WO2003040727A2 - Use of oxidic nanoparticles - Google Patents

Use of oxidic nanoparticles Download PDF

Info

Publication number
WO2003040727A2
WO2003040727A2 PCT/EP2002/011116 EP0211116W WO03040727A2 WO 2003040727 A2 WO2003040727 A2 WO 2003040727A2 EP 0211116 W EP0211116 W EP 0211116W WO 03040727 A2 WO03040727 A2 WO 03040727A2
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
oxidic
shell
oxide
core
Prior art date
Application number
PCT/EP2002/011116
Other languages
German (de)
French (fr)
Other versions
WO2003040727A3 (en
Inventor
Dieter Vollath
Original Assignee
Forschungszentrum Karlsruhe Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe Gmbh filed Critical Forschungszentrum Karlsruhe Gmbh
Publication of WO2003040727A2 publication Critical patent/WO2003040727A2/en
Publication of WO2003040727A3 publication Critical patent/WO2003040727A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/588Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with semiconductor nanocrystal label, e.g. quantum dots

Definitions

  • the invention relates to the use of oxidic nanoparticles according to the first claim.
  • Fluorescence emitters are used for a number of applications.
  • organic dyes are used as laser dyes.
  • Other areas of application are in the fluorescence labeling of organic chemical substances or biological material.
  • powders made from semiconductors in particular powders made from gallium nitride (GaN), cadmium selenide (CdSe) and cadmium sulfide (CdS), emit fluorescence radiation.
  • GaN gallium nitride
  • CdSe cadmium selenide
  • CdS cadmium sulfide
  • organic fluorescent dyes there is a particular need for fluorescence emitters that emit in the ultraviolet.
  • organic fluorescent dyes see for example DE 34 08 028 AI.
  • organic fluorescent dyes are also often toxic and sometimes flammable.
  • Many organic fluorescent dyes also have to be suspended or dissolved in a toxic and flammable organic suspension or solvent.
  • the invention is based on the object of specifying suitable substances as fluorescence emitters which do not have the disadvantages described.
  • the substances should in particular be non-toxic or at most weakly toxic and should be able to be suspended in a permanent and stable suspension with water as the suspending agent.
  • the fluorescent light is said to visible and / or in the ultraviolet wavelength range.
  • the first-mentioned document describes particles with a core u. a. made of an oxide ceramic and a shell made of an organic polymer and a method for producing the particles.
  • the diameter of the core can be 3 nm to 100 nm and the thickness of the shell 1 n to 20 n.
  • Particles of a core consisting of an oxide ceramic and a shell consisting of a further oxide ceramic are known.
  • the diameter of the core should be between 3 and 50 nm and the thickness of the shell 1 to 5 nm. Methods for producing these nanoparticles are also described in the publications.
  • the nanoparticles which can be used according to the invention consist of a core which consists of an oxide ceramic and a shell.
  • the transition metal oxides Hf0 2 and Zr0 2 are particularly suitable as oxide ceramics for the core.
  • the shell around the core essentially serves only as a spacer; it reduces the interaction of the nuclei with one another and their agglomeration.
  • the shell itself can consist of any material that fulfills this task.
  • a polymer or a copolymer is preferably used as the material for the shell.
  • the polymer methacrylic methacrylate (PMMA) is particularly suitable as a shell.
  • oxide ceramics are also suitable as the material for the casing.
  • Aluminum- oxide (A1 2 0 3 ) is an oxide ceramic that can be used well as a covering material. The diameter and thickness of the core and shell and the manufacturing process are selected in accordance with the information in the two publications DE 196 38 601 Cl and DE 94 03 581 U1 mentioned above.
  • the oxidic nanoparticles which can be used according to the invention can emit fluorescent light in the range from below 800 nm to 200 nm. They prove to be very stable in every respect.
  • Ultraviolet light in particular light in the wavelength range from 200 nm to 400 nm, can be used as the excitation light.
  • the excitation light for the fluorescent radiation does not cause any deterioration in the emission properties even at high intensity.
  • the nanoparticles are inert for practically any length of time in normal surroundings.
  • stable fluorescent suspensions can be produced with water, so that the use of toxic and flammable organic suspending agents can be dispensed with and pumping around is unnecessary to avoid sedimentation.
  • An alternative form of use is that the nanoparticles are applied to a substrate in the form of a layer or a film.
  • Polymer-coated oxidic nanoparticles also have the advantage that proteins or other biologically important substances can be coupled to the organic polymer coating in a relatively simple manner, so that the nanoparticles can also be used as fluorescence emitters in biological studies.
  • oxide nanoparticles are preferred in which neither the core nor the shell is doped with foreign atoms, since they are easier and more constant to produce.
  • the formation of a line spectrum can also be strengthened and changed by doping the core of the nanoparticles with ions of different valence. The invention is explained in more detail below with reference to figures.
  • FIG. 1 shows the fluorescence spectrum of a pile of nanopowders, which on the one hand consists of non-coated hafnium dioxide and on the other hand consists of hafnium dioxide cores which are coated with aluminum oxide;
  • FIG. 2 shows the fluorescence spectrum of a pile of nanopowders with a zirconium dioxide core which is coated on the one hand with PMMA and on the other hand with aluminum oxide; 3 shows the fluorescence spectrum of a pile of nanopowder with a core made of zinc dioxide which is coated with PMMA; FIG. 4 gives explanatory information on the fluorescence spectrum according to FIG. 3.
  • the diameters of the particles with which the fluorescence spectra were recorded are 5 to 10 nm; the aluminum oxide or PMMA shell is approx. 0.5 to 5 nm thick.
  • the excitation light had a wavelength of 200 nm and 325 nm.
  • FIG. 1 shows the fluorescence spectra of non-coated nanoparticles made of hafnium dioxide and nanoparticles in which a core made of hafnium dioxide is provided with a cover made of aluminum oxide.
  • the fluorescent light intensity of the coated nanoparticles is considerably higher.
  • Zirconium oxide cores coated with PMMA show a significantly higher fluorescent light intensity than zirconium dioxide cores which are coated with aluminum oxide.
  • FIG. 3 shows the fluorescent light spectrum of zinc dioxide nuclei which are coated with PMMA.
  • FIG. 4 gives explanations for FIG. 3.
  • the fluorescence line in the range between 350 and 400 nm is clearly pronounced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Physical Water Treatments (AREA)

Abstract

The invention concerns a fluorescence emitter for the ultraviolet range of wavelengths, which is chemically stable and non toxic, or at most slightly toxic, and which can be suspended in water. The invention is based on the use of oxidic nanoparticles, consisting of an oxidic ceramic core and a coating, as ultraviolet fluorescent light emitters.

Description

Verwendung von oxidischen NanoteilchenUse of oxidic nanoparticles
Die Erfindung betrifft die Verwendung von oxidischen Nanoteilchen gemäß dem ersten Patentanspruch.The invention relates to the use of oxidic nanoparticles according to the first claim.
Fluoreszenzemitter werden für eine Reihe von Anwendungen gebraucht. Beispielsweise werden organische Farbstoffe als Laserfarbstoffe verwendet. Andere Einsatzgebiete liegen in der Fluoreszenz-Markierung von organisch-chemischen Stoffen oder biologischem Material.Fluorescence emitters are used for a number of applications. For example, organic dyes are used as laser dyes. Other areas of application are in the fluorescence labeling of organic chemical substances or biological material.
Es gehört zum Fachwissen, dass Pulver aus Halbleitern, insbesondere Pulver aus Galliumnitrid (GaN) , Cadmiumselenid (CdSe) und Cadmiumsulfid (CdS) , Fluoreszenzstrahlung emittieren Die Fluoreszenz wird in diesen Teilchen zumeist mit "Quantum Con- finement" - Phänomenen beschrieben. Ein Problem bei diesen Pulverteilchen ist, dass die sie hochgiftig und krebserregend sind. Außerdem sind sie empfindlich gegenüber Oxidationsm.it- teln und daher in normaler Umgebung instabil. Beispielsweise lassen sie sich nicht dauerhaft und ohne eine chemische Reaktion in Wasser suspendieren.It is part of the specialist knowledge that powders made from semiconductors, in particular powders made from gallium nitride (GaN), cadmium selenide (CdSe) and cadmium sulfide (CdS), emit fluorescence radiation. The fluorescence in these particles is usually described with "quantum confinement" phenomena. One problem with these powder particles is that they are highly toxic and carcinogenic. They are also sensitive to oxidizing agents and are therefore unstable in normal environments. For example, they cannot be permanently suspended in water without a chemical reaction.
Ein besonderer Bedarf besteht an Fluoreszenzemittern, die im Ultravioletten emittieren. Zwar gibt es eine Reihe von organischen Fluoreszenzfarbstoffen (siehe beispielsweise DE 34 08 028 AI) . Organische Fluoreszenzfarbstoffe sind jedoch häufig ebenfalls giftig und manchmal außerdem feuergefährlich. Viele organische Fluoreszenzfarbstoffe müssen zudem in einem giftigen und feuergefährlichen organischen Suspensions- oder Lösungsmittel suspendiert bzw. aufgelöst werden.There is a particular need for fluorescence emitters that emit in the ultraviolet. There are a number of organic fluorescent dyes (see for example DE 34 08 028 AI). However, organic fluorescent dyes are also often toxic and sometimes flammable. Many organic fluorescent dyes also have to be suspended or dissolved in a toxic and flammable organic suspension or solvent.
Der Erfindung liegt die Aufgabe zugrunde, als Fluoreszenzemitter geeignete Stoffe anzugeben, die die beschriebenen Nachteile nicht aufweisen. Die Stoffe sollen insbesondere ungiftig oder allenfalls schwach giftig sein und sich zu einer dauerhaften und stabilen Suspension mit Wasser als Suspensionsmittel suspendieren lassen. Das Fluoreszenzlicht soll im sichtbaren und/oder im ultravioletten Wellenlängenbereich liegen.The invention is based on the object of specifying suitable substances as fluorescence emitters which do not have the disadvantages described. The substances should in particular be non-toxic or at most weakly toxic and should be able to be suspended in a permanent and stable suspension with water as the suspending agent. The fluorescent light is said to visible and / or in the ultraviolet wavelength range.
Die Aufgabe wird gelöst durch die Verwendung von oxidischen Nanoteilchen gemäß dem ersten Patentanspruch. Die weiteren Patentansprüche geben bevorzugte Ausgestaltungen der Erfindung an.The object is achieved by using oxidic nanoparticles according to the first claim. The further claims specify preferred embodiments of the invention.
Aus der DE 196 38 601 Cl und der DE 94 03 581 Ul sind oxidische Nanoteilchen bekannt, die für den erfindungsgemäßen Verwendungszweck gut geeignet sind. Die erstgenannte Druckschrift beschreibt Partikel mit einem Kern u. a. aus einer Oxidkeramik und einer Hülle aus einem organischen Polymer sowie ein Verfahren zur Herstellung der Partikel. Der Durchmesser des Kerns kann 3 nm bis 100 nm und die Dicke der Hülle 1 n bis 20 n betragen. Aus der zweitgenannten Druckschrift sind u. a. Partikel aus einem Kern bestehend aus einer Oxidkeramik und einer Hülle bestehend aus einer weiteren Oxidkeramik bekannt. Der Durchmesser des Kerns soll zwischen 3 und 50 nm und die Dicke der Hülle 1 bis 5 nm betragen. In den Druckschriften sind außerdem Verfahren zur Herstellung dieser Nanoteilchen beschrieben.From DE 196 38 601 Cl and DE 94 03 581 U1 oxidic nanoparticles are known which are well suited for the use according to the invention. The first-mentioned document describes particles with a core u. a. made of an oxide ceramic and a shell made of an organic polymer and a method for producing the particles. The diameter of the core can be 3 nm to 100 nm and the thickness of the shell 1 n to 20 n. From the second document, u. a. Particles of a core consisting of an oxide ceramic and a shell consisting of a further oxide ceramic are known. The diameter of the core should be between 3 and 50 nm and the thickness of the shell 1 to 5 nm. Methods for producing these nanoparticles are also described in the publications.
Die erfindungsgemäß verwendbaren Nanoteilchen bestehen in der allgemeinsten Form aus einem Kern, der aus einer Oxidkeramik besteht, und einer Hülle. Als Oxidkeramik für den Kern sind insbesondere die Übergangsmetall-Oxide Hf02 und Zr02 geeignet. Die Hülle um den Kern dient im wesentlichen lediglich als Abstandshalter; sie vermindert die Wechselwirkung der Kerne untereinander und deren Agglomeration. Insoweit kann die Hülle an sich aus jedem beliebigen Material bestehen, das diese Aufgabe erfüllt.In the most general form, the nanoparticles which can be used according to the invention consist of a core which consists of an oxide ceramic and a shell. The transition metal oxides Hf0 2 and Zr0 2 are particularly suitable as oxide ceramics for the core. The shell around the core essentially serves only as a spacer; it reduces the interaction of the nuclei with one another and their agglomeration. In this respect, the shell itself can consist of any material that fulfills this task.
Vorzugsweise wird als Material für die Hülle ein Polymer oder ein Copolymer eingesetzt. Besonders gut eignet sich als Hülle das Polymer Methacrylmethacrylat (PMMA) . Alternativ sind auch Oxidkeramiken als Material für die Hülle geeignet. Aluminium- oxid (A1203) ist eine als Hüllmaterial gut verwendbare Oxidkeramik. Durchmesser und Dicke von Kern und Hülle sowie die Herstellungsverfahren werden entsprechend den Angaben in den beiden oben genannten Druckschriften DE 196 38 601 Cl und der DE 94 03 581 Ul gewählt.A polymer or a copolymer is preferably used as the material for the shell. The polymer methacrylic methacrylate (PMMA) is particularly suitable as a shell. Alternatively, oxide ceramics are also suitable as the material for the casing. Aluminum- oxide (A1 2 0 3 ) is an oxide ceramic that can be used well as a covering material. The diameter and thickness of the core and shell and the manufacturing process are selected in accordance with the information in the two publications DE 196 38 601 Cl and DE 94 03 581 U1 mentioned above.
Von besonderer Bedeutung ist, dass die erfindungsgemäß verwendbaren oxidischen Nanoteilchen Fluoreszenzlicht im Bereich unterhalb von 800 nm bis zu 200 nm emittieren können. Sie erweisen sich dabei in jeder Hinsicht als sehr beständig. Als Anregungslicht ist ultraviolettes Licht, insbesondere Licht im Wellenlängenbereich von 200 nm bis 400 nm, einsetzbar. Das Anregungslicht für die Fluoreszenzstrahlung bewirkt auch in hoher Intensität keine Verschlechterung der Emissionseigenschaften. Außerdem sind die Nanoteilchen in normaler Umgebung praktisch beliebig lang inert. Außerdem können mit Wasser stabile fluoreszierende Suspensionen hergestellt werden, so dass auf den Einsatz von giftigen und brennbaren organischen Suspensionsmitteln verzichtet werden kann und ein Umpumpen zur Vermeidung von Sedimentation unnötig ist. Eine alternative Einsatzform besteht darin, dass die Nanoteilchen auf einem Substrat in Form einer Schicht oder eines Films aufgetragen werden.It is of particular importance that the oxidic nanoparticles which can be used according to the invention can emit fluorescent light in the range from below 800 nm to 200 nm. They prove to be very stable in every respect. Ultraviolet light, in particular light in the wavelength range from 200 nm to 400 nm, can be used as the excitation light. The excitation light for the fluorescent radiation does not cause any deterioration in the emission properties even at high intensity. In addition, the nanoparticles are inert for practically any length of time in normal surroundings. In addition, stable fluorescent suspensions can be produced with water, so that the use of toxic and flammable organic suspending agents can be dispensed with and pumping around is unnecessary to avoid sedimentation. An alternative form of use is that the nanoparticles are applied to a substrate in the form of a layer or a film.
Polymerumhüllte oxidische Nanoteilchen haben außerdem den Vorzug, dass Proteine oder andere biologisch wichtige Stoffe in verhältnismäßig einfacher Weise an den organischen Polymerüberzug angekoppelt werden können, so dass die Nanoteilchen auch bei biologischen Untersuchungen als Fluoreszenzemitter einsetzbar sind.Polymer-coated oxidic nanoparticles also have the advantage that proteins or other biologically important substances can be coupled to the organic polymer coating in a relatively simple manner, so that the nanoparticles can also be used as fluorescence emitters in biological studies.
Erfindungsgemäß werden zwar oxidische Nanoteilchen bevorzugt, bei denen weder der Kern noch die Hülle mit Fremdatomen dotiert ist, da sie einfacher und in konstanterer Qualität herstellbar sind. Jedoch kann man auch, wie dies aus von bekannten Fluoreszenzemittern bekannt ist, die Ausbildung eines Linienspektrums durch Dotieren des Kerns der Nanoteilchen mit Ionen anderer Wertigkeit verstärken und verändern. Die Erfindung wird im folgenden anhand von Figuren näher erläutert .According to the invention, oxide nanoparticles are preferred in which neither the core nor the shell is doped with foreign atoms, since they are easier and more constant to produce. However, as is known from known fluorescence emitters, the formation of a line spectrum can also be strengthened and changed by doping the core of the nanoparticles with ions of different valence. The invention is explained in more detail below with reference to figures.
Es zeigenShow it
Fig. 1 das Fluoreszenzspektrum eines Haufwerkes von Nanopul- vern, die zum einen aus nicht mit einer Hülle versehenem Hafniumdioxid und zum andern aus mit Hafniumdioxid-Kernen besteht, die mit Aluminiumoxid umhüllt sind;1 shows the fluorescence spectrum of a pile of nanopowders, which on the one hand consists of non-coated hafnium dioxide and on the other hand consists of hafnium dioxide cores which are coated with aluminum oxide;
Fig. 2 das Fluoreszenzspektrum eines Haufwerkes von Nanopul- vern mit einem Kern aus Zirkoniumdioxid, der zum einen mit PMMA und zum andern mit Aluminiumoxid umhüllt ist; Fig. 3 das Fluoreszenzspektrum eines Haufwerkes von Nanopulver mit einem Kern aus Zinkdioxid, der mit PMMA umhüllt ist; Fig. 4 gibt erläuternde Hinweise zum Fluoreszenzspektrum gemäß Fig. 3.2 shows the fluorescence spectrum of a pile of nanopowders with a zirconium dioxide core which is coated on the one hand with PMMA and on the other hand with aluminum oxide; 3 shows the fluorescence spectrum of a pile of nanopowder with a core made of zinc dioxide which is coated with PMMA; FIG. 4 gives explanatory information on the fluorescence spectrum according to FIG. 3.
Die Durchmesser der Teilchen, mit denen die Fluoreszenzspektren aufgenommen wurden, liegen bei 5 bis 10 nm; die Aluminiumoxid- bzw. PMMA-Hülle ist ca. 0,5 bis 5 nm dick. Das Anregungslicht wies eine Wellenlänge von 200 nm und 325 nm auf.The diameters of the particles with which the fluorescence spectra were recorded are 5 to 10 nm; the aluminum oxide or PMMA shell is approx. 0.5 to 5 nm thick. The excitation light had a wavelength of 200 nm and 325 nm.
Fig. 1 zeigt zum Vergleich die Fluoreszenzspektren von nicht mit einer Hülle versehenen Nanoteilchen aus Hafniumdioxid und Nanoteilchen, bei denen ein Kern aus Hafniumdioxid mit einer Hülle von Aluminiumoxid versehen ist. Wie sich aus den Intensitäten unterhalb von 600 nm ergibt, ist die Fluoreszenzlichtstärke der mit einer Hülle versehenen Nanoteilchen erheblich höher.For comparison, FIG. 1 shows the fluorescence spectra of non-coated nanoparticles made of hafnium dioxide and nanoparticles in which a core made of hafnium dioxide is provided with a cover made of aluminum oxide. As can be seen from the intensities below 600 nm, the fluorescent light intensity of the coated nanoparticles is considerably higher.
Fig. 2 zeigt den Einfluss des Hüllmaterials auf die Fluoreszenzlichtstärke. Mit PMMA umhüllte Zirkoniumdioxid-Kerne zeigen eine signifikant höhere Fluoreszenzlichtstärke als Zirkoniumdioxid-Kerne, die mit Aluminiumoxid umhüllt sind.2 shows the influence of the enveloping material on the fluorescent light intensity. Zirconium oxide cores coated with PMMA show a significantly higher fluorescent light intensity than zirconium dioxide cores which are coated with aluminum oxide.
In Fig. 3 ist das Fluoreszenzlichtspektrum von Zinkdioxid-Kernen, die mit PMMA umhüllt sind, dargestellt. Fig. 4 gibt Erläuterungen zu Fig. 3. Die Fluoreszenzlinie im Bereich zwischen 350 und 400 nm ist deutlich ausgeprägt. 3 shows the fluorescent light spectrum of zinc dioxide nuclei which are coated with PMMA. FIG. 4 gives explanations for FIG. 3. The fluorescence line in the range between 350 and 400 nm is clearly pronounced.

Claims

Patentansprüche : Claims:
1. Verwendung von oxidischen Nanoteilchen, die einen Kern bestehend aus einem oxidkeramischen Material und eine Hülle aufweisen, als Emitter für ultraviolettes und sichtbares Fluoreszenzlicht .1. Use of oxidic nanoparticles, which have a core consisting of an oxide ceramic material and a shell, as an emitter for ultraviolet and visible fluorescent light.
2. Verwendung der oxidischen Nanoteilchen nach Anspruch 1, bei denen die Hülle aus einem weiteren oxidkeramischen Material besteht .2. Use of the oxide nanoparticles according to claim 1, in which the shell consists of a further oxide ceramic material.
3. Verwendung der oxidischen Nanoteilchen nach Anspruch 1, bei denen die Hülle aus einem Polymer oder einem Copolymer besteht .3. Use of the oxide nanoparticles according to claim 1, wherein the shell consists of a polymer or a copolymer.
4. Verwendung der oxidischen Nanoteilchen nach Anspruch 1, 2 oder 3 als Emitter für Fluoreszenzlicht im Wellenlängenbereich zwischen 200 nm und 800 nm.4. Use of the oxidic nanoparticles according to claim 1, 2 or 3 as an emitter for fluorescent light in the wavelength range between 200 nm and 800 nm.
5. Verwendung der oxidischen Nanoteilchen nach einem der Ansprüche 1 bis 4 in Form einer wässrigen Suspension.5. Use of the oxidic nanoparticles according to one of claims 1 to 4 in the form of an aqueous suspension.
6. Verwendung der oxidischen Nanoteilchen nach einem der Ansprüche 1 bis 4 in Form einer Schicht, die auf ein Substrat aufgebracht ist. 6. Use of the oxide nanoparticles according to one of claims 1 to 4 in the form of a layer which is applied to a substrate.
PCT/EP2002/011116 2001-11-08 2002-10-04 Use of oxidic nanoparticles WO2003040727A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2001154988 DE10154988A1 (en) 2001-11-08 2001-11-08 Use of oxidic nanoparticles
DE10154988.1 2001-11-08

Publications (2)

Publication Number Publication Date
WO2003040727A2 true WO2003040727A2 (en) 2003-05-15
WO2003040727A3 WO2003040727A3 (en) 2003-10-16

Family

ID=7705127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/011116 WO2003040727A2 (en) 2001-11-08 2002-10-04 Use of oxidic nanoparticles

Country Status (2)

Country Link
DE (1) DE10154988A1 (en)
WO (1) WO2003040727A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007027116A1 (en) * 2005-09-01 2007-03-08 Instytut Wysokich Cisnien Polskiej Akademii Nauk Zirconium dioxide luminescence oxygen sensor
CN102792165A (en) * 2010-02-25 2012-11-21 科康国际有限责任公司 Method for determining the antioxidant power of biological and vegetal fluids
WO2019000671A1 (en) * 2017-06-28 2019-01-03 深圳市光峰光电技术有限公司 Composite ceramic and preparation method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6859799B1 (en) 1998-11-30 2005-02-22 Gemstar Development Corporation Search engine for video and graphics

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718601A (en) * 1971-01-04 1973-02-27 Bell Telephone Labor Inc Fluorescent high alumina substrates
US4440831A (en) * 1981-06-30 1984-04-03 International Business Machines Corporation Zinc silicate phosphor particles and method for making them
US5893999A (en) * 1993-09-13 1999-04-13 Kabushiki Kaisha Toshiba Ultrafine inorganic phosphor, specifically binding material labeled with this phosphor, and detection method using this specific binding material
WO1999021934A1 (en) * 1997-10-28 1999-05-06 The University Of Melbourne Stabilized particles and methods of preparation and use thereof
US6048616A (en) * 1993-04-21 2000-04-11 Philips Electronics N.A. Corp. Encapsulated quantum sized doped semiconductor particles and method of manufacturing same
US6245849B1 (en) * 1999-06-02 2001-06-12 Sandia Corporation Fabrication of ceramic microstructures from polymer compositions containing ceramic nanoparticles
US6251342B1 (en) * 1998-06-01 2001-06-26 Ford Global Technologies, Inc. Fluorescent fiber optic sensor element fabricated using sol-gel processing techniques
WO2001086299A2 (en) * 2000-05-05 2001-11-15 Bayer Aktiengesellschaft Doped nanoparticles as biolabels

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9403581U1 (en) * 1994-03-03 1994-04-28 Kernforschungsz Karlsruhe Coated nanopowder and device for its production
DE19638601C1 (en) * 1996-09-20 1998-02-26 Karlsruhe Forschzent Production of particles with metal compound core and polymeric shell
ATE287584T1 (en) * 1998-12-01 2005-02-15 Univ Michigan ULTRAFINE POWDERS AND THEIR USE AS LASER MEDIA

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3718601A (en) * 1971-01-04 1973-02-27 Bell Telephone Labor Inc Fluorescent high alumina substrates
US4440831A (en) * 1981-06-30 1984-04-03 International Business Machines Corporation Zinc silicate phosphor particles and method for making them
US6048616A (en) * 1993-04-21 2000-04-11 Philips Electronics N.A. Corp. Encapsulated quantum sized doped semiconductor particles and method of manufacturing same
US5893999A (en) * 1993-09-13 1999-04-13 Kabushiki Kaisha Toshiba Ultrafine inorganic phosphor, specifically binding material labeled with this phosphor, and detection method using this specific binding material
WO1999021934A1 (en) * 1997-10-28 1999-05-06 The University Of Melbourne Stabilized particles and methods of preparation and use thereof
US6251342B1 (en) * 1998-06-01 2001-06-26 Ford Global Technologies, Inc. Fluorescent fiber optic sensor element fabricated using sol-gel processing techniques
US6245849B1 (en) * 1999-06-02 2001-06-12 Sandia Corporation Fabrication of ceramic microstructures from polymer compositions containing ceramic nanoparticles
WO2001086299A2 (en) * 2000-05-05 2001-11-15 Bayer Aktiengesellschaft Doped nanoparticles as biolabels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG J ET AL: "Surface properties of polymer adsorbed zirconia nanoparticles" NANOSTRUCTURED MATERIALS, ELSEVIER, NEW YORK, NY, US, Bd. 11, Nr. 4, Juni 1999 (1999-06), Seiten 451-457, XP004178993 ISSN: 0965-9773 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007027116A1 (en) * 2005-09-01 2007-03-08 Instytut Wysokich Cisnien Polskiej Akademii Nauk Zirconium dioxide luminescence oxygen sensor
US7888658B2 (en) 2005-09-01 2011-02-15 Instytut Wysokich Cisnien Polskiej Akademii Nauk Zirconium dioxide luminescence oxygen sensor
CN102792165A (en) * 2010-02-25 2012-11-21 科康国际有限责任公司 Method for determining the antioxidant power of biological and vegetal fluids
WO2019000671A1 (en) * 2017-06-28 2019-01-03 深圳市光峰光电技术有限公司 Composite ceramic and preparation method therefor
US11097984B2 (en) 2017-06-28 2021-08-24 Appotronics Corporation Limited Composite ceramic and preparation method therefor

Also Published As

Publication number Publication date
DE10154988A1 (en) 2003-05-28
WO2003040727A3 (en) 2003-10-16

Similar Documents

Publication Publication Date Title
Brelle et al. Synthesis and characterization of Cu x S nanoparticles. Nature of the infrared band and charge-carrier dynamics
EP1356476B1 (en) Narrow-band spectral filter and the use thereof
DE2944943C2 (en) Process for the surface treatment of phosphor particles
WO2007039288A1 (en) Securing the authenticity of value documents by means of characteristic substances
EP1509083A1 (en) Antimicrobial polymeric coating composition
DE3629879C2 (en) Electrochromic device and metal sensitive compound for use in the device
EP3181659B1 (en) Valuable document
EP2869997B1 (en) Value document, method for checking the presence of same and value document system
WO1999038703A1 (en) Printed document having a value and comprising a luminescent authenticity feature
WO2006072380A2 (en) Security feature for value documents
DE102008058177A1 (en) Method for identifying laser sintering powders
EP0946995A2 (en) Electroluminescent device made of organic material
DE1947916A1 (en) Coated glass beads and methods of making the same
DE60304788T2 (en) Granular photocatalytic mixture for mortar or concrete and their use
DE2846665A1 (en) ELECTROCHROME DEVICES AND METHOD FOR THEIR PRODUCTION
EP1576060A1 (en) Nanoscale core/shell particles and the production thereof
DE2656461C3 (en) Fluorescent preparations and their uses
DE102019129924A1 (en) Optochemical sensor, sensor cap, use of the optochemical sensor and method for producing an analyte-sensitive layer of the optochemical sensor
WO2003040727A2 (en) Use of oxidic nanoparticles
EP2994315B1 (en) Method for marking a feature substance, security feature, document of value and method for verifying said document
Do Truc et al. ZnO− Ag Hybrid Nanoparticles Used in the Antimicrobial Solvent‐Based Coatings: Antibacterial Studies in the Darkness and Under Visible‐Light Irradiation
WO2000071363A1 (en) Valuable document
DE3135591A1 (en) VOLTAGE-DEPENDENT OPTICAL COMPONENT, IN PARTICULAR WITH THE FUNCTION OF A VOLTAGE MEMORY AND FOR CONNECTING OR. COUPLING ELECTRICAL AND / OR ELECTRONIC PARTS OF SYSTEMS TOGETHER
WO2003064557A1 (en) Fluorescent nanoparticles and the production thereof
DE112004002320T5 (en) EL fiber and photocatalytic reaction vessel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP