WO2003031109A1 - Procede et dispositif de decoupe laser - Google Patents

Procede et dispositif de decoupe laser Download PDF

Info

Publication number
WO2003031109A1
WO2003031109A1 PCT/FR2002/003368 FR0203368W WO03031109A1 WO 2003031109 A1 WO2003031109 A1 WO 2003031109A1 FR 0203368 W FR0203368 W FR 0203368W WO 03031109 A1 WO03031109 A1 WO 03031109A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
laser beam
head
working gas
nozzle
Prior art date
Application number
PCT/FR2002/003368
Other languages
English (en)
Inventor
Jean-Pascal Alfille
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to EP02800626A priority Critical patent/EP1453635B1/fr
Priority to US10/490,479 priority patent/US6847005B2/en
Priority to DE60210143T priority patent/DE60210143T2/de
Publication of WO2003031109A1 publication Critical patent/WO2003031109A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot

Definitions

  • the technical field of the invention is that of devices and methods for industrial cutting by power laser, and more particularly that of laser cutting devices comprising a head inside which optical means are traversed by a laser beam.
  • the technical field of the invention relates to laser cutting devices and methods capable of cutting materials of great thickness, in particular materials used in laser cutting installations.
  • laser cutting devices comprising a head in which there are optical means capable of being traversed by a laser beam.
  • the head is extended by a nozzle comprising an outlet orifice through which the laser beam passes to cut a part by forming a groove, as well as a flow of working gas in order to evacuate the metallic particles. out of the bleeding.
  • strong pressures of the order of 10 to 20 bars are required for this working gas, in particular for the purpose of efficiently effecting the ejection of these metallic particles from the groove.
  • the focal spot of the laser beam is preferably placed at around one third of the total thickness of the part to be cut, this parameter being known from the prior art in order to obtain a good quality cut.
  • laser cutting devices include nozzles with a special internal profile, the shape of these nozzles meeting a need to optimize the shape of a jet and to increase its kinetic energy.
  • the focal spot emanating from the laser beam of the device must be of small diameter of the order of 0.5 mm, in order to form the narrowest possible groove, the width of the groove being substantially equal to the diameter of the focal spot.
  • the object of the present invention is therefore to at least partially remedy the drawbacks mentioned above, by proposing a device and a method of laser cutting ensuring a cutting quality higher than that encountered in the prior art and / or a speed of increased cutting, especially for pieces of significant thickness.
  • the invention firstly relates to a method of laser cutting by means of a laser beam passing through optical means producing a focal spot of diameter between about 1.5 and 3 mm, and by 1 through a working gas flow.
  • the flow of working gas is ejected at a pressure of between approximately 1 and 3 bars.
  • the fact of combining a focal spot of diameter comprised between approximately 1.5 and 3 mm and a working gas pressure comprised between approximately 1 and 3 bars makes it possible to considerably improve the quality and the speed of cutting compared to the achievements.
  • proposed in the prior art in particular when cutting thick pieces, typically greater than 50 mm.
  • high gas pressures are used so that the molten metal particles are ejected as best as possible out of the groove, by crossing the latter from an upper surface to a lower surface of the room.
  • a consequent cooling effect occurred on the metal drop, due to its high exposure to the gas flow.
  • the cooling effect of the metal drop can be advantageously attenuated.
  • the particular dimensions adopted for the focal spot allow the introduction of a large amount of working gas inside the groove, consequently generating an increase in its kinetic energy, the latter then being able to reach a value substantially similar to that obtained with high pressures, such as 10 to 20 bars.
  • the gas in large quantity therefore encounters less difficulty in getting to the bottom of the groove in order to expel all the metallic particles in fusion out of this groove.
  • this particular characteristic of focal spot size causes the walls of the groove 1 to move away from one another, thereby greatly reducing the viscosity problem of the molten metal.
  • the molten metal particles are then likely to flow more easily than in grooves of smaller width.
  • this introduction of solid particles makes it possible to generate an increase in the kinetic energy of the working gas, without causing the cooling effect of the liquid drop which could have been observed in the case of an increase in l kinetic energy provided by an increase in the working gas injection pressure. Furthermore, the addition of these solid particles has proven to be extremely positive in terms of increasing the cutting speed, improving the facies of the cutting, or else for increasing the cut thickness at constant parameters.
  • the solid particles consist of at least one metallic powder.
  • it may be one or more metallic powders taken from heavy powders with high melting points, such as tungsten or molybdenum.
  • the laser beam comprises an angle of convergence oc less than about 10 °, at the output of the optical means.
  • the advantage arising consists in the possibility of having a focused beam reflecting on the walls of the groove over the entire thickness of the part, even when cutting large parts. dimensions. Using such a characteristic, it is then possible to carry out cutting work in a wide range of workpiece thickness, without modifying the respective positions of the head of the cutting device used and of the workpiece to be cut.
  • this particular arrangement makes it possible to cut solid pieces of great thickness, but also hollow pieces.
  • the cutting of hollow parts can then be carried out without following the outline of this part, but by making passages cutting several faces of the part at the same time.
  • a hollow tube of square section can be cut entirely by passing the cutting device in front of a single face, then that according to the prior art, it was necessary to pass the cutting device • in front of each of the four faces of this tube.
  • the focal spot of the laser beam is located on an upper surface of a workpiece, and also extends over a distance of between approximately 40 and 60 mm before passing through the optical means. This latter specificity contributes in a non-negligible way to reducing the bulk and the cost of the device.
  • the subject of the invention is also a laser cutting device comprising a head inside which there are optical means traversed by a laser beam and producing a focal spot with a diameter of between approximately 1.5 and 3 mm.
  • the device also comprising means for injecting a flow of working gas into the head.
  • the working gas flow is ejected from the head by a nozzle at a pressure of between approximately 1 and 3 bars.
  • the cutting device comprises an auxiliary nozzle capable of introducing solid particles into the flow of working gas. It is then possible to provide that the auxiliary nozzle is mounted on an external wall of the nozzle capable of ejecting the flow of working gas, so that the respective outlet orifices of the nozzle and of the auxiliary nozzle are located near l of each other.
  • the optical means of the cutting device can be designed so that the laser beam has, at the output of these optical means, a convergence angle oc less than about 10 °.
  • the head of the device is adjusted so that the focal spot of the laser beam is located on an upper surface of a piece to be cut.
  • the head of the device comprises a nozzle having an outlet orifice of diameter slightly greater than or equal to said diameter of the focal spot of the laser beam.
  • the head of the device is of substantially cylindrical shape comprising an outside diameter of approximately 30 mm and a length of approximately 250 mm.
  • the head of the device is coupled to a mechanical assembly. supporting an optical fiber cable bringing the laser beam opposite the optical means of the head of the cutting device.
  • the laser beam inside the mechanical assembly, extends over a distance of between approximately 40 and 60 mm.
  • this short distance also contributes to reducing the size and the cost of the device.
  • the laser beam at the output of the device is located at a distance between about 0, 5 and 20 mm of a piece to be cut. The fact of having a relatively large margin of maneuver for positioning the piece to be cut relative to the device, greatly facilitates the use of this device and consequently results in a reduction of the adjustment time, these adjustments being necessary before perform the cutting work.
  • the optical means of the device preferably comprise a collimating lens 10. as well as a focusing lens located opposite one another.
  • the head is able to be disconnected from the device by means of remotely controllable means.
  • the device 1 implements a laser of the Nd-YAG type, chosen in particular because of the advantages linked to the transport of a laser beam 6 by optical fibers or also because of the advantages obtained concerning the
  • the invention is intended to be used for cutting parts of various thicknesses, and more specifically for parts whose thickness is greater than approximately 50 mm and which can go beyond 100 mm. In any event, the invention provides a laser cutting device for pieces of considerable thickness, the limit commonly accepted by those skilled in the art being 10 mm.
  • the power delivered to device 1 is between approximately 4 and 6 k, this value interval corresponding to the power usually used in devices of the prior art.
  • the device 1 comprises a head 2 of substantially cylindrical shape, comprising an outside diameter of approximately 30 mm and a length of approximately 250 mm, for an administered power of 6 kW.
  • the values of the dimensions are those retained for a preferred embodiment of the invention, the person skilled in the art is naturally able to adapt them according to the power supplied to the device 1, without departing from the scope of the invention.
  • optical means 4, 5 preferably constituted by a collimating lens 4 and a convergence lens 5, these lenses being located opposite one another.
  • the optical means 4,5 are crossed by the laser beam 6, transported by a cable 18 of optical fibers.
  • This cable 18 is supported by a mechanical assembly 16, 17 comprising a connector 16 enveloping the cable 18 and a mechanical interface 17 carrying this connector 16.
  • the mechanical interface 17 is also coupled to the head 2 of the device 1, so as to position the laser beam 6 leaving the cable 18 opposite the optical means 4,5.
  • the laser beam 6 extends inside the mechanical assembly over a distance of about 40 to 60 mm.
  • this value range is not restrictive and can be modified by a person skilled in the art.
  • the optical means 4,5 traversed by the laser beam 6 produce a focal spot 8, this focal spot 8 corresponding approximately to a width of a groove made in a piece to be cut (not shown) when the device 1 is used.
  • This focal spot 8 has a diameter which can range from approximately 1.5 mm to approximately 3 mm.
  • the head 2 of the device 1 further comprises a nozzle 12 capable of letting the laser beam 6 pass through an outlet orifice 14, this outlet orifice 14 having a diameter slightly greater than or equal to the diameter of the focal spot 8.
  • the diameter of the outlet orifice 14 of the nozzle 12 has a value close to the diameter of the focal spot 8.
  • the head 2 of the device 1 • further comprises means 10 for injecting a working gas into the head 2, this working gas being ejected coaxially with the laser beam 6, by means of the nozzle 12 at a pressure between about 1 and 3 bars.
  • the working gas flow ejected from the nozzle 12 can be a neutral gas of type N 2 , Ar or He, or even a reactive gas of type O 2 .
  • a pressure of the working gas flow of between 1 and 3 bars and a focal spot diameter 8 of between 1.5 and 3 mm ensures quality cutting for parts having a thickness which can go beyond 100 mm.
  • a cut of satisfactory quality is obtained for a part with a thickness of 60 mm when the diameter of the focal spot 8 is of the order of 1.5 mm, that is to say when the width of the groove reaches this same value.
  • very good results are obtained for a part 100 mm thick with a focal spot 8 of the order of 2.5 mm.
  • the head 2 of the cutting device 1 receives the laser beam 6 coming from the optical fiber cable 18, this laser beam 6 passing through the optical means 4, 5 situated inside the head 2.
  • the laser beam 6, at the outlet of these optical means 4,5 includes an angle of convergence oc less than about 10 °.
  • the small value of the angle of convergence oc allows the focused laser beam 6 to be reflected on the walls of the groove, over the entire thickness of the part to be cut, thus ensuring good cutting of the latter.
  • the angle of convergence oc is between 5 ° and 9 °, this value interval being different from the prior art, the measurements of which generally oscillate between 15 ° and 30 °. With such an angle of convergence, there are almost no longer any constraints related to the spacing between the piece to be cut and the device 1. Thus, it is noted that a very good cutting quality is obtained for a spacing between about 0.5 and 20 mm.
  • the focal spot 8 can therefore be located as in the prior art at about a third of the thickness of the part, but also on a surface outside of this piece to be cut or at any other location nearby.
  • the term “external surface” means the surface of the part to be cut closest to the device 1, that is to say that which comes first into contact with the laser beam 6.
  • the positioning tolerance of the end of the head 2 of the device 1 is therefore increased relative to the part to be cut.
  • the latter can be designed so that solid particles are introduced into the flow of working gas. Indeed, once introduced into the gas stream, these solid particles are used to artificially increase the mass of the gas' work and therefore generate an increase in kinetic energy, without causing the cooling effect described above , emanating from a high pressure working gas flow.
  • the solid particles can thus take the form of one or more powders of metallic mixed, these powders preferably being heavy and high melting points, such as tungsten or molybdenum.
  • the cutting device 1 can comprise an annex nozzle 20, also called a “tandem nozzle”, capable of introducing solid particles into the working gas flow, after the latter has been ejected from the nozzle 12.
  • an annex nozzle 20 also called a “tandem nozzle”
  • the annex nozzle 20 is mounted on the nozzle 12 of ej ection of the working gas, at an outer wall 22 of the latter, preferably of substantially conical shape.
  • the auxiliary nozzle 20 may be adjusted in order to allow a flow of solid particles between 5 and 20 g / min.
  • an outlet orifice 24 of the annex nozzle 20 and the outlet orifice 14 of the nozzle 12 are located close to one another, the outlet orifice 24 preferably being arranged below and laterally by relative to the outlet orifice 14 of the nozzle 12.
  • the outlet orifice 24 of the auxiliary nozzle 20 is placed between the nozzle 12 and the workpiece, so that the solid particles can integrate correctly the flow of working gas ejected from this nozzle 12. In this way, the mixture consisting of working gas and solid particles can easily penetrate inside the groove, in order to expel the molten metal.
  • the solid particles of the metal powder type are transported using a gas which may be substantially identical to that used to constitute the working gas.
  • a gas which may be substantially identical to that used to constitute the working gas.
  • comparative tests were carried out. Tables summarizing the results obtained are presented below. It is further specified that for all the tests carried out, the power supplying the laser was fixed at 6 kW, the pressure of the working gas flow (N 2 ) at 2 bars, and the diameter of the focal spot 8 at 2 mm.
  • the cutting device 1 is designed so that the head 2 is capable of being disconnected from the device 1.
  • the disconnection can be carried out using remotely controllable means, as is known from prior art.
  • the head 2 can be discarded, which is particularly advantageous when it is used for dismantling nuclear installations.
  • Her the specificity of being disposable comes from the fact that the head 2 is of simple design and therefore of low cost, in particular thanks to the absence of a cooling system and of adjustment systems, such as a positioning adjustment system or else an optical adjustment system.
  • the invention finds a plurality of applications, including in particular those relating to the nuclear field. Indeed, this device 1 can be used during the dismantling of nuclear installations. We can then cite as examples the cutting of irradiating and / or contaminated elements in a scrap cell, the dismantling of a cell with the cutting phase of all its internal installations or even very specific interventions on reactors put into operation. '' stop or accident.
  • this invention can also be used in the shipbuilding industry where thick sheets are widely used.
  • the invention would thus replace the torches and plasma torches techniques traditionally used in this field.
  • the invention also relates to a cutting process capable of being implemented using such a cutting device 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

L'invention concerne un dispositif (1) et un procédé de découpe laser par l'intermédiaire d'un faisceau laser (6) traversant des moyens optiques (4, 5) produisant une tache focale (8) de diamètre compris entre environ 1,5 et 3 mm, et par l'intermédiaire d'un flux de gaz de travail. Selon l'invention, le flux de gaz de travail est éjecté d'une buse (12) à une pression comprise entre environ 1 et 3 bars.

Description

PROCEDE ET DISPOSITIF DE DECOUPE LASER
DESCRIPTION
DOMAINE TECHNIQUE
Le domaine technique de l' invention est celui des dispositifs et des procédés de découpe industrielle par laser de puissance, et plus particulièrement celui des dispositifs de découpe laser comprenant une tête à l' intérieur de laquelle des moyens optiques sont traversés par un faisceau laser.
Plus spécifiquement, le domaine technique de l' invention se rapporte aux dispositifs et aux procédés de découpe laser aptes à découper des matériaux d' épaisseur importante, notamment des matériaux utilisés dans des installations de. 1' industrie nucléaire ou de l' industrie navale.
ETAT DE LA TECHNIQUE ANTERIEURE Dans ce domaine, plusieurs réalisations ont déjà été proposées.
On connaît des dispositifs de découpe laser comprenant une tête dans laquelle se trouvent des moyens optiques aptes à être traversés par un faisceau laser. Dans ce type de dispositif, la tête se prolonqe par une buse comprenant un orifice de sortie au travers lequel passe le faisceau laser pour découper une pièce en formant une saignée, ainsi qu' un flux de gaz de travail afin d' évacuer les particules métalliques hors de la saignée. Selon l' état de la technique, de fortes pressions de l' ordre de 10 à 20 bars sont requises pour ce gaz de travail, notamment dans le but d' effectuer efficacement l'éjection de ces particules métalliques hors de la saignée. Le tache focale du faisceau laser est préférablement placée à environ un tiers de l' épaisseur totale de la pièce à découper, ce paramètre étant connu de l' art antérieur pour obtenir une découpe de bonne qualité. De manière générale, les dispositifs de découpe laser comprennent des buses dont le profil interne est spécial, la forme de ces buses répondant à un besoin d'optimiser la forme d'un jet et d'en accroître l' énergie cinétique. Selon l'art antérieur, la tache focale émanant du faisceau laser du dispositif doit être de petit diamètre de l' ordre de 0, 5 mm, afin de former la saignée la plus étroite possible, la largeur de la saignée étant sensiblement égale au diamètre de la tache focale.
Cependant, lorsque l' on utilise de tels dispositifs pour découper des pièces de grande épaisseur, on rencontre des problèmes faisant apparaître des défauts de découpe. En effet, lorsque 1' épaisseur de la pièce est supérieure à 10 mm et plus particulièrement lorsque cette épaisseur dépasse les 50 mm pour atteindre une valeur pouvant aller au-delà de 100 mm, on assiste à la subsistance de points d' attaches entre les parties de la pièce à dissocier. EXPOSE DE L' INVENTION
Le but de la présente invention est donc de remédier au moins partiellement aux inconvénients cités ci-dessus, en proposant un dispositif et un procédé de découpe laser assurant une qualité de découpe supérieure à celle rencontrée dans l' art antérieur et/ou une vitesse de découpe accrue, notamment pour des pièces d' épaisseur importante.
Pour ce faire, l' invention a tout d' abord pour objet un procédé de découpe laser par 1' intermédiaire d' un faisceau laser traversant des moyens optiques produisant une tache focale de diamètre compris entre environ 1,5 et 3 mm, et par 1' intermédiaire d' un flux de gaz de travail. Selon l'invention, le flux de gaz de travail est éjecté à une pression comprise entre environ 1 et 3 bars.
Avantageusement, le fait de combiner une tache focale de diamètre compris entre environ 1,5 et 3 mm et une pression de gaz de travail comprise entre environ 1 et 3 bars permet d' améliorer considérablement la qualité et la vitesse de découpe par rapport aux réalisations proposées dans l' art antérieur, notamment lors de la découpe de pièces de fortes épaisseurs, typiquement supérieures à 50 mm. En effet, il est précisé que de façon générale, de fortes pressions de gaz sont utilisées afin que les particules métalliques en fusion soient éjectées le mieux possible hors de la saignée, en traversant cette dernière depuis une surface supérieure jusqu'à une surface inférieure de la pièce. Cependant, il a été observé qu' en utilisant de telles pressions, un effet de refroidissement conséquent se produisait sur la goutte de métal, en raison de sa forte exposition au flux gazeux. De plus, il a été constaté que l' effet de refroidissement provoqué par la pression élevée du flux de gaz de travail pouvait atteindre une importance telle que l' irradiation laser procurée par le faisceau laser n' était alors plus en mesure de maintenir la goutte de métal liquide pendant l'intégralité de la traversée de la saignée. De' cette façon, contrairement au préjugé technique existant décrit ci-dessus visant à mettre en œuvre des pressions de gaz importantes pour obtenir une énergie cinétique du gaz élevée et donc une bonne expulsion des particules hors de la saignée, il s' est avéré que ces fortes pressions pouvaient provoquer un effet inverse se concrétisant par un blocage de la progression de la découpe.
Ainsi, en prévoyant une pression du gaz de travail comprise entre 1 et 3 bars, l' effet de refroidissement de la goutte de métal peut être avantageusement atténué.
De plus, les dimensions particulières adoptées pour la tache focale permettent l' introduction d' une grande quantité du gaz de travail à l' intérieur de la saignée, engendrant par conséquent une augmentation de son énergie cinétique, cette dernière pouvant alors atteindre une valeur sensiblement similaire à celle obtenue avec des pressions importantes, telles -que 10 à 20 bars. Dans une telle configuration, le gaz en quantité importante rencontre donc moins de difficultés à s'introduire jusqu'au fond de la saignée afin d' expulser l' ensemble des particules métalliques en fusion hors de cette saignée.
Enfin, il est précisé que cette caractéristique particulière de dimension de tache focale provoque un eloignement des parois de la saignée 1' une de l' autre, diminuant alors fortement le problème de viscosité du métal fondu. Les particules métalliques en fusion sont alors susceptibles de s' écouler plus facilement que dans des saignées de largeur inférieure. Avec un tel procédé selon l' invention, l' ensemble des avantages combinés décrits ci-dessus offrent donc la possibilité d' une part de découper des pièces d' épaisseur importante à des vitesses élevés sans laisser subsister d' attaches résiduelles, et d'autre part d'obtenir une qualité de découpe accrue par rapport aux réalisations de l' art antérieur.
Pour améliorer encore davantage 1' évacuation du métal fondu hors de la saignée, il est possible d' introduire des particules solides dans le flux de gaz de travail.
De façon avantageuse, cette introduction de particules solides permet d' engendrer une augmentation de l' énergie cinétique du gaz de travail, sans provoquer l' effet de refroidissement de la goutte liquide qui aurait pu être observé dans le cas d'une augmentation de l' énergie cinétique procurée par un accroissement de la pression d'injection du gaz de travail. Par ailleurs, l'adjonction de ces particules solides s' est avérée extrêmement positive en termes d' accroissement de la vitesse de découpe, d' amélioration du faciès de la découpe, ou encore d' accroissement de l' épaisseur découpée à paramètres constants.
Préférentiellement, les particules solides sont constituées par au moins une poudre métallique. A cette égard, notons qu' il peut s' agir d' une ou plusieurs poudres métalliques prises parmi des poudres lourdes à hauts points de fusion, telles que le tungstène ou le molybdène.
De préférence, le faisceau laser comprend un angle de convergence oc inférieur à environ 10°, en sortie des moyens optiques.
Selon cette réalisation préférée de 1' invention, l' avantage découlant consiste en la possibilité de disposer d' un faisceau focalisé se réfléchissant sur les parois de la saignée sur toute l' épaisseur de la pièce, même lors de la découpe de pièces de grandes dimensions. A l' aide d' une telle caractéristique, on peut alors effectuer des travaux de découpe dans un large domaine d' épaisseur de pièce, sans modifier les positions respectives de la tête du dispositif de découpe utilisé et de la pièce à découper.
Enfin, cette disposition particulière permet d' effectuer la découpe de pièces pleines de grande épaisseur, mais également de pièces creuses. La découpe de pièces creuses peut alors s' effectuer sans suivre le contour de cette pièce, mais en réalisant des passages découpant plusieurs faces de la pièce à la fois. A titre d' exemple, un tube creux de section carrée peut être découpé entièrement en faisant passer le dispositif de découpe devant une seule face, alors que selon l'art antérieur, il était nécessaire de faire passer le dispositif de découpe • devant chacune, des quatre faces de ce tube.
Préférentiellement, la tache focale du faisceau laser se situe sur une surface supérieure d' une pièce à découper, et s' étend également sur une distance comprise entre environ 40 et 60 mm avant de traverser les moyens optiques. Cette dernière spécificité participe de façon non négligeable à la réduction de l' encombrement et du coût du dispositif.
En outre, l' invention a également pour objet un dispositif de découpe laser comprenant une tête à l' intérieur de laquelle se situent des moyens optiques traversés par un faisceau laser et produisant une tache focale de diamètre compris entre environ 1,5 et 3 mm, le dispositif comportant également des moyens d'injection d'un flux de gaz de travail dans la tête. Selon l'invention, le flux gaz de travail est éjecté de la tête par une buse à une pression comprise entre environ 1 et 3 bars.
De manière préférentielle, le dispositif de découpe comporte une buse annexe apte à introduire des particules solides dans le flux de gaz de travail. On peut alors prévoir que la buse annexe est montée sur une paroi extérieure de la buse apte à éjecter le flux de gaz de travail, de manière à ce que des orifices de sortie respectifs de la buse et de la buse annexe soient situés à proximité l' un de l' autre.
Les moyens optiques du dispositif de découpe peuvent être conçus afin que le faisceau laser dispose, en sortie de ces moyens optiques, d'un angle de convergence oc inférieur à environ 10°.
De préférence, pour accroître la qualité de découpe, la tête du dispositif est ajustée de sorte que la tache focale du faisceau laser se situe sur une surface supérieure d' une pièce à découper.
De plus, la tête du dispositif comprend une buse ayant un orifice de sortie de diamètre légèrement supérieur ou égal audit diamètre de la tache focale du faisceau laser. Ainsi, le jet laminaire ne déborde pas inutilement de la saignée, et le critère de pression de gaz suffit à caractériser le flux de gaz de travail.
De manière avantageuse, la tête du dispositif est de forme sensiblement cylindrique comprenant un diamètre extérieur d' environ 30 mm et une longueur d' environ 250 mm. Cet agencement particulièrement compact permet de limiter l' encombrement du dispositif, et par conséquent le coût de ce dernier. Selon une réalisation préférée de l'invention, la tête du dispositif est couplée à un ensemble mécanique . supportant un câble de fibres optiques amenant le faisceau laser en regard des moyens optiques de la tête du dispositif de découpe. Le faisceau laser, à l' intérieur de l' ensemble mécanique, s'étend sur une distance comprise entre environ 40 et 60 mm. Comme mentionné précédemment, cette faible distance participe également à la réduction de 1' encombrement et du coût du dispositif. De préférence, le faisceau laser- en sortie du dispositif se situe à une distance comprise entre environ 0, 5 et 20 mm d' une pièce à découper. Le fait de disposer d' une marge de manœuvre relativement importante pour positionner la pièce à découper par rapport au dispositif, facilite amplement l' tilisation 5 de ce dispositif et entraîne par conséquent une diminution du temps de réglage, ces réglages étant nécessaires avant d' effectuer le travail de découpe.
Les moyens optiques du dispositif comprennent préférablement une lentille de collimation 10. ainsi qu' une lentille de focalisation situées en regard l' une de l' autre.
Enfin, la tête est apte à être déconnectée du dispositif à l'aide de moyens pilotables à distance.
D' autres caractéristiques et avantages de 15 l' invention apparaîtront dans la description détaillée, non limitative, ci-dessous.
BRÈVE DESCRIPTION DES DESSINS
La description sera faite au regard de la figure unique annexée, représentant une vue schématique 20 d' un dispositif selon un mode préféré de réalisation de l' invention.
EXPOSÉ DÉTAILLÉ D' UN MODE DE RÉALISATION PRÉFÉRÉ
En référence à la figure unique, on voit un dispositif 1 de découpe laser selon un mode de
25 réalisation préféré de la présente invention. Le dispositif 1 met en œuvre un laser du type Nd-YAG, retenu notamment en raison des avantages liés au transport d' un faisceau laser 6 par fibres optiques ou encore en raison des avantages procurés concernant la
30 possibilité de disposer d' une meilleure interaction entre ce faisceau laser 6 et une pièce à découper. Notons cependant qu' il serait tout à fait approprié d' utiliser un laser C02 pour mettre en œuvre 1' invention. L' invention est destinée à être utilisée pour découper des pièces d' épaisseurs variées, et plus spécifiquement pour des pièces dont l' épaisseur est supérieure à environ 50 mm et pouvant aller au-delà de 100 mm. En tout état de cause, l' invention propose un dispositif de découpe laser pour des pièces d' épaisseur importante, la limite communément admise par l' homme du métier étant de 10 mm.
De même, la puissance délivrée au dispositif 1 se situe entre environ 4 et 6 k , cet intervalle de valeur correspondant à la puissance habituellement utilisée dans les dispositifs de l' art antérieur.
Le dispositif 1 comprend une tête 2 de forme sensiblement cylindrique, comprenant un diamètre extérieur d' environ 30 mm et une longueur d' environ 250 mm, pour une puissance administrée de 6 kW. Les valeurs des dimensions sont celles retenues pour un mode préféré de réalisation de l' invention, l' homme du métier étant naturellement en mesure de les adapter suivant la puissance fournie au dispositif 1, sans sortir du cadre de l' invention.
A l' intérieur de la tête 2 du dispositif 1, se situent des moyens optiques 4, 5, de préférence constitués par une lentille de collimation 4 et une lentille de convergence 5, ces lentilles étant situées en regard l' une de l' autre. Les moyens optiques 4,5 sont traversés par le faisceau laser 6, transporté par un câble 18 de fibres optiques. Ce câble 18 est supporté par un ensemble mécanique 16, 17 comprenant un connecteur 16 enveloppant le câble 18 et une interface mécanique 17 portant ce connecteur 16. L' interface mécanique 17 est également couplée à la tête 2 du dispositif 1, de manière à positionner le faisceau laser 6 sortant du câble 18 en regard des moyens optiques 4,5. De préférence et en particulier pour limiter l' encombrement du dispositif 1, le faisceau laser 6 s'étend à l'intérieur de l'ensemble mécanique sur une distance d' environ 40 à 60 mm. Bien entendu, cet intervalle de valeur n' est pas restrictif et peut être modifié par l'homme du métier.
Les moyens optiques 4,5 traversés par le faisceau laser 6 produisent une tache focale 8, cette tache focale 8 correspondant approximativement à une largeur d' une saignée effectuée dans une pièce à découper ( non représentée) lors de l' utilisation du dispositif 1. Cette tache focale 8 dispose d' un diamètre pouvant aller d' environ 1, 5 mm à environ 3 mm.
La tête 2 du dispositif 1 comprend de plus une buse 12 apte à laisser passer le faisceau laser 6 à travers un orifice de sortie 14, cet orifice de sortie 14 ayant un diamètre légèrement supérieur ou égal au diamètre de la tache focale 8. En d'autres termes, pour des raisons liées aux performances du dispositif 1, le diamètre de l' orifice de sortie 14 de la buse 12 a une valeur voisine du diamètre de la tache focale 8. La tête 2 du dispositif 1 • comprend en outre des moyens d'injection 10 d'un gaz de travail dans la tête 2, ce gaz de travail étant éjecté de façon coaxiale au faisceau laser 6, par l' intermédiaire de la buse- 12 à une pression comprise entre environ 1 et 3 bars. Ces valeurs se démarquent considérablement de l'art antérieur où le gaz de travail est éjecté à des pressions beaucoup plus importantes, de l' ordre de 10 ' à 20 bars. La raison de l' emploie d' une telle pression est d' éviter que des particules métalliques en fusion se situant dans la saignée soient refroidies et bloquées avant leur expulsion de la saignée. Il est donc nécessaire d' appliquer des pressions faibles-, permettant tout de même au gaz d' effectuer son rôle d'éjecteur de particules métalliques en fusion. A titre d' exemples non limitatifs, le flux gaz de travail éjecté de la buse 12 peut être un gaz neutre du type N2, Ar ou He, ou encore un gaz réactif du type 02.
Ainsi, une pression du flux de gaz de travail comprises entre 1 et 3 bars et un diamètre de tache focale 8 compris entre 1,5 et 3 mm assurent une découpe de qualité pour des pièces ayant une épaisseur pouvant aller au-delà de 100 mm.
Toujours à titre d'exemples, pour une pression du gaz de travail fixée à 2 bars, on obtient une découpe de qualité satisfaisante pour une pièce d' une épaisseur de 60 mm lorsque le diamètre de la tache focale 8 est de l' ordre de 1, 5 mm, c' est-à-dire lorsque la largeur de la saignée atteint cette même valeur. De même, on obtient de très bons résultats pour une pièce d' épaisseur de 100 mm avec une tache focale 8 de l' ordre de 2, 5 mm. En d' autre termes, on se place toujours dans une gamme de diamètre de la tache focale 8 étant largement supérieur à 0,5 mm, valeur recommandée et utilisée dans l' art antérieur. La tête 2 du dispositif 1 de découpe reçoit le faisceau laser 6 provenant du câble 18 de fibres optiques, ce faisceau laser 6 traversant les moyens optiques 4, 5 situés à l' intérieur de la tête 2. Le faisceau laser 6, en sortie de ces moyens optiques 4,5, comprend un angle de convergence oc inférieur à environ 10°. La petite valeur de l'angle de convergence oc permet au faisceau laser 6 focalisé de se réfléchir sur des parois de la saignée, sur toute l' épaisseur de la pièce à découper, assurant ainsi une bonne découpe de cette dernière.
De préférence, l' angle de convergence oc est compris entre 5° et 9°, cet intervalle de valeur se différenciant de l' art antérieur dont les mesures oscillent généralement entre 15° et 30°. Avec un tel angle de convergence, il n' existe quasiment plus de contraintes liées à 1' écartement entre la pièce à découper et le dispositif 1. Ainsi, on remarque que l' on obtient une très bonne qualité de découpe pour un écartement compris entre environ 0,5 et 20 mm.
De plus, il n' est plus nécessaire d' effectuer des mesures précises en ce qui concerne les positions respectives de la tache focale 8 et de la pièce à découper. La tache focale 8 peut donc se situer comme dans l' art antérieur à environ un tiers de 1' épaisseur de la pièce, mais également sur une surface extérieure de cette pièce à découper ou à tout autre endroit se situant à proximité. Il est à noter que l' on entend par surface extérieure, la surface de la pièce à découper la plus proche du dispositif 1, c' est-à-dire celle rentrant en premier en contact avec le faisceau laser 6. En adoptant une telle disposition, on accroît donc la tolérance de positionnement de l' extrémité de la tête 2 du dispositif 1 par rapport à la pièce à découper. De façon préférée, pour augmenter encore davantage les performances de découpe du dispositif 1, ce dernier peut être conçu afin que des particules solides soient introduites dans le flux de gaz de travail. En effet, une fois introduites dans le flux de gaz, ces particules solides permettent d' augmenter artificiellement la masse du gaz ' de travail, et engendrent par conséquent un accroissement de son énergie cinétique, sans pour autant provoquer l' effet de refroidissement décrit précédemment, émanant d' un écoulement du gaz de travail à forte pression.
Les particules solides peuvent ainsi prendre la forme d' une ou plusieurs poudres' métalliques mélangées, ces poudres étant préférentiellement lourdes et à hauts points de fusion, telles que le tungstène ou le molybdène.
Pour ce faire, le dispositif 1 de découpe peut comprendre une buse annexe 20, également appelée « buse tandem », apte à introduire les particules solides dans le flux de gaz de travail, après que celui-ci à été éjecté de la buse 12. Bien entendu, il serait également envisageable d' introduire les particules solides dans le flux de gaz de travail avant que ce dernier ait été éj ecté de la buse 12 du dis positif 1, sans sortir du cadre de l' invention. Dans le mode de réalisation préféré de
1' invention représenté sur la figure unique, la buse annexe 20 est montée sur la buse 12 d' éj ection du gaz de travail, au niveau d' une paroi extérieure 22 de cette dernière, de préférence de forme sensiblement conique. A titre d' exemple, cette buse annexe 20 peut être réglée afin d' autoriser ' un débit de particules solides compris entre 5 et 20 g/min.
Ainsi, un orifice de sortie 24 de la buse annexe 20 et l' orifice de sortie 14 de la buse 12 sont situés à proximité l' un de l' autre, l' orifice de sortie 24 étant préférentiellement agencé au-dessous et latéralement par rapport à l' orifice de sortie 14 de la buse 12. En d' autres termes, l' orifice de sortie 24 de la buse annexe 20 est placé entre la buse 12 et la pièce à découper, afin que les particules solides puissent intégrer correctement le flux de gaz de travail éj ecté de cette buse 12. De cette façon, le mélange constitué de gaz de travail et de particules solides peut facilement pénétrer à l' intérieur de la saignée, afin d' expulser le métal en fusion.
Il est indiqué que les particules solides du type poudres métalliques sont véhiculées à l' aide d' un gaz pouvant être sensiblement identique à celui employé pour constituer le gaz de travail. Pour mesurer l' amélioration des performances de découpe procurée par l' adj onction des particules solides dans le flux de gaz de travail, des tests comparatifs ont été réalisés. Des tableaux récapitulant les résultats obtenus sont présentés ci- dessous. Il est en outre précisé que pour l' ensemble des essais effectués, la puissance alimentant le laser a été fixée à 6 kW, la pression du flux de gaz de travail ( N2) à 2 bars, et le diamètre de la tache focale 8 à 2 mm..
Tableau 1
Figure imgf000018_0001
Dans ce premier tableau, on peut apercevoir qu' à paramètres constants, l' introduction de particules solides dans le flux de gaz de travail permet d' augmenter largement l' épaisseur maximale susceptible d' être découpée, un accroissement de 42% de cette épaisseur ayant été observé.- Tableau 2
Figure imgf000018_0002
Dans ce second tableau, les essais ont été réalisés sur des pièces d' une épaisseur constante de 60 mm.
En référence à la première ligne, il est tout d' abord indiqué que l' introduction de particules solides dans le flux de gaz de travail permet d' augmenter considérablement la vitesse maximale de découpe ne laissant pas subsister d' attaches résiduelles, avec un accroissement particulièrement intéressant de près de 40% dans le cas de l'utilisation du tungstène.
Par ailleurs, en référence à la seconde ligne de ce second tableau, on peut voir que la rugosité est largement diminuée, aussi bien en haut qu' au milieu de la pièce découpée.
En outre, lors de l' ensemble des tests réalisés, il a également été observé que l'adjonction de particules solides dans le gaz de travail supprimait les défauts de planéité sur la pièce découpée, ces défauts ayant été rencontrés en nombre sur' le faciès d'une surface de pièce d'environ 5 mm2, lors de la mise en œuvre d' un flux de gaz dépourvu de particules solides.
D'autre part, le dispositif 1 de découpe est conçus afin que la tête 2 soit susceptible d' être déconnectée du dispositif 1. La déconnexion peut s' effectuer à l' aide de moyens pilotables à distance, comme cela est connu de l' art antérieur. De plus, la tête 2 peut être jetée, ce qui est particulièrement intéressant lors de son utilisation pour le démantèlement d' installations nucléaires. Sa spécificité d'être jetable provient du fait que la tête 2 est de conception simple et donc de faible coût, en particulier grâce à l' absence de système de refroidissement et de systèmes de réglages, tels qu' un système de réglage de positionnement ou encore un système de réglage optique.
L' invention trouve une pluralité d' applications, dont notamment celles relatives au domaine du nucléaire. En effet, ce dispositif 1 peut être utilisé lors du démantèlement d' installations nucléaires. On peut alors citer comme exemples la découpe d' éléments irradiants et/ou contaminés dans une cellule de casse, le démantèlement d' une cellule avec la phase de découpe de toutes ses installations internes ou encore des interventions très spécifiques sur des réacteurs mis à l' arrêt ou accidentés.
En outre, cette invention peut également être utilisée dans l' industrie navale où des tôles épaisses sont largement répandues. L' invention permettrait ainsi de supplanter les techniques de chalumeaux et de torches à plasma traditionnellement employées dans ce domaine.
Bien entendu, diverses modifications peuvent être apportées par l' homme de l' art au dispositif qui vient d' être décrit, uniquement à titre d' exemple non limitatif.
Enfin, il est noté que l' invention se rapporte également à un procédé de découpe susceptible d' être mis en œuvre à l' aide d' un tel dispositif de découpe 1.

Claims

REVENDICATIONS
1. Procédé de découpe laser par l'intermédiaire d'un faisceau laser (6) traversant des moyens optiques (4,5) produisant une tache focale (8) de diamètre compris entre environ 1,5 et 3 mm, et par l' intermédiaire d' un flux de gaz de travail, caractérisé en ce que le flux de gaz de travail est éjecté à une pression comprise entre environ 1 et 3 bars.
2. Procédé de découpe selon la revendication 1, caractérisé en ce que des particules solides sont introduites dans le flux de gaz de travail.
3. Procédé de découpe selon la revendication 2, caractérisé en ce que les particules solides sont constituées par au moins une poudre métallique.
4. Procédé de découpe selon l' une quelconque des revendications précédentes, caractérisé en ce que le faisceau laser ( 6) , en sortie des moyens optiques (4,5), comprend un angle de convergence oc inférieur à environ 10°.
5. Procédé de découpe selon l' une quelconque des revendications précédentes, caractérisé en ce que la tache focale ( 8) du faisceau laser ( 6) se situe sur une surface supérieure d' une pièce à découper.
6. Procédé de découpe selon l' une quelconque des revendications précédentes, caractérisé en ce que le faisceau laser ( 6) s' étend sur une distance comprise entre environ 40 et 60 mm, avant de traverser les moyens optiques.
7. Dispositif ( 1) de découpe laser comprenant une tête (2) à l' intérieur de laquelle se situent des moyens optiques (4,5) traversés par un faisceau laser ( 6) et produisant une tache focale ( 8) de diamètre compris entre environ 1,5 et 3 mm, ledit dispositif comportant en outre des moyens d'injection ( 10) d' un flux de gaz de travail dans la tête ( 2) , caractérisé en ce que le flux gaz de travail est éjecté de la tête ( 2) par une buse ( 12) à une pression comprise entre environ 1 et 3 bars.
8. Dispositif (1) de découpe selon la revendication 7, caractérisé en ce qu' il comporte également une buse annexe ( 20) apte à introduire des particules solides dans le flux de gaz de travail.
9. Dispositif ( 1) de découpe selon la revendication 8, caractérisé en ce que la buse annexe ( 20) est montée sur une paroi extérieure ( 22) de la buse (12) apte à éjecter le flux de gaz de travail, de manière à ce que des orifices de sortie respectifs (14,24) de la buse (12) et de la buse annexe (20) soient situés à proximité l' un de l' autre.
10. Dispositif (1) de découpe selon l'une quelconque des revendications 7 à 9, caractérisé en ce que les moyens optiques (4,5) sont conçus afin que le faisceau laser ( 6) dispose, en sortie de ces moyens optiques (4,5), d' un angle de convergence oc inférieur à environ 10°.
11. Dispositif (1) de découpe selon l'une quelconque des revendications 7 à 10, caractérisé en ce que la tête (2) du dispositif (1) est ajustée de sorte que la tache focale ( 8) du faisceau laser ( 6) se situe sur une surface supérieure d' une pièce à découper.
12. Dispositif (1) de découpe selon l'une quelconque des revendications 7 à 11, caractérisé en ce que la tête ( 2) du dispositif ( 1) comprend une buse (12) ayant un orifice de sortie (14) de diamètre légèrement supérieur ou égal au diamètre de la tache focale ( 8) du faisceau laser ( 6) .
13. Dispositif (1) de découpe selon l'une quelconque des revendications 7 à 12, caractérisé en ce que la tête ( 2) du dispositif ( 1) est de forme sensiblement cylindrique comprenant un diamètre extérieur d' environ 30 mm et une longueur d' environ 250 mm.
14. Dispositif ( 1) de découpe selon l' une quelconque des revendications 7 à 13, caractérisé en ce que la tête ( 2) du dispositif ( 1) est couplée à un ensemble mécanique (16,17) supportant un câble (18) de fibres optiques amenant le faisceau laser ( 6) en regard des moyens optiques ( 4, 5) de la tête ( 2) du dispositif - (1) de découpe.
15. Dispositif ( 1) de découpe selon la revendication 14, caractérisé en ce que le faisceau laser ( 6) , à l' intérieur de l' ensemble mécanique (16,17), s'étend sur une distance comprise entre environ 40 et 60 mm.
16. Dispositif ( 1) de découpe selon l' une quelconque des revendications 7 à 15, caractérisé en ce que le faisceau laser ( 6) en sortie de dispositif ( 1) se situe à une distance comprise entre environ 0,5 et 20 mm d' une pièce à découper.
17. Dispositif (1) de découpe selon l'une quelconque des revendications 7 à 16, caractérisé en ce que les moyens optiques (4,5) comprennent une lentille de collimation ( 4) ainsi qu' une lentille de focalisation ( 5) situées en regard l' une de l' autre.
18. Dispositif (1) de découpe selon l'une quelconque des revendications 7 à 17, caractérisé en ce que la tête ( 2) est apte à être déconnectée du dispositif (1) à l' aide de moyens pilotables à distance.
PCT/FR2002/003368 2001-10-05 2002-10-03 Procede et dispositif de decoupe laser WO2003031109A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02800626A EP1453635B1 (fr) 2001-10-05 2002-10-03 Procede et dispositif de decoupe laser
US10/490,479 US6847005B2 (en) 2001-10-05 2002-10-03 Laser cutting method
DE60210143T DE60210143T2 (de) 2001-10-05 2002-10-03 Laserschneidverfahren und -vorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0112831A FR2830478B1 (fr) 2001-10-05 2001-10-05 Dispositif de decoupe laser
FR01/12831 2001-10-05

Publications (1)

Publication Number Publication Date
WO2003031109A1 true WO2003031109A1 (fr) 2003-04-17

Family

ID=8867966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003368 WO2003031109A1 (fr) 2001-10-05 2002-10-03 Procede et dispositif de decoupe laser

Country Status (5)

Country Link
US (1) US6847005B2 (fr)
EP (1) EP1453635B1 (fr)
DE (1) DE60210143T2 (fr)
FR (1) FR2830478B1 (fr)
WO (1) WO2003031109A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2846581B1 (fr) * 2002-10-31 2006-01-13 Usinor Procede et dispositif de pointage d'un jet fin de fluide, notamment en soudage, usinage, ou rechargement laser
EP1657020A1 (fr) * 2004-11-10 2006-05-17 Synova S.A. Méthode et dispositif pour optimiser la cohérence d'un jet de fluide utilisé pour le travail de matériaux et buse pour un tel dispositif
US8115138B2 (en) * 2005-03-15 2012-02-14 Lincoln Global, Inc. Comprehensive identification and designation of welding procedures
US20120031883A1 (en) * 2009-05-25 2012-02-09 Mitsubishi Electric Corporation Laser machining device and laser machining method
US9259802B2 (en) 2012-07-26 2016-02-16 Electro Scientific Industries, Inc. Method and apparatus for collecting material produced by processing workpieces
EP3183091B8 (fr) * 2014-08-19 2018-09-05 Lumileds Holding B.V. Collecteur de saphir pour reduire l'endommagement mécanique durant lift-off au niveau puce
CN107924865B (zh) * 2015-05-13 2022-03-11 亮锐控股有限公司 用于减少在管芯水平激光剥离期间机械损伤的蓝宝石收集器
JP6852031B2 (ja) * 2018-09-26 2021-03-31 株式会社東芝 溶接装置及びノズル装置
DE102019103659B4 (de) * 2019-02-13 2023-11-30 Bystronic Laser Ag Gasführung, Laserschneidkopf und Laserschneidmaschine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059256A (en) * 1988-09-01 1991-10-22 Kanapenas Rimantas Mikolas V Method of manufacturing filters by laser treatment and device therefor
EP0458180A2 (fr) * 1990-05-19 1991-11-27 Linde Aktiengesellschaft Procédé et dispositif pour couper par rayon laser
US5578228A (en) * 1992-08-12 1996-11-26 Thyssen Stahl Ag Process for the laser beam cutting of strip or plate workpieces, especially magnetic steel sheets
JP2000210785A (ja) * 1999-01-26 2000-08-02 Mitsubishi Heavy Ind Ltd 複数ビ―ムレ―ザ加工装置
US20010003697A1 (en) * 1996-03-15 2001-06-14 Howard Timothy Jennings Laser machining

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1484724A (en) * 1974-05-21 1977-09-01 Jobling & Co James A Cutting glass tubing
JP3162255B2 (ja) * 1994-02-24 2001-04-25 三菱電機株式会社 レーザ加工方法及びその装置
JPH091369A (ja) 1995-04-14 1997-01-07 Hitachi Cable Ltd 基板の割断方法及びその割断装置
KR970008386A (ko) * 1995-07-07 1997-02-24 하라 세이지 기판의 할단(割斷)방법 및 그 할단장치
US6284999B1 (en) * 1999-07-23 2001-09-04 Lillbacka Jetair Oy Laser cutting system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059256A (en) * 1988-09-01 1991-10-22 Kanapenas Rimantas Mikolas V Method of manufacturing filters by laser treatment and device therefor
EP0458180A2 (fr) * 1990-05-19 1991-11-27 Linde Aktiengesellschaft Procédé et dispositif pour couper par rayon laser
US5578228A (en) * 1992-08-12 1996-11-26 Thyssen Stahl Ag Process for the laser beam cutting of strip or plate workpieces, especially magnetic steel sheets
US20010003697A1 (en) * 1996-03-15 2001-06-14 Howard Timothy Jennings Laser machining
JP2000210785A (ja) * 1999-01-26 2000-08-02 Mitsubishi Heavy Ind Ltd 複数ビ―ムレ―ザ加工装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BÖHME ET AL: "Handbuch der Schweissverfahren, Teil 2", HANDBUCH DER SCHWEISSVERFAHREN, XX, XX, PAGE(S) 174-175, XP002206753 *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 11 3 January 2001 (2001-01-03) *

Also Published As

Publication number Publication date
DE60210143T2 (de) 2006-12-28
US6847005B2 (en) 2005-01-25
EP1453635A1 (fr) 2004-09-08
DE60210143D1 (de) 2006-05-11
US20040232123A1 (en) 2004-11-25
FR2830478A1 (fr) 2003-04-11
FR2830478B1 (fr) 2003-12-05
EP1453635B1 (fr) 2006-03-22

Similar Documents

Publication Publication Date Title
EP1931496B1 (fr) Procede et installation de decoupe / de soudage laser
EP0656239B1 (fr) Procédé d'usinage de pièces en titane ou alliage de titane et bride d'arrosage pour un tel usinage
EP2334465B1 (fr) Procede et installation de coupage laser avec modification du facteur de qualite du faisceau laser par un composant optique diffractant
EP2916990B1 (fr) Buse laser à élément mobile externe
EP2709793B1 (fr) Buse laser à élément mobile
EP2420345A1 (fr) Procédé de soudage laser de type CO2 avec buse à jet dynamique
EP0574580A1 (fr) Buse coaxiale de traitement superficiel sous irradiation laser, avec apport de materiaux sous forme de poudre.
EP1215008A1 (fr) Procédé et installation de coupage laser avec tête de découpe à double flux et double foyer
EP2916992B1 (fr) Buse laser avec élément mobile interne et coiffe externe, tete de focalisation comprenant une telle buse, installation laser comprenant une telle tete ; procede de coupage par faisceau laser utilisant un des precedents dispositifs
EP1453635B1 (fr) Procede et dispositif de decoupe laser
EP2117764B1 (fr) Procede de decoupage de pieces a usiner a l'aide d'un laser pulse
EP2776206B1 (fr) Buse laser a element mobile sur couche gazeuse
FR2977513A1 (fr) Procede de coupage laser a fibre ou disque avec distribution d'intensite du faisceau laser en anneau
WO2015059384A1 (fr) Buse laser a double flux gazeux
EP2916991B1 (fr) Buse laser avec element mobile modulaire realise en materiau electriquement isolant et insert realise en materiau electriquement conducteur
FR2961731A1 (fr) Procede et installation de coupage laser a fibre ou disque avec distribution d'intensite du faisceau laser en anneau
EP2472305A1 (fr) Système optique de focalisation pour installation de coupage avec laser solide
EP1621280B1 (fr) Procédé de soudage par laser d'au moins deux pièces mètalliques et dispositifs associés pour la mise en oeuvre du procédé
FR2982185A1 (fr) Procede et installation de coupage laser avec jet de gaz incline
FR2925375A1 (fr) Injecteur pour ejecter un fluide notamment dans une installation d'injection ou un systeme de gaz d'echappement et procede de realisation d'un tel injecteur
FR2723018A1 (fr) Procede de coupe de materiaux divers, utilisant l'energie emise par un laser de puissance
FR2793179A1 (fr) Installation de soudage ou de coupage par faisceau laser avec dispositif de concentration du flux de gaz d'assistance

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002800626

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10490479

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002800626

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002800626

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP