compression chamber side coil spring when the amplitude of the piston is increased. Therefore, collision between the piston tip and the cylinder end face can be avoided.
  • the second embodiment according to the present invention is a linear compressor according to the first embodiment, wherein the compression chamber side coil spring is a non-linear coil spring.
  • the non-linear coil spring increases the spring load as the spring deflection increases. Therefore, it absorbs the velocity near the top dead center, which can be expected to reduce the impact force.
  • a third embodiment according to the present invention is the linear compressor in the second embodiment, wherein the non-linear coil spring is an unequal pitch coil spring.
  • a fourth embodiment according to the present invention is the linear compressor according to the second embodiment, wherein the nonlinear coil spring is a conical coil spring.
  • the nonlinear coil spring is a conical coil spring.
  • a compression mechanism for compressing a gas and a linear motor for operating the compression mechanism are provided in a closed container, wherein the compression mechanism has a cylinder and a biston,
  • the linear motor has a fixed part connected to the cylinder and a movable part connected to the piston, and has one end pressed against the biston or the movable part and the other end.
  • one end of the coil spring that presses against the cylinder or the fixed portion on the compression chamber side and one end that presses against the piston or the movable portion and the other end presses against the cylinder or the fixed portion on the compression chamber side.
  • the compression chamber-side coil spring constant is smaller than the anti-compression chamber-side coil spring constant. That's bad.
  • the piston is reset to the opposite side of the compression chamber by the gas force of the compression chamber. It is necessary to increase the amount of deflection on the anti-compression side by this offset amount. Therefore, if the coil spring constants on the compression chamber side and the non-compression side are the same, it is necessary to increase the maximum deflection from the free length of the spring to the close contact height.
  • the coil spring constant on the compression chamber side and the coil spring constant on the anti-compression chamber side are increased, so that the coil constants on the compression chamber side and the counter compression side are determined by design rather than the same coupling.
  • the maximum deflection of the spring can be reduced relative to the maximum stroke of the piston; Therefore, the coil spring can be made compact, and the size of the linear compressor can be reduced.
  • the sixth embodiment according to the present invention relates to a linear compressor in the fifth embodiment.
  • the amplitude of the piston is a, the offset amount that is pushed toward the anti-compression chamber side by the gas force applied from the compression chamber during operation, the coil spring constant of the compression chamber side is k1, and the coil spring of the anti-compression chamber side is Assuming that the constant is k2, the coil spring constant is determined so that the relational expression of k1X2k2X (a-) holds.
  • the piston amplitude center position offset during operation is approximately halfway between the maximum deflections of the compression chamber side coil spring and the non-compression chamber side coil spring, the maximum deflection of the spring is reduced. Can be suppressed. Therefore, the coil spring can be made compact, and the linear compressor can be downsized.
  • the sectional shape of the coil spring is an oval or elliptical shape.
  • the spring wire by making the spring wire into an oval or elliptical cross-sectional shape, it is possible to reduce the maximum narcotic force generated in the wire at the time of spring deflection as compared with a round wire cross section. it can. Therefore, the height of the coil spring can be reduced, so that the coil spring can be made compact and the linear compressor can be downsized.
  • An eighth embodiment according to the present invention is the linear compressor according to the first to seventh embodiments, wherein a refrigerant mainly containing carbon dioxide is used. Lubrication becomes severe with a high differential pressure refrigerant. Under CO 2 refrigerant, it is much more efficient and more reliable than other types of compressors.
  • FIG. 1 is a cross-sectional view showing the overall configuration of a linear compressor according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a main part showing a coil spring means of the present invention.
  • Figure 3 shows the load characteristics of the unequal pitch spring of the present invention.
  • FIG. 4 is an enlarged sectional view of a main part showing another coil spring means of the present invention.
  • Fig. 5 shows the load characteristics of the conical coil spring of the present invention.
  • FIG. 6 is a schematic view of the amount of deflection of a coil spring during operation according to an embodiment of the present invention.
  • This linear compressor is roughly divided into a cylinder ⁇ , a piston 20, a movable part 4 ⁇ and a fixed part 50 constituting a linear motor part, a spring mechanism part composed of a coil spring, and a head cover part 80. , A support mechanism 90, and a sealed container 100.
  • the cylinder 10 includes a cylinder end face 11 to which a valve element (not shown) is assembled, a flange 14, and a boss 12 protruding from the flange 14 toward one side (leftward in the figure).
  • the piston 2 ⁇ includes a frame 22 that forms a recess for accommodating the support portion 21 and the coil spring 30.
  • the piston 20 has a projection 23 provided on the inner bottom surface of the recess of the frame 22.
  • a compression chamber 13 is formed between one end of the piston 20 and the cylinder end face 11.
  • the linear motor section includes a movable section 40 and a fixed section 5 mm.
  • the movable section 40 includes a permanent magnet 41, a cylindrical holding member 42, and the like.
  • the fixed portion 50 includes an inner yoke 51, an outer yoke 52, a coil 53, and the like.
  • the permanent magnet 41 is held by the cylindrical holding member 42.
  • the cylindrical holding member 42 is disposed concentrically with the piston 20 and held by the frame 22.
  • the inner yoke 51 is formed of a cylindrical body, and is circumscribed and fixed to the pos portion 12 of the cylinder 10. A minute gap is formed between the outer periphery of the inner yoke 51 and the cylindrical holding member 42.
  • the coil 53 is provided on the outer yoke 52.
  • the outer yoke 52 is similarly formed of a cylindrical body, is arranged concentrically so as to form a minute gap on the outer periphery of the cylindrical holding member 42, and is fixed to the flange 14 of the cylinder
  • the movable portion 40 and the fixed portion 50 are concentrically held with high precision, and the reciprocating motion can be smoothly performed.
  • the spring mechanism comprises a compression-chamber-side coil spring 15 and a counter-compression-chamber-side coil spring 30 having predetermined spring rigidity. These coil springs 15 and 3 ⁇ are always used as compression springs that are used in a state of being compressed more than the natural length.
  • One end 16 of the compression chamber side coil spring 15 is coupled to a step 19 formed on the other end surface of the piston 20.
  • the other end 17 of the compression chamber-side coil spring 15 is connected to the outer peripheral end surface 18 of the boss 12 of the cylinder 1 ⁇ .
  • One end 3 1 of the anti-compression chamber side coil spring 30 is It is joined to the projection 23 formed on the end face.
  • the other end 32 of the anti-compression-chamber side coil spring 3 ⁇ ⁇ ⁇ is connected to the projection 63.
  • the anti-compression chamber side coil spring 3 ⁇ presses the coil springs 15 and 30 against the screw 20 with the spring fixing member 62 in order to generate a preload due to compression bending.
  • the spring fixing member 62 is provided in a state of being bridged over an outer yoke 52 that becomes the fixing portion 50 of the linear motor portion, and is fixedly connected to an end of the outer yoke 52.
  • the closed container 100 is formed of a cylindrical container, and forms a space 101 inside.
  • the components of the linear compressor are housed in this space 1-1.
  • the sealed container 100 is provided with a suction pipe (not shown) and a discharge pipe (not shown).
  • the support mechanism 9 ⁇ has a plurality of coil springs 9 1, 92 disposed between the components of the linear compressor and the closed casing 1 ⁇ ⁇ . To prevent vibration.
  • the alternating current in energizing the coil 53 is given as a sine wave, and forward and reverse thrusts are generated alternately in the linear motor unit. Then, the piston 2 ⁇ reciprocates by the alternately generated forward and reverse thrusts.
  • the refrigerant is introduced from the suction pipe (not shown) into the closed container 1 ⁇ 0 in FIG.
  • the refrigerant introduced into the closed container 1 ⁇ is assembled to the cylinder end face 11 from the suction side space of the head cover section 8 ⁇ and enters the compression chamber 13 through a suction valve (not shown).
  • the refrigerant is compressed by the piston 20, passes through a discharge valve (not shown) assembled to the cylinder end face 11, passes through a discharge side space of the head cover 80, and is discharged outward from a discharge pipe (not shown). Is discharged.
  • the vibration of the cylinder 10 caused by the reciprocation of the piston 20 is damped by the plurality of coil springs 91 and 92.
  • the compression-chamber-side coil spring 15 is assembled such that the position of the piston 20 in the most compressed state is the top dead center 29 of the piston 20.
  • the piston 2 ⁇ is mechanically restrained by the compression-chamber-side coil spring 15 and the piston amplitude of the free piston stroke can be regulated, so that the piston 2 ⁇ ⁇ ⁇ does not collide with the cylinder end face 11;
  • the piston tip can be prevented from colliding with the cylinder end face against disturbance force such as when the amplitude of the piston suddenly changes.
  • the cross-sectional shape of the compression-chamber-side coil springs 15 and the anti-compression-chamber-side coil springs 30 into an oval or elliptical spring, the maximum force generated by the wire when the spring bends can be reduced compared to the round wire cross section. Because it can be lowered, the height of the coil spring can be reduced, the spring can be made compact, and the linear compressor can be downsized.
  • FIG. 2 is an enlarged view of a main part of a lifting operation in which the compression-chamber-side coil spring is a non-linear coil spring.
  • the other configuration is the same as that of FIG. 1, and the description is omitted.
  • the non-linear coil spring 15 is constituted by an unequal pitch spring. Since uneven pitch springs have non-uniform pitches, as the deflection of the springs increases, more inter-wire bonding occurs and the effective number of turns decreases as compared to equal pitch springs. Therefore, as shown in Fig. 3, when the deflection is large, the spring load is increased with a non-linear load characteristic, the piston speed is absorbed, and the impact force of the piston on the cylinder end face 11 is reduced. It can reduce impact noise and obtain good durability.
  • FIG. 4 is an enlarged view of a main part showing another embodiment in which the compression chamber side coil spring is a non-linear coil spring.
  • the other configuration is the same as that of FIG.
  • the non-linear coil spring 15 is constituted by a conical coil spring.
  • the compression chamber-side coil spring 15 is a conical coil spring as described above, when the spring deflection becomes large, the same as the above-mentioned unequal pitch coil spring is obtained. The effect becomes more pronounced, and as shown in Fig. 5, when the deflection is large, the spring load increases greatly.As the piston speed approaches the top dead center, it works effectively as a brake that absorbs the piston speed, and the cylinder end surface The impact force of the piston can be reduced, the impact noise can be reduced, and the reliability can be improved.
  • the compression chamber side coil spring 15 shown in FIG. 1 is assumed to have a spring constant weaker than that of the anti-compression chamber side coil spring 30.
  • the constant k 1 of the coil spring 15 which is the coil spring on the compression chamber side
  • the spring constant k 2 of the coil spring 3 ⁇ which is the coil spring on the side of the non-compression chamber, the amplitude of the piston a
  • Fig. 6 shows the correlation between the coil springs.
  • a preload FO is added to compress the coil springs in order to use both coil springs 15 and 3 ⁇ ⁇ ⁇ as compression springs.
  • the piston is offset from the piston mounting position to the compression chamber side by the gas force Fg of the compression chamber from the piston amplitude center position.
  • the amount of deflection x 1 and x 2 of each coil spring 15 and 3 ⁇ increases the amount of deflection x 1 of the compression chamber side coil spring 15 with a small spring constant.
  • the predetermined coil spring constant is determined from the sum of k 1 + k 2 from the driving frequency of the linear compressor, and the necessary piston stroke 2 a and offset amount ⁇ can be set by the operating pressure condition and the bore diameter of the piston 20.
  • each spring constant based on these dimensions so as to satisfy the above relational expression, the piston amplitude center position ⁇ ⁇ during operation can be adjusted to the compression chamber side coil spring 15 and the counter compression chamber side coil spring 3 ⁇ ⁇ . Is approximately halfway between the maximum deflection of the piston and the maximum deflection of the piston, which is determined by the design. it can. Therefore, the coil spring can be made compact, and the size of the linear compressor can be reduced.
  • the piston 20 is mechanically compressed by the compression-chamber-side coil spring 15 when compressed most by the compression chamber-side coil spring 15 against external impact force such as during operation with a large stroke or during transportation. Since the piston amplitude can be regulated under the restraint, the piston end can be prevented from colliding with the cylinder end face, and a highly reliable compressor can be realized. Further, the compression chamber side coil springs 15 may be unequal pitch springs or conical coil springs. As a result, compared to a compression coil spring, when the piston approaches the top dead center, the spring load increases, it acts as a brake that absorbs the piston speed, and the piston impact force on the cylinder end face can be reduced, resulting in an impact sound. And good durability can be obtained.
  • each coil spring constant is approximately changed to the compression chamber side coil so that the relational expression of k 1 X (a + c 2 k 2 X (a—) holds).
  • the coil spring can be made into an oval or elliptical cross section, the maximum force generated by the wire when the spring is deflected can be reduced compared to the round wire cross section, and the coil spring height can be reduced.
  • the coil spring can be made compact, and the size of the linear compressor can be reduced.
  • the refrigerant used is not particularly described, it is preferable to use a refrigerant mainly composed of carbon dioxide. Under high pressure differential refrigerant, lubrication becomes severe. C ⁇ 2) Under the refrigerant, it is much more efficient and higher reliability than other compressors. Industrial applicability
  • the compression chamber-side coil spring when the compression chamber-side coil spring is most compressed, a clearance is secured between the piston end face and the cylinder end face, so that a pressure change during operation and a disturbance force at the time of transportation, etc. Even when the piston suddenly changes, the piston amplitude is regulated by the compression chamber side coil spring when the piston amplitude increases, so that collision between the piston tip and the cylinder end face can be avoided, and reliability can be improved.
  • the spring load increases as the deflection increases. Therefore, since the piston speed approaching the top dead center is absorbed, the effect of reducing the impact force can be expected.
  • the non-linear coil spring is formed as an unequal-pitch coil spring.
  • the inter-wire adhesion is more improved as compared with the equal-pitch coil spring.
  • the effective number of turns decreases and the spring load increases, so the piston speed approaching top dead center is absorbed, the impact force is reduced, and good durability is obtained.
  • the compression chamber-side coil spring is a conical coil spring
  • the same effect of the unequal-pitch coil spring becomes more remarkable, and the spring load increases greatly. It works effectively as a brake that absorbs the velocity of the piston approaching the point, can reduce the impact force of the piston, reduce ffj sound, and increase reliability.
  • the coil spring constant on the compression chamber side small and increasing the coil spring constant on the non-compression chamber side, it is determined from the compressor design as compared with the case where the coil spring constants on the compression chamber side and the non-compression side are the same.
  • the maximum amount of deflection of the spring can be suppressed for the maximum piston amplitude obtained. Therefore, the coil spring can be reduced in size, and the linear compressor can be reduced in size.
  • the size of the linear compressor can be reduced.
  • the coil spring has an oval or elliptical cross-sectional shape, so that the maximum force generated in the wire at the time of spring deflection is reduced and the coil spring height is reduced as compared with a round wire cross section. Therefore, the coil spring can be made compact, and the size of the linear compressor can be reduced.
  • refrigerants containing carbon dioxide as a main component are used, and lubrication becomes severe with high differential pressure refrigerants. And high reliability can be obtained.

Abstract

A linear compressor comprises a cylinder (10), a piston (20), a cylinder end surface (11), a movable section (40) and a stationary section (50) that constitute a linear motor, coil springs (15, 30), a head cover (80), a support mechanism (90), a sealed container (100), etc. Defined in the cylinder (10) is a compression chamber (13) for gas compression. The spring member (61) of a spring mechanism member (60) is composed of coil springs (15, 30) having predetermined spring rigidity. When the coil spring (15) is compressed to the fullest extent, a clearance is secured between the end surface of the piston (20) and the cylinder end surface (11), whereby the amplitude of the piston (20) of the linear compressor can be controlled.

Description

明細書  Specification
リニア圧縮機 技術分野  Linear compressor technical field
本発明は、 リニアモータにより、 シリンダ内に嵌合されたビス卜ンを往復運動 させてガスを圧縮するリニア圧縮機に関する。 背景技術  The present invention relates to a linear compressor for compressing gas by reciprocating a piston fitted in a cylinder by a linear motor. Background art
冷凍サイクルにおいて、 1=! 22に代表される1"]〇 (3系冷媒は、 その物性の安 定性からオゾン層を破壊すると言われている。 また、 近年では、 H C F C系冷媒 の代替冷媒として H F C系冷媒が利用されているが、 この H F C系冷媒は温暖化 現象を促進する性質を有している。 そのため、 最近では、 オゾン層の破壊や温暖 ' 化現象に大きな影響を与えない H C系;令媒が採用され始めている。しかしながら、 この H C系冷媒は可燃性のため爆発ゆ発火を防止することが安全性確保の面から 必要であり、 このために、 冷媒の使用量を極力少なくすることが要請される。 一 方、 H C系)令媒は、 冷媒自体として潤滑性がなく、 ま 潤滑材に溶け込み易い性 質を有する。 以上のことから、 H C系冷媒を使用する場合にはオイルレスまたは オイルプアの圧縮機が必要となる。 ビス卜ンの軸線と直交する方向への荷重が小 さく、 摺動面圧が小さいリニア圧縮機は、 従来から多く利用されてきたレシプロ 式圧縮機、 ロータリ圧縮機、 スクロール圧縮機と比較すると、 オイルレス化を図 りゆすいタイプであり、 ビス卜ン可動部はモータに印可されるモータ推力と運転 圧力条件によつてピストン位置が自由に決まるフリーピストンスト口一クとなる 圧縮機として知られている。  In the refrigeration cycle, 1 "] 〇 (typically 1 =! 22) is said to destroy the ozone layer due to the stability of its physical properties. In recent years, it has been used as an alternative refrigerant to HCFC-based refrigerants. Although HFC-based refrigerants are used, these HFC-based refrigerants have the property of promoting warming phenomena, so recently, HC-based refrigerants that do not significantly affect the ozone layer destruction and warming phenomena However, HC-based refrigerants have begun to be adopted, however, since HC-based refrigerants are flammable, it is necessary to prevent explosion and ignition from the viewpoint of ensuring safety, and as a result, the amount of refrigerant used is reduced as much as possible. On the other hand, the HC-based refrigerant has no lubricity as a refrigerant itself and has a property of easily dissolving in a lubricant. Or oil-poor compressor Linear compressors that have a small load in the direction perpendicular to the axis of the piston and low sliding surface pressure are reciprocating compressors, rotary compressors, and scroll compressors that have been widely used in the past. Compared to the machine, the oil-less type is easier to use, and the piston movable part is a free piston stroke where the piston position is freely determined by the motor thrust applied to the motor and the operating pressure conditions Also known as a compressor.
しかし、 このリニア圧縮機はフリーピストンス卜ロークであり、 機構的に他の 部材による掏束を受けない め、運転時の圧力変化ゆ輸送時等の外乱力によって、 ビストン振幅が急変し、 ビストン端面がシリンダ端面に衝突することで、 衝突音 が発生し、 ピストン等を傷つけてしまう可能性がある。  However, since this linear compressor is a free piston stroke, it is not mechanically picked up by other members. When the end face collides with the cylinder end face, a collision sound is generated, which may damage the piston and the like.
■ また、 リニア圧縮機はシリンダとピストン間には摺動面が存在し、 この摺動面 の摺動性の良否がリニア圧縮機の効率ゆ耐^性に影響を与える。 さらにリニア圧 縮機をオイルレスにするには、 シリンダとピストン間には単純な一方向の軸方向 力だけが働き、 例えばピストンを支持するコイルばねによるこじれ力の発生を最 小限に押さえることが重要である。 ■ In addition, the linear compressor has a sliding surface between the cylinder and the piston, and the sliding performance of this sliding surface affects the efficiency and durability of the linear compressor. Further linear pressure In order to make a compressor compact without oil, only a simple one-way axial force acts between the cylinder and the piston.For example, it is important to minimize the generation of twisting force due to the coil spring supporting the piston. is there.
そこで本発明は、 例えば運転時ゆ輸送中にもビス卜ンとシリンダ端面との衝突 を防ぐ、 信頼性の高い圧縮機を提供することを目的とする。  Accordingly, an object of the present invention is to provide a highly reliable compressor that prevents collision between a piston and a cylinder end face even during operation and transportation.
ま 、 本発明はコイルばねのコンパクト化によって小型化に適したリニア圧縮 機を提供することを目的とする。 発明の開示  Another object of the present invention is to provide a linear compressor suitable for downsizing by reducing the size of the coil spring. Disclosure of the invention
本発明による第 1の実施の形態は、 ガスを圧縮する圧縮機構とこの圧縮機構を 動作させるリニアモータとを密閉容器内に備え、 前記圧縮機構はシリンダとビス 卜ンとを有し、 前記シリンダ内にガス圧縮を行う圧縮室を有し、 前記リニアモー タは前記シリンダに連結される固定部と前記ビス卜ンに連結される可動部とを有 し、 一端を前記ビス卜ン又は前記可動部に押接し他端を圧縮室側の前記シリンダ 又は前記固定部に押接する圧縮室側コイルばねと一端を前記ビス卜ン又は前記可 動部に押接し他端を反圧縮室側の前記シリンダ又は前記固定部に押接する反圧縮 室側コイルばねとにより、 前記ビストンを軸線方向に可動自在に支持しだリニア 圧縮機において、 前記圧縮室側コイルばねが最も圧縮されたときに前記ビストン 端面と前記シリンダ端面との間に隙間を確保したものである。 本実施の形態によ れば、 運転中の圧力変化ゆ輸送時等の外乱力により、 ピストン挙動が急変し、 ピ ス卜ン振幅の増大時に圧縮室側コイルばねにより、 ビス卜ン振幅が規制されるの で、 ピストン先端とシリンダ端面との衝突を回避できる。  According to a first embodiment of the present invention, a compression mechanism for compressing a gas and a linear motor for operating the compression mechanism are provided in a closed container, the compression mechanism includes a cylinder and a piston, and the cylinder The linear motor has a fixed part connected to the cylinder and a movable part connected to the piston, and one end of the linear motor is connected to the piston or the movable part. And the other end is pressed against the cylinder or the fixed part, and the other end is pressed against the piston or the movable part and the other end is connected to the cylinder or the opposite side of the compression chamber. In the linear compressor, wherein the piston is movably supported in the axial direction by an anti-compression chamber-side coil spring pressed against the fixed portion, the biston end face and the piston when the compression chamber-side coil spring is most compressed. It is obtained by securing a gap between the cylinder end face. According to the present embodiment, the piston behavior is suddenly changed due to a pressure change during operation and a disturbance force at the time of transportation, and the amplitude of the piston is regulated by the compression chamber side coil spring when the amplitude of the piston is increased. Therefore, collision between the piston tip and the cylinder end face can be avoided.
本発明による第 2の実施の形態は、 第 1の実施形態におけるリニア圧縮機にお いて、 圧縮室側コイルばねを非線形コイルばねとしたものである。 本実施の形態 によれば、 非線形コイルばねによって、 ばねたわみが大きくなるにつれ、 ばね荷 重が増大する。 従って、 上死点に近づくビス卜ン速度を吸収するので、 衝撃力緩 和効果が期待できる。  The second embodiment according to the present invention is a linear compressor according to the first embodiment, wherein the compression chamber side coil spring is a non-linear coil spring. According to the present embodiment, the non-linear coil spring increases the spring load as the spring deflection increases. Therefore, it absorbs the velocity near the top dead center, which can be expected to reduce the impact force.
本発明による第 3の実施の形態は、 第 2の実施形態におけるリニァ圧縮機にお いて、 非線形コイルばねを不等ピッチコイルばねとしたものである。 本実施の形 態によれば、 不等ピッチコイルばねのたわみが大きくなるにつれ、 等間隔ピッチ コイルばねに比べ、 より素線間接着を生じ、 有効巻数が減少してばね荷重を増大 するので、 上死点に近づくピストン速度を吸収して、 衝撃力を緩和し、 良好な耐 久性を得られる。 A third embodiment according to the present invention is the linear compressor in the second embodiment, wherein the non-linear coil spring is an unequal pitch coil spring. Form of this implementation According to the state, as the deflection of the unequal-pitch coil spring increases, the wire-to-wire adhesion increases, the effective number of turns decreases, and the spring load increases. Absorbs the approaching piston speed, reduces the impact force, and provides good durability.
本発明による第 4の実施の形態は、 第 2の実施形態におけるリニア圧縮機にお いて、 非線形コイルばねを円錐コイルばねとし ものである。 本実施の形態によ れば、 ばねたわみが大きくなると、 不等ピッチコイルばねの同様な作用がより顕 著となり、 ばね荷重が大きく増加するため、 上死点へ近づくピストン速度を吸収 するブレーキとして、 有効に働き、 ピス卜ンの衝撃力を緩和でき、 衝撃音を低減 し、 信頼性を高めることができる。  A fourth embodiment according to the present invention is the linear compressor according to the second embodiment, wherein the nonlinear coil spring is a conical coil spring. According to the present embodiment, when the spring deflection increases, the same effect of the unequal-pitch coil spring becomes more pronounced, and the spring load increases greatly, so that the brake absorbs the piston speed approaching top dead center. It can work effectively, reduce the impact force of the piston, reduce the impact sound, and increase the reliability.
本発明による第 5の実施の形態は、 ガスを圧縮する圧縮機構とこの圧縮機構を 動作させるリニアモータとを密閉容器内に備え、 前記圧縮機構はシリンダとビス トンとを有し、 前記シリンダ内にガス圧縮を行う圧縮室を有し、 前記リニアモー タは前記シリンダに連結される固定部と前記ピストンに連結される可動部とを有 し、 一端を前記ビストン又は前記可動部に押接し他端を圧縮室側の前記シリンダ 又は前記固定部に押接する圧縮室側コイルばねと一端を前記ピストン又は前記可 動部に押接し他端を反圧縮室側の前記シリンダ又は前記固定部に押接する反圧縮 室側コイルぱねとにより、 前記ビストンを軸線方向に可動自在に支持したリニア 圧縮機において、 前記圧縮室側コイルばね定数を、 前記反圧縮室側コイルばね定 数より小さくしたものである。 運転中はビス卜ンが圧縮室のガス力によって、 反 圧縮室側へ才フセッ卜される。 このオフセッ卜量の分、 反圧縮側の わみ量を大 きく取る必要がある。 そのため、 圧縮室側及び反圧縮側のコイルバネ定数を同じ にしだ場合、 ばねの自由長高さから密着高さまでの最大たわみ量を大きくとる必 要がある。 本実施の形態は、 圧縮室側コイルばね定数を小さく、 反圧縮室側コィ ルばね定数を大きくすることで、 圧縮室側及び反圧縮側のコィルぱね定数が同じ 揚合よりも、 設計から決まるピストン最大ストローク量に対し、 ばねの最大たわ み量を抑えること;^できる。 従って、 コイルばねのコンパク卜化が可能となり、 リニア圧縮機の小型化が可能になる。  According to a fifth embodiment of the present invention, a compression mechanism for compressing a gas and a linear motor for operating the compression mechanism are provided in a closed container, wherein the compression mechanism has a cylinder and a biston, The linear motor has a fixed part connected to the cylinder and a movable part connected to the piston, and has one end pressed against the biston or the movable part and the other end. And one end of the coil spring that presses against the cylinder or the fixed portion on the compression chamber side and one end that presses against the piston or the movable portion and the other end presses against the cylinder or the fixed portion on the compression chamber side. In a linear compressor in which the piston is movably supported in the axial direction by a compression chamber-side coil spring, the compression chamber-side coil spring constant is smaller than the anti-compression chamber-side coil spring constant. That's bad. During operation, the piston is reset to the opposite side of the compression chamber by the gas force of the compression chamber. It is necessary to increase the amount of deflection on the anti-compression side by this offset amount. Therefore, if the coil spring constants on the compression chamber side and the non-compression side are the same, it is necessary to increase the maximum deflection from the free length of the spring to the close contact height. In the present embodiment, the coil spring constant on the compression chamber side and the coil spring constant on the anti-compression chamber side are increased, so that the coil constants on the compression chamber side and the counter compression side are determined by design rather than the same coupling. The maximum deflection of the spring can be reduced relative to the maximum stroke of the piston; Therefore, the coil spring can be made compact, and the size of the linear compressor can be reduced.
本発明による第 6の実施の形態は、 第 5の実施形態におけるリニァ圧縮機にお いて、 ピストンの振幅を a、 ピストンが運転中に圧縮室より掛かるガス力によつ て反圧縮室側に押されるオフセット量を 、 圧縮室側コイルばね定数を k 1、 反 圧縮室側コイルばね定数を k 2とすると、 ほぽ、 k 1 X 二 k 2 X (a— ) の関係式が成立するようにコイルばね定数を決定する。 本実施の形態によれ ぱ、 運転中にオフセッ卜されたピストン振幅中心位置が圧縮室側コイルばね及び 反圧縮室側コイルばねの最大たわみ量のほぽ中間となるので、 ばねの最大たわみ 量を抑えることができる。 従って、 コイルばねのコンパクト化が可能となり、 リ ニァ圧縮機の小型化が実現できる。 The sixth embodiment according to the present invention relates to a linear compressor in the fifth embodiment. The amplitude of the piston is a, the offset amount that is pushed toward the anti-compression chamber side by the gas force applied from the compression chamber during operation, the coil spring constant of the compression chamber side is k1, and the coil spring of the anti-compression chamber side is Assuming that the constant is k2, the coil spring constant is determined so that the relational expression of k1X2k2X (a-) holds. According to the present embodiment, since the piston amplitude center position offset during operation is approximately halfway between the maximum deflections of the compression chamber side coil spring and the non-compression chamber side coil spring, the maximum deflection of the spring is reduced. Can be suppressed. Therefore, the coil spring can be made compact, and the linear compressor can be downsized.
本発明による第了の実施の形態は、 第 1から第 6の実施形態によるリニア圧縮 機において、 コイルばねの断面形状を卵型又は楕円型形状としたものである。 本 実施の形態では、 コィ )レばね線材を卵型又は楕円型の断面形状にすることによつ て、 丸線断面に比べて、 ばね わみ時に線材で発生する最大麻力を下げることが できる。 従って、 コイルばねの高さを縮小できるため、 コイルばねのコンパク卜 化が可能となり、 リニア圧縮機の小型化が実現できる。 '  According to a fourth embodiment of the present invention, in the linear compressor according to the first to sixth embodiments, the sectional shape of the coil spring is an oval or elliptical shape. In the present embodiment, by making the spring wire into an oval or elliptical cross-sectional shape, it is possible to reduce the maximum narcotic force generated in the wire at the time of spring deflection as compared with a round wire cross section. it can. Therefore, the height of the coil spring can be reduced, so that the coil spring can be made compact and the linear compressor can be downsized. '
本発明による第 8の実施の形態は、 第 "1から第 7の実施形態によるリニア圧縮 機において、 二酸化炭素を主成分とする冷媒を用いたものである。 高差圧冷媒で 潤滑が厳しくなる C O 2冷媒の下では、他方式圧縮機に比べて非常に効率がよく、 高い信頼性が得られる。 図面の簡単な説明  An eighth embodiment according to the present invention is the linear compressor according to the first to seventh embodiments, wherein a refrigerant mainly containing carbon dioxide is used. Lubrication becomes severe with a high differential pressure refrigerant. Under CO 2 refrigerant, it is much more efficient and more reliable than other types of compressors.
図 1は、 本発明の一実施例によるリニア圧縮機の全体構成を示す断面図 図 2は、 本発明のコイルばね手段を示す要部拡大断面図  FIG. 1 is a cross-sectional view showing the overall configuration of a linear compressor according to an embodiment of the present invention. FIG. 2 is an enlarged cross-sectional view of a main part showing a coil spring means of the present invention.
図 3は、 本発明の不等ピッチばねの荷重特性図  Figure 3 shows the load characteristics of the unequal pitch spring of the present invention.
図 4は、 本発明の他のコイルばね手段を示す要部拡大断面図  FIG. 4 is an enlarged sectional view of a main part showing another coil spring means of the present invention.
図 5は、 本発明の円錐コイルばねの荷重特性図  Fig. 5 shows the load characteristics of the conical coil spring of the present invention.
図 6は、 本発明の一実施例による運転時のコイルばね わみ量の模式図 発明を実施するための最良の形態  FIG. 6 is a schematic view of the amount of deflection of a coil spring during operation according to an embodiment of the present invention.
以下、 本発明のリニア圧縮機の一実施例を図面に基づいて説明する。 まず、 図 1により、 本発明のリニア圧縮機の全体構造を説明する。 Hereinafter, an embodiment of the linear compressor of the present invention will be described with reference to the drawings. First, figure 1, the overall structure of the linear compressor of the present invention will be described.
このリニア圧縮機は、 大別して、 シリンタ Ί〇と、 ビス卜ン 20と、 リニアモ —タ部を構成する可動部 4〇および固定部 50と、 コイルばねからなるばね機構 部と、 ヘッドカバ一部 80と、 支持機構部 90と、 密閉容器 1 00から構成され る。  This linear compressor is roughly divided into a cylinder Ί〇, a piston 20, a movable part 4〇 and a fixed part 50 constituting a linear motor part, a spring mechanism part composed of a coil spring, and a head cover part 80. , A support mechanism 90, and a sealed container 100.
シリンダ 1 0は、 弁体 (図示せず) を組み付けたシリンダ端面 1 1と、 鍔部 1 4と、 この鍔部 1 4から一方 (図の左方向) に向かって突出するボス部 1 2から なる。 ビス卜ン 2〇は、 支柱部 2 1とコイルばね 30を収納する凹所を形成する 枠体 22を備える。 ピストン 20は、 枠体 22の凹所内底面に突起部 23を設け ている。 ピストン 20の一端側とシリンダ端面 1 1との間に圧縮室 1 3を形成し てし、る。  The cylinder 10 includes a cylinder end face 11 to which a valve element (not shown) is assembled, a flange 14, and a boss 12 protruding from the flange 14 toward one side (leftward in the figure). Become. The piston 2〇 includes a frame 22 that forms a recess for accommodating the support portion 21 and the coil spring 30. The piston 20 has a projection 23 provided on the inner bottom surface of the recess of the frame 22. A compression chamber 13 is formed between one end of the piston 20 and the cylinder end face 11.
リニアモータ部は、 可動部 40と固定部 5〇とからなる。 可動部 40は、 永久 磁石 41と、 円筒保持部材 42等から構成される。 また、 固定部 50は、 インナ —ヨーク 5 1、 アウターヨーク 52、 コイル 5 3等から構成される。 永^磁石 4 1は、 円筒保持部材 42により保持される。 円筒保持部材 42はピストン 20と 同心円伏に配設され枠体 22により固持される。 インナ一ヨーク 5 1は円筒体か らなり、 シリンダ 1 0のポス部 1 2に外接固定される。 なお、 インナーヨーク 5 1の外周と円筒保持部材 42との間には微小隙間が形成される。 また、 コイル 5 3はアウターヨーク 52に設けられている。 一方、 アウターヨーク 52は、 同じ く円筒体からなり、 円筒保持部材 42の外周に微小隙間を形成するように、 同心 円状に配置され、 シリンダ 1 0の鍔部 1 4に固定される。  The linear motor section includes a movable section 40 and a fixed section 5 mm. The movable section 40 includes a permanent magnet 41, a cylindrical holding member 42, and the like. The fixed portion 50 includes an inner yoke 51, an outer yoke 52, a coil 53, and the like. The permanent magnet 41 is held by the cylindrical holding member 42. The cylindrical holding member 42 is disposed concentrically with the piston 20 and held by the frame 22. The inner yoke 51 is formed of a cylindrical body, and is circumscribed and fixed to the pos portion 12 of the cylinder 10. A minute gap is formed between the outer periphery of the inner yoke 51 and the cylindrical holding member 42. The coil 53 is provided on the outer yoke 52. On the other hand, the outer yoke 52 is similarly formed of a cylindrical body, is arranged concentrically so as to form a minute gap on the outer periphery of the cylindrical holding member 42, and is fixed to the flange 14 of the cylinder 10.
以上のように、 可動部 40と固定部 50とは同心円状に高精度に保持され、 往 復運動を円滑に行なうことができる。  As described above, the movable portion 40 and the fixed portion 50 are concentrically held with high precision, and the reciprocating motion can be smoothly performed.
ばね機構部は、 所定のばね剛性を持 せた圧縮室側コイルばね 1 5と反圧縮室 側コイルばね 30で構成される。 このコイルばね 1 5、 3〇は、 常に自然長さよ りも圧縮され 状態で使用される圧縮ばねとして用いられる。 圧縮室側コイルば ね 1 5の一端 1 6は、ピストン 20の他端面に形成した段差部 1 9に結合される。 圧縮室側コイルばね 1 5の他端 1 7は、 シリンダ 1〇のボス部 1 2の外周端面部 1 8に結合される。 反圧縮室側コイルばね 30の一端 3 1は、 ピストン 20の他 端面に形成した突起部 23に結合される。 反圧縮室側コイルばね 3〇の他端 32 は、 突起部 63に結合される。 反圧縮室側コイルばね 3〇は、 圧縮 わみによる 予荷重を発生させるために、 ばね固定部材 62でコイルばね 1 5、 30をビス卜 ン 20側に押付ける。 ばね固定部材 62は、 リニアモータ部の固定部 50となる アウターヨーク 52に架設された状態で配設され、 そしてアウターヨーク 52の 端部に結合固定される。 The spring mechanism comprises a compression-chamber-side coil spring 15 and a counter-compression-chamber-side coil spring 30 having predetermined spring rigidity. These coil springs 15 and 3〇 are always used as compression springs that are used in a state of being compressed more than the natural length. One end 16 of the compression chamber side coil spring 15 is coupled to a step 19 formed on the other end surface of the piston 20. The other end 17 of the compression chamber-side coil spring 15 is connected to the outer peripheral end surface 18 of the boss 12 of the cylinder 1〇. One end 3 1 of the anti-compression chamber side coil spring 30 is It is joined to the projection 23 formed on the end face. The other end 32 of the anti-compression-chamber side coil spring 3 さ れ る is connected to the projection 63. The anti-compression chamber side coil spring 3〇 presses the coil springs 15 and 30 against the screw 20 with the spring fixing member 62 in order to generate a preload due to compression bending. The spring fixing member 62 is provided in a state of being bridged over an outer yoke 52 that becomes the fixing portion 50 of the linear motor portion, and is fixedly connected to an end of the outer yoke 52.
密閉容器 1 00は、 筒体状の容器からなり、 内部に空間部 1 0 1を形成する。 この空間部 1〇1に、 リニア圧縮機の構成要素が収納される。 また、 密閉容器 1 〇0には、吸入管(図示せず)、 吐出管(図示せず)を設けている。 支持機構部 9 〇は、 複数のコイルばね 9 1、 92を、 リニア圧縮機の構成要素と密閉容器 1〇 〇との間に配設させたものであり、 シリンダ 1 0からの密閉容器 1 00への伝達 振動を防止する。  The closed container 100 is formed of a cylindrical container, and forms a space 101 inside. The components of the linear compressor are housed in this space 1-1. In addition, the sealed container 100 is provided with a suction pipe (not shown) and a discharge pipe (not shown). The support mechanism 9 、 has a plurality of coil springs 9 1, 92 disposed between the components of the linear compressor and the closed casing 1 〇 、. To prevent vibration.
次に、 本実施例のリニア圧縮機の作用を説明する。  Next, the operation of the linear compressor of this embodiment will be described.
まず、 固定部 50のコイル 53に通電すると、 可動部 4〇の永久磁石 41との 間にフレミングの左手の法則に従って電流に比例した推力が発生する。 この推力 の発生により可動部 40に軸線方向に沿って後退する駆動力が作用する。 可動部 40の円筒保持部材 42は、 ピス卜ン 2〇に連結されているため、 ピストン 2〇 がスムーズにその軸線方向に沿って後退する。  First, when the coil 53 of the fixed unit 50 is energized, a thrust proportional to the current is generated between the coil 53 and the permanent magnet 41 of the movable unit 4 according to Fleming's left-hand rule. Due to the generation of this thrust, a driving force that retreats along the axial direction acts on the movable portion 40. Since the cylindrical holding member 42 of the movable portion 40 is connected to the piston 2〇, the piston 2〇 smoothly retreats along its axial direction.
コイル 53への通電における交流電流は、 正弦波で与えられ、 リニアモータ部 には正逆の推力が交互に発生する。 そしてこの交互に発生 tる正逆の推力によつ てピストン 2〇は往復運動を行なうことになる。  The alternating current in energizing the coil 53 is given as a sine wave, and forward and reverse thrusts are generated alternately in the linear motor unit. Then, the piston 2〇 reciprocates by the alternately generated forward and reverse thrusts.
冷媒は、 吸入管 (図示せず) から図 1の密閉容器 1〇0内に導入される。 この 密閉容器 1〇〇内に導入された冷媒は、 ヘッドカバー部 8〇の吸入側空間からシ リンダ端面 1 1に組み付けられ 吸入弁 (図示せず)を通って圧縮室 1 3に入る。 そしてこの冷媒は、 ビス卜ン 20により圧縮され、 シリンダ端面 1 1に組み付け られた吐出バルブ(図示せず) から、 ヘッドカバー部 80の吐出側空間を経て、 吐出管(図示せず) から外方に吐出される。 また、 ピストン 20の往復運動に伴 つて生じるシリンダ 1 0の振動は、 複数のコイルばね 9 1、 92により制振され る。 運転圧力条件及びリニアモータに給電される卬加出力等の釣合いによってビス 卜ン 2〇の位置が'決定されるフリービス卜ンス卜ロークのリニァ圧縮機におし、て は、ビス卜ン 20の振幅が急変することがある。これによつて、ピストン 2〇は、 リニァモータの許容ス卜ロークを超えて駆動し、 ビス卜ン 2〇がシリンダ端面 1 1へ衝突する可能性がある。 The refrigerant is introduced from the suction pipe (not shown) into the closed container 1 容器 0 in FIG. The refrigerant introduced into the closed container 1〇〇 is assembled to the cylinder end face 11 from the suction side space of the head cover section 8〇 and enters the compression chamber 13 through a suction valve (not shown). The refrigerant is compressed by the piston 20, passes through a discharge valve (not shown) assembled to the cylinder end face 11, passes through a discharge side space of the head cover 80, and is discharged outward from a discharge pipe (not shown). Is discharged. The vibration of the cylinder 10 caused by the reciprocation of the piston 20 is damped by the plurality of coil springs 91 and 92. In a free-stroke linear compressor where the position of the piston 2 is determined by the operating pressure conditions and the balance of the additional power supplied to the linear motor, etc. The amplitude may change suddenly. As a result, the piston 2〇 is driven beyond the allowable stroke of the linear motor, and the piston 2〇 may collide with the cylinder end surface 11 1.
圧縮室側コイルばね 1 5は、 最も圧縮され 時のビス卜ン 20の位置が、 ビス 卜ン 20の上死点 29となるように組付けられる。これにより、ピストン 2〇は、 圧縮室側コイルばね 1 5によって機構的に拘束を受け、 フリーピストンストロー クのピストン振幅の規制ができ、 シリンダ端面 1 1に衝突することがない め、 圧力変化によるビス卜ン振幅の急変時ゆ $送時等の外乱力に対してピストン先端 がシリンダ端面への衝突を回避することができ、 信頼性が高まる。  The compression-chamber-side coil spring 15 is assembled such that the position of the piston 20 in the most compressed state is the top dead center 29 of the piston 20. As a result, the piston 2〇 is mechanically restrained by the compression-chamber-side coil spring 15 and the piston amplitude of the free piston stroke can be regulated, so that the piston 2 こ と が does not collide with the cylinder end face 11; The piston tip can be prevented from colliding with the cylinder end face against disturbance force such as when the amplitude of the piston suddenly changes.
ま 、 圧縮室側コイルばね 1 5や反圧縮室側コイルばね 30の断面形状を卵型 又は楕円型ばねとすることによって、 ばね わみ時に線材で発生する最大 ¾力を 丸線断面に比べ、下げることができるので、コイルばね高さを抑えることができ、 ばねのコンパクト化になり、 リニア圧縮機の小型化が実現できる。  In addition, by making the cross-sectional shape of the compression-chamber-side coil springs 15 and the anti-compression-chamber-side coil springs 30 into an oval or elliptical spring, the maximum force generated by the wire when the spring bends can be reduced compared to the round wire cross section. Because it can be lowered, the height of the coil spring can be reduced, the spring can be made compact, and the linear compressor can be downsized.
図 2は、 圧縮室側コイルばねを非線形コイルばねとした揚合の要部拡大図であ る。 なお、 他の構成は図 1と同じであるため説明を省略する。  FIG. 2 is an enlarged view of a main part of a lifting operation in which the compression-chamber-side coil spring is a non-linear coil spring. The other configuration is the same as that of FIG. 1, and the description is omitted.
本実施例においては、 この非線形コイルばね 1 5を不等ピッチばねで構成して いる。 不等ピッチばねは、 ピッチ間が不均一であるため、 ばねのたわみが大きく なるにつれ、 等ピッチばねに比べて、 より素線間接着を生じ、 有効巻数が減少す る。 従って、 図 3に示すように、 たわみが大きな状態で、 非線形の荷重特性を持 つてばね荷重を増大させ、 ビス卜ン速度を吸収し、 シリンダ端面 1 1へのビス卜 ンの衝撃力を緩和でき、 衝撃音を低減し、 良好な耐久性を得られる。  In the present embodiment, the non-linear coil spring 15 is constituted by an unequal pitch spring. Since uneven pitch springs have non-uniform pitches, as the deflection of the springs increases, more inter-wire bonding occurs and the effective number of turns decreases as compared to equal pitch springs. Therefore, as shown in Fig. 3, when the deflection is large, the spring load is increased with a non-linear load characteristic, the piston speed is absorbed, and the impact force of the piston on the cylinder end face 11 is reduced. It can reduce impact noise and obtain good durability.
また、 図 4は、 圧縮室側コイルばねを非線形コイルばねとし 場合の他の実施 例を示す要部拡大図である。 なお、 本実施例においてち、 他の構成は図 1と同じ であるだめ説明を省略する。  FIG. 4 is an enlarged view of a main part showing another embodiment in which the compression chamber side coil spring is a non-linear coil spring. In this embodiment, the other configuration is the same as that of FIG.
本実施例においては、 この非線形コイルばね 1 5を円錐コイルばねで構成して いる。 本実施例は、 このように圧縮室側コイルばね 1 5を円錐コイルばねとした ことにより、 ばねたわみが大きくなると、 前述の不等ピッチコイルばねと同様な 作用が、 より顕著となり、 図 5に示すように、 たわみが大きな状態で、 ばね荷重 が大きく増加するため、 ビストン速度を上死点に近づくほどビストン速度を吸収 するブレーキとして有効に働き、シリンダ端面へのピズトンの衝撃力を緩和でき、 衝撃音を低減し、 信頼性を高めることができる。 In this embodiment, the non-linear coil spring 15 is constituted by a conical coil spring. In this embodiment, since the compression chamber-side coil spring 15 is a conical coil spring as described above, when the spring deflection becomes large, the same as the above-mentioned unequal pitch coil spring is obtained. The effect becomes more pronounced, and as shown in Fig. 5, when the deflection is large, the spring load increases greatly.As the piston speed approaches the top dead center, it works effectively as a brake that absorbs the piston speed, and the cylinder end surface The impact force of the piston can be reduced, the impact noise can be reduced, and the reliability can be improved.
ここで、 図 1に示す圧縮室側コイルばね 1 5を、 反圧縮室側コイルばね 30よ り弱いぱね定数とする。 特に、 圧縮室側コイルばねであるコイルばね 1 5の定数 k 1、 反圧縮室側コイルばねであるコイルばね 3〇のばね定数 k 2を、 ピストン の振幅 a、 ピストンが運転中に圧縮室より掛かるガス力によって反圧縮室側に押 されるオフセッ卜量 とし 場合に、 ほぽ、 k 1 X (a+ ) = k 2X (a— ) の関係式が成立するように構成する。  Here, the compression chamber side coil spring 15 shown in FIG. 1 is assumed to have a spring constant weaker than that of the anti-compression chamber side coil spring 30. In particular, the constant k 1 of the coil spring 15 which is the coil spring on the compression chamber side, and the spring constant k 2 of the coil spring 3 で which is the coil spring on the side of the non-compression chamber, the amplitude of the piston a, When the offset amount is pushed to the anti-compression chamber side by the applied gas force, the relational expression of approximately k1X (a +) = k2X (a-) is established.
このコイルばねの相関関係を示しだものを図 6に示す。 組付け時は両コイルば ね 1 5、 3〇を圧縮ばねとして用いるために、 コイルばねを圧縮するように予荷 重 FOを加える。 運転中はビス卜ン組付位置からビス卜ン振幅中心位置が圧縮室 のガス力 Fgによってピストンが反圧縮室側へ才フセット される。 各々のコィ ルばね 1 5, 3〇のたわみ量 x 1、 x 2は、 ばね定数の小さい圧縮室側コイルば ね 1 5の わみ量 x 1が大きくなる。 リニア圧縮機の駆動周波数から所定のコィ ルばね定数は k 1 + k 2の和から決定され、 必要なピストンストローク 2 aとォ フセヅト量 αは運転圧力条件とピストン 20のボア径によって設定できる。 これ らディメンジョンに基づき、 上記関係式か成立するように各ばね定数を選定する ことで、運転中のピストン振幅中心位置〇が、圧縮室側コイルばね 1 5及び反圧 縮室側コイルばね 3〇の最大たわみ量のほぼ中間となるので、 設計から決まるピ ストン最大ス卜ローク量に対し、 圧縮室側及び反圧縮側のコイルばね定数が同じ 場合よりち、 ばねの最大たわみ鼉を抑えることができる。 従って、 コイルばねの コンパク卜化が可能となり、 リニア圧縮機の小型化が可能になる。  Fig. 6 shows the correlation between the coil springs. At the time of assembly, a preload FO is added to compress the coil springs in order to use both coil springs 15 and 3 加 え る as compression springs. During operation, the piston is offset from the piston mounting position to the compression chamber side by the gas force Fg of the compression chamber from the piston amplitude center position. The amount of deflection x 1 and x 2 of each coil spring 15 and 3〇 increases the amount of deflection x 1 of the compression chamber side coil spring 15 with a small spring constant. The predetermined coil spring constant is determined from the sum of k 1 + k 2 from the driving frequency of the linear compressor, and the necessary piston stroke 2 a and offset amount α can be set by the operating pressure condition and the bore diameter of the piston 20. By selecting each spring constant based on these dimensions so as to satisfy the above relational expression, the piston amplitude center position 運 転 during operation can be adjusted to the compression chamber side coil spring 15 and the counter compression chamber side coil spring 3 ば ね. Is approximately halfway between the maximum deflection of the piston and the maximum deflection of the piston, which is determined by the design. it can. Therefore, the coil spring can be made compact, and the size of the linear compressor can be reduced.
以上説明したように、 ビス卜ンス卜ロークの大きい運転時や輸送時等の外部か らの衝撃力に対してもピストン 20は、 圧縮室側コイルばね 1 5によって最も圧 縮し 時に機構的に拘束を受けて、 ビス卜ン振幅を規制できるため、 ピストン先 端がシリンダ端面への衝突を防ぐことができ、信頼性の高い圧縮機が実現できる。 ま 、 圧縮室側コイルばね 1 5を不等ピッチばねや円錐コイルばねとすること により、 圧縮コイルばねに比べ、 ピストンが上死点付近に近づくとばね荷重を増 大させ、 ビス卜ン速度を吸収するブレーキとして働き、 シリンダ端面へのピス卜 ン衝撃力を緩和でき、 衝撃音を低減し、 良好な耐久性を得られる。 As described above, the piston 20 is mechanically compressed by the compression-chamber-side coil spring 15 when compressed most by the compression chamber-side coil spring 15 against external impact force such as during operation with a large stroke or during transportation. Since the piston amplitude can be regulated under the restraint, the piston end can be prevented from colliding with the cylinder end face, and a highly reliable compressor can be realized. Further, the compression chamber side coil springs 15 may be unequal pitch springs or conical coil springs. As a result, compared to a compression coil spring, when the piston approaches the top dead center, the spring load increases, it acts as a brake that absorbs the piston speed, and the piston impact force on the cylinder end face can be reduced, resulting in an impact sound. And good durability can be obtained.
ま 、 各コイルばね定数を、 ほぼ、 k 1 X (a+ c 二 k 2 X (a— ) の関係 式が成立するように圧縮室側コィ )レばね定数を反圧縮室側コィ )レばね定数よ Ό /」 \ さくすることにより、 余分なばね わみ畺も必要ないため、 コイルばねのコンパ クト化が可能となり、 リニア圧縮機の小型化が達成できる。  In addition, each coil spring constant is approximately changed to the compression chamber side coil so that the relational expression of k 1 X (a + c 2 k 2 X (a—) holds). By reducing the length, it is possible to reduce the size of the linear compressor by reducing the size of the coil spring because no extra spring deflection is required.
ま 、 コイルばねを卵型又は楕円型断面形状にすることにより、 丸線断面に比 ベ、 ばねだわみ時に線材で発生する最大 力を下げ、 コイルばね高さを小さくす ることができるので、 コイルばねのコンパク卜化が可能となり、 リニア圧縮機の 小型化が実現できる。  Also, by making the coil spring into an oval or elliptical cross section, the maximum force generated by the wire when the spring is deflected can be reduced compared to the round wire cross section, and the coil spring height can be reduced. In addition, the coil spring can be made compact, and the size of the linear compressor can be reduced.
なお、 上記実施例ではガスを用いた圧縮機構を有するリニァ圧縮機にて説明し たが、 ガス以外の液体の圧送機構であってもよい。  In the above embodiment, a linear compressor having a compression mechanism using gas has been described. However, a pressure feed mechanism for liquid other than gas may be used.
また、 上記実施例では、 使用する)令媒については特に説明していないが、 二酸 化炭素を主成分とする冷媒を用いることが好ましい。 高差圧冷媒で潤滑が厳しく なる C〇2)令媒の下では、 他方式圧縮機に比べて非常に効率がよく、 高い信頼性 が得られる。 産業上の利用可能性  Further, in the above-mentioned embodiment, although the refrigerant used is not particularly described, it is preferable to use a refrigerant mainly composed of carbon dioxide. Under high pressure differential refrigerant, lubrication becomes severe. C〇2) Under the refrigerant, it is much more efficient and higher reliability than other compressors. Industrial applicability
発明によれば、 圧縮室側コイルばねが最も圧縮されだときにビストン端面とシ リンダ端面との間にクリアランスを確保することで、 運転中の圧力変化ゆ輸送時 等の外乱力により、 ピストン挙動が急変しても、 ピストン振幅の増大時に圧縮室 側コイルばねにより、 ピストン振幅が規制されるので、 ピストン先端とシリンダ 端面との衝突を回避でき、 信頼性向上を図ることができる。  According to the invention, when the compression chamber-side coil spring is most compressed, a clearance is secured between the piston end face and the cylinder end face, so that a pressure change during operation and a disturbance force at the time of transportation, etc. Even when the piston suddenly changes, the piston amplitude is regulated by the compression chamber side coil spring when the piston amplitude increases, so that collision between the piston tip and the cylinder end face can be avoided, and reliability can be improved.
ま 発明によれば、 圧縮室側コイルばねを非線形コイルばねとすることで、 ば ねたわみが大きくなるにつれ、 ばね荷重が増大する。 従って、 上死点に近づくピ ス卜ン速度を吸収するので、 衝撃力緩和効果が期待できる。  According to the invention, by using a non-linear coil spring for the compression chamber side coil spring, the spring load increases as the deflection increases. Therefore, since the piston speed approaching the top dead center is absorbed, the effect of reducing the impact force can be expected.
ま 発明によれば、 非線形コイルばねを不等ピッチコイルばねとすることで、 わみが大きくなるにつれ、 等間隔ピッチコイルばねに比べ、 より素線間接着を 生じ、 有効巻数が減少してばね荷重を増大するので、 上死点に近づくピストン速 度を吸収して、 衝撃力を緩和し、 良好な耐久性を得られる。 According to the invention, the non-linear coil spring is formed as an unequal-pitch coil spring. As the deflection is increased, the inter-wire adhesion is more improved as compared with the equal-pitch coil spring. As a result, the effective number of turns decreases and the spring load increases, so the piston speed approaching top dead center is absorbed, the impact force is reduced, and good durability is obtained.
ま 発明によれば、 圧縮室側コイルばねを円錐コイルばねとすることで、 ばね たわみが大きくなると、 不等ピッチコイルばねの同様な効果がより顕著となり、 ばね荷重が大きく増加する め、 上死点へ近づくビストン速度を吸収するブレー キとして、 有効に働き、 ピストンの衝撃力を緩和でき、 ffj撃音を低減し、 信頼性 を高めることができる。  According to the invention, when the compression chamber-side coil spring is a conical coil spring, when the spring deflection increases, the same effect of the unequal-pitch coil spring becomes more remarkable, and the spring load increases greatly. It works effectively as a brake that absorbs the velocity of the piston approaching the point, can reduce the impact force of the piston, reduce ffj sound, and increase reliability.
また発明によれば、 圧縮室側コイルばね定数を小さく、 反圧縮室側コイルばね 定数を大きくすることで、 圧縮室側及び反圧縮側のコイルバネ定数を同じにし 場合よりも、 圧縮機設計から決められた最大ピストン振幅に対し、 ばねの最大 わみ量を抑えることができる。従って、コイルばねのコンパクト化が可能となり、 リニア圧縮機の小型化が可能になる。  Further, according to the invention, by setting the coil spring constant on the compression chamber side small and increasing the coil spring constant on the non-compression chamber side, it is determined from the compressor design as compared with the case where the coil spring constants on the compression chamber side and the non-compression side are the same. The maximum amount of deflection of the spring can be suppressed for the maximum piston amplitude obtained. Therefore, the coil spring can be reduced in size, and the linear compressor can be reduced in size.
また発明によれば、 ほぼ、 k X (a+ α)' = k 2 X (a— )の関係式が成立 するようにコイルばね定数を決定することによって、 運転中にオフセッ卜された ピス卜ン振幅中心位置がコイルばねの最大たわみ量のほぼ中間になるように正確 に調整できるので、 さらに、 ばねの最大 わみ量を抑えることができる め、 コ ィルばねのコンパクト化が^!能となり、 リニア圧縮機の小型化が実現できる。 ま 発明によれば、 コイルばねを卵型又は楕円型ばねの断面形状にすることに より、 丸線断面に比べ、 ばねたわみ時に線材で発生する最大 力を下げ、 コイル ばね高さを小さくすることができるので、 コイルばねのコンパク卜化が可能とな り、 リニア圧縮機の小型化が実現できる。  According to the invention, the coil spring constant is determined so that the relational expression of kX (a + α) '= k2X (a-) is substantially satisfied. Since the center of amplitude can be accurately adjusted so that it is almost halfway between the maximum deflection of the coil spring, the maximum deflection of the spring can be further reduced, making the coil spring more compact. The size of the linear compressor can be reduced. According to the invention, the coil spring has an oval or elliptical cross-sectional shape, so that the maximum force generated in the wire at the time of spring deflection is reduced and the coil spring height is reduced as compared with a round wire cross section. Therefore, the coil spring can be made compact, and the size of the linear compressor can be reduced.
また発明によれば、 二酸化炭素を主成分とする冷媒を用いたちのであり、 高差 圧冷媒で潤滑が厳しくなる C〇 2;令媒の下では、 他方式圧縮機に比べて非常に効 率がよく、 高い信頼性が得られる。  According to the invention, refrigerants containing carbon dioxide as a main component are used, and lubrication becomes severe with high differential pressure refrigerants. And high reliability can be obtained.

Claims

請求の範囲  The scope of the claims
1 ガスを圧縮する圧縮機構とこの圧縮機構を動作させるリニァモータとを 密閉容器内に備え、 前記圧縮機構はシリンダとピストンとを有し、 前記シリンダ 内にガス圧縮を行う圧縮室を有し、 前記リニアモータは前記シリンダに連結され る固定部と前記ビス卜ンに連結される可動部とを有し、 一端を前記ビストン又は 前記可動部に押 ¾し他端を圧縮室側の前記シリンダ又は前記固定部に押接する圧 縮室側コィ )しばねと一端を前記ビス卜ン又は前記可動部に押接し他端を反圧縮室 側の前記シリンダ又は前記固定部に押接する反圧縮室側コイルばねとにより、 前 記ビストンを軸線方向に可動自在に支持したリニア圧縮機において、 前記圧縮室 側コイルばねが最も圧縮され ときに前記ビストン端面と前記シリンダ端面との 間に隙間を確保したことを特徴とするリニア圧縮機。  1 A compression mechanism for compressing gas and a linear motor for operating the compression mechanism are provided in a closed container, the compression mechanism has a cylinder and a piston, and has a compression chamber for performing gas compression in the cylinder. The linear motor has a fixed portion connected to the cylinder and a movable portion connected to the piston, and has one end pressed to the biston or the movable portion and the other end to the cylinder or the cylinder on the compression chamber side. A compression chamber-side coil spring that presses against a fixed portion) A spring and one end presses against the piston or the movable portion, and the other end presses against the cylinder or the fixed portion on the anti-compression chamber side. Thus, in the linear compressor in which the piston is movably supported in the axial direction, a gap is secured between the piston end face and the cylinder end face when the compression chamber-side coil spring is compressed most. Linear compressor, characterized in that the.
2 前記圧縮室側コイルばねを非線形コイルばねとしたことを特徴とするク レーム 1に記載のリニア圧縮機。  2. The linear compressor according to claim 1, wherein the compression chamber side coil spring is a non-linear coil spring.
3 前記非線形コイルぱねを不等ピッチコイルばねとし ことを特徴とする クレーム 2に記載のリニァ圧縮機。  3. The linear compressor according to claim 2, wherein the non-linear coil spring is an unequal pitch coil spring.
4 前記非線形コイルばねを円錐コイルばねとしたことを特徴とするクレー ム 2に記載のリニア圧縮機。  4. The linear compressor according to claim 2, wherein the non-linear coil spring is a conical coil spring.
5 ガスを圧縮する圧縮機構とこの圧縮機構を動作させるリニアモータとを 密閉容器内に備え、 前記圧縮機構はシリンダとピストンとを有し、 前記シリンダ 内にガス圧縮を行う圧縮室を有し、 前記リニアモータは前記シリンダに連結され る固定部と前記ビストンに連結される可動部とを有し、 一端を前記ビス卜ン又は 前記可動部に押接し他端を圧縮室側の前記シリンダ又は前記固定部に押接する圧 縮室側コイルばねと一端を前記ピストン又は前記可動部に押接し他端を反圧縮室 側の前記シリンダ又は前記固定部に押接する反圧縮室側コイルばねとにより、 前 記ピストンを軸線方向に可動自在に支持したリニア圧縮機において、 前記圧縮室 側コイルばね定数を、 前記反圧縮室側コイルばね定数より小さくしたことを特徴 とするリニア圧縮機。  5 A compression mechanism for compressing gas and a linear motor for operating this compression mechanism are provided in a closed container, the compression mechanism has a cylinder and a piston, and has a compression chamber for performing gas compression in the cylinder. The linear motor has a fixed portion connected to the cylinder and a movable portion connected to the piston. One end is pressed against the piston or the movable portion, and the other end is connected to the cylinder or the cylinder on the compression chamber side. A compression chamber-side coil spring that presses against the fixed portion and an anti-compression chamber-side coil spring that presses one end against the piston or the movable portion and presses the other end against the cylinder or the fixed portion on the anti-compression chamber side. In the linear compressor, wherein the piston is movably supported in the axial direction, the compression chamber side coil spring constant is smaller than the anti-compression chamber side coil spring constant. Machine.
6 前記ピストンの振幅を a、 前記ビス卜ンが運転中に前記圧縮室より掛か るガス力によって反圧縮室側にオフセッ卜される量を 、 前記圧縮室側コイルば ね定数を k 1、 前記反圧縮室側コイルばね定数を k 2とすると、 ほぼ k 1 X (a 十び) 二 k 2 X (a— ) の関係式が成立するように前記コイルばね定数 k 1、 k 2を決定したことを特徴とするクレーム 5に記載のリニア圧縮機。 6 The amplitude of the piston is a, and the amount of offset of the piston to the non-compression chamber side by the gas force applied from the compression chamber during operation is Assuming that the spring constant is k 1 and the anti-compression chamber side coil spring constant is k 2, the coil spring constant k is set such that a relational expression of approximately k 1 X (a ten) 2 k 2 X (a—) holds. The linear compressor according to claim 5, wherein 1, k2 is determined.
7 前記圧縮室側コィルぱね又は前記反圧縮室側コィルばねの断面形状を、 卵型又は楕円型形状とすることを特徴とするクレーム 1から 6に記載のリニァ圧 縮機。  7. The linear compressor according to claims 1 to 6, wherein the compression chamber side coil spring or the anti-compression chamber side coil spring has an oval or elliptical cross section.
8 二酸化炭素を主成分とする冷媒を用いて運転することを特徴とするクレ ー厶 1から了に記載のリニア圧縮機。  8. The linear compressor according to claim 1, wherein the linear compressor is operated using a refrigerant containing carbon dioxide as a main component.
PCT/JP2002/011927 2001-11-15 2002-11-15 Linear compressor WO2003042537A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2004-7007312A KR20040066120A (en) 2001-11-15 2002-11-15 Linear compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-350629 2001-11-15
JP2001350629A JP2003148339A (en) 2001-11-15 2001-11-15 Linear compressor

Publications (1)

Publication Number Publication Date
WO2003042537A1 true WO2003042537A1 (en) 2003-05-22

Family

ID=19163091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011927 WO2003042537A1 (en) 2001-11-15 2002-11-15 Linear compressor

Country Status (4)

Country Link
JP (1) JP2003148339A (en)
KR (1) KR20040066120A (en)
CN (1) CN1585857A (en)
WO (1) WO2003042537A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100673735B1 (en) * 2004-08-30 2007-01-24 엘지전자 주식회사 Compression method in a linear compressor
KR100615807B1 (en) * 2004-09-03 2006-08-25 엘지전자 주식회사 Refrigerator
JP5006539B2 (en) * 2005-11-18 2012-08-22 株式会社三栄水栓製作所 Hot water tap
BRPI0601645B1 (en) * 2006-04-18 2018-06-05 Whirlpool S.A. LINEAR COMPRESSOR
JP4698494B2 (en) * 2006-06-14 2011-06-08 三菱電機株式会社 Washing and drying machine
JP4838686B2 (en) * 2006-10-30 2011-12-14 オリンパス株式会社 Objective lens with correction ring
ITCO20120027A1 (en) * 2012-05-16 2013-11-17 Nuovo Pignone Srl ELECTROMAGNETIC ACTUATOR AND CONSERVATION DEVICE FOR INERTIA FOR AN ALTERNATIVE COMPRESSOR
ITCO20120028A1 (en) 2012-05-16 2013-11-17 Nuovo Pignone Srl ELECTROMAGNETIC ACTUATOR FOR AN ALTERNATIVE COMPRESSOR
JP5814870B2 (en) * 2012-07-06 2015-11-17 日立オートモティブシステムズ株式会社 Electromagnetic fuel injection valve
CN103557088B (en) * 2013-11-06 2016-05-18 龚炳新 Stirling thermal engine operating
CN108775285B (en) * 2015-05-06 2020-05-01 广东美芝制冷设备有限公司 Compressor and refrigerating system with same
JP6466300B2 (en) * 2015-09-25 2019-02-06 日立オートモティブシステムズ株式会社 Air suspension system
KR102311953B1 (en) 2017-07-31 2021-10-14 엘지전자 주식회사 Linear compressor
CN108730158A (en) * 2018-05-22 2018-11-02 青岛海尔智能技术研发有限公司 A kind of Linearkompressor
JP6626994B2 (en) * 2019-01-09 2019-12-25 日立オートモティブシステムズ株式会社 Air suspension system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121125A (en) * 1975-12-24 1978-10-17 Heinrich Dolz Plunger compressor
JPS55106376U (en) * 1979-01-23 1980-07-25
JPS55107080A (en) * 1979-02-09 1980-08-16 Toshiba Corp Electromagnetic reciprocal pump
JPS5613558U (en) * 1979-07-12 1981-02-05
JPS5820972A (en) * 1981-07-28 1983-02-07 Matsushita Refrig Co Electromagnetic vibrational compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121125A (en) * 1975-12-24 1978-10-17 Heinrich Dolz Plunger compressor
JPS55106376U (en) * 1979-01-23 1980-07-25
JPS55107080A (en) * 1979-02-09 1980-08-16 Toshiba Corp Electromagnetic reciprocal pump
JPS5613558U (en) * 1979-07-12 1981-02-05
JPS5820972A (en) * 1981-07-28 1983-02-07 Matsushita Refrig Co Electromagnetic vibrational compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Naotaka OKI et al., "Wakari Yasui Kikai Koza Reito oyobi Kuki Chowa", 1st edition, 15th print, Kabushiki Kaisha Meigensha, 10 April, 1994, pages 37 to 38 *

Also Published As

Publication number Publication date
JP2003148339A (en) 2003-05-21
CN1585857A (en) 2005-02-23
KR20040066120A (en) 2004-07-23

Similar Documents

Publication Publication Date Title
WO2003042537A1 (en) Linear compressor
JP4149147B2 (en) Linear compressor
JP3058413B2 (en) Muffler connection structure of linear compressor
JP3512371B2 (en) Linear compressor
US20070134108A1 (en) Reciprocating compressor
US7524172B2 (en) Vibration reduction structure of reciprocating compressor
JP2001227461A (en) Linear compressor
JP2003166471A (en) Piston supporting structure of reciprocating compressor
WO2008082116A2 (en) Reciprocating compressor
KR101149641B1 (en) Piston's collision preventing structure for linear compressor
JP2002371959A (en) Linear compressor
JP3821512B2 (en) Vibrating compressor
JPH11303732A (en) Linear compressor
KR100531898B1 (en) Compression coil spring and reciprocating compressor with this
KR100585796B1 (en) Reciprocating compressor
KR100301477B1 (en) Structure for supporting spring
JPH10131856A (en) Oscillating compressor
US7588424B2 (en) Linear compressor unit
JP2004011582A (en) Linear compressor
CN1626797A (en) Fixing device for stator in reciprocal movement type compressor
KR20050029419A (en) Apparatus for preventing vibration of reciprocating compressor
JP2005106034A (en) Linear compressor
JP2003097445A (en) Linear compressor for co2 refrigerant
KR100438615B1 (en) Device for supporting spring of reciprocating compressor
KR100516619B1 (en) Structure for reduction to side load spring of Reciprocating compressor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

WWE Wipo information: entry into national phase

Ref document number: 1020047007312

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20028226860

Country of ref document: CN