WO2003036360A1 - Systeme de positionnement reglable - Google Patents

Systeme de positionnement reglable Download PDF

Info

Publication number
WO2003036360A1
WO2003036360A1 PCT/FR2002/003683 FR0203683W WO03036360A1 WO 2003036360 A1 WO2003036360 A1 WO 2003036360A1 FR 0203683 W FR0203683 W FR 0203683W WO 03036360 A1 WO03036360 A1 WO 03036360A1
Authority
WO
WIPO (PCT)
Prior art keywords
supports
load
rod
axis
astatic
Prior art date
Application number
PCT/FR2002/003683
Other languages
English (en)
Inventor
Carlos Da Silva
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to EP02795346A priority Critical patent/EP1442331A1/fr
Publication of WO2003036360A1 publication Critical patent/WO2003036360A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/183Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators

Definitions

  • the present invention relates to an adjustable positioning system. It applies in particular to the positioning and adjustment of optical units of a power laser.
  • the optical units of a power laser can be assembled in rigid reception structures. These reception structures contain optical elements.
  • the optical elements can be amplifier bars, focusing lenses, mirrors, or diffuse arrays for example.
  • the weight of the structure and its contents can range from 1 to 50 tonnes, for example.
  • the length of a structure can range from 2 to 20 meters for example. Legs support this structure. Their number can range from 4 to 20 for example depending on the length of the structure.
  • the position of these optical units must be adjusted with a precision of the order of a micrometer along the three axes. The strokes are for example 50 mm. To make these adjustments, it is necessary to have an adjustable positioning system capable of supporting a heavy load and capable of operating in a precise manner (of the order of a micrometer).
  • One possible solution is to use a positioning system comprising six ball joints of the type used in flight simulators and certain dynamic test benches. This cylinders are inclined in different directions and linked by ball joints at their ends.
  • Such a system has many drawbacks.
  • the jacks exert parasitic forces on the structure in a horizontal direction. These parasitic forces are generated due to the inclination of the jacks. This results in a deformation of the structure, and therefore a disruption of the optical unit.
  • the movements of the jacks are linked movements. Consequently, converting a movement of the structure into instructions to be applied to the cylinders is complex. It is therefore impossible to control such a system manually.
  • the system has a poor stability, in particular because of the coupling between the various eigen modes of vibrations.
  • the inclination and the length necessary for the jacks is penalizing in terms of space.
  • An object of the invention is to overcome the aforementioned drawbacks, and in particular to carry heavy loads without deforming them, in a stable manner, and to allow their positions to be adjusted with an accuracy of the order of a micrometer. This object is achieved by the teaching given by the invention.
  • the invention relates to an adjustable positioning system according to
  • VE astatic supports
  • the N astatic supports comprise means for locking in position and means for pressurizing, so as to be able to be pressurized when the system is in the adjustment phase, and to be blocked when the system is not in the setting phase.
  • the gas cylinders are connected to one or more external reserve (s) of gas.
  • each of the three isostatic supports comprises three means of adjustment in translation along orthogonal axes, including a vertical axis.
  • FIG. 1 is a diagram of a positioning system comprising six ball joints of the type used on flight simulators and some dynamic test benches;
  • FIG. 2 is a diagram of an example of a positioning system according to the invention;
  • FIG. 3 is a side perspective view of a micrometric power cylinder, the movable core of which is in the "low” position, that is to say retracted into its body;
  • FIG. 4 is a side view, in section, of the cylinder of Figure 3, the movable core occupies the same position as in Figure 3;
  • FIG. 5 is a side view, in section of the cylinder of Figure 3, the movable core is in the "high" position, that is to say, out of its body;
  • FIG. 6 is a perspective view of a removable operating device of the micrometric screw of the jack of Figure 4.
  • FIGS. 7 to 9 are top views of the cylinder of Figure 3, for different positions of its movable plate;
  • - Figure 10 is a sectional view of a gas spring;
  • FIG. 11 is a sectional view of a swivel plate for a gas spring
  • FIG. 12 is a sectional view of a locking means of the gas cylinder shown in Figure 12;
  • FIG. 13 is a top view of a gas circuit connecting gas cylinders of the type shown in Figure 10;
  • FIG. 14 is a side view and half-section of a gas accumulator connected to the gas circuit of Figure 13;
  • - Figure 15 is a perspective view of part of the gas circuit of Figure 13;
  • - Figures 16 and 17 are views of a connection block used in the gas circuit of Figure 13;
  • FIG. 18 is a top view of a manifold used in the gas circuit of Figure 13;
  • FIG. 19 is a diagram showing an example of advantageous arrangement of micrometric power cylinders.
  • the positioning system shown is of the type of those of the type of those used on flight simulators and certain dynamic test benches. It includes six ball joints V1, V2, V3, V4, V5, V6. These cylinders are tilted at 45 ° or 60 ° depending on the axes. They are mounted between a CH load (rigid structure) and a base (frame supporting the jacks for example). A matrix calculation is necessary to convert the load displacement instructions (translations and rotations along orthogonal axes) and the instructions to be applied to each cylinder. It is therefore impossible to control such a system manually.
  • the jacks exert parasitic forces on the CH structure and on the base in a horizontal direction. It is therefore necessary to stiffen the CH structure and the base. In addition, the system has poor stability, in particular because of the coupling between the different natural modes of vibrations. Finally, the inclination and the length necessary for the jacks is penalizing in terms of size.
  • This charge CH such as an optical block of a power laser. It basically includes:
  • the CH load shown is supported by two rows of 6 feet placed under the load.
  • the first row includes the feet referenced P1, P2, P3, P4, P5, P6 in the figure.
  • the second row includes the feet referenced P12, P11, P10, P9, P8, P7. These feet are fitted with swivel plates and a position locking system.
  • the three RE isostatic supports support the feet P12, P7, P6.
  • the other VE astatic supports support the other feet. There are 9 such astatic supports in this example.
  • the isostatic supports define the position of the load.
  • the astatic supports have a role of load recovery, like helical springs.
  • the force exerted by each support astatic on the load is substantially constant whatever the position of the load.
  • the force exerted by a helical spring is of the form:
  • V t > SJ "' ' x , nt _ TOL
  • TOL represents tolerance, i.e. 5% in this example.
  • At least one of the adjustment means RE is a power micrometric cylinder comprising, for at least one axis of movement, a movable wedge 3 moved by a micrometric screw 4, the face 13 of this corner which is oblique with respect to the axis of the screw being in contact with the front face, which is parallel to it, of the rod 5 of the jack, which moves perpendicular to the axis of the micrometric screw.
  • the micrometric power cylinder comprises a plate 6 at the free end of its rod, arranged perpendicular to the axis of this rod and whose movements in a plane perpendicular to the axis of this rod are controlled by at least a pair of jacks 17-18, 19-20 whose bodies are integral with the plate and whose rods are supported on a plate 16 fixed to the end of the rod 5 cooperating with the movable wedge.
  • the jack 1 described below is intended to lift relatively heavy loads vertically, for example up to 5 tonnes, with a resolution of the order of 1 ⁇ m, and a stroke of several centimeters for the three axes, but it is of course, these characteristics, which are given for information only, can be adapted to the different use cases.
  • the jack 1 essentially comprises, in a housing 2, a wedge 3 driven by a micrometric screw 4, a rod 5 and a movable plate 6 integral with the rod 5.
  • the wedge 3 is a parallelepiped with pyramidal section whose flat side face moves reduced friction on the bottom wall 7 of the housing 2 when the screw 4 is rotated. Means, not shown, block the corner 3 in rotation and guide it so that it can only move in translation on the wall 7, parallel to the axis of the screw 4.
  • the head of the screw is passed 4 by a bearing 8 fixed to the housing 2, and a cup 9 is fixed on this head, the shape and dimensions of which are adapted to those of the operating end 10 of a reduction gear 11 operable by a removable lever 12, the reduction gear 11 also being removable.
  • this manually operated reducer can be replaced by a reducer controlled by an electric motor.
  • the oblique upper face 13 of the corner 3 makes an acute angle par with respect to its lower face 14 (which moves on the wall 7 and which is assumed to be horizontal in operation).
  • the value of the angle est depends on the maximum load to be lifted, the source and the position resolution that one wishes to obtain. It is advantageously between 10 and 30 ° approximately.
  • the movable "rod" 5 of the jack 1 has its axis perpendicular to the axis of the screw 4. Its lower front face makes an angle Malawi with its axis and is arranged so as to be parallel to the face 13 of the corner 3 while resting on the latter.
  • the rod 5 is guided in translation, parallel to its axis, by slides 15, only two of which are visible in the drawing (those extending perpendicular to the cutting plane).
  • the rod 5 At its end upper, the rod 5 comprises a plate 16, of square shape for example.
  • a central cutout 16A is made in the plate 6 to allow the end of the rod 5 to pass through.
  • this cutout are greater than those of the plate 16, so that the plate 6 can move in a plane perpendicular to the axis of the rod 5, its movements being limited by the plate 16, on the lateral faces of which the rods 17 to 20 of four micrometric cylinders 21 to 24 abut whose axes are coplanar and form an orthogonal cross: the axes of the cylinders 21 and 23 are combined, as are those of the jacks 22 and 24 to which they are perpendicular.
  • the plane formed by these axes of the cylinders is perpendicular to the axis of the rod 5 and passes through the middle of the height (thickness) of the plate 6.
  • the bodies of the cylinders 21 to 24 are integral with the plate 6, while their rods are applied against the plate 16. These jacks are controlled in opposition for each of the two axes, so as to create a relative movement of the plate 6 relative to the plate 16, therefore relative to the rod 5.
  • the starting position for which the rods of the four cylinders are applied in abutment against the plate 16 and are at mid-stroke (FIG. 7)
  • the rod 18 is controlled so that it enters the body of the cylinder 23 by the same distance D. It is the same for the other axis, common to the cylinders 22 and 24 ( Figure 8).
  • the gas cylinder VE comprises a body 100 of generally cylindrical shape, delimiting at its lower half-part a chamber 102 filled with nitrogen under pressure.
  • the upper part comprises a rod 101 and a guide ring 104.
  • the lower part of the rod 101 is terminated by a head
  • the upper part of the rod may include a threaded hole 105 intended to connect the rod 101 to one of the feet of the load by means of a swivel plate.
  • the guide ring comprises in its inner part an O-ring in the upper part 106, an annular passage 108 in the upper part, and an annular recess under the annular passage 108 for housing a seal 107.
  • the O-ring 106 delimits the upper part of the annular passage 108.
  • the O-ring 106 and annular opening 108 assembly constitutes a lubrication chamber concentric with the rod 101.
  • the annular seal 107 isolates the chamber 108 from the chamber 102.
  • the guide ring 104 comprises in its outer part two annular recesses for the housing of seals 109, positioned substantially in the upper and lower part of the ring 104. These seals 109 isolate the chamber 102 from the outside of the jack. VE.
  • the lower part of the chamber 102 comprises a conduit 111 towards the outside of the jack, closed by two pressure taps 110 positioned laterally in the lower part of the body 110.
  • the upper part of the body 100 includes, in its internal part, a stop ring intended to prevent the guide ring from leaving the body 100.
  • the ball joint essentially comprises a female RF ball on which slides a male ball RM, and a support plate SUP sliding on the male ball RM.
  • the RF female ball joint is intended to be fixed by a fixing device to the rod 101 of a gas spring such as that illustrated in FIG. 10.
  • the fixing device can be produced by a WE screw screwed into the threaded hole 105 of the rod 101. The head of this WE screw can press a spacer
  • the upper part of the male ball joint includes a disc-shaped housing for example in which is placed a surface of sliding.
  • this sliding surface is a washer which does not creep over time and has a low adhesion power.
  • the support plate is intended to be rigidly connected to the feet of the support.
  • this support plate constitutes the lower part of a foot.
  • the SUP support plate and the RF female ball joint comprise a removable fixing system which can be used to immobilize the ball joint plate during its transport.
  • This fixing system can include FIX brackets, fixed under the support by VSUP screws on the one hand, and to the female ball joint by VROT screws on the other hand.
  • the gas cylinder VE comprises locking means in position. These locking means in position are inactive during the adjustment phase, that is to say when the VE jack is pressure. They allow the VE cylinder to be locked when the system is no longer in the adjustment phase. Once the locking means are active, the cylinders can be purged. This avoids any risk of adjustment caused by a leak, for example.
  • These locking means can be formed by a nut 113 and a thread.
  • the thread is concentric with the body 100 and placed on the upper external part of the body 100.
  • the nut 113 surrounds the upper part of the body 100 and extends it upwards.
  • the nut is screwed onto the thread.
  • the nut 113 is screwed so as to rise until it comes into contact with the lower surface SRF of the swivel plate.
  • the rod 101 is mechanically fixed to the body of the jack VE: the rod is fixed to the female part RF of the swivel plate, the lower surface of which SRF rests on the nut 113, which is aimed at the body of the jack VE.
  • a gas circuit connects all the gas cylinders.
  • This gas circuit CG includes one or more accumulators AC, that is to say gas reserves. In this way, the force exerted by all the gas cylinders on the load is uniform.
  • the internal volume of the cylinders can be smaller thanks to the AC accumulators. This makes it possible to use gas cylinders of reduced size, which is an advantage in terms of space and cost.
  • An AC accumulator ( Figure 14) may include a bleed screw for emptying the gas circuit CG.
  • An adapter AD placed between the accumulator AC and a conduit of the gas circuit CG, makes it possible to connect the accumulator to the circuit CG.
  • the total gas volume, denoted V tot is equal to the sum:
  • the ratio between the maximum variation of the total volume of gas V tot and the total volume of gas must be less than 5%.
  • N the number of gas cylinders connected to the CG circuit. This condition on the total volume of gas can be expressed as follows using the same notations as above:
  • the gas cylinders include at least one pressure tap such as the taps 110 to be connected to the gas circuit CG. If these jacks include at least two pressure taps, they can be arranged in series, which simplifies the circuit. Several groups of jacks can be arranged in series, these groups communicating with each other via at least one collector CL.
  • the circuit comprises at least one connection block BR, also called an "inflation block", to allow the circuit to be pressurized.
  • the gas cylinders are connected to several different and independent gas circuits. This makes it possible to exert different but nevertheless constant efforts. Thus, a greater effort can be exerted below a heavy component, such as a focusing lens, or if the feet are more apart from each other in places.
  • a connection block BR may include a body on which are arranged a pressure gauge 200 making it possible to check the pressure of the circuit, the pressure taps 201, 202, 203, 204, an inflation plug 205, and a purge valve 206.
  • the inflation plug 205 may include a valve retaining the pressure when the plug n is not connected to facilitate the connection of an inflation device to the circuit.
  • the pressure taps 201, 202, 203, 204 are intended to be connected by gas conduits to gas cylinders and / or to manifold blocks.
  • a manifold block CL may comprise a body 300, on which are pressure taps 301, 302, 303, 304, 305, 306. These pressure taps are intended to be connected by conduits of gas to gas cylinders and / or manifold blocks and / or connection blocks.
  • the VE gas cylinders are under pressure. They have a load recovery role.
  • the three isostatic supports RE, adjustable in position, define the position of the load.
  • the VE gas cylinders can be blocked so as to remain in the same position.
  • the gas can then be purged from the cylinders. This can be done simply when the jacks are connected to a gas circuit CG comprising a purge valve, such as the purge valve 206 ( Figures 16, 17).
  • the force these gas cylinders exert remains the same after adjustment. This avoids disturbing the system or varying the forces exerted in the event of the cylinders leaking.
  • the cylinders are first pressurized, then released. Pressurization can be carried out simply when the jacks are connected to a gas circuit CG comprising an inflation socket 205. The pressurized gas is then injected into the gas circuit CG by the inflation socket 205.
  • the adjustment system can have 1 to 6 degrees of freedom.
  • the three isostatic supports can be micrometric power cylinders. Such a system has 6 degrees of freedom.
  • the three micrometric cylinders are arranged so as to decouple the adjustments in rotation and in translation. For example, they can be arranged so that their positions in a plane correspond to the vertices S1, S2, S3 of a right triangle TR, of right angle S1.
  • micrometric cylinders each make it possible to perform translations along the X, Y, and Z axes.
  • the following table gives an example of correspondence between the movement of the load and the movements of each micrometric power cylinder.
  • the head of a micrometric power cylinder can be:
  • the adjustments are made at a single point, except for the translation along the Z axis. These are therefore simple adjustments, which can be carried out without being controlled. Of course, the settings can be automated.
  • the number of degrees of freedom can be different from six. For example, one can put in S1 an isostatic support that does not have adjustment means. If the two other isostatic supports are adjustable along the axes X, Y, and Z, the number of degrees of freedom of the load is five. It has indeed no more adjustment in translation along Z compared to the previous example. In the same way, by further limiting the settings of the other two isostatic supports, one can have from 1 to 4 degrees of freedom. It is thus possible to produce a positioning system according to the invention with one to six degrees of freedom.
  • the invention applies to the positioning and adjustment of any type of load.
  • the load can be for example a machining chain, a measuring device.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Astronomy & Astrophysics (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Machine Tool Units (AREA)

Abstract

L'invention concerne un système de positionnement réglable selon 1 à 6 degrés de liberté. Ce système est destiné à positionner et maintenir en position une charge. Il comprend essentiellement: (a) trois appuis isostatiques (RE), supportant la charge (CH) et reposant sur un socle, un à trois de ces appuis comprenant des moyens de réglage; (b) N appuis astatiques (VE), de reprise de charge, supportant la charge et reposant sur le socle, lesdits appuis astatiques étant des vérins à gaz disposant d'une réserve de gaz suffisante pour que la force exercée par ces appuis sur la charge soit sensiblement constante pendant la phase de réglage. L'invention s'applique notamment au positionnement et au réglage de blocs optiques d'un laser de puissance.

Description

SYSTEME DE POSITIONNEMENT REGLABLE
La présente invention concerne un système de positionnement réglable. Elle s'applique notamment au positionnement et au réglage de blocs optiques d'un laser de puissance.
Les blocs optiques d'un laser de puissance peuvent être assemblés dans des structures d'accueil rigides. Ces structures d'accueil contiennent des éléments optiques. Les éléments optiques peuvent être des barreaux amplificateurs, des lentilles de focalisation, des miroirs, ou des réseaux d iff ractif s par exemple. Le poids de la structure et de son contenu peut aller de 1 à 50 tonnes par exemple. La longueur d'une structure peut aller de 2 à 20 mètres par exemple. Des pieds permettent de supporter cette structure. Leur nombre peut aller de 4 à 20 par exemple selon la longueur de la structure. Le réglage de la position de ces blocs optiques doit être effectuée avec une précision de l'ordre du micromètre selon les trois axes. Les courses sont par exemple de 50 mm. Pour effectuer ces réglages, il est nécessaire de disposer d'un système de positionnement réglable capable de supporter une forte charge et pouvant fonctionner de manière précise (de l'ordre du micromètre). Une solution possible est d'utiliser un système de positionnement comprenant six vérins rotules du type de ceux employés sur les simulateurs de vol et certains bancs d'essais dynamiques. Ce vérins sont inclinés dans des directions différentes et liés par des liaisons rotules à leurs extrémités.
Un tel système présente de nombreux inconvénients. D'abord, les vérins exercent des efforts parasites sur la structure dans une direction horizontale. Ces efforts parasites sont générés à cause de l'inclinaison des vérins. Ceci entraîne une déformation de la structure, et donc un dérèglement du bloc optique. Ensuite, les mouvements des vérins sont des mouvement liés. Par conséquent la conversion d'un mouvement de la structure en consignes à appliquer aux vérins est complexe. Il est donc impossible de piloter un tel système manuellement. Ensuite, le système a une mauvaise stabilité, en particulier à cause du couplage entre les différents modes propres de vibrations. Ensuite, l'inclinaison et la longueur nécessaire pour les vérins est pénalisante en terme d'encombrement. Enfin, une telle solution est coûteuse notamment elle implique de rigidifier la structure et les interfaces entre la structure et les vérins. Un but de l'invention est de pallier les inconvénients précités, et notamment de porter des charges lourdes sans les déformer, de manière stable, et de permettre de régler leurs positions avec une précision de l'ordre du micromètre. Ce but est atteint par l'enseignement donnée par l'invention. L'invention concerne un système de positionnement réglable selon
1 à 6 degrés de liberté, destiné à positionner et maintenir en position une charge, comprenant au moins :
(a) trois appuis isostatiques (RE), supportant la charge (CH) et reposant sur un socle, un à trois de ces appuis comprenant des moyens de réglage ;
(b) N appuis astatiques (VE), de reprise de charge, supportant la charge et reposant sur le socle, lesdits appuis astatiques étant des vérins à gaz disposant d'une réserve de gaz suffisante pour que la force exercée par ces appuis sur la charge soit sensiblement constante pendant la phase de réglage.
Selon un premier mode de réalisation avantageux de ce système, les N appuis astatiques comprennent des moyens de blocage en position et des moyens de mise sous pression, de manière à pouvoir être mis sous pression lorsque le système est en phase de réglage, et à être bloqués lorsque le système n'est pas en phase de réglage.
Selon un autre mode de réalisation avantageux, les vérins à gaz sont reliés à une ou plusieurs réserve(s) externe(s) de gaz.
Selon un autre mode de réalisation avantageux, chacun des trois appuis isostatiques comprend trois moyens de réglage en translation selon des axes orthogonaux, dont un axe vertical.
Un tel système a pour principaux avantages qu'il est peu encombrant, simple à réaliser, simple à utiliser, et économique.
La présente invention sera mieux comprise à la lecture de la description détaillée d'un mode réalisation, pris à titre d'exemple non limitatif et illustré par le dessin annexé, sur lequel :
- la figure 1 est un schéma d'un système de positionnement comprenant six vérins rotules du type de ceux employés sur les simulateurs de vol et certains bancs d'essais dynamiques ; - la figure 2 est un schéma d'un exemple de système de positionnement selon l'invention ;
- la figure 3 est une vue de côté en perspective d'un vérin micrométrique de puissance, dont le noyau mobile est en position « basse », c'est-à-dire rentré dans son corps ;
- la figure 4 est une vue de côté, en coupe, du vérin de la figure 3, dont le noyau mobile occupe la même position qu'en figure 3 ;
- la figure 5 est une vue de côté, en coupe du vérin de la figure 3, dont le noyau mobile est en position « haute », c'est-à-dire sorti au maximum de son corps ;
- la figure 6 est une vue en perspective d'un dispositif de manoeuvre amovible de la vis micrométrique du vérin de la figure 4 ;
- les figures 7 à 9 sont des vues de dessus du vérin de la figure 3, pour différentes positions de son plateau mobile ; - la figure 10 est une vue en coupe d'un vérin à gaz ;
- la figure 11 est une vue en coupe d'une plaque rotulée pour vérin à gaz ;
- la figure 12 est une vue en coupe d'un moyen de blocage du vérin à gaz représenté figure 12 ;
- la figure 13 est une vue de dessus d'un circuit de gaz reliant des vérins à gaz du type représenté figure 10 ;
- la figure 14 est une vue de côté et demi-coupe d'un accumulateur de gaz relié au circuit de gaz de la figure 13 ;
- la figure 15 est une vue en perspective d'une partie du circuit de gaz de la figure 13 ; - les figures 16 et 17 sont des vues d'un bloc de raccordement utilisé dans le circuit de gaz de la figure 13 ;
- la figure 18 est une vue de dessus d'un collecteur utilisé dans le circuit de gaz de la figure 13 ;
- la figure 19 est un schéma représentant un exemple d'agencement avantageux de vérins micrométriques de puissance.
On se réfère maintenant à la figure 1. Le système de positionnement représenté est du type de ceux du type de ceux employés sur les simulateurs de vol et certains bancs d'essais dynamiques. Il comprend six vérins rotules V1 , V2, V3, V4, V5, V6. Ces vérins sont inclinés à 45° ou à 60° selon les axes. Ils sont montés entre une charge CH (structure rigide) et un socle (charpente supportant les vérins par exemple). Un calcul matriciel s'avère nécessaire pour convertir les consignes de déplacement de la charge (translations et rotations suivant des axes orthogonaux) et les consignes à appliquer à chaque vérin. Il est donc impossible de piloter un tel système manuellement. Les vérins exercent des efforts parasites sur la structure CH et sur le socle dans une direction horizontale. Il est donc nécessaire de rigidifier la structure CH et le socle. De plus, le système a une mauvaise stabilité, en particulier à cause du couplage entre les différents modes propres de vibrations. Enfin, l'inclinaison et la longueur nécessaire pour les vérins est pénalisante en terme d'encombrement.
On se réfère maintenant à la figure 2. Le système de positionnement représenté est destiné à positionner et maintenir en position une charge CH. Cette charge CH telle qu'un bloc optique d'un laser de puissance. Il comprend essentiellement :
(a) trois appuis isostatiques RE, supportant la charge CH et reposant sur un socle, un à trois de ces appuis comprenant des moyens de réglage ;
(b) N appuis astatiques VE, de reprise de charge, supportant la charge et reposant sur le socle, lesdits appuis astatiques étant des vérins à gaz disposant d'une réserve de gaz suffisante pour que la force exercée par ces appuis sur la charge soit sensiblement constante pendant la phase de réglage.
La charge CH représentée est supportée par deux rangées de 6 pieds placés sous la charge. La première rangée comprend les pieds référencés P1 , P2, P3, P4, P5, P6 sur la figure. La seconde rangée comprend les pieds référencés P12, P11 , P10, P9, P8, P7. Ces pieds sont équipés de plaques rotulées et d'un système de blocage en position. Les trois appuis isostatiques RE supportent les pieds P12, P7, P6. Les autres appuis astatiques VE supportent les autres pieds. Ces appuis astatiques sont au nombre de 9 dans cet exemple.
En phase de réglage, les appuis isostatiques définissent la position de la charge. Les appuis astatiques quant à eux ont un rôle de reprise de charge, à la manière de ressorts hélicoïdaux. Cependant, à la différence des ressorts hélicoïdaux, la force exercée par chaque appuis astatique sur la charge est sensiblement constante quelle que soit la position de la charge. Pour mémoire, la force exercée par un ressort hélicoïdal est de la forme :
F = k x
où F est la norme de la force, k la constante de raideur du ressort, et x son élongation. Il en résulte que la force exercée par un ressort hélicoïdal est variable en fonction de la position de la charge. L'utilisation de ressorts hélicoïdaux aurait pour inconvénient d'induire des contraintes sur la charge, et donc de la déformer. Les appuis astatiques utilisés conformément à l'invention pallient cet inconvénient.
Ils ont pour avantage d'exercer une force sensiblement constante sur la charge quelle que soit la position de celle-ci, et sans nécessiter d'asservissement. C'est donc un système simple, fiable et peu coûteux.
Par exemple, pour avoir une force constante à 5% près, il faut que le rapport entre la variation maximale du volume interne du vérin et son volume interne total soit inférieure à 5%. On note Sjnt la surface interne du vérin, Vint son volume nominal interne, et x la course maximale du vérin. La condition précédente permet de déterminer le volume interne nominal du vérin. Cette condition peut s'exprimer de la manière suivante :
V t > SJ"' ' x ,nt _ TOL
où TOL représente la tolérance, c'est à dire 5% dans cet exemple.
On se réfère maintenant aux figures 3 à 9. Selon un mode de réalisation avantageux du système, au moins l'un des moyens de réglage RE est un vérin micrométrique de puissance comportant, pour au moins un axe de déplacement, un coin mobile 3 mû par une vis micrométrique 4, la face 13 de ce coin qui est oblique par rapport à l'axe de la vis étant en contact avec la face frontale, qui lui est parallèle, de la tige 5 du vérin, qui se déplace perpendiculairement à l'axe de la vis micrométrique.
Selon un autre mode de réalisation avantageux, le vérin micrométrique de puissance comporte un plateau 6 à l'extrémité libre de sa tige, disposé perpendiculairement à l'axe de cette tige et dont les déplacements, dans un plan perpendiculaire à l'axe de cette tige sont commandés par au moins un couple de vérins 17-18, 19-20 dont les corps sont solidaires du plateau et dont les tiges s'appuient sur une plaque 16 fixée à l'extrémité de la tige 5 coopérant avec le coin mobile.
Le vérin 1 décrit ci-dessous est destiné à soulever verticalement des charges relativement lourdes, par exemple jusqu'à 5 tonnes, avec une résolution de l'ordre de 1 μm, et une course de plusieurs centimètres pour les trois axes, mais il est bien entendu que ces caractéristiques, qui ne sont données qu'à titre indicatif, peuvent être adaptées aux différents cas d'utilisation.
Le vérin 1 comporte essentiellement dans un boîtier 2, un coin 3 entraîné par une vis micrométrique 4, une tige 5 et un plateau mobile 6 solidaire de la tige 5. Le coin 3 est un parallélépipède à section pyramidale dont une face latérale plane se déplace à frottements réduits sur la paroi inférieure 7 du boîtier 2 lorsque la vis 4 est entraînée en rotation. Des moyens, non représentés, bloquent en rotation le coin 3 et le guident pour qu'il ne puisse se déplacer qu'en translation sur la paroi 7, parallèlement à l'axe de la vis 4. On fait passer la tête de la vis 4 par un palier 8 fixé au boîtier 2, et on fixe sur cette tête une coupelle 9 dont la forme et les dimensions sont adaptées à celles de l'extrémité de manoeuvre 10 d'un réducteur 11 manœuvrable par un levier amovible 12, le réducteur 11 étant lui aussi amovible. Bien entendu, ce réducteur à manoeuvre manuelle peut être remplacé par un réducteur commandé par un moteur électrique. La face supérieure oblique 13 du coin 3 fait un angle aigu  par rapport à sa face inférieure 14 (qui se déplace sur la paroi 7 et qui est supposée être horizontale en fonctionnement). La valeur de l'angle  est fonction de la charge maximale à soulever, de la source et de la résolution de position que l'on désire obtenir. Elle est avantageusement comprise entre 10 et 30° environ. La « tige » mobile 5 du vérin 1 a son axe perpendiculaire à l'axe de la vis 4. Sa face frontale inférieure fait un angle  avec son axe et est disposée de façon à être parallèle à la face 13 du coin 3 en reposant sur cette dernière. La tige 5 est guidée en translation, parallèlement à son axe, par des glissières 15, dont seulement deux sont visibles sur le dessin (celles s'étendant perpendiculairement au plan de coupe). A son extrémité supérieure, la tige 5 comporte une plaque 16, de forme carrée par exemple. Une découpe centrale 16A est pratiquée dans le plateau 6 pour laisser passer l'extrémité de la tige 5. Les dimensions de cette découpe sont supérieures à celles de la plaque 16, afin que le plateau 6 puisse se déplacer dans un plan perpendiculaire à l'axe de la tige 5, ses déplacements étant limités par la plaque 16, sur les faces latérales de laquelle butent les tiges 17 à 20 de quatre vérins micrométriques 21 à 24 dont les axes sont coplanaires et forment une croix orthogonale : les axes des vérins 21 et 23 sont confondus, de même ceux des vérins 22 et 24 auxquels ils sont perpendiculaires. Le plan formé par ces axes des vérins est perpendiculaire à l'axe de la tige 5 et passe par le milieu de la hauteur (épaisseur) du plateau 6. Les corps des vérins 21 à 24 sont solidaires du plateau 6, tandis que leurs tiges sont appliquées contre la plaque 16. Ces vérins sont commandés en opposition pour chacun des deux axes, de façon à créer un mouvement relatif du plateau 6 par rapport à la plaque 16, donc par rapport à la tige 5. Ainsi, par exemple, de la position de départ, pour laquelle les tiges des quatre vérins sont appliquées en butée contre la plaque 16 et sont à mi- course (figure 7), si on commande la sortie, sur une distance D, de la tige 17 du vérin 21 , on commande la tige 18 de façon qu'elle rentre dans le corps du vérin 23 de la même distance D. Il en est de même pour l'autre axe, commun aux vérins 22 et 24 (figure 8). On a représenté en figure 9 la position opposée du plateau 6 par rapport à la plaque 16. Bien entendu, les mouvements horizontaux du plateau 6 par rapport à la plaque 16 n'ont pas la même résolution micrométrique que les mouvements verticaux de la tige 5 par rapport au corps du vérin 2, et si on désirait obtenir cette même résolution micrométrique, il suffirait d'adopter pour l'une des deux directions horizontales, ou pour les deux, le même type de mouvement à coin, vis micrométrique et tige à face frontale oblique glissant par rapport au coin. Il est également bien entendu que les surfaces en contact du coin et de la face frontale oblique de la tige sont traitées de façon appropriée pour faciliter leur glissement relatif tout en minimisant leur usure, de même que la surface 14 du coin 3 et la surface supérieure de la paroi 7 en contact avec cette surface 14, et que les mouvements du plateau 6 peuvent être commandés dans une seule direction, à l'aide de deux vérins seulement (17 et 18 ou 19 et 20). On se réfère maintenant à la figure 10. Le vérin à gaz VE comprend un corps 100 de forme générale cylindrique, délimitant à sa demi- partie inférieure une chambre 102 remplie d'azote sous pression.
La partie supérieure comprend une tige 101 et un anneau de guidage 104. La partie inférieure de la tige 101 est terminée par une tête
103. La partie supérieure de la tige peut comprendre un trou fileté 105 destiné à relier la tige 101 à l'un des pieds de la charge par l'intermédiaire d'une plaque rotulée.
L'anneau de guidage comprend dans sa partie intérieure un joint torique en partie supérieure 106, un passage annulaire 108 en partie supérieure, et un évidemment annulaire sous le passage annulaire 108 pour le logement d'un joint d'étanchéité 107. Le joint torique 106 délimite la partie supérieure du passage annulaire 108. L'ensemble joint torique 106 et ouverture annulaire 108 constitue une chambre de lubrification concentrique à la tige 101. Le joint annulaire 107 isole la chambre 108 de la chambre 102.
L'anneau de guidage 104 comprend dans sa partie extérieure deux évidements annulaires pour le logement de joints d'étanchéité 109, positionnés sensiblement en partie haute et basse de l'anneau 104. Ces joints 109 isolent la chambre 102 de l'extérieur du vérin VE. La partie inférieure de la chambre 102 comprend un conduit 111 vers l'extérieur du vérin, obturé par deux prises pression 110 positionnées latéralement en partie basse du corps 110.
La partie supérieure du corps 100 comprend dans sa partie intérieure un jonc d'arrêt destiné à empêcher l'anneau de guidage de sortir du corps 100.
On se réfère maintenant à la figure 11. La plaque rotulée comprend essentiellement une rotule femelle RF sur laquelle glisse une rotule mâle RM, et une plaque support SUP glissant sur la rotule mâle RM.
La rotule femelle RF est destinée à être fixée par un dispositif de fixation à la tige 101 d'un vérin à gaz tel que celui illustré figure 10. Le dispositif de fixation peut être réalisé par une vis WE vissée dans le trou fileté 105 de la tige 101. La tête de cette vis WE peut presser une entretoise
ENT contre la partie supérieure de la rotule femelle RF.
La partie supérieure de la rotule mâle comprend un logement en forme de disque par exemple dans lequel est placé une surface de glissement. Avantageusement, cette surface de glissement est une rondelle qui ne flue pas avec le temps et présente un faible pouvoir d'adhésion. On peut utiliser par exemple une rondelle .
La plaque de support est destinée à être reliée de façon rigide aux pieds du support. Avantageusement, cette plaque de support constitue la partie inférieure d'un pied.
Avantageusement, la plaque de support SUP et la rotule femelle RF comprennent un système de fixation amovible, utilisable pour immobiliser la plaque rotulée pendant le transport de celle-ci. Ce système de fixation peut comprendre des équerres FIX, fixée sous le support par des vis VSUP d'une part, et à la rotule femelle par des vis VROT d'autre part.
On se réfère maintenant à la figure 12. Selon un mode de réalisation avantageux, le vérin à gaz VE comprend des moyens de blocage en position. Ces moyens de blocage en position sont inactifs en phase de réglage, c'est à dire lorsque le vérin VE est pression. Ils permettent de bloquer le vérin VE lorsque le système n'est plus en phase de réglage. Une fois les moyens de blocage actifs, le vérins peut être purgé. Ceci évite tout risque de déréglage lié à une fuite par exemple.
Ces moyens de blocage peuvent être formés par un écrou 113 et un filetage. Le filetage est concentrique au corps 100 et placé sur la partie externe supérieure du corps 100. L'écrou 113 entoure la partie supérieure du corps 100 et le prolonge vers le haut. L'écrou est vissé sur le filetage. A la fin de la phase de réglage, l'écrou 113 est vissé de manière à monter jusqu'à entrer en contact avec la surface inférieure SRF de la plaque rotulée. Ainsi, la tige 101 est fixée mécaniquement au corps du vérin VE : la tige est fixée à la partie femelle RF de la plaque rotulée, dont la surface inférieure SRF repose sur l'écrou 113, qui est visé sur le corps du vérin VE.
On se réfère maintenant aux figures 13 à 15. Selon une variante avantageuse, un circuit de gaz relie tous les vérins à gaz. Ce circuit de gaz CG comprend un ou plusieurs accumulateurs AC, c'est à dire des réserves de gaz. De cette manière, l'effort exercé par tous les vérins à gaz sur la charge est uniforme. De plus, le volume interne des vérins peut être plus petit grâce aux accumulateurs AC. Ceci permet d'utiliser des vérins à gaz de dimension réduite, ce qui est un avantage en terme d'encombrement et de coût. Un accumulateur AC (figure 14) peut comprendre une vis de purge permettant de vider le circuit de gaz CG. Un adaptateur AD, placé entre l'accumulateur AC et un conduit du circuit de gaz CG, permet de relier l'accumulateur au circuit CG. Le volume de gaz total, noté Vtot, est égal à la somme :
- des volumes internes des vérins reliés au circuit Vint ;
- du volume de gaz compris dans conduits de gaz du circuit CG ;
- des volumes internes des accumulateurs Vac-
Selon cette variante avantageuse, pour avoir une force constante à 5% près par exemple, il faut que le rapport entre la variation maximale du volume de gaz total Vtot et le volume de gaz total soit inférieure à 5%. On note N le nombre de vérins à gaz reliés au circuit CG. Cette condition sur le volume total de gaz, peut s'exprimer de la manière suivante en utilisant les mêmes notations que précédemment :
V > N S'"t X ,0' - TOL
Les vérins à gaz comprennent au moins une prise pression telle que les prises 110 pour être reliés aux circuit de gaz CG. Si ces vérins comprennent au moins deux prises pression, ils peuvent être agencés en série, ce qui simplifie le circuit. Plusieurs groupes de vérins peuvent être agencés en série, ces groupes communiquant entre eux par l'intermédiaire d'au moins un collecteur CL. Avantageusement, le circuit comprend au moins un bloc de raccordement BR, appelé encore « bloc de gonflage », pour permettre de mettre le circuit sous pression.
Avantageusement, les vérins à gaz sont reliés à plusieurs circuits de gaz différents et indépendants. Ceci permet d'exercer des efforts différents mais néanmoins constants. Ainsi, un effort plus important peut être exercé en dessous d'un composant lourd, tel qu'une lentille de focalisation, ou si des pieds sont plus espacés les uns des autres par endroits.
On se réfère maintenant aux figures 16 et 17. Un bloc de raccordement BR peut comprendre un corps sur lequel sont disposés un manomètre 200 permettant de vérifier la pression du circuit, des prises pression 201 , 202, 203, 204, une prise de gonflage 205, et une vanne de purge 206. La prise de gonflage 205 peut comprendre une valve retenant la pression lorsque la prise n'est pas raccordée pour faciliter le raccordement d'un dispositif de gonflage au circuit. Les prises pression 201 , 202, 203, 204 sont destinées à être raccordées par des conduits de gaz à des vérins à gaz et / ou à des blocs collecteurs.
On se réfère maintenant à la figure 18. Un bloc collecteur CL peut comprendre un corps 300, sur lequel sont disposées des prises pression 301 , 302, 303, 304, 305, 306. Ces prises pressions sont destinées à être raccordées par des conduits de gaz à des vérins à gaz et / ou à des blocs collecteurs et / ou des blocs de raccordement.
Bien entendu, certaines prises pression des vérins à gaz, des blocs collecteurs, et des blocs de raccordement peuvent ne pas être raccordées au circuit.
Lors de la phase de réglage, les vérins à gaz VE sont sous pression. Ils ont un rôle de reprise de charge. Les trois appuis isostatiques RE, réglable en position, définissent la position de la charge.
Lorsque la phase de réglage est terminée, les vérins à gaz VE peuvent être bloqués de manière à rester dans la même position. Le gaz peut alors être purgé des vérins. Ceci peut être réalisé simplement lorsque les vérins sont reliés à un circuit de gaz CG comprenant une vanne de purge, telle que la vanne de purge 206 (figures 16, 17).
La force que ces vérins à gaz exercent reste la même après le réglage. On évite ainsi de dérégler le système ou de faire varier les efforts exercés en cas de fuite des vérins. Les vérins étant bloqués après le réglage, ils constituent des appuis rigides. Le comportement dynamique du système de réglage est amélioré. Bien entendu, les vérins de réglage peuvent aussi être bloqués. Notamment, les têtes des vérins micrométriques de puissance peuvent être bloquées en translation suivant des mouvements horizontaux (sinon les têtes de vérins sont libres).
Lors d'un nouveau réglage, si nécessaire, les vérins sont d'abord mis sous pression, puis débloqués. La mise sous pression peut être réalisée simplement lorsque les vérins sont reliés à un circuit de gaz CG comprenant une prise de gonflage 205. Le gaz sous pression est alors injecté dans le circuit de gaz CG par la prise de gonflage 205.
On se réfère à la figure 19. Le système de réglage peut avoir 1 à 6 degrés de libertés. Par exemple les trois appuis isostatiques peuvent être des vérins micrométriques de puissance. Un tel système possède 6 degrés de libertés. Avantageusement, les trois vérins micrométriques sont agencés de manière à découpler les réglages en rotation et en translation. Par exemple, ils peuvent être agencés de manière à ce que leurs positions dans un plan correspondent aux sommets S1 , S2, S3 d'un triangle rectangle TR, d'angle droit S1. On utilise un repère orthonormé direct, centré en S1 , dont l'axe Z est vertical, l'axe X parallèle à la direction S1-S2, l'axe Y parallèle à la direction S1-S3.
Les vérins micrométriques permettent chacun d'effectuer des translations suivant les axes X, Y, et Z. Le tableau suivant donne un exemple de correspondance entre le mouvement de la charge et les mouvements de chaque vérin micrométrique de puissance.
On rappelle que la tête d'un vérin micrométrique de puissance peut être :
- réglée en translation suivant X, Y ou Z, ; - libre de translater dans un plan horizontal ;
- libre de translater suivant l'axe X, c'est à dire bloquée en translation suivant Y;
- libre de translater suivant l'axe Y, c'est à dire bloquée en translation suivant X ; - bloquée (en translation suivant X et Y).
Figure imgf000014_0001
Figure imgf000015_0001
Les réglage s'effectuent en un seul point, sauf pour la translation suivant l'axe Z. Ce sont donc des réglages simples, qui peuvent être réalisés sans être pilotés. Bien entendu, les réglages peuvent être automatisés.
Le nombre de degré de liberté peut être différent de six. Par exemple, on peut mettre en S1 un appuis isostatique ne disposant pas de moyens de réglage. Si les deux autres appuis isostatiques sont réglables suivant les axes X, Y, et Z, le nombre de degré de liberté de la charge est cinq. Il n'a a en effet plus de réglage en translation suivant Z par rapport à l'exemple précédent. De la même façon, en limitant encore les réglages des deux autres appuis isostatiques, on peut avoir de 1 à 4 degrés de libertés. On peut ainsi réaliser un système de positionnement selon l'invention avec un à six degrés de liberté.
Bien entendu, l'invention s'applique au positionnement et au réglage de tout type de charge. La charge peut être par exemple une chaîne d'usinage, un dispositif de mesure.

Claims

REVENDICATIONS
1. Système de positionnement réglable selon 1 à 6 degrés de liberté, destiné à positionner et maintenir en position une charge, caractérisé en ce qu'il comprend au moins :
(a) trois appuis isostatiques (RE), supportant la charge (CH) et reposant sur un socle, un à trois de ces appuis comprenant des moyens de réglage ;
(b) N appuis astatiques (VE), de reprise de charge, supportant la charge et reposant sur le socle, lesdits appuis astatiques étant des vérins à gaz disposant d'une réserve de gaz suffisante pour que la force exercée par ces appuis sur la charge soit sensiblement constante pendant la phase de réglage.
2. Système selon la revendication 1 , caractérisé en ce que les N appuis astatiques (VE) comprennent des moyens (113) de blocage en position et des moyens de mise sous pression, de manière à pouvoir être mis sous pression lorsque le système est en phase de réglage, et à être bloqués lorsque le système n'est pas en phase de réglage.
3. Système selon l'une des revendications précédentes, caractérisé en ce que les vérins à gaz (VE) sont reliés à une ou plusieurs réserve(s) externe(s) de gaz.
4. Système selon l'une des revendications précédentes, caractérisé en ce que chacun des trois appuis isostatiques comprend trois moyens de réglage en translation selon des axes orthogonaux, dont un axe vertical.
5. Système selon l'une des revendications précédentes, caractérisé en ce que au moins l'un des moyens de réglage est un vérin micrométrique de puissance comportant, pour au moins un axe de déplacement, un coin mobile (3) mû par une vis micrométrique (4), la face (13) de ce coin qui est oblique par rapport à l'axe de la vis étant en contact avec la face frontale, qui lui est parallèle, de la tige (5) du vérin, qui se déplace perpendiculairement à l'axe de la vis micrométrique.
6. Système selon la revendication 5, caractérisé en ce que le vérin micrométrique de puissance comporte un plateau (6) à l'extrémité libre de sa tige, disposé perpendiculairement à l'axe de cette tige et dont les déplacements, dans un plan perpendiculaire à l'axe de cette tige sont commandés par au moins un couple de vérins (17-18, 19-20) dont les corps sont solidaires du plateau et dont les tiges s'appuient sur une plaque (16) fixée à l'extrémité de la tige (5) coopérant avec le coin mobile.
7. Système selon l'une des revendications précédentes, caractérisé en ce que pour au moins un appuis astatique ou isostatique, la liaison entre le support et ledit appuis est une liaison rotule, et la liaison entre le socle et ledit appuis est aussi une liaison rotule.
8. Système selon l'une des revendications précédentes, caractérisé en ce que pour au moins un appuis astatique ou isostatique, la liaison entre le support et ledit appuis est une liaison plan rotule.
PCT/FR2002/003683 2001-10-26 2002-10-25 Systeme de positionnement reglable WO2003036360A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02795346A EP1442331A1 (fr) 2001-10-26 2002-10-25 Systeme de positionnement reglable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0113901A FR2831676B1 (fr) 2001-10-26 2001-10-26 Systeme de positionnement reglable
FR01/13901 2001-10-26

Publications (1)

Publication Number Publication Date
WO2003036360A1 true WO2003036360A1 (fr) 2003-05-01

Family

ID=8868784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003683 WO2003036360A1 (fr) 2001-10-26 2002-10-25 Systeme de positionnement reglable

Country Status (3)

Country Link
EP (1) EP1442331A1 (fr)
FR (1) FR2831676B1 (fr)
WO (1) WO2003036360A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1892548A2 (fr) * 2006-08-25 2008-02-27 Carl Zeiss Optronics GmbH Dispositif destiné au stockage compensé par gravitation d'un objet de mesure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620606A (en) * 1968-03-10 1971-11-16 Nasa Optical system support apparatus
FR2152427A1 (fr) * 1971-09-14 1973-04-27 Micro Controle
FR2206542A1 (fr) * 1972-11-15 1974-06-07 Thomson Csf
US4500170A (en) * 1982-06-14 1985-02-19 Ford Aerospace & Communications Corporation Gravity and temperature compensating reflector support actuator
DE4326561A1 (de) * 1993-08-07 1995-02-09 Zeiss Carl Fa Verfahren zur Lagerung eines Spiegels sowie Spiegellagerung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620606A (en) * 1968-03-10 1971-11-16 Nasa Optical system support apparatus
FR2152427A1 (fr) * 1971-09-14 1973-04-27 Micro Controle
FR2206542A1 (fr) * 1972-11-15 1974-06-07 Thomson Csf
US4500170A (en) * 1982-06-14 1985-02-19 Ford Aerospace & Communications Corporation Gravity and temperature compensating reflector support actuator
DE4326561A1 (de) * 1993-08-07 1995-02-09 Zeiss Carl Fa Verfahren zur Lagerung eines Spiegels sowie Spiegellagerung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1892548A2 (fr) * 2006-08-25 2008-02-27 Carl Zeiss Optronics GmbH Dispositif destiné au stockage compensé par gravitation d'un objet de mesure
EP1892548A3 (fr) * 2006-08-25 2010-03-24 Carl Zeiss Optronics GmbH Dispositif destiné au stockage compensé par gravitation d'un objet de mesure

Also Published As

Publication number Publication date
FR2831676A1 (fr) 2003-05-02
EP1442331A1 (fr) 2004-08-04
FR2831676B1 (fr) 2004-01-16

Similar Documents

Publication Publication Date Title
EP2375084B1 (fr) Tourelle hexapode comprenant des verins
EP3362765B1 (fr) Procédé et système de compensation d'erreurs de précision d'un hexapode
FR2459130A1 (fr) Installation permettant de determiner la hauteur des objets moules sur une presse et notamment des objets moules a partir d'un materiau pulverulent
EP0365447B1 (fr) Procédé et appareil pour la compression et le contrôle de la compression de matières pulvérulentes et presse en faisant application
BE897440A (fr) Etabli de reparation de carosseries d'automobiles
WO2017118797A1 (fr) Système de génération de déplacement d'une plaque de support selon six degrés de liberté
EP0434541B1 (fr) Presse plieuse hydraulique à tablier inférieur mobile
EP1112130A1 (fr) Presse plieuse a tablier inferieur actif
WO2003036360A1 (fr) Systeme de positionnement reglable
EP0968450B1 (fr) Dispositif de positionnement micrometrique d'un support d'element optique spatial selon six degres de liberte
CA2029127C (fr) Equipement gamma camera a deux tetes detectrices
CH638133A5 (fr) Dispositif de moulage par injection d'objets en matieres plastiques ou elastomeres.
EP1308707B1 (fr) Dispositif de plateau tournant destiné à supporter et orienter une charge
EP4078710B1 (fr) Banc de caracterisation mecanique d'objets minces a fiabilite augmentee
EP3203299B1 (fr) Miroir deformable
FR2963439A1 (fr) Dispositif d'athermalisation mecanique passive, systeme optique associe
BE899973A (fr) Appareil pour la mesure, le calibrage et la remise en forme de vehicules accidentes.
FR2742209A1 (fr) Verins de positionnement a un axe ou a trois axes, et procedes d'asservissement mettant en oeuvre ces verins
FR2813677A1 (fr) Procede et systeme pour la realisation d'une surface de forme figee de grande precision
FR2541934A1 (fr) Dispositif de reglage du parallelisme et de la planeite des plateaux dans les presses a mouler
WO2023031557A1 (fr) Banc d'essai en cisaillement
FR3014520A1 (fr) Actionneur lineaire de support de charge et hexapode comprenant de tels actionneurs
FR2490130A1 (fr) Dispositif pour emmancher une piece femelle sur une piece male
CA1234678A (fr) Presse a colonnes avec compensation de l'allongement de celles-ci lors du serrage
EP0743503A2 (fr) Système de règles-étalon et son utilisation pour l'étalonnage d'un système de mesure de précision

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002795346

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002795346

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2002795346

Country of ref document: EP