WO2003037183A1 - Magnetic resonance imaging device - Google Patents

Magnetic resonance imaging device Download PDF

Info

Publication number
WO2003037183A1
WO2003037183A1 PCT/JP2002/009631 JP0209631W WO03037183A1 WO 2003037183 A1 WO2003037183 A1 WO 2003037183A1 JP 0209631 W JP0209631 W JP 0209631W WO 03037183 A1 WO03037183 A1 WO 03037183A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
pulse
gradient magnetic
gradient
slice
Prior art date
Application number
PCT/JP2002/009631
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinori Togasawa
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2003539531A priority Critical patent/JP4319035B2/en
Publication of WO2003037183A1 publication Critical patent/WO2003037183A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56518Correction of image distortions, e.g. due to magnetic field inhomogeneities due to eddy currents, e.g. caused by switching of the gradient magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5615Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]

Definitions

  • the present invention relates to a magnetic resonance imaging apparatus (hereinafter, referred to as an MRI apparatus) for imaging nuclear distribution and spectrum information in a subject by utilizing a nuclear magnetic resonance phenomenon.
  • an MRI apparatus magnetic resonance imaging apparatus
  • a multi-shot based on the Carr-Purcel l-Meiboom-Gill (CPMG) method was used to reduce the eddy currents and artifacts generated by the residual gradient magnetic field due to the influence of the gradient magnetic field for the previous shot or slice measurement.
  • the present invention relates to an improvement of an MRI apparatus having a single-slice slice and a multi-shot multi-slice imaging pulse sequence. Background technology
  • An MRI apparatus applies a high-frequency magnetic field to a subject placed in a uniform static magnetic field, causing nuclear magnetic resonance to occur in nuclei (usually protons) existing in an arbitrary region of the subject, thereby generating the nuclear magnetic resonance.
  • the tomographic image of the area is obtained from the nuclear magnetic resonance signal (echo signal).
  • an MRI apparatus applies a slice gradient magnetic field that specifies a plane on which a tomographic image of a subject is to be obtained, and simultaneously applies an excitation pulse (high-frequency pulse) that excites spins in the plane, and is excited by this. Obtain the echo signal generated when the spin converges.
  • a phase encoding gradient magnetic field and a readout (frequency encoding) gradient magnetic field are applied in directions orthogonal to each other in the tomographic plane during the period from excitation to obtaining the echo signal.
  • the echoes thus obtained are arranged in k-space with the phase encoding direction as the ordinate and the readout direction as the abscissa, and an image is reconstructed by performing an inverse Fourier transform on the data arranged in the k-space.
  • a high-frequency pulse for generating an echo signal and each gradient magnetic field are applied based on a preset pulse sequence.
  • Various pulse sequences are known according to the purpose of imaging.
  • the fast spin echo method 180 ° inversion pulses equal to the number of set echo numbers are applied after the 90 ° excitation pulse, and at that time, echo signals are collected by giving a different phase encoding amount for each echo number. It is a high-speed imaging method that acquires multiple echo signals with a short repetition time (TR).
  • Fig. 5A shows the pulse sequence by the fast spin echo method based on the CPMG method
  • Fig. 5B shows the behavior of the spin due to it.
  • the high-frequency pulse and the frequency code ( Readout) Only the gradient magnetic field in the direction is shown.
  • a 90 ° excitation pulse 51 by applying a 90 ° excitation pulse 51, a specific spin tilted to the x′-y ′ plane is rotated from the position 1 to 2 by the gradient magnetic field 53.
  • the amount of phase rotation at this time is defined as Next, the position is changed from 2 to 3 by the 180 ° inversion pulse 52, and further moved from 3 to 4 by the gradient magnetic field 54.
  • the gradient magnetic field 53 and the gradient magnetic field 54 have an applied intensity X application time of 1: 2, and thus the phase rotation amount at this time is 2.
  • the same repetition occurs at the position of 5 to 6 by the next inversion pulse 52 and gradient magnetic field 54, but when the first 1: 2 relationship is broken, multiple echo signals are generated.
  • spin rotation errors occur in the spins and accumulate, causing signal loss and the like, and artifacts occur.
  • Japanese Patent Application Laid-Open No. H11-89817 discloses a magnetic detection method that generates a correction magnetic field waveform for correcting a gradient field distortion due to eddy current. It has been proposed to introduce a digital eddy current correction circuit including a circuit.
  • Eddy current correction by adding a hardware circuit as described above is extremely effective in correcting gradient magnetic field distortion due to eddy currents with little fluctuation, but fluctuations occur in pulse sequences with different conditions such as the number of slices and repetition time. It is not possible to deal with the residual magnetic field.
  • a plurality of slices three in this case, S1 to S3 are measured adjacent or very close within a given repetition time TR
  • Imaging is repeated by equally distributing the time for each slice.
  • the time interval between slices (the time from the end of measurement of one slice to the measurement of the next slice) is not always the same, so that a certain time due to eddy currents generated in the magnet's conductive members, etc.
  • the gradient magnetic field error component that attenuates with a constant is different for each slice, and this error component affects the slice to be measured next, so that the spin is affected by a different phase error for each slice.
  • the residual gradient magnetic field component due to the magnetic hysteresis will also be different if the time interval between each slice is different. Therefore, the resulting phase error component of the spin which differs for each slice cannot be completely removed by the zero-order or first-order phase error correction. Therefore, it was difficult to remove the artifacts caused by these phase errors, especially in a multi-shot multi-slice using the fast spin echo method based on the CPMG method that requires the accuracy of the spin phase.
  • an object of the present invention is to provide a gradient magnetic field applied at the time of the immediately preceding shot or slice measurement in an MRI apparatus having an imaging function using a multi-shot single slice and a multi-shot multi-slice pulse sequence based on the CPMG method.
  • the gradient magnetic field error component that fluctuates for each shot or slice due to eddy current or residual magnetic field due to The purpose is to suppress the artifacts caused by the phase rotation error of the spins generated for each shot or slice. Disclosure of the invention
  • the present invention provides an MRI apparatus having an imaging function based on a multi-slice method pulse sequence, in which a different residual gradient magnetic field component for each slice, which is mixed in a slice measurement to be measured next from a slice measurement completed immediately before, is used for each slice measurement.
  • a predetermined amount of gradient magnetic field pre-pulse is applied prior to application of the excitation pulse in each slice measurement so that the same value is applied when the excitation pulse (first high-frequency magnetic field pulse) is applied.
  • the residual component of the gradient magnetic field pre-pulse is canceled by the time of applying the second high frequency magnetic field pulse after the excitation.
  • a gradient magnetic field component is applied.
  • the imperfections of the gradient magnetic field applied in the immediately preceding shot or slice measurement at the time of applying the 90 ° excitation high-frequency pulse for spin excitation can be obtained by adding a gradient magnetic field pre-pulse.
  • the error component due to the gradient magnetic field is substantially nullified. Only the known and constant gradient magnetic field error component due to the gradient magnetic field pre-pulse can be artificially introduced.
  • the phase rotation error component that is uniform over each shot or slice of the spin caused by such a constant residual gradient magnetic field error component that does not fluctuate can be easily removed by zero-order or first-order correction, and the Can be controlled.
  • the gradient magnetic field pre-pulse is applied a predetermined time before the application of the 90 ° excitation high-frequency magnetic field pulse.
  • the MRI apparatus of the present invention is suitable for an MRI apparatus having a multi-shot multi-slice type pulse sequence based on the CPMG method. That is, in a preferred embodiment of the present invention, the 90 ° excitation high-frequency magnetic field pulse and the 180 ° inverted high-frequency magnetic field pulse are applied such that their applied axes are orthogonal to each other in the rotating coordinate system.
  • FIG. 1 is a diagram showing an overall outline of an MRI apparatus to which the present invention is applied.
  • FIG. 2 is a diagram showing an imaging sequence by the high-speed spin echo method based on the CPMG method provided in the MRI apparatus of the present invention.
  • Figure 3 illustrates the incompleteness of the gradient magnetic field due to eddy currents.
  • FIG. 4 is a diagram illustrating a residual gradient magnetic field due to magnetic hysteresis.
  • FIG. 5A is a diagram illustrating a conventional high-speed spin echo method based on the CPMG method.
  • FIG. 5B is a diagram for explaining the behavior of the spin in the sequence of FIG. 5A.
  • FIG. 6 is a diagram for explaining a change in a gradient magnetic field error component in multi-slice imaging.
  • FIG. 1 is a block diagram showing the overall configuration of an MRI device to which the present invention is applied.
  • This MRI apparatus mainly includes a static magnetic field generating magnet 2 for generating a uniform static magnetic field in a space where the subject 1 is placed, a gradient magnetic field generating system 3 for applying a magnetic field gradient to the static magnetic field, and a tissue of the subject 1.
  • a transmission system 5 that generates a high-frequency magnetic field that causes nuclear magnetic resonance in the nuclei (usually, protons) of the atoms that make up the target, a reception system 6 that receives an echo signal generated from the subject 1 by nuclear magnetic resonance,
  • the signal processing system 7 processes the echo signal received by the receiving system 6 and creates an image representing the spatial density and spectrum of the nucleus.
  • the signal processing system 7 performs various operations and controls the entire device.
  • a central processing unit (CPU) 8 is provided.
  • the static magnetic field generating magnet 2 is composed of a permanent magnet, a normal conducting type or a superconducting type magnet, and generates a uniform static magnetic field around the subject 1 in the body axis direction or in a direction orthogonal to the body axis.
  • the gradient magnetic field generation system 3 includes a gradient magnetic field coil 9 wound in three directions of x, y, and z, and a gradient magnetic field power supply 10 for driving each gradient magnetic field coil. Drives the gradient power supply 10 for each coil according to Thereby, gradient magnetic fields Gx, Gy, Gz in the three axes of x, y, z are applied to the subject 1.
  • an imaging target region (slice, slab) of the subject 1 can be set, and position information such as phase encoding and frequency encoding can be added to the echo signal.
  • the triaxial gradient magnetic fields Gx, Gy, and Gz can be any of the slice gradient magnetic field Gs, the phase encode gradient magnetic field Gp, and the frequency encode gradient magnetic field Gf according to the set cross section of the MRI apparatus. Can correspond.
  • the transmission system 5 irradiates a high-frequency magnetic field to cause nuclear magnetic resonance in the nuclei of the atoms constituting the biological tissue of the subject 1 by the high-frequency pulse sent from the sequencer 4, and includes a high-frequency oscillator 11; It comprises a modulator 12, a high-frequency amplifier 13, and a high-frequency coil 14a on the transmission side.
  • the high-frequency pulse output from the high-frequency oscillator 11 is amplitude-modulated by the modulator 12, and the amplitude-modulated high-frequency pulse is amplified by the high-frequency amplifier 13 and then placed close to the subject 1.
  • the subject 1 is irradiated with a high-frequency magnetic field (electromagnetic wave) by supplying it to the high-frequency coil 14a.
  • the receiving system 6 detects an echo signal (NMR signal) emitted from the subject 1 by nuclear magnetic resonance, and includes a high-frequency coil 14b on the receiving side, an amplifier 15, a quadrature phase detector 16, A / D converter 17.
  • the echo signal detected by the high-frequency coil 14b is input to the A / D converter 17 via the amplifier 15 and the quadrature detector 16 to convert the echo signal into a digital signal. And sent to the signal processing system 7 as two series of collected data.
  • the signal processing system 7 includes a CFU 8, a recording device 18 such as a magnetic disk and a magnetic tape, and a display 19 such as a CRT.
  • the CPU 8 performs processing such as Fourier transform, correction coefficient calculation, and image reconstruction operation. The obtained image and image are displayed on the display 19. Further, the CPU 8 sends various commands necessary for data collection of tomographic images of the subject 1 to the gradient magnetic field generation system 3, the transmission system 5, and the reception system 6 via the sequencer 4.
  • the sequencer 4 generates a gradient magnetic field so as to collect data necessary for image reconstruction according to a pulse sequence which is a time chart of a predetermined control determined by an imaging method. Controls raw 3, transmitting 5 and receiving 6.
  • the pulse sequence includes a pulse sequence based on the CPMG method, for example, a pulse sequence based on the high-speed spin echo method. Such a pulse sequence is incorporated in the CPU 8 as a program.
  • FIG. 2 is a diagram showing a pulse sequence for one slice in the whole pulse sequence by the multi-shot multi-slice type fast spin echo method shown in FIG.
  • a gradient magnetic field 25 to 27 as a pre-pulse is added to the pulse sequence based on the conventional high-speed spin echo method based on the CPMG method, and the subsequent pulse trains are almost the same as the conventional pulse sequence.
  • a 90 ° excitation pulse 21 is applied simultaneously with the first slice selection gradient magnetic field 20 for selecting a predetermined cross section to excite spins in the cross section .
  • a plurality of 180 ° inversion pulses 22 are sequentially applied simultaneously with the slice selection gradient magnetic field 20 to generate an echo signal.
  • a phase encoding gradient magnetic field 23, 23 ' having a different polarity and strength is applied to give a different amount of phase encoding to each echo signal, and a gradient magnetic field 24 in the frequency direction is applied to generate an echo signal. measure.
  • a dephasing gradient magnetic field 24 ' is applied prior to the generation of the echo signal.
  • the illustrated pulse sequence is based on the CPMG method.
  • the applied axis y ′ of the 180 ° inversion pulse 22 is orthogonal to the applied axis x ′ of the 90 ° excitation pulse 21 and the 180 ° inverted pulse.
  • the application interval is set to be exactly twice the interval between the 90 ° excitation pulse and the first 180 ° inversion pulse.
  • the pulse sequence of the high-speed spin echo method based on the CPMG method is repeatedly executed by setting a plurality of slices within the repetition time TR to acquire the necessary number of echo signals to reconstruct an image for each slice You.
  • Prepulse gradient applied before the 90 ° excitation pulse in the pulse sequence Nos. 25 to 27 give a constant gradient magnetic field error component which does not fluctuate when a 90 ° excitation pulse is applied.
  • the induced phase error of the spin is made constant, ie, a phase error that can be subsequently removed by zero-order and first-order correction.
  • FIG. Figure 3 is a diagram showing a case where the gradient magnetic field has imperfections due to eddy currents.
  • the time from the application of the prepulse gradient magnetic field 25 to the application of the 90 ° excitation pulse 21 is made constant in the pulse sequence for each slice, so that the residual gradient magnetic field of the prepulse 25 becomes 90 °
  • the amount of phase rotation given to the excited spin ( ⁇ can always be set to the 0th and ⁇ 1st order correctable constant value iS later.
  • Such a constant phase rotation amount] 8 In the case of a slice gradient magnetic field, by adjusting the intensity of the refresh gradient magnetic field 20 ′ applied immediately after the 90 ° excitation pulse, the correction can be made so as to maintain the CPMG effect.
  • the error component due to the residual gradient magnetic field can be kept constant by keeping the time from the application of the pre-pulse gradient magnetic field to the application of the 90 ° excitation pulse constant. Is also removed by correction in the same manner as above. You can leave.
  • the pre-pulse is for keeping the residual gradient magnetic field constant, its intensity does not require a strong gradient magnetic field intensity such as a spoil gradient magnetic field, and the gradient applied in the pulse sequence is not required. It is sufficient to use the same strength and application time as the magnetic field.
  • the intensity of the slice selection gradient magnetic field changes depending on the set slice thickness, so that the phase error component in the slice direction is inversely proportional to the slice thickness. Become a relationship. Therefore, it is preferable to change the applied intensity of the prepulse gradient magnetic field 25 in inverse proportion to the slice thickness. As a result, a linear phase error component can be generated with respect to the applied intensity of the slice selection gradient magnetic field. Therefore, the rephase gradient magnetic field immediately after the first slice selection gradient magnetic field 20 can be easily added or subtracted at the time of application. Can be corrected.
  • the applied intensity and application time of the pre-pulse 27 are set to be the same as the applied intensity and application time of the phase gradient magnetic field 24 ', and the application of the 90 ° excitation pulse 21 is repeated.
  • the amount of application of the phase gradient magnetic field 24 ' is adjusted in order to correct the phase rotation of the spin due to the residual gradient magnetic field due to the prepulse 27 applied to the spins before the start of the application of the phase gradient magnetic field 24'.
  • the applied amount of the phase gradient magnetic field 24 ' is adjusted, the applied amount of the read gradient magnetic field 24 applied thereafter must be changed accordingly.
  • phase encoding direction in order to prevent the accumulation of the amount of phase rotation, it is preferable to use bipolar pre-pulses 26 and 26 'which are applied with close timing as shown in the figure. Further, it is preferable that the intensity of the pre-pulse in the phase encoding direction is changed depending on the number of phase encodings. That is, in the pulse sequence by the high-speed spin echo method, the intensity of the phase encoding gradient magnetic field 23, 23 'changes at each repetition. The pre-pulses 26 and 26 are applied in the same manner as the applied intensity and application time of the phase-encoding gradient magnetic field applied at the beginning of this repetition.
  • phase rotation error canceling gradient magnetic field pulse 26 By applying the phase rotation error canceling gradient magnetic field pulse 26 "to correct the phase rotation of the spin due to the residual gradient magnetic field due to the pre-pulses 26, 26 applied to the spin later, as in the case of the gradient magnetic field in other directions, Correction can be performed and the CPMG effect is maintained.
  • image reconstruction using echo signals acquired by repeating the pulse sequence to which the pre-pulse is applied is the same as that of a conventional MRI apparatus.
  • the resulting image is an image in which the artifact caused by the imperfect gradient magnetic field is suppressed.
  • FIG. 2 shows a case in which pre-pulses 25 to 27 are applied in three directions, ie, a slice direction, a phase encoder direction, and a frequency direction.
  • the effect can be obtained by performing at least one in one direction.
  • FIG. 2 shows the case of sequential ordering as the measurement order in the k-space, but the measurement order can be arbitrary.
  • Fig. 2 shows an imaging method using the fast spin echo method as a pulse sequence based on the CPMG method.
  • a sequence of a 90 ° excitation pulse and a plurality of 180 ° inversion pulses is repeated several times and multiple It can be applied as long as it is an imaging method that measures the echo of an object.
  • a gradient echo and spin echo imaging method in which a gradient magnetic field in the frequency direction is repeatedly inverted and a plurality of echo signals are measured after applying a 180 ° inversion pulse ( GRASE) can also be applied.
  • GRASE 180 ° inversion pulse
  • the gradient magnetic field error component that fluctuates according to the set TR, the number of multi-slices, and the like, and the phase error of the spin due to the gradient magnetic field error component. Reduce the impact Artifacts due to phase errors can be effectively suppressed.
  • an MRI apparatus having a multi-shot single slice and a multi-shot multi-slice pulse sequence that requires high speed and high image quality based on the CPMG method according to the present invention is useful as a medical image diagnostic apparatus. .

Abstract

An MRI device has an imaging pulse sequence for measuring echo signals by applying 90° excitation pulse (21) and an inverting 180° high-frequency magnetic field pulse (22) a plurality of times. In performing this pulse sequence, prepulses (25-27) for keeping constant the gradient magnetic field error component entering during the immediately previous slice measurement before the application of the 90° excitation pulse (21) are applied a predetermined time before the application of the 90° excitation pulse (21). In this way, the fluctuation gradient magnetic field error component caused by the gradient magnetic field applied during the immediately previous slice measurement is made ineffective, and the residual gradient magnetic field component during the application of the 90° excitation pulse (21) is always kept uniform, thus making the spin phase rotation error caused later a constant error component that can be eliminated by later correction. Thus an MRI device by an imaging method using a pulse train by the CPMG method is provided from which the gradient magnetic field error component varying depending on the imaging condition and the influence of the spin phase error caused by the error component are eliminated and which creates an image for which the artifact due to the spin phase error is suppressed.

Description

磁気共鳴イメージング装置 Magnetic resonance imaging equipment
技術分野 Technical field
この発明は核磁気共鳴現象を利用明して被検体内の原子核分布やスぺク トル情報 を画像化する磁気共鳴イメージング装置 (以下、 M R I装置という) に関し、 特 田  The present invention relates to a magnetic resonance imaging apparatus (hereinafter, referred to as an MRI apparatus) for imaging nuclear distribution and spectrum information in a subject by utilizing a nuclear magnetic resonance phenomenon.
に直前のショッ トあるいはスライス計測のための傾斜磁場印加の影響による渦電 流や残留傾斜磁場により発生するアーチファク トの低減を図った C P M G (Carr - Purcel l-Meiboom-Gi l l) 法に基づくマルチシヨ ッ トシングルスライスおよびマ ルチシヨッ トマルチスライス撮像パルスシーケンスを有する M R I装置の改良に 関する。 背景の技術 A multi-shot based on the Carr-Purcel l-Meiboom-Gill (CPMG) method was used to reduce the eddy currents and artifacts generated by the residual gradient magnetic field due to the influence of the gradient magnetic field for the previous shot or slice measurement. The present invention relates to an improvement of an MRI apparatus having a single-slice slice and a multi-shot multi-slice imaging pulse sequence. Background technology
M R I装置は、 均一な静磁場中に置かれた被検体に高周波磁場を印加すること によって、 被検体の任意の領域に存在する原子核 (通常プロトン) に核磁気共鳴 を生じさせ、 それによつて発生する核磁気共鳴信号 (エコー信号) からその領域 の断層像を得るものである。 通常、 M R I装置では、 被検体の断層像を得ようと する平面を特定するスライス傾斜磁場を印加すると同時にその平面内のスピンを 励起する励起パルス (高周波パルス) を印加し、 これにより励起されたスピンが 収束する段階で発生するエコー信号を得る。 エコー信号に位置情報を与えるため 、 励起からエコー信号を得るまでの間に、 断層面内で互いに直交する方向に位相 エンコード傾斜磁場及びリードアウト (周波数エンコード) 傾斜磁場を印加する 。 こうして取得されたエコーを位相エンコード方向を縦軸、 リードアウト方向を 横軸とする k空間に配置し、 この k空間に配置されたデータに対して逆フーリェ 変換を施すことにより画像が再構成される。 エコー信号を発生させるための高周波パルスと各傾斜磁場は、 予め設定された パルスシーケンスに基づいて印加される。 撮像の目的に応じて種々のパルスシ一 ケンスが知られている。 その中の高速スピンエコー法は、 90° 励起パルスの後に 設定したエコー番号の数だけの 180° 反転パルスを印加し、 その際、 エコー番号 ごとに異なる位相エンコード量を与えてエコー信号を収集し、 短い繰り返し時間 (T R ) で複数のエコー信号を取得する高速撮像法である。 An MRI apparatus applies a high-frequency magnetic field to a subject placed in a uniform static magnetic field, causing nuclear magnetic resonance to occur in nuclei (usually protons) existing in an arbitrary region of the subject, thereby generating the nuclear magnetic resonance. The tomographic image of the area is obtained from the nuclear magnetic resonance signal (echo signal). Normally, an MRI apparatus applies a slice gradient magnetic field that specifies a plane on which a tomographic image of a subject is to be obtained, and simultaneously applies an excitation pulse (high-frequency pulse) that excites spins in the plane, and is excited by this. Obtain the echo signal generated when the spin converges. In order to give positional information to the echo signal, a phase encoding gradient magnetic field and a readout (frequency encoding) gradient magnetic field are applied in directions orthogonal to each other in the tomographic plane during the period from excitation to obtaining the echo signal. The echoes thus obtained are arranged in k-space with the phase encoding direction as the ordinate and the readout direction as the abscissa, and an image is reconstructed by performing an inverse Fourier transform on the data arranged in the k-space. You. A high-frequency pulse for generating an echo signal and each gradient magnetic field are applied based on a preset pulse sequence. Various pulse sequences are known according to the purpose of imaging. In the fast spin echo method, 180 ° inversion pulses equal to the number of set echo numbers are applied after the 90 ° excitation pulse, and at that time, echo signals are collected by giving a different phase encoding amount for each echo number. It is a high-speed imaging method that acquires multiple echo signals with a short repetition time (TR).
この高速スピンエコー法では、 180° 反転パルスの印加軸を、 90° 励起パルス の印加軸と異ならせる C P M G法に基づくパルス列を利用することが一般的であ る。 この C P M G法は、 180° パルスの不完全性 (核スピンが完全な 180° になら ないこと) を補償できる優れた効果があるが、 励起パルスの位相と傾斜磁場を高 精度に制御する必要があり、 渦電流や磁気ヒステリシスなどによる傾斜磁場の歪 、 不完全性が発生すると画像にアーチファク トが発生する。 この傾向は静磁場発 生磁石として永久磁石方式を採用した M R I装置に多く生じる。 なお C P M G法 のパルス列については、 例えば、 米国特許 4, 818, 940を参照されたい。  In this fast spin echo method, it is common to use a pulse train based on the CPMG method in which the application axis of the 180 ° inversion pulse is different from the application axis of the 90 ° excitation pulse. This CPMG method has an excellent effect of compensating for imperfections of the 180 ° pulse (the nuclear spin does not become perfect 180 °), but it is necessary to control the phase of the excitation pulse and the gradient magnetic field with high precision. Yes, distortion and incompleteness of the gradient magnetic field due to eddy current and magnetic hysteresis cause artifacts in the image. This tendency often occurs in MRI devices that use a permanent magnet method as a static magnetic field generating magnet. For the pulse train of the CPMG method, see, for example, US Pat. No. 4,818,940.
このことを図 5 Aおよび 5 Bにより説明する。 図 5 Aは C P M G法に基づく高 速スピンエコー法によるパルスシーケンスを、 図 5 Bはそれによるスピンの挙動 を示す図であり、 ここでは説明を箇単にするために高周波パルスと周波数ェンコ —ド (リードアウト) 方向の傾斜磁場のみを示している。 図示するように 90° 励 起パルス 51を印加することによって、 x '- y '平面に倒された特定のスピンは傾斜 磁場 53によって 1から 2の位置に回転する。 このときの位相回転量を とする。 次 に 180° 反転パルス 52によって 2から 3の位置になり、 さらに傾斜磁場 54により 3か ら 4の位置に移動する。 ここで傾斜磁場 53と傾斜磁場 54は、 印加強度 X印加時間 が 1 : 2の関係にあるので、 このときの位相回転量は 2 となる。 その後は、 次の 反転パルス 52および傾斜磁場 54によって 5から 6の位置というように同様の繰り返 しとなるが、 最初の 1 : 2の関係が崩れると、 エコー信号を複数発生しているうち に、 スピンに位相回転誤差が発生するとともに累積し、 信号欠損等を生じ、 ァ一 チファク トが発生する。 一般に傾斜磁場の歪、 不完全性に起因するアーチファタ トの抑制方法として、 例えば、 特開平 11- 89817号には、 渦電流に起因した傾斜 場の歪を補正する補正 磁場波形を発生させる磁気検出回路を含むディジタル渦電流補正回路を導入する ことが提案されている。 This will be described with reference to FIGS. 5A and 5B. Fig. 5A shows the pulse sequence by the fast spin echo method based on the CPMG method, and Fig. 5B shows the behavior of the spin due to it. Here, for the sake of simplicity, the high-frequency pulse and the frequency code ( Readout) Only the gradient magnetic field in the direction is shown. As shown in the figure, by applying a 90 ° excitation pulse 51, a specific spin tilted to the x′-y ′ plane is rotated from the position 1 to 2 by the gradient magnetic field 53. The amount of phase rotation at this time is defined as Next, the position is changed from 2 to 3 by the 180 ° inversion pulse 52, and further moved from 3 to 4 by the gradient magnetic field 54. Here, the gradient magnetic field 53 and the gradient magnetic field 54 have an applied intensity X application time of 1: 2, and thus the phase rotation amount at this time is 2. After that, the same repetition occurs at the position of 5 to 6 by the next inversion pulse 52 and gradient magnetic field 54, but when the first 1: 2 relationship is broken, multiple echo signals are generated. At the same time, spin rotation errors occur in the spins and accumulate, causing signal loss and the like, and artifacts occur. Generally, as a method of suppressing artifacts due to gradient magnetic field distortion and imperfection, for example, Japanese Patent Application Laid-Open No. H11-89817 discloses a magnetic detection method that generates a correction magnetic field waveform for correcting a gradient field distortion due to eddy current. It has been proposed to introduce a digital eddy current correction circuit including a circuit.
上述したようなハードの回路の追加による渦電流補正は、 変動の少ない渦電流 による傾斜磁場歪補正には極めて有効であるが、 スライス数や繰り返し時間等の 条件が異なるパルスシーケンスの場合の変動する残留磁場については対応するこ とはできない。 例えば、 図 6に示すような、 与えられた繰り返し時間 T R内に隣 接したまたは非常に接近した複数の (この場合 S 1〜S 3の 3枚の) スライスの 計測を行なうマルチスライス計測では、 スライスごとの計測を均等に時間配分す ることにより撮像を繰り返している。 しかし、 各スライス間の時間間隔 (1のス ライスの計測終了から次のスライス計測までの時間) が必ずしも等間隔になると は限らないため、 磁石の導電体部材等に生じる渦電流による一定の時定数をもつ て減衰してゆく傾斜磁場誤差成分はスライス毎に異なり、 この誤差成分は次に計 測されるスライスに影響を与えることになるため、 スライス毎にスピンは異なる 位相誤差の影響を受けることになる、 同様に磁気ヒステリシスによる残留傾斜磁 場成分も、 各スライス間の時間間隔が異なると、 異なることになる。 従って、 そ の結果生じる各スライス毎に異なるスピンの位相誤差成分は、 0次や 1次の位相 誤差補正では完全に除去することはできない。 従って、 特にスピンの位相の精度 が要求される C P M G法に基づく高速スピンエコー法を用いたマルチシヨッ トマ ルチスライスにおいて、 これら位相誤差に起因するアーチファクトを除去するこ とは困難であった。  Eddy current correction by adding a hardware circuit as described above is extremely effective in correcting gradient magnetic field distortion due to eddy currents with little fluctuation, but fluctuations occur in pulse sequences with different conditions such as the number of slices and repetition time. It is not possible to deal with the residual magnetic field. For example, in the multi-slice measurement shown in Fig. 6, in which a plurality of slices (three in this case, S1 to S3) are measured adjacent or very close within a given repetition time TR, Imaging is repeated by equally distributing the time for each slice. However, the time interval between slices (the time from the end of measurement of one slice to the measurement of the next slice) is not always the same, so that a certain time due to eddy currents generated in the magnet's conductive members, etc. The gradient magnetic field error component that attenuates with a constant is different for each slice, and this error component affects the slice to be measured next, so that the spin is affected by a different phase error for each slice. Similarly, the residual gradient magnetic field component due to the magnetic hysteresis will also be different if the time interval between each slice is different. Therefore, the resulting phase error component of the spin which differs for each slice cannot be completely removed by the zero-order or first-order phase error correction. Therefore, it was difficult to remove the artifacts caused by these phase errors, especially in a multi-shot multi-slice using the fast spin echo method based on the CPMG method that requires the accuracy of the spin phase.
そこで本発明の目的は、 C P M G法に基づくマルチシヨッ トシングルスライス およびマルチシヨ ッ トマルチスライスのパルスシーケンスによる撮像機能を有す る M R I装置において、 直前のショッ トあるいはスライス計測の際に印加された 傾斜磁場による渦電流や残留磁場に起因する各ショッ トあるいはスライス毎に変 動する傾斜磁場誤差成分の次のショッ トあるいはスライス計測への混入によって 生じる各ショッ トあるいはスライス毎のスピンの位相回転誤差によって引き起こ されるアーチファクトを抑制することである。 発明の開示 Therefore, an object of the present invention is to provide a gradient magnetic field applied at the time of the immediately preceding shot or slice measurement in an MRI apparatus having an imaging function using a multi-shot single slice and a multi-shot multi-slice pulse sequence based on the CPMG method. The gradient magnetic field error component that fluctuates for each shot or slice due to eddy current or residual magnetic field due to The purpose is to suppress the artifacts caused by the phase rotation error of the spins generated for each shot or slice. Disclosure of the invention
本発明は、 マルチスライス法パルスシーケンスによる撮像機能を有する M R I 装置において、 直前に終了したスライス計測から次に計測されるスライス計測に 混入する、 スライス毎に異なる残留傾斜磁場成分を、 各スライス計測の励起パル ス (第 1 の高周波磁場パルス) 印加時に同一値とするように、 各スライス計測に おける励起パルスの印加に先立って所定量の傾斜磁場プリパルスを印加するよう にしたものである。 また、 前記傾斜磁場プリパルスの残留成分によって励起され た核スピンに生ずる位相回転誤差をキャンセルするために、 励起後の第 2の高周 波磁場パルス印加時までにその傾斜磁場プリパルスの残留成分をキャンセルする 傾斜磁場成分を印加するようにしたものである。  The present invention provides an MRI apparatus having an imaging function based on a multi-slice method pulse sequence, in which a different residual gradient magnetic field component for each slice, which is mixed in a slice measurement to be measured next from a slice measurement completed immediately before, is used for each slice measurement. A predetermined amount of gradient magnetic field pre-pulse is applied prior to application of the excitation pulse in each slice measurement so that the same value is applied when the excitation pulse (first high-frequency magnetic field pulse) is applied. Further, in order to cancel the phase rotation error generated in the nuclear spin excited by the residual component of the gradient magnetic field pre-pulse, the residual component of the gradient magnetic field pre-pulse is canceled by the time of applying the second high frequency magnetic field pulse after the excitation. A gradient magnetic field component is applied.
この M R I装置のよれば、 傾斜磁場プリパルスを追加することによって、 スピ ン励起のための 90° 励起高周波パルス印加の時点で、 直前のショッ トあるいはス ライス計測で印加された傾斜磁場の不完全性による誤差成分を実質的に無効化し . 傾斜磁場プリパルスによる既知で一定不変の傾斜磁場誤差成分のみが人工的に 導入される状態とすることができる。 このような変動しない一定の残留傾斜磁場 誤差成分によって引き起されるスピンの各ショッ トあるいはスライスにわたって 均一な位相回転誤差成分は、 0次或いは 1次の補正によって容易に取り除くこと ができ、 アーチファク トの発生を制御することができる。  According to this MRI system, the imperfections of the gradient magnetic field applied in the immediately preceding shot or slice measurement at the time of applying the 90 ° excitation high-frequency pulse for spin excitation can be obtained by adding a gradient magnetic field pre-pulse. The error component due to the gradient magnetic field is substantially nullified. Only the known and constant gradient magnetic field error component due to the gradient magnetic field pre-pulse can be artificially introduced. The phase rotation error component that is uniform over each shot or slice of the spin caused by such a constant residual gradient magnetic field error component that does not fluctuate can be easily removed by zero-order or first-order correction, and the Can be controlled.
また、 本発明の MR I装置において、 傾斜磁場プリパルスは 90° 励起高周波磁 場パルスの印加の一定時刻前に印加される。  Further, in the MRI apparatus of the present invention, the gradient magnetic field pre-pulse is applied a predetermined time before the application of the 90 ° excitation high-frequency magnetic field pulse.
本発明の M R I装置は、 C P M G法に基づくマルチシヨッ トマルチスライス型 のパルスシーケンスを備えた M R I装置に好適である。 即ち、 本発明の好適な態 様において、 90° 励起高周波磁場パルスと、 反転する 180° 高周波磁場パルスは 、 互いに印加軸が回転座標系において直行するように印加されるものである。 図面の簡単な説明 The MRI apparatus of the present invention is suitable for an MRI apparatus having a multi-shot multi-slice type pulse sequence based on the CPMG method. That is, in a preferred embodiment of the present invention, the 90 ° excitation high-frequency magnetic field pulse and the 180 ° inverted high-frequency magnetic field pulse are applied such that their applied axes are orthogonal to each other in the rotating coordinate system. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明を適用した M R I装置の全体概要を示す図。  FIG. 1 is a diagram showing an overall outline of an MRI apparatus to which the present invention is applied.
図 2は本発明の M R I装置に備えられた C P M G法に基づく高速スピンエコー 法による撮像シーケンスを示す図。  FIG. 2 is a diagram showing an imaging sequence by the high-speed spin echo method based on the CPMG method provided in the MRI apparatus of the present invention.
図 3は渦電流による傾斜磁場の不完全性を説明する図。  Figure 3 illustrates the incompleteness of the gradient magnetic field due to eddy currents.
図 4は磁気ヒステリシスによる残留傾斜磁場を説明する図。  FIG. 4 is a diagram illustrating a residual gradient magnetic field due to magnetic hysteresis.
図 5 Aは従来の C P M G法に基づく高速スピンエコー法を説明する図。  FIG. 5A is a diagram illustrating a conventional high-speed spin echo method based on the CPMG method.
図 5 Bは図 5 Aのシーケンスによるスピンの挙動を説明する図。  FIG. 5B is a diagram for explaining the behavior of the spin in the sequence of FIG. 5A.
図 6はマルチスライス撮像における傾斜磁場誤差成分の変動を説明する図。 発明を実施するための最良の形態  FIG. 6 is a diagram for explaining a change in a gradient magnetic field error component in multi-slice imaging. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態を説明する。  Hereinafter, embodiments of the present invention will be described.
図 1は、 本発明が適用される M R I装置の全体構成を示すブロック図である。 この M R I装置は、 主たる構成として、 被検体 1が置かれる空間に均一な静磁場 を発生させる静磁場発生磁石 2と、 静磁場に磁場勾配を与える傾斜磁場発生系 3 と、 被検体 1の組織を構成する原子の原子核 (通常、 プロトン) に核磁気共鳴を 起こさせる高周波磁場を発生する送信系 5と、 核磁気共鳴によつて被検体 1から 発生するエコー信号を受信する受信系 6と、 受信系 6が受信したエコー信号を処 理し、 前述した原子核の空間密度やスペク トルを表す画像を作成する信号処理系 7と、 信号処理系 7における各種演算や装置全体の制御を行なうための中央処理 装置 (C P U) 8とを備えている。  FIG. 1 is a block diagram showing the overall configuration of an MRI device to which the present invention is applied. This MRI apparatus mainly includes a static magnetic field generating magnet 2 for generating a uniform static magnetic field in a space where the subject 1 is placed, a gradient magnetic field generating system 3 for applying a magnetic field gradient to the static magnetic field, and a tissue of the subject 1. A transmission system 5 that generates a high-frequency magnetic field that causes nuclear magnetic resonance in the nuclei (usually, protons) of the atoms that make up the target, a reception system 6 that receives an echo signal generated from the subject 1 by nuclear magnetic resonance, The signal processing system 7 processes the echo signal received by the receiving system 6 and creates an image representing the spatial density and spectrum of the nucleus.The signal processing system 7 performs various operations and controls the entire device. A central processing unit (CPU) 8 is provided.
静磁場発生磁石 2は、 永久磁石、 常電導方式又は超電導方式の磁石からなり、 被検体 1の周りにその体軸方向または体軸と直交する方向に均一な静磁場を発生 させる。 傾斜磁場発生系 3は、 x、 y、 zの三軸方向に巻かれた傾斜磁場コイル 9と、 それぞれの傾斜磁場コイルを駆動する傾斜磁場電源 1 0とからなり、 後述 のシーケンサ 4からの命令に従ってそれぞれのコイルの傾斜磁場電源 1 0を駆動 することにより、 x、 y、 zの三軸方向の傾斜磁場 Gx、 Gy、 Gzを被検体 1 に印加する。 この傾斜磁場の加え方により、 被検体 1の撮像対象領域 (スライス 、 スラブ) を設定することができるとともに、 エコー信号に、 位相エンコード、 周波数エンコードなどの位置情報を付与することができる。 なお、 この三軸方向 の傾斜磁場 Gx、 Gy、 G zは MR I装置の設定断面に応じてスライス方向傾斜 磁場 G s、 位相エンコード方向傾斜磁場 Gpおよび周波数エンコード方向傾斜磁 場 G f のいづれとも対応させることができる。 The static magnetic field generating magnet 2 is composed of a permanent magnet, a normal conducting type or a superconducting type magnet, and generates a uniform static magnetic field around the subject 1 in the body axis direction or in a direction orthogonal to the body axis. The gradient magnetic field generation system 3 includes a gradient magnetic field coil 9 wound in three directions of x, y, and z, and a gradient magnetic field power supply 10 for driving each gradient magnetic field coil. Drives the gradient power supply 10 for each coil according to Thereby, gradient magnetic fields Gx, Gy, Gz in the three axes of x, y, z are applied to the subject 1. By applying the gradient magnetic field, an imaging target region (slice, slab) of the subject 1 can be set, and position information such as phase encoding and frequency encoding can be added to the echo signal. The triaxial gradient magnetic fields Gx, Gy, and Gz can be any of the slice gradient magnetic field Gs, the phase encode gradient magnetic field Gp, and the frequency encode gradient magnetic field Gf according to the set cross section of the MRI apparatus. Can correspond.
送信系 5は、 シーケンサ 4から送り出される高周波パルスにより被検体 1の生 体組織を構成する原子の原子核に核磁気共鳴を起こさせるために高周波磁場を照 射するもので、 高周波発振器 1 1と、 変調器 1 2と、 高周波増幅器 13と、 送信 側の高周波コイル 14aとからなる。 送信系 5では、 高周波発振器 1 1から出力 された高周波パルスを変調器 1 2で振幅変調し、 この振幅変調された高周波パル スを高周波増幅器 13で増幅した後に被検体 1に近接して配置された高周波コィ ル 14aに供給することにより、 高周波磁場 (電磁波) を被検体 1に照射する。 受信系 6は、 被検体 1から核磁気共鳴により放出されるエコー信号 (NMR信 号) を検出するもので、 受信側の高周波コイル 14bと、 増幅器 1 5と、 直交位 相検波器 16と、 A/D変換器 1 7とからなる。 受信系 6では、 高周波コイル 1 4bで検出したエコー信号を増幅器 1 5及び直交位相検波器 1 6を介して A/D変 換器 1 7に入力して、 エコー信号をディジタル信号に変換するとともに、 二系列 の収集データとして信号処理系 7に送る。  The transmission system 5 irradiates a high-frequency magnetic field to cause nuclear magnetic resonance in the nuclei of the atoms constituting the biological tissue of the subject 1 by the high-frequency pulse sent from the sequencer 4, and includes a high-frequency oscillator 11; It comprises a modulator 12, a high-frequency amplifier 13, and a high-frequency coil 14a on the transmission side. In the transmission system 5, the high-frequency pulse output from the high-frequency oscillator 11 is amplitude-modulated by the modulator 12, and the amplitude-modulated high-frequency pulse is amplified by the high-frequency amplifier 13 and then placed close to the subject 1. The subject 1 is irradiated with a high-frequency magnetic field (electromagnetic wave) by supplying it to the high-frequency coil 14a. The receiving system 6 detects an echo signal (NMR signal) emitted from the subject 1 by nuclear magnetic resonance, and includes a high-frequency coil 14b on the receiving side, an amplifier 15, a quadrature phase detector 16, A / D converter 17. In the receiving system 6, the echo signal detected by the high-frequency coil 14b is input to the A / D converter 17 via the amplifier 15 and the quadrature detector 16 to convert the echo signal into a digital signal. And sent to the signal processing system 7 as two series of collected data.
信号処理系 7は、 CFU8と、 磁気ディスク及び磁気テープ等の記録装置 18 と、 CRT等のディスプレイ 19とからなり、 CPU8でフーリェ変換、 補正係 数計算、 画像再構成演算等の処理を行い、 得られた画,像をディスプレイ 1 9に表 示する。 また CPU 8は、 被検体 1の断層像のデータ収集に必要な種々の命令を 、 シーケンサ 4を介して、 傾斜磁場発生系 3、 送信系 5および受信系 6に送る。 シーケンサ 4は、 撮像法によって決まる所定の制御のタイムチヤ一トであるパル スシーケンスに則って、 画像再構成に必要なデ一タを収集するように傾斜磁場発 生系 3、 送信系 5および受信系 6を制御する。 本発明の M R I装置では、 パルス シーケンスとして、 C P M G法によるパルスシーケンス、 例えば高速スピンェコ 一法のパルスシーケンスが含まれている。 このようなパルスシーケンスは、 プロ グラムとして C P U 8内に組み込まれている。 The signal processing system 7 includes a CFU 8, a recording device 18 such as a magnetic disk and a magnetic tape, and a display 19 such as a CRT.The CPU 8 performs processing such as Fourier transform, correction coefficient calculation, and image reconstruction operation. The obtained image and image are displayed on the display 19. Further, the CPU 8 sends various commands necessary for data collection of tomographic images of the subject 1 to the gradient magnetic field generation system 3, the transmission system 5, and the reception system 6 via the sequencer 4. The sequencer 4 generates a gradient magnetic field so as to collect data necessary for image reconstruction according to a pulse sequence which is a time chart of a predetermined control determined by an imaging method. Controls raw 3, transmitting 5 and receiving 6. In the MRI apparatus of the present invention, the pulse sequence includes a pulse sequence based on the CPMG method, for example, a pulse sequence based on the high-speed spin echo method. Such a pulse sequence is incorporated in the CPU 8 as a program.
次にこのような構成の M R I装置が実行する C P M G法に基づく高速スピンェ コ一法による撮像について説明する。 図 2は図 6に示したマルチシヨッ トマルチ スライス型高速スピンエコー法による全体パルスシーケンスの中の 1つのスライ についてのパルスシーケンスを示す図である。 このパルスシーケンスは、 従来 の C P M G法に基づく高速スピンエコー法によるパルスシーケンスにプリパルス としての傾斜磁場 25〜27が追加されており、 それ以降のパルス列は、 従来のパル スシーケンスとほぼ同様である。  Next, the imaging by the high-speed spin echo method based on the CPMG method executed by the MRI apparatus having such a configuration will be described. FIG. 2 is a diagram showing a pulse sequence for one slice in the whole pulse sequence by the multi-shot multi-slice type fast spin echo method shown in FIG. In this pulse sequence, a gradient magnetic field 25 to 27 as a pre-pulse is added to the pulse sequence based on the conventional high-speed spin echo method based on the CPMG method, and the subsequent pulse trains are almost the same as the conventional pulse sequence.
即ち、 まずプリパルス 25〜27を印加してから一定の時間経過後に、 所定の断面 を選択する最初のスライス選択傾斜磁場 20と同時に 90° 励起パルス 21を印加し、 その断面内のスピンを励起する。 次いで、 その後スライス選択傾斜磁場 20と同時 に複数の 180° 反転パルス 22を順次に印加し、 エコー信号を発生させる。 これら エコー信号の発生毎に極性および強度の異なる位相エンコード傾斜磁場 23、 23' を印加し、 各エコー信号に異なる位相エンコード量を与えるとともに、 周波数方 向の傾斜磁場 24を印加してエコー信号を計測する。 周波数方向の傾斜磁場に関し ては、 エコー信号の発生に先立ってディフェイズ傾斜磁場 24'が印加される。 ま た図示するパルスシーケンスは、 C P M G法を用いたものであり、 90° 励起パル ス 21の印加軸 x 'に対し、 180° 反転パルス 22の印加軸 y 'は直交し、 180° 反転パ ルス印加の間隔は、 90° 励起パルスと最初の 180° 反転パルスとの間隔のちょう ど 2倍になるように設定される。 このような C P M G法に基づく高速スピンェコ 一法のパルスシーケンスを繰り返し時間 T R内に複数スライス分を設定して繰り 返し実行し、 スライス毎に画像を再構成するのに必要な数のエコー信号を取得す る。  That is, after a certain period of time has elapsed after applying the pre-pulses 25 to 27, a 90 ° excitation pulse 21 is applied simultaneously with the first slice selection gradient magnetic field 20 for selecting a predetermined cross section to excite spins in the cross section . Next, a plurality of 180 ° inversion pulses 22 are sequentially applied simultaneously with the slice selection gradient magnetic field 20 to generate an echo signal. Each time an echo signal is generated, a phase encoding gradient magnetic field 23, 23 'having a different polarity and strength is applied to give a different amount of phase encoding to each echo signal, and a gradient magnetic field 24 in the frequency direction is applied to generate an echo signal. measure. Regarding the gradient magnetic field in the frequency direction, a dephasing gradient magnetic field 24 'is applied prior to the generation of the echo signal. The illustrated pulse sequence is based on the CPMG method. The applied axis y ′ of the 180 ° inversion pulse 22 is orthogonal to the applied axis x ′ of the 90 ° excitation pulse 21 and the 180 ° inverted pulse. The application interval is set to be exactly twice the interval between the 90 ° excitation pulse and the first 180 ° inversion pulse. The pulse sequence of the high-speed spin echo method based on the CPMG method is repeatedly executed by setting a plurality of slices within the repetition time TR to acquire the necessary number of echo signals to reconstruct an image for each slice You.
パルスシーケンスの 90° 励起パルスに先立つて印加されるプリパルス傾斜磁場 25~27は、 90° 励起パルスの印加時に変動しない常に一定の傾斜磁場誤差成分を 与えるものである。 このようなプリパルスを印加することにより、 その直前のス ライス計測において生じた渦電流による傾斜磁場の不完全性や磁気ヒステリシス による残留傾斜磁場によって発生した変動残留磁場誤差成分の影響を取り除き、 それにより引き起されるスピンの位相誤差を一定のもの、 即ち 0次及び 1次の補 正によつてその後除去可能な位相誤差にする。 Prepulse gradient applied before the 90 ° excitation pulse in the pulse sequence Nos. 25 to 27 give a constant gradient magnetic field error component which does not fluctuate when a 90 ° excitation pulse is applied. By applying such a pre-pulse, the imperfections of the gradient magnetic field caused by the eddy current generated in the slice measurement immediately before and the influence of the variable residual magnetic field error component generated by the residual gradient magnetic field due to the magnetic hysteresis are removed. The induced phase error of the spin is made constant, ie, a phase error that can be subsequently removed by zero-order and first-order correction.
このことを図 3により更に説明する。 図 3は、 傾斜磁場が渦電流による不完全 性を持つ場合を示す図である。 この時定数を持って減衰する傾斜磁場がスピンに 与える位相回転量 < ま、 スライス方向を例にとり説明すると式 (1) に示すよう に、 傾斜磁場強度 Gsと印加時間 tに比例する量である。  This will be further explained with reference to FIG. Figure 3 is a diagram showing a case where the gradient magnetic field has imperfections due to eddy currents. The amount of phase rotation given to spins by the gradient magnetic field that attenuates with this time constant <If the slice direction is taken as an example, as shown in equation (1), the amount is proportional to the gradient magnetic field strength Gs and the application time t .
0== J r G s - S d t = r G s - S - t · · · (1) 0 == J r G s-S d t = r G s-S-t (1)
γ :磁気回転比  γ: magnetic rotation ratio
S : 計測空間の中心からスライスまでの距離 ここでプリパルス傾斜磁場 25の印加から 90° 励起パルス 21印加までの時間を各 スライスについてのパルスシーケンスで一定とすることにより、 プリパルス 25の 残留傾斜磁場が 90° 励起されたスピンに与える位相回転量 (^を常に後に 0次およ ぴ 1次の補正可能な一定値 iSにすることができる。 このような一定の位相回転量 ]8は、 例えば、 スライス傾斜磁場の場合、 90° 励起パルス直後に印加するリフエ ィズ傾斜磁場 20'の強度を調節しておくことにより、 C PMG効果を保つように 補正することができる。  S: distance from the center of the measurement space to the slice Here, the time from the application of the prepulse gradient magnetic field 25 to the application of the 90 ° excitation pulse 21 is made constant in the pulse sequence for each slice, so that the residual gradient magnetic field of the prepulse 25 becomes 90 ° The amount of phase rotation given to the excited spin (^ can always be set to the 0th and ぴ 1st order correctable constant value iS later. Such a constant phase rotation amount] 8 In the case of a slice gradient magnetic field, by adjusting the intensity of the refresh gradient magnetic field 20 ′ applied immediately after the 90 ° excitation pulse, the correction can be made so as to maintain the CPMG effect.
このことは、 図 4に示すような磁気ヒステリシスにより残留傾斜磁場が発生し ている場合も同様であり、 図中斜線で示す部分の面積の部分が誤差成分である。 このような残留傾斜磁場による誤差成分も、 プリパルス傾斜磁場の印加から 90° 励起パルス印加までの時間を一定にしておくことにより、 この誤差成分による位 相回転量を一定にすることができ、 これも上記と同様な方法により補正により除 去できる。 The same applies to the case where the residual gradient magnetic field is generated due to the magnetic hysteresis as shown in FIG. 4, and the area indicated by the hatched area in the figure is the error component. The error component due to the residual gradient magnetic field can be kept constant by keeping the time from the application of the pre-pulse gradient magnetic field to the application of the 90 ° excitation pulse constant. Is also removed by correction in the same manner as above. You can leave.
上述のようにプリパルスは、 残留傾斜磁場を常に一定にするためのものである ので、 その強度は、 スポイル傾斜磁場のような強力な傾斜磁場強度は必要とせず 、 パルスシーケンス内で印加される傾斜磁場と同様の強度、 印加時間とすること で十分である。  As described above, since the pre-pulse is for keeping the residual gradient magnetic field constant, its intensity does not require a strong gradient magnetic field intensity such as a spoil gradient magnetic field, and the gradient applied in the pulse sequence is not required. It is sufficient to use the same strength and application time as the magnetic field.
具体的には、 スライス方向については、 励起パルスの帯域巾を一定とすると、 スライス選択傾斜磁場は、 設定スライス厚によってその強度が変化するので、 ス ライス方向の位相誤差成分はスライス厚に反比例の関係となる。 従って、 プリバ ルス傾斜磁場 25もスライス厚に反比例して、 印加強度を変化させることが好まし い。 これによりスライス選択傾斜磁場の印加強度に対して線形な位相誤差成分を 発生することができるため、 最初のスライス選択傾斜磁場直後のリフェイズ傾斜 磁場 20,印加時にその成分を加算あるいは減算することにより容易に補正するこ とができる。  Specifically, assuming that the excitation pulse bandwidth is constant in the slice direction, the intensity of the slice selection gradient magnetic field changes depending on the set slice thickness, so that the phase error component in the slice direction is inversely proportional to the slice thickness. Become a relationship. Therefore, it is preferable to change the applied intensity of the prepulse gradient magnetic field 25 in inverse proportion to the slice thickness. As a result, a linear phase error component can be generated with respect to the applied intensity of the slice selection gradient magnetic field. Therefore, the rephase gradient magnetic field immediately after the first slice selection gradient magnetic field 20 can be easily added or subtracted at the time of application. Can be corrected.
周波数方向についても、 C P M G効果を生かすためには同様に、 プリパルス 27 の印加強度及び印加時間を、 ディフェイズ傾斜磁場 24'と同様の印加強度、 印加 時間とし、 90° 励起パルス 21の印加からディフェイズ傾斜磁場 24'印加開始まで の間にスピンに印加されたプリパルス 27による残留傾斜磁場によるスピンの位相 回転を補正するためディフェイズ傾斜磁場 24'の印加量が調節される。 なおディ フェイズ傾斜磁場 24'の印加量を調節した場合にはそれ以後に印加されるリ一ド ァゥト傾斜磁場 24の印加量もそれに応じて変更する必要がある。  Similarly, in the frequency direction, in order to take advantage of the CPMG effect, the applied intensity and application time of the pre-pulse 27 are set to be the same as the applied intensity and application time of the phase gradient magnetic field 24 ', and the application of the 90 ° excitation pulse 21 is repeated. The amount of application of the phase gradient magnetic field 24 'is adjusted in order to correct the phase rotation of the spin due to the residual gradient magnetic field due to the prepulse 27 applied to the spins before the start of the application of the phase gradient magnetic field 24'. When the applied amount of the phase gradient magnetic field 24 'is adjusted, the applied amount of the read gradient magnetic field 24 applied thereafter must be changed accordingly.
位相エンコード方向については、 位相回転量の累積を防ぐために、 図示するよ うにタイミング的に接近して印加されるパイポーラ型のプリパルス 26、 26'とす ることが好ましい。 また位相エンコード方向のプリパルスは、 位相エンコード数 に依存して強度を変化させることが好ましい。 即ち、 高速スピンエコー法による パルスシーケンスでは、 繰り返し毎に位相エンコード傾斜磁場 23、 23'の強度が 変化する。 プリパルス 26、 26,は、 この繰り返しの最初に印加される位相ェンコ ード傾斜磁場の印加強度、 印加時間と同様にし、 また、 90° 励起パルス 21の印加 後にスピンに印加されるプリパルス 26, 26,による残留傾斜磁場によるスピンの位 相回転を補正するため位相回転誤差打消傾斜磁場パルス 26"を印加することによ つて他の方向の傾斜磁場と同様に補正することができ、 C P M G効果が保たれる このようにプリパルスを印加したパルスシーケンスを繰り返すことにより収集 したエコー信号を用いて画像再構成することは従来の M R I装置と同様である。 こうして得られた画像は、 傾斜磁場の不完全性に起因するアーチファタ トが抑制 された画像となる。 As for the phase encoding direction, in order to prevent the accumulation of the amount of phase rotation, it is preferable to use bipolar pre-pulses 26 and 26 'which are applied with close timing as shown in the figure. Further, it is preferable that the intensity of the pre-pulse in the phase encoding direction is changed depending on the number of phase encodings. That is, in the pulse sequence by the high-speed spin echo method, the intensity of the phase encoding gradient magnetic field 23, 23 'changes at each repetition. The pre-pulses 26 and 26 are applied in the same manner as the applied intensity and application time of the phase-encoding gradient magnetic field applied at the beginning of this repetition. By applying the phase rotation error canceling gradient magnetic field pulse 26 "to correct the phase rotation of the spin due to the residual gradient magnetic field due to the pre-pulses 26, 26 applied to the spin later, as in the case of the gradient magnetic field in other directions, Correction can be performed and the CPMG effect is maintained. In this way, image reconstruction using echo signals acquired by repeating the pulse sequence to which the pre-pulse is applied is the same as that of a conventional MRI apparatus. The resulting image is an image in which the artifact caused by the imperfect gradient magnetic field is suppressed.
以上、 本発明の一実施形態を図 2を参照して説明したが、 本発明は上記実施形 態に限定されることなく種々の変更が可能である。 例えば、 図 2ではスライス方 向、 位相ェンコ一ド方向及び周波数方向の三方向についてそれぞれプリパルス 25 〜27を印加した場合を示したが、 これらは少なくともは一方向について行えば効 果がもたらされる。  As described above, one embodiment of the present invention has been described with reference to FIG. 2, but the present invention is not limited to the above embodiment, and various modifications can be made. For example, FIG. 2 shows a case in which pre-pulses 25 to 27 are applied in three directions, ie, a slice direction, a phase encoder direction, and a frequency direction. However, the effect can be obtained by performing at least one in one direction.
また、 図 2では、 k空間の計測順序としてシーケンシャルオーダリングの場合 を示しているが、 計測順序は任意のものとすることができる。  FIG. 2 shows the case of sequential ordering as the measurement order in the k-space, but the measurement order can be arbitrary.
さらに図 2では C P M G法に基づくパルスシーケンスとして高速スピンエコー 法による撮像法を示したが、 本発明は 90° 励起パルスと複数の 180° 反転パルス のシーケンスを複数回繰り返して 1回の T Rで複数のエコーを計測する撮像法で あれば適用することができ、 例えば 180° 反転パルス印加後に、 周波数方向の傾 斜磁場の反転を繰り返し複数のエコー信号を計測するグラジェントエコーアンド スピンエコー撮像法 (G R A S E ) にも適用することが可能である。 即ち上記実 施の形態においては、 マルチショッ トマルチスライス撮像法を例に挙げて説明し たが、 本発明のコンセプトは T Rを短縮したマルチシヨッ トシングルスライス撮 像法においても有効であることは容易に理解され得るであろう。  In addition, Fig. 2 shows an imaging method using the fast spin echo method as a pulse sequence based on the CPMG method.However, in the present invention, a sequence of a 90 ° excitation pulse and a plurality of 180 ° inversion pulses is repeated several times and multiple It can be applied as long as it is an imaging method that measures the echo of an object. For example, a gradient echo and spin echo imaging method in which a gradient magnetic field in the frequency direction is repeatedly inverted and a plurality of echo signals are measured after applying a 180 ° inversion pulse ( GRASE) can also be applied. That is, in the above embodiment, the multishot multislice imaging method has been described as an example, but it is easy to see that the concept of the present invention is also effective in a multishot single slice imaging method with a shortened TR. Could be understood.
本発明によれば、 位相及び傾斜磁場の高精度の制御が要求される C P M G法に よるマルチスライス撮像において、 設定 T Rやマルチスライス数などにより変動 する傾斜磁場誤差成分およびそれによるスピンの位相誤差が与える影響を低減し 、 位相誤差によるアーチファク トを効果的に抑制することができる。 産業上の利用可能性 According to the present invention, in the multi-slice imaging by the CPMG method that requires high-precision control of the phase and the gradient magnetic field, the gradient magnetic field error component that fluctuates according to the set TR, the number of multi-slices, and the like, and the phase error of the spin due to the gradient magnetic field error component. Reduce the impact Artifacts due to phase errors can be effectively suppressed. Industrial applicability
以上説明したように、 本発明にかかる C P M G法に基づく高速高画質が要求さ れるマルチショ ッ トシングルスライスおよびマルチショ ッ トマルチスライスパル スシーケンスを有する M R I装置は、 医療用画像診断装置として有用である。  As described above, an MRI apparatus having a multi-shot single slice and a multi-shot multi-slice pulse sequence that requires high speed and high image quality based on the CPMG method according to the present invention is useful as a medical image diagnostic apparatus. .

Claims

請求の範囲 The scope of the claims
1 . 被検体が置かれる空間に静磁場および傾斜磁場をそれぞれ発生する磁場発生 手段と、 前記被検体の組織を構成する原子の原子核にスピンを励起する高周波磁 場を発生する送信系と、 前記高周波磁場によって被検体から発生するエコー信号 を検出する受信系と、 検出したエコー信号を用いて前記被検体の断層画像を再構 成する信号処理系と、 前記静磁場発生手段、 送信系、 受信系および信号処理系を 所定のパルスシーケンスに従い制御する制御手段とを備えた磁気共鳴イメージン グ装置において、 1. Magnetic field generating means for generating a static magnetic field and a gradient magnetic field in a space where the subject is placed, and a transmission system for generating a high-frequency magnetic field for exciting spins to nuclei of atoms constituting the tissue of the subject; A receiving system that detects an echo signal generated from the subject by a high-frequency magnetic field; a signal processing system that reconstructs a tomographic image of the subject using the detected echo signal; And a control means for controlling a signal processing system and a signal processing system according to a predetermined pulse sequence.
前記制御手段は、 第 1の高周波磁場パルスとそれに続く反転する第 2の高周波 磁場パルスの印加により複数のエコー信号を計測するマルチショッ トパルスシー ケンスを備え、 前記第 1の高周波磁場パルスの印加に先立つ一定時間前のタイミ ングに傾斜磁場プリパルスを印加する磁気共鳴イメージング装置。  The control means includes a multi-shot pulse sequence for measuring a plurality of echo signals by applying a first high-frequency magnetic field pulse and a subsequent second high-frequency magnetic field pulse, and prior to the application of the first high-frequency magnetic field pulse A magnetic resonance imaging system that applies a gradient magnetic field pre-pulse at a certain time before.
2 . 前記傾斜磁場プリパルスは、 前記第 1の高周波磁場パルスの印加の一定時刻 前に所定量印加し、 各ショッ トにおける前記第 1の高周波磁場パルスの印加後の 前記傾斜磁場プリパルスによる一定の傾斜磁場誤差成分によるスピンの位相回転 量を同一とする請求の範囲第 1項に記載の磁気共鳴イメージング装置。 2. The gradient magnetic field pre-pulse is applied by a predetermined amount before a certain time before the application of the first high frequency magnetic field pulse, and a constant gradient by the gradient magnetic field pre-pulse after the application of the first high frequency magnetic field pulse in each shot. 2. The magnetic resonance imaging apparatus according to claim 1, wherein an amount of spin phase rotation caused by a magnetic field error component is the same.
3 . 前記第 1の高周波磁場パルスと、 前記反転する第 2の高周波磁場パルスは、 互いに印加軸が回転座標系において直交するように印加される C P M G法パルス シーケンスである請求の範囲第 1または第 2項に記載の磁気共鳴イメージング装 3. The first or second claim, wherein the first high-frequency magnetic field pulse and the inverted second high-frequency magnetic field pulse are CPMG pulse sequences that are applied so that applied axes are orthogonal to each other in a rotating coordinate system. The magnetic resonance imaging apparatus according to item 2,
4 . 前記 C P M G法に基づくマルチショッ トパルスシーケンスはマルチシヨッ ト スングルスライスのパルスシーケンスである請求の範囲第 3項に記載の磁気共鳴 イメージング装置。 4. The magnetic resonance according to claim 3, wherein the multi-shot pulse sequence based on the CPMG method is a multi-shot pulse slice sequence. Imaging device.
5 . 前記 C P M G法に基づくマルチシヨ ッ トパルスシーケンスはマルチシヨ ッ ト マルチスライスのパルスシーケンスである請求の範囲第 3項に記載の磁気共鳴ィ メージング装置。 5. The magnetic resonance imaging apparatus according to claim 3, wherein the multi-shot pulse sequence based on the CPMG method is a multi-shot multi-slice pulse sequence.
6 . 前記制御手段は前記第 1の高周波磁場パルスの印加後前記最初の反転する第 の高周波磁場パルスの印加前に前記所定の傾斜磁場プリパルスによって引き起 されるスピンの一定の位相回転誤差を打消す傾斜磁場成分を印加する請求の範囲 第 1または第 2項に記載の磁気共鳴イメージング装置。 6. The control means strikes a constant phase rotation error of the spin caused by the predetermined gradient magnetic field pre-pulse after the application of the first high-frequency magnetic field pulse and before the application of the first inverted second high-frequency magnetic field pulse. 3. The magnetic resonance imaging apparatus according to claim 1, wherein a gradient magnetic field component to be eliminated is applied.
7 . 前記所定の傾斜磁場プリパルスはスライス方向、 位相エンコード方向、 リー ドアゥト方向の少なくとも一方に印加される請求の範囲第 6項に記載の磁気共鳴 イメージング装置。 7. The magnetic resonance imaging apparatus according to claim 6, wherein the predetermined gradient magnetic field pre-pulse is applied in at least one of a slice direction, a phase encoding direction, and a lead direction.
8 . 前記スライス方向の傾斜磁場プリパルスの所定の印加量は前記第 1の高周波 磁場パルスと同時に印加されるスライス選択傾斜磁場パルスと同一である請求の 範囲第 7項に記載の磁気共鳴イメージング装置。 8. The magnetic resonance imaging apparatus according to claim 7, wherein a predetermined application amount of the gradient magnetic field pre-pulse in the slice direction is the same as a slice selection gradient magnetic field pulse applied simultaneously with the first high frequency magnetic field pulse.
9 . 前記スライス方向の傾斜磁場プリパルスによって引き起こされるスピンの一 定の位相回転誤差を打消す傾斜磁場成分は前記第 1の高周波磁場パルスと同時に 印加されるスライス選択傾斜磁場パルスの直後に印加されるリフェイズ傾斜磁場 パルス中に含まれている請求の範囲第 8項に記載の磁気共鳴イメージング装置。 9. The gradient magnetic field component that cancels out a certain phase rotation error of the spin caused by the gradient magnetic field pre-pulse in the slice direction is applied immediately after the slice selection gradient magnetic field pulse applied simultaneously with the first high frequency magnetic field pulse. 9. The magnetic resonance imaging apparatus according to claim 8, wherein the magnetic resonance imaging apparatus is included in a rephase gradient magnetic field pulse.
10. 前記位相エンコード方向の傾斜磁場プリパルスは印加タイミングが接近した バイポーラ型プリパルスであり、 その印加量は引き続く計測の最初の位相ェンコ ―ド傾斜磁場パルスと同一である請求の範囲第 7項に記載の磁気共鳴イメージン グ装置。 10. The gradient magnetic field pre-pulse in the phase encoding direction is a bipolar pre-pulse whose application timing is close, and the applied amount is the same as the first phase encode gradient magnetic field pulse of the subsequent measurement. Magnetic resonance imagers Device.
1 1. 前記位相ェンコ一ド方向の傾斜磁場プリパルスによって引き起こされるスピ ンの一定の位相回転誤差を打消す傾斜磁場成分は前記最初の反転する第 2の高周 波磁場パルスの印加前に印加される位相エンコード方向の位相回転誤差打消傾斜 磁場パルスである請求の範囲第 1 0項に記載の磁気共鳴イメージング装置。 1 1. A gradient component that counteracts a constant phase rotation error of the spin caused by the gradient pre-pulse in the phase encoder direction is applied before the application of the first inverted second high-frequency magnetic field pulse. 10. The magnetic resonance imaging apparatus according to claim 10, wherein the magnetic field pulse is a phase rotation error canceling gradient magnetic field pulse in a phase encoding direction.
12. 前記リ一ドアゥト方向の傾斜磁場プリパルスの所定の印加量は前記第 1の高 周波磁場パルス印加直後に印加されるディフヱ一ズ傾斜磁場パルスと同一である 請求の範囲第 7項に記載の磁気共鳴ィメージング装置。 12. The predetermined gradient magnetic field pre-pulse applied in the readout direction is the same as a diffuse gradient magnetic field pulse applied immediately after the application of the first high-frequency magnetic field pulse. Magnetic resonance imaging device.
13. 前記リードアゥト方向の傾斜磁場プリパルスによって引き起こされるスピン の一定の位相回転誤差を打消す傾斜磁場成分は前記ディフェーズ傾斜磁場パルス 中に含まれている請求の範囲第 1 2項に記載の磁気共鳴イメージング装置。 13. The magnetic resonance according to claim 12, wherein a gradient magnetic field component for canceling a constant phase rotation error of spin caused by the gradient magnetic field pre-pulse in the readout direction is included in the dephase gradient magnetic field pulse. Imaging device.
PCT/JP2002/009631 2001-10-30 2002-09-19 Magnetic resonance imaging device WO2003037183A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003539531A JP4319035B2 (en) 2001-10-30 2002-09-19 Magnetic resonance imaging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001332653 2001-10-30
JP2001-332653 2001-10-30

Publications (1)

Publication Number Publication Date
WO2003037183A1 true WO2003037183A1 (en) 2003-05-08

Family

ID=19148040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009631 WO2003037183A1 (en) 2001-10-30 2002-09-19 Magnetic resonance imaging device

Country Status (2)

Country Link
JP (1) JP4319035B2 (en)
WO (1) WO2003037183A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262928A (en) * 2005-03-22 2006-10-05 Hitachi Medical Corp Magnetic resonance imaging system
JP2008307303A (en) * 2007-06-18 2008-12-25 Hitachi Medical Corp Magnetic resonance imaging system
JP2010142354A (en) * 2008-12-17 2010-07-01 Toshiba Corp Magnetic resonance imaging apparatus
JP2011036455A (en) * 2009-08-12 2011-02-24 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP5438024B2 (en) * 2008-11-07 2014-03-12 株式会社日立メディコ Magnetic resonance imaging apparatus and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11826134B2 (en) * 2019-06-13 2023-11-28 University Of Southern California Method for measuring water exchange across the blood-brain barrier using MRI

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144039A (en) * 1988-11-28 1990-06-01 Shimadzu Corp Inclined magnetic field applying method of mri apparatus
JPH06261877A (en) * 1992-10-26 1994-09-20 Philips Electron Nv Eddy current compensation in magnetic resonance imaging
JPH0795970A (en) * 1993-09-30 1995-04-11 Shimadzu Corp Mr imaging apparatus
JPH07163544A (en) * 1993-07-15 1995-06-27 General Electric Co <Ge> Prescanning in mri system
JP2000166898A (en) * 1998-11-23 2000-06-20 General Electric Co <Ge> Method of compensating for residual magnetism in magnetic resonance imaging system and the magnetic resonance imaging system
EP1126286A1 (en) * 2000-01-03 2001-08-22 Ge Yokogawa Medical Systems, Ltd. Compensation for the influence of eddy currents and residual magnetization in fast spin-echo MR imaging

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02144039A (en) * 1988-11-28 1990-06-01 Shimadzu Corp Inclined magnetic field applying method of mri apparatus
JPH06261877A (en) * 1992-10-26 1994-09-20 Philips Electron Nv Eddy current compensation in magnetic resonance imaging
JPH07163544A (en) * 1993-07-15 1995-06-27 General Electric Co <Ge> Prescanning in mri system
JPH0795970A (en) * 1993-09-30 1995-04-11 Shimadzu Corp Mr imaging apparatus
JP2000166898A (en) * 1998-11-23 2000-06-20 General Electric Co <Ge> Method of compensating for residual magnetism in magnetic resonance imaging system and the magnetic resonance imaging system
EP1126286A1 (en) * 2000-01-03 2001-08-22 Ge Yokogawa Medical Systems, Ltd. Compensation for the influence of eddy currents and residual magnetization in fast spin-echo MR imaging

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006262928A (en) * 2005-03-22 2006-10-05 Hitachi Medical Corp Magnetic resonance imaging system
JP4566039B2 (en) * 2005-03-22 2010-10-20 株式会社日立メディコ Magnetic resonance imaging system
JP2008307303A (en) * 2007-06-18 2008-12-25 Hitachi Medical Corp Magnetic resonance imaging system
JP5438024B2 (en) * 2008-11-07 2014-03-12 株式会社日立メディコ Magnetic resonance imaging apparatus and method
JP2010142354A (en) * 2008-12-17 2010-07-01 Toshiba Corp Magnetic resonance imaging apparatus
US8487614B2 (en) 2008-12-17 2013-07-16 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus/method counter-actively suppressing remnant eddy current magnetic fields generated from gradients applied before controlling contrast pre-pulses and MRI image data acquisition
JP2011036455A (en) * 2009-08-12 2011-02-24 Hitachi Medical Corp Magnetic resonance imaging apparatus

Also Published As

Publication number Publication date
JP4319035B2 (en) 2009-08-26
JPWO2003037183A1 (en) 2005-02-17

Similar Documents

Publication Publication Date Title
US6842000B2 (en) Method and device for acquiring data for diffusion-weighted magnetic resonance imaging
JP3524159B2 (en) Prescan with MRI system
EP0188006B1 (en) Method for reversing residual transverse magnetization due to phase-encoding magnetic field gradients,and apparatus
US7323873B2 (en) Phase error measuring method, MR imaging method, and MRI system
US20140225612A1 (en) System and method for rapid, multi-shot segmented magnetic resonance imaging
US8594766B2 (en) Magnetic resonance imaging apparatus and method
JP4106053B2 (en) Magnetic resonance imaging apparatus and eddy current compensation derivation method
US6472872B1 (en) Real-time shimming of polarizing field in magnetic resonance system
JP3445300B2 (en) Gradient moment nulling method in fast spin echo NMR pulse sequence
WO2011007691A1 (en) Magnetic resonance imaging device and magnetic resonance imaging method
JPH1133012A (en) Magnetic resonance imaging and imaging method
EP1102082A2 (en) Method and apparatus for reducing image artifacts caused by magnet vibration in an MR imaging system
JPH11508177A (en) Method and apparatus for imaging an object by magnetic resonance
JPH0315455B2 (en)
US4920314A (en) Magnetic resonance imaging system
JP4319035B2 (en) Magnetic resonance imaging system
JP4566039B2 (en) Magnetic resonance imaging system
Oelhafen et al. Calibration of echo‐planar 2D‐selective RF excitation pulses
US20020050816A1 (en) MR imaging method, phase error measuring method, and MRI apparatus
JP2019535435A (en) Propeller MR imaging
US5905377A (en) Method and apparatus for correcting gradient system and static magnetic field in magnetic resonance imaging
JP5650044B2 (en) Magnetic resonance imaging system
JP3928992B2 (en) Magnetic resonance imaging system
JP2005512648A (en) Diffusion-weighted multiple spin echo (RARE) sequence having a crusher gradient with periodically modulated amplitude
US11782116B2 (en) Method for recording a magnetic resonance image dataset, data medium, computer program product, and magnetic resonance installation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003539531

Country of ref document: JP

122 Ep: pct application non-entry in european phase