WO2003042301A1 - Resin composition, process for its production and use thereof - Google Patents

Resin composition, process for its production and use thereof Download PDF

Info

Publication number
WO2003042301A1
WO2003042301A1 PCT/JP2002/011379 JP0211379W WO03042301A1 WO 2003042301 A1 WO2003042301 A1 WO 2003042301A1 JP 0211379 W JP0211379 W JP 0211379W WO 03042301 A1 WO03042301 A1 WO 03042301A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
core material
weight
pva
polyvinyl alcohol
Prior art date
Application number
PCT/JP2002/011379
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuya Kotani
Original Assignee
Daicel Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries, Ltd. filed Critical Daicel Chemical Industries, Ltd.
Priority to BR0206430-8A priority Critical patent/BR0206430A/en
Publication of WO2003042301A1 publication Critical patent/WO2003042301A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the present invention relates to a resin composition comprising a specific resin. More specifically, a resin composition composed of polycaprolactone and polypinyl alcohol, used in the manufacture of various types of footwear, especially men's shoes, women's shoes, children's shoes, boots, sports shoes, casual shoes, sandals, slippers, etc.
  • the present invention relates to a resin composition suitable for a core material for footwear such as a leading core and a lunar core.
  • shoe cores have been used to give shape retention to the tip and heel of shoes, and woven or non-woven fabric impregnated with thermoplastic resin is used for the shoe tip and heel. It is used by being adhered to the inside.
  • the core material is reactivated with a solvent (in the present invention, activation means making it attachable) and adheres to a predetermined part of the shoe.
  • a solvent in the present invention, activation means making it attachable
  • Woven fabrics and nonwoven fabrics are impregnated with a thermoplastic resin emulsion such as emulsion, styrene-acrylic copolymer emulsion or the like, and dried and solidified to form a sheet.
  • the second type is a method of bonding a core material to a shoe with an adhesive, for example, a method of bonding a sheet having a composition used in the first type with a natural rubber latex type adhesive.
  • the third type is a method of bonding a core material to shoes by thermal reactivation.
  • an ethylene / vinyl acetate copolymer hot melt adhesive or poly A sheet composed of a thermoplastic resin composition mainly composed of prolactone and a woven fabric / nonwoven fabric is subjected to thermal reactivation.
  • a thermoplastic thermoplastic resin for shoes mainly composed of a polyforced prolactone having a weight average molecular weight of from 10,000 to 200,000.
  • a core material is described.
  • the first type of core material and its bonding method are low in cost and have good workability at the time of bonding.
  • an organic solvent is used at the time of bonding, there is a problem in the working environment in the shoemaking process. There is a danger of fire and fire, so it does not match the demands of the times.
  • the core material is bonded to the shoes using an adhesive, and the greatest difficulty is that the workability is poor because the number of work steps increases.
  • the third type of core material and bonding method has an advantage that the core material can be bonded to the shoe by thermal reactivation, so that an organic solvent is not required and workability is excellent.
  • the core material used in this type is manufactured by impregnating a woven fabric or the like with a thermoplastic resin such as styrene emulsion and drying and solidifying it. It requires a step of coating the agent, which has the disadvantage of increasing manufacturing costs. Furthermore, since the hot melt adhesive is applied to the woven or non-woven fabric, the surface that is not coated with the hot melt adhesive is used as the adhesive surface when the cut surface is skived (sharpened). It has the disadvantage of appearing.
  • the core material consisting of a thermoplastic resin composition mainly composed of polycaprolactone and a woven fabric / nonwoven fabric uses polyvinyl chloride resin as a filler or reinforcing agent in the thermoplastic resin composition. However, they have a dioxin problem that occurs when incinerating unnecessary shoes. Disclosure of the invention
  • An object of the present invention is to provide a core material for footwear (hereinafter simply referred to as a core material) that does not require an organic solvent at the time of bonding and can be bonded by heat reactivation, and can be manufactured in one step.
  • a novel resin composition is provided.
  • the entire bonding surface of the core material can be bonded by heat reactivation without applying a new bonding agent to that surface.
  • the present inventors can solve such a problem that a resin composition in which polyvinyl alcohol having a specific particle size is dispersed in the form of powder in a matrix of polyprolactone and a core material molded therefrom. This led to the completion of the present invention.
  • the first aspect of the present invention is that 25% to 95% by weight of polyproprolactone (A) and 5% to 75% by weight of polyvinyl alcohol (B) (the total of (A) and (B) is 100% by weight). %), Wherein the polyvinyl alcohol (B) is dispersed in a matrix of the polyprolactone (A) in the form of powder having a particle size of 2 mm or less.
  • a second aspect of the present invention provides the first resin composition of the present invention, in which the number average molecular weight of the polyfunctional prolactone (A) is from 10,000 to 150,000.
  • the third aspect of the present invention is a polyproprolactone (A) of 25 to 95% by weight and a granular polyvinyl alcohol (B) having a particle size of 2 mm or less 5 to 75% by weight ((A) and (B) ) Is kneaded at a temperature equal to or higher than the melting point of the polycaprolactone (A) and lower than the melting point of the polyvinyl alcohol (B).
  • a method for producing the resin composition according to 1 or 2 is provided.
  • a fourth aspect of the present invention provides a method for producing the third resin composition of the present invention, wherein the kneading temperature is from 80 to 200.
  • a fifth aspect of the present invention provides a core material for footwear obtained by molding the resin composition according to the first or second aspect of the present invention.
  • PCL polyfunctional prolactone used in the present invention
  • PVA polyvinyl alcohol
  • PCL (A) 25-95% by weight, preferably 30-70% by weight, based on a total of 100% by weight of polyvinyl alcohol (hereinafter abbreviated as PVA) (B) in the resin composition of Is done.
  • PVA polyvinyl alcohol
  • the number average molecular weight of the PCL (A) used in the resin composition of the present invention is preferably 10,000 to 150,000 from the viewpoint of bending resistance when the resin composition of the present invention is used as a core material. 000, and more preferably in the range of 30,000 to 130,000. If the number average molecular weight of PCL (A) is more than 150,000, handling operability and the like when manufacturing a molded product for a core material deteriorate.
  • PVA (B) constituting the resin composition of the present invention includes PVA which is generally used for synthetic fibers, powdery and granular PVA which is used for films (all are completely saponified polyvinyl acetate), partially saponified products, It may be a specially modified partially saponified product or a mixture thereof.
  • PVA (B) is dispersed in the matrix of PCL (A) in the form of powder having a particle size of 2 mm or less, and a total of 100% by weight of the PCL (A) in the resin composition.
  • % Must be contained in the range of 5 to 75% by weight.
  • PVA particles Compared with other polymer particles, such as polyvinyl chloride and polypropylene particles, PVA particles have a moderate affinity for the PCL of the matrix due to the molecular structure of PVA itself. Particles existing on the surface of the core material obtained from the resin composition hardly fall off. Furthermore, it is easily dispersed in the matrix of PCL by kneading, and once dispersed, no re-aggregation of particles is observed.
  • the granular form refers to a state as it is produced in the form of a granular form, or a granular form or a granular form produced by subsequent operations such as pulverization, crushing, granulation, drying, sieving, and the like.
  • the shape does not matter.
  • the particle may have a shape in which at least a part of the surface of the particle is melted and rounded, and a spherical shape or an approximate shape thereof.
  • "dispersed in the matrix of PCL” means that when the obtained resin composition is formed into a thin sheet and visually observed with transmitted light, substantially no uneven distribution of particles is observed. means.
  • the effect of the present invention is not exhibited. That is, when the PCL (A) and the powdered PVA (B) are mixed by heating at a temperature higher than the melting point of the PVA, the PVA (B) is melted and melt-blended with the PCL (A) to form a uniform melt. Form. In this case, even when cooled, no particulate PVA is visually observed in the composition.
  • the core material obtained by molding such a resin composition has reduced adhesive strength when bonded to a predetermined part of the shoe by thermal reactivation.
  • the particle size of the dispersed PVA (B) particles is 2 mm or less, preferably 1.5 to 0.1 mm.
  • the obtained core material is used because the PVA particles protrude from the bonding surface of the core material, or the PVA particles easily come off from the core material surface.
  • the heat reactivation reduces the adhesive strength when bonding to a predetermined part of the shoe.
  • Various additives may be added to the resin composition of the present invention as needed. these The additives are not particularly limited.
  • a resin and a derivative thereof are used.
  • Small amounts of compounds, hydrocarbon compounds, paraffin wax, and low molecular weight polyethylene wax may be added.
  • an antioxidant an antioxidant may be added during hot-melt mixing of the resin composition, at the time of hot-melt processing of a core material obtained by molding, or at the time of reactivating the core material by heat. A small amount may be added to improve thermal stability.
  • olefin resin for the purpose of improving the core material's cold resistance, flexibility, impact resistance, surface altitude, etc.
  • styrene resin for the purpose of improving the core material's cold resistance, flexibility, impact resistance, surface altitude, etc.
  • olefin resin for the purpose of improving the core material's cold resistance, flexibility, impact resistance, surface altitude, etc.
  • styrene resin for the purpose of improving the core material's cold resistance, flexibility, impact resistance, surface altitude, etc.
  • urethane resin and ester copolymer for the purpose of improving the core material's cold resistance, flexibility, impact resistance, surface altitude, etc.
  • Filaments such as glass beads, calcium carbonate, barium sulfate, titanium oxide, clay, and curk may be arbitrarily added as long as the effects of the present invention are not impaired.
  • the resin composition of the present invention it is not necessary to use a particularly limited method and apparatus.
  • the compound can be made by a single-screw or twin-screw extruder. At this time, the compound is heated and kneaded at a temperature lower than the melting point (softening point) of PVA (B) and higher than the melting point of PCL so as not to melt PVA (B). It is necessary to set the temperature, preferably in the range of 80 to 200.
  • the resin composition of the pre-dry-blended in advance also good c present invention the constituent raw materials of the resin composition of the present invention, the core material It is put into a molding sheet molding machine or injection molding machine, and a molded body as a core material can be obtained at a temperature lower than the melting point of PVA (B).
  • PVA PVA
  • Resin compositions having the compositions shown in Table 1 (parts by weight are shown except for the kneading temperature) were produced. After pre-driving each of the constituent materials at a predetermined ratio, these resin compositions were put into a Toyo Seiki Labo Plast Mill (mixer unit R-60) at a time, and the kneading temperature and kneading shown in Table 1 were performed. The composition was kneaded under a kneading condition of a rotation speed of 5 Or.pm and a kneading time of 3 minutes to obtain a composition. Except for Comparative Example 1, the kneading temperature was set to a temperature (at 100) lower than the melting point of the PVA used.
  • Example 1 to 10 Each composition was prepared (Examples 1 to 10 and Comparative Examples 1 to 4) in the flop-less molding machine heated to 1 10, the primary pressure 1 0 kg cm 2 for 3 minutes, the secondary pressure l OO kgZ cm 2 A sheet having a thickness of 1.2 mm was formed by applying pressure for 2 minutes. These sheets were evaluated to confirm the characteristics as a core material molded body, and the results are shown in Table 2.
  • the molded article of Comparative Example 2 was judged to have no bending resistance and toughness required as a molded article for a core material because the sheet was broken when it was bent because of its high brittleness when molded into a sheet. Each evaluation was not performed. Also, in the composition of Comparative Example 1, the kneading temperature at the time of manufacturing the composition was higher than the melting point of the PVA (at 217), so that the PVA was melted and dissolved in the PCL, and the particles of the PVA were melted. The shape was not maintained, but in the other Examples and Comparative Examples, the particle shape of PVA was maintained. Further, in the composition in which the particle shape of PVA was maintained, visual observation using transmitted light of the sheet showed that the particles were uniformly dispersed without uneven distribution or agglomeration. The methods for measuring physical properties are described below.
  • PCL number average molecular weight This is the molecular weight calculated from polystyrene by GPC measurement.
  • GPC uses Shode X GPC KF-6, KF-804, KF-8025, KF-801 manufactured by Showa Denko KK as a column, and RID-6A manufactured by Shimadzu Corporation as a detector.
  • the eluent was tetrahydrofuran, and the measurement was performed at a column temperature of 50 and a flow rate of 1.0 ml 1 Zmin.
  • Adhesion The sheets manufactured in Examples 1 to 10 and Comparative Examples 1 and 3 to 4 were prepared to have a size of 7 cm long ⁇ 2.5 cm wide ⁇ 1.2 mm thick.
  • Flex resistance The sheets of Examples 1 to 10 and Comparative Examples 1 and 3 to 4 were prepared to have a size of 14 cm in length ⁇ 3.0 to 111 in width and a thickness of 1.2 mm. These strip sheets were set in a bending resistance tester so that the longitudinal direction of the strip sheets were bent, and the strip sheets were repeatedly bent with a stroke of 4.7 cm for a width of 10.5 cm. The repetitive bending speed at this time was set to 300 minutes (one reciprocation: one) Z minutes. The evaluation was performed based on the number of times of bending when the strip sheet was broken.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4
  • PCL—A * 1 Polycaprolactone (manufactured by Daicel Chemical Industries, Ltd., PCLH5, number average molecule 52000, melting point 60)
  • PCL—B * 2 Polyprolactone (PCLH7, Daicel Chemical Co., Ltd., number average molecule 132000, melting point 60 * C)
  • PCL-C '3 Poly force caprolactone (Daicel Chemical Co., Ltd., PCLH1P, number average molecular 9600, with melting point 60)
  • PVA—A * 4 Polyvinyl alcohol powder (Kuraray Co., Ltd., PVA-117, melting point 217 ⁇ , particle size 2 mm or less)
  • Polyvinyl alcohol (Kuraray Co., Ltd., PVA-117s, melting point 2 ⁇ , particle size 0.4 mm or less)
  • PVA-C * 6 Powdered polyvinyl alcohol (Kuraray Co., Ltd., 'H-Hall' PVA-117, melting point: 217, which can be classified from those with a particle size of more than 2 mm.)
  • Polymer ' 7 JSR Corporation, styrene copolymer, JSRTR2000
  • OL copolymer A '8 Nippon Petrochemicals Co., Orefin copolymer, Nisseki Rexpearl RB3240
  • OL copolymer B * 9 Olefin copolymer, Evaflex EV150, manufactured by DuPont-Mitsui Polychemicals, Inc.
  • Glass fiber filler 1 T-123, manufactured by Nippon Electric Insulators, Ltd.
  • attachment by heat reactivation is good and the physical property required as a core material, for example, bending resistance is good and since a halogen type compound is not used, generation
  • the present invention can provide a footwear core material having no problem, and a resin composition for providing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

A resin composition comprising 25 to 95 wt% of polycaprolactone (A) and 5 to 75 wt% of polyvinyl alcohol (B) (with the proviso that the sum total of (A) and (B) is 100 wt%), characterized in that the polyvinyl alcohol (B) is dispersed in the matrix of the polycaprolactone (A) in the form of particles having diameters of 2 mm or below; a process for the production of the resin composition by kneading a mixture of polycaprolactone (A) and polyvinyl alcohol (B) at a temperature which is the melting temperature of the polycaprolactone (A) or above but below the melting temperature of the polyvinyl alcohol (B); and cores for footwear, produced by molding the resin composition. The invention enables one-step production of the above resin composition and can give cores for footwear which can be bonded by heat reactivation without any organic solvent.

Description

明 細 書 樹脂組成物及びその製造方法並びにその用途 技術分野  Description Resin composition, method for producing the same and use thereof
本発明は、 特定樹脂からなる樹脂組成物に関する。 より詳しくは、 ポリ力プロ ラクトンとポリピニルアルコールからなる樹脂組成物で、 とりわけ紳士靴、 婦人 靴、 子供靴、 ブーツ、 スポーツ靴、 カジュアル靴、 サンダル、 スリッパ等、 各種 の履物の製造に使用する先芯、 月形芯等の履物用芯材に適する樹脂組成物に関す るものである。 背景技術  The present invention relates to a resin composition comprising a specific resin. More specifically, a resin composition composed of polycaprolactone and polypinyl alcohol, used in the manufacture of various types of footwear, especially men's shoes, women's shoes, children's shoes, boots, sports shoes, casual shoes, sandals, slippers, etc. The present invention relates to a resin composition suitable for a core material for footwear such as a leading core and a lunar core. Background art
従来、 靴用の芯材は、 靴の先およびかかと部分等に保形性を与えるために使用 されるもので、 熱可塑性樹脂を含浸させた織布ゃ不織布を、 靴先およびかかと部 分の内側に接着させて用いられている。  Conventionally, shoe cores have been used to give shape retention to the tip and heel of shoes, and woven or non-woven fabric impregnated with thermoplastic resin is used for the shoe tip and heel. It is used by being adhered to the inside.
従来の靴の芯材は、 靴に対する接着方法から、 いくつかのタイプに分類するこ とができる。 第一のタイプは、 芯材を溶剤で再活性化 (本発明で、 活性化とは接 着可能にすることをいう。 ) して靴の所定部位に接着するものであり、 例えばポ リスチレンェマルジヨン、 スチレン ·ァクリル共重合エマルジョンなどの熱可塑 性樹脂エマルジョンを織布ゃ不織布へ含浸させ、 乾燥固化してシート状にしたも のが挙げられる。 第二のタイプは、 接着剤によって芯材を靴に接着する方法であ り、 例えば第一のタイプで用いられる組成のシートを、 天然ゴムラテックス形の 接着剤で接着させるものが挙げられる。 第三のタイプは、 熱再活性化により芯材 を靴に接着する方法であり、 例えば、 上記の組成及び方法で製造したシート上に、 エチレン ·酢酸ビニル共重合体系ホットメルト接着剤やポリ力プロラクトンを主 体とする熱可塑性樹脂組成物と織布ゃ不織布からなるシートを熱再活性化によつ て靴に接着させるものが挙げられる。 例えば、 特開昭 5 6 - 1 4 8 3 0 1号公報 には、 重量平均分子量が 1 0, 0 0 0から 2 0 0, 0 0 0のポリ力プロラクトン を主体とする靴用熱可塑性芯材が記載されている。 Conventional shoe cores can be classified into several types depending on the method of bonding to the shoe. In the first type, the core material is reactivated with a solvent (in the present invention, activation means making it attachable) and adheres to a predetermined part of the shoe. Woven fabrics and nonwoven fabrics are impregnated with a thermoplastic resin emulsion such as emulsion, styrene-acrylic copolymer emulsion or the like, and dried and solidified to form a sheet. The second type is a method of bonding a core material to a shoe with an adhesive, for example, a method of bonding a sheet having a composition used in the first type with a natural rubber latex type adhesive. The third type is a method of bonding a core material to shoes by thermal reactivation. For example, an ethylene / vinyl acetate copolymer hot melt adhesive or poly A sheet composed of a thermoplastic resin composition mainly composed of prolactone and a woven fabric / nonwoven fabric is subjected to thermal reactivation. To be bonded to shoes. For example, Japanese Unexamined Patent Publication (Kokai) No. 56-148301 discloses a thermoplastic thermoplastic resin for shoes mainly composed of a polyforced prolactone having a weight average molecular weight of from 10,000 to 200,000. A core material is described.
前記の各タイプの靴用芯材には、 いずれも解決すべき課題が残されている。 まず、 第一のタイプの芯材及びその接着方法は、 低コス卜であって接着時の作業性が良好 であるが、 接着時に有機溶剤を使用することから、 製靴工程での作業環境の問題や 火災などの危険があり、 時代の要請にマッチしない。 第二のタイプの接着方法は、 接着剤を使用して靴に芯材を接着するため、 作業工数が増えることから作業性が悪 いということが最大の難点である。 第三のタイプの芯材及び接着方法は、 熱再活性 化により芯材を靴に接着できることから、 有機溶剤を使用しなくてよく作業性に優 れるなどの利点を有している。 しかし、 このタイプに用いられる芯材の製造は、 織 布等に対してスチレンェマルジヨンなどの熱可塑性樹脂を含浸して乾燥固化させる 工程と、 エチレン ·鲊酸ビニル樹脂を主成分にする接着剤をコーティングする工程 が必要であり、 製造コストが高くなつてしまうという欠点がある。 更には、 織布や 不織布上に、 ホットメルト性接着剤を塗布した構造であるため、 切断面をスキ加工 (削り作業)した時に、 ホットメルト性接着剤を塗布されていない面が接着面として 現われてしまうという欠点がある。 また、 ポリ力プロラクトンを主体とする熱可塑 性樹脂組成物と織布ゃ不織布からなる芯材は、 熱可塑性樹脂組成物中の増量剤又は 補強剤としてポリ塩化ビニル樹脂が使用されているため、 不要な靴を焼却する際に 発生するダイォキシン問題を抱えることとなる。 発明の開示  Each of the above types of shoe core material has a problem to be solved. First, the first type of core material and its bonding method are low in cost and have good workability at the time of bonding. However, since an organic solvent is used at the time of bonding, there is a problem in the working environment in the shoemaking process. There is a danger of fire and fire, so it does not match the demands of the times. In the second type of bonding method, the core material is bonded to the shoes using an adhesive, and the greatest difficulty is that the workability is poor because the number of work steps increases. The third type of core material and bonding method has an advantage that the core material can be bonded to the shoe by thermal reactivation, so that an organic solvent is not required and workability is excellent. However, the core material used in this type is manufactured by impregnating a woven fabric or the like with a thermoplastic resin such as styrene emulsion and drying and solidifying it. It requires a step of coating the agent, which has the disadvantage of increasing manufacturing costs. Furthermore, since the hot melt adhesive is applied to the woven or non-woven fabric, the surface that is not coated with the hot melt adhesive is used as the adhesive surface when the cut surface is skived (sharpened). It has the disadvantage of appearing. In addition, the core material consisting of a thermoplastic resin composition mainly composed of polycaprolactone and a woven fabric / nonwoven fabric uses polyvinyl chloride resin as a filler or reinforcing agent in the thermoplastic resin composition. However, they have a dioxin problem that occurs when incinerating unnecessary shoes. Disclosure of the invention
本発明の目的は、 接着時に有機溶剤が不要であって、 熱再活性化により接着が 可能となる履物用芯材 (以下、 単に芯材という) を与え、 かつ、 一つの工程で製 造可能な樹脂組成物を提供する。 また、 スキ加工がなされても新たにその面に接 着剤を塗布することなく、 芯材の接着面全体が熱再活性化による接着が可能な履 物用芯材となり、 更に使用が済んだ段階で焼却する際、 成形体構成組成によるダ ィォキシンの発生が無い履物芯材を与える樹脂組成物を提供することである。 本発明者らは、 ポリ力プロラクトンのマトリックス中に、 特定粒径を有するポ リビニルアルコールが粉粒状で分散した樹脂組成物、 およびそれから成形されて なる芯材がかかる問題点を解決し得ることを見い出し、 本発明を完成するに至つ た。 An object of the present invention is to provide a core material for footwear (hereinafter simply referred to as a core material) that does not require an organic solvent at the time of bonding and can be bonded by heat reactivation, and can be manufactured in one step. A novel resin composition is provided. In addition, even if a skiving process is performed, the entire bonding surface of the core material can be bonded by heat reactivation without applying a new bonding agent to that surface. It is an object of the present invention to provide a resin composition which becomes a core material for footwear, and which gives a footwear core material free from generation of dioxin due to the composition of a molded product when incinerated at the stage of use. The present inventors can solve such a problem that a resin composition in which polyvinyl alcohol having a specific particle size is dispersed in the form of powder in a matrix of polyprolactone and a core material molded therefrom. This led to the completion of the present invention.
すなわち本発明の第 1は、 ポリ力プロラクトン (A) 2 5〜9 5重量%とポリ ビニルアルコール (B ) 5〜7 5重量% ( (A) と (B ) の合計は 1 0 0重量 % ) からなり、 該ポリビニルアルコール (B ) がポリ力プロラクトン (A) のマ トリックス中に粒径 2 mm以下の粉粒状で分散していることを特徴とする樹脂組 成物を提供する。  That is, the first aspect of the present invention is that 25% to 95% by weight of polyproprolactone (A) and 5% to 75% by weight of polyvinyl alcohol (B) (the total of (A) and (B) is 100% by weight). %), Wherein the polyvinyl alcohol (B) is dispersed in a matrix of the polyprolactone (A) in the form of powder having a particle size of 2 mm or less.
本発明の第 2は、 ポリ力プロラクトン (A) の数平均分子量が 1 0 , 0 0 0〜 1 5 0 , 0 0 0である本発明の第 1の樹脂組成物を提供する。  A second aspect of the present invention provides the first resin composition of the present invention, in which the number average molecular weight of the polyfunctional prolactone (A) is from 10,000 to 150,000.
本発明の第 3は、 ポリ力プロラクトン (A) 2 5〜9 5重量%と粒径 2 mm以 下の粉粒状のポリビニルアルコール (B ) 5〜7 5重量% ( (A) と (B ) の合 計は 1 0 0重量%) の混合物を、 該ポリカプロラクトン (A) の融点以上、 該ポ リビニルアルコール (B ) の融点未満の温度で混練することを特徴とする本発明 の第 1又は 2の樹脂組成物の製造方法を提供する。  The third aspect of the present invention is a polyproprolactone (A) of 25 to 95% by weight and a granular polyvinyl alcohol (B) having a particle size of 2 mm or less 5 to 75% by weight ((A) and (B) ) Is kneaded at a temperature equal to or higher than the melting point of the polycaprolactone (A) and lower than the melting point of the polyvinyl alcohol (B). A method for producing the resin composition according to 1 or 2 is provided.
本発明の第 4は、 混練温度が 8 0〜2 0 0でである本発明の第 3の樹脂組成物 の製造方法を提供する。  A fourth aspect of the present invention provides a method for producing the third resin composition of the present invention, wherein the kneading temperature is from 80 to 200.
本発明の第 5は、 本発明の第 1又は 2に記載の樹脂組成物を成形してなる履物 用芯材を提供する。 発明を実施するための最良の形態  A fifth aspect of the present invention provides a core material for footwear obtained by molding the resin composition according to the first or second aspect of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の実施の形態を説明する。  Hereinafter, embodiments of the present invention will be described.
本発明で用いるポリ力プロラクトン (以下、 P C Lと略す) (A) は、 本発明 の樹脂組成物において、 後記ポリビニルアルコール (以下、 PVAと略す) (B) との合計 100重量%になる基準のもと、 25〜95重量%、 好ましくは、 30〜 70重量%の範囲で含有される。 PCL (A) の割合が 25重量%未満の 場合に芯材用の成形体として用いると、 熱再活性化による接着性が十分得られな い。 また、 PCL (A) の割合が 95重量%より大きいときは、 芯材としての保 形性が満足されず、 更に原料コス卜の面からも好ましくない。 The polyfunctional prolactone used in the present invention (hereinafter abbreviated as PCL) (A) 25-95% by weight, preferably 30-70% by weight, based on a total of 100% by weight of polyvinyl alcohol (hereinafter abbreviated as PVA) (B) in the resin composition of Is done. If the proportion of PCL (A) is less than 25% by weight, if it is used as a molded body for a core material, sufficient adhesiveness due to thermal reactivation cannot be obtained. On the other hand, when the proportion of PCL (A) is more than 95% by weight, the shape retention as a core material is not satisfied, and further, it is not preferable from the viewpoint of raw material cost.
本発明の樹脂組成物に用いられる PCL (A) の数平均分子量は、 本発明の樹 脂組成物を芯材とした際の耐屈曲性等の点から、 好ましくは 10, 000〜15 0, 000、 更に好ましくは 30, 000〜130, 000の範囲である。 なお、 PCL (A) の数平均分子量が 150, 000より大きい場合、 芯材用の成形体 を製造する際の取扱作業性等が悪くなる。 本発明の樹脂組成物を構成する PVA (B) は、 通常合成繊維用に用いられる PVA、 フィルム用に用いられる粉粒状の PVA (いずれも、 ポリ酢酸ビニル完 全ケン化物) 、 部分ケン化物、 特殊変性部分ケン化物、 又はそれらの混合物であ つてもよい。 本発明の樹脂組成物において、 PVA (B) は、 PCL (A) のマ トリックス中に粒径 2 mm以下の粉粒状で分散し、 樹脂組成物中に前記 P C L (A) との合計 100重量%のもと、 5〜75重量%の範囲で含有されなければ ならない。  The number average molecular weight of the PCL (A) used in the resin composition of the present invention is preferably 10,000 to 150,000 from the viewpoint of bending resistance when the resin composition of the present invention is used as a core material. 000, and more preferably in the range of 30,000 to 130,000. If the number average molecular weight of PCL (A) is more than 150,000, handling operability and the like when manufacturing a molded product for a core material deteriorate. PVA (B) constituting the resin composition of the present invention includes PVA which is generally used for synthetic fibers, powdery and granular PVA which is used for films (all are completely saponified polyvinyl acetate), partially saponified products, It may be a specially modified partially saponified product or a mixture thereof. In the resin composition of the present invention, PVA (B) is dispersed in the matrix of PCL (A) in the form of powder having a particle size of 2 mm or less, and a total of 100% by weight of the PCL (A) in the resin composition. % Must be contained in the range of 5 to 75% by weight.
PVAの粒子は、 他の高分子の粒子、 例えばポリ塩化ビニルやポリプロピレン 粒子などと比較して、 PVA自身の分子構造からマトリックスの PCLと適度の 親和性を有するため安定して分散し、 またこの樹脂組成物から得られる芯材の表 面に存在する粒子の脱落が殆ど無い。 更に混練により容易に PC Lのマトリック ス中に分散し、 一旦分散した後は、 粒子の再凝集は認められない。  Compared with other polymer particles, such as polyvinyl chloride and polypropylene particles, PVA particles have a moderate affinity for the PCL of the matrix due to the molecular structure of PVA itself. Particles existing on the surface of the core material obtained from the resin composition hardly fall off. Furthermore, it is easily dispersed in the matrix of PCL by kneading, and once dispersed, no re-aggregation of particles is observed.
ここで、 粉粒状とは、 粉粒状で製造されたそのままの状態、 またはその後の粉 砕、 破砕、 造粒、 乾燥、 篩い分け等の操作により生じた粉状又は粒子状であり、 形状は問わない。 もちろん粒子表面の少なくとも一部が溶融して丸味を帯びたも の、 球状またはその近似形態であってもよい。 又、 「PCLのマトリックス中に 分散している」 とは、 得られた樹脂組成物を薄くシートに成形し、 透過光で目視 観察した際に、 実質的に粒子の偏在が認められないことを意味する。 Here, the granular form refers to a state as it is produced in the form of a granular form, or a granular form or a granular form produced by subsequent operations such as pulverization, crushing, granulation, drying, sieving, and the like. The shape does not matter. Needless to say, the particle may have a shape in which at least a part of the surface of the particle is melted and rounded, and a spherical shape or an approximate shape thereof. Also, "dispersed in the matrix of PCL" means that when the obtained resin composition is formed into a thin sheet and visually observed with transmitted light, substantially no uneven distribution of particles is observed. means.
P VA (B) が粒径 2 mm以下でかつ粉粒状の形状が保持されない場合、 本発 明の効果を発現しない。 即ち PCL (A) と粉粒状の PVA (B) とを加熱混合 する際、 PVAの融点以上で混合すると、 PVA (B) が溶融し、 PCL (A) とメルトブレンドされ、 均一な溶融体を形成する。 この場合には、 冷却しても組 成物に粉粒状の PV Aが目視でも観測されない。 このような樹脂組成物を成形し て得られる芯材は、 熱再活性化により靴の所定部位に接着させる際に接着強度が 低下する。 また、 粉粒状の PVA (B) がその形状を保持しながらも PCL中に 偏在する場合は、 多くの場合、 芯材としての保形性や機械強度が満足されないし、 仮にそれらが満足されたとしてもそれらのバラツキが大きい。 更に熱再活性化に より靴の所定部位に接着させる際の接着強度が低下する。 樹脂組成物に含有され る PVA (B) の割合が 5重量%未満の場合、 芯材用成形体としての保形性や機 械強度が満足されない。 また、 PVA (B) の割合が 75重量%より大きいとき は、 樹脂組成物を成形して得られる材を熱再活性化により靴の所定部位に接着さ せる際の接着強度が満足されない。 分散している PVA (B) 粒子の粒径は 2 mm以下、 好ましくは 1. 5〜0. lmmである。 PVA (B) の粒径が 2 mmより大きいときは、 芯材の接着表面 に P V A粒子が突き出すようになるため、 あるいは P V Aの粒子が芯材表面から 外れ易くなるため、 得られた芯材を熱再活性化により靴の所定部位に接着させる 際の接着強度を低下させてしまう。 本発明の樹脂組成物には、 必要に応じて各種添加物を添加してもよい。 これら の添加物は特に限定されるものではないが、 例えば、 芯材としての成形体を熱再 活性化により靴の所定部位に接着させる際のオープンタイムを調節するために口 ジン及びその誘導体、 テルペン化合物、 炭化水素系化合物、 パラフィンワックス、 低分子量ポリエチレンワックスを少量添加しても構わない。 また、 抗酸化剤 (酸 化防止剤) を、 樹脂組成物の熱溶融混合時や成形して得られる芯材の熱溶融によ る加工時、 あるいは芯材を熱により再活性化させる際の熱安定性を向上させるた めに少量添加しても構わない。 その他として、 芯材の耐寒性、 柔軟性、 耐衝撃性、 表面高度などの改良を目的にォレフィン系樹脂、 スチレン系樹脂、 ウレ夕ン系樹 脂及びエステル系の共重合体や、 ガラス繊維、 ガラスビーズ、 炭酸カルシウム、 硫酸バリウム、 酸化チタン、 クレー、 クルクなどのフイラ一を本発明の効果を阻 害しない範囲で任意に添加しても構わない。 本発明の樹脂組成物の製造には、 特に限定した方法及び装置を用いる必要はな レ^ 一般的には P C Lのペレット、 粉粒状の P VA、 更には任意に添加する添加 剤を加熱混練し、 コンパウンドとする。 例えば一軸あるいは二軸押出機によって コンパウンドとすることができるが、 その際、 P V A ( B ) を溶融させないよう に、 用いる P VA ( B ) の融点 (軟化点) 未満、 P C Lの融点以上に加熱混練温 度を設定する必要があり、 好ましくは 8 0〜 2 0 0での範囲である。 加熱混練に 先立ち、 本発明の樹脂組成物の構成原料を予めドライブレンドしておいてもよい c 本発明の樹脂組成物を一旦ペレツト等として取り出し、 あるいは樹脂組成物の製 造に引き続き、 芯材成形用のシート成形機や射出成形機に投入し、 P V A ( B ) の融点よりも低い温度で芯材としての成形体を得ることができる。 実施例 When the PVA (B) has a particle size of 2 mm or less and the powdery shape is not maintained, the effect of the present invention is not exhibited. That is, when the PCL (A) and the powdered PVA (B) are mixed by heating at a temperature higher than the melting point of the PVA, the PVA (B) is melted and melt-blended with the PCL (A) to form a uniform melt. Form. In this case, even when cooled, no particulate PVA is visually observed in the composition. The core material obtained by molding such a resin composition has reduced adhesive strength when bonded to a predetermined part of the shoe by thermal reactivation. In addition, when powdered PVA (B) is unevenly distributed in PCL while maintaining its shape, in many cases, shape retention and mechanical strength as a core material are not satisfied. Even those variations are large. Furthermore, the heat reactivation reduces the bonding strength when bonding to a predetermined part of the shoe. When the proportion of PVA (B) contained in the resin composition is less than 5% by weight, the shape retention and mechanical strength of the core material molded product are not satisfied. On the other hand, when the proportion of PVA (B) is more than 75% by weight, the adhesive strength when the material obtained by molding the resin composition is adhered to a predetermined part of the shoe by thermal reactivation is not satisfied. The particle size of the dispersed PVA (B) particles is 2 mm or less, preferably 1.5 to 0.1 mm. When the particle size of PVA (B) is larger than 2 mm, the obtained core material is used because the PVA particles protrude from the bonding surface of the core material, or the PVA particles easily come off from the core material surface. The heat reactivation reduces the adhesive strength when bonding to a predetermined part of the shoe. Various additives may be added to the resin composition of the present invention as needed. these The additives are not particularly limited. For example, in order to adjust the open time when the molded body as a core material is bonded to a predetermined part of the shoe by thermal reactivation, a resin and a derivative thereof, a terpene are used. Small amounts of compounds, hydrocarbon compounds, paraffin wax, and low molecular weight polyethylene wax may be added. In addition, an antioxidant (an antioxidant) may be added during hot-melt mixing of the resin composition, at the time of hot-melt processing of a core material obtained by molding, or at the time of reactivating the core material by heat. A small amount may be added to improve thermal stability. In addition, for the purpose of improving the core material's cold resistance, flexibility, impact resistance, surface altitude, etc., olefin resin, styrene resin, urethane resin and ester copolymer, glass fiber, Filaments such as glass beads, calcium carbonate, barium sulfate, titanium oxide, clay, and curk may be arbitrarily added as long as the effects of the present invention are not impaired. In the production of the resin composition of the present invention, it is not necessary to use a particularly limited method and apparatus. In general, PCL pellets, powdery PVA, and optionally additives are mixed by heating and kneading. , Compound. For example, the compound can be made by a single-screw or twin-screw extruder. At this time, the compound is heated and kneaded at a temperature lower than the melting point (softening point) of PVA (B) and higher than the melting point of PCL so as not to melt PVA (B). It is necessary to set the temperature, preferably in the range of 80 to 200. Prior to heating and kneading, following the manufacture of once taking out a Peretsuto like, or a resin composition The resin composition of the pre-dry-blended in advance also good c present invention the constituent raw materials of the resin composition of the present invention, the core material It is put into a molding sheet molding machine or injection molding machine, and a molded body as a core material can be obtained at a temperature lower than the melting point of PVA (B). Example
以下、 実施例により本発明を更に具体的に説明するが、 本発明はこれらの実施 例によって限定されるものでない。 (実施例 1〜 10、 比較例 1〜 4 ) Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. (Examples 1 to 10, Comparative Examples 1 to 4)
表 1に示す組成 (混練温度以外は配合した重量部を示す。 ) の樹脂組成物を製 造した。 これらの樹脂組成物は、 予め各構成成分原料を所定の割合でドライブレ ンドした後、 東洋精機製ラボプラストミル (ミキサー部 R— 60) に一括投入し、 表 1に示した混練温度、 混練回転数 5 Or. p.m.、 混練時間 3分の混練条件にて混 練し、 組成物を得た。 混練温度は、 比較例 1を除き、 使用 PVAの融点より低い 温度 (100で) に設定した。  Resin compositions having the compositions shown in Table 1 (parts by weight are shown except for the kneading temperature) were produced. After pre-driving each of the constituent materials at a predetermined ratio, these resin compositions were put into a Toyo Seiki Labo Plast Mill (mixer unit R-60) at a time, and the kneading temperature and kneading shown in Table 1 were performed. The composition was kneaded under a kneading condition of a rotation speed of 5 Or.pm and a kneading time of 3 minutes to obtain a composition. Except for Comparative Example 1, the kneading temperature was set to a temperature (at 100) lower than the melting point of the PVA used.
調製した各組成物 (実施例 1〜10、 比較例 1〜4) を 1 10 に加熱したプ レス成形機において、 一次圧力 1 0 k g cm2で 3分間、 二次圧力 l O O kgZ cm2で 2分間、 加圧することにより厚さ 1. 2mmのシートを作成した。 これら のシートについて、 芯材用成形体としての特性を確認する為の評価を行い、 その 結果を表 2に示した。 Each composition was prepared (Examples 1 to 10 and Comparative Examples 1 to 4) in the flop-less molding machine heated to 1 10, the primary pressure 1 0 kg cm 2 for 3 minutes, the secondary pressure l OO kgZ cm 2 A sheet having a thickness of 1.2 mm was formed by applying pressure for 2 minutes. These sheets were evaluated to confirm the characteristics as a core material molded body, and the results are shown in Table 2.
尚、 比較例 2の成形体は、 シートに成形した際、 脆性が高いため屈曲を与える とシー卜が割れる為、 芯材用成形体として要求される耐屈曲性ゃ靱性がないと判 断し、 各評価は行わなかった。 また、 比較例 1の組成物においては、 組成物を製 造する際の混練温度が PVAの融点 (217で) より高い温度で混練をしたので、 P V Aが溶融し、 かつ P C Lに溶け込み P V Aの粒子形状が保持されなかったが、 それ以外の実施例、 比較例は、 PV Aの粒子形状は保持されていた。 また、 PV Aの粒子形状が保持されていた組成物においては、 上記シートの透過光による目 視観察の結果、 粒子の偏在や塊はなく、 均一に分散されていることが分かった。 以下、 物性などの測定方法を記す。  The molded article of Comparative Example 2 was judged to have no bending resistance and toughness required as a molded article for a core material because the sheet was broken when it was bent because of its high brittleness when molded into a sheet. Each evaluation was not performed. Also, in the composition of Comparative Example 1, the kneading temperature at the time of manufacturing the composition was higher than the melting point of the PVA (at 217), so that the PVA was melted and dissolved in the PCL, and the particles of the PVA were melted. The shape was not maintained, but in the other Examples and Comparative Examples, the particle shape of PVA was maintained. Further, in the composition in which the particle shape of PVA was maintained, visual observation using transmitted light of the sheet showed that the particles were uniformly dispersed without uneven distribution or agglomeration. The methods for measuring physical properties are described below.
PCLの数平均分子量: GPC測定により、 ポリスチレン換算から求めた分子 量である。 GP Cは、 カラムに昭和電工 (株) 製 S h o d e X GPC KF— 6、 KF— 804、 KF— 8025、 KF— 801を用い、 検出器は (株) 島津 製作所製 R I D— 6 Aを用い、 溶離液はテトラヒドロフランを使用し、 カラム温 度 50で、 流速 1. 0m 1 Zm i nにて測定を行った。 接着性:実施例 1〜10及び比較例 1、 3〜4で製造したシートを縦 7 cmX 横 2. 5 cmX厚み 1. 2mmのサイズに調製した。 これらの短冊シートを 15 0での乾燥器中に水平設置されたステンレス板上に 40秒間載せた後、 直ちに乾 燥器中より取り出して 30秒間自然放置させ、 その後直ちに、 予めプレス板内に セッ卜しておいたポリエステル製の織布にこれら短冊シートを載せ、 30でに温 調されたプレスで、 圧力 1 k g/cm2、 10秒間コールドプレスを行い、 これら の短冊シートとポリエステル製の織布を接着させた。 その際、 短冊シートの縦 2 cm分を T形剥離試験の為のつかみしろとしてアルミ箔を挟み織布と接着しない ように施した。 接着性は、 OR I ENTEC社製テンシロンで剥離スピード 10 Omm/m i nで T形剥離試験を行い、 平均剥離強度で評価した。 PCL number average molecular weight: This is the molecular weight calculated from polystyrene by GPC measurement. GPC uses Shode X GPC KF-6, KF-804, KF-8025, KF-801 manufactured by Showa Denko KK as a column, and RID-6A manufactured by Shimadzu Corporation as a detector. The eluent was tetrahydrofuran, and the measurement was performed at a column temperature of 50 and a flow rate of 1.0 ml 1 Zmin. Adhesion: The sheets manufactured in Examples 1 to 10 and Comparative Examples 1 and 3 to 4 were prepared to have a size of 7 cm long × 2.5 cm wide × 1.2 mm thick. After placing these strips on a stainless steel plate placed horizontally in a dryer at 150 for 40 seconds, immediately take them out of the dryer and let them stand naturally for 30 seconds. These strip sheets were placed on the polyester woven cloth that had been cut, and cold-pressed at a pressure of 1 kg / cm 2 for 10 seconds with a press adjusted at 30. The cloth was glued. At that time, a strip of 2 cm in length was used as a grip for the T-peel test so that aluminum foil was sandwiched between the strip and the woven fabric so as not to adhere. The adhesion was evaluated by a T-type peel test at a peel speed of 10 Omm / min using Tensilon manufactured by ORI ENTEC, and the average peel strength was evaluated.
耐屈曲性:実施例 1〜 10及び比較例 1、 3〜4のシートを縦 14 cmX横 3. 0じ111 厚み1. 2 mmのサイズに調製した。 これらの短冊シートの縦方向が屈 曲する様に耐屈曲試験機にセットし、 縦幅 10. 5 cmに対してストローク 4. 7 cmの繰り返し屈曲をこれらの短冊シートに与えた。 このときの繰り返し屈曲 スピードは、 300回 (1往復: 1回) Z分に設定した。 評価は、 短冊シートが 折れたときの屈曲回数により行った。 Flex resistance: The sheets of Examples 1 to 10 and Comparative Examples 1 and 3 to 4 were prepared to have a size of 14 cm in length × 3.0 to 111 in width and a thickness of 1.2 mm. These strip sheets were set in a bending resistance tester so that the longitudinal direction of the strip sheets were bent, and the strip sheets were repeatedly bent with a stroke of 4.7 cm for a width of 10.5 cm. The repetitive bending speed at this time was set to 300 minutes (one reciprocation: one) Z minutes. The evaluation was performed based on the number of times of bending when the strip sheet was broken.
実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 実施例 6 実施例 7 実施例 8 実施例 9 実施例 10 比較例 1 比較例 2 比較例 3 比較例 4Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4
P C L - A* 1 /8 /1.4 40 40 85 82.4 37.5 66.7 O0.7 /1.4 71.4 47.9 PCL - A * 1/8 /1.4 40 40 85 82.4 37.5 66.7 O0.7 /1.4 71.4 47.9
PCL-B*2 71.4 25.0 PCL-B * 2 71.4 25.0
PCL-C*3 71.4 PCL-C * 3 71.4
P VA-A*4 22 28.6 60 60 15 17.6 37.5 33.3 33.3 28.6 28.6 52.1P VA-A * 4 22 28.6 60 60 15 17.6 37.5 33.3 33.3 28.6 28.6 52.1
P VA-B*5 28.6 P VA-B * 5 28.6
P VA-C*6 28.6 P VA-C * 6 28.6
ST系共重合体 * 7 5.6 10.0 26.7 11.8 10.0 8.8 10.0 10.0 10.0 56.3ST copolymer * 7 5.6 10.0 26.7 11.8 10.0 8.8 10.0 10.0 10.0 56.3
OL系共重合体 A 8 13.3 OL copolymer A 8 13.3
0し系共重合体8" 13.3  0-based copolymer 8 "13.3
炭化水素系化合物111 n 5.6 4.3 6.7 5.9 4.3 3.8 4.0 4.0 4.3 4.3 4.3 10.4 ガラス繊維フィラー'1 1 28.6 28.6 12.5 16.0 16.0 28.6 28.6 28.6 41.7 混練温度 / 100 100 100 100 100 100 100 100 100 100 230 100 100 100Hydrocarbon compounds 111 n 5.6 4.3 6.7 5.9 4.3 3.8 4.0 4.0 4.3 4.3 4.3 10.4 Glass fiber filler ' 1 1 28.6 28.6 12.5 16.0 16.0 28.6 28.6 28.6 41.7 Kneading temperature / 100 100 100 100 100 100 100 100 100 100 230 100 100 100
PCL— A*1 :ポリ力プロラクトン (ダイセル化学 (株) 製、 PCLH5、 数平均分子 52000、 融点 60で) PCL—A * 1 : Polycaprolactone (manufactured by Daicel Chemical Industries, Ltd., PCLH5, number average molecule 52000, melting point 60)
PCL— B*2 :ポリ力プロラクトン (ダイセル化学 (株) 製、 PCLH7、 数平均分子 132000、 融点 60*C) PCL—B * 2 : Polyprolactone (PCLH7, Daicel Chemical Co., Ltd., number average molecule 132000, melting point 60 * C)
PCL— C'3 :ポリ力プロラクトン (ダイセル化学 (株) 製、 PCLH1P, 数平均分子 9600、 融点 60で) PCL-C '3: Poly force caprolactone (Daicel Chemical Co., Ltd., PCLH1P, number average molecular 9600, with melting point 60)
PVA— A*4:粉状ポリビニルアルコール (株式会社クラレ製、 ホ'- Λ'-ル PVA-117、 融点 217^、 粒径 2mm以下品) PVA—A * 4 : Polyvinyl alcohol powder (Kuraray Co., Ltd., PVA-117, melting point 217 ^, particle size 2 mm or less)
PV A— B*5 ·.粉状ポリビニルアルコール (株式会社クラレ製、 ホ '-ハ'-ル PVA- 117s, 融点 2Πΐ:、 粒径 0. 4mm以下品) PV A— B * 5 · .Polyvinyl alcohol (Kuraray Co., Ltd., PVA-117s, melting point 2Πΐ, particle size 0.4 mm or less)
P VA— C*6:粉状ポリビニルアルコール (株式会社クラレ製、 ホ'-ハ'-ル PVA- 117、 融点 217 で、 粒径 2 mmより大きいものを分級し得たもの。) ST系共重合体'7 : J S R株式会社製、 スチレン系共重合体、 JSRTR2000 PVA-C * 6 : Powdered polyvinyl alcohol (Kuraray Co., Ltd., 'H-Hall' PVA-117, melting point: 217, which can be classified from those with a particle size of more than 2 mm.) Polymer ' 7 : JSR Corporation, styrene copolymer, JSRTR2000
OL系共重合体 A'8 : 日本石油化学 (株) 製、 ォレフィン系共重合体、 日石レクスパール RB3240 OL copolymer A '8: Nippon Petrochemicals Co., Orefin copolymer, Nisseki Rexpearl RB3240
OL系共重合体 B*9:三井デュポンポリケミカル (株) 製、 ォレフィン系共重合体、 エバフレックス EV150 OL copolymer B * 9 : Olefin copolymer, Evaflex EV150, manufactured by DuPont-Mitsui Polychemicals, Inc.
炭化水素系化合物' 1D : 日本石油化学 (株) 製、 日石ハイゾ一ル SAS H Hydrocarbon compounds' 1D : Nippon Petrochemical Co., Ltd., Nisseki Hizol SAS H
ガラス繊維フィラー 1 : 日本電気碍子 (株) 製、 T- 123 Glass fiber filler 1 : T-123, manufactured by Nippon Electric Insulators, Ltd.
表 2 Table 2
Figure imgf000012_0001
産業上の利用可能性
Figure imgf000012_0001
Industrial applicability
本発明によれば、 熱再活性化による接着が良好で、 且つ、 芯材として必要な物 性、 例えば、 耐屈曲性が良好で、 ハロゲン系化合物を使用しないことから、 燃焼 時ダイォキシンの発生の問題もない履物用芯材、 及びそれを与える樹脂組成物を 提供することができる。  ADVANTAGE OF THE INVENTION According to this invention, since the adhesion | attachment by heat reactivation is good and the physical property required as a core material, for example, bending resistance is good and since a halogen type compound is not used, generation | occurrence | production of dioxin at the time of combustion The present invention can provide a footwear core material having no problem, and a resin composition for providing the same.

Claims

請 求 の 範 囲 The scope of the claims
1. ポリ力プロラクトン (A) 25〜95重量%とポリビニルアルコール (B) 5〜75重量% ( (A) と (B) の合計は 100重量%) からなり、 該ポ リビニルアルコール (B) がポリ力プロラクトン (A) のマトリックス中に粒径 2 mm以下の粉粒状で分散していることを特徴とする樹脂組成物。 1. 25% to 95% by weight of polycaprolactone (A) and 5 to 75% by weight of polyvinyl alcohol (B) (total of (A) and (B) is 100% by weight). ) Is dispersed as a powder having a particle size of 2 mm or less in a matrix of the polyprolactone (A).
2. ポリ力プロラクトン (A) の数平均分子量が 10, 000〜: 150, 00 0である請求項 1に記載の樹脂組成物。  2. The resin composition according to claim 1, wherein the number average molecular weight of the polyfunctional prolactone (A) is 10,000 to: 150,000.
3. ポリ力プロラクトン (A) 25〜 95重量%と粒径 2mm以下の粉粒状の ポリビニルアルコール (B) 5〜75重量% ( (A) と (B) の合計は 100重 量%) の混合物を、 該ポリカプロラクトン (A) の融点以上、 該ポリビニルアル コール (B) の融点未満の温度で混練することを特徴とする請求項 1又は 2に記 載の樹脂組成物の製造方法。  3. 25% to 95% by weight of polycaprolactone (A) and 5 to 75% by weight of powdery polyvinyl alcohol (B) with a particle size of 2 mm or less (the total of (A) and (B) is 100% by weight). 3. The method for producing a resin composition according to claim 1, wherein the mixture is kneaded at a temperature equal to or higher than the melting point of the polycaprolactone (A) and lower than the melting point of the polyvinyl alcohol (B).
4. 混練温度が 80〜200でである請求項 3に記載の樹脂組成物の製造方法 c 5. 請求項 1又は 2に記載の樹脂組成物を成形してなる履物用芯材。 4. footwear core material kneading temperature is obtained by molding the resin composition according to the manufacturing method c 5. Claim 1 or 2 of the resin composition according to the is claim 3 80-200.
PCT/JP2002/011379 2001-11-12 2002-10-31 Resin composition, process for its production and use thereof WO2003042301A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR0206430-8A BR0206430A (en) 2001-11-12 2002-10-31 Resin composition, method to produce it, and shoe reinforcer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-346742 2001-11-12
JP2001346742A JP2003147181A (en) 2001-11-12 2001-11-12 Resin composition and its production method and use

Publications (1)

Publication Number Publication Date
WO2003042301A1 true WO2003042301A1 (en) 2003-05-22

Family

ID=19159853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011379 WO2003042301A1 (en) 2001-11-12 2002-10-31 Resin composition, process for its production and use thereof

Country Status (4)

Country Link
JP (1) JP2003147181A (en)
BR (1) BR0206430A (en)
TW (1) TW593536B (en)
WO (1) WO2003042301A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4205979A4 (en) * 2020-08-31 2024-02-14 Mitsubishi Chemical Corporation Support material for laminated molding, and methods for manufacturing laminated molded object and three-dimensional structure using same
CN113185823B (en) * 2021-05-27 2022-12-20 中国科学院长春应用化学研究所 Polycaprolactone composite material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240731A (en) * 2000-02-25 2001-09-04 Mitsubishi Gas Chem Co Inc Resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001240731A (en) * 2000-02-25 2001-09-04 Mitsubishi Gas Chem Co Inc Resin composition

Also Published As

Publication number Publication date
BR0206430A (en) 2003-12-23
JP2003147181A (en) 2003-05-21
TW593536B (en) 2004-06-21

Similar Documents

Publication Publication Date Title
CN104768748B (en) Pressure-sensitive adhesives including expandable graphite
CN103045111B (en) Polyester hot melt adhesive for bonding polar polymer with metal
CN106795230B (en) Aqueous curable polymer dispersions and their use as adhesives
MXPA02009371A (en) Adhesive composition comprising a particulate thermoplastic component.
CN109072026A (en) Based on rubber from sticky matter
PL148198B1 (en) Stiffening material exhibiting properties of hot-melt adhesive
KR100919093B1 (en) Thermoplastic stiffening material used for manufacturing shoes, and a method for the production thereof
PL112854B1 (en) Water vapour absorbing and permeable to water vapour adhesive
WO2003042301A1 (en) Resin composition, process for its production and use thereof
KR101193705B1 (en) Releasable adhesive sheet, method for manufacturing same, and releasable adhesive sheet laminate
JP5270855B2 (en) Water-dispersed heat sealant composition
US2608543A (en) Heat-activatable delayed-setting adhesive products
JP2016074865A (en) Peel-layer forming coating composition and wall covering member comprising peel layer formed by coating composition
JPS62252459A (en) Moisture absorbing and releasing composition and production thereof
JP3888737B2 (en) Production method of resin composition
JPS59122519A (en) Manufacture of water-absorbing sheet and water-absorbing composite material
TWI332972B (en) Thermoplastic stiffening material used for manufacturing shoes and a method for the production thereof
JPH04146273A (en) Cloth containing collagen/gelatin
JPH10120842A (en) Ethylene copolymer composition and its use
WO2021132625A1 (en) Hot melt composition and layered body for hygienic material
JPS61236845A (en) Non-compatible polymer alloy and laminate
JPH0741605A (en) Adherent rubber product
JP2002249551A (en) Resin composition, laminated product, preparation process of laminated product
JP2017171823A (en) Thermoplastic elastomer composition
CS271319B2 (en) Reinfocing material,especially for shoemaking purposes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase