WO2003035567A1 - Vacuum double glazing - Google Patents

Vacuum double glazing Download PDF

Info

Publication number
WO2003035567A1
WO2003035567A1 PCT/JP2002/011018 JP0211018W WO03035567A1 WO 2003035567 A1 WO2003035567 A1 WO 2003035567A1 JP 0211018 W JP0211018 W JP 0211018W WO 03035567 A1 WO03035567 A1 WO 03035567A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
plate
sheet
gap
pair
Prior art date
Application number
PCT/JP2002/011018
Other languages
French (fr)
Japanese (ja)
Inventor
Toru Futagami
Kenji Sakamoto
Masao Misonou
Original Assignee
Nippon Sheet Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co., Ltd. filed Critical Nippon Sheet Glass Co., Ltd.
Publication of WO2003035567A1 publication Critical patent/WO2003035567A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/6612Evacuated glazing units
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66304Discrete spacing elements, e.g. for evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67365Transporting or handling panes, spacer frames or units during assembly
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Definitions

  • a pair of glass sheets are arranged to face each other via a gap formed by interposing a spacer between the glass sheets, and a sealing material is used to seal a gap between outer peripheral parts of the glass sheets.
  • the present invention relates to a vacuum double glazing that has been attached and the gap is kept in a reduced pressure state.
  • the present invention has been made in view of the above-mentioned circumstances, and has as its object to reduce the total thickness of the vacuum multilayer glass without impairing the excellent heat insulating effect of the vacuum multilayer glass. To improve the strength. Disclosure of the invention
  • the characteristic structure of the invention described in claim 1 is that a pair of glass sheets 1 and 2 are provided with a spacer between the two glass sheets 1 and 2. Via 3 And the outer periphery of the pair of plate glasses 1 and 2 is sealed with a sealing material 4 via a gap V formed in the gap, and the gap V is evacuated.
  • a tempered glass sheet G that has been subjected to a tempering treatment is used as at least one of the glass sheets 1 (2).
  • the plate surface 21 that is placed in contact with the transfer device during the tempering treatment is located on the non-gap side.
  • the “non-gap side” means a side of the sheet surface of the sheet glass 1 (2) that does not face the gap portion V side formed by both sheet glasses 1 and 2.
  • the upper side of the sheet glass 1 located on the upper side is the “non-gap side” on the lower side of the sheet glass 2 located on the lower side.
  • the strength is improved while maintaining the glass sheet at a predetermined thickness.
  • the surface of the tempered glass sheet that is placed in contact with the transfer device during the tempering process is placed on the non-gap side, the vacuum double-glazed glass The strength can be improved.
  • the sheet glass is transported by a roll-type transport device, and is transported in a substantially horizontal posture in which the plate surface is placed in contact with the roll of the transport device.
  • a scratch may be formed on the plate surface that comes into contact with the transfer device during transfer. For this reason, when comparing the front and back surfaces of the tempered glass sheet that has been subjected to the tempering treatment, the plate surface that is placed in contact with the transfer device during the tempering treatment has more scratches.
  • the external force Of the tempered glass sheet that has been subjected to the strengthening process which has a relatively large number of flaws, is placed on the non-gap side, not the gap side where tensile stress is applied, rather than the gap side where tensile stress acts.
  • the risk of cracks being generated from the plate surface on the gap side where tensile stress is applied is reduced, the tempered glass sheet is harder to break, and the strength of the vacuum double glazing can be surely improved. It is.
  • the strength can be improved while maintaining the thickness of the sheet glass at a predetermined thickness, and the strength of the vacuum double-glazed glass can be reliably improved by the above-described operation. It is needless to say that the same excellent heat insulating effect as the conventional one can be expected.
  • the strength can be improved without increasing the total thickness of the vacuum double-glazed glass while keeping the thickness of the sheet glass at a predetermined thickness without impairing the excellent heat insulating effect of the vacuum double-glazed glass.
  • the characteristic configuration of the invention described in claim 2 is, in addition to the characteristic configuration described in claim 1, at least one of the pair of plate glasses 1 and 2 as illustrated in FIGS. 1 and 2.
  • a float glass sheet formed by a float method is used as one glass sheet 1 (2).
  • a plate surface 23 placed in contact with the molten tin at the time of float forming is located on the non-gap portion side.
  • the sheet surface placed in contact with the molten tin at the time of float forming is located on the non-gap side, so it is possible to reliably improve the strength of the vacuum double glazing by one layer. You can.
  • FIG. 1 is a partially cutaway perspective view of a vacuum laminated glass according to the present invention
  • FIG. 2 is a cross-sectional view of the vacuum laminated glass.
  • FIG. 3 is a cross-sectional view of a main part of the vacuum insulated glass
  • FIG. 4 is a cross-sectional view of a main part of the vacuum insulated glass in a manufacturing process
  • FIG. 5 is a conceptual explanatory view showing an example of a tempering process.
  • FIG. 6 is a conceptual explanatory view showing the operation of the vacuum insulated glass
  • FIG. 7 is an explanatory diagram showing the results of a falling ball test. BEST MODE FOR CARRYING OUT THE INVENTION
  • such a vacuum insulated glass P has a large number of spacers 3 interposed between a pair of glass sheets 1 and 2 with the surfaces of both glass sheets 1 and 2 interposed therebetween.
  • the two glass sheets 1, 2 are disposed so as to face each other with a gap V interposed therebetween, and the melting point between the outer peripheral parts of the glass sheets 1, 2 is lower than that of the glass sheets 1, 2, and It is sealed by bonding with a low-melting glass with high airtightness (an example of a sealing material) 4, and the gap V between the two glass sheets 1 and 2 is hermetically sealed under reduced pressure.
  • a tempered glass sheet G obtained by applying a heat strengthening treatment (an example of tempering treatment) to a float glass sheet formed by a float method is used.
  • a heat strengthening treatment an example of tempering treatment
  • the plate surface 21 of the plate surface of the tempered glass sheet G, which was placed in contact with the transfer device during the tempering treatment, and the float A plate surface 23 placed in contact with the molten tin during molding is arranged.
  • the thickness of each of the glass sheets 1 and 2 is about 3.8 to 4.2 mm. Gap V between both glass sheets 1, 2 is reduced to 1. 3 3 P a (1. 0 X 1 0- 2 T orr) below.
  • the spacer 3 is preferably cylindrical in shape, and has a compressive strength of 4.9 ⁇ 10 8 Pa (5 ⁇ 10 3 kgf) so that it can withstand the atmospheric pressure acting on both glass sheets 1 and 2. / cm 2 ) or more, such as stainless steel (SUS 304) or Inconel 718.
  • the spacer 3 is cylindrical, the diameter is about 0.3 to 1.0 mm and the height is about 0.15 to 1.0 mm.
  • the interval is set to about 20 mm.
  • the sealing material 4 may have a sealing temperature of less than 400 ° C. and an adhesive strength of 20 kg / cm 2 or more, and a low-melting glass may be used as the sealing material 4 as in the embodiment. If used, it is preferred Ru using low melting point glass thermal expansion coefficient 75 ⁇ 8 5 X 1 0 7 Z ° C, for example low-melting glass, such as: (a) ⁇ ⁇ ((( >!: ) Is preferred.
  • Low melting point glass (a): composition, P b O 70. 0 ⁇ 80 0 mass 0/0, B 2 0 3 5. 0 ⁇ :. 1 2. 0 wt%, Z nO 2. 0 ⁇ ; 1 0 . 0 wt%, S i 0 2 0. 5 ⁇ 3 . 0 wt%, A 1 2 0 3 0 ⁇ 2. 0 wt%, B ia 0 3 3. 0 ⁇ 7. 0 wt. /. , C u O 0. 5 ⁇ 5 0 wt%, F (F 2) 0. :.! ⁇ 6. 0 mass 0/0.
  • Low melting point glass (b):. Composition, P b O 70. 3 ⁇ 9 2. 0 wt%, B 2 0 3 1. 0 ⁇ 10 0 mass 0 /. , B i 2 0 3 5. 2 ⁇ 20 . 0 wt%, F 2 0. 0 1 ⁇ 8. 0 wt%, Z nO 0 ⁇ 1 5. 0 wt%, V 2 O s 0 ⁇ 5. 0 Mass 0/0, S i 0 2 0 ⁇ 2. 0 wt%, A 1 2 0 3 0 ⁇ 2. 0 wt%, S n0 2 0 ⁇ 2. 0 wt%, B a O 0-4. 0 wt% in and, B 2 0 3 / P b O ( mass ratio) is 0.1 1 or less.
  • one plate glass 1 in order to reduce the pressure in the gap V, as an example, as shown in detail in FIG. 3, one plate glass 1 has a large-diameter hole 5 a having a diameter of about 3 mm and a large-diameter hole 5 a having a diameter of about 2 mm.
  • a suction hole 5 composed of a small-diameter hole 5b is formed, and a glass tube 6 is inserted into the large-diameter hole 5a.
  • This glass tube 6 has a lower melting point than the glass tube 6 or the plate glass 1.
  • the glass tube 6 is adhered and fixed to the plate glass 1 by the glass 7, the tip of the glass tube 6 is sealed by melting, and the whole is covered by the cap 8.
  • the tempered sheet glass G is brought into contact with a roll r of the conveying device R by a roll-type conveying device (an example of a conveying device) R. While being placed in a nearly horizontal posture, the wafer is transported so as to sequentially pass through the heating zone and the air-cooling zone, and is subjected to air-cooling enhancement processing.
  • This tempering treatment is a treatment for both front and back surfaces of the tempered sheet glass G.
  • the sheet surface 23 placed in contact with the molten tin at the time of float molding is transferred to the transfer device R shown in FIG.
  • the plate surface 21 on which the contact is placed or the plate surface 22 which is not in contact with the transfer device R may be used.
  • the plate surface 23 placed in contact with the molten tin at the time of float molding and the plate surface 21 placed in contact with the transfer device R side Is the same plate surface side, it is possible to make the plate surface facing the gap portion V side of the plate surface of the plate glass 1 (or 2) constituting the vacuum double-glazed glass P smoother with less scratches. Therefore, as will be described in detail later, when an external force acts from the outside of the vacuum insulated glass P, the vacuum insulated glass P can be made harder to break.
  • the strengthened glass sheet G as the glass sheets 1 and 2 is supported substantially horizontally, and the paste is applied to the upper surface of the outer peripheral portion thereof.
  • a low-melting point glass 4 is applied, and a number of spacers 3 are arranged at predetermined intervals, and the other sheet glass 1 is placed from above.
  • the plate surfaces 21 of the plate glasses 1 and 2 which are placed in contact with the transfer device R are arranged on the non-gap portion side, that is, the non-opposite surface side.
  • the area of the lower plate glass 2 is made slightly larger and its peripheral edge is slightly protruded from the peripheral edge of the upper plate glass 1, it is convenient for application of the low-melting glass 4 and the like.
  • a glass tube 6 is inserted into the suction hole 5 of the plate glass 1 located above.
  • the glass tube 6 can be inserted only into the large-diameter hole 5a of the suction hole 5, and is set to be longer than the large-diameter hole 5a.
  • a doughnut-shaped low-melting glass 7 is placed around the projecting portion of the glass tube 6 so as to protrude upward from 1, and a suction sealing device 9 is covered from above.
  • the suction sealing device 9 includes a cylindrical suction cup 10 having a bottom and an electric heater 11 disposed in the suction cup 10, and further has a suction port communicating with an internal space of the suction cup 10.
  • An O-ring 13 for sealing the space between the flexible pipe 12 and the upper surface of the sheet glass 1 is also provided.
  • the glass sheets 1 and 2 are placed in a heating furnace 14 with the glass sheets 1 and 2 being almost horizontal, and the low-melting glass 4 is melted by firing at a temperature at which the strengthening of the reinforced glass sheet G does not stop. Then, a joining process of joining the outer peripheral portions of the two glass sheets 1 and 2 with the low-melting glass 4 in the molten state and sealing the gap V is performed.
  • the inside of the suction cup 10 is depressurized by suction using a single tally pump or a turbo-molecular pump connected to the flexible pipe 12, and the inside of the gap V through the glass tube 6 and the small-diameter hole 5b.
  • the tip of the glass tube 6 is locally heated to about 1000 ° C. and melted by an electric heater 11 as shown in FIG.
  • the opening at the tip of the glass tube 6 is sealed, and after cooling, the cap 8 is adhered to the plate glass 1 to produce the vacuum insulated glass P.
  • the vacuum laminated glass P according to the present invention has improved strength without impairing the excellent heat insulating effect of the vacuum laminated glass and without increasing the total thickness of the vacuum laminated glass. That is, as shown in FIG. 6, when an impact force is applied to the vacuum double-glazed glass P by an external force, the pair of glass sheets 1 and 2 face each other with the spacer 3 interposed therebetween. Therefore, the sheet glass 1 subjected to the external force is bent between the spacers 3 such that the gap V side is convex downward. Then, compressive stress acts on the side of the glass sheet 1 that does not face the gap V side, but faces the gap V side. A tensile stress acts on the plate surface.
  • the plate surface 21 that is placed in contact with the transfer device during the tempering process with relatively large damage is applied to the tensile stress.
  • each of the pair of glass sheets 1 and 2 uses the strengthened glass sheet G, and each of the glass sheets 1 and 2 comes into contact with the transporting device during the strengthening process.
  • the force illustrated in the form in which the placed plate surface 21 is arranged on the non-gap portion side is not limited to such a form.
  • each of the pair of glass sheets 1 and 2 is made of a strengthened glass sheet G, and only one of the glass sheets 1 and 2 (or 2) of the glass sheets 1 and 2 using the strengthened glass sheet G is used.
  • the plate surface 21 that is placed in contact with the transfer device during the strengthening process may be arranged on the non-gap side.
  • each of the pair of glass sheets 1 and 2 is not limited to the form using the strengthened glass sheet G, and at least one of the pair of glass sheets 1 and 2 is used.
  • the tempered glass sheet G may be used for the glass sheet 1 (or 2).
  • one of the sheet glass 1 is made of tempered sheet glass G
  • the other sheet glass 2 is made of float sheet glass that has not been tempered, and the tempered sheet glass 1 (G) is used during tempering.
  • the plate surface 21 placed in contact with the transfer device may be disposed on the non-gap portion side.
  • the plate surface 23 of the plate glass 2 using the float plate glass which is placed in contact with the molten tin at the time of float forming, is disposed on the side facing the plate glass 1, the non-facing surface
  • the plate surface facing the gap V side is regarded as a smooth surface with less damage, and the vacuum
  • the vacuum multilayer glass P can be made more difficult to break, which is more preferable.
  • the pair of glass sheets 1 and 2 is not limited to the combination of the strengthened glass sheet G and the float glass sheet that has not been strengthened as described in ⁇ 2> above.
  • tempered glazing G and template glassGlass glass with a light diffusion function by surface treatmentGlass with mesh 'wire immersion glass' Low reflection glass ⁇ high transmission glazing ⁇ ceramic printing glass ⁇ heat ray and UV absorption function It may be combined with special glass or the like provided with.
  • the tempered glass sheet G is not limited to the tempered glass sheet as described in the previous embodiment, but may be the tempered glass sheet formed by other molding methods.
  • a special glass having a function of absorbing heat rays and ultraviolet rays may be subjected to a tempering treatment.
  • the degree of strengthening in the tempering treatment of the tempered glass sheet G in the present invention may be appropriately set according to the use and purpose of the vacuum double-glazed glass P.
  • the present invention is not limited to the air-cooling strengthening treatment described above, and various other strengthening treatments may be performed. For example, a chemical strengthening treatment may be performed.
  • the glass sheets 1 and 2 may be of any type as long as they satisfy the above-described requirements.
  • the composition of the glass sheets is also soda silicate glass, soda lime glass, borosilicate glass, aluminosilicate glass, and various types. Crystallized glass or the like can be used, and the thickness of the sheet glass 1 or 2 can be freely selected as appropriate.
  • ⁇ 6> Regarding the low-melting glass 7 for fusing the glass tube 6, either a crystalline low-melting glass whose crystallization is completed in a high-temperature region or an amorphous low-melting glass can be used. .
  • the sealing material 4 for joining and sealing between the outer peripheral portions of the two glass sheets 1 and 2 is a material having a sealing temperature of less than 400 ° C and an adhesive strength of 20 kg Z cm 2 or more. It is possible to use not only the low-melting glass exemplified in the above embodiment, but also any crystalline or non-crystalline low-melting glass. Indium, lead, tin, zinc and the like are mainly used. A metal solder as a component may be used.
  • the spacer 3 is not limited to stainless steel and Inconel.
  • metals such as iron, copper, aluminum, tungsten, nickel, chromium, and titanium, carbon steel, chrome steel, Nickel steel, nickel chrome steel, manganese steel, black
  • alloys such as mumanganese steel, chromium molybdenum steel, silicon steel, brass, solder, and duralumin, or ceramics and glass that are not easily deformed by external force. And can be configured in various shapes such as prismatic and spherical.
  • vacuum insulated glass examples include window glass for buildings and vehicles (automobiles, railcars, ships), plasma display and other device elements, as well as refrigerators and heat insulators. It can be used for various purposes such as doors and walls of equipment.
  • a ball drop test was conducted to examine how the impact strength of the sheet glass differs depending on which side of the sheet glass is used as the attack surface by the ball drop.
  • the float plate glass was heated to about 600 ° C in an electric furnace by a roll-type transfer device, and then rapidly and uniformly cooled with high-pressure blower to obtain a surface compressive stress of 100 to 110 kg. / cm 2 was used.
  • the plate surface (hereinafter abbreviated as “bottom surface”) that was placed in contact with the molten tin during float molding was used as the plate surface that was placed in contact with the ball-type transfer device.
  • a mass of about 1 A drop ball test was conducted in which a steel ball of 047 g and a diameter of about 63.4 mm was dropped to strike the plate surface of the sample glass. As a heating surface made of steel balls, the steel balls fall onto a plate surface (hereinafter abbreviated as “top surface”) that is not placed on the molten tin during float molding and is not placed in contact with the pallet conveyor. The case where the steel ball was dropped and the case where the steel ball was dropped on the bottom surface were compared. The results are shown in Fig. 7, where Nos. 1 to 3 are the results when the attack surface is the top surface, and Nos. 4 to 6 are the results when the heating surface is the bottom surface. And
  • a pair of plate glasses are disposed facing each other via a gap formed by interposing a spacer between the two plate glasses, and the outer periphery of the pair of plate glasses is sealed with a sealing material.

Abstract

A vacuum double glazing (P), wherein a pair of plate glasses (1, 2) are opposed to each other through a clearance part (V) formed by providing spacers (3) between these both plate glasses (1, 2), the outer peripheral parts of the pair of plate glasses (1, 2) are sealingly fitted to each other with sealing material (4), and the clearance part (V) is held in decompressed state, a reinforced plate glass (G) subjected to reinforcing treatment is used as at least one plate glass of the pair of plate glasses (1, 2), and the plate surface (21) of the reinforced plate glass placed in contact with a transfer device at the time of the reinforcing treatment among the plate surfaces of the reinforced plate glass (G) is disposed on a non-clearance part side before manufacture to increase a strength.

Description

明 細 書 真空複層ガラス 技術分野  Description Vacuum insulated glass Technical field
本発明は、 一対の板ガラスを、 その両板ガラス間にスぺーサを介在させて形成 される間隙部を介して、 対面配置すると共に、 前記一対の板ガラスの外周部間を 封止用材料で封着し、 前記間隙部を減圧状態に保持してある真空複層ガラスに関 する。 背景技術  According to the present invention, a pair of glass sheets are arranged to face each other via a gap formed by interposing a spacer between the glass sheets, and a sealing material is used to seal a gap between outer peripheral parts of the glass sheets. The present invention relates to a vacuum double glazing that has been attached and the gap is kept in a reduced pressure state. Background art
近年、 一対の板ガラスを、 その两板ガラス間にスぺーサを介在させて形成され る間隙部を介して、 対面配置すると共に、 前記一対の板ガラスの外周部間を封止 用材料で封着し、 前記間隙部を減圧状態に保持してある真空複層ガラスが提案さ れ、 前記間隙部が減圧状態で保持されているので、 非常に優れた断熱効果を期待 できることから注目されている。  In recent years, a pair of glass sheets has been arranged facing each other via a gap formed by interposing a spacer between the glass sheets, and the outer peripheral portions of the glass sheets have been sealed with a sealing material. A vacuum double glazing in which the gap is maintained in a reduced pressure state has been proposed. Since the gap is maintained in a reduced pressure state, attention has been paid to the fact that a very excellent heat insulating effect can be expected.
そして、 従来、 真空複層ガラスを構成する一対の板ガラスとしては、 フロート 法で成形されたフロート板ガラスがそのまま用いられていた。  Conventionally, as a pair of glass sheets constituting the vacuum double-glazed glass, a float glass sheet formed by a float method has been used as it is.
このため、 従来の技術では、 真空複層ガラスの外側からの衝撃力に対する強度 を向上させるためには、 真空複層ガラスを構成する板ガラスの厚みを大きくする 以外になく、 結果として真空複層ガラスの総厚が大きくなってしまうなどの問題 があり、 この点において改良の余地が残されていた。  For this reason, in the conventional technology, in order to improve the strength against the impact force from the outside of the vacuum laminated glass, there is no other way than increasing the thickness of the glass sheet constituting the vacuum laminated glass. However, there was a problem that the total thickness became large, and there was room for improvement in this respect.
本発明は、 上記実' [fに鑑みてなされたものであって、 その目的は、 真空複層ガ ラスの優れた断熱効舉を損なうことなく、 真空複層ガラスの総厚を大きくせずに 強度を向上させるところにある。 発明の開示  The present invention has been made in view of the above-mentioned circumstances, and has as its object to reduce the total thickness of the vacuum multilayer glass without impairing the excellent heat insulating effect of the vacuum multilayer glass. To improve the strength. Disclosure of the invention
請求の範囲第 1項記載の発明の特徴構成は、 第 1 , 2 , 3, 4 , 6図に例示す るごとく、 一対の板ガラス 1, 2を、 その両板ガラス 1 , 2間にスぺーサ 3を介 在させて形成される間隙部 Vを介して、 対面配置すると共に、 前記一対の板ガラ ス 1 , 2の外周部間を封止用材料 4で封着し、 前記間隙部 Vを減圧状態に保持し てある真空複層ガラス Pであって、 As shown in the first, second, third, fourth and sixth examples, the characteristic structure of the invention described in claim 1 is that a pair of glass sheets 1 and 2 are provided with a spacer between the two glass sheets 1 and 2. Via 3 And the outer periphery of the pair of plate glasses 1 and 2 is sealed with a sealing material 4 via a gap V formed in the gap, and the gap V is evacuated. The held vacuum double-glazed glass P,
前記一対の板ガラス 1, 2のうち少なく とも一方の板ガラス 1 ( 2 ) として、 強化処理を施された強化板ガラス Gを用いると共に、  As at least one of the pair of glass sheets 1 and 2, a tempered glass sheet G that has been subjected to a tempering treatment is used as at least one of the glass sheets 1 (2).
前記強化板ガラス Gの板面のうち、 強化処理時に搬送装置に接触載置された板 面 2 1を、 非間隙部側に配置してあるところにある。  Among the plate surfaces of the tempered plate glass G, the plate surface 21 that is placed in contact with the transfer device during the tempering treatment is located on the non-gap side.
尚、 ここで、 「非間隙側」 とは、 板ガラス 1 ( 2 ) の板面のうち、 両板ガラス 1, 2で形成される間隙部 V側に面しない側であることを意味する。 例えば、 第 2図中では、 上側に位置する板ガラス 1においてはその上側が、 下側に位置する 板ガラス 2においては下側が 「非間隙側」 となる。  Here, the “non-gap side” means a side of the sheet surface of the sheet glass 1 (2) that does not face the gap portion V side formed by both sheet glasses 1 and 2. For example, in FIG. 2, the upper side of the sheet glass 1 located on the upper side is the “non-gap side” on the lower side of the sheet glass 2 located on the lower side.
〔作用効果〕  (Effects)
真空複層ガラスを構成する一対の板ガラスのうち少なく とも一方の板ガラスと して、 板ガラスに対して強化処理を施してある強化板ガラスを用いることで、 板 ガラスを所定の厚みのままで強度を向上させることができ、 しかも、 強化板ガラ スの板面のうち、 強化処理時に搬送装置に接触載置された板面が、 非間隙部側に 配置されているため、 確実に真空複層ガラスの強度を向上させることができるの である。  By using a tempered glass sheet that has been subjected to a tempering treatment on at least one of the pair of glass sheets that compose the vacuum double-glazed glass, the strength is improved while maintaining the glass sheet at a predetermined thickness. In addition, since the surface of the tempered glass sheet that is placed in contact with the transfer device during the tempering process is placed on the non-gap side, the vacuum double-glazed glass The strength can be improved.
つまり、 真空複層ガラスでは、 その外側からの外力により衝撃力が加わった場 合には、 一対の板ガラスはその間にスぺーサを介在させた状態で対面配置される ことから、 外力を受けた板ガラスはスぺーサ間にて間隙部側に下方に凸面になる ように弓なりに曲げられる。 このため、 外力を受けた板ガラスの板面のうち間隙 部側の板面には引張応力が働くこととなる。  In other words, in the case of vacuum double-glazed glass, when an impact force is applied by an external force from the outside, the pair of glass sheets are placed facing each other with a spacer interposed between them. The sheet glass is bent in a bow shape between the spacers so as to be convex downward toward the gap. For this reason, tensile stress acts on the plate surface on the gap side side of the plate surface of the plate glass subjected to the external force.
一方、 板ガラスに強化処理を施す際には、 例えば、 ロール式搬送装置により搬 送され、 その板面が前記搬送装置のロールに接触載置されたほぼ水平姿勢の状態 にて搬送されるため、 搬送時に搬送装置に接蝕する板面には傷が形成されてしま うことがある。 このため、 強化処理を施した強化板ガラスの表裏 2つの板面を比 ベると、 強化処理時に搬送装置に接触載置された板面の方が傷が多い。  On the other hand, when the sheet glass is subjected to the tempering treatment, for example, the sheet glass is transported by a roll-type transport device, and is transported in a substantially horizontal posture in which the plate surface is placed in contact with the roll of the transport device. A scratch may be formed on the plate surface that comes into contact with the transfer device during transfer. For this reason, when comparing the front and back surfaces of the tempered glass sheet that has been subjected to the tempering treatment, the plate surface that is placed in contact with the transfer device during the tempering treatment has more scratches.
そこで、 板ガラスとして強化板ガラスを用いてある場合に、 上述のように外力 を受けた強化板ガラスの板面のうち、 比較的傷の多い強化処理時に搬送装置に接 触載置された板面の方を、 引張応力が働く間隙部側ではなく、 非間隙部側に配置 してあるため、 引張応力が働く間隙部側の板面から亀裂が発生するおそれを低減 し、 強化板ガラスがより破損し難く して、 確実に真空複層ガラスの強度を向上さ せることができるのである。 Therefore, when tempered glass is used as the glass, the external force Of the tempered glass sheet that has been subjected to the strengthening process, which has a relatively large number of flaws, is placed on the non-gap side, not the gap side where tensile stress is applied, rather than the gap side where tensile stress acts. As a result, the risk of cracks being generated from the plate surface on the gap side where tensile stress is applied is reduced, the tempered glass sheet is harder to break, and the strength of the vacuum double glazing can be surely improved. It is.
そして、 このように板ガラスを所定厚みのままで強度を向上することができ、 以上のような作用にて真空複層ガラスの強度を確実に向上させることができるた め、 この真空複層ガラスにおいても従来のものと同様の非常に優れた断熱効果を 期待することができるのはいうまでもない。  In this way, the strength can be improved while maintaining the thickness of the sheet glass at a predetermined thickness, and the strength of the vacuum double-glazed glass can be reliably improved by the above-described operation. It is needless to say that the same excellent heat insulating effect as the conventional one can be expected.
従って、 真空複層ガラスの優れた断熱効果を損なうことなく、 板ガラスの厚み を所定厚みのままで真空複層ガラスの総厚を大きくせずに強度を向上させること が可能となる。  Therefore, the strength can be improved without increasing the total thickness of the vacuum double-glazed glass while keeping the thickness of the sheet glass at a predetermined thickness without impairing the excellent heat insulating effect of the vacuum double-glazed glass.
請求の範囲第 2項記載の発明の特徴構成は、 上記請求の範囲第 1項記載の特徴 構成に加えて、 第 1, 2図に例示するごとく、 前記一対の板ガラス 1, 2のうち 少なく とも一方の板ガラス 1 ( 2 ) として、 フロート法により成形されたフロー ト板ガラスを用いると共に、  The characteristic configuration of the invention described in claim 2 is, in addition to the characteristic configuration described in claim 1, at least one of the pair of plate glasses 1 and 2 as illustrated in FIGS. 1 and 2. As one glass sheet 1 (2), a float glass sheet formed by a float method is used,
前記フロート板ガラスの板面のうち、 フロート成形時に溶融スズ上に接触載置 された板面 2 3を、 非間隙部側に配置してあるところにある。  Among the plate surfaces of the float plate glass, a plate surface 23 placed in contact with the molten tin at the time of float forming is located on the non-gap portion side.
〔作用効果〕  (Effects)
フロート板ガラスの板面のうち、 フロート成形時に溶融スズ上に接触載置され た板面が、 非間隙部側に配置されているため、 確実に真空複層ガラスの強度を一 層向上させることができるのである。  Of the sheet surfaces of the float sheet glass, the sheet surface placed in contact with the molten tin at the time of float forming is located on the non-gap side, so it is possible to reliably improve the strength of the vacuum double glazing by one layer. You can.
つまり、 フロート成形法により成形されたフロート板ガラスの表裏 2つの板面 を比べると、 成形時に溶融スズ上に接触載置される板面 (いわゆるボトム面) の 方が細かい傷が発生していることが多い。 そこで、 板ガラスとしてフロート成形 したものを用いてある場合に、 先述のように外力を受けた強化板ガラスの板面の うち、 比較的傷の多い成形時に溶融スズ上に接触載置された板面の方を、 引張応 力が働く間隙部側ではなく、 非間隙部側に配置してあるため、 引張応力が働く間 隙部側の板面から亀裂が発生するおそれを一層低減し、 確実に真空複層ガラスの 強度を一層向上させることができる。 In other words, when comparing the front and back surfaces of the float glass sheet formed by the float molding method, finer scratches occur on the plate surface (so-called bottom surface) that is placed on the molten tin during molding. There are many. Therefore, when the float glass is used as the glass sheet, as described above, of the sheet surfaces of the tempered glass sheet subjected to the external force as described above, Is located on the non-gap side rather than on the gap side where tensile stress acts, so that the risk of cracks being generated from the plate surface on the gap side where tensile stress acts can be further reduced, and vacuum can be reliably achieved. Double glazing Strength can be further improved.
尚、 上述のように、 図面との対照を便利にするために符号を記したが、 該記入 により本発明は添付図面の構成に限定されるものではない。 図面の簡単な説明  Note that, as described above, reference numerals are provided for convenience of comparison with the drawings, but the present invention is not limited to the configuration shown in the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明にかかる真空複層ガラスの一部切欠き斜視図であり、 第 2図は、 真空複層ガラスの断面図であり、  FIG. 1 is a partially cutaway perspective view of a vacuum laminated glass according to the present invention, and FIG. 2 is a cross-sectional view of the vacuum laminated glass.
第 3図は、 真空複層ガラスの要部断面図であり、  FIG. 3 is a cross-sectional view of a main part of the vacuum insulated glass,
第 4図は、 製造工程における真空複層ガラスの要部の断面図であり、 第 5図は、 強化処理の一例を示す概念説明図であり、  FIG. 4 is a cross-sectional view of a main part of the vacuum insulated glass in a manufacturing process, and FIG. 5 is a conceptual explanatory view showing an example of a tempering process.
第 6図は、 真空複層ガラスの作用を示す概念説明図であり、  FIG. 6 is a conceptual explanatory view showing the operation of the vacuum insulated glass,
第 7図は、 落球試験の結果を示す説明図である。 発明を実施するための最良の形態  FIG. 7 is an explanatory diagram showing the results of a falling ball test. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る真空複層ガラスの実施の形態を図面に基づいて説明する。  An embodiment of a vacuum double glazing according to the present invention will be described with reference to the drawings.
このような真空複層ガラス Pは、 第 1図に示すように、 一対の板ガラス 1, 2 において、 両板ガラス 1, 2の面が、 その間に多数のスぺーサ 3を介在させ、 そ れによって、 両板ガラス 1 , 2の間に間隙部 Vを介する状態で互いに対向するよ うに対面配置され、 両板ガラス 1, 2の外周部間が、 両板ガラス 1, 2よりも融 点が低く、 かつ、 気密性の高い低融点ガラス (封止用材料の一例) 4で接合する ことにより封着され、 両板ガラス 1, 2の間隙部 Vが、 減圧状態で密閉されて構 成されている。  As shown in FIG. 1, such a vacuum insulated glass P has a large number of spacers 3 interposed between a pair of glass sheets 1 and 2 with the surfaces of both glass sheets 1 and 2 interposed therebetween. The two glass sheets 1, 2 are disposed so as to face each other with a gap V interposed therebetween, and the melting point between the outer peripheral parts of the glass sheets 1, 2 is lower than that of the glass sheets 1, 2, and It is sealed by bonding with a low-melting glass with high airtightness (an example of a sealing material) 4, and the gap V between the two glass sheets 1 and 2 is hermetically sealed under reduced pressure.
両板ガラス 1, 2として、 当該実施形態では、 フロート法により成形したフロ ート板ガラスに熱強化処理 (強化処理の一例) を施した強化板ガラス Gを用いて あり、 しかも、 板ガラス 1 , 2夫々の板面のうち間隙部 Vに面しない非間隙部側 (当該実施形態では大気側) に、 その強化板ガラス Gの板面のうち強化処理時に 搬送装置に接触載置された板面 2 1及びフロート成形時に溶融スズ上に接触載置 された板面 2 3を配置してある。 尚、 板ガラス 1, 2の厚みはいずれも 3 . 8〜 4 . 2 m m程度である„ 両板ガラス 1, 2の間隙部 Vは、 1. 3 3 P a (1. 0 X 1 0— 2T o r r ) 以下に減圧されている。 In the present embodiment, as both glass sheets 1 and 2, a tempered glass sheet G obtained by applying a heat strengthening treatment (an example of tempering treatment) to a float glass sheet formed by a float method is used. On the non-gap portion side of the plate surface not facing the gap portion V (atmospheric side in this embodiment), the plate surface 21 of the plate surface of the tempered glass sheet G, which was placed in contact with the transfer device during the tempering treatment, and the float A plate surface 23 placed in contact with the molten tin during molding is arranged. The thickness of each of the glass sheets 1 and 2 is about 3.8 to 4.2 mm. Gap V between both glass sheets 1, 2 is reduced to 1. 3 3 P a (1. 0 X 1 0- 2 T orr) below.
前記スぺーサ 3は、 形状として円柱状が好ましく、 両板ガラス 1, 2に作用す る大気圧に耐え得るように、 圧縮強度が 4. 9 X 1 08 P a (5 X 1 03 k g f / c m2) 以上の材料、 例えば、 ステンレス鋼 (SUS 304) やインコネル 7 1 8などにより形成されている。 The spacer 3 is preferably cylindrical in shape, and has a compressive strength of 4.9 × 10 8 Pa (5 × 10 3 kgf) so that it can withstand the atmospheric pressure acting on both glass sheets 1 and 2. / cm 2 ) or more, such as stainless steel (SUS 304) or Inconel 718.
スぺーサ 3の形状が円柱状の場合であれば、 直径が 0. 3〜1. Omm程度、 高さが 0. 1 5〜1. 0 mm程度であり、 各スぺーサ 3の間の間隔は、 20 mm 程度に設定されている。  If the spacer 3 is cylindrical, the diameter is about 0.3 to 1.0 mm and the height is about 0.15 to 1.0 mm. The interval is set to about 20 mm.
前記封止用材料 4は、 封着温度 400°C未満で、 接着強度 20 k g/c m2以 上のものを用いればよく、 当該実施形態のように封止用材料 4として低融点ガラ スを用いる場合には、 熱膨張率 75〜8 5 X 1 0 7Z°Cの低融点ガラスを用い るのが好ましく、 例えば次のような低融点ガラス (a) · (!>) · ((:) を用いると 好適である。 The sealing material 4 may have a sealing temperature of less than 400 ° C. and an adhesive strength of 20 kg / cm 2 or more, and a low-melting glass may be used as the sealing material 4 as in the embodiment. If used, it is preferred Ru using low melting point glass thermal expansion coefficient 75~8 5 X 1 0 7 Z ° C, for example low-melting glass, such as: (a) · · ((( >!): ) Is preferred.
低融点ガラス (a) : 組成が、 P b O 70. 0〜80. 0質量0 /0、 B 203 5. 0〜: 1 2. 0質量%、 Z nO 2. 0〜; 1 0. 0質量%、 S i 02 0. 5〜3. 0質量%、 A 1 203 0 ~ 2. 0質量%、 B i a 03 3. 0〜 7. 0 質量。/。、 C u O 0. 5〜5. 0質量%、 F (F 2) 0. :!〜 6. 0質量0 /0で ある。 Low melting point glass (a): composition, P b O 70. 0~80 0 mass 0/0, B 2 0 3 5. 0~:. 1 2. 0 wt%, Z nO 2. 0~; 1 0 . 0 wt%, S i 0 2 0. 5~3 . 0 wt%, A 1 2 0 3 0 ~ 2. 0 wt%, B ia 0 3 3. 0~ 7. 0 wt. /. , C u O 0. 5~5 0 wt%, F (F 2) 0. :.! ~ 6. 0 mass 0/0.
低融点ガラス (b) : 組成が、 P b O 70. 3〜 9 2. 0質量%、 B 203 1. 0〜10. 0質量0/。、 B i 203 5. 2〜20. 0質量%、 F 2 0. 0 1〜8. 0質量%、 Z nO 0〜1 5. 0質量%、 V2Os 0〜5. 0質量0 /0、 S i 02 0 ~ 2. 0質量%、 A 1 203 0~ 2. 0質量%、 S n02 0 ~ 2. 0質量%、 B a O 0-4. 0質量%であり、 B 203/P b O (質量比) が 0. 1 1以下である。 Low melting point glass (b):. Composition, P b O 70. 3~ 9 2. 0 wt%, B 2 0 3 1. 0~10 0 mass 0 /. , B i 2 0 3 5. 2~20 . 0 wt%, F 2 0. 0 1~8. 0 wt%, Z nO 0~1 5. 0 wt%, V 2 O s 0~5. 0 Mass 0/0, S i 0 2 0 ~ 2. 0 wt%, A 1 2 0 3 0 ~ 2. 0 wt%, S n0 2 0 ~ 2. 0 wt%, B a O 0-4. 0 wt% in and, B 2 0 3 / P b O ( mass ratio) is 0.1 1 or less.
低融点ガラス (c) : 組成が、 P b O 65. 0〜8 5. 0質量%、 B203 1. 0〜: 1 1. 0質量%、 B i 203 7. 2〜20. 0質量%、 F (F2) 0 〜 6. 0質量%、 Z nO 0〜: L 1. 0質量%、 V205 0〜4· 0質量%、 (S i 02 + A 1 203) 0〜3. 0質量%、 S n O 2 0 ~ 5. 0質量%、 F e 2 0 3 0〜0 . 1質量0 /o、 C u O 0 . 2〜5 . 0質量0 /oである。 Low melting point glass (c): composition, P b O 65. 0~8 5. 0 wt%, B 2 0 3 1. 0~ : 1 1. 0 wt%, B i 2 0 3 7. 2~20 . 0 wt%, F (F 2) 0 ~ 6. 0 mass%, Z nO 0~: L 1. 0 wt%, V 2 0 5 0~4 · 0 wt%, (S i 0 2 + A 1 2 0 3 ) 0 to 3.0% by mass, SnO 2 0 to 5.0% by mass, F e 2 0 3 0~0. 1 mass 0 / o, a C u O 0. 2~5. 0 mass 0 / o.
当該実施形態では、 前記間隙部 Vを減圧するため、 一例として、 一方の板ガラ ス 1には、 第 3図に詳しく示すように、 直径が 3 m m程度の大径孔 5 a と 2 m m 程度の小径孔 5 bからなる吸引孔 5が穿設され、 その大径孔 5 a内にガラス管 6 が挿入されて、 このガラス管 6が、 ガラス管 6や板ガラス 1よりも融点の低い低 融点ガラス 7によって板ガラス 1に接着固定され、 ガラス管 6の先端部が、 溶融 により封止されて、 全体がキャップ 8により覆われている。  In the present embodiment, in order to reduce the pressure in the gap V, as an example, as shown in detail in FIG. 3, one plate glass 1 has a large-diameter hole 5 a having a diameter of about 3 mm and a large-diameter hole 5 a having a diameter of about 2 mm. A suction hole 5 composed of a small-diameter hole 5b is formed, and a glass tube 6 is inserted into the large-diameter hole 5a. This glass tube 6 has a lower melting point than the glass tube 6 or the plate glass 1. The glass tube 6 is adhered and fixed to the plate glass 1 by the glass 7, the tip of the glass tube 6 is sealed by melting, and the whole is covered by the cap 8.
以下、 この真空複層ガラス Pを製造する工程などについて説明する。  Hereinafter, a process of manufacturing the vacuum insulated glass P will be described.
まず、 前記強化板ガラス Gは、 一例として第 5図の概念説明図に示すように、 ロール式搬送装置 (搬送装置の一例) Rにより、 その板面 2 1が前記搬送装置 R のロール rに接触載置されたほぼ水平姿勢の状態にて、 加熱ゾーン ·風冷ゾーン を順次通過するように搬送されて、 風冷強化処理される。 この強化処理は、 強化 板ガラス Gの表裏両表面に対する処理となる。  First, as shown in the conceptual explanatory view of FIG. 5 as an example, the tempered sheet glass G is brought into contact with a roll r of the conveying device R by a roll-type conveying device (an example of a conveying device) R. While being placed in a nearly horizontal posture, the wafer is transported so as to sequentially pass through the heating zone and the air-cooling zone, and is subjected to air-cooling enhancement processing. This tempering treatment is a treatment for both front and back surfaces of the tempered sheet glass G.
尚、 フロート法により成形したフロート板ガラスに強化を施して強化板ガラス Gとする場合には、 フロート成形時に溶融スズ上に接触载置された板面 2 3を、 第 5図に示す搬送装置 Rに接触載置される板面 2 1側としても、 搬送装置 Rとは 接触しない板面 2 2側としてもどちらでもよい。 因みに、 当該実施形態の如く第 1 , 2 , 3図に示すように、 フロート成形時に溶融スズ上に接触載置された板面 2 3と搬送装置 Rに接触載置された板面 2 1側とが同じ板面側であると、 真空複 層ガラス Pを構成する板ガラス 1 (或いは 2 ) の板面のうち間隙部 V側に面する 板面をより傷の少ない平滑なものにすることができるため、 後で詳しく説明する ように、 真空複層ガラス Pの外側から外力が働いた際、 真空複層ガラス Pをより 破損し難くすることが可能となる。  When strengthening the float glass sheet formed by the float method to form a strengthened glass sheet G, the sheet surface 23 placed in contact with the molten tin at the time of float molding is transferred to the transfer device R shown in FIG. Either the plate surface 21 on which the contact is placed or the plate surface 22 which is not in contact with the transfer device R may be used. Incidentally, as shown in FIGS. 1, 2 and 3, as in this embodiment, the plate surface 23 placed in contact with the molten tin at the time of float molding and the plate surface 21 placed in contact with the transfer device R side Is the same plate surface side, it is possible to make the plate surface facing the gap portion V side of the plate surface of the plate glass 1 (or 2) constituting the vacuum double-glazed glass P smoother with less scratches. Therefore, as will be described in detail later, when an external force acts from the outside of the vacuum insulated glass P, the vacuum insulated glass P can be made harder to break.
板ガラス 1, 2として前記強化板ガラス Gを用いて、 一対の板ガラス 1 , 2の うち、 吸引孔 5の穿設されていない方の板ガラス 2をほぼ水平に支持して、 その 外周部の上面にペースト状の低融点ガラス 4を塗布し、 かつ、 多数のスぺーサ 3 を所定の間隔で配設して、 その上方から他方の板ガラス 1を載置する。  Using the strengthened glass sheet G as the glass sheets 1 and 2, the glass sheet 2 of the pair of glass sheets 1 and 2 where the suction hole 5 is not formed is supported substantially horizontally, and the paste is applied to the upper surface of the outer peripheral portion thereof. A low-melting point glass 4 is applied, and a number of spacers 3 are arranged at predetermined intervals, and the other sheet glass 1 is placed from above.
その際、 図に示すように、 板ガラス 1, 2の板面のうち搬送装置 Rに接触載置 された板面 2 1が、 非間隙部側すなわち非対向面側となるように配置する。 尚、 図に示すように、 下方に位置する板ガラス 2の面積を多少大きく し、 その周縁部 が上方の板ガラス 1周縁部から若干突出するように構成すると、 低融点ガラス 4 の塗布などに好都合である。 At this time, as shown in the figure, the plate surfaces 21 of the plate glasses 1 and 2 which are placed in contact with the transfer device R are arranged on the non-gap portion side, that is, the non-opposite surface side. still, As shown in the figure, if the area of the lower plate glass 2 is made slightly larger and its peripheral edge is slightly protruded from the peripheral edge of the upper plate glass 1, it is convenient for application of the low-melting glass 4 and the like.
その後、 第 4図に示すように、 上方に位置する板ガラス 1の吸引孔 5にガラス 管 6を揷入する。 そのガラス管 6は、 吸引孔 5の大径孔 5 a内にのみ揷入可能で、 かつ、 大径孔 5 aよりも長く設定されているので、 ガラス管 6の上方部が、 板ガ ラス 1から上方に突出し、 そのガラス管 6の突出部の周りにドーナツ状の低融点 ガラス 7を配置し、 さらに、 その上方から吸引封止装置 9を被せる。  Thereafter, as shown in FIG. 4, a glass tube 6 is inserted into the suction hole 5 of the plate glass 1 located above. The glass tube 6 can be inserted only into the large-diameter hole 5a of the suction hole 5, and is set to be longer than the large-diameter hole 5a. A doughnut-shaped low-melting glass 7 is placed around the projecting portion of the glass tube 6 so as to protrude upward from 1, and a suction sealing device 9 is covered from above.
吸引封止装置 9は、 有底円筒状の吸引カップ 1 0と、 その吸引カップ 1 0内に 配設の電気ヒータ 1 1とを備え、 さらに、 吸引カップ 1 0の内部空間に連通する 吸引用のフレキシブルパイプ 1 2と、 板ガラス 1上面との間を密閉する Oリング 1 3なども備えている。  The suction sealing device 9 includes a cylindrical suction cup 10 having a bottom and an electric heater 11 disposed in the suction cup 10, and further has a suction port communicating with an internal space of the suction cup 10. An O-ring 13 for sealing the space between the flexible pipe 12 and the upper surface of the sheet glass 1 is also provided.
その吸引封止装置 9を被せた状態で、 両板ガラス 1, 2をほぼ水平にして加熱 炉 1 4内に収納し、 強化板ガラス Gの強化がなまらない温度で焼成により低融点 ガラス 4を溶融させて、 その溶融状態にある低融点ガラス 4によって両板ガラス 1 , 2の外周部を接合して間隙部 Vを密閉する接合処理を実行する。  With the suction sealing device 9 covered, the glass sheets 1 and 2 are placed in a heating furnace 14 with the glass sheets 1 and 2 being almost horizontal, and the low-melting glass 4 is melted by firing at a temperature at which the strengthening of the reinforced glass sheet G does not stop. Then, a joining process of joining the outer peripheral portions of the two glass sheets 1 and 2 with the low-melting glass 4 in the molten state and sealing the gap V is performed.
その後、 フレキシブルパイプ 1 2に接続した口一タリーポンプやターボ分子ポ ンプによる吸引で、 吸引カップ 1 0内を減圧し、 かつ、 ガラス管 6と小径孔 5 b を介して、 間隙部 V内を 1 . 3 3 P a以下に減圧してから、 その後、 電気ヒータ 1 1によりガラス管 6の先端部を 1 0 0 0 °C程度に局部的に加熱して溶融させ、 図 3に示すように、 ガラス管 6の先端開口を封止するとともに、 冷却後にキヤッ プ 8を板ガラス 1に接着して、 真空複層ガラス Pを製造するのである。  After that, the inside of the suction cup 10 is depressurized by suction using a single tally pump or a turbo-molecular pump connected to the flexible pipe 12, and the inside of the gap V through the glass tube 6 and the small-diameter hole 5b. After reducing the pressure to 1.33 Pa or less, the tip of the glass tube 6 is locally heated to about 1000 ° C. and melted by an electric heater 11 as shown in FIG. In addition, the opening at the tip of the glass tube 6 is sealed, and after cooling, the cap 8 is adhered to the plate glass 1 to produce the vacuum insulated glass P.
本発明に係る真空複層ガラス Pは、 真空複層ガラスの優れた断熱効果を損なう ことなく、 真空複層ガラスの総厚を大きくせずに強度が向上されたものとなる。 つまり、 第 6図に示すように、 真空複層ガラス Pに外力により衝撃力が加わつ た場合には、 一対の板ガラス 1 , 2はその間にスぺーサ 3を介在させた状態で対 面配置されることから、 外力を受けた板ガラス 1はスぺーサ 3間にて間隙部 V側 が下方に凸面になるように弓なりに曲げられる。 すると、 板ガラス 1の板面のう ち間隙部 V側に面しない板面側には圧縮応力が働く一方で、 間隙部 V側に面する 板面には引張応力が働くこととなる。 The vacuum laminated glass P according to the present invention has improved strength without impairing the excellent heat insulating effect of the vacuum laminated glass and without increasing the total thickness of the vacuum laminated glass. That is, as shown in FIG. 6, when an impact force is applied to the vacuum double-glazed glass P by an external force, the pair of glass sheets 1 and 2 face each other with the spacer 3 interposed therebetween. Therefore, the sheet glass 1 subjected to the external force is bent between the spacers 3 such that the gap V side is convex downward. Then, compressive stress acts on the side of the glass sheet 1 that does not face the gap V side, but faces the gap V side. A tensile stress acts on the plate surface.
本発明に係る真空複層ガラス Pでは、 強化板ガラス Gの表裏 2つの板面のうち、 比較的傷の多い強化処理時に搬送装置に接触載置された板面 2 1の方を、 引張応 力が働く間隙部側ではなく、 非間隙部側に配置してあるため、 引張応力が働く間 隙部側の板面から亀裂が発生するおそれを低減し、 強化板ガラス Gがより破損し 難く して、 確実に真空複層ガラスの強度を向上させることができるのである。 〔別実施形態〕  In the vacuum double-glazed glass P according to the present invention, of the two front and back plate surfaces of the reinforced plate glass G, the plate surface 21 that is placed in contact with the transfer device during the tempering process with relatively large damage is applied to the tensile stress. Is placed not on the gap side but on the non-gap side, where it is possible to reduce the risk of cracks occurring from the plate surface on the gap side where tensile stress is applied, and to make the reinforced sheet glass G more difficult to break. However, it is possible to surely improve the strength of the vacuum double glazing. [Another embodiment]
以下に他の実施形態を説明する。  Hereinafter, other embodiments will be described.
〈1〉 先の実施形態では、 一対の板ガラス 1, 2のいずれもを強化板ガラス Gを 用いて、 いずれの板ガラス 1, 2もその表裏 2つの板面のうち、 強化処理時に搬 送装置に接触載置された板面 2 1を、 非間隙部側に配置してある形態を例示した 力 そのような形態に限らない。 例えば、 図示しないが、 一対の板ガラス 1, 2 のいずれもを強化板ガラス Gを用いて、 前記強化板ガラス Gを用いた板ガラス 1 , 2のうち一方の板ガラス 1 (或いは 2 ) のみについて、 その板面のうち前記強化 処理時に搬送装置に接触載置された板面 2 1を非間隙部側に配置してあっても勿 論よい。  <1> In the above embodiment, each of the pair of glass sheets 1 and 2 uses the strengthened glass sheet G, and each of the glass sheets 1 and 2 comes into contact with the transporting device during the strengthening process. The force illustrated in the form in which the placed plate surface 21 is arranged on the non-gap portion side is not limited to such a form. For example, although not shown, each of the pair of glass sheets 1 and 2 is made of a strengthened glass sheet G, and only one of the glass sheets 1 and 2 (or 2) of the glass sheets 1 and 2 using the strengthened glass sheet G is used. Of course, the plate surface 21 that is placed in contact with the transfer device during the strengthening process may be arranged on the non-gap side.
〈2〉 そして、 これまでの実施形態にて例示したように、 一対の板ガラス 1, 2 のいずれもを強化板ガラス Gを用いる形態に限らず、 一対の板ガラス 1, 2のう ち少なく とも一方の板ガラス 1 (或いは 2 ) に強化板ガラス Gを用いればよい。 例えば、 図示しないが、 一方の板ガラス 1 として強化板ガラス Gを用い、 他方の 板ガラス 2として強化処理を施していないフロート板ガラスを用い、 強化板ガラ ス 1 ( G ) の板面のうち、 強化処理時に搬送装置に接触載置された板面 2 1を、 非間隙部側に配置してあってもよい。  <2> And, as exemplified in the embodiments up to this point, each of the pair of glass sheets 1 and 2 is not limited to the form using the strengthened glass sheet G, and at least one of the pair of glass sheets 1 and 2 is used. The tempered glass sheet G may be used for the glass sheet 1 (or 2). For example, although not shown, one of the sheet glass 1 is made of tempered sheet glass G, and the other sheet glass 2 is made of float sheet glass that has not been tempered, and the tempered sheet glass 1 (G) is used during tempering. The plate surface 21 placed in contact with the transfer device may be disposed on the non-gap portion side.
この際、 フロート板ガラスを用いる板ガラス 2の板面のうちフロート成形時に 溶融スズ上に接触载置された板面 2 3を、 板ガラス 1 との対向面側に配置してあ つても、 非対向面側に対置してあってもどちらでもよいが、 非対向面側つまり非 間隙部側に配置してあると、 間隙部 V側に面する板面をより傷の少ない平滑なも のとして、 真空複層ガラス Pの外側から外力が働いた際に、 真空複層ガラス Pを より破損し難くすることが可能となり、 より好適である。 〈3〉 また、 一対の板ガラス 1、 2は、 上記 〈2〉 のように強化板ガラス Gと強 化処理を施していないフロート板ガラスとの組み合わせに限らず、 真空複層ガラ ス Pの用途や目的に応じて、 例えば、 強化板ガラス Gと、 型板ガラス ·表面処理 により光り拡散機能を備えたすりガラス ·網入りガラス '線入板ガラス '低反射 ガラス ·高透過板ガラス ·セラミック印刷ガラス ·熱線や紫外線吸収機能を備え た特殊ガラス等と、 組み合わせてあってもよい。 At this time, even if the plate surface 23 of the plate glass 2 using the float plate glass, which is placed in contact with the molten tin at the time of float forming, is disposed on the side facing the plate glass 1, the non-facing surface However, if it is placed on the non-opposite surface side, that is, on the non-gap side, the plate surface facing the gap V side is regarded as a smooth surface with less damage, and the vacuum When an external force acts from the outside of the multilayer glass P, the vacuum multilayer glass P can be made more difficult to break, which is more preferable. <3> Further, the pair of glass sheets 1 and 2 is not limited to the combination of the strengthened glass sheet G and the float glass sheet that has not been strengthened as described in <2> above. Depending on, for example, tempered glazing G and template glassGlass glass with a light diffusion function by surface treatmentGlass with mesh 'wire immersion glass' Low reflection glass · high transmission glazing · ceramic printing glass · heat ray and UV absorption function It may be combined with special glass or the like provided with.
〈4〉 尚、 強化板ガラス Gとしては、 先の実施形態で説明したようにフロート板 ガラスに強化処理を施したものに限らず、 その他の成形法により成形された板ガ ラスに強化処理を施したものを用いてあればよく、 また、 熱線や紫外線吸収機能 を備えた特殊ガラスに強化処理を施したものを用いてあってもよい。  <4> The tempered glass sheet G is not limited to the tempered glass sheet as described in the previous embodiment, but may be the tempered glass sheet formed by other molding methods. A special glass having a function of absorbing heat rays and ultraviolet rays may be subjected to a tempering treatment.
尚、 本発明における強化板ガラス Gの強化処理における強化の度合いは、 真空 複層ガラス Pの用途や目的に応じて、 適宜設定すればよく、 また、 強化処理につ いても、 先の実施形態にて例示した風冷強化処理に限ることなく、 各種その他の 強化処理を施せばよく、 例えば化学強化処理を施しても勿論よい。  The degree of strengthening in the tempering treatment of the tempered glass sheet G in the present invention may be appropriately set according to the use and purpose of the vacuum double-glazed glass P. The present invention is not limited to the air-cooling strengthening treatment described above, and various other strengthening treatments may be performed. For example, a chemical strengthening treatment may be performed.
〈5〉 板ガラス 1, 2としては以上説明した要件を満たすものであれば如何なる ものを用いてもよく、 その組成についても、 ソーダ珪酸ガラス、 ソーダ石灰ガラ ス、 ほう珪酸ガラス、 アルミノ珪酸ガラス、 各種結晶化ガラスなどを使用するこ とができ、 その板ガラス 1, 2の厚みについても、 適宜選択自由である。  <5> The glass sheets 1 and 2 may be of any type as long as they satisfy the above-described requirements. The composition of the glass sheets is also soda silicate glass, soda lime glass, borosilicate glass, aluminosilicate glass, and various types. Crystallized glass or the like can be used, and the thickness of the sheet glass 1 or 2 can be freely selected as appropriate.
〈6〉 ガラス管 6を融着するための低融点ガラス 7については、 高温域において 結晶化が完了する結晶性低融点ガラスを使用することも、 非結晶性低融点ガラス を使用することもできる。  <6> Regarding the low-melting glass 7 for fusing the glass tube 6, either a crystalline low-melting glass whose crystallization is completed in a high-temperature region or an amorphous low-melting glass can be used. .
〈7〉 両板ガラス 1, 2の外周部間を接合して封着する封止用材料 4としては、 封着温度 4 0 0 °C未満で、 接着強度 2 0 k g Z c m2 以上であるものを用いれ ばよく、 先の実施形態にて例示した低融点ガラスに限らず、 結晶性または非結晶 性のいずれの低融点ガラスも使用可能であり、 また、 インジウムや鉛や錫や亜鉛 などを主成分とする金属はんだを使用してもよい。 <7> The sealing material 4 for joining and sealing between the outer peripheral portions of the two glass sheets 1 and 2 is a material having a sealing temperature of less than 400 ° C and an adhesive strength of 20 kg Z cm 2 or more. It is possible to use not only the low-melting glass exemplified in the above embodiment, but also any crystalline or non-crystalline low-melting glass. Indium, lead, tin, zinc and the like are mainly used. A metal solder as a component may be used.
〈8〉 また、 スぺ一サ 3についても、 ステンレス鋼やインコネルに限らず、 例え ば、 鉄、 銅、 アルミニウム、 タングステン、 ニッケル、 クロム、 チタンなどの金 属の他、 炭素鋼、 クロム鋼、 ニッケル鋼、 ニッケルクロム鋼、 マンガン鋼、 クロ ムマンガン鋼、 クロムモリブデン鋼、 珪素鋼、 真鍮、 ハンダ、 ジュラルミンなど の合金、 あるいは、 セラミックスやガラスなど、 要するに、 外力により変形し難 いものであれば使用可能であり、 その形状も、 円柱状に限らず、 角柱状や球状な どの各種形状に構成することができる。 <8> In addition, the spacer 3 is not limited to stainless steel and Inconel. For example, in addition to metals such as iron, copper, aluminum, tungsten, nickel, chromium, and titanium, carbon steel, chrome steel, Nickel steel, nickel chrome steel, manganese steel, black It is possible to use alloys such as mumanganese steel, chromium molybdenum steel, silicon steel, brass, solder, and duralumin, or ceramics and glass that are not easily deformed by external force. And can be configured in various shapes such as prismatic and spherical.
〈9〉 真空複層ガラスの用途については、 建築物や乗り物 (自動車、 鉄道車両、 船舶) 用の窓ガラス、 あるいは、 プラズマディスプレイなどの機器要素をはじめ として、 冷蔵庫や保温装置などのような各種装置の扉や壁部など、 種々の用途に 使用することができる。  <9> Applications of vacuum insulated glass include window glass for buildings and vehicles (automobiles, railcars, ships), plasma display and other device elements, as well as refrigerators and heat insulators. It can be used for various purposes such as doors and walls of equipment.
具体的な強化状況の試験結果  Test results of specific reinforcement status
落球試験を行い、 板ガラスのいずれの板面を落球による加撃面とするかによつ て、 どのように板ガラスの衝撃強度が異なるのかを調べた。  A ball drop test was conducted to examine how the impact strength of the sheet glass differs depending on which side of the sheet glass is used as the attack surface by the ball drop.
試料ガラスとしては、 フロート板ガラスを、 ロール式搬送装置により電気炉で 約 6 00°Cに加熱後、 高圧送風機にて冷風を当て均一に急冷し、 表面圧縮応力 1 0 0 0〜 1 1 00 k g/cm2 程度に強化してあるものを用いた。 尚、 フロー ト成形時に溶融スズ上に接触載置された板面 (以下ボトム面と略称する) を、 口 ール式搬送装置に接触載置される板面とした。 As the sample glass, the float plate glass was heated to about 600 ° C in an electric furnace by a roll-type transfer device, and then rapidly and uniformly cooled with high-pressure blower to obtain a surface compressive stress of 100 to 110 kg. / cm 2 was used. In addition, the plate surface (hereinafter abbreviated as “bottom surface”) that was placed in contact with the molten tin during float molding was used as the plate surface that was placed in contact with the ball-type transfer device.
そして、 3 5 OmmX 35 Omm角の試料ガラス (周辺支持、 支持枠:外寸 3 40 mmX 340 mm角 内寸 3 1 0 mm X 3 1 0 mm角) のほぼ中心点の位置 に、 質量約 1 047 g、 直径約 6 3. 4 mmの鋼球を落下させて、 試料ガラスの 板面を加撃する落球試験を行った。 鋼球による加擊面として、 フロート成形時に 溶融スズ上に接触載置されず、 口ール式搬送装置にも接触載置されていない板面 (以下トップ面と略称する) に鋼球を落下させた場合と、 前記ボトム面に鋼球を 落下させた場合とを比較した。 その結果を、 第 7図に示すが、 No. 1〜3は加 撃面がトップ面、 No . 4〜 6は加擊面がボトム面の結果であり、 問題なしを〇、 割れ発生を Xとした。  At approximately the center point of a sample glass of 35 OmmX 35 Omm square (peripheral support, support frame: outer dimensions 340 mm X 340 mm square inner dimensions 310 mm X 310 mm square), a mass of about 1 A drop ball test was conducted in which a steel ball of 047 g and a diameter of about 63.4 mm was dropped to strike the plate surface of the sample glass. As a heating surface made of steel balls, the steel balls fall onto a plate surface (hereinafter abbreviated as “top surface”) that is not placed on the molten tin during float molding and is not placed in contact with the pallet conveyor. The case where the steel ball was dropped and the case where the steel ball was dropped on the bottom surface were compared. The results are shown in Fig. 7, where Nos. 1 to 3 are the results when the attack surface is the top surface, and Nos. 4 to 6 are the results when the heating surface is the bottom surface. And
第 7図から、 トップ面に対して加撃が行われる場合よりも、 ボトム面に対して 加撃が行われる場合の方が、 割れが発生し難いことが確かに確認でき、 本発明の ように、 強化板ガラスの板面のうち強化処理時に搬送装置に接触載置された板面 フロート板ガラスの板面のうちフロート成形時に溶融スズ上に接触载置された板 面を外力により引っ張りの働く非間隙部側に配置することにより、 総厚を大きく せずに強度が向上された真空複層ガラスを得ることができることがわかる。 産業上の利用可能性 From FIG. 7, it can be clearly confirmed that cracking is less likely to occur when the bottom surface is hit than when the top surface is attacked, as in the present invention. Among the sheet surfaces of the tempered sheet glass, the sheet surface that is placed in contact with the transfer device during the tempering treatment, and the sheet surface that is brought into contact with the molten tin during the float forming among the sheet surfaces of the float sheet glass It can be seen that by arranging the surface on the side of the non-gap portion where tension is exerted by external force, it is possible to obtain a vacuum double-glazed glass with improved strength without increasing the total thickness. Industrial applicability
一対の板ガラスを、 その両板ガラス間にスぺーサを介在させて形成される間隙 部を介して対面配置すると共に、 前記一対の板ガラスの外周部間を封止用材料で 封着し、 前記間隙部を減圧状態に保持してある真空複層ガラスを製造するに、 そ の優れた断熱効果を損なうことなく、 真空複層ガラスの総厚を大きくせずに強度 が向上したものを得ることができる。  A pair of plate glasses are disposed facing each other via a gap formed by interposing a spacer between the two plate glasses, and the outer periphery of the pair of plate glasses is sealed with a sealing material. When manufacturing a vacuum double glazing with its section kept in a reduced pressure state, it is possible to obtain a glass with improved strength without increasing the total thickness of the vacuum double glazing without impairing its excellent heat insulating effect. it can.

Claims

請 求 の 範 囲 The scope of the claims
1. 一対の板ガラス ( 1、 2) を、 その両板ガラス間にスぺーサ (3) を介在 させて形成される間隙部 (V) を介して対面配置すると共に、 前記一対の板ガ ラスの外周部間を封止用材料 (4) で封着し、 前記間隙部 (V) を減圧状態に 保持してある真空複層ガラス (P) であって、 1. A pair of glass sheets (1, 2) are arranged facing each other via a gap (V) formed by interposing a spacer (3) between the glass sheets, and A vacuum insulating glass (P) in which the outer periphery is sealed with a sealing material (4), and the gap (V) is maintained in a reduced pressure state,
前記一対の板ガラス (1、 2) のうち少なく とも一方の板ガラスとして、 強 化処理を施された強化板ガラス (G) を用いると共に、  A strengthened glass sheet (G) subjected to a strengthening treatment is used as at least one of the pair of glass sheets (1, 2),
前記強化板ガラス (G) の板面のうち、 強化処理時に搬送装置に接触載置さ れた板面 (2 1) を、 非間隙部側に配置してある真空複層ガラス。  A vacuum double glazing wherein the plate surface (21) of the plate surface of the reinforced plate glass (G), which is placed in contact with the transfer device during the tempering treatment, is disposed on the non-gap side.
2. 前記一対の板ガラスのうち少なく とも一方の板ガラスとして、 フロート法 により成形されたフロート板ガラスを用いると共に、  2. A float plate glass formed by a float method is used as at least one of the pair of plate glasses,
前記フロート板ガラスの板面のうち、 フロート成形時に溶融スズ上に接触載 置された板面 (2 1) を、 非間隙部側に配置してある請求の範囲第 1項記載の 真空複層ガラス。  2. The vacuum double-glazed glass according to claim 1, wherein, among the plate surfaces of the float plate glass, a plate surface (21) contact-mounted on the molten tin at the time of float forming is arranged on a non-gap portion side. .
PCT/JP2002/011018 2001-10-26 2002-10-23 Vacuum double glazing WO2003035567A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001329189A JP2003137613A (en) 2001-10-26 2001-10-26 Vacuum double-glazing unit
JP2001-329189 2001-10-26

Publications (1)

Publication Number Publication Date
WO2003035567A1 true WO2003035567A1 (en) 2003-05-01

Family

ID=19145129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011018 WO2003035567A1 (en) 2001-10-26 2002-10-23 Vacuum double glazing

Country Status (2)

Country Link
JP (1) JP2003137613A (en)
WO (1) WO2003035567A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103588387A (en) * 2013-11-11 2014-02-19 青岛亨达玻璃科技有限公司 Processing method of toughened vacuum glass
CN103588386A (en) * 2013-11-11 2014-02-19 青岛亨达玻璃科技有限公司 Production method of toughened vacuum glass

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101198343B1 (en) 2010-07-21 2012-11-08 정일종 Vacuum glass, its manufacturing method and its manufacturing system
KR101379061B1 (en) * 2011-08-11 2014-03-28 (주)엘지하우시스 Heat strengthened vacuum glass
JP6083939B2 (en) * 2012-03-12 2017-02-22 株式会社松田技術研究所 Vacuum insulation panel and insulation box
US9593527B2 (en) * 2014-02-04 2017-03-14 Guardian Industries Corp. Vacuum insulating glass (VIG) unit with lead-free dual-frit edge seals and/or methods of making the same
JP2016017020A (en) * 2014-07-09 2016-02-01 パナソニックIpマネジメント株式会社 Multilayered glass
JP6368580B2 (en) * 2014-08-08 2018-08-01 日立アプライアンス株式会社 Insulation and refrigerator
CN111886394A (en) * 2018-01-23 2020-11-03 旭硝子欧洲玻璃公司 Asymmetric vacuum insulation staring unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111134U (en) * 1980-01-26 1981-08-27
JPS6465037A (en) * 1987-05-14 1989-03-10 Ibiden Co Ltd Glass carrier roll
JPH02136035U (en) * 1989-04-12 1990-11-13
WO1991002878A1 (en) * 1989-08-23 1991-03-07 The University Of Sydney A thermally insulating glass panel and method of construction
WO1995001493A1 (en) * 1993-06-30 1995-01-12 The University Of Sydney Methods of construction of evacuated glazing
JPH08175828A (en) * 1994-12-26 1996-07-09 Nippon Sheet Glass Co Ltd Roll for float glass production
JPH11199279A (en) * 1998-01-12 1999-07-27 Asahi Glass Co Ltd Vacuum double layer glass

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56111134U (en) * 1980-01-26 1981-08-27
JPS6465037A (en) * 1987-05-14 1989-03-10 Ibiden Co Ltd Glass carrier roll
JPH02136035U (en) * 1989-04-12 1990-11-13
WO1991002878A1 (en) * 1989-08-23 1991-03-07 The University Of Sydney A thermally insulating glass panel and method of construction
WO1995001493A1 (en) * 1993-06-30 1995-01-12 The University Of Sydney Methods of construction of evacuated glazing
JPH08175828A (en) * 1994-12-26 1996-07-09 Nippon Sheet Glass Co Ltd Roll for float glass production
JPH11199279A (en) * 1998-01-12 1999-07-27 Asahi Glass Co Ltd Vacuum double layer glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103588387A (en) * 2013-11-11 2014-02-19 青岛亨达玻璃科技有限公司 Processing method of toughened vacuum glass
CN103588386A (en) * 2013-11-11 2014-02-19 青岛亨达玻璃科技有限公司 Production method of toughened vacuum glass
CN103588387B (en) * 2013-11-11 2016-02-17 青岛亨达玻璃科技有限公司 The working method of toughened vacuum glass
CN103588386B (en) * 2013-11-11 2016-05-18 青岛亨达玻璃科技有限公司 The production method of toughened vacuum glass

Also Published As

Publication number Publication date
JP2003137613A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
US7244480B2 (en) Glass panel
JP4049607B2 (en) Glass panel manufacturing method and glass panel manufactured by the method
JP4109491B2 (en) Translucent glass panel
JP4819999B2 (en) Double glazing
US7141130B2 (en) Glass panel
WO2002044098A1 (en) Glass panel
WO2003035567A1 (en) Vacuum double glazing
WO2018207435A1 (en) Double glazing and method for manufacturing same
EP1195496A2 (en) Glass panel
US6733850B1 (en) Glass panel and production method therefor
JP4439907B2 (en) Manufacturing method of glass panel
JP7387637B2 (en) Asymmetric vacuum-insulated glazing unit
WO2000041980A1 (en) Glass panel
JP2002255593A (en) Method for manufacturing low pressure double glazing
WO2020203012A1 (en) Glass panel unit and glass window
JP2000203891A (en) Glass panel
WO2020050302A1 (en) Vacuum glass and method for manufacturing same
JP2001335346A (en) Glass panel
JP2022051457A (en) Double glazing for vehicles
JP2002255594A (en) Method for manufacturing glass panel
JP2004075420A (en) Method of manufacturing glass panel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase