WO2003039679A1 - Procede et dispositif de regulation a dilution pour appareil respiratoire - Google Patents

Procede et dispositif de regulation a dilution pour appareil respiratoire Download PDF

Info

Publication number
WO2003039679A1
WO2003039679A1 PCT/FR2002/003712 FR0203712W WO03039679A1 WO 2003039679 A1 WO2003039679 A1 WO 2003039679A1 FR 0203712 W FR0203712 W FR 0203712W WO 03039679 A1 WO03039679 A1 WO 03039679A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
mask
valve
dilution
flow
Prior art date
Application number
PCT/FR2002/003712
Other languages
English (en)
Inventor
Patrice Martinez
Original Assignee
Intertechnique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intertechnique filed Critical Intertechnique
Priority to EP02793196A priority Critical patent/EP1441812B1/fr
Priority to CA002460462A priority patent/CA2460462C/fr
Priority to DE60205033T priority patent/DE60205033T2/de
Publication of WO2003039679A1 publication Critical patent/WO2003039679A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B7/00Respiratory apparatus
    • A62B7/14Respiratory apparatus for high-altitude aircraft

Definitions

  • the present invention relates generally to demand and dilution regulators by ambient air intended to supply respiratory gas to meet the needs of a wearer equipped with a mask, using a supply by an oxygen source.
  • It relates in particular to the regulation methods and devices intended for respiratory apparatus intended for the crews of civil or military aircraft which, beyond a determined cabin altitude, must receive respiratory gas representing at least a minimum flow of oxygen which is depending on the altitude, or, with each inhalation, an amount of oxygen corresponding to a minimum oxygen content of the inhaled mixture.
  • the minimum oxygen flow law is set by standards, which are currently the subject, for the civil sector, of a FAR regulation.
  • regulators on demand can be worn by the mask; this is the most frequent case in the civil field, unlike the case of combat aircraft, where the regulator is often in the seat of the carrier.
  • These regulators have an oxygen supply circuit connecting a pressurized oxygen inlet to an intake in the mask and comprising a main valve, generally pneumatically controlled by a pilot valve, and a dilution air supply circuit. from the ambient atmosphere.
  • the opening and closing of the oxygen supply takes place in response to the inspiration and expiration of the wearer of the mask, to the cabin altitude and possibly to the position of selection means, actuable manually, allowing normal operation with dilution, operation with supply without dilution, and operation with overpressure.
  • Regulators of this type are described in particular in document FR-A-2 778 575, to which reference may be made.
  • a regulator with electronic control for supplying the respiratory mask for a combat aircraft pilot has also been proposed (patents FR 79 11 072 and US - A - 4 336 590.
  • This regulator uses pressure sensors and control electronics. of a solenoid valve for regulating the flow of oxygen supplied. The dilution air is sucked in by a venturi.
  • This electronically controlled regulator has the advantage of allowing a better adaptation of the flow of pure oxygen supplied to physiological requirements. it has a certain number of limitations. In particular, the dilution depends on the functioning of an ejector.
  • the nature of the control of the flow of pure oxygen and of the flow of dilution air means that the oxygen supplied by the air of dilution, the flow rate of which is a function of the oxygen flow rate and other state parameters (in particular the inspiratory demand of the wearer) can hardly be taken into account in the control of pure oxygen flow rate.
  • the control will cause a flow of pure oxygen leading to an excess of oxygen supplied to the carrier and it is not planned to use the electronic control so as to obtain an operation making it possible to provide a flow of oxygen which is in all conditions as close as possible to the minimum provided for by the regulations.
  • the present invention aims in particular to provide a method and a regulation device which respond better than those previously known to the requirements of practice; it aims in particular to provide a regulator making it possible to bring the required oxygen flow rate closer to the source than that which is actually necessary.
  • the instantaneous inhaled volume inspiratory flow rate brought back to ambient conditions is measured in real time (directly or from the measurement of the dilution air flow rate inhaled in the mask, taking into account the additional oxygen), and the ambient pressure ,
  • the minimum oxygen content to be achieved over the entire inhalation is determined to comply with the respiratory standard, and - the instantaneous flow of additional pure oxygen is estimated and controlled so as to fulfill the requirements of the standard with a safety margin which will generally be a few percent.
  • a regulation of the dilution air can be provided by adjusting the passage section using an altimetric capsule, without the intervention of a venturi; it can also be performed by a pilot valve, again without an ejector, then combining the favorable characteristics of the regulators purely pneumatic to those of a known regulator with electronic control.
  • the estimation of the additional oxygen flow rate continues throughout the inhalation period. This effectively translates into adjustment of the entire volume of additional oxygen supplied during the entire complete inhalation.
  • account is taken of the fact that the respiratory tract has a volume which does not participate in gas exchanges. More precisely, the fraction of the respiratory mixture which is inhaled last does not reach the pulmonary alveoli. It simply enters the upper airway from where it is released to the atmosphere upon expiration.
  • the method according to the other embodiment uses this observation, for example by detecting the instant from which the instant inhaled flow rate drops below a predetermined threshold as indicating the start of the final phase of inhalation, during from which oxygen is not used, and then cutting off the supply of additional oxygen
  • a comparison is made during the next phase of the inspiratory cycle between the standard cycle thus evaluated and the course of the actual cycle; in the event of a deviation leading to an oxygen requirement greater than that expected, a quantity of additional oxygen determined according to the deviation is provided.
  • the amount of oxygen necessary for physiological needs, calculation of the amount of pure oxygen to be forcedly added to the oxygen contained in the air at a content 21% (or higher in the case of a conditioned atmosphere) inhaled directly from the ambient atmosphere and the flow rate of which is generally not controlled.
  • the invention also provides a regulation device comprising:
  • a dilution circuit bringing air from the atmosphere directly to the mask, which can be fitted with an opening valve controlled by ambient pressure,
  • an expiration circuit comprising an expiration check valve connecting the mask to the atmosphere
  • the air flow sensor can have various constitutions. For example, it is of the depression type, commercially available. Such a sensor determines the pressure drop when passing a throttle and provides a signal representative of the flow. It can also be of the hot wire type.
  • Such a constitution is “hybrid” in the sense that it combines the characteristics of a pneumatically controlled regulator as regards the air flow rate with an electronic control of the flow rate of additional pure oxygen, allowing flexible regulation.
  • oxygen under pressure or "pure oxygen” should be interpreted as covering both the case of pure oxygen, supplied for example by a bottle, and that of air very enriched in oxygen, typically above 90% . In the latter case the effective oxygen content of the enriched air constitutes an additional parameter to be taken into account and it must be measured.
  • the flow control valve can be progressive opening, or of the "all or nothing" type; in the latter case, it is controlled by an electrical signal modulated in pulse width, with an adjustable duty ratio and a pulse frequency greater than 10 Hz.
  • the control law stored in the electronic circuit is such that the regulator provides, in "normal” operation, a total oxygen flow rate at least equal to that provided for by the regulations for each cabin altitude, originating from the source and the dilution air.
  • the regulators are provided to allow not only normal operation with dilution, but also operation with supply of pure pure oxygen (so-called "100%” operation), or of pure oxygen having a determined overpressure relative to the atmosphere. ambient (“emergency" operation). These latter operating modes are particularly necessary when the risk of the presence of smoke or toxic gas in the environment is taken into account.
  • the electronic circuit may be provided to cause the dilution valve to close in response to a manual or automatic command.
  • An additional solenoid valve with manual and / or automatic control may be provided to maintain an overpressure in the mask by establishing an overpressure tending to close it on the exhalation valve.
  • the closing of the dilution valve is advantageously controlled by means of a two-position solenoid valve which, in a state, causes the closing of the valve by bringing the valve seat against a shutter carried by a pressure-sensitive element. of the ambient atmosphere and, in the other position, brings a valve seat in a determined position, allowing the adjustment of the dilution air flow by displacement or deformation of the element.
  • the invention is susceptible of numerous embodiments.
  • the different components of the regulator can be distributed different ways between a box carried by the mask and a box for storing the mask outside of periods of use or any other external box, including online, so that it remains directly accessible by the wearer of the mask.
  • the pure oxygen supply circuit can be entirely placed in a box fixed to a mask, or
  • this circuit and in particular the first solenoid valve, can be integrated into a mask storage box in the standby position.
  • FIG. 1 is a pneumatic and electrical diagram showing the constituents concerned by the invention of a regulator which can be described as "with integrated actuator";
  • FIG. 3 is a diagram showing a typical curve of variation of the oxygen flow required by the regulations as a function of the cabin altitude; - Figure 4 shows a bundle of variation curves of the oxygen flow rates of the inspiratory call at different cabin altitudes.
  • the regulator shown in Figure 1 consists of two parts, one 10 incorporated in a housing carried by a mask not shown and the other 12 carried by a mask storage box.
  • This box can have a conventional general constitution, comprising a frame delimiting a reception volume, closed by doors and from which the mask projects. The opening of the doors by extraction of the mask causes the opening of an oxygen supply valve.
  • the part carried by the mask consists of a housing made up of several assembled parts, in which are housed and passages making it possible to define several circulation paths.
  • a first circulation path connects an inlet 14 of oxygen under pressure to an outlet 16 towards the mask.
  • a second path connects an inlet 20 for dilution air to an outlet 22 towards the mask.
  • the oxygen flow in the first path is regulated by an electrically controlled valve.
  • this tap is a proportional valve 24, voltage-controlled, which connects the inlet 14 and the outlet 16, supplied by a conductor 26, it connects the inlet and the outlet. It is also possible to use a valve, of the "all or nothing" type, controlled in pulse width, with a variable RCO (duty cycle).
  • This sub-assembly On the path for direct supply of dilution air to the mask, there is a sub-assembly which can be described as a "demand" ensuring the functions of ambient air inspiration and detection of the instantaneous requested flow rate.
  • This sub-assembly includes a pressure sensor 28 in the mask.
  • the straight section of passage of the dilution air flow is delimited by an altimetric capsule 30 whose length increases when the ambient pressure decreases and by the end section of an annular piston 32.
  • This piston is subjected to the difference between atmospheric pressure and the pressure prevailing in a chamber 34.
  • An additional solenoid valve 36 makes it possible to connect the chamber 34 either to the atmosphere or to the supply of oxygen under pressure.
  • the solenoid valve 36 thus makes it possible to pass from a normal mode with dilution to a mode with pure oxygen supply (so-called 100% mode).
  • a spring 38 maintains the piston in a position allowing the adjustment of the passage section by the altimetric capsule 30.
  • the piston is applied against the capsule.
  • the piston 32 can also constitute the movable member of a controlled regulation valve.
  • the housing of part 10 also delimits an expiration path comprising an exhalation valve 40.
  • the shutter element of the valve shown is of a type commonly used at present for fulfilling the dual function of pilot valve d intake and exhaust valve. In the embodiment of Figure 1, it simply acts as a valve expiration offering the possibility of maintaining the interior of the mask in overpressure relative to the ambient atmosphere by increasing the pressure prevailing in a chamber 42, limited by the element 40, above the ambient pressure.
  • a solenoid valve 48 connects the chamber 42 to the atmosphere and in this case the expiration takes place as soon as the pressure in the mask exceeds the ambient pressure.
  • the solenoid valve 48 connects the chamber to the pressurized oxygen supply, by means of a throttling valve 50 for limiting the flow rate.
  • the pressure in the chamber 42 is established at the value fixed by a valve 46 with calibrated closing spring.
  • the housing of part 10 carries, in the illustrated embodiment, means making it possible to inflate and deflate a pneumatic mask harness.
  • These means have a conventional constitution and therefore will not be described in detail. They comprise a piston 52 which can be brought temporarily, by means of an ear 54 actuated by the user of the mask, from the position where it is represented and where it makes the harness communicate with the atmosphere to a position where it communicates the harness with the oxygen supply 14.
  • these means further comprise a switch 56 controlled by the movement of the ear 54 from its rest position, and whose role will appear later.
  • Part 12 of the regulator which is carried by the mask storage box, includes a selector 58 which can be moved in the direction of the arrows "f" and which can be brought by the user into 3 positions.
  • the selector 58 closes a switch 60 of normal mode N. In the other two positions, it closes respectively so-called 100% and "Emergency" or E mode switches.
  • the switches are connected to an electronic circuit 62 which determines, depending on the operating mode chosen, the cabin altitude indicated by a sensor 64 and the instantaneous demand flow indicated by the sensor 28, the oxygen flow rate to be supplied to the wearer of the mask.
  • the card provides the appropriate electrical signals to the first solenoid valve 24.
  • the pressure sensor 28 supplies the instantaneous demand pressure at the outlet of the dilution air circuit in the mask.
  • the circuit carries by an electronic card, receives this signal as well as the information on the cabin altitude to be taken into account coming from the sensor 64.
  • the electronic card determines the flow rate or the quantity of oxygen to be supplied, using a family of stored reference curves taking into account the instantaneous demand flow and cabin altitude, or a table with several inputs or even a calculation in real time from a stored algorithm.
  • the reference curves are established from the regulations which fix the concentration of respiratory mixture required for the pilot as a function of the cabin altitude.
  • the curve in solid lines shows the minimum value of the oxygen content required as a function of the altitude.
  • the dashed curve gives the maximum value.
  • the reference curves will be chosen so that they are never below the minimum curve. But, thanks to the flexibility offered by electronic control, it will be possible to be very close to it.
  • FIG. 4 shows, by way of example, two curves representing respectively the variation in the oxygen flow rate and the dilution air flow rate controlled by the solenoid valve 24 and the opening valve controlled as a function of the altitude, at given value of the signal supplied by the sensor 28.
  • the card 62 sends an electrical instruction to the solenoid valve 36.
  • This causes the chamber 34 to be pressurized, applies the piston 32 against the altimetric capsule 30 and closes the arrival of dilution air.
  • the pressure sensor 28 detects the vacuum in the ambient air inlet circuit and supplies the card 62 with corresponding information.
  • the card determines the speed oxygen to supply.
  • the first solenoid valve 24 then supplies the wearer of the mask with the calculated amount of oxygen.
  • the card 62 When the wearer selects the "emergency" mode by moving the selector 28 further to the right, the card 62 sends an electrical instruction to the valve 48.
  • the solenoid valve then admits, in the chamber 42, a pressure which is limited by the valve 46.
  • the overpressure established is of the order of 5 mbar.
  • the dilution air supply is cut off as in the previous case.
  • the pressure sensor 28 also sends a signal to the card 62 which determines the quantity of oxygen to be supplied to reduce the pressure in the air inlet circuit to a value equal to the setting of the valve 46.
  • the first valve 24a is placed in the case of the mask storage box.
  • the regulator can then be viewed as comprising a control part, entirely carried by the box 12 and which authorizes the selection of the operating mode.
  • a "demand” part placed in the box mounted on the mask and which performs the functions of ambient air inspiration and detection of the call pressure.
  • the third part which provides the supplement of oxygen required according to the altitude and the pilot's inspiratory demand, is this time in the case of the mask storage box.
  • the control of supply of the additional oxygen by the valve 24 a is completed by a pneumatic pilot valve 68 of known constitution, placed downstream of the valve 24 a.
  • the piloted pneumatic valve 68 is controlled by the pressure prevailing in a pilot chamber 70.
  • the membrane 40 which this time plays the dual role of pilot valve and exhalation valve, controls the pressure in the chamber 70.
  • the presence of the pilot valve in the embodiment of FIG. 2 makes it possible to provide a mechanically controlled valve 72 controlled by the selector 58 for connecting upstream to downstream of the solenoid valve 24 (a).
  • the wearer of the mask can immediately switch from a regulated oxygen-saving mode to a conventional mode with purely pneumatic operation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Abstract

Le procédé est destiné à réguler le débit d'oxygène additionnel provenant d'une source vers une admission dans un masque respiratoire muni d'une entrée d'air ambiant de dilution. On mesure en temps réel le débit inspiratoire volumique instantané inhalé ramené aux conditions ambiantes (directement ou à partir de la mesure du débit d'air de dilution inhalé dans le masque, en tenant compte de l'oxygène additionnel), et on mesure la pression ambiante. A partir de la pression ambiante on détermine la teneur minimale en oxygène à réaliser sur l'ensemble de l'inhalation pour respecter la norme respiratoire, et on commande le débit instantané d'oxygène additionnel de façon à remplir les exigences minimales des normes avec une marge de sécurité qui sera généralement de quelques pour cent.

Description

PROCEDE ET DISPOSITIF DE REGULATION A DILUTION POUR APPAREIL RESPIRATOIRE
La présente invention concerne de façon générale les régulateurs à la demande et à dilution par l'air ambiant destinés à fournir du gaz respiratoire pour répondre aux besoins d'un porteur équipé d'un masque, en utilisant une alimentation par une source d'oxygène pur (bouteille d'oxygène, générateur chimique ou convertisseur d'oxygène liquide) ou de gaz très enrichi en oxygène, tel qu'un générateur embarqué dit obogs, ainsi que les appareils respiratoires individuels comportant de tels régulateurs.
Elle concerne particulièrement les procédés et dispositifs de régulation destinés aux appareils respiratoires destinés aux équipages d'avions civils ou militaires qui, au-delà d'une altitude cabine déterminée, doivent recevoir du gaz respiratoire représentant au moins un débit minimum d'oxygène qui est fonction de l'altitude, ou, à chaque inhalation, une quantité d'oxygène correspondant à une teneur minimale en oxygène du mélange inhalé. La loi de débit minimum d'oxygène est fixé par des normes, qui font à l'heure actuelle l'objet, pour le domaine civil, d'un règlement FAR.
Les régulateurs actuels à la demande peuvent être portés par le masque ; c'est le cas le plus fréquent dans le domaine civil, contrairement au cas des avions de combat, où le régulateur est souvent sur le siège du porteur. Ces régulateurs ont un circuit d'amenée d'oxygène reliant une entrée d'oxygène sous pression à une admission dans le masque et comportant un clapet principal, généralement piloté pneumatiquement par un clapet pilote, et un circuit d'amenée d'air de dilution à partir de l'atmosphère ambiante. L'ouverture et la fermeture de l'arrivée d'oxygène interviennent en réponse à l'inspiration et à l'expiration du porteur du masque, à l'altitude de cabine et éventuellement à la position de moyens de sélection, actionnables manuellement, permettant un fonctionnement normal avec dilution, un fonctionnement avec alimentation sans dilution, et un fonctionnement avec surpression. Des régulateurs de ce type sont notamment décrits dans le document FR-A-2 778 575, auquel on pourra se reporter.
Ces régulateurs connus sont robustes, ont un fonctionnement sûr et peuvent être réalisés de façon relativement simple même pour des débits d'inspiration importants. Ils ont l'inconvénient que, pour respecter les minima de débit d'oxygène (provenant de l'alimentation en oxygène pur et de l'air de dilution) dans toutes les situations de fonctionnement, il est nécessaire de les constituer de façon telle que, dans la majeure partie du domaine de fonctionnement, ils appellent un débit d'oxygène pur nettement supérieur à celui qui serait nécessaire. Cela exige l'emport d'un volume d'oxygène supérieur aux besoins physiologiques réels ou la présence d'un générateur embarqué ayant des performances supérieures à celles qui seraient indispensables.
On a par ailleurs proposé un régulateur à commande électronique d'alimentation du masque respiratoire pour pilote d'avion de combat (brevets FR 79 11 072 et US - A - 4 336 590. Ce régulateur utilise des capteurs de pression et une électronique de commande d'une électrovanne de réglage de débit d'oxygène amené. L'air de dilution est aspiré par un venturi. Ce régulateur à commande électronique a l'avantage de permettre une meilleure adaptation du débit d'oxygène pur fourni aux exigences physiologiques. Mais il présente un certain nombre de limitations. En particulier la dilution dépend du fonctionnement d'un éjecteur. La nature de la commande du débit d'oxygène pur et du débit d'air de dilution fait que l'oxygène apporté par l'air de dilution, dont le débit est fonction du débit d'oxygène et d'autres paramètres d'état (notamment la demande inspiratoire du porteur) peut difficilement être pris en compte dans la commande de débit d'oxygène pur. Dans la plupart des cas, la commande provoquera un débit d'oxygène pur conduisant à un excès d'oxygène fourni au porteur et il n'est pas prévu d'utiliser la commande électronique de façon à obtenir un fonctionnement permettant de fournir un débit d'oxygène qui est dans toutes les conditions au plus près du minimum prévu par les règlements. La présente invention vise notamment à fournir un procédé et un dispositif de régulation répondant mieux que ceux antérieurement connus aux exigences de la pratique ; elle vise notamment à fournir un régulateur permettant de rapprocher le débit d'oxygène exigé de la source de celui qui est effectivement nécessaire.
Pour cela il est notamment proposé une approche différente de celles antérieurement adoptées ; elle implique d'estimer ou de mesurer, en temps réel, les paramètres essentiels déterminant les besoins en oxygène (altitude cabine, débit inspiratoire volumique instantané ramené aux conditions de la cabine, pourcentage d'oxygène dans le mélange inhalé tel qu'il est imposé par les règlements là où ils existent et par la physiologie, ...) et d'en déduire le débit instantané d'oxygène pur additionnel à fournir à chaque instant.
Suivant un aspect de l'invention, il est en conséquence proposé un procédé de régulation du débit d'oxygène additionnel amené depuis une entrée d'oxygène sous pression, provenant d'une source, à une admission dans un masque respiratoire muni d'une entrée d'air ambiant de dilution, suivant lequel :
- on mesure en temps réel le débit inspiratoire volumique instantané inhalé ramené aux conditions ambiantes (directement ou à partir de la mesure du débit d'air de dilution inhalé dans le masque, en tenant compte de l'oxygène additionnel), et la pression ambiante,
- à partir de la pression ambiante on détermine la teneur minimale en oxygène à réaliser sur l'ensemble de l'inhalation pour respecter la norme respiratoire, et - on estime et on commande le débit instantané d'oxygène pur additionnel de façon à remplir les exigences de la norme avec une marge de sécurité qui sera généralement de quelques pour cent.
Il peut être prévu une régulation de l'air de dilution par réglage de section de passage à l'aide d'une capsule altimétrique, sans intervention d'un venturi; elle peut aussi être effectuée par clapet piloté, de nouveau sans éjecteur, en associant alors les caractéristiques favorables des régulateurs purement pneumatiques à celles d'un régulateur connu à commande électronique.
Dans un premier mode de réalisation, l'estimation du débit d'oxygène additionnel se poursuit pendant toute la période d'inhalation. Cela se traduit dans les faits par un réglage de la totalité du volume d'oxygène additionnel fourni au cours de l'ensemble de l'inhalation complète. Dans un autre mode de réalisation, qui en principe permet d'économiser encore davantage l'oxygène, il est tenu compte du fait que les voies respiratoires comportent un volume qui ne participe pas aux échanges gazeux. Plus précisément la fraction du mélange respiratoire qui est inhalée en dernier n'atteint pas les alvéoles pulmonaires. Elle pénètre simplement dans les voies aériennes supérieures d'où elle est rejetée à l'atmosphère lors de l'expiration. Le procédé suivant l'autre mode de réalisation utilise cette constatation, par exemple en détectant l'instant à partir duquel le débit instantané inhalé descend au dessous d'un seuil prédéterminé comme indiquant le début de la phase finale de l'inhalation, au cours de laquelle l'oxygène n'est pas utilisé, et en coupant alors l'arrivée d'oxygène additionnel
Dans un autre mode encore de réalisation, qui permet d'utiliser la constatation ci-dessus que c'est l'oxygène additionnel envoyé au cours d'une phase initiale du cycle inspiratoire qui est le mieux utilisé, il est effectué, à la fin de chaque cycle respiratoire, une estimation de la quantité totale d'oxygène qui sera requise au cours de l'inhalation suivante
( par exemple par calcul d'une moyenne sur plusieurs cycles précédents) et
- on envoie la totalité de l'oxygène additionnel requis pendant une phase initiale de l'inhalation.
Une comparaison est effectuée au cours de la phase suivante du cycle inspiratoire entre le cycle standard évalué ainsi et le déroulement du cycle réel ; en cas d'écart conduisant à une exigence d'oxygène supérieure à celle prévue, une quantité d'oxygène complémentaire déterminée en fonction de l'écart est fournie. Dans tous les cas, il y a, à partir de la détermination de la quantité d'oxygène nécessaire aux besoins physiologiques, calcul de la quantité d'oxygène pur à ajouter de façon forcée à l'oxygène contenu dans l'air à une teneur de 21% (ou supérieure dans le cas d'atmosphère conditionnée)inhalé directement depuis l'atmosphère ambiante et dont le débit n'est généralement pas commandé.
L'invention propose également un dispositif de régulation comportant :
- un circuit d'amenée d'oxygène reliant une entrée d'oxygène sous pression, provenant d'une source, à une admission dans un masque respiratoire par l'intermédiaire d'une première vanne de commande directe de débit,
- un circuit de dilution amenant directement au masque de l'air provenant de l'atmosphère, pouvant être muni d'une soupape à ouverture commandée par la pression ambiante,
- un circuit d'expiration comportant une soupape anti-retour d'expiration reliant le masque à l'atmosphère, et
- un circuit électronique de commande d'ouverture de la vanne de commande directe de débit, en fonction de signaux fournis par au moins un capteur de la pression atmosphérique ambiante et un capteur du débit d'air inhalé ou du débit total inhalé. Le capteur de débit d'air peut avoir diverses constitutions. Par exemple il est de type déprimogène, disponible dans le commerce. Un tel capteur détermine la perte de charge au passage d'un étranglement et fournit un signal représentatif du débit. Il peut également être du type à fil chaud.
Une telle constitution est "hybride" en ce sens qu'elle associe des caractéristiques de régulateur à commande pneumatique pour ce qui est du débit d'air à une commande électronique du débit d'oxygène pur additionnel, permettant une régulation souple.
Le terme "oxygène sous pression" ou « oxygène pur » doit être interprété comme couvrant aussi bien le cas d'oxygène pur, fourni par exemple par une bouteille, que celui d'air très enrichi en oxygène, typiquement au-delà de 90%. Dans ce dernier cas la teneur effective en oxygène de l'air enrichi constitue un paramètre supplémentaire à prendre en compte et elle doit être mesurée.
La vanne de commande de débit peut être à ouverture progressive, ou du type "tout ou rien" ; elle est commandée dans ce dernier cas par un signal électrique modulé en largeur d'impulsion, avec un rapport cyclique d'ouverture (duty ratio) réglable et une fréquence d'impulsions supérieure à 10Hz.
La loi de commande mémorisée dans le circuit électronique est telle que le régulateur fournit, en fonctionnement " normal », un débit d'oxygène total au moins égal à celui prévu par les règlements pour chaque altitude cabine, provenant de la source et de l'air de dilution.
En général, les régulateurs sont prévus pour permettre non seulement le fonctionnement normal avec dilution, mais aussi un fonctionnement avec alimentation en oxygène pur détendu (fonctionnement dit « 100% »), ou en oxygène pur présentant une surpression déterminée par rapport à l'atmosphère ambiante (fonctionnement dit « urgence »). Ces derniers modes de fonctionnement sont notamment nécessaires lorsque le risque de présence de fumée ou de gaz toxique dans l'environnement est pris en compte. Le circuit électronique peut être prévu pour provoquer la fermeture de la soupape de dilution en réponse à une commande manuelle ou automatique. Une électrovanne supplémentaire à commande manuelle et/ou automatique peut être prévue pour maintenir une surpression dans le masque en établissant sur le clapet d'expiration une surpression tendant à le fermer.
La fermeture de la soupape de dilution est avantageusement commandée à l'aide d'une électrovanne à deux positions qui, dans un état, provoque la fermeture de la soupape par amenée du siège de soupape contre un obturateur porté par un élément sensible à la pression de l'atmosphère ambiante et, dans l'autre position, amène un siège de soupape dans une position déterminée, permettant le réglage du débit d'air de dilution par déplacement ou déformation de l'élément. L'invention est susceptible de nombreux modes de réalisation. En particulier les différents composants du régulateur peuvent être répartis de différentes façons entre un boîtier porté par le masque et une boîte pour stocker le masque en dehors des périodes d'utilisation ou tout autre boîtier externe, y compris en ligne, de façon qu'il reste directement accessible par le porteur du masque. Par exemple : - le circuit d'amenée d'oxygène pur peut être en totalité placé dans un boîtier fixé à un masque, ou
- une partie de ce circuit, et notamment la première électrovanne, peut être intégré à une boîte de stockage du masque en position d'attente.
Les caractéristiques ci-dessus, ainsi que d'autres, avantageusement utilisables en liaison avec les précédentes, mais pouvant l'être indépendamment, apparaîtront mieux à la lecture de la description qui suit de modes particuliers de réalisation, donnés à titre d'exemples non limitatifs. La description se réfère aux dessins qui l'accompagnent, dans lesquels :
- la figure 1 est un schéma pneumatique et électrique montrant les constituants concernés par l'invention d'un régulateur qu'on peut qualifier de « à actionneur intégré » ;
- la figure 2, similaire à la figure 1 , montre une variante de réalisation ;
- la figure 3 est un diagramme montrant une courbe type de variation du débit d'oxygène requis par les règlements en fonction de l'altitude cabine ; - la figure 4 montre un faisceau de courbes de variation des débits d'oxygène de l'appel inspiratoire à différentes altitudes cabine.
Le régulateur montré en figure 1 se compose de deux parties, l'une 10 incorporée dans un boîtier porté par un masque non représenté et l'autre 12 portée par une boîte de stockage du masque. Cette boîte peut avoir une constitution générale classique, comportant un châssis délimitant un volume de réception, fermé par des portes et dont fait saillir le masque. L'ouverture des portes par extraction du masque provoque l'ouverture d'un robinet d'amenée d'oxygène.
La partie portée par le masque est constituée par un boîtier en plusieurs pièces assemblées, dans lequel sont ménagés des logements et des passages permettant de définir plusieurs trajets de circulation. Un premier trajet de circulation relie une entrée 14 d'oxygène sous pression à une sortie 16 vers le masque. Un second trajet relie une entrée 20 d'air de dilution à une sortie 22 vers le masque. Le débit d'oxygène dans le premier trajet est réglé par un robinet à commande électrique. Dans le cas représenté, ce robinet est une vanne proportionnelle 24, commandée en tension, qui relie l'entrée 14 et la sortie 16, alimentée par un conducteur 26, elle relie l'entrée et la sortie. On peut également utiliser une vanne, du type "tout ou rien", commandée en largeur d'impulsion, avec un RCO (rapport cyclique d'ouverture ou duty cycle) variable. Sur le trajet d'amenée directe d'air de dilution au masque est interposé un sous-ensemble qu'on peut qualifier de "demande" assurant les fonctions d'inspiration d'air ambiant et de détection du débit demandé instantané. Ce sous-ensemble comporte un capteur 28 de pression dans le masque. Dans le cas illustré, la section droite de passage du débit d'air de dilution est délimitée par une capsule altimétrique 30 dont la longueur augmente lorsque la pression ambiante diminue et par la tranche terminale d'un piston annulaire 32. Ce piston est soumis à la différence entre la pression atmosphérique et la pression qui règne dans une chambre 34. Une électrovanne supplémentaire 36 permet de relier la chambre 34 soit à l'atmosphère, soit à l'alimentation en oxygène sous pression. L'électrovanne 36 permet ainsi de passer d'un mode normal avec dilution à un mode à alimentation en oxygène pur (mode dit 100%). Lorsque la chambre 34 est reliée à l'atmosphère, un ressort 38 maintient le piston dans une position permettant le réglage de la section de passage par la capsule altimétrique 30. Lorsque la chambre est reliée à l'alimentation, le piston vient s'appliquer contre la capsule. Le piston 32 peut également constituer l'organe mobile d'une soupape de régulation asservie.
Le boîtier de la partie 10 délimite également un trajet d'expiration comportant un clapet d'expiration 40. L'élément obturateur du clapet représenté est d'un type couramment utilisé à l'heure actuelle pour remplir la double fonction de clapet de pilotage d'admission et de clapet d'échappement. Dans le mode de réalisation de la figure 1 , il joue simplement le rôle de clapet d'expiration offrant la possibilité de maintenir l'intérieur du masque en surpression par rapport à l'atmosphère ambiante par augmentation de la pression régnant dans une chambre 42, limitée par l'élément 40, au-dessus de la pression ambiante. Dans un premier état, une électrovanne 48 relie la chambre 42 à l'atmosphère et dans ce cas l'expiration s'effectue dès que la pression dans le masque dépasse la pression ambiante. Dans un second état, l'électrovanne 48 relie la chambre à l'alimentation en oxygène sous pression, par l'intermédiaire d'un étranglement 50 de limitation de débit. Dans ce cas, la pression dans la chambre 42 s'établit à la valeur fixée par une soupape 46 à ressort taré de fermeture.
Le boîtier de la partie 10 porte, dans le mode de réalisation illustré, des moyens permettant de gonfler et de dégonfler un harnais pneumatique de masque. Ces moyens ont une constitution classique et en conséquence ne seront pas décrits en détail. Ils comportent un piston 52 qui peut être amené temporairement, à l'aide d'une oreille 54 actionnée par l'utilisateur du masque, de la position où il est représenté et où il fait communiquer le harnais avec l'atmosphère à une position où il fait communiquer le harnais avec l'alimentation 14 en oxygène. Toutefois, ces moyens comprennent de plus un interrupteur 56 commandé par le déplacement de l'oreille 54 à partir de sa position de repos, et dont le rôle apparaîtra plus loin.
La partie 12 du régulateur, qui est portée par la boîte de stockage du masque, comporte un sélecteur 58 déplaçable dans le sens des flèches "f" et pouvant être amené par l'utilisateur dans 3 positions. Dans la position représentée en figure 1 , le sélecteur 58 ferme un interrupteur 60 de mode normal N. Dans les deux autres positions, il ferme respectivement des interrupteurs de mode dits 100% et "Urgence" ou E.
Les interrupteurs sont reliés à un circuit électronique 62 qui détermine, en fonction du mode de fonctionnement choisi, de l'altitude cabine indiquée par un capteur 64 et du débit de demande instantanée indiqué par le capteur 28, le débit d'oxygène à fournir au porteur du masque. La carte fournit les signaux électriques appropriés à la première électrovanne 24.
En mode normal, le capteur de pression 28 fournit la pression de demande instantanée au débouché du circuit d'air de dilution dans le masque. Le circuit porte par une carte électronique, reçoit ce signal ainsi que l'information sur l'altitude de cabine à prendre en compte provenant du capteur 64. La carte électronique détermine alors le débit ou la quantité d'oxygène à fournir, en utilisant une famille de courbes de référence mémorisées tenant compte du débit de demande instantané et de l'altitude cabine, ou une table à plusieurs entrées ou même un calcul en temps réel à partir d'un algorithme mémorisé.
Les courbes de référence sont établies à partir des règlements qui fixent la concentration de mélange respiratoire requise pour le pilote en fonction de l'altitude cabine. Sur la figure 3, la courbe en trait plein montre la valeur minimale de la teneur en oxygène requise en fonction de l'altitude. La courbe en tirets donne la valeur maximale. Les courbes de référence seront choisies de façon à n'être jamais au-dessous de la courbe de minimum. Mais, grâce à la souplesse offerte par la commande électronique, il sera possible d'en être très proche. La figure 4 montre, à titre d'exemple, deux courbes représentant respectivement la variation du débit d'oxygène et du débit d'air de dilution commandés par l'électrovanne 24 et la soupape à ouverture commandée en fonction de l'altitude, à valeur donnée du signal fourni par le capteur 28.
En mode 100%, c'est-à-dire lorsque le porteur du masque amène le sélecteur d'un cran vers la droite à partir de la position montrée en figure 1 , la carte 62 envoie une consigne électrique à l'électrovanne 36. Celle-ci provoque la mise en pression de la chambre 34, applique le piston 32 contre la capsule altimétrique 30 et ferme l'arrivée d'air de dilution. Le capteur de pression 28 détecte la dépression dans le circuit d'entrée d'air ambiant et fournit à la carte 62 une information correspondante. La carte détermine alors le débit d'oxygène à fournir. La première électrovanne 24 fournit alors au porteur du masque la quantité d'oxygène calculée.
Lorsque le porteur sélectionne le mode "urgence" en déplaçant le sélecteur 28 davantage vers la droite, la carte 62 émet une consigne électrique vers la vanne 48. L'électrovanne admet alors, dans la chambre 42, une pression qui est limitée par le clapet 46. Habituellement, la surpression établie est de l'ordre de 5 mbar. En même temps, l'arrivée d'air de dilution est coupée comme dans le cas précédent. Le capteur de pression 28 envoie encore un signal à la carte 62 qui détermine la quantité d'oxygène à fournir pour ramener la pression dans le circuit d'entrée d'air à une valeur égale au tarage du clapet 46.
Dans la variante de réalisation montrée en figure 2, où les organes correspondant à ceux de la figure 1 sont désignés par les mêmes numéros de référence, la première vanne 24 a est placée dans le boîtier de la boîte de stockage du masque. Le régulateur peut alors être regardé comme comprenant une partie de commande, entièrement portée par la boîte 12 et qui autorise la sélection du mode de fonctionnement. Une partie "demande", placée dans le boîtier monté sur le masque et qui assure les fonctions d'inspiration d'air ambiant et de détection de la pression d'appel. La troisième partie, qui fournit le complément de l'oxygène requis en fonction de l'altitude et de la demande inspiratoire du pilote, se trouve cette fois dans le boîtier de la boîte de stockage du masque.
Dans le dispositif montré en figure 2, la commande de fourniture du complément d'oxygène par la vanne 24 a est complétée par un robinet pneumatique piloté 68 de constitution connue, placé en aval de la vanne 24 a. De façon classique, le robinet pneumatique piloté 68 est commandé par la pression qui règne dans une chambre de pilotage 70. La membrane 40, qui joue cette fois le double rôle de clapet pilote et de clapet d'expiration, commande la pression dans la chambre de pilotage 70. La présence du robinet piloté dans le mode de réalisation de la figure 2 permet de prévoir une vanne à commande mécanique 72 commandée par le sélecteur 58 pour relier l'amont à l'aval de l'électrovanne 24(a). Ainsi, en cas de panne d'alimentation électrique, le porteur du masque peut immédiatement passer d'un mode régulé à économie d'oxygène à un mode classique à fonctionnement purement pneumatique.

Claims

REVENDICATIONS
1. Procédé de régulation du débit d'oxygène additionnel amené depuis une entrée d'oxygène sous pression, provenant d'une source, à une admission dans un masque respiratoire muni d'une entrée d'air ambiant de dilution, suivant lequel :
- on mesure en temps réel le débit inspiratoire volumique instantané inhalé ramené aux conditions ambiantes (directement ou à partir de la mesure du débit d'air de dilution inhalé dans le masque, en tenant compte de l'oxygène additionnel), et la pression ambiante,
- à partir de la pression ambiante on détermine la teneur minimale en oxygène à réaliser sur l'ensemble de l'inhalation pour respecter la norme respiratoire, et
- on commande le débit instantané d'oxygène additionnel de façon à remplir les exigences des normes applicables avec une marge de sécurité qui sera généralement de quelques pour cent.
2. Régulateur de masque à la demande et à dilution, comportant : un circuit d'amenée d'oxygène reliant une entrée d'oxygène sous pression, provenant d'une source, à une admission dans un masqué respiratoire par l'intermédiaire d'une première vanne (24) de commande directe de débit, un circuit de dilution amenant directement au masque de l'air provenant de l'atmosphère, un circuit d'expiration comportant une soupape anti-retour (40) d'expiration reliant le masque à l'atmosphère, et un circuit électronique de commande d'une commande d'ouverture de la vanne de commande directe de débit (24), en fonction de signaux fournis par au moins un capteur de la pression atmosphérique ambiante et un capteur (28) du débit d'air inhalé ou du débit total inhalé.
3. Dispositif suivant la revendication 2, caractérisé en ce que l'électrovanne de commande directe de débit est à ouverture progressive ou du type tout ou rien commandé par un signal électrique modulé en largeur d'impulsion, avec un rapport cyclique d'ouverture réglable.
4. Dispositif suivant la revendication 2 ou 3, caractérisé en ce que la loi de commande mémorisée dans le circuit électronique est telle que le régulateur fournit, en fonctionnement normal, un débit d'oxygène au moins égal à celui nécessaire pour assurer la teneur en oxygène prévue par les règlements pour chaque altitude cabine, provenant de la source et de l'air de dilution.
5. Dispositif suivant la revendication 2, 3 ou 4, caractérisé en ce que le circuit électronique est prévu pour provoquer la fermeture de la soupape de dilution en réponse à une commande manuelle ou automatique.
6. Dispositif suivant la revendication 5, caractérisé en ce que la fermeture de la soupape de dilution est commandée à l'aide d'une vanne à deux positions qui, dans un état, provoque la fermeture de la soupape par amenée de son siège contre un obturateur porté par un élément sensible à la pression de l'atmosphère ambiante et, dans l'autre état, provoque l'ouverture.
7. Dispositif suivant l'une quelconque des revendications 2 à 6, caractérisé par une électrovanne supplémentaire (48) à commande manuelle ou automatique pour maintenir une surpression dans le masque en établissant sur le clapet d'expiration une surpression tendant à le fermer.
8. Dispositif suivant l'une quelconque des revendications 2 à 7, caractérisé en ce que le circuit d'amenée d'oxygène pur est en totalité placé dans un boîtier (10) fixé au masque.
9. Dispositif suivant l'une quelconque des revendications 2 à 7, caractérisé en ce qu'une partie du circuit d'amenée d'oxygène pur, y compris la première électrovanne, est intégrée à une boîte (12) de stockage du masque en position d'attente.
10. Dispositif suivant l'une quelconque des revendications 2 à 7, caractérisé en ce qu'un robinet piloté pneumatiquement (68) est placé sur le circuit d'amenée d'oxygène en aval de la première vanne.
11. Dispositif suivant l'une quelconque des revendications 2 à 10, caractérisé en ce qu'il comporte un sélecteur (58) manuel de sélection entre le fonctionnement avec et sans dilution et en surpression, porté par une boîte de stockage de masque.
PCT/FR2002/003712 2001-11-08 2002-10-29 Procede et dispositif de regulation a dilution pour appareil respiratoire WO2003039679A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02793196A EP1441812B1 (fr) 2001-11-08 2002-10-29 Procede et dispositif de regulation a dilution pour appareil respiratoire
CA002460462A CA2460462C (fr) 2001-11-08 2002-10-29 Procede et dispositif de regulation a dilution pour appareil respiratoire
DE60205033T DE60205033T2 (de) 2001-11-08 2002-10-29 Regelungsverfahren und -gerät zur verdünnung für ein atemgerät

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/14452 2001-11-08
FR0114452A FR2831825B1 (fr) 2001-11-08 2001-11-08 Procede et dispositif de regulation a dilution pour appareil respiratoire

Publications (1)

Publication Number Publication Date
WO2003039679A1 true WO2003039679A1 (fr) 2003-05-15

Family

ID=8869184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003712 WO2003039679A1 (fr) 2001-11-08 2002-10-29 Procede et dispositif de regulation a dilution pour appareil respiratoire

Country Status (6)

Country Link
US (1) US6789539B2 (fr)
EP (2) EP1441812B1 (fr)
CA (1) CA2460462C (fr)
DE (1) DE60205033T2 (fr)
FR (1) FR2831825B1 (fr)
WO (1) WO2003039679A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006005372A1 (fr) 2004-07-15 2006-01-19 Intertechnique Regulateur de masque de dilution sur demande et procede pour reguler l'ajout d'oxygene dans le regulateur de masque

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588033B2 (en) 2003-06-18 2009-09-15 Breathe Technologies, Inc. Methods, systems and devices for improving ventilation in a lung area
US7406966B2 (en) 2003-08-18 2008-08-05 Menlo Lifesciences, Llc Method and device for non-invasive ventilation with nasal interface
US7527054B2 (en) * 2005-05-24 2009-05-05 General Electric Company Apparatus and method for controlling fraction of inspired oxygen
CN101454041B (zh) 2005-09-20 2012-12-12 呼吸科技公司 对患者进行呼吸支持的系统、方法和装置
US7836886B2 (en) * 2005-10-11 2010-11-23 B/E Intellectual Property Breathing mask and regulator for aircraft
US20070101867A1 (en) * 2005-11-08 2007-05-10 Hunter Charles E Air sterilization apparatus
US20070102280A1 (en) * 2005-11-08 2007-05-10 Hunter C E Air supply apparatus
ATE474630T1 (de) * 2006-04-13 2010-08-15 Intertechnique Sa Atemgaszufuhrkreis für ein mit passagieren besetztes flugzeug
JP2009534238A (ja) * 2006-04-20 2009-09-24 アンテルテクニック 航空機乗務員用の呼吸装置
US7631642B2 (en) 2006-05-18 2009-12-15 Breathe Technologies, Inc. Tracheostoma spacer, tracheotomy method, and device for inserting a tracheostoma spacer
WO2008019102A2 (fr) 2006-08-03 2008-02-14 Breathe Technologies, Inc. Procédés et dispositifs de support respiratoire peu invasif
US20080078382A1 (en) * 2006-09-20 2008-04-03 Lemahieu Edward Methods and Systems of Delivering Medication Via Inhalation
US20080142010A1 (en) * 2006-09-20 2008-06-19 Next Safety, Inc. Systems, methods, and apparatuses for pulmonary drug delivery
US20080066739A1 (en) * 2006-09-20 2008-03-20 Lemahieu Edward Methods and systems of delivering medication via inhalation
US8517018B2 (en) * 2007-05-14 2013-08-27 Airbus Operations Gmbh Oxygen supply system for an aircraft
WO2008144589A1 (fr) 2007-05-18 2008-11-27 Breathe Technologies, Inc. Procédés et dispositifs pour détecter la respiration et fournir une thérapie de ventilation
DE102007031043B4 (de) * 2007-07-04 2014-04-10 B/E Aerospace Systems Gmbh Sauerstoffversorgungseinrichtung
WO2009006932A1 (fr) * 2007-07-06 2009-01-15 Maquet Critical Care Ab Valve expiratoire d'un appareil respiratoire anesthésique ayant un système auxiliaire de secours
CA2700869C (fr) 2007-09-26 2018-10-30 Breathe Technologies, Inc. Procedes et dispositifs de traitement de l'apnee du sommeil
US8567399B2 (en) 2007-09-26 2013-10-29 Breathe Technologies, Inc. Methods and devices for providing inspiratory and expiratory flow relief during ventilation therapy
ATE509829T1 (de) * 2008-01-04 2011-06-15 Intertechnique Sa Vorrichtung zur sauerstoffversorgung eines benutzers in einem flugzeug
JP5758799B2 (ja) 2008-04-18 2015-08-05 ブリーズ・テクノロジーズ・インコーポレーテッド 呼吸作用を感知し、人工呼吸器の機能を制御するための方法およびデバイス
WO2009129506A1 (fr) 2008-04-18 2009-10-22 Breathe Technologies, Inc. Procédés et dispositifs pour détecter la respiration et commander des fonctions d’insufflateur
WO2010022363A1 (fr) 2008-08-22 2010-02-25 Breathe Technologies, Inc. Procédés et dispositifs pour fournir une ventilation mécanique avec une interface de voies respiratoires ouvertes
WO2010039989A1 (fr) 2008-10-01 2010-04-08 Breathe Technologies, Inc. Ventilateur avec surveillance et commande à rétraction biologique pour l'amélioration de l'activité et de la santé d'un patient
US9132250B2 (en) 2009-09-03 2015-09-15 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature
US8428672B2 (en) * 2009-01-29 2013-04-23 Impact Instrumentation, Inc. Medical ventilator with autonomous control of oxygenation
EP2414019B1 (fr) 2009-04-02 2017-12-06 Breathe Technologies, Inc. Procédés, systèmes et dispositifs de ventilation ouverte non invasive à l'aide d'ajutages de fourniture de gaz à l'air libre
US9962512B2 (en) 2009-04-02 2018-05-08 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature
US20100288283A1 (en) * 2009-05-15 2010-11-18 Nellcor Puritan Bennett Llc Dynamic adjustment of tube compensation factor based on internal changes in breathing tube
CN102762250B (zh) 2009-09-03 2017-09-26 呼吸科技公司 用于包括具有夹带端口和/或压力特征的非密封通气界面的无创通气的方法、系统和装置
US9808655B2 (en) 2010-02-26 2017-11-07 Zodiac Aerotechnics Method for determining partial pressure of a gaseous constituent and regulator of breathing mask for aircraft occupant
WO2012116764A1 (fr) 2011-02-28 2012-09-07 Intertechnique Procédé pour protéger un occupant d'aéronef et masque respiratoire
CA2807416C (fr) 2010-08-16 2019-02-19 Breathe Technologies, Inc. Procedes, systemes et dispositifs utilisant de l'oxygene liquide pour fournir une assistance ventilatoire
CA2810967C (fr) * 2010-09-23 2016-11-29 Intertechnique Regulateur d'oxygene de distribution de melange respiratoire dans avion
US20110011403A1 (en) * 2010-09-26 2011-01-20 Richard William Heim Crew Mask Regulator Mechanical Curve Matching Dilution Valve
AU2011308548B2 (en) 2010-09-30 2014-10-23 Breathe Technologies, Inc. Methods, systems and devices for humidifying a respiratory tract
CN103415325B (zh) * 2011-02-21 2016-11-16 佐迪埃克航空技术公司 飞行器流量调节器及稀释调节方法
US9038628B2 (en) * 2011-11-30 2015-05-26 Avox Systems Inc. System and method for an oxygen system alarm
US9327089B2 (en) 2012-03-30 2016-05-03 Covidien Lp Methods and systems for compensation of tubing related loss effects
US9950132B2 (en) 2012-05-11 2018-04-24 Koninklijke Philips N.V. Systems and methods to determine the fraction of inhaled oxygen during ventilation
US9550570B2 (en) * 2012-05-25 2017-01-24 B/E Aerospace, Inc. On-board generation of oxygen for aircraft passengers
CN103893888B (zh) * 2012-12-26 2017-05-24 北京谊安医疗系统股份有限公司 一种脉宽调制型的麻醉机或呼吸机
US10675433B2 (en) 2017-05-25 2020-06-09 MGC Diagnostics Corporation Solenoid controlled respiratory gas demand valve
US10792449B2 (en) 2017-10-03 2020-10-06 Breathe Technologies, Inc. Patient interface with integrated jet pump
GB202013603D0 (en) 2020-08-28 2020-10-14 Honeywell Int Inc Obogs controller
US11701527B2 (en) 2020-08-31 2023-07-18 B/E Aerospace, Inc. Enclosed system environment pressure regulator
EP3964267A1 (fr) 2020-09-07 2022-03-09 B/E Aerospace Systems GmbH Système de régulation de la demande d'oxygène par dilution en phase (pddor) pour la respiration individuelle
CN113633861A (zh) * 2021-08-04 2021-11-12 北京鸣达舒医疗科技有限公司 双向通气结构及可调节吸入氧浓度的给氧装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336590A (en) 1979-05-02 1982-06-22 Intertechnique Devices for controlling gas flows
US4648397A (en) * 1985-10-28 1987-03-10 The United States Of America As Represented By The Secretary Of The Air Force Electronically compensated pressure dilution demand regulator
US4651728A (en) * 1984-09-28 1987-03-24 The Boeing Company Breathing system for high altitude aircraft
US4664108A (en) * 1984-05-25 1987-05-12 Figgie International Inc. Oxygen supply system and device therefor
US4823788A (en) * 1988-04-18 1989-04-25 Smith Richard F M Demand oxygen controller and respiratory monitor
US4928682A (en) * 1987-10-14 1990-05-29 Normalair-Garrett (Holdings) Limited Aircraft on-board oxygen generating systems
US5318019A (en) * 1992-03-19 1994-06-07 Celaya Marty A Emergency portable oxygen supply unit
US5799652A (en) * 1995-05-22 1998-09-01 Hypoxico Inc. Hypoxic room system and equipment for Hypoxic training and therapy at standard atmospheric pressure
FR2778575A1 (fr) 1998-05-12 1999-11-19 Intertechnique Sa Equipement de protection respiratoire a mise en place rapide

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB949221A (en) * 1960-07-19 1964-02-12 Kidde Walter Co Ltd Improvements in or relating to breathing apparatus
CA1151050A (fr) * 1979-06-12 1983-08-02 Joseph G.A. Porlier Dispositif de controle du melange gazeux pour masques a oxygene
FR2614118B1 (fr) * 1987-04-15 1989-07-13 Intertechnique Sa Regulateur a la demande de fourniture de gaz respiratoire
US4827964A (en) * 1987-04-23 1989-05-09 Mine Safety Appliances Company System for metering of breathing gas for accommodation of breathing demand
GB8729501D0 (en) * 1987-12-18 1988-02-03 Normalair Garrett Ltd Aircraft aircrew life support systems
GB9005562D0 (en) * 1990-03-13 1990-05-09 Normalair Garrett Ltd Aircraft aircrew life support apparatus
GB9208481D0 (en) * 1992-04-16 1992-06-03 Normalair Garrett Ltd Breathing demand regulators
US5701889A (en) * 1992-08-12 1997-12-30 Conax Florida Corporation Oxygen breathing controller having a G-sensor
US5645055A (en) * 1992-08-12 1997-07-08 Conax Florida Corporation Oxygen breathing controller
GB9224797D0 (en) * 1992-11-26 1993-01-13 Normalair Garrett Ltd Air-oxygen mixture controllers for breathing demand regulators
US6000396A (en) * 1995-08-17 1999-12-14 University Of Florida Hybrid microprocessor controlled ventilator unit
US5881725A (en) * 1997-08-19 1999-03-16 Victor Equipment Company Pneumatic oxygen conserver
DE19753580C2 (de) * 1997-12-03 2000-01-13 Draeger Aerospace Gmbh Reglervorrichtung für die Druckbeaufschlagung von Anti-G-Pilotenhosen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336590A (en) 1979-05-02 1982-06-22 Intertechnique Devices for controlling gas flows
US4664108A (en) * 1984-05-25 1987-05-12 Figgie International Inc. Oxygen supply system and device therefor
US4651728A (en) * 1984-09-28 1987-03-24 The Boeing Company Breathing system for high altitude aircraft
US4648397A (en) * 1985-10-28 1987-03-10 The United States Of America As Represented By The Secretary Of The Air Force Electronically compensated pressure dilution demand regulator
US4928682A (en) * 1987-10-14 1990-05-29 Normalair-Garrett (Holdings) Limited Aircraft on-board oxygen generating systems
US4823788A (en) * 1988-04-18 1989-04-25 Smith Richard F M Demand oxygen controller and respiratory monitor
US5318019A (en) * 1992-03-19 1994-06-07 Celaya Marty A Emergency portable oxygen supply unit
US5799652A (en) * 1995-05-22 1998-09-01 Hypoxico Inc. Hypoxic room system and equipment for Hypoxic training and therapy at standard atmospheric pressure
FR2778575A1 (fr) 1998-05-12 1999-11-19 Intertechnique Sa Equipement de protection respiratoire a mise en place rapide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006005372A1 (fr) 2004-07-15 2006-01-19 Intertechnique Regulateur de masque de dilution sur demande et procede pour reguler l'ajout d'oxygene dans le regulateur de masque
JP2008505722A (ja) * 2004-07-15 2008-02-28 インテルテクニーク 要求型希釈マスクレギュレータ及びマスクレギュレータにおける補給用酸素の調節方法
US7584753B2 (en) 2004-07-15 2009-09-08 Intertechnique Demand and dilution mask regulator and method of regulating additional oxygen in the mask regulator

Also Published As

Publication number Publication date
DE60205033D1 (de) 2005-08-18
EP1441812B1 (fr) 2005-07-13
US20030084901A1 (en) 2003-05-08
FR2831825B1 (fr) 2004-01-30
CA2460462A1 (fr) 2003-05-15
DE60205033T2 (de) 2006-04-20
FR2831825A1 (fr) 2003-05-09
EP1579890A1 (fr) 2005-09-28
EP1441812A1 (fr) 2004-08-04
US6789539B2 (en) 2004-09-14
CA2460462C (fr) 2008-07-29

Similar Documents

Publication Publication Date Title
EP1441812B1 (fr) Procede et dispositif de regulation a dilution pour appareil respiratoire
EP0662009B1 (fr) Dispositif d'aide a la respiration
EP2038015B1 (fr) Circuit d'alimentation en gaz respiratoire pour alimenter en oxygène les membres d'équipage et les passagers d'un aéronef
EP0546909B1 (fr) Installation de protection respiratoire pour passagers d'aéronef
EP1275415B1 (fr) Appareil respiratoire et installation de protection contre l'hypoxie en comportant application
WO1989005669A1 (fr) Procede de regulation d'un dispositif de ventilation artificielle et un tel dispositif
FR2520237A1 (fr) Appareil de protection respiratoire avec circuit du gaz respire
CA2542989C (fr) Regulateur de masque de dilution sur demande et procede pour reguler l'ajout d'oxygene dans le regulateur de masque
EP1100590B1 (fr) Regulateur a la demande pour systeme respiratoire
WO1994006499A1 (fr) Dispositif d'aide a la respiration
FR2918286A1 (fr) Dispositif d'alimentation en oxygene, notamment pour pilotes d'avion
WO2008010015A1 (fr) Circuit d'alimentation en gaz respiratoire destiné à fournir de l'oxygène aux membres d'équipage et aux passagers
EP1448270A1 (fr) Procede et dispositif de protection des passagers d'un aeronef contre l'hypoxie
FR2903319A1 (fr) Masque a oxygenes pour cockpit
WO2024023421A1 (fr) Système respiratoire, notamment pour un aéronef
FR2613234A1 (fr) Equipement respirateur de protection contre la noyade, notamment pour pilote d'engin motonautique
WO2021139947A1 (fr) Appareil de fourniture d'oxygène à un utilisateur de véhicule et véhicule comprenant un tel appareil
FR2887776A1 (fr) Appareil de ventilation
FR3009966A1 (fr) Appareil d'assistance respiratoire pour des personnes souffrant de troubles respiratoires et procede de ventilation mis en œuvre par ledit appareil
FR2727022A1 (fr) Dispositif de commande d'assistance respiratoire
FR2580936A1 (fr) Systeme de ventilation et de protection respiratoire p our des utilisateurs de vehicules evoluant en milieu contamine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002793196

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2460462

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2002793196

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002793196

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP