WO2003033412A1 - Planta para la obtención de agua exenta de sal a partir de aguas marinas a baja temperatura con funcionamiento continuo y recuperación de entalpía - Google Patents

Planta para la obtención de agua exenta de sal a partir de aguas marinas a baja temperatura con funcionamiento continuo y recuperación de entalpía Download PDF

Info

Publication number
WO2003033412A1
WO2003033412A1 PCT/ES2002/000484 ES0200484W WO03033412A1 WO 2003033412 A1 WO2003033412 A1 WO 2003033412A1 ES 0200484 W ES0200484 W ES 0200484W WO 03033412 A1 WO03033412 A1 WO 03033412A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
water
condensation
steam
evaporation
Prior art date
Application number
PCT/ES2002/000484
Other languages
English (en)
French (fr)
Inventor
Fernando María HERNÁNDEZ HERNÁNDEZ
Francisco FERNÁNDEZ DE MAZARAMBROZ BERNABEU
Original Assignee
Hernandez Hernandez Fernando M
Fernandez De Mazarambroz Berna
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hernandez Hernandez Fernando M, Fernandez De Mazarambroz Berna filed Critical Hernandez Hernandez Fernando M
Priority to EP02779586A priority Critical patent/EP1443025A1/en
Priority to US10/492,509 priority patent/US7381310B2/en
Publication of WO2003033412A1 publication Critical patent/WO2003033412A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/10Treatment of water, waste water, or sewage by heating by distillation or evaporation by direct contact with a particulate solid or with a fluid, as a heat transfer medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/343Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances the substance being a gas
    • B01D3/346Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances the substance being a gas the gas being used for removing vapours, e.g. transport gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0006Coils or serpentines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0009Horizontal tubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/08Thin film evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/10Treatment of water, waste water, or sewage by heating by distillation or evaporation by direct contact with a particulate solid or with a fluid, as a heat transfer medium
    • C02F1/12Spray evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/16Treatment of water, waste water, or sewage by heating by distillation or evaporation using waste heat from other processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/42Liquid level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S159/00Concentrating evaporators
    • Y10S159/02Entrainment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S203/00Distillation: processes, separatory
    • Y10S203/18Control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S203/00Distillation: processes, separatory
    • Y10S203/19Sidestream

Definitions

  • the present specification refers to a patent application for invention, relating to a desalination plant for seawater in order to obtain salt-free water suitable for all types of consumption, although in human consumption a purification should be carried out later.
  • the devices used for desalination of seawater use three process models that give rise to several threads.
  • the most commonly used process is the so-called "reverse osmosis” based on the use of semipermeable membranes that allow the passage of water but not that of salts.
  • This process requires the use of high pressure techniques to overcome the osmotic pressure that acts with the opposite effect. Try; part of the water supplied returning the rest with the corresponding increase in salinity to the sea, requires pressure of opposite effect for cleaning the filter.
  • They are high-priced plants, there are few membrane manufacturers, their maintenance is delicate and their energy consumption is low.
  • More used than freezing is the process of vaporization _ condensation due to its simplicity although its energy consumption is highly unfavorable since in all cases it is necessary to provide the heat necessary for the change of liquid-vapor state.
  • Various systems have been devised to reduce energy consumption: vaporization by lowering the pressure to boil the liquid at a temperature below 100 ° C of atmospheric pressure, cascading vaporization, use of solar energy, but in all of them it is necessary provide the heat of change of state so the appropriate way to reduce energy consumption in this process is the recovery of heat.
  • the recovery systems are in this process with some pitfalls among which the main one consists in the way of performing the recovery since the mass of the fluid used for the recovery increases with factor 6 with respect to which it is possible to reuse.
  • the proposed invention saves the previous pitfall using an extremely simple system consisting of the use of seawater in the condenser cooling circuit and sending this water to the vaporizer, in which only a percentage of this water evaporates below the evaporation 10%, you can adjust the mass of water, cooling for the complete transfer of this heat.
  • SUBSTITUTE SHEET RULE 26 is responsible for deHanizing a part of this water by returning the rest to its place of origin. It is considered that the proposed process will allow the desalination of between 5% and 7% of the waters collected from the sea returning the rest, with the corresponding increase in salinity to the sea. These premises allow the conception of a plant operating in vaporization-condensation, in continuous regime, at low temperature and with recycling of the heat provided for vaporization during its condensation.
  • the heat contained in the flow captured from the sea and preheated to about 40 ° C is applied for evaporation of water in the way we will see (It is considered as a 60 ° C limit temperature).
  • It is considered as a 60 ° C limit temperature.
  • Evaporated water is sent to a cooling element whose mission is to condense it again, free of salts.
  • Oh static pressure alpha fan is responsible for sending the steam from the vaporization zone to the condensation zone.
  • the invention takes advantage of the characteristics of the fan to cause a pressure difference equivalent in magnitude to the vapor pressure of the water at the vaporization temperature between the condensation and vaporization zone.
  • the process is carried out in the presence of air that behaves as a transport vehicle for water vapor.
  • the air is recycled in a closed circuit.
  • the condenser cooler is cooled with seawater and the cooling circuit outlet is connected to the vaporizer inlet.
  • the proposed desalination apparatus constitutes in itself an obvious novelty within the field of seawater desalination as it unites the simplicity and low price of the vaporization apparatus with the low energy consumption which makes it far superior to other systems.
  • the purpose of the proposed desalination apparatus is to obtain drinking water from seawater in a continuous process, by low temperature vaporization and subsequent condensation of the Jibre de saJ steam. With recovery and complete transfer of energy from the condenser ⁇ ai cooler
  • SUBSTITUTE SHEET (RULE 26) vaporizer, with a closed circuit in the vapor-carrying air that has a pressure gradient of some thousands of Passes between the condenser and the vaporizer.
  • the desalination plant is made up of two hollow concentric cylinders from which the inside of the circular section aJeja eJ eJ emento vaporizador deJ desaJinizador while the outer cylindrical ring houses the cooler-condenser.
  • the walls of the two cylinders are thermally insulated to prevent heat exchange through them between vaporizer and condenser as well as with the outside environment. These walls can be metallic, wooden, plastic, polyester reinforced with fiberglass, concrete in large installations, work or any other material capable of adopting the appropriate geometry.
  • the communication between vaporizer and condenser is carried out by the upper part of the mill in Ja that a fan has been coupled with suction on the vaporizer and the drive on the cooler-condenser. The fan takes care of all the movement of the airborne steam and the air returns to the vaporizer through a calibrated nozzle made in the lower middle part of the inner cylindrical wall.
  • a vaporization system has been devised in which partially dry air is circulated and with reduced pressure by a few thousand passages with respect to the atmospheric one, against the flow of a previously heated seawater flow at a temperature of around 40 ° C.
  • This process is carried out with the indispensable collaboration of the physical elements necessary for the magnification of the contact surface between water and air.
  • These physical elements are constituted by very thin plastic sheets that form a winding whose section is a spiral with a reduced pitch and with radial sheets that maintain it. separation which guarantees large contact area between the water sheet and the countercurrent circulating air
  • the condensation system is a simple cooler formed by tubes inside which water circulates at room temperature and provided with fins in the form of a continuous cylindrical sheet.
  • the cooler operates in cross flow and counter current with the vapor-air mixture from the vaporizer.
  • the heat given to the cooler in this process is recovered and used to preheat the process water. In fact seawater is used in this cooler and shipped
  • a static high pressure extractor fan (some thousands of Paséales) is used for air recirculation and its static pressure is used in combination with calibrated nozzles, practiced, in the area of. Broom of air, to the vaporizer to maintain in this Ja pressure below atmospheric Ja and above atmospheric in the area of the condenser
  • the vaporizer has a filling of the "cooling tower” type consisting of very thin plastic sheets that form a winding whose section is a spiral with reduced pitch and with radial sheets that maintain the separation which guarantees large contact surface that makes eJ Water is distributed in thin sheets as it descends through the vaporizer.
  • the fan located in the upper part of the vaporizer circulates dry air at coniracor-rienienda of the drop of the liquid, which produces the evaporation of part of the water cooling it at the same time that it raises the temperature of the air and its degree of humidity.
  • the hot and humid air is sent by the fan to the condensation zone where it has to pass through the cooler which lowers its temperature below the dew point, producing condensation of part of the vapor that is collected at the bottom of the condenser from where it is extracted by a centrifugal pump.
  • the cooler consists of several cylindrical, laminar and concentric surfaces that can be made of brass, stainless steel or aluminum. Each surface is embraced by several turns of tube of the same material through which the cooling water circulates. In this way it is achieved that the circulation of the cooling water intersects with it air and countercurrent.
  • the cooler has a large condensation surface
  • Seawater is used for cooling, which when heated by the
  • SUBSTITUTE SHEET RULE 26 Condenser energy transfer, is used as raw water entering the vaporizer. Flows, percentages of vaporization and temperatures have been calculated so that the mass-heat transfer from the cooler to the vaporizer is adequate so as not to have to add or remove raw water at this stage of the process, which means that all heat recovered In condenser it is sent to the vaporizer. A heating element is inserted between the condenser cooling water outlet and the vaporizer inlet.
  • the energy efficiency of the system depends entirely on the efficiency of the cooler that recovers an important part of the heat transported by the air from the vaporizer to the condenser. It also depends on the effectiveness of the vaporizer. The temperatures at the outlet of the surplus and treated water should be as low as possible.
  • the temperature of the water remaining in the vaporizer must not exceed 1 ° C at the humid temperature of the circulating air.
  • the temperature of the treated water must not exceed more than 1 ° C at the inlet temperature of the cooling water to the condenser.
  • Nozzles calibrated for the air inlet are arranged in the lower part of the vaporizer in order to reduce the pressure in that area, favoring the liquid-vapor mass transfer rate.
  • the nozzle system designed will create a pressure difference between the condensation zone and the vaporization of some thousands of passages as well as the recycling of the air present in the process which will allow the optimization of energy consumption.
  • the energy consumption is less than 5% of the consumption in a conventional installation. This energy will be obtained through the recovery of other refrigeration systems.
  • the low temperature required in the process facilitates the recovery of energy in other systems in which traditionally no use criteria have been set due to its low energy content per unit mass.
  • An ultraviolet emission lamp has been arranged in the upper part of the desalination plant in order to prevent the growth of fungi and sensitive bacteria.
  • SUBSTITUTE SHEET RULE 26 The heart of the system is the fan that must move the air necessary to drag the steam produced taking into account the saturation steam pressure at the working temperatures and provide the pressure difference between condenser v van ⁇ rizad ⁇ r. I know. set the value of this pressure difference to the value that the state of ventilation art allows, a value that will be maintained as a difference between the condenser and vaporizer in the closed air cycle operating system.
  • the auxiliary heating element is sandwiched between the chiller water outlet and the vaporizer A.
  • a filter is installed to prevent the entry of algae, sand and small objects.
  • the system has the following control elements.
  • Figure number 2 - Shows in perspective the 180 ° vertical section of another variant of the device object of the invention. This variant has a centrifugal fan of great power coupled externally, the fan is not drawn.
  • Figure number 3. Shows in perspective the cooler-condenser of the device object of the invention in a vertical cut at 270 °
  • the device object of the invention in view of figure number 1, the device object of the invention can be seen, which has an outer shape of a cylindrical surface topped by a cylindrical surface, a second sectioned cylindrical cylinder being seen inside by a tubular centrifugal fan (10).
  • Both cylindrical surfaces have two tubulars in their lower middle part arranged in a coincident way with the external ones with the internal ones.
  • the device is divided into two zones by the surface, inner cylindrical, the interior being the area dedicated to the evaporation of water and the outside the condensation zone.
  • this device distributes the water in the form of a shower over the filling ( 8) of the vaporizer
  • the distribution of the water in the form of a shower facilitates its film adhesion to the sheets of the filling through which it descends.
  • the fan (10) moves the air inside the device by dragging it from the vaporization zone to the condensation zone and making the vaporizer return through the tubing (15) located in the average lower part of the vaporizer housing (17) -.
  • the vaporizer circulates the air in an upward direction, coming into contact with the descending water through the filling element (8).
  • the fan ( ⁇ 0) drives the mixture of air and steam out of the condensation zone c the inner part of the spherical surface (8) that locks the device at the top.
  • An ultraviolet radiation lamp (11) has been installed in this area to eliminate molds and bacteria sensitive to this radiation.
  • the vapor-air mixture finding no outlet to the outside of the device from dp to the hgrmetigifjad gel sjsje a, is forced to ajjave.se eg cooler-condenser (13) that hugs the outside of the body of the vaporizer (17) and It continues its march until it reaches the nozzles made in the lower part of it, where it returns to the evaporation system.
  • the cooling-coidideaor ⁇ 13 ⁇ is formed by a certain number of cylindrical and concentric laminar surfaces that occupy that occupy in the upper half all the space between the evaporator body (17) and the inside of the outer cylindrical cover (12).
  • the laminar cylindrical surfaces of they present ppj ⁇ part fxjeripr ⁇ j rrp
  • the cooler pipes have been designed so that the water remains in them for an additional amount of time ai theoretically necessary for the transfer of energy between the masses, of water and air that cross back into this apparatus.
  • the behavior of the air in its route through the invention is as follows (Naturally the desalination plant contains the air that was filled when it was built). The air, Ha, straw. lower j ⁇ j o 'spj e pe er pressure in the calibrated nozzle and its pressure is at this point lower than atmospheric at more than the difference between saturated vapor pressure at the hot water inlet temperature and the cold water outlet temperature and when passing through the vaporizer, increasing its temperature and charging steam, it reaches the fan at the pressure of an atmosphere.
  • the fan increases the pressure of the air-vapor mixture above the atmospheric and the distribution of partial pressures at that point it follows that the pressure of the water vapor is higher than the pressure of the steam at that ternpej ⁇ anger co Jo, that its will condense, ⁇ eJ cooler is fast and efficient. This allows that when taking into account the calculations on the energy efficiency of the condenser, the energy contributed by the fan, the need for additional heat input is not seen.
  • the water that condenses on the chiller blades cools down to the temperature of the cooling cooling water and falls to the bottom of the condensation zone from where it is collected by the pipe (or) by means of a centrifugal pump controlled by two detectors of level connected one of them as maximum level and the other at least.
  • Figure number 2 shows the device invented in its large production version and by the state of the art in the fans it is provided with an undrawn centrifugal fan that is located at the top of the desalination plant.
  • the air is extracted from the yappradpr by the ura tube, (10) and jmpujg dp aj by the entrance (19), otherwise its operation is in all identical to that presented in figure number 1
  • the element nfe ' erpcon ej-sadoj' can be seen, constructed as a set of cylindrical and concentric surfaces with the coiled pipe in the manner indicated and with the water inlet from the bottom and exit through the higher
  • This invention has its application in refrigeration, as a recovery in the form of demolished water of the energy consumed in the condensers of any refrigeration process, especially in hotels in tourist areas where the water supply is insufficient.
  • This invention has its application in the naval refrigeration industry by recovering in the form of drinking water (after post-treatment) the energy consumed in the refrigeration process condensers.
  • This invention has its application in the thermal production of electrical energy by replacing the cooling towers with water-seawater heat exchangers.
  • the contribution of demineraiized water to a cooling tower in this industry is between approximately 5% of the total water that circulates through the pirpratp g * ⁇ frjge ⁇ ón. ⁇ g ⁇ e, i ⁇ iy rt ⁇ , ⁇ n $ tp of heat water-sea water, prevents that loss of water and also provides an equal amount for other uses.
  • SUBSTITUTE SHEET RULE 26 a minimum energy contribution to increase the water temperature by twenty degrees, obtainable from:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

Planta para la desalinización de aguas marinas por il sistema de evaporación-condensación que funciona en proceso continuo, a baja temperatura y con recuperación de la energía aportada. Consta de un evaporador cilíndrico con gran superficie de evaporación y un condensador concéntrico con gran superficie. Se utiliza agua de mar para el enfriamiento del condensador y esta agua se envía al evaporador. Un ventilador de alta presión estática impulsa el vapor-aire en circuito cerrado entre evaporador y condensador y crea un gradiente de presión equivalente a la presión del vapor saturado a la temperatura de trabajo mediante tobera calibrada entre las dos zonas. El evaporador y condensador están aislados térmicamente entre sí y con el exterior.

Description

lauta para ϊa obtención de agua exenta tle sai a partir de aguas marinas, a baja temperatura, con funciona miento continuo y recuperación de entalpia.
La presente memoria descriptiva se refiere a una solicitud de patente de invención, relativa a una planta de desalinización para agua de mar con el fin de obtener agua libre de sales apta para todo tipo de consumo, si bien en el consumo humano deberá realizarse una potabilización posterior.
Antecedentes de inveacióα El crecimiento de la población en zonas cosieras debido al turismo y al envejecimiento de la población en países ricos que permiten el disfrute de la jubilación en zonas alejadas y más agradables que en las que se desarrolló la actividad laboral, unido a unas mayores exigencias de confort, ha producido en muchos lugares del litoral marítimo incrementos importantes en las necesidades de agua para el consumo en sus diferentes variantes, no solo en España sino también en la mayoría de los países en que se da produce este tipo de circunstancia, dándose la contradicción de que frente a la abundancia de agua salada hay escasez de la dulce.
Se han adoptado diversas soluciones para el suministro de agua a estas zonas que van desde la modificación de la cuenca de ríos hasta la fabricación de rϊιcτ r*eτ-ri 7_r θ
Figure imgf000003_0001
o ια ríp»cα ιιrvi'ϊ«mtAτiι rtf* ϊ o n tirio c mϊrnmiQC Υxr cpηriτ c pη í»oτí*e zonas.
Los dispositivos utilizados para la desalación del agua del mar utilizan tres modelos de proceso que dan origen a varios subprocesos. El proceso mas utilizado es el llamado "Osmosis inversa" basado en la utilización de membranas semipermeables que permiten el paso del agua pero no el de las sales. Este proceso obliga a la utilización de técnicas de alta presión para vencer la presión osmótica que actúa con efecto contrario. Trate; parte del agua suministrada devolviendo el resto con el correspondiente incremento de salinidad al mar, precisa presión de efecto contrario para limpieza del filtro. Son plantas de precio elevado, existen pocos fabricantes de membranas, su mantenimiento es delicado y su consumo energético es bajo.
HOJA DE SUSTITUCIÓN REGLA 26) El proceso de obtención de agua desaiinizada por congelación del agua de mar está basado en el desplazamiento que sufren los iones de sales disueltas ai congelar el agua que las contiene. Esta congelación debe de realizarse en capas de geometría que permitan el desplazamiento del agua no congelada y 3 velocidad tai que permita Ja emigración de Jos iones de sal cuando el agua se encuentra todavía en fase líquida. Estas plantas consumen la energía necesaria para el cambio de fase líquido- sólido y se han ideado diversos procedimientos para mejorar y reutilizar esta energía.
Mas utilizado que la congelación es el proceso de vaporización _ condensación debido a su sencillez aunque su consumo energético resulta altamente desfavorable ya que en todos los casos es necesario aportar el calor necesario para el cambio de estado líquido-vapor. Se han ideado diversos sistemas para reducir el consumo energético: vaporización por disminución de Ja presión para hacer hervir el líquido a temperatura inferior a los 100°C de la presión atmosférica, vaporización en cascada, utilización de energía solar, pero en todos ellos es preciso aportar el calor de cambio de estado por lo que el camino adecuado para disminuir el consumo energético en este proceso es la recuperación del calor. Los sistemas de recuperación se encuentran en este proceso con algunos escollos entre los que el principal consiste en la manera de realizar la recuperación ya que la masa del fluido utilizado para la recuperación se incrementa con factor 6 respecto del que es posibJe reutilizar.
La invención propuesta salva el escollo anterior utilizando un sistema sumamente simple consistente en la utilización de agua de mar en el circuito de enfriamiento del condensador y enviar el envío de este agua al vaporizador, en el que al evaporarse únicamente un porcentaje de esta agua inferior al 10%, se puede ajustar la masa de agua, de enfriamiento para la transferencia completa de este calor.
En la invención propuesta se adoptan otras medidas adicionales para optimizar la recuperación de caJor y consisten en utilizar gran superficie de vaporización y gran superficie de condensación, aislamientos térmicos correctos y flujo cerrado en el movimiento del aire portador del vapor.
Considerando la abundancia de abundancia de agua marina se ha considerado en la presente invención un dispositivo que tomando el agua del mar-
HOJA DE SUSTITUCIÓN REGLA 26) se encargue de desaHnizar una parte de esta agua devolviendo el resto a su lugar de origen. Se considera que el proceso propuesto permitirá la desalinización de entre el 5% y el 7% de las aguas captadas del mar devolviendo el resto, con el incremento correspondiente en su salinidad al mar. Estas premisas permiten la concepción de una planta funcionando en vaporización-condensación, en régimen continuo, a baja temperatura y con reciclado del calor aportado para la vaporización durante su condensación.
En la presente invención se aplica para la evaporación del agua el calor contenido en el caudal captado dei mar y precalentado hasta unos 40°C en la forma que veremos (Se considera como temperatura límite 60°C). Durante la evaporación se producen dos fenómenos, de una parte hay un enfriamiento del agua hasta 20°C y de otra la diferencia de calor contenido en el agua es aprovechada por esta para evaporar una pequeña paite. EJ agua evaporada es enviada a un elemento enfriador cuya misión es condensarla de nuevo, exenta de sales. Oh ventilador de alfa presión estática se encarga del envío del vapor desde la zona de vaporización a la de condensación. El invento aprovecha las características del ventilador para provocar una diferencia de presión equivalente en magnitud a la presión de vapor del agua a la temperatura de vaporización entre la zona de condensación y vaporización. El proceso se realiza en presencia de aire que se comporta como vehículo de trasporte para el vapor de agua. El aire se recicla en circuito cerrado. EJ enfriador condensador está refrigerado con agua marina y la salida del circuito de refrigeración se conecta con la entrada al vaporizador.
Descripción de ia invención
El aparato para desalinización propuesto constituye en sí mismo una evidente novedad dentro dei campo de la desalinización del agua de mar ya que une la simplicidad y bajo precio de los aparatos de vaporización con el bajo consumo de energía lo que le hace muy superior a otros sistemas. El aparato para desalinización propuesto tiene por objeto la obtención de agua potable a partir de agua de mar en proceso continuo, por vaporización a baja temperatura y posterior condensación del vapor Jibre de saJ. Con recuperación y transferencia completa de la energía desde el condensador^enfiiador ai
HOJA DE SUSTITUCIÓN (REGLA 26) vaporizador, con circuito cerrado en el aire portador de vapor que presenta gradiente de presión de algunos miles de Paséales entre el condensador y el vaporizador.
El desalinizador está formado por dos cilindros concéntricos huecos de los que el interior de sección circular aJoja eJ eJemento vaporizador deJ desaJinizador mientras que el anillo cilindrico exterior aloja el enfriador-condensador. Las paredes de los dos cilindros están térmicamente aisladas para evitar el intercambio de calor a través de ellas entre vaporizador y condensador así como con el medio exterior. Estas paredes pueden ser metálicas, de madera, de material plástico, de poliésíεr reforzado con fibra de vidrio, de hormigón en grandes instalaciones, de obra o de cualquier otro material susceptible de poder adoptar la geometría adecuada. La comunicación entre vaporizador y condensador se realiza por la parte superior del ingenio en Ja que se ha acoplado un ventilador con Ja aspiración sobre el vaporizador y la impulsión sobre el enfriador-condensador. El ventilador se encarga de todo el movimiento del vapor arrastrado por aire y el aire retoma al vaporizador a través de una tobera calibrada practicada en la parte media inferior de la pared cilindrica interior.
Se ha ideado un sistema de vaporización en el que se hace circular aire parcialmente seco y con presión reducida en unos pocos miles de paséales respecto la atmosférica, a contracorriente de un flujo de agua de mar previamente calentado a temperatura de alrededor de 40°C. Este proceso se realiza con Ja colaboración indispensable de ios elementos físicos necesarios para la magnificación de la superficie de contacto entre al agua y el aire. Estos elementos físicos están constituidos por láminas de plástico muy fino que forman un arrollamiento cuya sección es una espiral con paso reducido y con láminas radiales que mantienen la. separación lo que garantiza gran superficie de contacto entre la lámina de agua y el aire circulante a contracorriente
El sistema de condensación es un simple enfriador formado por tubos en cuyo interior circula agua a temperatura ambiente y provistos de aletas en forma de lámina continua cilindroide. El enfriador funciona en flujo cruzado y a contracorriente con la mezcla de aire-vapor proveniente del vaporizador. El calor cedido al enfriador en este proceso se recupera y utiliza para precalentamiento del agua de proceso. De hecho se utiliza agua de mar en este enfriador y se envía
HOJA DE SUSTITUCIÓN REGLA 26) r _τ después del intercambio al vaporizador sin necesidad de intercambiador.
Se utiliza un ventilador extractor de alta presión estátic (algunos miles de Paséales) para la recirculación del aire y su presión estática se utiliza en combinación con toberas calibradas, practicadas, en la zona de. retama del aire, al vaporizador para mantener en este Ja presión por debajo de Ja atmosférica y por encima de la atmosférica en la zona dei condensador
El agua de mar previamente calentada hasta 40°C penetra por Ja parte superior del vaporizador donde existe un sistema de distribución del agua para conseguir su reparto en toda la sección de vaporización. El vaporizador tiene un relleno del tipo "torre de enfriamiento" constituido por láminas de plástico muy fino que forman un arrollamiento cuya sección es una espiral con paso reducido y con láminas radiales que mantienen la separación lo que garantiza gran superficie de contacto que hace que eJ agua se reparta en finas láminas mientras desciende por el vaporizador. Ai mismo tiempo, el ventilador situado en la parte superior del vaporizador, hace circular aire seco a coníracor-rieníe del descenso del líquido, lo que produce la evaporación de parte del agua enfriándola al mismo tiempo que eleva la temperatura del aire y su grado de humedad.
El aire caliente y húmedo es enviado por el ventilador hacia la zona de condensación donde tiene que pasar a través del enfriador lo que hace descender su temperatura por debajo de) punto de rocío produciéndose la condensación de parte del vapor que es recogido en el fondo dei condensador de donde se extrae mediante una bomba centrífuga.
Durante la vaporización, una parte importante del agua no vaporiza y es recogida en la parte inferior del vaporizador de donde es bombeada de regreso al mar. Este agua ve incrementada su salinidad en la cantidad correspondiente a la abandonada por el vapor (entre 2 y 4 gramos por litro, esto es, entre 5% y 10%). El enfriador consta de varias superficies cilindricas, laminares y concéntricas que pueden ser de latón, acero inoxidable o aluminio. Cada superficie está abrazada por varias vueltas de tubo del mismo material por cuyo interior circula el agua de refrigeración. Se consigue de esta forma que la circulación del agua de enf iamiento se cruce con él aire y a contracorriente.
El enfriador presenta gran superficie de condensación
Se utiliza para la refrigeración agua de mar que al ser calentada por la
HOJA DE SUSTITUCIÓN REGLA 26 transferencia de energía del condensador, es utilizada como agua bruta de entrada al vaporizador. Se han calculado ios flujos, porcentajes de vaporización y temperaturas de forma que la transferencia de masa-calor del enfriador al vaporizador resulte la adecuada para no tener que añadir ni quitar agua bruta en esta etapa dei proceso, Jo que impJica que todo eJ calor recuperado en eJ condensador es enviado ai vaporizador. Se intercala entre la salida del agua de refrigeración del condensador y la entrada del vaporizador un elemento calefactor de apoyo.
La eficiencia energética dei sistema depende por entero de la eficacia del enfriador que recupera una parte importante del calor transportado por el aire desde el vaporizador al condensador. Depende así mismo de la eficacia del vaporizador. Las temperaturas a la salida del agua sobrante y de la tratada deben de ser lo mas bajas posible.
La temperatura del agua sobrante del vaporizador no debe superar en inas de 1°C a la temperatura húmeda dei aire circulante.
La temperatura del agua tratada no debe superar en más de 1°C a la temperatura de entrada del agua de refrigeración al condensador.
Se han dispuesto en la parte inferior dei vaporizador toberas calibradas para la entrada del aire con el fin de disminuir la presión en esa zona, favoreciendo la velocidad de transferencia de masa líquido-vapor.
EJ sistema de toberas ideado creará una diferencia de presión entre Ja zona de condensación y la de vaporización de algunos miles de paséales así como el reciclado del aire presente en el proceso lo que permitirá la optimización del consumo energético. Con el sistema propuesto, el consumo de energía es inferior al 5% dei consumo en una instalación convencional. Esta energía se obtendrá por recuperación de otros sistemas de refrigeración.. La baja temperatura necesaria en el proceso facilita la recuperación de energía en oíros sistemas en los que tradicionaimente no se han apJicado criterios de aprovechamiento por su bajo contenido energético por unidad de masa.
Se ha dispuesto una lámpara de emisión ultravioleta en Ja parte superior del desalinizador con el fin de evitar el crecimiento de hongos y bacterias sensibles.
HOJA DE SUSTITUCIÓN REGLA 26 El corazón del sistema lo constituye el ventilador que deberá mover el aire necesario para arrastrar el vapor producido teniendo en cuenta Ja presión de vapor en saturación a las temperaturas de trabajo y proporcionar la diferencia de presión entre condensador v vanαrizadαr. Se. fija el valor de esta diferencia de presión en el valor que eJ estado deJ arte en ventilación permite, valor que se mantendré como diferencia entre el condensador y vaporizador en el sistema de funcionamiento en ciclo cerrado de aire.
El elemento de calentamiento auxiliar se intercala entre la salida del agua del enfriador y la entrada al vaporizador A la. entrad dei sistema, se instal un filtro para impedir Ja entrada de algas, arena y pequeños objetos.
El sistema tiene los siguientes elementos de control. Sobre la mezcla de aire-vapor Presión en vaporizador Presión en zona inferior de condensación
Temperatura a la salida del vaporizador Temperatura a la salida del condensador Diferencia de presión entre condensador y vaporizador Sobre la entrada de agua Presión
Caudal Temperatura Sobre salida del agua de enfriamiento Temperatura Presión
Sobre entada de agua al vaporizador
Temperatura Sobre la zona de recogida del agua sobrante Temperatura dei agua Máximo nivel
Mínimo nivel Sobre Ja zona de recogida dei agua desalada Temperatura del agua
OJA DE SUSTITUCIÓN REGLA 26 Máximo nivel
Mínimo nivel
En todo lo anterior se ha adoptado la forma cilindrica que se considera sumamente atro abie. y fácilmente, integrable, en cuaiouier ΌΆÍS& . en la idea de. su destino a ^onas turísticas y de ocio, no obstante la forma puede ser modificada y lo único- ue se tendrá en cuenta a- este respecto- es que las. dos, zonas, vaporización y condensación estarán separadas y serán esíancas entre sí y con el medio exterior comunicándose solo mediante un ventilador y unas toberas calibradas funcionando en la forma descrita. En estos casos la forma del condensador y vaporizador pueden variar sustancialmente de ia. descrita pero siempre se ejecutarán para que en su funcionamiento se comporten de la forma relatada que para el condensador es la de trabajar en flujo cruzado y a contracorriente y para el evaporador que el aire circuJe a contracorriente deJ flujo de agua.
Descripción de los dibujos
Para complementar la descripción realizada y con objeto de ayudar a una mejor comprensión de las características del invento, se acompaña a la presente memoria descriptiva, como parte integrante de la misma, tres hojas de pianos en las cuales con carácter ilustrativo y no limitativo, se ha representado lo siguiente: La figura número 1.- Muestra en perspectiva un corte vertical a 180° del dispositivo objeto de la invención en una de sus posibles variantes. En este dibujo se ha dotado al invento con un ventilador centrífiígo tubular
La figura número 2 - Muestra en perspectiva el corte vertical a 180° de otra variante del dispositivo objeto de Ja invención. Esta variante lleva un ventilador centrífugo de gran potencia acoplado exteriormente, no se dibuja el ventilador.
La figura número 3.- Muestra en perspectiva el enfriador-condensador del dispositivo objeto de Ja invención en un corte vertical a 270°
Realización refe ent de La invención A la vista de la figura número 1, puede observarse el dispositivo objeto de la invención que presenta una forma exterior de superficie cilindrica rematada en su parte superior por una superficie cilindrica, apreciándose en su interior un segundo cilindro seccionado rematado por un ventilador centrífugo tubular (10).
HOJA DE SUSTITUCIÓN REGLA 26) Ambas superficies cilindricas cuentan con dos tubuladuras en su parte media inferior dispuestas de forma coincidente las externas con las internas.
Se aprecia en el dibujo que el dispositivo se encuentra dividido en dos zonas por la superficie, cilindrica interior siendo la interior a esta la zona dedicada a la evaporación del agua y la exterior la zona de condensación.
En la parte superior de la- zona de vaporización- y debajo del ventilador (10 se encuentra el dispositivo para la disíribución del agua marina calienfe que entra por la conducción (3), este dispositivo reparte el agua en forma de ducha sobre el relleno (8) del vaporizador. El reparto del agua en forma de ducha facilita su adherencia pelicular a las láminas del relleno por el que desciende.
El ventilador (10) mueve el aire que se encuentra en el interior del dispositivo arrastrándole desde la zona de vaporización a la de condensación y haciéndoJe retornar ai vaporizador a través de Jas tubuladuras (15) situadas en Ja parte inferior inedia de la carcasa dei vaporizador (17)-. En él vaporizador el aire circula en dirección ascendente entrando en contacto con el agua descendente a través del elemento de relleno (8). El aire que habrá sido enfriado a su paso por el condensador y que estará saturado a la tem er tura que admita, el elementó enfriador, inferior a Ja dei agua entrante aumentará su temperatura y admitirá vapor de agua hasta las condiciones de saturación a esa nueva temperatura, mientras que el agua que desciende por el relleno (8) verá disminuir su temperatura hasta la dei aire que entra enfriado por la parte inferior del vaporizador (15) y perderá parte de su masa que se evaporara hasta saturar el aire a la temperatura de entrada del agua en (9), además incrementará su salinidad en la parte correspondiente al vapor eliminado. Esta agua caerá a la parte inferior del cilindro de vaporización (4) de donde a través de la tubería (5) y mediante tina bomba centrífuga no dibujada será devuejta. de regreso al mar. En esta zona (4) se sitúa dos detectores de nivel, máximo y mínimo que se encargan del control de la bomba centrífuga de trasiego.
El ventilador (Í0) impulsa la mezcla de aire y vapor fuera de Ja zona de condensación c ate la parte interior de la supemcie se iesférica ( 8) que cieña, el dispositivo por su parte superior. En esta zona se ha instalado una lámpara de radiación ultravioleta (11) con objeto de eliminar mohos y bacterias sensibles a esta radiación.
HOJA DE SUSTITUCIÓN REGLA 26) <-'
La mezcla vapor-aire al no encontrar salida hacía el exterior del dispositivo deh dp a la hgrmetigifjad gel sjsje a, se impela a ajjave.sar ej enfriador- condensador (13) que abraza por su parte exterior al cuerpo del vaporizador (17) y prosigue su marcha hasta alcanzar las toberas practicadas en la parte inferior de este por donde retorna ai sistema de evaporación.
El enfriadoι--coíidensaaor {13} está formado- por un cierto- número- de superficies laminares cilindricas y concéntricas que ocupan que ocupan en la mitad superior todo el espacio entre el cuerpo del evaporador (17) y el interior de la cubierta cilindrica exterior (12). Las superficies cilindricas laminares del
Figure imgf000012_0001
pr sentan ppj ψ parte fxjeripr εj rrp|janτiεn p tina tubería por la que circula agua marina tal como se muestra en la figura número 3. Se han diseñado las tuberías del enfriador de forma que el agua permanezca en ellas una cantidad de tiempo adicional ai teóricamente necesario para Ja transferencia de energía entre las masas, de agua y aire que se cruzan a contracorriente en esíe aparato. El agua penetra en el sistema por la tubería (1) y pasa a las tuberías del enfriador a través del colector de distribución (18), se distribuye por las diversas superficies cilindricas sobre las que se enrollan las tubería cenqjpd» (!<|) de d#nf p se. wfe ≠
Figure imgf000012_0002
exterior por la tubería (2). En el enfriador-condensador se ha dejado espacio suficiente entre superficies cilindricas para ermitir el paso del aire de forma holgada entre sus láminas.
El paso de la mezcla de aire y vapor por el enfriador provoca la condensación de parte del vapor y el enfriamiento del aire hasta la temperatura a la que entra el agua marina de enfriamiento en tos conductos del enfriador. El aire a la vah' ej
Figure imgf000012_0003
„5 & tεmr rajura correspondiente y es enviado al vaporizador a través de las toberas calibradas (15). Estas toberas constituyen otra de las novedades del presente invento ya que se ha realizado su calibración para obligar ai aire a perder a su paso por ellas Ja casi toda la presión- estática proporcionada, por el ventilador (1 con lo- que se consigue que el gradiente de presión creado eníre la zona de condensación y de vaporización que implica en aquella mayor presión que la atmosférica y en la de vaporización un valor inferior: Por este motivo se ha instalado en el sistema un
HOJA DE SUSTITUCIÓN REGLA 26 ventilador de alta presión estática (10), presión que se ha calculado como la iferencia, entre la presión ele. yapar s uτarJ.o. fiel ajre. 3, J$ fenuserafura. fjej a a marina caliente de entrada al vaporizador y la presión de vapor saturado del aire a la temperatura de salida del agua de. mar sobrante, en la parte inferior del vaporizador (β) y a esta diferencia se Je lian sumado Jas pérdidas de presión sufridas en su recorrido- por el desalinizador, excepto las provocadas en las toberas calibradas.
El comportamiento del aire en su recorrido por el invento es como sigue (Naturalmente el desalinizador contiene el aire del que quedó lleno cuando se construyó). El aire,
Figure imgf000013_0002
Ja, pajíe. inferior jεj
Figure imgf000013_0001
o' spj e pe er presión en la tobera calibrada y su presión es en este punto inferior a la atmosférica en mas que la diferencia entre la presión de vapor saturado a la temperatura de entrada del agua caliente y Ja temperatura de salida del agua fría y al pasar a través del vaporizador, aumentar su temperatura y cargarse de vapor, llega al ventilador a la presión de una atmósfera. El ventilador incrementa la presión de la mezcla aire-vapor por encima de la atmosférica y del reparto de presiones parciales en ese punto se deduce que la presión del vapor de agua es superior Ja presión ge vapor a esa ternpej }ira co Jo, que su condensará , ψβ eJ enfriador es rápida y eficiente. Esto permite que al tener en cuenta en los cálculos sobre la eficiencia energética del condensador, la energía aportada por el ventilador, no se vea la necesidad de aportación de calor suplementaria.
El agua marina del enfriador es calentada por el paso del aire caliente y sobre todo por la condensación dei vapor y se ha calculado su caudal para que la transferencia de calor del sistema la lleve hasta la temperatura a la que se requiere el agua de entrada al vaporizador (3). No obstante lo indicado en el párrafo píeripj, se h injercalf dp, mi ejerrjentϊ? calefactor px Jiaj εnfj Ja, s ji i agua del condensador (2) y su entrada al vaporizador (3) para el período transitorio de su puesta en marcha.
Ei agua que se condensa en las láminas deJ enfriador se enfría hasta Ja temperatura dei agua ru ríπa de enfriamiento y cae a la parte inferior de la zona de condensación de donde es recogida por Ja tubería (ó) medianíe bomba centrífuga controlada por dos detectores de nivel conectados uno de ellos como nivel máximo y el otro como mínimo.
HOJA DE SUSTITUCIÓN REGLA 26 Las embocaduras (16) enfrentadas a las toberas calibradas (15) son solo para poder acceder a estas y están cerradas mediaste bridas ciegas.
Se ha previsto dividir el desalinizador en el número de piezas necesario para su instalación sencilla y el ensamblaje dé las. piezas, que forman la carcasa exterior se hará de i a que quede un conjunto estanco. Igualmente ei ensamblaje de las. piezas, de la carcasa cuerpo-dei condensador sera estanco.
La figura número 2, muestra eJ aparato inventado en su versión de gran producción y por el estado del arte en los ventiladores se le dota de un ventilador centrifugo no dibujado que se sitúa en la parte superior del desalinizador. El aire es extraído del yappradpr por la tubula ura, (10) y e jmpujg dp aj
Figure imgf000014_0001
por la entrada (19), por lo demás su ftmcionamiento es en todo idéntico al presentado en la figura número 1
En la figura aúníere 3 puede observarse el elemento nfe' erpcon ej-sadoj' construido- como- conjunto- de superficies cilindricas y concéntricas coa tubería arrollada en la forma que se indica y con la entrada de agua por la parte inferior y salida por la superior
Campo- de. lít invención»
Esta invención tiene su aplicación dentro de la refrigeración, como recuperación en forma de agua desalmizada de la energía consumida en ios condensadores de todo proceso frigorífico especialmente en los hoteles de zonas turísticas en que la dotación de agua es insuficiente.
Esta invención tiene su aplicación en la industria naval frigorífica recuperando en forma de agua potable (tras postratamiento) la energía consumida en ios condensadores del proceso frigorífico.
Esta invención tiene su aplicación en la producción térmica de energía eléctrica sustituyendo las torres de enfriamiento por cambiadores de calor agua- agua de mar. La aportación de agua desmineraiizada a una torre de enfriamiento en esta industria, se encuentra entre el 5% aproximadamente del total del agua qu circula, por el pirpratp g* τ frjgeτ ón. βgíe, iϊiy rtβ, τn $ tp
Figure imgf000014_0002
de calor agua-agua de mar, evita esa perdida de agua y además proporciona una cantidad igual para otros usos.
Es aplicable en todas las zonas del litoral necesitadas de agua potable, con
HOJA DE SUSTITUCIÓN REGLA 26 una aportación energética mínima para aumentar la temperatura del agua unos veinte grados, obtenibles de:
De la energía aplicada al ventilador del propio proceso que impulsa y recicla el aire en circuito cerrado, encontrándose tαdα el coniunto aislado. térmicamente del exterior, evitando perdidas de energía. De ^recuperación energética en el condensador Oel aislamiento térmico entre vaporizador y condensador así como entre este y el medio exterior.
De energía- solary que con- mucha- facilidad- se puede obtener- en- las playas turísticas.
De energía térmica sobrante de múltiples procesos industriales que se desentienden de cantidades de energía aplicables al proceso que se describe de desaiinización.
Con todo lo expuesto se considera que la descripción del invento queda suficientemente explicado y sus ventajas y novedades suficientemente explícitas. Los materiales, forma, tamaño y disposición serán susceptibles de variación, siempre y- cuando ello no suponga una alteración a la esencialidad del invento. Los téirmnos en que §e ha escrito ta memoria 9gke |n mzr tp adps siempre con carácter amplio y no limitativo. "
HOJA DE SUSTITUCIÓN (REGLA 26)

Claims

REIVINDICACIONES
i . Planta para la desalinización de aguas marinas por evaporación-condensación caracterizada por estar constituida por un. cuerpo exterior cilindrico y estanco y otro interior igualmente cilindrico, concéntrico con el primero, estancos entre si excepto por la conexión que se realiza entre ambos mediante ua ventilador situado- en la parte superior de ambos y. que impulsa el aire del cilindro interior al exterior y por una tobera calibrada que se practica en la parte inferior media del cilindro interior que provoca una caída de presión en la
10 mezcla aire- vapor. Eí ventilador Axial muítietapa o centrífugo proporciona la suficiente resió aj aire^vapor paja vence ja, ςsrjífe d§ r§§ión r y^a 'a par Jas toberas calibradas. Esta caída de presión tiene un valor cercano a la diferencia entre las presiones de vapor a saturación del aire circuíante a su temperatura máxima y a su temperatura ansáma. L&& do* εaerp&s- eilíndriee& eβneéa.rie&&
15. están aislados téπnicamente entre sí y con el medio exterior, conteniendo aire. El cilindro interior contiene un relleno de láminas que presenta una gran superñcie y permite el paso de agua marina caliente que se introduce desde la parte superior y de aire en sentido- vertical a contracorriente del agua, evapβrándβse una-poB-áón- dei .agua y .enfriando el resto e incrementando ]a sali a .detes e resto, ue se 0 elimina del sistema, enviándoia al mar mediante una bomba. Mediante un ventilador se envía la mezcla de aire y vapor a la zona situada entre los dos cilindros donde se encuentra un enfriador for ado por aletas eeneéntrieas de superficie cilindrica, conductoras dei calor. Cada superñcie cilindrica está abrazada por varias vueltas en espiral ascendente de tubería realizada en material 5 resistente a la corrosión por agua de mar y buen conductor del calor. Toda la mita superior del espacio- entre í fr dos- GÍlήidros-estó- ocupado- por las-r^ferídas- .alejas cilindricas y concéntric.as .que eym entre ellas paso para que ¿ rnezcia de. aire-vapor pueda atravesar la zona en sentido descendente, presentando el conjunto de aletas gran superficie. El fluido enfriador utilizado es agua de mar 0 que circuía por ks tuberías en feeo do ascendente, produciéndose Ja condensación de parte del vapor. Los condensados se recogen mediante una bomba que los envía a íraíamiento posterior o consumo, siendo reenviado el aire con el vapor restante al cuerpo cilindrico central para un nuevo ciclo, utilizando
HOJA DE SUSTITUCIÓN REGLA 26 una lámpara de emisora de radiación ultravioleta colocada en la zona en que se encuentra el vapor, realizándose todo el roc so a. temperatura áxima inferior a 60°C, con saltos térmico tanto en la fase aire-vapor como en la fase líquida inferiores a 35o' C. 2. Planta desaiinizadora de agua de mar por evaporación condensación caracterizada por su fijncionamiento en proceso continuo, tomando continuamente agua del mar, desalinizando una parte de esa agua y devolviendo la restante al mar según la reivindicación número 1
3. Planta desaiinizadora de agua de mar por evaporación condensación caracterizada por la utilización de aire impulsado en circuito cerrado para él trasporte del vapor producido en la evaporación según la reivindicación número 1
4. Planta, de^íni dora- de agua de mar por evaporación- condensacíón- «aracterizada por la utilización como fluido refrigerante en el condensador agua de mar que es enviada después al evaporador, estando calculadas las transferencias de calor en ambos sistemas de forma que no se precise ningún otro agua, según reivindicación número 1
5. Planta desaiiaizadora de agua de mar por evaporación condensación: caracterizada por contar con un ventilador de alta presión estática que impulsa la mezcla aire-vapor procedente del evaporador al condensador y obliga a que la mezcl aire-vapor que resulta- a la salida- de este, retome al e vaporador a través- de toberas calibradas que provocan una diferencia de presión importante entre la zona de condensación y evaporización según la reivindicación número 1 ó. Planta desalinizadora de agua de mar por evaporación condensación caracisr ada per e&ntar con unas toberas calibradas po la& que se ϊecícía eϊ aire de la zona de condensación a la de evaporación, creándose ea la zona ds vaporización una presión inferior a la atmosférica, creándose en la zona de condensación una presión superior a la atmosférica, según la reivindicación número I
7. Planta desalinizadora de agua de mar por evaporación condensación caracterizada por trabajar en todas sus etapas a temperatura inferior a los 60° C, según reivindicación número 1
8. Elemento enfriador-condensador de vapor de agua caracterizado por estar formado por superficies cilindricas, coseéníricaa de material conductor dei
HOJA DE SUSTITUCIÓN REGLA 26 calor, rodeadas de varias vueltas en espiral de tubería realizada en material resistente a la corrosión del fluido refrigerante, conductor dei calor, con soldadura compatible con las superficies cilindricas que son las aletas del enfriador, utilizando las referidas: aletas: una- gran saperftcáe- de- enriamiento- fertiendα- las referidas aletas gran superficie de condensación, .l nzando ϊas íuberiás de iodos ios cilindros un único colector para l ; entrada dpi flui o; efrige an e, utilizando las tuberías de todas las superficies cilindricas un único colector para la salida del fluido refrigerante, dejando paso libre entre superficies cilindricas suficiente para et paso de aire o gases de forma αotgadá, según reiviadiGaciδΘ: nu ere t 9. Planta para la desalinización de aguas marinas por evaporación-condensación caracterizada por estar constituida, por dos cuerpos estancos entre si, excepto por la conexión que se realiza entre ambos mediante un ventilador situado en Ja paite superior de ambos y que impulsa ei aire de uno a otro cuer o y por una- tobera c libra ^ que se practica en la parte inferior media de la pared común de Jos dos cuerpos que provoca una caída de presión en la mezcla aire-vapor, que los des cuerpos cilindricos concéntricos están afol os téfe feantente entre sí y- coa eí medio- exterior, eoateafeadó- aiire, .conteniendo .uno .de los .cuerpos un relleno de Jáminas que presenta una gran superficie y permite ei paso de agua marina caliente que se introduce desde la parte superior y de. aire, en sentido vertical a contecαrriente. del agua, evaporándose usa porción del agua, enf iando eJ st& e incrementan o Ja salinidad de este resto que se elimina del sistema, enviándoia al mar mediante una bomba, enviando mediante un ventilador la mezcla de aire y vapor al segundo cuerpo donde se encuentra. un- enfriador formad© por aletas conductoras del calor que están abrazadas por varia* vueltas- ascendentes dé tuberí realizada en material resistente, a la eorrosión por agua, de mar y buen .conductor calor, estando toda la mitad superior del segundo cuerpo ocupado por las referidas aletas que. dejan entre, ellas, paso n ra ψ,ιe. la. mezcla de. aire-vapor pueda, atravesar la zona en sentido descendente, presentando eí &&tψdsi& de aletas gran superficie, utilizando como fluido enfriador agua de mar que circula por las tuberías en recorrido ascendente, produciéndose la condensación de parte d l vapor, recogiéndose los condensados mediante una bomba que los envía a tratamiento posterior o consumo-, siendo reenviado eϊ aire con eí vapor pastante al primer
HOJA DE SUSTITUCIÓN REGLA 26) cuerpo para un nuevo ciclo, utilizando una lámpara de emisora de radiación ultravioleta colocada en la zona en que se encuentra e vapor, según reivindicación número l
?
0
?
0
HOJA DE SUSTITUCIÓN (REGLA 26)
PCT/ES2002/000484 2001-10-13 2002-10-11 Planta para la obtención de agua exenta de sal a partir de aguas marinas a baja temperatura con funcionamiento continuo y recuperación de entalpía WO2003033412A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02779586A EP1443025A1 (en) 2001-10-13 2002-10-11 Installation used to obtain salt-free sea water at a low temperature with continuous operation and enthalpy recovery
US10/492,509 US7381310B2 (en) 2001-10-13 2002-10-11 Installation used to obtain salt-free sea water at a low temperature with continuous operation and enthalpy recovery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200102272 2001-10-13
ES200102272A ES2185514B1 (es) 2001-10-13 2001-10-13 Planta para la obtencion de agua exenta de sal a partir de aguas marinas, a baja temperatura, con funcionamiento continuo y recuperacion de entalpia.

Publications (1)

Publication Number Publication Date
WO2003033412A1 true WO2003033412A1 (es) 2003-04-24

Family

ID=8499169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2002/000484 WO2003033412A1 (es) 2001-10-13 2002-10-11 Planta para la obtención de agua exenta de sal a partir de aguas marinas a baja temperatura con funcionamiento continuo y recuperación de entalpía

Country Status (4)

Country Link
US (1) US7381310B2 (es)
EP (1) EP1443025A1 (es)
ES (1) ES2185514B1 (es)
WO (1) WO2003033412A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006056026A1 (en) * 2004-11-29 2006-06-01 Aquamill Five Star Pty Ltd Liquid treatment device and method
RU171384U1 (ru) * 2016-12-23 2017-05-30 Закрытое акционерное общество "Южно-Уральский инновационно-технологический центр" (ЗАО "ЮУрИТЦ") Устройство для получения чистого пара

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7771567B2 (en) * 2005-09-02 2010-08-10 Rives Michael L Salt water distillation system
US7897019B2 (en) * 2006-06-26 2011-03-01 Alan Dayton Akers Tower for the distillation of seawater
US8206557B2 (en) * 2006-11-08 2012-06-26 Hydrologic Industries, Inc. Methods and apparatus for distillation of shallow depth fluids
US8202401B2 (en) * 2006-11-08 2012-06-19 Hydrologic Industries, Inc. Methods and apparatus for distillation using phase change energy
US20080105531A1 (en) * 2006-11-08 2008-05-08 Burke Francis P Methods and apparatus for signal processing associated with phase change distillation
MX2009011259A (es) * 2007-04-20 2009-12-09 Freedom Water Company Ltd Destilador de agua potable.
US20090116980A1 (en) * 2007-09-14 2009-05-07 Monjes Julio A Air and water conditioner by two separated air flows
US20090159421A1 (en) * 2007-12-21 2009-06-25 Chip Aadland Portable closed circuit, sealed, pressurized distillation system
US8292272B2 (en) * 2009-09-04 2012-10-23 Massachusetts Institute Of Technology Water separation under reduced pressure
US8252092B2 (en) * 2009-10-05 2012-08-28 Massachusetts Institute Of Technology Water separation under varied pressure
US8353341B1 (en) 2010-01-04 2013-01-15 Petrey Iii Paul A Well system
US8083902B2 (en) 2010-05-25 2011-12-27 King Fahd University Of Petroleum And Minerals Evaporative desalination system
US20120006759A1 (en) * 2010-07-12 2012-01-12 Ethan Brooke Method and system for removal of trihalomethane from water supplies
US9771278B2 (en) * 2010-10-11 2017-09-26 H2O Global Llc High efficiency, large scale desalination system
US8647477B2 (en) 2011-02-15 2014-02-11 Massachusetts Institute Of Technology High-efficiency thermal-energy-driven water purification system
ES2401516B1 (es) 2011-03-22 2014-03-27 Universitat Politècnica De Catalunya Planta desalinizadora solar de agua de mar, salmueras o aguas residuales.
DE102011081007A1 (de) * 2011-08-16 2013-02-21 Siemens Aktiengesellschaft Verfahren zur Wiederaufbereitung eines Abwassers und Wasseraufbereitungsvorrichtung
US9772141B2 (en) * 2011-08-19 2017-09-26 Waterpointe-Global Method and apparatus for reclaiming heat during liquid purification using heat exchanges
CN102589199A (zh) * 2012-03-13 2012-07-18 吴思 组合轮板式蒸发器与冷凝器
US8496234B1 (en) 2012-07-16 2013-07-30 Massachusetts Institute Of Technology Thermodynamic balancing of combined heat and mass exchange devices
PT106980A (pt) * 2013-05-30 2014-12-02 Self Energy Innovation Sistema de dessalinização solar com possibilidade de autonomia energética
US10143936B2 (en) 2015-05-21 2018-12-04 Gradiant Corporation Systems including an apparatus comprising both a humidification region and a dehumidification region with heat recovery and/or intermediate injection
US9266748B1 (en) 2015-05-21 2016-02-23 Gradiant Corporation Transiently-operated desalination systems with heat recovery and associated methods
DK201570471A1 (da) * 2015-07-16 2017-02-20 Hans Andrias Djurhuus System og fremgangsmåde til rensning af forurenet væske
US10294123B2 (en) 2016-05-20 2019-05-21 Gradiant Corporation Humidification-dehumidification systems and methods at low top brine temperatures
US11085653B2 (en) 2016-10-16 2021-08-10 Premium Home Comfort, Inc. Air conditioner and an air conditioner housing
CN109502672B (zh) * 2018-12-04 2021-10-26 合肥通用机械研究院有限公司 一种可拆洗海水淡化设备
CN110143634A (zh) * 2019-06-28 2019-08-20 马鞍山市新桥工业设计有限公司 一种基于太阳能的海水脱盐处理装置
CN110143633A (zh) * 2019-06-28 2019-08-20 马鞍山市新桥工业设计有限公司 一种海水淡化装置
CN110482633A (zh) * 2019-08-21 2019-11-22 宋怡佳 一种污水处理蒸发装置
IT202000008176A1 (it) * 2020-04-17 2021-10-17 Alessandro Luigi Maria Vergani Apparecchiatura di desalinazione
CN113149107A (zh) * 2021-04-26 2021-07-23 程刚 小型风冷式蒸馏水制取装置
DE102022109435A1 (de) * 2022-04-19 2023-10-19 Oliver Kerschgens System zur wasseraufbereitung und entsalzung
CN115504535B (zh) * 2022-08-23 2023-08-25 安徽农业大学 一种丝瓜藤蒸汽生成体及其制备方法和丝瓜藤基海水淡化蒸发器
CN115650485B (zh) * 2022-10-21 2023-06-06 江苏省淡水水产研究所 一种水产养殖水处理用的节能环保水处理装置
CN116655037B (zh) * 2023-07-28 2023-10-03 海南中南标质量科学研究院有限公司 小型移动作业平台海水淡化处理系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3190817A (en) * 1957-08-12 1965-06-22 Gen Electric Compression distillation apparatus
DE3712785A1 (de) * 1987-04-15 1988-11-03 Peter Dipl Ing Krahn Niedertemperatur destillations-vorrichtung
US4880504A (en) * 1987-02-24 1989-11-14 Cellini John V Vacumm distillation system with spiralled cold coil
ES2087819A1 (es) * 1991-08-09 1996-07-16 Alfa Laval Desalt "planta de desalinizacion, especialmente para uso en instalaciones marinas y de alta mar"
ES2155758A1 (es) * 1998-11-25 2001-05-16 Fernandez Jose Barriuso Planta desalinizadora.

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1966938A (en) * 1928-07-14 1934-07-17 Wallace G Stone Method of distillation
FR1523301A (fr) * 1967-03-17 1968-05-03 Cie Generale D Etudes Cegelerg Dispositif de distillation à faible consommation de chaleur
US4269663A (en) * 1975-07-07 1981-05-26 Mcfee Richard Water distiller
US4441963A (en) * 1980-10-27 1984-04-10 Li Yao T Distillation apparatus
US4863567A (en) * 1988-05-25 1989-09-05 Raley Jay F Fluid distillation apparatus
FR2655956B1 (fr) * 1989-12-19 1992-04-17 Europ Propulsion Reservoir a effet capillaire de coque.
US6510687B1 (en) * 1996-06-14 2003-01-28 Sharav Sluices Ltd. Renewable resource hydro/aero-power generation plant and method of generating hydro/aero-power
US5951825A (en) * 1997-03-26 1999-09-14 Land; Glenn E. Convertible distillation apparatus
US6695951B1 (en) * 2000-07-18 2004-02-24 Jack G. Bitterly Saline/sewage water reclamation system
US6574979B2 (en) * 2000-07-27 2003-06-10 Fakieh Research & Development Production of potable water and freshwater needs for human, animal and plants from hot and humid air

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3190817A (en) * 1957-08-12 1965-06-22 Gen Electric Compression distillation apparatus
US4880504A (en) * 1987-02-24 1989-11-14 Cellini John V Vacumm distillation system with spiralled cold coil
DE3712785A1 (de) * 1987-04-15 1988-11-03 Peter Dipl Ing Krahn Niedertemperatur destillations-vorrichtung
ES2087819A1 (es) * 1991-08-09 1996-07-16 Alfa Laval Desalt "planta de desalinizacion, especialmente para uso en instalaciones marinas y de alta mar"
ES2155758A1 (es) * 1998-11-25 2001-05-16 Fernandez Jose Barriuso Planta desalinizadora.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006056026A1 (en) * 2004-11-29 2006-06-01 Aquamill Five Star Pty Ltd Liquid treatment device and method
RU171384U1 (ru) * 2016-12-23 2017-05-30 Закрытое акционерное общество "Южно-Уральский инновационно-технологический центр" (ЗАО "ЮУрИТЦ") Устройство для получения чистого пара

Also Published As

Publication number Publication date
ES2185514A1 (es) 2003-04-16
ES2185514B1 (es) 2004-01-01
US7381310B2 (en) 2008-06-03
EP1443025A1 (en) 2004-08-04
US20050011743A1 (en) 2005-01-20

Similar Documents

Publication Publication Date Title
WO2003033412A1 (es) Planta para la obtención de agua exenta de sal a partir de aguas marinas a baja temperatura con funcionamiento continuo y recuperación de entalpía
US11161755B2 (en) Multi-stage bubble column humidification and dehumidification
CN103842044B (zh) 鼓泡塔式蒸汽混合物冷凝器
KR100768334B1 (ko) 자연에너지를 이용한 해수의 농축 및 담수화시스템
US7897019B2 (en) Tower for the distillation of seawater
CN104495966B (zh) 一种鼓泡加湿与热泵循环耦合的海水淡化系统及工艺方法
ES2401516B1 (es) Planta desalinizadora solar de agua de mar, salmueras o aguas residuales.
US9403102B2 (en) Heat exchange system configured with a membrane contactor
US20130146437A1 (en) Dehumidifier system and method
WO2007128062A1 (en) Desalination method and apparatus
WO2009047380A1 (es) Sistema evaporador de aguas residuales y similares por energías renovables
US3243358A (en) Water purifying means
CN105645491B (zh) 水净化系统及工艺
Abbady et al. Performance enhancement of a humidification–dehumidification seawater desalination system
BR112020011327A2 (pt) arranjo mecânico de compressão de vapor com baixa taxa de compressão
ES2844941T3 (es) Aparato de desalinización de agua de mar para desalinizar agua de mar
WO2008124935A1 (en) Condensation system for dehumidification and desalination
ES2273059T3 (es) Un invernadero y un metodo de cultivo bajo vidrio.
CN101874000B (zh) 水净化
ES2370552B1 (es) Procedimiento de refrigeración por tiro natural de una planta de concentración solar.
US4745963A (en) Heat exchanger and systems and methods for using the same
ES2751848B2 (es) Dispositivo de desalinizacion y potabilizacion por evaporacion sobre un flujo en canal
US20120234666A1 (en) Apparatus and methods for water treatment
ES2214080B1 (es) Sistema de obtyencion de agua a partir de la humedad del aire.
ES2323340B1 (es) Sistema de desalacion de agua por energia solar.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002779586

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002779586

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10492509

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP