WO2003031420A1 - Isothiazole derivatives - Google Patents

Isothiazole derivatives Download PDF

Info

Publication number
WO2003031420A1
WO2003031420A1 PCT/EP2002/010988 EP0210988W WO03031420A1 WO 2003031420 A1 WO2003031420 A1 WO 2003031420A1 EP 0210988 W EP0210988 W EP 0210988W WO 03031420 A1 WO03031420 A1 WO 03031420A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
formula
butyl
methyl
alkyl
Prior art date
Application number
PCT/EP2002/010988
Other languages
French (fr)
Inventor
Yoshinori Kitagawa
Haruko Sawada
Takuma Shigyo
Lutz Assmann
Original Assignee
Bayer Cropscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Ag filed Critical Bayer Cropscience Ag
Publication of WO2003031420A1 publication Critical patent/WO2003031420A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D275/00Heterocyclic compounds containing 1,2-thiazole or hydrogenated 1,2-thiazole rings
    • C07D275/02Heterocyclic compounds containing 1,2-thiazole or hydrogenated 1,2-thiazole rings not condensed with other rings
    • C07D275/03Heterocyclic compounds containing 1,2-thiazole or hydrogenated 1,2-thiazole rings not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms

Definitions

  • the present invention relates to novel isothiazole derivatives, to a process for their preparation and to their use as microbicides.
  • the invention further relates to novel intermediates and to a process for their preparation.
  • R represents alkyl having 1 to 12 carbon atoms, alkenyl having 3 to 8 carbon atoms, alkenyl having 3 to 8 carbon atoms, alkylnyl having 3 to 8 carbon atoms, cycloalkyl having 3 to 8 carbon atoms, cycloalkyl-alkyl having 3 to 8 carbon atoms in the cycloalkyl group and 1 to 4 carbon atoms in the alkyl group, haloalkyl with 1 to 4 carbon atoms and 1 to 9 identical or different halogen atoms, or
  • R represents alkyl having 1 to 4 carbon atoms, wherein each of these radicals is substituted by 1 to 3 radicals selected from alkoxy having 1 to 4 carbon atoms, alkylthio having 1 to 4 carbon atoms, dialkylamino having 1 to 4 carbon atoms in each of the alkyl groups, alkoxycarbonyl having 1 to 4 carbon atoms in the alkoxy group and trial ylsilyl having 1 to 4 carbon atoms in each of the alkyl groups, or
  • R represents phenyl, which may be substituted by 1 to 5 identical or different radicals selected from halogen, alkyl having 1 to 4 carbon atoms, alkoxy having 1 to 4 carbon atoms, alkylthio having 1 to 4 carbon atoms, haloalkyl having 1 to 4 carbon atoms and 1 -to 5 identical or different halogen atoms, alkoxycarbonyl having 1 to 4 carbon atoms in the alkoxy group, nitro and haloalkoxy having 1 to 4 carbon atoms and 1 to 9 identical or different halogen atoms, or
  • R represents aralkyl having 6 to 10 carbon atoms in the aryl group and 1 to 4 carbon atoms in the alkyl group, wherein the aryl group may be substituted by 1 to 3 identical or different radicals selected from halogen, alkyl having 1 to 4 carbon atoms, alkoxy having 1 to 4 carbon atoms, alkylthio having 1 to 4 carbon atoms haloalkyl having 1 to 4 carbon atoms and 1 to 9 identical or different halogen atoms, nitro and haloalkoxy having 1 to 4 carbon atoms and 1 to 5 identical or different halogen atoms, alkoxycarbonyl having 1 to 4 carbon atoms in the alkoxy group, or
  • R represents naphthyl or diphenylmethyl
  • n 0, 1 or 2.
  • R has the above-mentioned meanings, 031420
  • isothiazole derivatives of the formula (I) are outstandingly active as microbicides in agriculture and horticulture, particularly as fungicides for the direct control of plant diseases or for causing resistance in plants against plant pathogens.
  • the isothiazole derivatives of the formula (I) according to the invention have a much better microbidical activity than the already known compounds, which are structurally most similar and have the same type of action.
  • Halogen and halogen in “haloalkyl” and “haloalkoxy” represents fluoro, chloro, bromo or iodo, and preferably is fluoro, chloro or bromo.
  • Alkyl can be straight chain or branched and there may be mentioned, for example, methyl, ethyl, n- or iso-propyl, n-, iso ⁇ , sec- or tert-butyl, n-, iso-, neo- or tert-pentyl,
  • Alkenyl includes, for example, allyl, 2-butenyl, 3-butenyl, 2-pentenyl, 2-hexenyl, 2-heptenyl, 2-octenyl etc.
  • alkynyl there may be mentioned, for example, 2-propynyl, 2-butynyl, 2- pentynyl, 2-hexynyl, 3-hexynyl, 2-heptynyl, 2-octynyl etc.
  • Cycloalkyl includes, for example, cyclopropyl, cyclopentyl, cyclohexyl, cyclo- heptyl, cyclooctyl etc. 31420
  • Cycloalkylalkyl includes, for example, cyclopropyl ethyl, cyclopentylmethyl, cyclohexylmethyl, cyclooctylmethyl etc.
  • Alkyl is an arylalkyl radical, whose alkyl part can be straight chain or branched, and there may be mentioned, for example, benzyl, 2-phenethyl, ⁇ -methylbenzyl, ⁇ , ⁇ - dimethylbenzyl, 2-phenylpropyl, 3-phenylpropyl, ⁇ -ethylbenzyl etc.
  • Alkoxy can be straight chain or branched and there may be mentioned, for example, methoxy, ethoxy, propoxy, isopropoxy, n-, iso-, sec- or tert-butoxy.
  • alkoxycarbonyl can have the same definitions as the above- mentioned “alkoxy” and there may be specifically mentioned, for example, mefhoxy- carbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, n-, iso-, sec- or tert-butoxycarbonyl.
  • Alkylthio can be straight chain or branched and there may be mentioned, for example, methylthio, ethylthio, n- or iso-propylthio, n-, iso-, sec- or tert-butylthio.
  • Dialkylamino denotes a group having 1 to 4 carbon atoms in each alkyl part. As examples there may be mentioned dimethylamino, diethylamino, methylethylamino, methyl-n-propylamino, methylisopropylamino, dipropylamino, di-(n-butyl)amino etc.
  • Trialkylsilyl represents a group, wherein each alkyl group has 1 to 4 carbon atoms. As examples there may be mentioned trimethylsilyl, triethylsilyl, tri(n-propyl)silyl, tri(n-butyl)silyl etc.
  • Haloalkyl represents straight chain or branched alkyl having 1 to 4 carbon atoms and 1 to 9 fluorine, chlorine and/or bromine atoms.
  • Haloalkoxy represents a straight-chain or branched group having 1 to 4 carbon atoms and 1 to 9 fluorine, chlorine and/or bromine atoms.
  • fluorine chlorine and/or bromine atoms.
  • difiuoromethoxy trifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2- bromoethoxy, 2,2,2-trifluoroethoxy, 3-chloropropoxy etc.
  • Formula (I) provides a general definition of the isothiazole derivatives according to the invention.
  • Preferred compounds of the formula (I) are those, in which
  • R represents methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert- butyl, n-pentyl, isopentyl, 2-methylbutyl, n-hexyl, n-heptyl, n-octyl, n-decyl, nonyl, undecyl, dodecyl, allyl, 2-butenyl, 2-pentenyl, 2-hexenyl, 2-octenyl, 2- propynyl, 2-butynyl, 2-pentynyl, 3-hexynyl, cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclopropylmethyl, cyclopentylmethyl, cyclopentylmethyl, cyclohexylmethyl, trifluor
  • R represents alkyl having 1 or 2 carbon atoms, wherein each of these radicals is substituted by 1 to 3 radicals selected from methoxy, ethoxy, methylthio, ethylthio, dimethyl amino, diethylamino, methoxycarbonyl, ethoxycarbonyl and trimethylsilyl, or
  • R represents phenyl, which may be substituted by 1 to 5 identical or different radicals selected from fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, tert-butyl, methoxy, ethoxy, methylthio, ethylthio, trifluoromethyl, trifluoromethoxy, methoxycarbonyl, ethoxycarbonyl and nitro, or R represents phenylalkyl having 1 to 4 carbon atoms in the alkyl group, wherein the phenyl group may be substituted by 1 to 3 identical or different radicals selected from fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, sec-butyl, tert-butyl, methoxy, ethoxy, isopropoxy, n-butoxy, methylthio, eth- yltliio, trifluoromethyl, triflu
  • R represents naphthyl or diphenylmethyl
  • n 0, 1 or 2.
  • R represents methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert- butyl, n-pentyl, isopentyl, 2-methyl-butyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, allyl, 2-butenyl, 2-pentenyl, 2-hexenyl, 2- octenyl, 2-propynyl, 2-butynyl, 2-pentynyl, 3-hexynyl, cyclopropyl, cyclo- pentyl, cyclohexyl, cycloheptenyl, cyclooctyl, cyclopropylmethyl, cyclo- pentylmethyl,
  • R represents alkyl having 1 to 2 carbon atoms, wherein each of these radicals is substituted by a radical selected from methoxy, ethoxy, methylthio, ethylthio, dimethylamino, diethylamino, methoxycarbonyl, ethoxycarbonyl and trimethylsilyl, or
  • R represents phenyl, which may be substituted by 1 to 5 identical or different radicals selected from fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, tert-butyl, methoxy, ethoxy, methylthio, ethylthio, trifluoromethyl, trifluoromethoxy, methoxycarbonyl, ethoxycarbonyl and nitro, or
  • R represents phenylalkyl having 1 to 3 carbon atoms in the alkyl group, wherein the phenyl group may be substituted by 1 to 3 identical or differerent radicals selected from fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, sec-butyl, tert-butyl, methoxy, ethoxy, isopropoxy, n-butoxy, methylthio, ethylthio, trifluoromethyl, trifluoromethoxy, methoxycarbonyl, ethoxycarbonyl and nitro, or
  • R represents naphthyl or diphenylmethyl
  • n 0, 1 or 2.
  • process variant (a) according to the invention can be illustrated by the following formula scheme.
  • process variant (b) can be illustrated by the following formula scheme:
  • Formula (II) provides a definition of the isothiazolyl-ethanones, which are required as starting materials for carrying out process variant (a) according to the invention.
  • X preferably represents chlorine or bromine.
  • the isothiazolyl-ethanones of the formula (II) are novel.
  • the isothiazolyl-ethanones of the formula (II) can be prepared by
  • chlorine and bromine can be used as halogenating agents.
  • Suitable catalysts for conducting process (c) are, for example, hydrochloric acid, hydrobromic acid and acetic acid.
  • Suitable diluents for conducting process (c) are, for example, organic acids, such as formic acid and acetic acid.
  • the 5-acetyl-3,4-dichloro-isothiazole of the fomiula (IV) can be prepared by
  • R! represents di(C 4 alkoxycarbonyl)methyl or 2,2-dimethyl-l,3-dioxan-4,6- dione-5-yl,
  • Suitable acids for conducting process (d) are, for example, hydrochloric acid, sulfuric acid and acetic acid.
  • Suitable diluents for conducting process (d) are, for example, dioxane, tetrahydro- furan and dichloroethane.
  • Process (d) can be conducted according to the method described in Indian Journal of Chemistry, Vol. 20, page 504 (1981).
  • the isothiazole derivatives of the formula (V) can be prepared by
  • Suitable acid binders for conducting process (e) are, for example, 4-dimethyl- aminopyridine or triefhylamine.
  • Suitable diluents for conducting process (e) are, for example, dichloromethane, tetrahydrofurane, acetonitrile or ethyl acetate.
  • Process (e) can be conducted according to the method described in Journal of Organic Chemistry, Vol. 43, page 2087 (1978).
  • the isothiazolyl-ethanones of the formula (II) and the 5-acetyl-3,4-dichloro- isothiazole of the formula (IV) are also microbicidally active.
  • Formula (III) provides a general definition of the thioalcohols, which are required as reaction components for carrying out process variant (a) according to the invention.
  • R preferably has those meanings, which have already been mentioned as preferred for this radical.
  • Formula (la) provides a general definition of the isothiazole derivatives, which are required as starting materials for carrying out process variant (b) according to the invention.
  • the isothiazole derivatives of the fomiula (la) are compounds according to the invention, which can be prepared by the above-mentioned process variant (a).
  • oxidizing agents for carrying out process variant (b) according to the invention there can be used all customary oxidizing agents, which are suitable for providing oxygen.
  • Preferred agents of this type are, for example, hydrogen peroxide, perbenzoic acid, m-chloroperbenzoic acid, potassium permanganate and the mono- persulfuric acid salt that is known under the tradename Oxone®.
  • Y represents methyl, monohalogenome hyl, i(C ⁇ _4 alkoxycarbonyl)methyl or 2,2-dimethyl-l,3-dioxan-4,6-dione-5-yl.
  • Suitable diluents for conducting process variant (a) according to the invention are all customary inert organic solvents as well as water.
  • Preferred diluents are water; aliphatic, alicyclic and aromatic hydrocarbons (which may be chlorinated), for example, pentane, hexane, cyclohexane, petroleum ether, ligroine, benzene, toluene, xylene, dichloromethane, chloroform, carbon tetrachloride, 1 ,2-dichloroethane, chlorobenzene, dichlorobenzene etc.; ethers, for example, ethyl ether, methyl ethyl ether, isopropyl ether, butyl ether, dioxane, dimethoxyethane (DME), tetrahydrofuran (THF), diethylene glycol dimethyl ether (DGM) etc.;ketones, for example, acetone, methyl ethyl ketone (MEK), methyl isopropyl ketone, methyl isobutyl
  • Suitable acid-binding agents for conducting process variant (a) according to the invention are all customary inorganic and organic bases.
  • the following bases can preferably be used:
  • Inorganic bases such as hydrides, hydroxides, carbonates, bicarbonates etc. of alkali metals or alkaline earth metals, for example, sodium hydride, lithium hydride, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide etc.; alkali metal amides, for example, lithium amide, sodium 031420
  • amide potassium amide etc.
  • organic bases alcoholates, tertiary amines, dialkylaminoanilines and pyridines, for example, sodium methoxide, potassium tert- butoxide, triethylamine, 1,1,4,4-tetramethyl ethyl enediamine (TMEDA), N,N- dimethylaniline, N,N-diethylaniline, lutidine, pyridine, 4-dimethylaminopyridine (DMAP), l,4-diazabicyclo[2,2,2]octane (DABCO), l,8-diazabicyclo[5,4,0]undec-7- ene (DBU) etc.; organo lithium compounds, for example, methyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, phenyl lithium, dimethyl copper lithium, lithium diisopropylamide, lithium cyclohexylisopropyl
  • the reaction temperatures can be varied within a substantially wide range.
  • the reaction is generally carried out at a temperature between about -50°C and about +150°C, preferably between about -10°C and about +100°C.
  • the process variant (a) according to the invention is generally ca ⁇ ied out under atmospheric pressure but, if desired, can also be carried out under elevated or reduced pressure.
  • Suitable diluents for conducting process variant (b) according to the invention are all customary organic solvents as well as water.
  • Preferred diluents are water; aliphatic and aromatic hydrocarbons (which may be chlorinated), for example, pentane, hexane, cyclohexane, petroleum ether, ligroine, benzene, toluene, xylene, dichloro- methane, chloroform, carbon tetrachloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene etc.; ketones, for example, acetone, methyl ethyl ketone (MEK), methyl isopropyl ketone, methyl isobutyl ketone (MIBK) etc.; nitriles, for example, acetonitrile, propionitrile.
  • MEK methyl ethyl ketone
  • MIBK methyl isopropy
  • esters for example, ethyl acetate, amyl acetate etc.
  • acid amides for example, dimethylformamide (DMF), dimeth- ylacetamide (DMA), N-methylpyrrolidone, l,3-dimethyl-2-imidazolidinone, hexamethylphosphoric triamide (HMPA) etc.
  • sulfones for example, sulfolane etc.
  • organic bases such as pyridine etc
  • organic acids for example, formic acid, acetic acid, trifluoroacetic acid, propionic acid etc.
  • reaction temperatures may be varied within a certain range.
  • the reaction is generally carried out at a temperature between about -50°C to about +100°C, preferably between about -10°C and +50°C.
  • the process variant (b) according to the invention is generally carried out under atmospheric pressure but, if desired, can also be carried out under elevated or reduced pressure.
  • process variant (b) for the preparation of an isothiazole derivative of the formula (I), wherein n is 1, in general 1 mole of an isothiazole derivative of the formula (la) is reacted with 1.0 to 1.2 moles of an oxidizing agent, such as m-chloroperbenzoic acid, in the presence of a diluent, such as dichloroethane.
  • an oxidizing agent such as m-chloroperbenzoic acid
  • the compounds according to the invention prepared by the above-mentioned process can in each case be isolated from the reaction mixture by customary procedures and can be purified by known methods, such as crystallization, chromatography etc.
  • the compounds according to the present invention exhibit a strong microbicidal activity. Thus, they can be used for combating undesired microorganisms, such as phytopathogenic fungi and bacteriae, in agriculture and horticulture.
  • the compounds are suitable for the direct control of undesired microorganisms as well as for generating resistance in plants against attack by undesired plant pathogens.
  • Resistance-inducing substances in the present context are to be understood as those substances which are capable of stimulating the defence system of plants such that the treated plants, when subsequently inoculated with undesirable microorganisms, display substantial resistance to these microorganisms.
  • Undesirable microorganisms in the present case are to be understood as phytopathogenic fungi and bacteriae.
  • the substances according to the invention can thus be employed to generate resistance in plants against attack by the harmful organisms mentioned within a certain period of time after the treatment.
  • the period of time within which resistance is brought about in general extends from 1 to 10 days, prefer- ably 1 to 7 days, after treatment of the plants with the active compounds.
  • the compounds according to the invention can be used as fungicides for combating phytopathogenic fungi, such as Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deutero- mycetes, and can also be used as bactericides for combating bacteriae, such as
  • Erwinia species such as, for example, Erwinia amylovora
  • Erwinia amylovora a pathogen causing fungal diseases which come under the generic names listed above are mentioned as examples, but not by way of limitation: Erwinia species, such as, for example, Erwinia amylovora;
  • Pyfhium species such as, for example, Pythium ultimum
  • Phytophthora species such as, for example, Phytophthora infestans
  • Pseudoperonospora species such as, for example, Pseudoperonospora humuli or Pseudoperonospora cubensis;
  • Plasmopara species such as, for example, Plasmopara viticola
  • Bremia species such as, for example, Bremia Lactucae
  • Peronospora species such as, for example, Peronospora pisi or P. brassicae;
  • Erysiphe species such as, for example, Erysiphe graminis
  • Sphaerotheca species such as, for example, Sphaerotheca fuliginea
  • Podosphaera species such as, for example, Podosphaera leucotricha
  • Venturia species such as, for example, Venturi inaequalis
  • Pyrenophora species such as, for example, Pyrenophora teres or P. graminea
  • Cochliobolus species such as, for example, Cochliobolus sativus
  • Uromyces species such as, for example, Uromyces appendiculatus
  • Puccinia species such as, for example, Puccinia recondita
  • Sclerotinia species such as, for example, Sclerotinia sclerotiorum
  • Tilletia species such as, for example, Tilletia caries
  • Ustilago species such as, for example, Ustilago nuda or Ustilago avenae;
  • Pellicularia species such as, for example, Pellicularia sasakii;
  • Pyricularia species such as, for example, Pyricularia oryzae
  • Fusarium species such as, for example, Fusarium culmorum
  • Botrytis species such as, for example, Botrytis cinerea
  • Septoria species such as, for example, Leptosphaeria nodorum
  • Cercospora species such as, for example, Cercospora canescens
  • Altemaria species such as, for example, Alternaria brassicae; and
  • Pseudocercosporella species such as, for example, Pseudocercosporella herpo- trichoides.
  • the compounds according to the present invention are particularly suitable for causing resistance against infection of plants by plant pathogens, such as Pyricularia oryzae, Phythophthora infestans etc.
  • the good toleration, by plants, of the active compounds, at the concentrations required for combating plants diseases permits treatment of above-ground parts of plants, of vegetative propagation stock and seeds, and of the soil.
  • the compounds according to the present invention have a low toxicity against warm- blooded animals and therefore can be used safely.
  • the active compounds can be converted into the customary formulations, such as solutions, emulsions, wettable powders, suspensions, powders, foams, pastes, granules, tablets, aerosols, natural and synthetic materials impregnated with active compound, very fine capsules in polymeric substances, coating compositions for use on seed, and formulations used with burning equipment, such as fumigating cartridges, fumigating cans and fumigating coils, as well as ULV cold mist and warm mist formulations.
  • customary formulations such as solutions, emulsions, wettable powders, suspensions, powders, foams, pastes, granules, tablets, aerosols, natural and synthetic materials impregnated with active compound, very fine capsules in polymeric substances, coating compositions for use on seed, and formulations used with burning equipment, such as fumigating cartridges, fumigating cans and fumigating coils, as well as ULV cold mist and warm mist formulations.
  • formulations may be produced in known manner, for example by mixing the active compounds with extenders, that is to say liquid or liquefied gaseous or solid diluents or carriers, optionally with the use of surface-active agents, that is to say emulsifying agents and/or dispersing agents and/or foam-forming agents.
  • extenders that is to say liquid or liquefied gaseous or solid diluents or carriers
  • surface-active agents that is to say emulsifying agents and/or dispersing agents and/or foam-forming agents.
  • organic solvents can, for example, also be used as auxiliary solvents.
  • liquid solvents diluents or carriers there are suitable in the main, aromatic hydrocarbons such as xylene, toluene or alkyl naphthalenes, chlorinated aromatic or chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, for example mineral oil fractions, alcohols, such as butanol or glycol as well as their ethers and esters, ketones, such as acetone, methyl ethyl ketone, methyl-isobutyl ketone or cyclohexanone, or strongly polar solvents, such as dimethylformamide and dimethyl-sulphoxide, as well as water.
  • aromatic hydrocarbons such as xylene, toluene or alkyl naphthalenes
  • chlorinated aromatic or chlorinated aliphatic hydrocarbons such as chlorobenzene
  • liquefied gaseous diluents or carriers liquids which would be gaseous at normal temperature and under normal pressure, for example aerosol propellants, such as halogenated hydrocarbons as well as butane, propane, nitrogen and carbon dioxide.
  • ground natural minerals such as kaolings, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth
  • ground synthetic minerals such as highly-dispersed silicic acid, alumina and silicates.
  • solid carriers for granules there may be used crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite and dolomite, as well as synthetic granules of inorganic and organic meals, and granules of organic material such as sawdust, coconut shells, maize cobs and tobacco stalks.
  • non-ionic and anionic emulsifiers such as polyoxyethylene-fatty acid esters, polyoxyethylene-fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl sulphonates, alkyl sulphates, aryl sulphonates as well as albumin hydrolysis products.
  • Dispersing agents include, for example, lignin sulphite waste liquors and methyl- cellulose.
  • Adhesives such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, can be used in the formulation.
  • colorants such as inorganic pigments, for example iron oxide, titanium oxide and Prussian Blue, and organic dyestuffs, such as alizarin dyestuffs, azo dyestuffs or metal phthalocyanine dyestuffs, and trace nutrients, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • organic dyestuffs such as alizarin dyestuffs, azo dyestuffs or metal phthalocyanine dyestuffs
  • trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • the formulations in general contain from 0.1 to 95 per cent by weight of active compound, preferably from 0.5 to 90 per cent by weight.
  • the active compounds according to the invention can be present in the formulations or in the various use forms as a mixture with other known active compounds, such as fungicides, bactericides, insecticides, acaricides, nematicides, herbicides, bird re- pellents, growth factors, plant nutrients and agents for improving soil structure.
  • active compounds such as fungicides, bactericides, insecticides, acaricides, nematicides, herbicides, bird re- pellents, growth factors, plant nutrients and agents for improving soil structure.
  • Fungicides aldimorph, ampropylfos, ampropylfos potassium, andoprim, anilazine, azaconazole, azoxystrobin, benalaxyl, benodanil, benomyl, benzamacril, benzamacril-isobutyl, bialaphos, binapacryl, biphenyl, bitertanol, blasticidin-S, bromuconazole, bupirimate, buthiobate, calcium polysulphide, capsimycin, captafol, captan, carbendazim, carboxin, carvon, quinomethionate, chlobenthiazone, chlorfenazole, chloroneb, chloropicrin, chloro- thalonil, chlozolinate, clozylacon, cufraneb, cymoxanil, cyproconazole, cyprodinil, cypro
  • Bactericides bronopol, dichlorophen, nitrapyrin, nickel dimethyldithiocarbamate, kasugamycin, octhilinone, furancarboxylic acid, oxytetracyclin, probenazole, streptomycin, tecloftalam, copper sulphate and other copper preparations.
  • Insecticides / acaricides / nematicides abamectin, acephate, acetamiprid, acrinafhrin, alanycarb, aldicarb, aldoxycarb, alpha- cypermethrin, alphamethrin, amitraz, avermectin, AZ 60541, azadirachtin, azamethiphos, azinphos A, azinphos M, azocyclotin,
  • Bacillus thuringiensis strain EG-2348 Bacillus thuringiensis strain EG-2348,
  • the active compounds can be used as such or in the form of their formulations or the use forms prepared therefrom by further dilution, such as ready-to-use solutions, emulsions, suspensions, powders, tablets, pastes, microcapsules and granules. They are used in the customary manner, for example by watering, immersion, spraying, atomising, misting, vaporizing, injecting, forming a slurry, brushing on, dusting, scattering, dry dressing, moist dressing, wet dressing, slurry dressing or encrusting.
  • the active compounds concentration in the use forms can be varied within a substantial range. They are, in general, from 1 to 0.0001% by weight, preferably from 0.5 and 0.001%.
  • active compound for the treatment of seed, amounts of active compound of 0.1 to 10 g, especially 1 to 5 g, are generally employed per 1 kilogram of seed.
  • plants and parts of plants can be treated according to the invention.
  • naturally occurring plant species and plant varieties or those obtained by conventional biological breeding methods such as crossbreeding or protoplast fusion as well as parts of such plants are treated.
  • transgenic plants and plant varieties which have been obtained by genetic engineering methods possibly in combination with conventional methods (genetically modified organisms) and parts of such plants are treated.
  • the term "parts" or “parts of plants” or “plant parts” is explained above.
  • plants of the plant varieties commercially available or used at any particular time are very preferably treated.
  • Plant varieties are understood to be plants with specific properties ("traits”) which have been obtained both by conventional breeding, by mutagenesis or by recombinant DNA techniques. They can be varieties, biotypes or genotypes. Depending on the species or varieties of plants, their location and growth conditions (the types of soil, climate, vegetation period and feed concerned), superadditive (“synergistic”) effects can occur as a result of the treatment according to the invention.
  • Effects such as for example reduced application rates and/or broadening of the activity spectra and/or increased activity of the compounds and compositions usable according to the invention, improved plant growth, increased tolerance of high or low temperatures, increased tolerance of dry conditions or water or ground salt contents, increased flowering capacity, facilitated harvesting, acceleration of maturity, increased crop yields, higher quality and/or increased nutritional value of the harvested crops and increased storing quality and/or processibility of the harvested crops are possible, which are greater than those actually expected.
  • Prefened transgenic plants or plant varieties (obtained by genetic engineering) to be treated according to the invention include all plants which as a result of the genetic modification concerned have received genetic material which provides them with particularly advantageous valuable properties ("traits").
  • traits are improved plant growth, increased tolerance of high or low temperatures, increased tolerance of dry conditions or water or ground salt contents, increased flowering capacity, facilitated harvesting, acceleration of maturity, increased crop yields, higher quality and/or increased nutritional value of the harvested crops and increased storing quality and/or processibility of the harvested crops.
  • Additional and particularly noteworthy examples of such properties are increased resistance of the plants to animal and microbial pests, such as to insects, mites, phytopathogenic fungi, bacteria and/or viruses as well as increased tolerance by the plants of certain herbicidal active compounds.
  • transgenic plants examples which may be mentioned of transgenic plants are the important crop plants such as cereals (wheat and rice), corn, soybeans, potatoes, cotton, rape and fruit plants (producing apples, pears, citrus fruits and grapes), the crop plants corn, soybeans, potatoes, cotton and rape being particularly noteworthy.
  • Particularly significant properties are increased resistance of the plants to insects due to the toxins forming in the plants, and in particular those which are produced in the plants (hereinafter referred to as "Bt plants”) by the genetic material obtained from Bacillus Thuringiensis (e.g.
  • traits are the increased resistance of plants to fungi, bacteria and viruses due to systemically acquired resistance (SAR), systemin, phytoalexins, elicitors and resistance genes and correspondingly expressed proteins and toxins.
  • SAR systemically acquired resistance
  • traits are also increased tolerance by the plants of certain herbicidal active compounds, such as for example imidazolinones, sulphonylureas, glyphosate or phosphinotricine (e.g. the "PAT" gene).
  • twins can also occur in the transgenic plants in combination with each other.
  • “Bt plants” are varieties of corn, cotton, soybeans and potatoes which are sold under the trade names YIELD GARD® (e.g. corn, cotton, soybeans), KnockOut® (e.g. corn), StarLink® (e.g. corn), Bollgard® (cotton), Nucotn® (cotton) and NewLeaf® (potatoes).
  • Examples which may be mentioned of herbicide-tolerant plants are varieties of corn, cotton and soybeans which are sold under the trade names Roundup Ready® (tolerance of glyphosate, e.g.
  • Herbicide- resistant plants (bred for herbicide tolerance in the conventional manner) which may be mentioned are also the varieties (e.g. corn) sold under the name Clearfield®. The above statements do of course also apply to any plant varieties which may be developed in the future or launched onto the market in the future and which have the genetic properties ("traits") described above or developed in the future.
  • the above-mentioned plants can be particularly advantageously treated with the compounds of the general formula I or the active compound mixtures according to the invention.
  • the preferred ranges mentioned above for the active compounds or mixtures also apply to the treatment of these plants.
  • Particularly advantageous is the treatment of plants with the compounds or mixtures specifically listed in the present text.
  • the preparation and the use of the compounds according to the invention is illustrated by the following examples. The invention, however, is not limited to said examples in any way.
  • Tables 1-3 show compounds according to the invention, which can be synthesized according to the processes described before.
  • Active compound 30 - 40 parts by weight
  • Carrier mixture of diatomaceous earth and kaolin (1 :5), 55-65 parts by weight
  • Emulsifier polyoxyethylene alkyl phenyl ether, 5 parts by weight
  • the above-mentioned amounts of active compound, carrier and emulsifier are crushed and mixed to make a wettable powder.
  • a portion of the wettable powder comprising the prescribed amount of active compound is diluted with water and used for testing.
  • Seedlings of paddy rice were cultured in plastic pots each having a diameter of 6 cm.
  • the previously prepared solution of the prescribed concentration of active compound was sprayed over the seedlings in the 1.5 - 2 leaf stage, at a rate of 20 ml per 3 pots.
  • 5 days after the application a suspension of spores of artificially cultured Pyricularia oryzae sprayed on the test plants once for inoculation, and the plants were kept at 25 °C and 100% relative humidity for infection.
  • 7 days after the inoculation the infection rate per pot was classified and evaluated according to the following standard and the control value (%) was calculated. Phytotoxicity was tested at the same time. This test is an average of the results of 3 pots for 1 section.
  • Control value (%) 1 - x 100 Infection rate of untreated section
  • Seedlings of paddy rice (cultivar: Kusabue) in the 1.5 leaf stage were cultivated in plastic pots each having a diameter of 6 cm.
  • the seedlings were then transplanted into irrigated plastic cups each having a diameter of 10 cm, one seedling per pot, and the water just covering the soil.
  • the solution of the prescribed concentration of the active compound, which had been prepared in the same manner as that of Test Example A, was dropped to the water surface with a pipette at a rate of 5 ml per pot. 7 days after the chemical treatment, a suspension of spores of artificially cultured
  • Pryricularia oryzae was sprayed once on the test plants for inoculation, and the plants were kept at a temperature of 25°C and a relative atmospheric humidity of 100%. Seven days after the inoculation, the infection rate per pot was classified and evaluated, and further the control value (%) was calculated. Phytotoxicity was tested at the same time.
  • Seeds of paddy rice (cultivar: Kasabue) were soaked in a diluted solution of an active compound having the prescribed concentration. 5 ml of such solution, which had been prepared in the same manner as that of Test Example A, were used per 150 grains of seed. Soaking was conducted at a temperature of 20°C for 5 days. After the soaking, the air-dried seeds were sown in 2 plastic pots, each having a diameter of 9 cm, and the seeds were germinated by placing the pots in a warmed nursery box (32°C) for 3 days. After cultivating the seedlings for 2 weeks, the plants reached the 2 - 2.5 leaf stage. A spore suspension of artificially cultured Pyricularia oryzae was then sprayed on the test plants once, and the plants were kept at a temperature of
  • An emulsifiable concentrate was prepared by mixing 30 parts by weight of Compound No. (Ic-75) according to the invention, 5 parts by weight of xylene, 8 parts by weight of polyoxyethylene alkyl phenyl ether and 7 parts by weight of calcium alkylbenzene sulphonate with stirring.
  • a wettable powder was prepared by thoroughly mixing 15 parts by weight of Com- pound No. (Ic-90) according to the invention, 80 parts by weight of a mixture (1 :5) of
  • White Carbon fine powder of hydrated non-crystalline silicon oxide
  • powdery clay 2 parts by weight of sodium alkylbenzene sulphonate and 3 parts by weight of a condensate of sodium alkylnaphthalene sulphonate and formaldehyde in powdery state.
  • the resulting product was granulated by means of extrusion through a 0.3 mm screen. After drying the product, wettable granules were obtained.

Abstract

Novel isothiazole derivatives of the formula (I), wherein R and n have the meanings given in the specification, a process for the preparation of the new compounds and their use as microbicides. Novel intermediates of the formula (VII), wherein Y has the meanings given in the specification, and processes for the preparation of these intermediates.

Description

Isothiazole Derivatives
The present invention relates to novel isothiazole derivatives, to a process for their preparation and to their use as microbicides. The invention further relates to novel intermediates and to a process for their preparation.
It has already been known that certain isothiazole derivatives can be employed for the control of plant pests (cf. JP 59 024-1993 and JP-A 277 277-1996). The fungicidal activity of such known compounds, however, is not always satisfactory.
There have now been found novel isothiazole derivatives of formula
Figure imgf000002_0001
O
(I)
wherein
R represents alkyl having 1 to 12 carbon atoms, alkenyl having 3 to 8 carbon atoms, alkenyl having 3 to 8 carbon atoms, alkylnyl having 3 to 8 carbon atoms, cycloalkyl having 3 to 8 carbon atoms, cycloalkyl-alkyl having 3 to 8 carbon atoms in the cycloalkyl group and 1 to 4 carbon atoms in the alkyl group, haloalkyl with 1 to 4 carbon atoms and 1 to 9 identical or different halogen atoms, or
R represents alkyl having 1 to 4 carbon atoms, wherein each of these radicals is substituted by 1 to 3 radicals selected from alkoxy having 1 to 4 carbon atoms, alkylthio having 1 to 4 carbon atoms, dialkylamino having 1 to 4 carbon atoms in each of the alkyl groups, alkoxycarbonyl having 1 to 4 carbon atoms in the alkoxy group and trial ylsilyl having 1 to 4 carbon atoms in each of the alkyl groups, or
R represents phenyl, which may be substituted by 1 to 5 identical or different radicals selected from halogen, alkyl having 1 to 4 carbon atoms, alkoxy having 1 to 4 carbon atoms, alkylthio having 1 to 4 carbon atoms, haloalkyl having 1 to 4 carbon atoms and 1 -to 5 identical or different halogen atoms, alkoxycarbonyl having 1 to 4 carbon atoms in the alkoxy group, nitro and haloalkoxy having 1 to 4 carbon atoms and 1 to 9 identical or different halogen atoms, or
R represents aralkyl having 6 to 10 carbon atoms in the aryl group and 1 to 4 carbon atoms in the alkyl group, wherein the aryl group may be substituted by 1 to 3 identical or different radicals selected from halogen, alkyl having 1 to 4 carbon atoms, alkoxy having 1 to 4 carbon atoms, alkylthio having 1 to 4 carbon atoms haloalkyl having 1 to 4 carbon atoms and 1 to 9 identical or different halogen atoms, nitro and haloalkoxy having 1 to 4 carbon atoms and 1 to 5 identical or different halogen atoms, alkoxycarbonyl having 1 to 4 carbon atoms in the alkoxy group, or
R represents naphthyl or diphenylmethyl, and
n represents 0, 1 or 2.
Further, it has been found that the isothiazole derivatives of the formula (I) can be prepared by
a) reacting isothiazolyl-ethanones of the formula
Figure imgf000004_0001
wherein
X represents halogen,
with thioalcohols of the formula
R-SH (III)
wherein
R has the above-mentioned meanings,
in the presence of an inert diluent and, if appropriate, in the presence of an acid- binding agent,
and
b) optionally reacting the resulting isothiazole derivatives of the fomiula
Figure imgf000004_0002
O (la) wherein
R has the above-mentioned meanings, 031420
- 4 -
with an oxidizing agent in the presence of an inert diluent.
Finally, it has been found that the isothiazole derivatives of the formula (I) are outstandingly active as microbicides in agriculture and horticulture, particularly as fungicides for the direct control of plant diseases or for causing resistance in plants against plant pathogens.
Surprisingly, the isothiazole derivatives of the formula (I) according to the invention have a much better microbidical activity than the already known compounds, which are structurally most similar and have the same type of action.
In the present context, the above-mentioned definitions may have the following meanings:
"Halogen" and halogen in "haloalkyl" and "haloalkoxy" represents fluoro, chloro, bromo or iodo, and preferably is fluoro, chloro or bromo.
"Alkyl" can be straight chain or branched and there may be mentioned, for example, methyl, ethyl, n- or iso-propyl, n-, iso~, sec- or tert-butyl, n-, iso-, neo- or tert-pentyl,
2-methylbutyl, n-hexyl, n-heptyl, n-octyl, n-decyl, n-undecyl, n-dodecyl etc.
"Alkenyl" includes, for example, allyl, 2-butenyl, 3-butenyl, 2-pentenyl, 2-hexenyl, 2-heptenyl, 2-octenyl etc.
As "alkynyl" there may be mentioned, for example, 2-propynyl, 2-butynyl, 2- pentynyl, 2-hexynyl, 3-hexynyl, 2-heptynyl, 2-octynyl etc.
"Cycloalkyl" includes, for example, cyclopropyl, cyclopentyl, cyclohexyl, cyclo- heptyl, cyclooctyl etc. 31420
- 5 -
"Cycloalkylalkyl" includes, for example, cyclopropyl ethyl, cyclopentylmethyl, cyclohexylmethyl, cyclooctylmethyl etc.
"Aralkyl" is an arylalkyl radical, whose alkyl part can be straight chain or branched, and there may be mentioned, for example, benzyl, 2-phenethyl, α-methylbenzyl, α,α- dimethylbenzyl, 2-phenylpropyl, 3-phenylpropyl, α-ethylbenzyl etc.
"Alkoxy" can be straight chain or branched and there may be mentioned, for example, methoxy, ethoxy, propoxy, isopropoxy, n-, iso-, sec- or tert-butoxy.
The alkoxy part in "alkoxycarbonyl" can have the same definitions as the above- mentioned "alkoxy" and there may be specifically mentioned, for example, mefhoxy- carbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, n-, iso-, sec- or tert-butoxycarbonyl.
"Alkylthio" can be straight chain or branched and there may be mentioned, for example, methylthio, ethylthio, n- or iso-propylthio, n-, iso-, sec- or tert-butylthio.
"Dialkylamino" denotes a group having 1 to 4 carbon atoms in each alkyl part. As examples there may be mentioned dimethylamino, diethylamino, methylethylamino, methyl-n-propylamino, methylisopropylamino, dipropylamino, di-(n-butyl)amino etc.
"Trialkylsilyl" represents a group, wherein each alkyl group has 1 to 4 carbon atoms. As examples there may be mentioned trimethylsilyl, triethylsilyl, tri(n-propyl)silyl, tri(n-butyl)silyl etc.
"Haloalkyl" represents straight chain or branched alkyl having 1 to 4 carbon atoms and 1 to 9 fluorine, chlorine and/or bromine atoms. As examples there may be mentioned difluoromethyl, trifluoromethyl, 2-fluoroethyl, 2-chloroethyl, 2,2,2-tri- fluoroethyl, 1,1,2,2-tetrafluoroethyl, 1,1,2,2,2-pentafiuoroethyl, 2-chloro-l,l,2- 031420
- 6 -
trifluoroethyl, 3-fluoropropyl, 3-chloropropyl, 2,2,3, 3,3-pentafluoropropyl, 1,2,2,3,3,3-hexafluoropropyl, perfluorobutyl etc.
"Haloalkoxy" represents a straight-chain or branched group having 1 to 4 carbon atoms and 1 to 9 fluorine, chlorine and/or bromine atoms. As examples there may be mentioned difiuoromethoxy, trifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2- bromoethoxy, 2,2,2-trifluoroethoxy, 3-chloropropoxy etc.
Formula (I) provides a general definition of the isothiazole derivatives according to the invention. Preferred compounds of the formula (I) are those, in which
R represents methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert- butyl, n-pentyl, isopentyl, 2-methylbutyl, n-hexyl, n-heptyl, n-octyl, n-decyl, nonyl, undecyl, dodecyl, allyl, 2-butenyl, 2-pentenyl, 2-hexenyl, 2-octenyl, 2- propynyl, 2-butynyl, 2-pentynyl, 3-hexynyl, cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclopropylmethyl, cyclopentylmethyl, cyclohexylmethyl, trifluoromethyl, 3-chloropropyl, 2,2,2-trifluoroethyl,
or
R represents alkyl having 1 or 2 carbon atoms, wherein each of these radicals is substituted by 1 to 3 radicals selected from methoxy, ethoxy, methylthio, ethylthio, dimethyl amino, diethylamino, methoxycarbonyl, ethoxycarbonyl and trimethylsilyl, or
R represents phenyl, which may be substituted by 1 to 5 identical or different radicals selected from fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, tert-butyl, methoxy, ethoxy, methylthio, ethylthio, trifluoromethyl, trifluoromethoxy, methoxycarbonyl, ethoxycarbonyl and nitro, or R represents phenylalkyl having 1 to 4 carbon atoms in the alkyl group, wherein the phenyl group may be substituted by 1 to 3 identical or different radicals selected from fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, sec-butyl, tert-butyl, methoxy, ethoxy, isopropoxy, n-butoxy, methylthio, eth- yltliio, trifluoromethyl, trifluoromethoxy, methoxycarbonyl, ethoxycarbonyl and nitro, or
R represents naphthyl or diphenylmethyl and
n represents 0, 1 or 2.
Particularly preferred are those isothiazole derivatives of the fomiula (I),
wherein
R represents methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert- butyl, n-pentyl, isopentyl, 2-methyl-butyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, n-decyl, n-undecyl, n-dodecyl, allyl, 2-butenyl, 2-pentenyl, 2-hexenyl, 2- octenyl, 2-propynyl, 2-butynyl, 2-pentynyl, 3-hexynyl, cyclopropyl, cyclo- pentyl, cyclohexyl, cycloheptenyl, cyclooctyl, cyclopropylmethyl, cyclo- pentylmethyl, cyclohexylmethyl, 3-chloropropyl, 2,2,2-trifluoroethyl, trifluoromethyl, or
R represents alkyl having 1 to 2 carbon atoms, wherein each of these radicals is substituted by a radical selected from methoxy, ethoxy, methylthio, ethylthio, dimethylamino, diethylamino, methoxycarbonyl, ethoxycarbonyl and trimethylsilyl, or
R represents phenyl, which may be substituted by 1 to 5 identical or different radicals selected from fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, tert-butyl, methoxy, ethoxy, methylthio, ethylthio, trifluoromethyl, trifluoromethoxy, methoxycarbonyl, ethoxycarbonyl and nitro, or
R represents phenylalkyl having 1 to 3 carbon atoms in the alkyl group, wherein the phenyl group may be substituted by 1 to 3 identical or differerent radicals selected from fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, sec-butyl, tert-butyl, methoxy, ethoxy, isopropoxy, n-butoxy, methylthio, ethylthio, trifluoromethyl, trifluoromethoxy, methoxycarbonyl, ethoxycarbonyl and nitro, or
R represents naphthyl or diphenylmethyl, and
n represents 0, 1 or 2.
If 2-bromo-l-(3,4-dichloro-5-isothiazolyl)-ethanone and benzyhnercaptan are used as starting materials, process variant (a) according to the invention can be illustrated by the following formula scheme.
Figure imgf000009_0001
If 2-benzylthio-l-(3,4-dichloro-5-isothiazolyl)-ethanone and m-chloroperbenzoic acid are used as starting materials, process variant (b) according to the invention can be illustrated by the following formula scheme:
Figure imgf000010_0001
Formula (II) provides a definition of the isothiazolyl-ethanones, which are required as starting materials for carrying out process variant (a) according to the invention. In this formula, X preferably represents chlorine or bromine.
The following compounds may be mentioned as examples of isothiazolyl-ethanones of the formula (II):
2-chloro- 1 -(3 ,4-dichloro-5 -isothiazolyl)-ethanone and
2-bromo- 1 -(3 ,4-dichloro-5 -isothiazolyl)-ethanone.
The isothiazolyl-ethanones of the formula (II) are novel.
The isothiazolyl-ethanones of the formula (II) can be prepared by
c) reacting 5-acetyl-3,4-dichloroisothiazole of the formula
Figure imgf000010_0002
with a halogenating agent in the presence of a catalyst and in the presence of a diluent.
Upon carrying out process (c), chlorine and bromine can be used as halogenating agents.
Suitable catalysts for conducting process (c) are, for example, hydrochloric acid, hydrobromic acid and acetic acid.
Suitable diluents for conducting process (c) are, for example, organic acids, such as formic acid and acetic acid.
Process (c) can be conducted according to the method described in "SHIN JIKK-EN KAGAKU KOZA (New Lecture on Experimental Chemistry)" Vol. 14, "Syntheses and Reactions of Organic Compounds I" p. 345-350 (published by Maruzen in 1997).
The 5-acetyl-3,4-dichloro-isothiazole of the formula (IV), which is required as a starting material in process (c), is a novel compound too.
The 5-acetyl-3,4-dichloro-isothiazole of the fomiula (IV) can be prepared by
d) reacting isothiazole derivatives of the formula
Figure imgf000011_0001
wherein R! represents di(C 4 alkoxycarbonyl)methyl or 2,2-dimethyl-l,3-dioxan-4,6- dione-5-yl,
with an acid in the presence of a diluent.
Suitable acids for conducting process (d) are, for example, hydrochloric acid, sulfuric acid and acetic acid.
Suitable diluents for conducting process (d) are, for example, dioxane, tetrahydro- furan and dichloroethane.
Process (d) can be conducted according to the method described in Indian Journal of Chemistry, Vol. 20, page 504 (1981).
The isothiazole derivatives of the formula (V), which are required as starting materials in process (d), are novel compounds too.
The isothiazole derivatives of the formula (V) can be prepared by
e) reacting 3,4-dichloro-5-isothiazole-carbonyl chloride of the formula
Figure imgf000012_0001
° (VI)
with di(Cι -4 alkyl) malonate or Meldrum's acid in the presence of an acid binder and in the presence of a diluent.
Suitable acid binders for conducting process (e) are, for example, 4-dimethyl- aminopyridine or triefhylamine. Suitable diluents for conducting process (e) are, for example, dichloromethane, tetrahydrofurane, acetonitrile or ethyl acetate.
Process (e) can be conducted according to the method described in Journal of Organic Chemistry, Vol. 43, page 2087 (1978).
The isothiazolyl-ethanones of the formula (II) and the 5-acetyl-3,4-dichloro- isothiazole of the formula (IV) are also microbicidally active.
Formula (III) provides a general definition of the thioalcohols, which are required as reaction components for carrying out process variant (a) according to the invention. In this formula, R preferably has those meanings, which have already been mentioned as preferred for this radical.
The following compounds may be mentioned as examples of thioalcohols of the formula (III):
methyl mercaptan, allyl mercaptan,
2-butynyl mercaptan, cyclopentyl mercaptan, cyclopentylmethyl mercaptan, 2,2,2-trifluoroethyl mercaptan, 2-ethoxyethyl mercaptan,
2-ethylthioethyl mercaptan, 2-dimethylaminoethyl mercaptan, 2-methoxycarbonylethyl mercaptan, 2-trimethylsilylethyl mercaptan, thiophenol, benzyl mercaptan and so on. Formula (la) provides a general definition of the isothiazole derivatives, which are required as starting materials for carrying out process variant (b) according to the invention.
The following compounds may be mentioned as examples of isothiazole derivatives of the formula (la):
2-methylthio-l-(3,4-dichloro-5-isothiazolyl)ethanone, 2-cyclopentylthio- 1 -(3,4-dichloro-5-isothiazolyl)ethanone,
2-phenylthio-l-(3,4-dichloro-5-isothiazolyl)ethanone, 2-benzylthio-l-(3,4-dichloro-5-isothiazolyl)ethanone and so on.
The isothiazole derivatives of the fomiula (la) are compounds according to the invention, which can be prepared by the above-mentioned process variant (a).
As oxidizing agents for carrying out process variant (b) according to the invention, there can be used all customary oxidizing agents, which are suitable for providing oxygen. Preferred agents of this type are, for example, hydrogen peroxide, perbenzoic acid, m-chloroperbenzoic acid, potassium permanganate and the mono- persulfuric acid salt that is known under the tradename Oxone®.
As already mentioned above, the compounds of the formulae (II), (IV) and (V) are novel. They can be collectively represented by the formula
Figure imgf000014_0001
wherein Y represents methyl, monohalogenome hyl, i(Cι_4 alkoxycarbonyl)methyl or 2,2-dimethyl-l,3-dioxan-4,6-dione-5-yl.
Suitable diluents for conducting process variant (a) according to the invention are all customary inert organic solvents as well as water.
Preferred diluents are water; aliphatic, alicyclic and aromatic hydrocarbons (which may be chlorinated), for example, pentane, hexane, cyclohexane, petroleum ether, ligroine, benzene, toluene, xylene, dichloromethane, chloroform, carbon tetrachloride, 1 ,2-dichloroethane, chlorobenzene, dichlorobenzene etc.; ethers, for example, ethyl ether, methyl ethyl ether, isopropyl ether, butyl ether, dioxane, dimethoxyethane (DME), tetrahydrofuran (THF), diethylene glycol dimethyl ether (DGM) etc.;ketones, for example, acetone, methyl ethyl ketone (MEK), methyl isopropyl ketone, methyl isobutyl ketone (MIBK) etc.; nitriles, for example, acetonitrile, propionitrile, acrylonitrile etc.; esters, for example, ethyl acetate, amyl acetate etc.; acid amides, for example, dimethylformamide (DMF), dimethyl- acetamide (DMA), N-methylpyrrolidone, l,3-dimethyl-2-imidazolidinone, hexa- methylphosphoric triamide (HMPA) etc.; sulfones and sulfoxides, for example, dimethyl sulfoxide (DMSO), sulfolane etc.; as well as organic bases, for example, pyridine etc.
Suitable acid-binding agents for conducting process variant (a) according to the invention are all customary inorganic and organic bases. The following bases can preferably be used:
Inorganic bases, such as hydrides, hydroxides, carbonates, bicarbonates etc. of alkali metals or alkaline earth metals, for example, sodium hydride, lithium hydride, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide etc.; alkali metal amides, for example, lithium amide, sodium 031420
- 15 -
amide, potassium amide etc.; and as organic bases, alcoholates, tertiary amines, dialkylaminoanilines and pyridines, for example, sodium methoxide, potassium tert- butoxide, triethylamine, 1,1,4,4-tetramethyl ethyl enediamine (TMEDA), N,N- dimethylaniline, N,N-diethylaniline, lutidine, pyridine, 4-dimethylaminopyridine (DMAP), l,4-diazabicyclo[2,2,2]octane (DABCO), l,8-diazabicyclo[5,4,0]undec-7- ene (DBU) etc.; organo lithium compounds, for example, methyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, phenyl lithium, dimethyl copper lithium, lithium diisopropylamide, lithium cyclohexylisopropylamide. lithium dicyclohexylamide, n-butyl lithium-DABCO, n-butyl lithium-DBU, n-butyl lithium- TMEDA etc.
Upon carrying out the process variant (a) according to the invention, the reaction temperatures can be varied within a substantially wide range. The reaction is generally carried out at a temperature between about -50°C and about +150°C, preferably between about -10°C and about +100°C.
The process variant (a) according to the invention is generally caπied out under atmospheric pressure but, if desired, can also be carried out under elevated or reduced pressure.
Upon carrying out process variant (a) according to the invention, in general 1 mole of an isothiazolyl-ethanone of the formula (II) is reacted with 1.0 to 1.5 moles of a thioalcohol of the formula (III) in the presence of a diluent such as water, and in the presence of an acid-binding agent, such as sodium hydroxide.
Suitable diluents for conducting process variant (b) according to the invention are all customary organic solvents as well as water. Preferred diluents are water; aliphatic and aromatic hydrocarbons (which may be chlorinated), for example, pentane, hexane, cyclohexane, petroleum ether, ligroine, benzene, toluene, xylene, dichloro- methane, chloroform, carbon tetrachloride, 1,2-dichloroethane, chlorobenzene, dichlorobenzene etc.; ketones, for example, acetone, methyl ethyl ketone (MEK), methyl isopropyl ketone, methyl isobutyl ketone (MIBK) etc.; nitriles, for example, acetonitrile, propionitrile. acrylonitrile etc.; alcohols, for example, methanol, ethanol, isopropanol, butanol, ethylene glycol etc.; esters, for example, ethyl acetate, amyl acetate etc.; acid amides, for example, dimethylformamide (DMF), dimeth- ylacetamide (DMA), N-methylpyrrolidone, l,3-dimethyl-2-imidazolidinone, hexamethylphosphoric triamide (HMPA) etc.; sulfones, for example, sulfolane etc.; organic bases, such as pyridine etc; organic acids, for example, formic acid, acetic acid, trifluoroacetic acid, propionic acid etc.
Upon carrying out process variant (b) according to the invention, the reaction temperatures may be varied within a certain range. The reaction is generally carried out at a temperature between about -50°C to about +100°C, preferably between about -10°C and +50°C.
The process variant (b) according to the invention is generally carried out under atmospheric pressure but, if desired, can also be carried out under elevated or reduced pressure.
Upon carrying out process variant (b) according to the invention for the preparation of an isothiazole derivative of the formula (I), wherein n is 1, in general 1 mole of an isothiazole derivative of the formula (la) is reacted with 1.0 to 1.2 moles of an oxidizing agent, such as m-chloroperbenzoic acid, in the presence of a diluent, such as dichloroethane.
Upon carrying out process variant (b) according to the invention for the preparation of an isothiazole derivative of the formula (I), wherein n is 2, in general 1 mole of an isothiazole derivative of the formula (la) is reacted with 2.0 to 2.2 moles of an oxidizing agent, such as m-chloroperbenzoic acid in the presence of a diluent such as dichloroethane.
The compounds according to the invention prepared by the above-mentioned process can in each case be isolated from the reaction mixture by customary procedures and can be purified by known methods, such as crystallization, chromatography etc.
The compounds according to the present invention exhibit a strong microbicidal activity. Thus, they can be used for combating undesired microorganisms, such as phytopathogenic fungi and bacteriae, in agriculture and horticulture. The compounds are suitable for the direct control of undesired microorganisms as well as for generating resistance in plants against attack by undesired plant pathogens.
Resistance-inducing substances in the present context are to be understood as those substances which are capable of stimulating the defence system of plants such that the treated plants, when subsequently inoculated with undesirable microorganisms, display substantial resistance to these microorganisms.
Undesirable microorganisms in the present case are to be understood as phytopathogenic fungi and bacteriae. The substances according to the invention can thus be employed to generate resistance in plants against attack by the harmful organisms mentioned within a certain period of time after the treatment. The period of time within which resistance is brought about in general extends from 1 to 10 days, prefer- ably 1 to 7 days, after treatment of the plants with the active compounds.
Generally, the compounds according to the invention can be used as fungicides for combating phytopathogenic fungi, such as Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deutero- mycetes, and can also be used as bactericides for combating bacteriae, such as
Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae, Stre- ptomycetaceae, Proteobacteriae and Gram-positive groups.
Some pathogens causing fungal diseases which come under the generic names listed above are mentioned as examples, but not by way of limitation: Erwinia species, such as, for example, Erwinia amylovora;
Pyfhium species, such as, for example, Pythium ultimum;
Phytophthora species, such as, for example, Phytophthora infestans;
Pseudoperonospora species, such as, for example, Pseudoperonospora humuli or Pseudoperonospora cubensis;
Plasmopara species, such as, for example, Plasmopara viticola;
Bremia species, such as, for example, Bremia Lactucae;
Peronospora species, such as, for example, Peronospora pisi or P. brassicae;
Erysiphe species, such as, for example, Erysiphe graminis; Sphaerotheca species, such as, for example, Sphaerotheca fuliginea;
Podosphaera species, such as, for example, Podosphaera leucotricha;
Venturia species, such as, for example, Venturi inaequalis;
Pyrenophora species, such as, for example, Pyrenophora teres or P. graminea
(conidia form: Drechslera, syn: Helminthosporium); Cochliobolus species, such as, for example, Cochliobolus sativus
(conidia foπn: Drechslera,syn: Helminthosporium);
Uromyces species, such as, for example, Uromyces appendiculatus;
Puccinia species, such as, for example, Puccinia recondita;
Sclerotinia species, such as, for example, Sclerotinia sclerotiorum; Tilletia species, such as, for example, Tilletia caries;
Ustilago species, such as, for example, Ustilago nuda or Ustilago avenae;
Pellicularia species, such as, for example, Pellicularia sasakii;
Pyricularia species, such as, for example, Pyricularia oryzae;
Fusarium species, such as, for example, Fusarium culmorum; Botrytis species, such as, for example, Botrytis cinerea;
Septoria species, such as, for example, Leptosphaeria nodorum;
Cercospora species, such as, for example, Cercospora canescens;
Altemaria species, such as, for example, Alternaria brassicae; and
Pseudocercosporella species, such as, for example, Pseudocercosporella herpo- trichoides. The compounds according to the present invention are particularly suitable for causing resistance against infection of plants by plant pathogens, such as Pyricularia oryzae, Phythophthora infestans etc.
The good toleration, by plants, of the active compounds, at the concentrations required for combating plants diseases, permits treatment of above-ground parts of plants, of vegetative propagation stock and seeds, and of the soil.
The compounds according to the present invention have a low toxicity against warm- blooded animals and therefore can be used safely.
The active compounds can be converted into the customary formulations, such as solutions, emulsions, wettable powders, suspensions, powders, foams, pastes, granules, tablets, aerosols, natural and synthetic materials impregnated with active compound, very fine capsules in polymeric substances, coating compositions for use on seed, and formulations used with burning equipment, such as fumigating cartridges, fumigating cans and fumigating coils, as well as ULV cold mist and warm mist formulations.
These formulations may be produced in known manner, for example by mixing the active compounds with extenders, that is to say liquid or liquefied gaseous or solid diluents or carriers, optionally with the use of surface-active agents, that is to say emulsifying agents and/or dispersing agents and/or foam-forming agents. In the case of the use of water as an extender, organic solvents can, for example, also be used as auxiliary solvents.
As liquid solvents diluents or carriers, there are suitable in the main, aromatic hydrocarbons such as xylene, toluene or alkyl naphthalenes, chlorinated aromatic or chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or methylene chloride, aliphatic hydrocarbons, such as cyclohexane or paraffins, for example mineral oil fractions, alcohols, such as butanol or glycol as well as their ethers and esters, ketones, such as acetone, methyl ethyl ketone, methyl-isobutyl ketone or cyclohexanone, or strongly polar solvents, such as dimethylformamide and dimethyl-sulphoxide, as well as water.
By liquefied gaseous diluents or carriers are meant liquids which would be gaseous at normal temperature and under normal pressure, for example aerosol propellants, such as halogenated hydrocarbons as well as butane, propane, nitrogen and carbon dioxide.
As solid earners there may be used ground natural minerals, such as kaolings, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as highly-dispersed silicic acid, alumina and silicates. As solid carriers for granules there may be used crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite and dolomite, as well as synthetic granules of inorganic and organic meals, and granules of organic material such as sawdust, coconut shells, maize cobs and tobacco stalks.
As emulsifying and or foam-forming agents there may be used non-ionic and anionic emulsifiers, such as polyoxyethylene-fatty acid esters, polyoxyethylene-fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl sulphonates, alkyl sulphates, aryl sulphonates as well as albumin hydrolysis products.
Dispersing agents include, for example, lignin sulphite waste liquors and methyl- cellulose.
Adhesives such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, can be used in the formulation.
It is possible to use colorants such as inorganic pigments, for example iron oxide, titanium oxide and Prussian Blue, and organic dyestuffs, such as alizarin dyestuffs, azo dyestuffs or metal phthalocyanine dyestuffs, and trace nutrients, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
The formulations in general contain from 0.1 to 95 per cent by weight of active compound, preferably from 0.5 to 90 per cent by weight.
The active compounds according to the invention can be present in the formulations or in the various use forms as a mixture with other known active compounds, such as fungicides, bactericides, insecticides, acaricides, nematicides, herbicides, bird re- pellents, growth factors, plant nutrients and agents for improving soil structure.
In many cases, synergistic effects are achieved, i.e. the activity of the mixture exceeds the activity of the individual components.
Examples of co-components in mixtures are the following compounds:
Fungicides: aldimorph, ampropylfos, ampropylfos potassium, andoprim, anilazine, azaconazole, azoxystrobin, benalaxyl, benodanil, benomyl, benzamacril, benzamacril-isobutyl, bialaphos, binapacryl, biphenyl, bitertanol, blasticidin-S, bromuconazole, bupirimate, buthiobate, calcium polysulphide, capsimycin, captafol, captan, carbendazim, carboxin, carvon, quinomethionate, chlobenthiazone, chlorfenazole, chloroneb, chloropicrin, chloro- thalonil, chlozolinate, clozylacon, cufraneb, cymoxanil, cyproconazole, cyprodinil, cyprofuram, carpropamide, debacarb, dichlorophen, diclobutrazole, diclofluanid, diclomezine, dicloran, diethofencarb, difenoconazole, dimethirimol, dimethomorph, diniconazole, diniconazole-M, dinocap, diphenylamine, dipyrithione, ditalimfos, dithianon, dodemorph, dodine, drazoxolon, edifenphos, epoxiconazole, etaconazole, ethirimol, etridiazole, V?
famoxadon, fenapanil, fenarimol, fenbuconazole, fenfuram, femtropan, fenpiclonil, fenpropidin, fenpropimorph, fentin acetate, fentin hydroxide, ferbam, ferimzone, fluazinam, flumetover, fluoromide, fluquinconazole, flurprimidol, flusilazole, flusulfamide, flutolanil, flutriafol, folpet, fosetyl-aluminium, fosetyl-sodium, fthalide, fuberidazole, furalaxyl, furametpyr, furcarbonil, furconazole, furconazole- cis, furmecyclox, fenl examide, guazatine, hexachlorobenzene, hexaconazole, hymexazole, imazalil, imibenconazole, iminoctadine, iminoctadine albesilate, iminoctadine triacetate, iodocarb, ipconazole, iprobenfos (IBP), iprodione, irumamycin, isopro- thiolane, isovaledione, iprovalicarb, kasugamycin, kresoxim-methyl, copper preparations, such as: copper hydroxide, copper naphthenate, copper oxychloride, copper sulphate, copper oxide, oxine-copper and Bordeaux mixture, mancopper, mancozeb, maneb, meferimzone, mepanipyrim, mepronil, metalaxyl, metconazole, methasulfocarb, methfuroxam, metiram, metomeclam, metsulfovax, mildiomycin, myclobutanil, myclozolin, nickel dimethyldithiocarbamate, nitrothal-isopropyl, nuarimol, ofurace, oxadixyl, oxamocarb, oxolinic acid, oxycarboxim, oxyfenthiin, paclobutrazole, pefurazoate, penconazole, pencycuron, phosdiphen, pimaricin, piperalin, polyoxin, polyoxorim, probenazole, prochloraz, procymidone, propamo- carb, propanosine-sodium, propiconazole, propineb, pyrazophos, pyrifenox, pyrimethanil, pyroquilon, pyroxyfur, quinconazole, quintozene (PCNB), quinoxyfen, sulphur and sulphur preparations, spiroxamine, tebuconazole, tecloftalam, tecnazene, tetcyclacis, tetraconazole, thiabendazole, tl icyofen, tliifluzamide, thiophanate-methyl, thiram, tioxymid, tolclofos-methyl, tolylfluanid, triadimefon, triadimenol, triazbutil, triazoxide, trichlamide, tricyclazole, tridemoφh, triflumizole, triforine, triticonazole, trifloxystrobin, uniconazole, validamycin A, vinclozolin, viniconazole, zarilamide, zineb, ziram and also
Dagger G,
OK-8705,
OK-8801, α-( 1 , 1 -dimethyl ethyl)-β-(2-phenoxyethyl)- IH- 1 ,2,4-triazole- 1 -ethanol, α-(2,4-dichlorophenyl)-β-fluoro-β-propyl- 1 H- 1 ,2,4-triazole- 1 -ethanol, α-(2,4-dichlorophenyl)-β-methoxy-α-methyl- IH- 1 ,2,4-triazole- 1 -ethanol, α-(5-methyl-l,3-dioxan-5-yl)-β-[[4-(trifluoromethyl)-phenyl]-methylene]-lH-l,2,4- triazole-1 -ethanol, (5RS,6RS)-6-hydroxy-2,2J7,7-tetramethyl-5-(lH-l,2,4-triazol-l-yl)-3-octanone,
(E)-α-(methoxyimino)-N-methyl-2-phenoxy-phenylacetamide, l-(2,4-dichlorophenyl)-2-(lH-l,2,4-triazol-l-yl)-ethanone O-(phenylmethyl)-oxime,
1 -(2-mefhyl- 1 -naphthalenyl)- 1 H-pyrrol-2,5-dione, l-(3,5-dichlorophenyl)-3-(2-propenyl)-2,5-pyrrolidinedione, 1 -[(diiodomethyl)-sulphonyl]-4-methyl-benzene, l-[[2-(2,4-dichlorophenyl)-l,3-dioxolan-2-yl]-methyl]-lH-imidazole, l-[[2-(4-chlorophenyl)-3-phenyloxiranyl]-methyl]-lH-l,2,4-triazole, l-[l-[2-[(2,4-dichlorophenyl)-methoxy]-phenyl]-ethenyl]-lH-imidazole, l-methyl-5-nonyl-2-(phenylmethyl)-3-pyrrolidinole, 2',6'-dibromo-2-methyl-4'-trifluoromethoxy-4-trifluoro-methyl-l,3-thiazole-5- carboxanilide,
2,6-dichloro-5-(methylthio)-4-pyrimidinyl thiocyanate,
2,6-dichloro-N-(4-trifluoromethylbenzyl)-benzamide,
2,6-dichloiO-N-[[4-(trifluoromethyl)-phenyl]-methyl]-benzamide, 2-(2,3,3-triiodo-2-propenyl)-2H-tetrazole,
2-[(l-methylethyl)-sulphonyl]-5-(trichloromethyl)-l,3,4-thiadiazole,
2-[[6-deoxy-4-O-(4-O-methyl-β-D-glycopyranosyl)-α-D-glucopyranosyl]-amino]-4- methoxy-lH-pyπolo[2,3-d]pyrimidine-5-carbonitrile,
2-aminobutane, 2-bromo-2-(bromomethyl)-pentanedinitrile,
2-chloro-N-(2,3-dihydro-l,l,3-trimethyl-lH-inden-4-yl)-3-pyridinecarboxamide, 2-chloro-N-(2,6-dimethylphenyl)-N-(isothiocyanatomethyl)-acetamide, 2-phenylphenol (OPP),
3 ,4-di chloro- 1 - [4-(difluoromethoxy)-phenyl] - 1 H-pyπol-2,5 -dione, 3,5-dichloro-N-[cyano[(l-methyl-2-propinyl)-oxy]-methyl]-benzamide, 3 -( 1 , 1 -dimethy lpropyl- 1 -oxo- 1 H-indene-2-carbonitrile,
3-[2-(4-chlorophenyl)-5-ethoxy-3-isoxazolidinyl]-pyridine,
4-chloro-2-cyano-N,N-dimethyl-5-(4-methylphenyl)-lH-imidazole-l-sulphonamide, 4-methyl-tetrazolo[l,5-a]quinazolin-5(4H)-one, 8-hydroxyquinoline sulphate, 9H-xanthene-2-[(phenylamino)-carbonyl]-9-carboxylic hydrazide, bis-(l-methylethyl)-3-methyl-4-[(3-methylbenzoyl)-oxy] 2,5-thiophenedicarboxylate, cis- 1 -(4-chlorophenyl)-2-( 1 H- 1 ,2,4-triazol- 1 -yl)-cycloheptanol, cis-4-[3-[4-(l , 1 -dimethylpropyl)-phenyl-2-methylpropyl]-2,6-dimethyl- moφholinehydrochloride, ethyl [(4-chlorophenyl)-azo]-cyanoacetate, potassium hydrogen carbonate, methanetetrathiol sodium salt, methyl 1 -(2,3 -dihydro-2,2-dimethyl- 1 H-inden- 1 -yl)- 1 H-imidazole-5 -carboxylate, methyl N-(2,6-dimethylphenyl)-N-(5-isoxazolylcarbonyl)-DL-alaninate, methyl N-(chloroacetyl)-N-(2,6-dimethylphenyl)-DL-alaninate,
N-(2,6-dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-furanyl)-acetamide, N-(2,6-dimethylphenyl)-2-methoxy-N-(tetrahydro-2-oxo-3-thienyl)-acetamide, N-(2-chloro-4-nitrophenyl)-4-methyl-3-nitro-benzenesulphonamide, N-(4-cyclohexylphenyl)- 1,4,5, 6-tetrahydro-2-pyrimidineamine, N-(4-hexylphenyl)-l,4,5,6-tetrahydro-2-pyrimidineamine,
N-(5-chloro-2-methylphenyl)-2-methoxy-N-(2-oxo-3-oxazolidinyl)-acetamide, N-(6-methoxy)-3-pyridinyl)-cyclopropanecarboxamide, N-[2,2,2-trichloro-l-[(chloroacetyl)-amino]-ethyl]-benzamide, N-[3-chloro-4,5-bis(2-propinyloxy)-phenyl]-N'-methoxy-methanimidamide, N-formyl-N-hydroxy-DL-alanine-sodium salt,
O,O-diethyl [2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioate, O-methyl S-phenyl phenylpropylphosphoramidothioate,
S-methyl 1 ,2,3-benzothiadiazole-7-carbothioate, spiro [2H] - 1 -benzopyran-2, 1 ' (3 Η)-isobenzofuran] -3 ' -one,
Bactericides: bronopol, dichlorophen, nitrapyrin, nickel dimethyldithiocarbamate, kasugamycin, octhilinone, furancarboxylic acid, oxytetracyclin, probenazole, streptomycin, tecloftalam, copper sulphate and other copper preparations.
Insecticides / acaricides / nematicides: abamectin, acephate, acetamiprid, acrinafhrin, alanycarb, aldicarb, aldoxycarb, alpha- cypermethrin, alphamethrin, amitraz, avermectin, AZ 60541, azadirachtin, azamethiphos, azinphos A, azinphos M, azocyclotin,
Bacillus popilliae, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis, baculoviruses, Beauveria bassiana, Beauveria tenella, bendiocarb, benfuracarb, bensultap, benzoximate. betacyfluthrin, bifenazate, bifenthrin, bioethanomethrin, biopermethrin, BPMC, bromophos A, bufencarb, buprofezin, butathiofos, butocarboxim, butylpyridaben, cadusafos, carbaryl, carbofuran, carbophenothion, carbosulfan, cartap, chloethocarb, chlorethoxyfos, chlorfenapyr, chlorfenvinphos, chlorfluazuron, chlormephos, chlorpyrifos, chloφyrifos M, chlovaportlirin, cis-resmetl rin, cispermethrin, clocythrin, cloethocarb, clofentezine, cyanophos, cycloprene, cycloprothrin, cyfluthrin, cyhalothrin, cyhexatin, cypermethrin, cyromazine, deltamethrin, demeton M, demeton S, demeton-S-mefhyl, diafenthiuron, diazinon, dichlorvos, diflubenzuron, dimethoat, dimethylvinphos, diofenolan, disulfoton, docusat-sodium, dofenapyn, eflusilanate, emamectin, empentl rin, endosulfan, Entomopfthora spp., esfenvalerate, ethiofencarb, ethion, ethoprophos, etofenprox, etoxazole, etrimphos, fenamiphos, fenazaquin, fenbutatin oxide, fenitrothion, fenothiocarb, fenoxacrim, fenoxycarb, fenpropatlirin, fenpyrad, fenpyrithrin, fenpyroximate, fenvalerate, fipronil, fluazuron, flubrocythrinate, flucycloxuron, fluc> hrinate, flufenoxuron, flutenzine, fluvalinate, fonophos, fosmethilan, fosthiazate, fubfenprox, furathiocarb, granulosis viruses, halofenozide, HCH, heptenophos, hexaflumuron, hexythiazox, hydroprene, imidacloprid, isazophos, isofenphos, isoxathion, ivermectin, lambda-cyhalothrin, lufenuron, malathion, mecarbam, metaldehyde, methamidophos, Metharhizium anisopliae, Metharhizium flavoviride, methidathion, methiocarb, methomyl, methoxyfenozide, metolcarb, metoxadiazone, mevinphos, milbemectin, monocrotophos, naled, nitenpyram, nithiazine, novaluron, nuclear polyhedrosis viruses, omethoat, oxamyl, oxydemethon M,
Paecilomyces fumosoroseus, parathion A, parathion M, permetlirin, phenthoat, phorat, phosalone, phosmet, phosphamidon, phoxim, pirimicarb, pirimiphos A, pirimiphos M, profenofos, promecarb, propoxur, prothiofos, prothoat, pymetrozine, pyraclofos, pyresmethrin, pyrethrum, pyridaben, pyridathion, pyrimidifen, pyriproxyfen, quinalphos, ribavirin, salithion, sebufos, silafluofen, spinosad, sulfotep, sulprofos, tau-fluvalinate, tebufenozide, tebufenpyrad, tebupirimiphos, teflubenzuron, tefluthrin, temephos, temivinphos, terbufos, tetrachlorvinphos, theta-cypermethrin, thiamethoxam, thiapronil, thiatriphos, thiocyclam hydrogen oxalate, thiodicarb, thiofanox, thuringiensin, tralocythrin, tralomethrin, triarathene, triazamate, triazophos, triazuron, trichlophenidine, trichlorfon, triflumuron, trimethacarb, thiacloprid, vamidothion, vaniliprole, Nerticillium lecanii,
Yl 5302, zeta-cypermethrin, zolaprofos,
(lR-cis)-[5-(phenylmethyl)-3-furanyl]-methyl-3-[(dihydro-2-oxo-3(2H)- furanylidene)-methyl] 2,2-dimethylcyclopropanecarboxylate, (3-phenoxyphenyl)-methyl 2,2,3,3-tetramethylcyclopropanecarboxylate,
1 -[(2-chloro-5-thiazolyl)methyl]tetrahydro-3,5-dimethyl-N-nitro- 1 ,3,5-triazine-
2(lH)-imine,
2-(2-chloro-6-fluorophenyl)-4-[4-(l,l-dimethylethyl)phenyl]-4,5-dihydro-oxazole, 2-(acetyloxy)-3-dodecyl-l ,4-naphthalenedione,
2-chloro-N-[[[4-(l-phenylethoxy)-phenyl]-amino]-carbonyl]-benzamide,
2-chloro-N-[[[4-(2,2-dichloro-l , 1 -difluoroethoxy)-phenyl]-amino]-carbonyl]- benzamide,
3 -methylphenyl propylcarbamate 4- [4-(4-ethoxyphenyl)-4-methylpentyl] - 1 -fluoro-2-phenoxy-benzene,
4-chloro-2-(l,l-dimethylethyl)-5-[[2-(2,6-dimethyl-4-phenoxyphenoxy)ethyl]thio]-
3 (2H)-pyridazinone,
4-chloro-2-(2-chloro-2-methylpropyl)-5-[(6-iodo-3-pyridinyl)methoxy]-3(2H)-pyri- dazinone, 4-chloro-5 - [(6-chloro-3 -pyridinyl)methoxy] -2-(3 ,4-dichlorophenyl)-3 (2H)-pyri- dazinone,
Bacillus thuringiensis strain EG-2348,
[2-benzoyl- 1 -(1 , 1 -dimethylethyl)-hydrazinobenzoic acid,
2,2-dimethyl-3-(2,4-dichlorophenyl)-2-oxo-l-oxaspiro[4.5]dec-3-en-4-yl butanoate, [3-[(6-chloro-3-pyridinyl)methyl]-2-thiazolidinylidene]-cyanamide, dihydro-2-(nitromethylene)-2H-l,3-thiazine-3(4H)-carboxaldehyde, ethyl [2-[[ 1 ,6-dihydro-6-oxo- 1 -(phenylmethyl)-4-pyridazinyl]oxy]ethyl]-carbamate,
N-(3 ,4,4-trifluoro- 1 -oxo-3 -butenyl)-glycine,
N-(4-chlorophenyl)-3-[4-(difluoromethoxy)phenyl]-4,5-dihydro-4-phenyl-lH-pyra- zole-1-carboxamide,
N-[(2-chloro-5-thiazolyl)methyl]-N'-methyl-N"-nitro-guanidine,
N-methyl-N'-(l -methyl-2-propenyl)- 1 ,2-hydrazinedicarbothioamide,
N-methyl-N'-2-propenyl- 1 ,2-hydrazinedicarbothioamide,
O,O-diethyl [2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidothioate. The active compounds can be used as such or in the form of their formulations or the use forms prepared therefrom by further dilution, such as ready-to-use solutions, emulsions, suspensions, powders, tablets, pastes, microcapsules and granules. They are used in the customary manner, for example by watering, immersion, spraying, atomising, misting, vaporizing, injecting, forming a slurry, brushing on, dusting, scattering, dry dressing, moist dressing, wet dressing, slurry dressing or encrusting.
In the treatment of parts of plants, the active compounds concentration in the use forms can be varied within a substantial range. They are, in general, from 1 to 0.0001% by weight, preferably from 0.5 and 0.001%.
For the treatment of seed, amounts of active compound of 0.1 to 10 g, especially 1 to 5 g, are generally employed per 1 kilogram of seed.
For the treatment of soil, active compound concentrations, at the point of action, of
0.00001 to 0.1% by weight, especially of 0.0001 to 0.02%, are generally employed.
As already mentioned above, all plants and parts of plants can be treated according to the invention. In a preferred embodiment naturally occurring plant species and plant varieties or those obtained by conventional biological breeding methods, such as crossbreeding or protoplast fusion as well as parts of such plants are treated. In an additional preferred embodiment transgenic plants and plant varieties which have been obtained by genetic engineering methods, possibly in combination with conventional methods (genetically modified organisms) and parts of such plants are treated. The term "parts" or "parts of plants" or "plant parts" is explained above.
According to the invention plants of the plant varieties commercially available or used at any particular time are very preferably treated. Plant varieties are understood to be plants with specific properties ("traits") which have been obtained both by conventional breeding, by mutagenesis or by recombinant DNA techniques. They can be varieties, biotypes or genotypes. Depending on the species or varieties of plants, their location and growth conditions (the types of soil, climate, vegetation period and feed concerned), superadditive ("synergistic") effects can occur as a result of the treatment according to the invention. Effects such as for example reduced application rates and/or broadening of the activity spectra and/or increased activity of the compounds and compositions usable according to the invention, improved plant growth, increased tolerance of high or low temperatures, increased tolerance of dry conditions or water or ground salt contents, increased flowering capacity, facilitated harvesting, acceleration of maturity, increased crop yields, higher quality and/or increased nutritional value of the harvested crops and increased storing quality and/or processibility of the harvested crops are possible, which are greater than those actually expected.
Prefened transgenic plants or plant varieties (obtained by genetic engineering) to be treated according to the invention include all plants which as a result of the genetic modification concerned have received genetic material which provides them with particularly advantageous valuable properties ("traits"). Examples of such properties are improved plant growth, increased tolerance of high or low temperatures, increased tolerance of dry conditions or water or ground salt contents, increased flowering capacity, facilitated harvesting, acceleration of maturity, increased crop yields, higher quality and/or increased nutritional value of the harvested crops and increased storing quality and/or processibility of the harvested crops. Additional and particularly noteworthy examples of such properties are increased resistance of the plants to animal and microbial pests, such as to insects, mites, phytopathogenic fungi, bacteria and/or viruses as well as increased tolerance by the plants of certain herbicidal active compounds. Examples which may be mentioned of transgenic plants are the important crop plants such as cereals (wheat and rice), corn, soybeans, potatoes, cotton, rape and fruit plants (producing apples, pears, citrus fruits and grapes), the crop plants corn, soybeans, potatoes, cotton and rape being particularly noteworthy. Particularly significant properties ("traits") are increased resistance of the plants to insects due to the toxins forming in the plants, and in particular those which are produced in the plants (hereinafter referred to as "Bt plants") by the genetic material obtained from Bacillus Thuringiensis (e.g. by the genes CrylA(a), CrylA(b), CrylA(c), CryllA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb and CryTF and combinations thereof). Particularly significant properties ("traits") are the increased resistance of plants to fungi, bacteria and viruses due to systemically acquired resistance (SAR), systemin, phytoalexins, elicitors and resistance genes and correspondingly expressed proteins and toxins. Particular/ significant properties ("traits") are also increased tolerance by the plants of certain herbicidal active compounds, such as for example imidazolinones, sulphonylureas, glyphosate or phosphinotricine (e.g. the "PAT" gene). The corresponding genes imparting the required properties ("traits") can also occur in the transgenic plants in combination with each other. Examples which may be mentioned of "Bt plants" are varieties of corn, cotton, soybeans and potatoes which are sold under the trade names YIELD GARD® (e.g. corn, cotton, soybeans), KnockOut® (e.g. corn), StarLink® (e.g. corn), Bollgard® (cotton), Nucotn® (cotton) and NewLeaf® (potatoes). Examples which may be mentioned of herbicide-tolerant plants are varieties of corn, cotton and soybeans which are sold under the trade names Roundup Ready® (tolerance of glyphosate, e.g. com, cotton, soybeans), Liberty Link® (tolerance of phosphinotricine, e.g. rape), EMI® (tolerance of imidazolinones) and STS® (tolerance of sulphonylureas, e.g. com). Herbicide- resistant plants (bred for herbicide tolerance in the conventional manner) which may be mentioned are also the varieties (e.g. corn) sold under the name Clearfield®. The above statements do of course also apply to any plant varieties which may be developed in the future or launched onto the market in the future and which have the genetic properties ("traits") described above or developed in the future.
According to the invention the above-mentioned plants can be particularly advantageously treated with the compounds of the general formula I or the active compound mixtures according to the invention. The preferred ranges mentioned above for the active compounds or mixtures also apply to the treatment of these plants. Particularly advantageous is the treatment of plants with the compounds or mixtures specifically listed in the present text. The preparation and the use of the compounds according to the invention is illustrated by the following examples. The invention, however, is not limited to said examples in any way.
Synthesis Example 1
Figure imgf000033_0001
2-Bromo-l-(3,4-dichloro-5-isothiazolyι)ethanone (2.5g) and benzyl mercaptan (1.2g) were added to a solution of sodium hydroxide (0.4g) in water (50ml) and stirred at room temperature for 2 hours. The reaction solution was added to water and the mixture was extracted with ethyl acetate (100ml). The organic phase was dried over anhydrous magnesium sulfate and the solvent was distilled off. The obtained residue was purified by silica gel column chromatography (eluent hexane: dichloromethane = 1: 1) to obtain 2-(benzylthio)-l-(3,4-dichloro-5-isothiazolyl)ethanone (2.5g). nD 201.6345
Synthesis Example 2
Figure imgf000033_0002
A solution of 2-(benzylthio)-l-(3,4-dichloro-5-isothiazolyl)ethanone (L.Og) and 70% m-chloroperbenzoic acid (l.Og) in dichloroethane (10ml) was stirred at room temperature for 2 hours. The reaction solution was added to water and the mixture was extracted with dichloromethane (50ml). The organic phase was dried over anhydrous magnesium sulfate and the solvent was distilled off. The obtained residue was purified by silica gel colunm chromatography (eluent dichloromethane) to obtain 2-(benzylsulfinyl)-l-(3,4-dichloro-5-isothiazolyl)ethanone (0.7g). mp 89-92°C Synthesis Example 3
Figure imgf000034_0001
A solution of 2-(benzylthio)-l-(3,4-dichloro-5-isothiazolyl)ethanone (l.Og) and 70% m-chloroperbenzoic acid (1.6g) in dichloroethane (10ml) was stirred at room temperature for 2 hours. The reaction solution was added to water and the mixture was extracted with dichloromethane (50ml). The organic phase was dried over anhydrous magnesium sulfate and the solvent was distilled off. The obtained residue was purified by silica gel column chromatography (eluent dichloromethane) to obtain 2-(benzylsulfonyl)-l-(3,4-dichloro-5-isothiazolyl)ethanone (0.8g). mp 105-106°C
The following Tables 1-3 show compounds according to the invention, which can be synthesized according to the processes described before. The compounds of
Synthesis Examples 1-3 are also listed in the Tables.
Table 1
Figure imgf000035_0001
Compound
No. R2 n mp (°C) or nD 20
Figure imgf000035_0002
Figure imgf000035_0003
Figure imgf000035_0004
Ib-4 CH2-CH-CH2 0
Ib-5 CH2-CH— CH2 1
Ib-6 C2H5 0 1.6000
Ib-7 C2H5 1
Ib-8 C2H5 2
Ib-9 CH3 0 1.6157
Ib-10 CH3 1 Table 1 (continued)
Compound
No. R2 mp (°C) or nD : 20
lb-1 1 CH?
Figure imgf000036_0001
lb-18 C3H7-iso 0 1.5782 lb-19 C3H7-iso 1 lb-20 C3H -iso 2 lb-21 C4Hg-iSO 0 lb-22 C4Hg-iso 1 lb-23 C4H9-iso 2 lb-24 C5Hιι-iso 0
Figure imgf000036_0002
36
Table 1 (continued)
Compound
No. R: mp (°C) or nD"
Figure imgf000037_0001
Figure imgf000038_0001
Table 1 (continued)
Compound
No. R2 mp (°C) or nn 20
Figure imgf000039_0001
Table 1 (continued)
Figure imgf000040_0001
Table 1 (continued)
Compound
No. R2 mp (°C) or nn 20
Figure imgf000041_0001
Figure imgf000041_0002
Figure imgf000041_0003
Figure imgf000041_0004
-41-
Table 1 (continued)
Compound No. R2 mp (°C) or nD 2
Figure imgf000042_0001
lb-128 CH. H
lb-129 CH; <H
Figure imgf000042_0002
Table 1 (continued)
Compound
No. R2 mp (°C)ornD : 20
Figure imgf000043_0001
Figure imgf000043_0002
Figure imgf000043_0003
Figure imgf000043_0004
Figure imgf000043_0005
Table 1 (continued)
Figure imgf000044_0001
Figure imgf000044_0002
Figure imgf000044_0003
Figure imgf000044_0004
Figure imgf000044_0005
Table 1 (continued)
Compound
No. R2 mp (°C) or nD 20
Figure imgf000045_0001
Figure imgf000045_0002
CH, lb-143
C IH v- — \
W /
Figure imgf000045_0003
Figure imgf000045_0004
Figure imgf000045_0005
Figure imgf000045_0006
Table 2
Figure imgf000046_0001
Compound
No. (R3)m n mp (°C) or nD 20
lc-1 2,3-CI2 0
I c-2 2,3-CI2 1
I c-3 2,3-CI2 2
I c-4 2,4-(CH3)2 0
I c-5 2,4-(CH3)2 1
I c-6 2,4-(CH3)2 2
I c-7 2,4-Clz 0
I c-8 2,4-CI2 1
I c-9 2,4-CI2 2 lc-10 2,4-F2 0 lc-11 2,4-F2 1 lc-12 2,4-F2 2 lc-13 2,5-(CH3)2 0 lc-14 2,5-(CH3) 1 lc-15 2,5-(CH3)2 2 lc-16 2,5-CI2 0 lc-17 2,5-CI2 1 lc-18 2,5-CI2 2 - lc-19 2,6-(CH3)2 0
I c-20 2,6-(CH3)2 1
Table 2 (continued)
Compound
No. (R3)m n mp (°C) or nD 20
lc-21 2,6-(CH3)2 2
I c-22 2,6-CI2 0 lc-23 2,6-CI2 1
I c-24 2,6-CI2 2 lc-25 2-CH3 0 105-106
I c-26 2-CH3 1
Figure imgf000047_0001
I c-28 2-CI 0 113-114
I c-29 2-CI 1 138-140
I c-30 2-CI 2 143 lc-31 2-F 0 lc-32 2-F 1 lc-33 2-F 2
Figure imgf000047_0002
lc-37 3,4-(CH3)2 0 lc-38 3,4-(CH3)2 1 lc-39 3,4-(CH3)2 2 lc-40 3,4-CI2 0 lc-41 3,4-CI2 1 lc-42 3,4-CI2 2 lc-43 3,5-CI2 0 lc-44 3,5-CI2 1 lc-45 3,5-CI2 2
Table 2 (continued)
Compound
No. (R3)m n mp (°C) or nD 20
lc-46 3-CF3 0 lc-47 3-CFs 1 lc-48 3-CF3 2 lc-49 3-CH3 0 90-91 lc-50 3-CHs 1 lc-51 3-CH3 2 95-96 lc-52 3-CI 0 81-82 lc-53 3-CI 1 90-91 lc-54 3-CI 2 143-144 lc-55 3-F 0 lc-56 3-F 1 lc-57 3-F 2
Figure imgf000048_0001
lc-61 4-NO2 0
Figure imgf000048_0002
lc-63 4-C4H9-tert 1
Figure imgf000048_0003
lc-68 4-Br 0 lc-69 4-Br 1 lc-70 4-Br 2
Table 2 (continued)
Compound
Figure imgf000049_0001
lc-71 4-CH3 0 61-63 lc-72 4-CHs 1 106-108 lc-73 4-CHs 2 145-146 lc-74 4-CI 0 74-75 lc-75 4-CI 1 124-125 lc-76 4-CI 2 141 -142 lc-77 4-F 0 lc-78 4-F 1 lc-79 4-F 2
Figure imgf000049_0002
lc-85 4-OCH3 2 lc-86 4-SCH3 0 lc-87 F5 0 lc-88 H 0 lc-89 H 1 lc-90 H 2 124-126 lc-91 3,5-(CH3) 0 lc-92 3,5-(CH3)2 1 lc-93 3,5-(CH3)2 2 lc-94 2-C3H7-iso 0 lc-95 2-C3H7-iso 1
Table 2 (continued)
Compound
Figure imgf000050_0001
c-96 2-C3H7-iso 2 c-97 2,4,6-(CH3)3 0 c-98 2,4,6-(CH3)3 1 c-99 2,4,6-(CH3)3 2 c-100 2-C2H5 0 c-101 2-C2H5 1 c-102 2-C2H5 2
Figure imgf000050_0002
106 4-C3H7-iso 0 107 4-C3H7-iso 1 108 4-C3H7-iso 2
Figure imgf000050_0003
c-112 2-CI, 4-F 0 c-113 2-CI, 4-F 1 c-1 14 2-CI, 4-F 2 c-1 15 3-CI, 4-F 0 c-1 16 3-CI, 4-F 1 c-1 17 3-CI, 4-F 2 c-1 18 2,5-(OCH3)2 0 c-119 2,5-(OCH3)2 1 c-120 2,5-(OCH3)2 2
Table 2 (continued)
Compound
Figure imgf000051_0001
lc-121 3,4-(OCH3) 0 lc-122 3,4-(OCH3)2 1 lc-123 3,4-(OCH3)2 2 lc-124 4-CF3 0 lc-125 4-CF3 1
Figure imgf000051_0002
lc-127 2,3,5,6-F4 0 lc-128 2,3,5,6-F4 1 lc-129 2,3,5,6-F4 2 lc-130 2-Br 0 lc-131 2-Br 1 lc-132 2-Br 2 lc-133 3-Br 0 lc-134 3-Br 1 lc-135 3-Br 2
Figure imgf000051_0003
lc-140 2,4,5-Cls 1 lc-141 2,4,5-Cls 2 lc-142 2,4,6-CI3 0 lc-143 2,4,6-CI3 1 lc-144 2,4,6-CI3 2 lc-145 2-CH3, 4-C4H9-tert 0 lc-146 2-CH3, 4-C4H9-tert 1 lc-147 2-CH3, 4-C4H9-tert 2
Table 3
Figure imgf000052_0001
(Id)
Figure imgf000052_0002
ld-5 2,4-CI2 1 ld-6 2,4-CI2 2 ld-7 2-CH3 0
Figure imgf000052_0003
ld-10 2-CI 0 1.6479 ld-1 1 2-CI 1 ld-12 2-CI 2 ld-13 2-F 0 ld-14 2-F 1 ld-15 2-F 2 ld-16 3-CFs 0
Figure imgf000052_0004
ld-18 3-CFs 2
Figure imgf000052_0005
Table 3 (continued)
Compound
No. (R3)m n mp CO or nD 20
ld-21 3-CH3 2
Figure imgf000053_0001
ld-25 4-CI 0 1.6258 ld-26 4-CI 1 ld-27 4-CI 2 ld-28 4-F 0 ld-29 4-F 1 ld-30 4-F 2 ld-31 4-OCF3 0 ld-32 4-OCFs 1 ld-33 4-OCF3 2 ld-34 4-OCH3 0
Figure imgf000053_0002
ld-38 H 0 1.6345 ld-39 H 1 89-92 ld-40 H 2 105-106 ld-41 2-CI, 6-F 0 ld-42 2-CI, 6-F 1 ld-43 2-CI, 6-F 2
Figure imgf000053_0003
Table 3 (continued)
Compound
No. (R3)m n mp or nD 20
Figure imgf000054_0001
ld-47 3,4-CI2 0 1.6502 ld-48 3,4-CI2 1 ld-49 3,4-CI2 2 ld-50 3,4-(CH3)2 0 ld-51 3,4-(CH3)2 1 ld-52 3,4-(CH3)2 2 ld-53 3-CH3, 4-OCHs 0 ld-54 3-CH3) 4-OCHs 1 ld-55 3-CH3, 4-OCHs 2
Figure imgf000054_0002
ld-59 3-CI, 4-C4H9-sec 0 ld-60 3-CI, 4-C4H9-sec 1 ld-61 3-CI, 4-C4H9-sec 2
Figure imgf000054_0003
ld-64 3-CI, 4-OC2H5 2
Figure imgf000054_0004
ld-68 3-Br, 4-OC3H7-iso 0 ld-69 3-Br, 4-OC3H7-iso 1 ld-70 3-Br, 4-OC3H7-iso 2
Table 3 (continued)
Compound
No. (R3)m n mp (°C) or nD 20
ld-71 2,4,5-Cls 0 ld-72 2,4,5-CI3 1 ld-73 2,4,5-Cls 2 ld-74 2,4,5-(CH3)3 0
Figure imgf000055_0001
ld-78 2,6-CI2 1 ld-79 2,6-CI2 2 ld-80 2,5-(CH3) 0 ld-81 2,5-(CH3)2 1 ld-82 2,5-(CH3)2 2 ld-83 4-SC2H5 0 ld-84 4-C3H7-n 0 ld-85 4-C3H7-n 1 ld-86 4-C3H7-n 2 ld-87 2,3,6-CI3 0 ld-88 2,3,6-CI3 1 ld-89 2,3,6-CI3 2 ld-90 3-CI, 4-OC3H7-n 0 ld-91 3-CI, 4-OC3H7-n 1 ld-92 3-CI, 4-OC3H7-n 2 ld-93 4-C3H7-iso 0 ld-94 4-C3H7-iso 1 ld-95 4-C3H7-iso 2
Table 3 (continued)
Compound
No. (R3)m n mp C or nD 20
ld-96 4-OC4H9-n 0 ld-97 4-OC4H9-n 1 ld-98 4-OC4H9-n 2 ld-99 4-OC2H5 0
Figure imgf000056_0001
ld-10 4-OC2H5 2 ld-102 2-OC2H5, 5-C4H9 -tert 0 ld-103 2-OC2H5, 5-C4H9 -tert 1 ld-104 2-OC2H5, 5-C4H9 -tert 2
Figure imgf000056_0002
Preparation of starting materials Synthesis Example 4
Figure imgf000057_0001
O (II-2)
To a solution of 5-acetyl-3,4-dichloroisothiazole (l.Og) and 48% hydrobromic acid (0.1ml) in acetic acid (10ml) bromine (l .Og) was added dropwise under ice cooling. After addition the temperature was brought to room temperature and the mixture was stirred for further 3 hours. The reaction solution was added to water and the mixture was extracted with diethyl ether (50ml). The organic phase was washed with water, dried over anhydrous magnesium sulfate, and then the solvent was distilled off. The obtained residue was purified by silica gel column chromatography (eluent hexane:ethyl acetate = 5:1) to obtain 2-bromo-l-(3,4-dichloro-5-isothi- azolyl)ethanone (1.3g). mp 55 - 59°C
The following Table 4 shows compounds of the formula (II), which can be synthesized according to the process described before. The compound of Synthesis Example 4 is also listed in the Table 4.
Table 4
Figure imgf000058_0001
Figure imgf000058_0002
1-1 CI I-2 Br 55-59
Synthesis Example 5
Figure imgf000059_0001
(IV)
A mixture of 5-(3,4-dichloro-5-isothiazolecarbonyl)-2,2-dimethyl-l,3-dioxane-4,6- dione (30.2g), concentrated hydrochloric acid (60ml) and 1,4-dioxane (60ml) is refluxed for 6 hours by heating. The reaction solution was added to water and the mixture was extracted with ethyl acetate (300ml). The organic phase was dried over anhydrous magnesium sulfate and the solvent was distilled off. The obtained residue was purified by silica gel column chromatography (eluent hexane:ethyl acetate = 2:1) to obtain 5-acetyl-3,4-dichloro-isothiazole (18.3g). mp 50-52°C
Synthesis Example 6
Figure imgf000059_0002
(V-l)
To a solution of 2,2-dimethyl-l,3-dioxane-4,6-dione (22.7g) and 4-(dimethyl- amino)pyridine in dichoromethane (200ml) a soution of 3,4-dichloro-5-isothiazole- carbonyl chloride (50.5g) in dichoromethane (50ml) was added dropwise under ice cooling. After addition the temperature was brought to room temperature and the mixture was stirred for further 6 hours. The reaction solution was washed with 2N aqueous hydrochloric acid and then with water. It was then dried over anhydrous agnesium sulfate and the solvent was distilled off to obtain 5-(3,4-dichloro-5- isothiazolecarbonyl)-2,2-dimethyl-l,3-dioxane-4,6-dione (30.2g).
Η-NMR (CDC13, 90MHz) δ (ppm) : 1.13 (3H, singlet), 1.20 (3H, singlet), 10.50 (IH, broad singlet).
The following Table 5 shows compounds of the formula (V), which can be synthesized according to the process described before. The compound of Synthesis Example 6 is also listed in the Table 5.
Table 5
Figure imgf000060_0001
Compound
No. R1
Figure imgf000060_0002
V-2 -CH(C02CH3)2 V-3 -CH(C02C2H5)2 Biological Test Examples
Test Example A
Test of foliar spray effect against Pyricularia oryzae
Preparation of formulations of the compounds tested
Active compound: 30 - 40 parts by weight
Carrier: mixture of diatomaceous earth and kaolin (1 :5), 55-65 parts by weight
Emulsifier: polyoxyethylene alkyl phenyl ether, 5 parts by weight
The above-mentioned amounts of active compound, carrier and emulsifier are crushed and mixed to make a wettable powder. A portion of the wettable powder comprising the prescribed amount of active compound is diluted with water and used for testing.
Testing procedure
Seedlings of paddy rice (cultivar: Kusabue) were cultured in plastic pots each having a diameter of 6 cm. The previously prepared solution of the prescribed concentration of active compound was sprayed over the seedlings in the 1.5 - 2 leaf stage, at a rate of 20 ml per 3 pots. 5 days after the application, a suspension of spores of artificially cultured Pyricularia oryzae sprayed on the test plants once for inoculation, and the plants were kept at 25 °C and 100% relative humidity for infection. 7 days after the inoculation, the infection rate per pot was classified and evaluated according to the following standard and the control value (%) was calculated. Phytotoxicity was tested at the same time. This test is an average of the results of 3 pots for 1 section.
The evaluation of the infection rate and the calculation method of the control value are identical in each of the Test Examples A-D. Infection rate Percentage of lesion area in (%)
0 0
0.5 less than 2
1 2-less than 5
2 5-less than 10
3 10-less than 20
4 20-less than 40
5 more than 40
Infection rate of treated section
Control value (%) = 1 - x 100 Infection rate of untreated section
Test results
Compounds No. Ib-41, Ic-26, Ic-27, Ic-28, Ic-29, Ic-51, Ic-52. Ic-53, Ic-71, Ic-72, Ic-73, Ic-74, Ic-75, Ic-90, Id-38 and Id-40 showed control values of more than 80% at an active compound concentration of 500 ppm. No phytotoxicity was observed.
Test Example B
Test of water surface application effect against Pyricularia oryzae.
Testing procedure
Seedlings of paddy rice (cultivar: Kusabue) in the 1.5 leaf stage were cultivated in plastic pots each having a diameter of 6 cm. The seedlings were then transplanted into irrigated plastic cups each having a diameter of 10 cm, one seedling per pot, and the water just covering the soil. The solution of the prescribed concentration of the active compound, which had been prepared in the same manner as that of Test Example A, was dropped to the water surface with a pipette at a rate of 5 ml per pot. 7 days after the chemical treatment, a suspension of spores of artificially cultured
Pryricularia oryzae was sprayed once on the test plants for inoculation, and the plants were kept at a temperature of 25°C and a relative atmospheric humidity of 100%. Seven days after the inoculation, the infection rate per pot was classified and evaluated, and further the control value (%) was calculated. Phytotoxicity was tested at the same time.
This test is an average of the results of 3 pots for 1 section.
Test results
Compounds No. Ic-25, Ic-27, Ic-29, Ic-30, Ic-52, Ic-72, Ic-75, Ic-76, Ic-90 and Id-38 showed control values of more than 80% at an active compound rate of 8 kg/ha. No phytotoxicity was observed.
Test Example C
Test for the effect of seed treatment against Pyricularia oryzae
Testing procedure
Seeds of paddy rice (cultivar: Kasabue) were soaked in a diluted solution of an active compound having the prescribed concentration. 5 ml of such solution, which had been prepared in the same manner as that of Test Example A, were used per 150 grains of seed. Soaking was conducted at a temperature of 20°C for 5 days. After the soaking, the air-dried seeds were sown in 2 plastic pots, each having a diameter of 9 cm, and the seeds were germinated by placing the pots in a warmed nursery box (32°C) for 3 days. After cultivating the seedlings for 2 weeks, the plants reached the 2 - 2.5 leaf stage. A spore suspension of artificially cultured Pyricularia oryzae was then sprayed on the test plants once, and the plants were kept at a temperature of
25°C and a relative atmospheric humidity of 100% for infection. Seven days after the inoculation, the infection rate per pot was classified and evaluated and the control value (%) was calculated. Phytotoxicity was tested at the same time.
This test is an average of the results of 2 pots for 1 section. Test results
Compounds No. Ib-39, lb-41, Ic-25, Ic-26, Ic-28, Ic-29, Ic-30, Ic-52, Ic-53, Ic-54, Ic-74, Ic-75, Ic-76, Ic-90, Id-38, Id-39 and Id-40 showed control values of more than 80% at an active compound concentration of 500 ppm. No phytotoxicity was observed.
Test Example D
Spraying test against Phytophthora infestans.
Testing procedure
About 1 seed of tomato (cultivar: Regina) was sown in each plastic pot of a diameter of 6 cm, and raised in a greenhouse at 15-25°C. The solution obtained by diluting the prepared formulation of the test compound to the prescribed concentration as mentioned above, was sprayed at a rate of 20 ml per 3 pots over seedlings which had reached the 4 leaf stage. Zoosporangia formed on the lesion of tomato plants, which previously had been infected with Phytophthora infestans, were washed down with a brush into distilled water to make a suspension. Five days after the tomato plants had been sprayed with the solution of active compound, the suspension was sprayed on the plants once for inoculation, and the treated plants were kept at a temperature of 20°C and a relative atmospheric humidity of 100%. Four days after the inoculation, the infection rate per pot was classified and the control value (%) was calculated. Phytotoxicity was tested at the same time.
This test is an average of the results of 3 pots for 1 section.
Test results
Compounds No. Ic-49, Ic-72 and Ic-73 showed control values of more than 80?/o at an active compound concentration of 500 ppm. No phytotoxicity was observed. Formulation Examples
Formulation Example I (Granules)
25 parts by weight of water were added to a mixture of 10 parts by weight of Compound No. (Ib-41) according to the invention, 30 parts by weight of bentonite (mont- morillonite), 58 parts by weight of talc and 2 parts by weight of lignin sulphonic acid salt, and the mixture was kneaded thoroughly. The resulting product was granulated by means of an extrusion granulator to form granules having a size of from 10 to 40 meshes. The granules were dried at a temperature between 40 and 50°C.
Fonnulation Example II (Granules)
95 parts by weight of a clay mineral having a particle size distribution within a range of from 0.2 to 2 mm were introduced into a rotary mixer. This product was uniformly wetted by spraying thereto under rotation a mixture of 5 parts by weight of Compound No. (Ic-25) according to the invention and a liquid diluent. The granules obtained in this manner were dried at a temperature between 40 and 50°C.
Formulation Example III (Emulsifiable Concentrate)
An emulsifiable concentrate was prepared by mixing 30 parts by weight of Compound No. (Ic-75) according to the invention, 5 parts by weight of xylene, 8 parts by weight of polyoxyethylene alkyl phenyl ether and 7 parts by weight of calcium alkylbenzene sulphonate with stirring.
Formulation Example IV (Wettable Powder)
A wettable powder was prepared by thoroughly mixing 15 parts by weight of Com- pound No. (Ic-90) according to the invention, 80 parts by weight of a mixture (1 :5) of
White Carbon (fine powder of hydrated non-crystalline silicon oxide) and powdery clay, 2 parts by weight of sodium alkylbenzene sulphonate and 3 parts by weight of a condensate of sodium alkylnaphthalene sulphonate and formaldehyde in powdery state.
Formulation Example V (Wettable Granules)
20 parts by weight of Compound No. (Id-38) according to the invention, 30 parts by weight of sodium lignin sulphonate, 15 parts by weight of bentonite and 35 parts by weight of calcined diatomaceous earth powder were thoroughly mixed with water.
The resulting product was granulated by means of extrusion through a 0.3 mm screen. After drying the product, wettable granules were obtained.

Claims

Patent Claims
1. Isothiazole derivatives of the formula
Figure imgf000067_0001
wherein
R represents alkyl having 1 to 12 carbon atoms, alkenyl having 3 to 8 carbon atoms, alkenyl having 3 to 8 carbon atoms, alkylnyl having 3 to 8 carbon atoms, cycloalkyl having 3 to 8 carbon atoms, cycloalkyl- alkyl having 3 to 8 carbon atoms in the cycloalkyl group and 1 to 4 carbon atoms in the alkyl group, haloalkyl with 1 to 4 carbon atoms and 1 to 9 identical or different halogen atoms, or
R represents alkyl having 1 to 4 carbon atoms, wherein each of these radicals is substituted by 1 to 3 radicals selected from alkoxy having 1 to 4 carbon atoms, alkylthio having 1 to 4 carbon atoms, dialkylamino having 1 to 4 carbon atoms in each of the alkyl groups, alkoxycarbonyl having 1 to 4 carbon atoms in the alkoxy group and trialkylsilyl having 1 to 4 carbon atoms in each of the alkyl groups, or
R represents phenyl, which may be substituted by 1 to 5 identical or different radicals selected from halogen, alkyl having 1 to 4 carbon atoms, alkoxy having 1 to 4 carbon atoms, alkylthio having 1 to 4 carbon atoms, haloalkyl having 1 to 4 carbon atoms and 1 to 9 identical or different halogen atoms, alkoxycarbonyl having 1 to 4 carbon atoms in the alkoxy group, nitro and haloalkoxy having 1 to 4 carbon atoms and 1 to 9 identical or different halogen atoms, or R represents aralkyl having 6 to 10 carbon atoms in the aryl group and 1 to 4 carbon atoms in the alkyl group, wherein the aryl group may be substituted by 1 to 3 identical or different radicals selected from halogen, alkyl having 1 to 4 carbon atoms, alkoxy having 1 to 4 carbon atoms, alkylthio having 1 to 4 carbon atoms, haloalkyl having 1 to 4 carbon atoms and 1 to 9 identical or different halogen atoms, nitro and haloalkoxy having 1 to 4 carbon atoms and 1 to 9 identical or different halogen atoms, alkoxycarbonyl having 1 to 4 carbon atoms in the alkoxy group, or
R represents naphthyl or diphenylmethyl, and
n represents 0, 1 or 2.
2. Isothiazole derivatives of the formula (I) according to claim 1, in which
R represents methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, 2-methylbutyl, n-hexyl, n- heptyl, n-octyl, n-decyl, nonyl, undecyl, dodecyl, allyl, 2-butenyl, 2- pentenyl, 2-hexenyl, 2-octenyl, 2-propynyl, 2-butynyl, 2-pentynyl, 3- hexynyl, cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclopropylmethyl, cyclopentylmethyl, cyclohexylmethyl, trifluoromethyl, 3-chloropropyl, 2,2,2-trifluoroethyl,
or
R represents alkyl having 1 or 2 carbon atoms, wherein each of these radicals is substituted by 1 to 3 radicals selected from methoxy, ethoxy, methylthio, ethylthio, dimethylamino, diethylamino, methoxycarbonyl, ethoxycarbonyl and trimethylsilyl, or R represents phenyl, which may be substituted by 1 to 5 identical or different radicals selected from fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, tert-butyl, methoxy, ethoxy, methylthio, ethylthio, trifluoromethyl, trifluoromethoxy, methoxycarbonyl, ethoxycarbonyl and nitro, or
R represents phenylalkyl having 1 to 4 carbon atoms in the alkyl group, wherein the phenyl group may be substituted by 1 to 3 identical or different radicals selected from fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, sec-butyl, tert-butyl, methoxy, ethoxy, isopropoxy, n-butoxy, methylthio, ethylthio, trifluoromethyl, trifluoromethoxy, methoxycarbonyl, ethoxycarbonyl and nitro, or
R represents naphthyl or diphenylmethyl and
n represents 0, 1 or 2.
3. Isothiazole derivatives of the formula (I) according to claim 1, in which
R represents methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, 2-methylbutyl, n-hexyl, n- heptyl, n-octyl, n-decyl, nonyl, undecyl, dodecyl, allyl, 2-butenyl, 2- pentenyl, 2-hexenyl, 2-octenyl, 2-propynyl, 2-butynyl, 2-pentynyl, 3- hexynyl, cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclopropylmethyl, cyclopentylmethyl, cyclohexylmethyl, trifluoromethyl, 3-chloropropyl, 2,2,2-trifluoroethyl,
or R represents alkyl having 1 or 2 carbon atoms, wherein each of these radicals is substituted by 1 to 3 radicals selected from methoxy, ethoxy, methylthio, ethylthio, dimethylamino, diefhylamino, methoxycarbonyl, ethoxycarbonyl and trimethylsilyl, or
R represents phenyl, which may be substituted by 1 to 5 identical or different radicals selected from fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, tert-butyl, methoxy, ethoxy, methylthio, ethylthio, trifluoromethyl, trifluoromethoxy, methoxycarbonyl, ethoxycarbonyl and nitro, or
R represents phenylalkyl having 1 to 4 carbon atoms in the alkyl group, wherein the phenyl group may be substituted by 1 to 3 identical or different radicals selected from fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, sec-butyl, tert-butyl, methoxy, ethoxy, isopropoxy, n-butoxy, methylthio, ethylthio, trifluoromethyl, trifluoromethoxy, methoxycarbonyl, ethoxycarbonyl and nitro, or
R represents naphthyl or diphenylmethyl and
n represents 0, 1 or 2.
4. Process for the preparation of isothiazole derivatives of the formula (I) according to claim 1 , characterized in that
a) isothiazolyl-ethanones of the formula
Figure imgf000070_0001
(π) wherein
X represents halogen,
are reacted with thioalcohols of the foπnula
R-SH (III)
wherein
R has the above-mentioned meanings,
in the presence of an inert diluent and, if appropriate, in the presence of an acid-binding agent,
and
b) optionally reacting the resulting isothiazole derivatives of the formula
Figure imgf000071_0001
wherein
R has the above-men tioned meanings,
are reacted with an oxidizing agent in the presence of an inert diluent.
Microbicidal compositions, characterized in that they contain at least one isothiazole derivative of the formula (I) according to claim 1 plus extenders and/or surface-active agents.
6. Process for combating undesired microorganisms, characterized in that isothiazole derivatives of the formula (I) according to claim 1 are applied to the microorganisms and /or to their habitat.
7. Use of isothiazole derivatives of the formula (I) according to claim 1 for combating undesired microorganisms.
8. Process for the preparation of microbicidal compositions, characterized in that isothiazole derivatives of the formula (I) according to claim 1 are mixed with extenders and / or surface active agents.
9. Isothiazole derivatives of the formula
Figure imgf000072_0001
wherein
Y represents methyl, monohalogenomethyl, di(Cι_4 alkoxycarbonyl)- methyl or 2,2-dimethyl-l,3-dioxan-4,6-dione-5-yl.
PCT/EP2002/010988 2001-10-05 2002-10-01 Isothiazole derivatives WO2003031420A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001/310242 2001-10-05
JP2001310242A JP2003113167A (en) 2001-10-05 2001-10-05 Isothiazole compound and plant blight controlling agent

Publications (1)

Publication Number Publication Date
WO2003031420A1 true WO2003031420A1 (en) 2003-04-17

Family

ID=19129253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/010988 WO2003031420A1 (en) 2001-10-05 2002-10-01 Isothiazole derivatives

Country Status (2)

Country Link
JP (1) JP2003113167A (en)
WO (1) WO2003031420A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005233198B2 (en) * 2004-04-13 2011-06-23 Cephalon, Inc. Tricyclic aromatic and bis-phenyl sulfinyl derivatives
CN111067949A (en) * 2019-12-27 2020-04-28 延边大学 Potentilla tormentosa total flavone effective part with lipopexia inhibiting effect, and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240951A (en) * 1990-09-20 1993-08-31 Mitsui Toatsu Chemicals, Incorporated Isothiazolecarboxylic acid derivatives, rice blast control agents containing the same as active ingredients, and rice blast control method applying the control agents
WO1999024413A2 (en) * 1997-11-12 1999-05-20 Bayer Aktiengesellschaft Isothiazole carboxylic acid amides and the application thereof in order to protect plants
WO1999024414A1 (en) * 1997-11-12 1999-05-20 Bayer Aktiengesellschaft Isothiazolcarboxylic acid derivatives

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240951A (en) * 1990-09-20 1993-08-31 Mitsui Toatsu Chemicals, Incorporated Isothiazolecarboxylic acid derivatives, rice blast control agents containing the same as active ingredients, and rice blast control method applying the control agents
WO1999024413A2 (en) * 1997-11-12 1999-05-20 Bayer Aktiengesellschaft Isothiazole carboxylic acid amides and the application thereof in order to protect plants
WO1999024414A1 (en) * 1997-11-12 1999-05-20 Bayer Aktiengesellschaft Isothiazolcarboxylic acid derivatives

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005233198B2 (en) * 2004-04-13 2011-06-23 Cephalon, Inc. Tricyclic aromatic and bis-phenyl sulfinyl derivatives
US8153667B2 (en) * 2004-04-13 2012-04-10 Cephalon, Inc. Tricyclic aromatic and bis-phenyl sulfinyl derivatives
CN111067949A (en) * 2019-12-27 2020-04-28 延边大学 Potentilla tormentosa total flavone effective part with lipopexia inhibiting effect, and preparation method and application thereof

Also Published As

Publication number Publication date
JP2003113167A (en) 2003-04-18

Similar Documents

Publication Publication Date Title
US6369093B1 (en) Pyrazole carboxanilide fungicide
US20040039043A1 (en) Biphenyl carboxamides
JP2010248217A (en) Isothiazolecarboxylic acid amides
JP2003503485A (en) Nematocidal trifluorobutenes
US20050182120A1 (en) Pyrazolyl biphenyl carboxamides and the use thereof for controlling undesirable microorganisms
WO2000073290A1 (en) Isothiazolecarboxamides and their use as microbicides
JP2004534019A (en) Triazolopyrimidines
JP2004502648A (en) Isothiazole derivative
US7179840B2 (en) Furancarboxamides
US8188129B2 (en) (−)-enantiomer of the 2-[2-(1-chloro-cyclopropyl)-3-(2-chlorophenyl)-2-hydroxypropyl]-2,4-dihydro-[1,2,4]-triazole-3-thione
US20030176477A1 (en) Isothiazolecarboxylic acid derivatives and their use as microbicides
WO2001064644A1 (en) Dichloropyridyl- and dichloroisothiazolyl-thiocarboxamides and their use as microbicides
CA2469241A1 (en) Nematicidal trifluorobutenyl imidazole thioether derivatives
JP2003507360A (en) Aminosalicylic acid amides and their use for controlling plant harmful organisms
US20040063729A1 (en) Triazolopyrimidines
WO2004046140A1 (en) Isothiazolyl-benzoxazine derivatives
WO2003031420A1 (en) Isothiazole derivatives
WO2002051822A2 (en) Isothiazolecarboxamides as microbicides
US6384066B1 (en) Sulphonyltriazol derivatives and their use for combating micro-organisms
US6359142B1 (en) Sulfonyl oxazolones and their use for combating undesirable microorganisms
US20040242662A1 (en) Azinyl sulfonylimidazoles for use as microbicidal agents
WO2003042198A1 (en) Isothiazole derivatives
US6369111B1 (en) Substituted oximes
US20050049285A1 (en) Dichloropyridyl methyl cyanamidines
JP2003505386A (en) Thienyl-pyrazoles and their use for controlling pests

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG AE AG AL AM AT AZ BA BB BG BR BY BZ CA CH CN CO CR CZ DE DK DM DZ EC EE ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MN MX MZ NO NZ OM PH PL PT RO RU SD SE SI SK SL TJ TM TN TR TT TZ UA UG UZ VC YU ZA ZM ZW GH GM KE LS MW MZ SL SZ TZ UG ZM ZW

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase