WO2003025908A2 - Unmagnetischer sinterkörper auf der basis von sic und seine verwendung - Google Patents

Unmagnetischer sinterkörper auf der basis von sic und seine verwendung Download PDF

Info

Publication number
WO2003025908A2
WO2003025908A2 PCT/EP2002/010521 EP0210521W WO03025908A2 WO 2003025908 A2 WO2003025908 A2 WO 2003025908A2 EP 0210521 W EP0210521 W EP 0210521W WO 03025908 A2 WO03025908 A2 WO 03025908A2
Authority
WO
WIPO (PCT)
Prior art keywords
sic
sintering
sintered body
ppm
substrate
Prior art date
Application number
PCT/EP2002/010521
Other languages
English (en)
French (fr)
Other versions
WO2003025908A3 (de
Inventor
Helmut KÖLKER
Lorenz Sigl
Georg Victor
Original Assignee
Wacker-Chemie Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker-Chemie Gmbh filed Critical Wacker-Chemie Gmbh
Publication of WO2003025908A2 publication Critical patent/WO2003025908A2/de
Publication of WO2003025908A3 publication Critical patent/WO2003025908A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • C04B35/5755Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • C04B2235/383Alpha silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Definitions

  • the invention relates to a non-magnetic sintered body based on silicon carbide, its production and its
  • SiC has no ferromagnetism but only diamagnetism, or, depending on the doping, para-magnetism.
  • the patent literature e.g. via hard disk substrates made of SiC the ferromagnetism in SiC
  • J 61 013434 / T. Matsumoto describes ceramic hard disk substrates which are coated with thin layers of SiC and Si 3 N 4 in order to obtain pore-free surfaces.
  • silicon carbide is mentioned, among others, that was produced according to typical recipes for solid sintering. None is said about the magnetic properties of this ceramic.
  • Hard disk substrate made of SiC ceramic which is coated with thin sputter layers made of Al 2 0 3 , Si0, or Si 3 N 4 in order to obtain pore-free surfaces.
  • the usual and known methods can be used, including hot presses, hot isotate presses, SiSiC etc. There is no statement in this document about the magnetism of SiC.
  • Kawakami et al (Hitachi) describes a hard disk substrate made of ceramic, coated with a thin glass layer in order to obtain non-porous surfaces.
  • Zr0 2 , AlN, Y 2 0 3 , and SiC with at least 5% Al 2 0 3 addition are proposed as ceramics.
  • Magnet sizes disturb, e.g. for substrates or read / write heads in hard disks.
  • the impairment is not limited to these two examples, but occurs wherever sensitive magnet sizes are disturbed by the SiC's own field.
  • the magnetic parameters such as saturation magnetization, remanence and coercive force of this layer, which are important for use as a storage disk, are then measured with a "Vibrating Sample Magnetometer” or SQUID magnetometer.
  • a "Vibrating Sample Magnetometer” or SQUID magnetometer In this case, an approximately 1 cm 2 piece is cut out of the coated substrate and the latter Magnetization curve recorded in the magnetometer.
  • the sample is exposed to a static magnetic field "H" which varies from 0 to about 10,000 Oersted. With increasing field “H”, the magnetization "M” of the cobalt layer increases according to its susceptibility ⁇ .
  • the vibration magnetometer the magnetization is measured via a voltage signal, which is generated by vibration of the sample in a measuring coil. The signal is proportional to the magnetic moment of the sample, i.e. the product
  • Magnetization M (a pure material parameter) and the volume of the sample. Because of the extremely small layer thickness (approx. 30 nm) the volume is very small and accordingly the voltage signal, so that extreme demands are placed on the measurement accuracy. With the SQUID magnetometer too, the measured signal is proportional to the magnetic moment of the sample. .
  • this product Mr-t is also important, since the voltage signal when reading is proportional to this product.
  • Commercially available SiC is about 5 orders of magnitude lower than that of the cobalt layer, but this results in a comparable Mr-t product in the product with the much larger slice thickness of 0.08 cm:
  • No. 5,770,324 describes dummy wafers for semiconductor process technology which have been produced by hot pressing and have been specially designed for a very low iron content in order to meet the specifications of the semiconductor industry.
  • the iron content of the purest SiC sinter powder used there was 10 ppm, Ni and Co contents are not for the powder specified. Since the Fe impurities measured in the hot-pressed dummy wafers were well below these 10 ppm (for example 1.5 ppm), it must be concluded that the hot-pressing process has an additional cleaning effect.
  • the 5 magnetic properties of these wafers are unknown. The use of such materials for magnetically relevant applications, for example as hard disk storage, is not mentioned.
  • the object of the invention is to provide a ceramic sintered body based on SiC, which is suitable for magnetically relevant applications such as, for example
  • Hard disk storage substrate or read / write heads is particularly suitable. 5
  • the object is achieved by a sintered body based on SiC with a density> 95% and a saturation magnetization Ms ⁇ 1.2 memu / cm 3 , preferably ⁇ 0.6 memu / cm 3, which was produced by one of the following processes: (a ) pressureless solid sintering with sintering aids based on Al / C, boron / carbon or aluminum / boron / carbon with or without an aftertreatment by hot isostatic pressing b) pressurized solid sintering with sintering aids based on boron / carbon or aluminum / boron / carbon 5c) liquid phase sintering with Sintering aids based on rare earths (in particular Y 2 0 3 ) plus Al 2 0 3 and / or A1N.
  • the sintered body according to the invention preferably has a content of Fe ⁇ 10 ppm, Ni ⁇ 3 ppm, Co ⁇ lppm, particularly preferably Fe ⁇ 5, Ni + Co ⁇ 2 ppm.
  • the iron content in the SiC powder is reduced to below 10 ppm, the nickel content to below 3 ppm and the cobalt content to less than 1 ppm.
  • the Fe content should preferably be ⁇ 5 ppm and the Ni + Co content should be ⁇ 2 ppm.
  • the required purity conditions are also met if it applies that the sum of the Fe, Ni and Co contents in the sintered body is ⁇ 13 ppm, preferably ⁇ 7 ppm.
  • the sintering aids Al / C, B / C, Al / B / C and Y 2 0 3 + (Al 2 0 3 and / or AlN) are used in the usual amounts.
  • the SiC sintered bodies according to the invention can be divided into the following groups:
  • Table 1 shows a typical, in no way exhaustive, selection of typical sintering additives and sintering conditions for the above sintered bodies. They reflect the state of the art, with countless variations. Only those sintering additives are listed that have become technically accepted today. However, there are also others that can also be used to manufacture non-magnetic SiC. Essential to the invention is not the sintering aid, but rather the purity of the SiC starting powder of iron, cobalt and nickel.
  • the sintering additives are weights.
  • the C content depends on the oxygen content of the SiC powder. It should preferably be slightly overstoichiometric to the
  • Usual amounts of O in the SiC are 0.5-1.5% by weight, so that an approximately similar amount of C (ie 0.5-1.5% by weight) is preferably added.
  • the amounts are preferably chosen so that between 0.3 and 0.8% by weight of free carbon remain in the solid-sintered sintered body.
  • Liquid phase sintering does not require carbon. Carbon is therefore not intentionally added there, but only a small carbon content results from the addition of organic binders.
  • the sum of the sintering additives and the oxygen content of the SiC powder and the SiC weight is 100%.
  • Table 1 Typical sintering agent weights, in% and rough sintering conditions
  • An SiC sintered body according to the invention can preferably be produced using the starting powders mentioned using the known methods already mentioned:
  • the sintered bodies can be further compacted by applying pressure.
  • a porous molded body made of SiC (porosity approx. 20%) is infiltrated with liquid silicon, i.e. at temperatures above 1400 ° C. All superficially adhering iron, nickel, cobalt should react with the excess silicon to form silicon-rich, ie non-magnetic silicides (eg FeSi 2 ).
  • the finding in Fig. 1 confirms this assumption, because SiSiC proves there despite a very high Fe + Ni + Co-
  • SiC sintered bodies according to the invention are particularly suitable as a substrate for hard disk memories or as a substrate for read / write heads.
  • Alpha-SiC sinter powder with a specific surface of 12 m 2 / gr and an average particle size of 0.7 ⁇ m is in a dissolver with an organic binder (eg PVA) and with water-soluble carbon donors such as sugar or starch and also with a pressing aid (fatty acid derivative) and intensively wet mixed with the corresponding sintering additives according to Table 1.
  • the SiC starting powder is specially cleaned of iron, cobalt and nickel, so that: Fe ⁇ 10 ppm, Ni ⁇ 3 ppm, Co ⁇ 1 ppm.
  • the SiC starting powder is in for a long time (2 days)
  • the comparative examples are the EKasic ® D, EKasic ® T and EKasic ® BM sintered bodies shown in Tab. 2 and Fig. 1 (commercially available from Wacker-Chemie GmbH, Kunststoff) as well as those not specifically named in Fig. 1 but in Tab. 2 enumerated sintered body BM-A2, BM-P2, BM-C2, BM-Q, Vers-B22, BM-02 (all EKasic® BM). They have a residual magnetism> 1.2 memu / cm 3 .
  • the starting material was cleaned less intensively and less labor-intensive. In particular, the hydrochloric acid was not heated and less acid excess was used. This reduced the number of subsequent washes to a few.
  • the comparative examples Hexoloy SA and SiC / C & C in Fig.l are further confirmations for the relationship between purity and magnetic properties.
  • the SiSiC sample in FIG. 1 is proof that an excess of Si in the sintered body succeeds in bringing the iron, cobalt or nickel contamination into a silicon-rich and therefore non-magnetic compound.
  • the compacted powder compact is processed green and then debindered at a higher temperature (for example 700 ° C.).
  • EKasic® BM, EKasic® D, EKasic® T and SiC / C & C were treated according to the basic process described.
  • Hexoloy SA is obtained from Carborundum.
  • the impurity content (Fe + Ni + Co) was determined analytically.
  • the weight of 0.7% boron was taken from the Carborundum homepage.
  • SiC / CC SiC sintered body commercially available from the French
  • EKasic ® D SiC sintered body commercially available from Wacker-Chemie GmbH (Munich)
  • EKasic ® T SiC sintered body commercially available from Wacker-
  • EKasic ® BM SiC sintered body commercially available from Wacker-
  • Hexoloy SA SiC sintered body commercially available from the American company Carborundum
  • SiSiC liquid phase sintered SiC

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Keramischer Sinterkörper auf Basis von SiC mit einer Dichte > 95%, der für magnetisch relevante Anwendungen wie beispielsweise Festplattenspeichersubstrat oder Schreib-Lese- Köpfe besonders geeignet ist, dadurch gekennzeichnet, dass er eine Sättigungsmagnetisierung von Ms < 1,2 memu/cm<3> besitzt und nach einem der folgenden Verfahren hergestellt wurde: a) druckloses Feststoffsintern mit Sinterhilfsmitteln auf Basis von Al/C, Bor/Kohlenstoff oder Aluminium/Bor/Kohlenstoff mit oder ohne eine Nachbehandlung durch Heissisostatisches Pressen b) druckbehaftetes Feststoffsintern mit Sinterhilfsmitteln auf Basis Bor/Kohlenstoff oder Aluminium/Bor/Kohlenstoff c) Flüssigphasensintern mit Sinterhilfsmitteln auf der Basis von Seltenen Erden (insbesondere Y2O3) plus A1203 und/oder A1N.

Description

Uπmagnetischer Sinterkörper auf der Basis von SiC und seine
Verwendung
Die Erfindung betrifft einen unmagnetischen Sinterkörper auf Basis von Siliciumcarbid, seine Herstellung und seine
Verwendung in magnetisch relevanten Anwendungen, z.B. als Substrat oder als Schreib-Lese-Kopf in magnetischen Festplattenspeichern .
Laut einschlägigen Lehrbüchern und Tabellenwerken wie z.B. Gmelin, Handbuch der Chemie, besitzt SiC keinen Ferromagnetismus sondern nur Diamagnetismus, oder ggf. je nach Dotierung, Para agnetismus . Wie aus folgender Aufstellung ersichtlich, ist auch in der Patentliteratur z.B. über Festplattensubstrate aus SiC der Ferromagnetismus in SiC
Sinterkörpern bisher nicht beschrieben bzw. völlig ignoriert, obwohl in dieser Anwendung der Magnetismus des Substrats besonders stört.
US 4,598,017 / T. Bayer et al . (IBM) offenbart zwei reaktionsgebundene SiC-Keramikscheiben, die mit Silicium infiltriert sind. Diese werden mit einem Polymerkern zu einem Speicherplattensubstrat verbunden. Über den Ferromagnetismus im SiC ist nichts ausgesagt.
Das Patent US 4,738,885 / T. Matsumoto (Kyocera), beschreibt ein Nachhipen von drucklos gesinterter Al203-Keramik, um die Porosität für eine Anwendung als Festspeicherplatte zu reduzieren. In der Beschreibung ist SiC als ein weiterer Kandidat für solch eine Anwendung erwähnt. Die magnetischen Eigenschaften dieses SiC werden nicht diskutiert.
Das Patent US 5,480,695 / M. Tenhover et al, beschreibt die Herstellung von Substraten aus feststoffgesintertem SiC nach Vorschriften aus US 4,312,954, die mit amorphem SiC zur
Erzeugung einer porenfreien Oberfläche besputtert werden. Weder diese Patentschrift noch US 4,312,954 erwähnen den Ferromagnetismus der SiC-Keramik. Das Patent US, 5, 358, 685 / A. Ezis (Cercom) , beansprucht eine besonders verunreinigte heißgepresste SiC-Qualität in der Anwendung als z.B. Festspeichersubstrat. Der Eisengehalt liegt bei 0,01-2 %. Über den Magnetismus ist nichts gesagt.
J 61 013434 / T. Matsumoto (Kyocera) beschreibt keramische Festspeicherplattensubstrate, die mit dünnen Schichten aus SiC und Si3N4 beschichtet sind, um porenfreie Oberflächen zu erhalten. Als keramisches Substrat wird u.a. Siliciumcarbid genannt, daß nach typischen Rezepten des Feststoffsinterns hergestellt wurde. Über die magnetischen Eigenschaften dieser Keramik ist nichts gesagt.
J 60 229224 T. Wada et al . (Sumitomo) beschreibt ein
Festspeicherplattensubstrat aus SiC-Keramik, das mit dünnen Sputterschichten aus Al203, Si0 , oder Si3N4 beschichtet ist, um porenfreie Oberflächen zu erhalten. Zur Herstellung der Keramik wird angegeben, daß die üblichen und bekannten Verfahren benutzt werden können, u.a. Heißpressen, Heißisotatpressen, SiSiC usw. Über den Magnetismus des SiC gibt es keine Aussage in dieser Schrift.
J 63 070919 K. Kawakami et al (Hitachi) beschreibt ein Festspeicherplattensubstrat aus Keramik, beschichtet mit einer dünnen Glasschicht, um porenfreie Oberflächen zu erhalten. Als Keramik wird vorgeschlagen Zr02, AlN, Y203, und SiC mit mindestens 5% Al203-Zusatz . Über die magnetischen Eigenschaften des SiC wird nichts ausgesagt.
US 5,487,931 Annacone et al . offenbart ein Festspeicherplattensubstrat aus SiC, das mit ei,ner dünnen Schicht aus Silicium oder TiC, B, TiN, TiCN beschichtet ist, um porenfreie und glatte Oberflächen zu erhalten. Für die Herstellung des SiC wird eine breite Palette von Methoden vorgeschlagen, u.a. das (Drucklos) Sintern und Heißisostatpressen. Über die magnetischen Eigenschaften der SiC-Keramik ist nichts ausgesagt. Wie ersichtlich spart die Patentliteratur den Aspekt, daß im SiC-Substrat Ferromagnetismus auftreten kann, vollkommen aus und spiegelt damit die in Lehrbüchern und Handbüchern (z.B. Gmelin) vertretene Meinung wieder, daß SiC allenfalls diamagnetisch ist.
Arbeiten beim Anmelder zeigen jedoch eindeutig, daß in einer üblichen SiC-Keramik Ferromagnetismus auftritt, der bei den genannten Anwendungen zu Problemen führt und der von
Spurenverunreinigungen im SiC abhängt. Fig. 1 gibt den vom Anmelder gemessenen Zusammenhang zwischen dem Gehalt an Eisen, Cobalt und Nickel im SiC und der Magnetisierung für verschiedene käufliche SiC-Typen wieder. Das Bild zeigt verschiedene kommerziell erhältliche SiC-Keramiken und gibt einen Überblick über die magnetischen Eigenschaften von bekannter SiC-Keramik. Die verwendeten Verfahren und Pulvermischungen zur Herstellung der untersuchten Sinterkörper entsprechen dem üblichen Stand der Technik zum Feststoffsintern, Flussigphasensintern und Reaktionssintern von SiC-Keramik. Diese Messungen zeigen eindeutig, daß in SiC- Keramik Ferromagnetismus auftritt, der einem Grundanteil von Diamagnetismus überlagert ist. Damit werden magnetisch relevante Anwendungen ganz allgemein beeinträchtigt, und zwar überall dort, wo das Eigenfeld des SiC funktioneile
Magnetgrößen stört, z.B. bei Substraten oder Schreib-Lese- Köpfen in Festspeicherplatten. Die Beeinträchtigung ist jedoch nicht auf diese beiden Beispiele beschränkt sondern tritt überall dort auf, wo empfindliche Magnetgrößen durch das Eigenfeld des SiC gestört werden.
Am Beispiel von Substraten für die Hard Disk Anwendung sei eine solche Beeinträchtigung im Detail diskutiert: Wie in „Magnetic Disk Drive Technology" (ed. Kanu G. Ashar, IEEE Press , New York 1997) (S. 190) dargestellt wird, besteht aus technologischen Gründen der Bedarf, die heute verwendeten Substratmaterialien Aluminium und Glas durch härtere und steifere Materialien zu. ersetzen, um höhere Drehzahlen, dünnere Scheiben, größere Stoßfestigkeit, bessere Polituren für geringere Flughöhe, höhere Sputtertemperaturen usw. zu ermöglichen. Zusammengefaßt dienen solche Verbesserungen dem technologischen Trend nach höherer Informationsdichte und kürzerer Zugriffszeit. Unter den Vorschlägen für „alternative,, Substrate nimmt Siliciumcarbid eine Spitzenstellung ein.
Weiterhin wird im o.g. Buch die Prozesstechnologie erläutert, mit der man den Informationsträger, nämlich eine dünne Schicht (ca. 30 nm) aus magnetischen Cobaltlegierungen, auf dem
Substrat aufbringt. Die für die Anwendung als Speicherplatte wichtigen magnetischen Kenngrößen wie Sättigungsmagnetisierung, Remanenz und Koerzitivkraft dieser Schicht werden anschließend mit einem „Vibrating Sample Magnetometer" oder SQUID-Magneto- meter gemessen. Dabei wird ein etwa 1 cm2 großes Stück aus dem beschichteten Substrat herausgeschnitten und dessen Magnetisierungskurve in dem Magnetometer aufgenommen. Im Detail wird die Probe dabei einem statischen Magnetfeld „H" ausgesetzt, das von 0 bis etwa 10.000 Oersted variiert wird. Mit steigendem Feld „H" steigt nun die Magnetisierung „M" der Cobaltschicht entsprechend ihrer Suszeptibilität χ an. Beim Vibrationsmagnetometer wird die Magnetisierung über ein Spannungssignal gemessen, das durch Vibration der Probe in einer Meßspule erzeugt wird. Das Signal ist proportional zum magnetischen Moment der Probe, also zum Produkt aus
Magnetisierung M (eine reine Materialkenngröße) und dem Volumen der Probe. Wegen der außerordentlich geringen Schichtdicke (ca. 30 nm) ist das Volumen sehr gering und dementsprechend auch das Spannungssignal, so daß hier extreme Anforderungen an die Meßgenauigkeit gestellt werden. Auch beim SQUID-Magnetometer ist das gemessene Signal proportional zum magnetischen Moment der Probe . ,
Da die Fläche der gemessenen Proben mit 1 cm2 üblicherweise konstant gehalten wird, hat es sich eingebürgert, als Maß für das magnetische Moment nur das Produkt aus Magnetisierung und Schichtdicke „t" anzusetzen. Das o.g. Buch (S.173) gibt für den Fall der Remanenzmagnetisierung „Mr" einen typischen Wert von Mr = 537 emu/cm3 an, so daß mit t=30 nm ein Remanenz-Dicke- Produkt von Mr-t = 1,61 memu/cm2 (memu = milli electromagnetic units of magnetization) erhalten wird.
In einem anderen Bereich der Speicherplatte, nämlich beim Lesen der gespeicherten Information, ist dieses Produkt Mr-t ebenfalls von Bedeutung, da das Spannungssignal beim Lesen proportional zu diesem Produkt ist.
Bei Arbeiten des Anmelders zur Beschichtung von keramischen
SiC-Substraten mit Cobaltlegierungen zeigte sich nun, daß SiC- Substrate selber eine geringe Magnetisierung besitzen , die zwar mit Werten um Mr = 5 memu/cm3 für z. B. handelsübliches SiC um ca. 5 Zehnerpotenzen niedriger liegt als die der Cobaltschicht , die aber im Produkt mit der sehr viel größeren Scheibendicke von 0,08 cm ein vergleichbares Mr-t-Produkt ergibt :
Cobaltschicht: Mr't = 1,61 memu/cm2 SiC-Subsstrat : Mr't = 0,4 memu/cm2
Damit ist die Messung der Magnetisierungskurve der Cobaltschicht durch das Substrat stark verfälscht und das Ergebnis läßt keine Aussage über die Qualität der Co-Schicht zu.
Auch beim Lesen der Speicherplatte können Probleme auftreten, insbesondere wenn die Magnetisierung des SiC-Substrats örtlich schwank . Auch bei Verwendung eines SiC-Sinterkörpers als Substratmaterial für Schreib-Lese-Köpfe kommt es zu einer Beeinträchtigung der Qualität des gelesenen und geschriebenen Signals durch das Eigenfeld des KopfSubstrats .
In US 5,770,324 werden Dummy Wafer für die Halbleiterprozesstechnik beschrieben, die durch Heißpressen hergestellt und speziell für einen sehr niedrigen Eisengehalt ausgelegt wurden, um die Spezifikationen der Halbleiterindustrie zu erfüllen. Der Eisengehalt des reinsten dort eingesetzten SiC-Sinterpulvers betrug 10 ppm, Ni- und Co-Gehalt sind für das Pulver nicht angegeben. Da die gemessenen Fe-Verunreinigungen in den heißgepressten Dummy Wafern deutlich unter diesen 10 ppm lagen (z.B. 1,5 ppm), muß man folgern, daß der Prozess des Heißpressens eine zusätzliche Reinigungswirkung hat. Die 5 magnetischen Eigenschaften dieser Wafer sind nicht bekannt. Eine Verwendung solcher Materialien für magnetisch relevante Anwendungen, also z.B. als Festplattenspeicher ist nicht, erwähnt .
0 Aufgabe der Erfindung ist es, einen keramischen Sinterkörper auf Basis von SiC zur Verfügung zu stellen, der für magnetisch relevante Anwendungen wie beispielsweise
Festplattenspeichersubstrat oder Schreib-Lese-Köpfe besonders geeignet ist. 5
Die Aufgabe wird gelöst durch einen Sinterkörper auf Basis von SiC mit einer Dichte > 95% und einer Sättigungsmagnetisierung Ms<l,2 memu/cm3, bevorzugt <0,6 memu/cm3 der nach einem der folgenden Verfahren hergestellt wurde: (a) druckloses Feststoffsintern mit Sinterhilfsmitteln auf Basis von Al/C, Bor/Kohlenstoff oder Aluminium/Bor/Kohlenstoff mit oder ohne eine Nachbehandlung durch Heißisostatisches Pressen b) druckbehaftetes Feststoffsintern mit Sinterhilfsmitteln auf Basis Bor/Kohlenstoff oder Aluminium/Bor/Kohlenstoff 5c) Flussigphasensintern mit Sinterhilfsmitteln auf der Basis von Seltenen Erden (insbesondere Y203) plus Al203 und/oder A1N.
Eine Verwendung eines SiC Sinterkörpers als Speicherplattensubstrat ist nur sinnvoll, wenn der 0 Ferromagnetismus im SiC unter einen Wert abgesenkt wird, der als Sättigungs-Dicke-Produkt weniger als etwa 5% des analogen Produktes für die Cobaltschicht beträgt. Nur dann ist eine magnetische Charakterisierung der Cobaltschichten ohne Verfälschung möglich und nur dann sind Störungen und 5 Verfälschungen des in der Festplatte gelesenen Signals . ausreichend gering. Das bedeutet für die Sättigungsmagnetisierung Ms des Substrats ein Wert unter 1,2 memu/cm3. Zur Lösung der Aufgabe reicht es nicht, nur die erwähnte Remanenz-Magnetisierung „Mr" zu betrachten, weil sie von zu vielen unbekannten Faktoren abhängt und damit nicht richtig greifbar ist. Wesentlich besser geeignet, ist die Sättigungsmagnetisierung „Ms" , weil sie eine Stoffkonstante ist und weil sie als Obergrenze für den Magnetismus des Substrats die Remanenz mit einschließt. Aus dem bereits zitierten Lehrbuch „Magnetic Disk Drive Technology" kann man entnehmen, daß für übliche Cobaltschichten die sogenannte Squareness Mr/Ms = 0,8 ist. Damit ergibt sich aus Mr"t = 1,61 memu/cm2 der obigen typischen Cobaltschicht der Wert Ms't = 2 memu/cm2. Um diesen Wert richtig zu messen, darf die Störung durch das Substrat höchstens 5% davon betragen, also Ms't (Substrat) < 0,1 memu/cm2. Bei einer Substratdicke von 0,08 cm folgt daraus eine maximal erlaubte Sättigungsmagnetisierung für das Substrat von Ms=l,2 memu/cm3.
Vorzugsweise hat der erfindungsgemäße Sinterkörper einen Gehalt an Fe<10 ppm, an Ni<3 ppm, an Co< lppm, besonders bevorzugt Fe<5, Ni+Co < 2 ppm.
Für den Fachmann ist es überraschend, daß Eisen- und Nickelverunreinigungen im gesinterten SiC in ferromagnetisch relevanter Art vorliegen. Zwar sind ferromagnetische Verbindungen zwischen Eisen und Silicium bzw. Nickel und Silicium bekannt , aber nach Hansen (Constitution of Binary
Alloys, McGraw-Hill 1956) müssen diese Verbindungen metallreich sein (z.B. Fe2Si) . In welcher Form nun bei gesintertem SiC solche Verbindungen vorliegen, ist unbekannt, da die entsprechenden Phasendiagramme über den gesamten Bereich der thermischen Behandlung beim Sintern nicht bekannt sind. Darüberhinaus wird Silicium als Bestandteil des SiC den Spurenverunreinigungen Eisen und Nickel im extremen Überschuss angeboten, so daß man bei einer Reaktion zwischen Fe und Si (bzw. Ni und Si) eher eine siliciumreiche und damit nicht ferromagnetische Verbindung erwarten würde. Im erfindungsgemäßen SiC-Sinterkörper können Eisen, Nickel und Cobalt in Form unmagnetischer Verbindungen abgebunden vorliegen, bevorzugt in Form von unmagnetischen Siliciden.
Überraschend hat sich somit gezeigt, daß der Ferromagnetismus in gesintertem SiC vom Eisen- , Nickel- und Cobaltgehalt abhängt und durch Reduzierung dieser Verunreinigungen erniedrigt bzw. eliminiert werden kann. Dies gilt für eine breite Palette von Herstellmethoden für dichtgesintertes SiC. 0
Um erfindungsgemäße Sinterkörper, die als Substrate für Festspeicherplatten dienen , herzustellen, ist es bevorzugt, den Gehalt an Eisen im SiC-Pulver unter 10 ppm, den Gehalt an Nickel unter 3 ppm und den Gehalt an Cobalt unter 1 ppm zu 5 erniedrigen. Bevorzugt sollte der Gehalt an Fe<5 ppm, und der Gehalt an Ni+Co < 2 ppm sein. Die erforderlichen Reinheitsbedingungen sind auch dann erfüllt, wenn gilt, daß im Sinterkörper die Summe des Gehalts an Fe, Ni und Co < 13 ppm, bevorzugt < 7 ppm ist.
Die Sinterhilfsmitttel Al/C , B/C , Al /B/C und Y203 + (Al203 und/oder AlN) werden in den j eweils üblichen Mengen eingesetzt .
Die erfindungsgemäßen SiC-Sinterkörpern lassen sich in folgende Gruppen einteilten :
a) drucklos gesinterte SiC-Sinterkörper mit den Sinterhilfsmitteln
B / C oder Al / B / C oder Al / C
b) druckbehaftet gesinterte SiC-Sinterkörper mit den Sinterhilfsmitteln B / C oder
Al / B / C
c) flüssigphasengesinterte SiC-Sinterkörper mit den Sinterhilfsmitteln AlN / Y203 oder
AlN / YAG (YAG = Yttrium Aluminium Granat)
In Tabelle 1 ist beispielhaft eine typische, in keiner Weise erschöpfende, Auswahl typischer Sinteradditive und Sinterbedingungen für die obigen Sinterkörper angegeben. Sie spiegeln den Stand der Technik wieder, wobei es unzählige Variationen gibt. Es sind nur diejenigen Sinteradditive aufgeführt, die sich heute technisch durchgesetzt haben. Daneben gibt es jedoch noch andere, mit denen man ebenso unmagnetisches SiC herstellen kann. Erfindungswesentlich ist nicht das Sinterhilfsmittel, sondern die Reinheit des SiC- Ausgangspulvers von Eisen, Kobalt und Nickel.
Bei den Sinteradditiven handelt es sich um Einwaagen. Dabei hängt der C-Gehalt vom Sauerstoffgehalt des SiC-Pulvers ab. Er sollte vorzugsweise leicht überstöchiometrisch sein, um den
Sauerstoff abzureagieren gemäß : Si02 + 3C = SiC + 2CO .
Übliche O-Mengen im SiC sind 0,5 - 1,5 Gew.%, so daß vorzugsweise eine etwa ähnliche C-Menge (also 0,5 - 1,5 Gew.%) zugesetzt wird. Die Mengen werden vorzugsweise so gewählt, daß zwischen 0,3 und 0,8 Gew.% freier Kohlenstoff im feststoffgesinterten Sinterkörper zurückbleiben. Beim
Flussigphasensintern ist Kohlenstoff nicht sinternotwendig. Dort wird deshalb nicht gewollt Kohlenstoff zugesetzt sondern es resultiert nur ein kleiner Kohlenstoffgehalt aus der Zugabe organischer Binder.
Die Summe aus den Sinteradditiven und dem Sauerstoffgehalt des SiC-Pulvers sowie der SiC-Einwaage beträgt 100%.
Tabelle 1: typische Sinterhilfsmitteleinwaagen ,in % und grobe Sinterbedingungen
Figure imgf000012_0001
LPS* = liquid phase sintering = Flussigphasensintern n.b. = nicht bekannt
Vorzugsweise unter Verwendung der genannten Ausgangspulver läßt sich ein erfindungsgemäßer SiC-Sinterkörper mittels der bereits genannten bekannten Methoden herstellen:
Druckloses Feststoffsintern mit Sinterhilfsmitteln auf Basis von Al/C, Bor/Kohlenstoff oder Aluminium/Bor/Kohlenstoff mit oder ohne eine Nachbehandlung durch Heissisostatisches Pressen; Druckbehaftetes Feststoffsintern mit Sinterhilfsmitteln auf Basis Bor/Kohlenstoff oder Aluminium/Bor/Kohlenstoff; Flussigphasensintern mit Sinterhilfsmitteln auf der Basis von Seltenen Erden (insbesondere Y03) plus Al203 und/oder AlN.
Ggf. können die Sinterkörper noch durch Druckbeaufschlagung nachverdichtet werden.
Bei SiSiC wird ein poröser Formkörper aus SiC (Porosität ca 20%) mit flüssigem Silicium, also bei Temperaturen über 1400° C, infiltriert. Alles oberflächlich anhaftende Eisen, Nickel, Cobalt sollte dort mit dem Siliciu überschuß zu siliciumreichen, also unmagnetischen Siliciden (z.B. FeSi2) , reagieren. Der Befund in Fig. 1 bestätigt diese Annahme, denn SiSiC erweist sich dort trotz einer sehr hohen Fe + Ni + Co-
Dotierung von 287 ppm als fast unmagnetisch. Damit benötigt man bei SiSiC nur eine vergleichsweise geringe Reinigung des Ausgangsmaterials, um diesen Sinterkörper vollständig unmagnetisch zu erhalten. Die erfindungsgemäßen SiC-Sinterkörper eignen sich insbesondere als Substrat für Festplattenspeicher oder als Substrat für Schreib-Lese-Köpfe .
Die folgenden Beispiele dienen der weiteren Erläuterung der Erfindung.
Beispiele
Es wird ein Basisprozess beschrieben, der für alle Beispiele gültig ist und in dem entsprechend Tabelle 1 die jeweiligen Sinteradditive eingesetzt werden. Der jeweilige Sinterprozess kann ebenfalls aus Tabelle 1 entnommen werden.
Basisprozess :
a) Alpha-SiC Sinterpulver mit einer spezifischen Oberfläche von 12 m2/gr und einer mittleren Teilchengröße von 0,7 μm wird in einem Dissolverrührer mit einem organischen Binder (z.B. PVA) sowie mit wasserlöslichen Kohlenstoff-spendern wie Zucker oder Stärke und weiterhin mit einem Presshilfsmittel (Fettsäurederivat) und mit den entsprechenden Sinteradditiven gemäß Tabelle 1 intensiv nass vermischt. Die Sinteradditive haben dabei folgende Kornfeinheit: AlN D50 = 1,5 μm YAG D50 = 1,5 μm Y203 D50 = 1,5 μm Bor < 1 μm (amorph)
Für erfindungsgemäße Beispiele (sie sind in Tab. 2 und Fig. 1 nicht wiedergegeben, liegen aber alle unter 1,2, memu/cm3), wird das SiC-Ausgangspulver speziell von Eisen, Kobalt und Nickel gereinigt, so daß gilt: Fe < 10 ppm, Ni < 3 ppm, Co < 1 ppm. Dazu wird das SiC-Ausgangspulver längere Zeit (2 Tage) in
Salzsäure bei pH 0-1 gekocht und anschließend in einer Vielzahl von Zyklen (10-15) bis zum isoelektrischen Punkt ausgewaschen. Die Vergleichsbeispiele sind die in Tab. 2 und Fig.l wiedergegebenen EKasic® D, EKasic® T und EKasic® BM Sinterkörper (käuflich erhältlich bei Wacker-Chemie GmbH, München) sowie die namentlich in Fig. 1 nicht benannten aber in Tab. 2 aufgezählten Sinterkörper BM-A2 , BM-P2, BM-C2, BM-Q, Vers-B22, BM-02 (alle EKasic® BM) . Sie haben einen Restmagnetismus >1,2 memu/cm3. Das Ausgangsmaterial wurde weniger intensiv und weniger arbeitsaufwendig gereinigt. Insbesondere wurde die Salzsäure nicht erhitzt und es wurde mit weniger Säureüberschuß gefahren. Dadurch reduzierte sich die Zahl der anschließenden Aufwaschungen auf einige wenige.
Die Vergleichsbeispiele Hexoloy SA und SiC/C&C in Fig.l sind weitere Bestätigungen für den Zusammenhang zwischen Reinheit und magnetischen Eigenschaften.
Die Probe SiSiC in Fig.l ist ein Beleg dafür, daß es mit einem Si-Überschuß im Sinterkörper gelingt, die Eisen-, Kobalt- oder Nickelverunreinigung in eine siliciumr eiche und damit unmagnetische Verbindung zu bringen.
b) Die homogenisierte Mischung wird dann in einem Sprühtrockner getrocknet, wobei ein rieselfähiges Pulver anfällt.
Typische Zusatzmengen: Sinteradditive: siehe Tabelle 1
Kohlenstoff: entsprechend Tabelle 1, jedoch abhängig vom Sauerstoff gehalt des SiC-Sinterpulvers . Binder /Presshilfsmittel: jeweils 1-4 %
c) Das Pulver wird entweder in einer Gummihülle bei ca. 1200 Bar kaltisostatisch verpresst oder in einer Trockenpresse verdichtet . Nach diesen Prozessen liegt eine Dichte von ca. 60% vor.
d) Dann wird der verdichtete Pulverpressling grünbearbeitet und anschließend bei höherer Temperatur (z.B. 700°C) entbindert. e) Der nächste Schritt ist das Sintern über einen Zeitraum von 0,5 bis zu einigen Stunden bei den in Tabelle 1 angegebenen Temperaturen und Drucken.
f) Zum Schluß wird eine kleine Probe von z.B. 1x1x0,1 cm aus dem Sinterkörper herausgeschnitten und in einem „Vibrating Sample Magnetometer,, auf seine magnetischen Eigenschaften hin untersucht .
Die Meßergebnisse sind in Tab. 2 und Fig. 1 wiedergegeben. Dabei sind EKasic® BM, EKasic® D, EKasic® T und SiC/C&C nach dem beschriebenen Basisprozess behandelt worden. Hexoloy SA ist von der Firma Carborundum bezogen, Der Verunreinigungsgehalt (Fe + Ni + Co) wurde analytisch ermittelt. Die Einwaage von 0,7 % Bor wurde der Homepage von Carborundum entnommen .
Tab.
Figure imgf000015_0001
BM-A2 , BM-P2 , BM-C2 , BM-Q, Vers-B22 , BM-02 : verschiedene
EKasic® BM-Proben
SiC/CC: SiC-Sinterkörper käuflich erhältlich beim französischen
Werk der Wacker Ceramics in Bazet.
EKasic® D: SiC-Sinterkörper käuflich erhältlich bei Wacker- Chemie GmbH (München) , EKasic® T: SiC-Sinterkörper käuflich erhältlich bei Wacker-
Chemie GmbH (München) ,
EKasic® BM: SiC-Sinterkörper käuflich erhältlich bei Wacker-
Chemie GmbH (München) ,
Hexoloy SA: SiC Sinterkörper käuflich erhältlich bei der amerikanischen Firma Carborundum
SiSiC: flüssigphasengesintertes SiC,

Claims

Patentansprüche
1. Keramischer Sinterkörper auf Basis von SiC mit einer Dichte > 95%, der für magnetisch relevante Anwendungen wie beispielsweise Festplattenspeichersubstrat oder Schreib-Lese- Köpfe besonders geeignet ist, dadurch gekennzeichnet, daß er eine Sättigungsmagnetisierung von Ms <'1,2 memu/cm3 besitzt und nach einem der folgenden Verfahren hergestellt wurde: a) druckloses Feststoffsintern mit Sinterhilfsmitteln auf Basis von Al/C, Bor/Kohlenstoff oder
Aluminium/Bor/Kohlenstoff mit oder ohne eine Nachbehandlung durch Heissisostatisches Pressen b) druckbehaftetes Feststoffsintern mit Sinterhilfsmitteln auf Basis Bor/Kohlenstoff oder Aluminium/Bor/Kohlenstoff c) Flussigphasensintern mit Sinterhilfsmitteln auf der Basis von Seltenen Erden (insbesondere Y203) plus Al203 und/oder AlN.
2. Keramischer Sinterkörper gemäß Anspruch 1, dadurch gekennzeichnet, daß er eine Sättigungsmagnetisierung von < 0,6 memu/cm3 besitzt.
3. Keramischer Sinterkörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Gehalt an Fe<10 ppm, an Ni<3 ppm, an Co< lpp ist.
4. Verfahren zur Herstellung eines Sinterkörpers gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein SiC- Sinterpulver mit einem Gehalt an Fe < 10 ppm, an Ni < 3 ppm und an Co < 1 ppm eingesetzt wird.
5. Verwendung eines Sinterkörpers nach einem der Ansprüche 1 bis 5 als Substrat für einen Festplattenspeicher.
6. Verwendung eines Sinterkörpers nach einem der Anspruch 1 bis 5 als Substrat für einen Schreib-Lese-Kopf .
PCT/EP2002/010521 2001-09-20 2002-09-19 Unmagnetischer sinterkörper auf der basis von sic und seine verwendung WO2003025908A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10146393A DE10146393A1 (de) 2001-09-20 2001-09-20 Unmagnetischer Sinterkörper auf Basis von SiC und seine Verwendung
DE10146393.6 2001-09-20

Publications (2)

Publication Number Publication Date
WO2003025908A2 true WO2003025908A2 (de) 2003-03-27
WO2003025908A3 WO2003025908A3 (de) 2003-09-12

Family

ID=7699688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/010521 WO2003025908A2 (de) 2001-09-20 2002-09-19 Unmagnetischer sinterkörper auf der basis von sic und seine verwendung

Country Status (2)

Country Link
DE (1) DE10146393A1 (de)
WO (1) WO2003025908A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018061778A1 (ja) * 2016-09-27 2019-09-12 北陸成型工業株式会社 プラズマ処理装置用炭化ケイ素部材及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0419271A2 (de) * 1989-09-22 1991-03-27 The Carborundum Company Siliciumcarbidkörper mit grosser Zähigkeit und Bruchfestigkeit und Verfahren zu seiner Herstellung
US5480695A (en) * 1994-08-10 1996-01-02 Tenhover; Michael A. Ceramic substrates and magnetic data storage components prepared therefrom
US6217969B1 (en) * 1997-08-27 2001-04-17 Bridgestone Corporation Sputtering target disk

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312954A (en) * 1975-06-05 1982-01-26 Kennecott Corporation Sintered silicon carbide ceramic body
EP0126790B1 (de) * 1983-05-27 1986-09-03 Ibm Deutschland Gmbh Zusammengesetzte Magnetplatte
US4738885A (en) * 1986-02-24 1988-04-19 Kyocera Corporation Magnetic disk, substrate therefor and process for preparation thereof
US5302561A (en) * 1993-03-11 1994-04-12 Cercom, Inc. Monolithic, fully dense silicon carbide mirror and method of manufacturing
US5487931A (en) * 1993-12-02 1996-01-30 Annacone; William R. Rigid disc substrate comprising a central hard core substrate with a hard, thermally and mechanically matched overlying smoothing layer and method for making the same
US5770324A (en) * 1997-03-03 1998-06-23 Saint-Gobain Industrial Ceramics, Inc. Method of using a hot pressed silicon carbide dummy wafer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0419271A2 (de) * 1989-09-22 1991-03-27 The Carborundum Company Siliciumcarbidkörper mit grosser Zähigkeit und Bruchfestigkeit und Verfahren zu seiner Herstellung
US5480695A (en) * 1994-08-10 1996-01-02 Tenhover; Michael A. Ceramic substrates and magnetic data storage components prepared therefrom
US6217969B1 (en) * 1997-08-27 2001-04-17 Bridgestone Corporation Sputtering target disk

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE INSPEC [Online] THE INSTITUTION OF ELECTRICAL ENGINEERS, STEVENAGE, GB; 27. Juni 2001 (2001-06-27) S.J.PEARTON ET AL.: "Magnetism in SiC implanted with high doses of Fe and Mn" Database accession no. 7358000 XP002228610 & S.J.PEARTON: "Magnetism in SiC implanted with high doses of Fe and Mn" JOURNAL OF ELECTRONIC MATERIALS., Bd. 31, Nr. 5, Mai 2002 (2002-05), Seiten 336-339, XP008012917 WARRENDALE, PA., US *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018061778A1 (ja) * 2016-09-27 2019-09-12 北陸成型工業株式会社 プラズマ処理装置用炭化ケイ素部材及びその製造方法
EP3521264A4 (de) * 2016-09-27 2020-05-27 Hokuriku Seikei Industrial Co., Ltd. Siliciumcarbidelement für plasmabehandlungsvorrichtung und verfahren zur herstellung davon
TWI737801B (zh) 2016-09-27 2021-09-01 日商北陸成型工業股份有限公司 電漿處理裝置用碳化矽構件及其製造方法

Also Published As

Publication number Publication date
DE10146393A1 (de) 2003-04-17
WO2003025908A3 (de) 2003-09-12

Similar Documents

Publication Publication Date Title
EP1131830B1 (de) Magnetkern, der zum einsatz in einem stromwandler geeignet ist, verfahren zur herstellung eines magnetkerns und stromwandler mit einem magnetkern
DE69934868T2 (de) Magnetischer mehrschichtsensor
DE112016003688T5 (de) Seltenerddauermagnet und Verfahren zur Herstellung desselben
EP2538235B1 (de) Magnetostriktives Schichtsystem
DE102016005190A1 (de) Magnetische Tunnelwiderstandsvorrichtung (TMR) mit Magnesiumoxid-Tunnelsperrschicht und freier Schicht mit Einfügungsschicht
US6074707A (en) Method of producing magnetoresistive element
DE60314790T2 (de) Gesinterte Cordierit-Keramik und Verfahren zur Herstellung derselben
DE10140043B4 (de) Schichtensystem mit erhöhtem magnetoresistiven Effekt sowie Verwendung desselben
WO2018036976A1 (de) Keramikmaterial, bauelement und verfahren zur herstellung des bauelements
DE2445988C3 (de) Halbleiter-Magnetkopf
DE112019006539T5 (de) Austauschgekoppelter Film und Magnetoresistives Element sowie damit ausgestattete Magnetismus-Erfassungsvorrichtung
WO2003025908A2 (de) Unmagnetischer sinterkörper auf der basis von sic und seine verwendung
DE2148554A1 (de) Verfahren zur Herstellung eines polykristallinen Ferritkoerpers
DE102011008704A1 (de) Dünnfilm-Magnetsensor und Verfahren zu seiner Herstellung
DE112022000092T5 (de) Magnetooptisches material und verfahren zur herstellung hiervon
Park et al. Cross-flux effect as a vortex pinning process in grain-oriented YBa 2 Cu 3 O 7
Li Grain size effects on magnetic properties and core process of recording head ferrites
DE3334324A1 (de) Eisenoxidmagnetfilm und verfahren zu seiner herstellung
DE4120244C2 (de) Gleitmaterial für einen Magnetkopf
DE1239606B (de) Verfahren zur Herstellung von ferromagnetischen Kernen mit weitgehend rechteckfoermiger Hysteresisschleife
DE69937921T2 (de) Anwendung von einem Magnetowiderstand mit geordneter Doppelperovskitestruktur und deren Herstellungsverfahren
KR100399017B1 (ko) 강유전체와 강자성체의 복합체 및 그 제조 방법
DE10132505C2 (de) Keramischer Formkörper aus Siliciumcarbid, Verfahren zu seiner Herstellung und seine Verwendung
Lemke et al. Influence of preparation conditions on the properties of sputtered Nd Fe B films
DE4235874C2 (de) Magnetkopf mit hoher Verschleißfestigkeit und nichtmagnetisches Substrat für den Magnetkopf

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DK DZ EC EE ES FI GB GD GE GH GM HR ID IL IN IS JP KE KG KP KR KZ LC LK LS LT LU LV MA MD MG MK MN MW MZ NO NZ OM PH PL PT RO RU SD SE SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP