JPH02144039A - Inclined magnetic field applying method of mri apparatus - Google Patents

Inclined magnetic field applying method of mri apparatus

Info

Publication number
JPH02144039A
JPH02144039A JP63300138A JP30013888A JPH02144039A JP H02144039 A JPH02144039 A JP H02144039A JP 63300138 A JP63300138 A JP 63300138A JP 30013888 A JP30013888 A JP 30013888A JP H02144039 A JPH02144039 A JP H02144039A
Authority
JP
Japan
Prior art keywords
magnetic field
pulse
eddy current
gradient magnetic
gradient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63300138A
Other languages
Japanese (ja)
Other versions
JP2580747B2 (en
Inventor
Osamu Kono
理 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63300138A priority Critical patent/JP2580747B2/en
Publication of JPH02144039A publication Critical patent/JPH02144039A/en
Application granted granted Critical
Publication of JP2580747B2 publication Critical patent/JP2580747B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To correct a magnetic field due to the eddy current generated when an inclined magnetic field is applied even in any pulse sequence by setting an inclined magnetic field pulse waveform itself to a waveform cancelling an eddy current magnetic field. CONSTITUTION:In a spin warp method, the pulse 3 of a slice surface selecting inclined magnetic field Gs is applied simultaneously with the application of an exciting high frequency pulse 1 and, next, an inclined magnetic field pulse 4 for correcting the disturbance of the phase of a magnetic vector is applied. Then, a pulse 5 is applied in relation to an inclined magnetic field GP and, subsequently, a pulse 6 is applied in relation to an inclined magnetic field Gf and, succeedingly, a rephasing inclined magnetic field pulse 7 is applied to generate an NMR signal and data is collected by a sampling pulse 8 for measuring a signal. In this case, an inclined magnetic field pulse 2 cancelling an eddy current magnetic field at the time of rising is applied immediately before the pulse 3 and the eddy current magnetic field generated at a rising part 31 in the eddy current magnetic field generated at a falling part 22 is cancelled and the effect thereof is suppressed to the min. Hereinafter, in the same way, various eddy current magnetic fields are cancelled to correct a magnetic field.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、MHI装置(核磁気共鳴イメージング装置
)において傾斜磁場を印加する方法に関する。
The present invention relates to a method of applying a gradient magnetic field in an MHI device (nuclear magnetic resonance imaging device).

【従来の技術】[Conventional technology]

一般にM RI装置では、静磁場用の主磁石をとりまい
てクライオスタットシールドやシムコイル、高周波コイ
ル、傾斜磁場用コイルなどが取り付けられているため、
傾斜磁場の時間的変化によって渦電流による磁場が発生
する。この渦電流磁場は核スピンの位相のずれを引き起
こし、取得したデータのS/N比や画像の分解能を劣化
させる。 そこで、従来では、あらかじめ渦電流による磁場を計測
し、それをキャンセルする傾斜磁場を発生させるように
電流を流す電気回路を用いて、渦電流による磁場を補正
するようにしている。
Generally, in an MRI device, a cryostat shield, shim coil, high frequency coil, gradient magnetic field coil, etc. are attached to the main magnet for the static magnetic field.
A magnetic field is generated by eddy currents due to temporal changes in the gradient magnetic field. This eddy current magnetic field causes a phase shift in the nuclear spins, degrading the S/N ratio of the acquired data and the resolution of the image. Conventionally, therefore, the magnetic field caused by the eddy current is measured in advance and an electric circuit is used to flow a current to generate a gradient magnetic field that cancels the magnetic field, thereby correcting the magnetic field caused by the eddy current.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、パルスシーケンスが異なれば渦電流の発
生の仕方が異なるため、従来のような方法ではさまざま
なパルスシーケンスにおいて渦電流による磁場を最適に
補正することが困難である。 この発明は、どのようなパルスシーケンスでも渦電流磁
場を最適に補正できる、MRI装置の傾斜磁場印加方法
を提供することを目的とする。
However, since eddy currents are generated in different ways depending on the pulse sequence, it is difficult to optimally correct the magnetic field due to eddy currents in various pulse sequences using conventional methods. An object of the present invention is to provide a gradient magnetic field application method for an MRI apparatus that can optimally correct an eddy current magnetic field in any pulse sequence.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するため、この発明によるMRI装置の
傾斜磁場印加方法においては、渦電流磁場を生じさせる
磁場強度の時間的変化を持つ傾斜磁場を印加する際に、
その磁場強度の時間的変化方向とは反対方向に、その強
度が時間的に変化するような別の傾斜磁場を、時間的に
近い時点において与えることが特徴となっている。
In order to achieve the above object, in the gradient magnetic field application method for an MRI apparatus according to the present invention, when applying a gradient magnetic field having a temporal change in magnetic field strength that generates an eddy current magnetic field,
It is characterized by applying another gradient magnetic field whose intensity changes over time in the opposite direction to the direction in which the magnetic field intensity changes over time, at a time point that is close to the time.

【作  用】[For production]

第1図に示すように、あるパルス状の傾斜磁場Aを印加
する際のたとえばその立上りA1時における磁場強度の
時間的に急激な変化によって生じる渦電流磁場をキャン
セルしようとする場合、A1の付近、この図では時間的
に前の接近した時点で、その立上りA1時の磁場強度の
時間的変イビ方向(図では正側に大きくなる方向に変化
している)とは反対方向に、その強度が時間的に変化す
るような別の傾斜磁場B1を与えている。つまり、B1
では負側に大きくなるような方向に磁場強度が時間的に
変化している。 磁場強度の急激な時間的変化を持つ傾斜磁場A1によっ
て渦電流磁場が生じるが、A1とは反対方向に強度の時
間的変化を持つ傾斜磁場B1を、A1の直前で与えて、
A1によって生じる渦電流磁場と反対方向の渦電流磁場
を生じさせているため、これによりA1による渦電流磁
場がキャンセルされる。 渦電流磁場はKe−t′℃の形で時間的に減衰し、大き
さKは時間勾配とその勾配の持続時間で決まる。そこで
、A1の部分での渦電流磁場は、B1からA1までの時
間に応じてB1の時間勾配とその持続時間とを調整する
ことによってキャンセルすることが可能となる。 なお、実際にはこのキャンセル用の傾斜磁場B1はB1
だけという訳にはいかず、0に戻すために反対方向に減
少してくる部分B2.B3をも持ち、全体としてBのよ
うな傾斜磁場波形となる。 B2の部分は緩やかな時間勾配であるため過電流磁場は
あまり問題とならないが、B3の部分は急激な時間勾配
を持つのでこの部分の渦電流磁場は無視できない(なお
このようなり3の部分をもたす必要があるのは、なだら
かな部分B2だけでは時間がかかり、B1による渦電流
磁場が減衰してし、よってキャンセルできないからであ
る)。そしてこのB3によって生じる渦電流磁場はA1
と同方向のものであり、A1に加算される。そこで、B
1の時間勾配と持続時間を決定する際には、この83部
分での渦電流磁場をもキャンセルするに足りるよう定め
る必要がある。 このように、パルスシーケンス自体に、傾斜磁場を印加
する際に生じる渦電流による磁場をキャンセルするため
の仕組みを加えているため、種々のパルスシーケンスに
おいて、渦電流磁場による核スピンの位相のずれを少な
くすることができる。 その結果、MHI装置のさまざまなパルスシーケンスに
おいてS/N比や分解能を向上させることができる。
As shown in Fig. 1, when trying to cancel an eddy current magnetic field generated by a sudden change in magnetic field strength over time, for example at the time of rising edge A1 when applying a certain pulsed gradient magnetic field A, in the vicinity of A1 , in this figure, at the previous point in time, the magnetic field strength changes in the opposite direction to the temporal change direction of the magnetic field strength at the time of rising A1 (in the figure, it changes in the direction of becoming larger on the positive side). provides another gradient magnetic field B1 that changes over time. In other words, B1
In this case, the magnetic field strength changes over time in a direction that becomes larger on the negative side. An eddy current magnetic field is generated by a gradient magnetic field A1 having a rapid temporal change in magnetic field strength, but by applying a gradient magnetic field B1 having a temporal change in strength in the opposite direction to A1 immediately before A1,
Since an eddy current magnetic field is generated in the opposite direction to the eddy current magnetic field generated by A1, the eddy current magnetic field due to A1 is canceled. The eddy current magnetic field decays over time in the form Ke-t'°C, and the magnitude K is determined by the time gradient and the duration of that gradient. Therefore, the eddy current magnetic field in the portion A1 can be canceled by adjusting the time gradient of B1 and its duration according to the time from B1 to A1. In addition, in reality, this gradient magnetic field B1 for cancellation is B1
However, the part B2. decreases in the opposite direction to return to 0. It also has B3, and the gradient magnetic field waveform as a whole becomes B. Part B2 has a gentle time gradient, so the overcurrent magnetic field is not much of a problem, but part B3 has a steep time gradient, so the eddy current magnetic field in this part cannot be ignored. This is necessary because it takes time to create only the gentle portion B2, and the eddy current magnetic field due to B1 is attenuated, so it cannot be canceled). And the eddy current magnetic field generated by this B3 is A1
is in the same direction as A1, and is added to A1. Therefore, B
When determining the time gradient and duration of 1, it is necessary to set them so that they are sufficient to cancel the eddy current magnetic field in this 83 portion. In this way, a mechanism is added to the pulse sequence itself to cancel the magnetic field caused by the eddy current that occurs when applying a gradient magnetic field, so in various pulse sequences, the phase shift of nuclear spins due to the eddy current magnetic field can be canceled out. It can be reduced. As a result, the S/N ratio and resolution can be improved in various pulse sequences of the MHI device.

【実 施 例】【Example】

つぎにこの発明をスピンワープ法に適用した一実施例に
ついて図面を参照しながら説明する。スピンワープ法で
は、第2図に示すように励起用高周波パルス1を印加す
るとき同時にスライス厚さ方向くたとえばZ方向)のス
ライス面選択用傾斜磁場Gsのパルス3を加え、その後
炉斜磁場パルス3を印加したことによる磁化ベクトルの
位相の乱れを補正するための傾斜磁場パルス4を加える
。 そして、位相エンコード方向(たとえばY方向)の位相
エンコード用の傾斜磁場Gpに関してパルス5を加え、
さらにその後、リードアウト方向くたとえばX方向)の
周波数エンコード用の傾斜磁場Gfに関してデイフェー
ズ用傾斜磁場パルス6を加え、続いてリフェーズ用傾斜
磁場パルス7を印加してNMR信号を発生させ、信号計
測用のサンプリングパルス8によりデータを採取する。 このスピンワープ法において、傾斜磁場パルス3によっ
て特定のスライス面に関する選択励起を行なう際、この
傾斜磁場パルス3の立上り部分31の渦電流磁場によっ
て選択励起に悪影響が生じたり、傾斜磁場パルス4によ
って位相補正を行なっても渦電流磁場が完全に打ち消さ
れないため磁化ベクトルの位相が揃わないことがある。 そこで、この実施例では、傾斜磁場パルス3の直前に、
立上り時の渦電流磁場をキャンセルするための傾斜磁場
パルス2を加えている。この傾斜磁場パルス2の立上り
部分21の時間勾配と持続時間、及び立下り部分22の
時間勾配と持続時間を調整することによって、立下り部
分22で生じる渦電流磁場で立上り部分31で生じる渦
電流磁場をキャンセルし、この立上り部分31により生
じる渦電流磁場の影響を最小限に抑えるようにしている
。傾斜磁場パルス4の立上り部分41及び立下り部分4
2についても、それらの時間勾配及び持続時間を調整し
て、傾斜磁場パルス3の立下り部分32により生じる渦
電流磁場をキャンセルし、渦電流磁場による位相の乱れ
が生じないようにしている。 位相エンコード用の傾斜磁場5は特定の方向(たとえば
Y方向)の位置情報を位相情報にエンコードするための
ものであるが、これについても立上り部分及び立下り部
分で生じる渦電流磁場をキャンセルするための傾斜磁場
パルスを与えることができる。ただ、この実施例ではエ
コー時間が長くなることを避けるためにこのような渦電
流磁場キャンセル用の傾斜磁場パルスは与えていない。 そして、周波数エンコード用傾斜磁場に関しては、デイ
フェーズ用傾斜磁場パルス6の立上り部分61と立下り
部分62の時間勾配と持続時間とを調整し、リフェーズ
用傾斜磁場パルス7の立上り部分71で生じる渦電流磁
場をキャンセルするようにしている。これによって、信
号サンプリング時の渦電流の影響を除去することができ
る。 なお、上記では本発明をスピンワープ法に適用した一実
施例について説明したが、この発明は、他のパルスシー
ケンス、たとえばスピンエコー法、アンギオイメージン
グ法、ケミカルシフトイメージング法などのパルスシー
ケンスにも適用可能であることは勿論である。
Next, an embodiment in which the present invention is applied to the spin warp method will be described with reference to the drawings. In the spin warp method, as shown in Fig. 2, when applying a high frequency excitation pulse 1, a pulse 3 of a gradient magnetic field Gs for slice plane selection in the slice thickness direction (for example, the Z direction) is simultaneously applied, and then a furnace gradient magnetic field pulse is applied. A gradient magnetic field pulse 4 is applied to correct the disturbance in the phase of the magnetization vector due to the application of the gradient magnetic field pulse 4. Then, pulse 5 is applied to the gradient magnetic field Gp for phase encoding in the phase encoding direction (for example, the Y direction),
Furthermore, after that, a day phase gradient magnetic field pulse 6 is applied to the frequency encoding gradient magnetic field Gf in the readout direction (for example, the X direction), and then a rephase gradient magnetic field pulse 7 is applied to generate an NMR signal, and the signal is measured. Data is collected using a sampling pulse 8. In this spin warp method, when performing selective excitation on a specific slice plane using the gradient magnetic field pulse 3, the selective excitation may be adversely affected by the eddy current magnetic field in the rising portion 31 of the gradient magnetic field pulse 3, or the gradient magnetic field pulse 4 may cause a phase shift. Even if correction is performed, the eddy current magnetic field is not completely canceled out, so the phases of the magnetization vectors may not be aligned. Therefore, in this embodiment, immediately before gradient magnetic field pulse 3,
Gradient magnetic field pulse 2 is added to cancel the eddy current magnetic field at the time of rise. By adjusting the time gradient and duration of the rising portion 21 and the time gradient and duration of the falling portion 22 of this gradient magnetic field pulse 2, the eddy current generated in the rising portion 31 of the eddy current magnetic field generated in the falling portion 22 can be adjusted. The magnetic field is canceled to minimize the influence of the eddy current magnetic field generated by this rising portion 31. Rising portion 41 and falling portion 4 of gradient magnetic field pulse 4
2, the time gradient and duration thereof are also adjusted to cancel the eddy current magnetic field generated by the falling portion 32 of the gradient magnetic field pulse 3, so as to prevent phase disturbance due to the eddy current magnetic field. The gradient magnetic field 5 for phase encoding is used to encode position information in a specific direction (for example, the Y direction) into phase information, but it is also used to cancel the eddy current magnetic field generated at the rising and falling parts. gradient magnetic field pulses can be given. However, in this embodiment, such a gradient magnetic field pulse for canceling the eddy current magnetic field is not applied in order to avoid an increase in echo time. Regarding the frequency encoding gradient magnetic field, the time gradient and duration of the rising portion 61 and falling portion 62 of the day phase gradient magnetic field pulse 6 are adjusted, and the vortex generated at the rising portion 71 of the rephasing gradient magnetic field pulse 7 is adjusted. It is designed to cancel the current magnetic field. This makes it possible to eliminate the effects of eddy currents during signal sampling. Although an embodiment in which the present invention is applied to the spin warp method has been described above, the present invention can also be applied to other pulse sequences such as spin echo method, angioimaging method, chemical shift imaging method, etc. Of course it is possible.

【発明の効果】【Effect of the invention】

この発明のMRI装置の傾斜磁場印加方法によれば、傾
斜磁場パルス波形自体を渦電流磁場をキャンセルするよ
うな波形としているため、どのようなパルスシーケンス
においても傾斜磁場を印加する際に生じる渦電流による
磁場を補正することができる。その結果、MRI装置の
さまざまなパルスシーケンスにおいて渦電流磁場による
核スピンの位相のずれを少なくすることができ、S/N
比や分解能を向上させることができる。
According to the gradient magnetic field application method of the MRI apparatus of the present invention, since the gradient magnetic field pulse waveform itself is a waveform that cancels the eddy current magnetic field, the eddy current generated when applying the gradient magnetic field in any pulse sequence It is possible to correct the magnetic field caused by As a result, it is possible to reduce the phase shift of nuclear spins due to eddy current magnetic fields in various pulse sequences of MRI equipment, and S/N
ratio and resolution can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の詳細な説明するためのタイムチャー
1〜、第2図はこの発明の一実施例にかかるパルスシー
ケンスのタイムチャートである。 1・・励起用高周波パルス、3・・・スライス面選択用
傾斜磁場パルス、5・・・位相エンコード用傾斜磁場パ
ルス、6・・・デイフェーズ用傾斜磁場パルス、7・・
・リフェーズ用傾斜磁場パルス、8・・・信号計測用サ
ンプリングパルス。
FIG. 1 is a time chart 1 to 1 for explaining the present invention in detail, and FIG. 2 is a time chart of a pulse sequence according to an embodiment of the present invention. 1... High frequency pulse for excitation, 3... Gradient magnetic field pulse for slice plane selection, 5... Gradient magnetic field pulse for phase encoding, 6... Gradient magnetic field pulse for day phase, 7...
・Gradient magnetic field pulse for rephasing, 8...Sampling pulse for signal measurement.

Claims (1)

【特許請求の範囲】[Claims] (1)渦電流磁場を生じさせる磁場強度の時間的変化を
持つ傾斜磁場を印加する際に、その磁場強度の時間的変
化方向とは反対方向に、その強度が時間的に変化するよ
うな別の傾斜磁場を、時間的に近い時点において与える
ことを特徴とするMRI装置の傾斜磁場印加方法。
(1) When applying a gradient magnetic field whose magnetic field strength changes over time to generate an eddy current magnetic field, there is a gradient magnetic field whose strength changes over time in the opposite direction to the direction of the temporal change in the magnetic field strength. A method for applying a gradient magnetic field to an MRI apparatus, the method comprising: applying a gradient magnetic field at a time close to each other.
JP63300138A 1988-11-28 1988-11-28 Method for applying gradient magnetic field of MRI apparatus Expired - Fee Related JP2580747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63300138A JP2580747B2 (en) 1988-11-28 1988-11-28 Method for applying gradient magnetic field of MRI apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63300138A JP2580747B2 (en) 1988-11-28 1988-11-28 Method for applying gradient magnetic field of MRI apparatus

Publications (2)

Publication Number Publication Date
JPH02144039A true JPH02144039A (en) 1990-06-01
JP2580747B2 JP2580747B2 (en) 1997-02-12

Family

ID=17881194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63300138A Expired - Fee Related JP2580747B2 (en) 1988-11-28 1988-11-28 Method for applying gradient magnetic field of MRI apparatus

Country Status (1)

Country Link
JP (1) JP2580747B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595391A1 (en) * 1992-10-26 1994-05-04 Koninklijke Philips Electronics N.V. Eddy current compensation in magnetic resonance imaging
US5455512A (en) * 1992-10-26 1995-10-03 U.S. Philips Corporation Eddy current compensation in magnetic resonance imaging
WO2003037183A1 (en) * 2001-10-30 2003-05-08 Hitachi Medical Corporation Magnetic resonance imaging device
DE19807306B4 (en) * 1997-02-22 2010-10-14 General Electric Co. Method for reducing eddy current effects in a diffusion-weighted echo-planar imaging
JP2011182916A (en) * 2010-03-08 2011-09-22 Toshiba Corp Magnetic resonance imaging apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264351A (en) * 1985-07-29 1987-03-23 ゼネラル・エレクトリツク・カンパニイ Method for reducing transitional non-homogenuity of magneticfield

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6264351A (en) * 1985-07-29 1987-03-23 ゼネラル・エレクトリツク・カンパニイ Method for reducing transitional non-homogenuity of magneticfield

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0595391A1 (en) * 1992-10-26 1994-05-04 Koninklijke Philips Electronics N.V. Eddy current compensation in magnetic resonance imaging
US5455512A (en) * 1992-10-26 1995-10-03 U.S. Philips Corporation Eddy current compensation in magnetic resonance imaging
DE19807306B4 (en) * 1997-02-22 2010-10-14 General Electric Co. Method for reducing eddy current effects in a diffusion-weighted echo-planar imaging
WO2003037183A1 (en) * 2001-10-30 2003-05-08 Hitachi Medical Corporation Magnetic resonance imaging device
JP2011182916A (en) * 2010-03-08 2011-09-22 Toshiba Corp Magnetic resonance imaging apparatus

Also Published As

Publication number Publication date
JP2580747B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
EP0538668B1 (en) Correction of signal distortion in an NMR apparatus
EP2457503B1 (en) Magnetic resonance imaging device and magnetic resonance imaging method
JP3504301B2 (en) Eddy current compensation in magnetic resonance imaging
KR100225321B1 (en) Mri apparatus
JP3431203B2 (en) Method of shimming magnetic field in examination space
JPS6264351A (en) Method for reducing transitional non-homogenuity of magneticfield
US20090212772A1 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
JPWO2004004563A1 (en) Magnetic resonance imaging apparatus and eddy current compensation deriving method
JPH0622919A (en) Gradient moment nulling method in fast pin echo nmr pulse system
JP2000185029A (en) Method for detecting eddy current in nuclear spin resonance device
US6114852A (en) Method employing point source to determine motion induced errors in MR imaging
US5195524A (en) Flow imaging method by means of an MRI apparatus and apparatus for realizing same
JPS6427545A (en) Method and apparatus for correcting phase in mr blood vessel imaging
JPH02144039A (en) Inclined magnetic field applying method of mri apparatus
JPH03264046A (en) Method and device for nuclear magnetic resonance imaging
EP0223279B1 (en) Method of and device for the phase correction of mr inversion recovery images
JPH03224538A (en) Mri device provided with process for correcting primary magnetostatic field ununiformity and executing measurement
EP1647224B1 (en) Magnetic resonance imaging method and system
JPS6270741A (en) Method for detecting nuclear magnetic resonance signal
JPH09117426A (en) Method of avoiding picture shading in nuclear spin tomography device
EP0595391B1 (en) Eddy current compensation in magnetic resonance imaging
JP3848005B2 (en) Magnetic resonance imaging system
US6175236B1 (en) Method for acquiring spatially and spectrally selective MR images
JP2932071B2 (en) Nuclear magnetic tomography device
JPH08500496A (en) NMR test method and apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees