WO2003025503A1 - Vibratory gyroscopic rate sensor - Google Patents
Vibratory gyroscopic rate sensor Download PDFInfo
- Publication number
- WO2003025503A1 WO2003025503A1 PCT/GB2002/004056 GB0204056W WO03025503A1 WO 2003025503 A1 WO2003025503 A1 WO 2003025503A1 GB 0204056 W GB0204056 W GB 0204056W WO 03025503 A1 WO03025503 A1 WO 03025503A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mode
- axis
- resonator
- response
- ring
- Prior art date
Links
- 230000033001 locomotion Effects 0.000 claims abstract description 26
- 230000000295 complement effect Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000009966 trimming Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/56—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
- G01C19/567—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode
- G01C19/5677—Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using the phase shift of a vibration node or antinode of essentially two-dimensional vibrators, e.g. ring-shaped vibrators
Definitions
- This invention relates to rate sensors for sensing applied rate about two axes.
- the use of ring shaped resonators in two axis Coriolis rate sensors is well known. Examples of such devices and their mode of operation are described in GB 2335273 and GB 2318184.
- the devices described in GB 2335273 make use of a single out of plane cosN ⁇ vibration mode (where N is the mode order) in combination with a degenerate pair of in plane sin (N+1) ⁇ /cos (N+1) ⁇ vibrations modes.
- the out of plane cosN ⁇ mode acts as the primary carrier mode which is typically maintained at a fixed vibration amplitude.
- Coriolis forces are induced which couple energy into the in plane sin (N+1 ) ⁇ /cos (N+1 ) ⁇ modes.
- the amplitude of the induced in plane response mode motion is directly proportional to the applied rotation rate.
- the two axis rate sensor designs described in GB 2318184 make use of a single in plane cosN ⁇ vibration mode in combination with a degenerate pair of out of plane sin (N+1 ) ⁇ /cos (N+1 ) ⁇ vibration modes.
- the in plane cosN ⁇ mode acts as the primary carrier mode which is typically maintained at a fixed vibration amplitude.
- Coriolis forces are induced which couple energy into the out of plane sin (N+1 ) ⁇ /cos (N+1 ) ⁇ modes.
- the amplitude of the induced out of plane response mode motion is directly proportional to the applied rotation rate.
- the carrier and the two response mode frequencies are required to be nominally identical. With these frequencies accurately matched the amplitude of the response mode vibration is amplified by the mechanical quality factor, Q, of the structure. This inevitably makes the construction tolerances more stringent. In practice, it may be necessary to fine- tune the balance of the vibrating structure or resonator by adding or removing material at appropriate points. This adjusts the stiffness of mass parameters for the modes and thus differentially shifts the mode frequencies. Where these frequencies are not matched the Q amplification does not occur and the pick- offs must be made sufficiently sensitive to provide adequate gyroscope performance.
- any given pair of in or out of plane sinN ⁇ /cosN ⁇ modes will have identical frequencies for any value of N.
- This degeneracy may be perturbed due to the requirement for the leg structures which support the ring. These have the effect of point spring masses acting at the point of attachment to the ring which will alter the modal mass and stiffness.
- the number and spacing of the support legs is such that the symmetry of the response mode pair is maintained. The stated condition to achieve this requirement is that the number of legs, L, is given by:
- N is the response mode order.
- These legs are set at an angular separation of 90°/N.
- the resonator dimensions are set in order to match the carrier mode frequency to that of the response mode pair. Matching of the frequency of the second complementary mode of the carrier mode pair is not required.
- These support legs have a linear part 9' attached to the inner circumference of the ring 5 extending radially towards the common axis 8, a second linear part 9" extending from a central hub away from the central axis 8 and radially displaced from the first part.
- the first and second part are connected by an arcuate section 9'" concentric with the ring 5.
- the three parts will be integrally formed. It will be understood by those skilled in the art that other leg designs can be employed (e.g. S shaped or C shaped structures) which provide the same function in supporting the ring structure. Additionally these legs may be attached either internally or externally to the ring structure.
- the radial and tangential stiffness of the legs should be significantly lower than that of the ring itself so that the modal vibration is dominated by the ring structure.
- the radial stiffness is largely determined by the length of the arcuate segment 9'" of the leg.
- the straight segments 9' and 9" of the leg dominate the tangential stiffness.
- the overall length of the leg structure largely determines the out of plane by stiffness. Maintaining the ring to leg compliance ratio, particularly for the radial stiffness, for this design of leg becomes increasingly difficult as the arc angle of the leg structure is restricted by the proximity of the adjacent legs.
- the structures described in the prior art may be fabricated in a variety of materials using a number of processes. Where such devices are fabricated from metal these may be conveniently machined to high precision using wire erosion techniques to achieve the accurate dimensional tolerancing required. This process involves sequentially machining away material around the edges of each leg and the ring structure. The machining time, and hence production cost, increases in proportion to the number of legs. The number of legs hitherto thought to be required increases rapidly with mode order. Minimising the number of legs is therefore highly desirable, particularly for designs employing higher order modes. Similar considerations apply to structures fabricated from other materials using alternative processes.
- a two axis gyroscope including a substantially planar vibrator resonator having a substantially ring or hoop-like structure with inner and outer peripheries extending around a common axis, carrier mode drive means for causing the resonator to vibrate in a cosN ⁇ vibration mode, carrier mode pick-off means for sensing movement of the resonator in response to said carrier mode drive means, x-axis response mode pick-off means for detecting movement of the resonator in response to rotation about the x-axis, x-axis response mode drive means for nulling said motion, y-axis response mode pick-off means for detecting movement of the resonator in response to rotation about the y-axis, y- axis response mode drive means for nulling said motion, and support means for flexibly supporting the resonator and for allowing the resonator to vibrate relative to the support means in response to the drive means and to applied
- L N/K where K is an integer and L>2 and N is the carrier mode order.
- L ⁇ 4 x N as this simplifies the manufacturing process.
- Each support beam may comprise first and second linear portions extending from opposite ends of an arcuate portion.
- the support beams are substantially equi-angularly spaced.
- the support means includes a base having a projecting boss, with the inner periphery of the substantially ring or hoop-like structure to the projecting boss so that the ring or hoop-like structure is spaced from the base.
- the total stiffness of the support beams is less than that of the ring or hoop-like structure.
- the formulae defined above have been obtained as a result of a detailed analysis of the dynamics of the ring or hoop-like structure including the effects of leg motion.
- the present invention may provide increased design flexibility allowing greater leg compliance (relative to the ring) whilst employing increased leg dimensions (in the plane of the ring). Such designs may exhibit reduced sensitivity to dimensional tolerancing effects and allow more economical fabrication.
- Figure 1 is a plan view of a vibrating structure gyroscope not according to the invention, having twelve support legs;
- Figure 2 shows in plan view a two axis rate sensor according to the present invention
- Figure 3 is an edge view of a detail of the embodiment of Figure 2
- Figure 4 is a plan view of a vibrating structure (resonator) having four support legs according to the present invention
- Figure 5A shows diagrammatically an in plane Cos 2 ⁇ mode vibration in a symmetric resonator or vibrating structure acting as a carrier mode
- Figure 5B is a diagrammatic illustration of an in plane sin 2 ⁇ mode acting as a response mode
- Figures 6A and 6B show diagrammatically the alignment of the out of plane cos 2 ⁇ /sin 2 ⁇ modes
- Figure 7 is a plan view of a vibrating structure having three support legs according to the present invention.
- Figure 8 is a plan view of a vibrating structure having six support legs; according to the present invention.
- Figures 9A and 9B show in plane sin 3 ⁇ /cos3 ⁇ modes
- Figures 10A and 10B show diagrammatically alignment of the out of plane sine 3 ⁇ /cos3 ⁇ modes
- Figure 11 is a plan view of a vibrating structure having eight support legs according the present invention.
- Figures 13A and 13B show diagrammatically in plane sin 4 ⁇ /cos 4 ⁇ modes.
- FIGS 14A and 14B show diagrammatically out of plane cos4 ⁇ /sine 4 ⁇ modes.
- Figure 2 shows in plan a sensor for sensing applied rate on two axes. This sensor is described by way of example only, and it should be understood that other arrangements could be used in accordance with the present invention.
- the vibrating structure 5 has a substantially planar substantially ring-like shape having an outer rim 7, legs 9 and a central boss 20 as previously described.
- the structure 5 is located via the boss 20 on an insulating substrate layer 10 which may be made of glass or silicon with an insulating oxide surface layer.
- the vibrating structure 5 is maintained at a fixed voltage with respect to all the conductors which act as the drive and pick-off elements.
- means for vibrating the silicon vibrating structure 5 in a Cos 2 ⁇ carrier mode includes two electrostatic carrier drive elements 22 and two electrostatic carrier mode pick-off elements 23 arranged with the drive elements 22 at 0 ° and 180° and the pick-off elements 23 at 90° and 270° respectively with respect to the outer rim 7 of the vibrating structure 5 and located radially externally of the outer rim 7 adjacent the points of maximum radial motion of the rim 7 when vibrating in the Cos 2 ⁇ mode.
- These carrier mode drive elements 22 are used to set the vibrating structure 5 into oscillation.
- the carrier mode pick-off elements 23 which are located at the carrier mode anti-nodal points, sense the radial motion of the vibrating structure 5.
- the drive elements may be electromagnetic, electrostatic, piezo, thermal or optical in actuation and the vibrating structure 5 motion may be detected using electrostatic, electromagnetic, piezor or optical techniques.
- the means for detecting the rocking mode vibration includes an x axis electrostatic drive element 24, an x axis electrostatic pick-off element 27 located adjacent the outer rim 7 in superimposed relationship therewith at a perpendicular spacing therefrom with the y axis drive element 26, the x axis pick-off element 25, the y axis pick-off element 27 and the x axis drive element 24 being arranged at 0°' 90°, 180° and 270° respectively around the outer rim 7.
- the rocking motion of the x axis rate response mode is detected at the pick-off element 25 located on the surface of the support substrate under the rim 7. This motion is nulled using the x axis drive element 24 similarly located under the opposite side of the rim 7.
- the y axis rate response motion is similarly detected by pick-off element 27 and nulled by drive element 26.
- the various drive and pick-off conductive sites are connected, via tracking 28 laid onto the substrate layer surface 21 , to bond pads 29.
- the drive and pick-off circuitry is then connected to these bond pads.
- a cross-section of the sensor of Figure 2 is shown in Figure 3. This shows the topography of the in plane and surface conductors more clearly.
- N LK
- N LK
- the required mode splitting may be achieved using four support legs at 90° separation as shown in Figure 4.
- Two axis rate sensors may be designed using either of these mode pairs as response modes.
- the points of attachment of the legs to the ring will align directly with the radial anti-nodes of one mode and will coincide with the radial nodes of the complementary mode.
- FIGS 5A and 5B show the resulting alignment of the plane sin2 ⁇ /cos2 ⁇ modes with respect to the resonator structure.
- the points of attachment of the legs will coincide with anti-nodes of the out of plane motion of one mode and the nodes of the complementary mode.
- Figures 6A and 6B show the resulting alignment of the out of plane sin2 ⁇ /cos2 ⁇ modes with respect to the resonator structure.
- the matching of the carrier mode frequency with the desired sin (N+1) ⁇ /cos (N+1) ⁇ response mode frequencies is typically achieved by adjusting the depth (z-axis dimension) of the ring. This shifts the frequencies of the out of plane modes but leaves the in plane mode frequencies substantially constant.
- the required mode splitting may be achieved using three support legs with 120 ° separation or with six support legs at 60° separation as show in Figures 7 and 8 respectively.
- the points of attachment of the legs to the ring will align directly with the radial anti-nodes of one mode and will coincide with the radial nodes of the complementary mode.
- Figures 13a and 13b show the resulting alignment for the out of plane sin3 ⁇ /cos3 ⁇ modes with respect to the resonator structure.
- the required mode splitting may be achieved by four support legs at 90° separation or with eight support legs at 45° separation as shown in Figures 11 and 12.
- the points of attachment of the legs to the ring will align directly with the radial anti-nodes of one mode and will coincide with the radial nodes of the complementary mode.
- Figures 14A and 13B show the resulting alignment for the out of plane sin4 ⁇ /cos4 ⁇ modes with respect to the resonator structure.
- the drive and pick-off elements are conveniently located directly above and/or below the anti-nodes of the out of plane motion.
- the drive and pick-off elements are conveniently located adjacent to the radial anti-nodes in the plane of the ring.
- the optimum alignment for the drive and pick-off elements is therefore achieved without the requirement for any trimming or adjustment of the mode positions.
- tolerancing affects in the fabrication process may lead to small imbalances in cosn ⁇ mode frequencies. These may be corrected, using mechanical trimming techniques such as described in GB-A-2292609 which describes a trimming procedure suitable for use with in plane sin N ⁇ /cosN ⁇ modes. It is likely that such techniques will need to be applied to the response modes for two axis devices. Due to the large imbalance between the carrier mode and its compliment for the structures described here, the mode alignment will be unaffected by such trimming procedures.
- the resonator designs shown in Figures 4,7,8,11 and 12 provide structures suitable for use in two axis rate sensors. These designs provide a carrier mode whose position is fixed with respect to the resonator structure which is isolated in frequency from its complementary mode. This is generally achieved using a number of support leg structures which is reduced from those of the prior art. This provides increased design flexibility allowing the ratio between the combined leg stiffness and the ring stiffness to be maintained at required value using increased leg dimensions (in the plane of the ring). Such designs exhibit reduced sensitivity to dimensional tolerancing effects and allow for more economical fabrication, particularly for structures machined from metals.
- the combined stiffness of the support legs is required to less than that of the ring. This ensures that the modal vibration is dominated by the ring structure and helps to isolate the resonator from the effects of thermally induced stresses coupling in via the hob 20 of the structure, which will adversely affect performance.
- the required leg to ring compliance ratio may be maintained by using longer support leg structures of increased width.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Gyroscopes (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003529087A JP4774497B2 (en) | 2001-09-14 | 2002-09-06 | Vibration gyroscope rate sensor |
US10/475,015 US6978674B2 (en) | 2001-09-14 | 2002-09-06 | Vibratory gyroscopic rate sensor |
EP02755327A EP1427987B1 (en) | 2001-09-14 | 2002-09-06 | Vibratory gyroscopic rate sensor |
KR10-2004-7003779A KR20040031091A (en) | 2001-09-14 | 2002-09-06 | Vibratory gyroscopic rate sensor |
AT02755327T ATE552474T1 (en) | 2001-09-14 | 2002-09-06 | VIBRATION GYRO SENSOR |
CA002458601A CA2458601A1 (en) | 2001-09-14 | 2002-09-06 | Vibratory gyroscopic rate sensor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0122256.1A GB0122256D0 (en) | 2001-09-14 | 2001-09-14 | Vibratory gyroscopic rate sensor |
GB0122256.1 | 2001-09-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2003025503A1 true WO2003025503A1 (en) | 2003-03-27 |
WO2003025503A9 WO2003025503A9 (en) | 2003-12-18 |
Family
ID=9922111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2002/004056 WO2003025503A1 (en) | 2001-09-14 | 2002-09-06 | Vibratory gyroscopic rate sensor |
Country Status (9)
Country | Link |
---|---|
US (1) | US6978674B2 (en) |
EP (1) | EP1427987B1 (en) |
JP (1) | JP4774497B2 (en) |
KR (1) | KR20040031091A (en) |
CN (1) | CN1610819A (en) |
AT (1) | ATE552474T1 (en) |
CA (1) | CA2458601A1 (en) |
GB (1) | GB0122256D0 (en) |
WO (1) | WO2003025503A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8375792B2 (en) | 2008-03-25 | 2013-02-19 | Sumitomo Precision Products Co., Ltd. | Vibratory gyroscope using piezoelectric film |
US8601872B2 (en) | 2008-03-25 | 2013-12-10 | Sumitomo Precision Products Co., Ltd. | Vibratory gyroscope using piezoelectric film |
US8756994B2 (en) | 2008-12-09 | 2014-06-24 | Murata Manufacturing Co., Ltd. | Vibrating gyro device and manufacturing method therefor |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7437253B2 (en) * | 2004-07-29 | 2008-10-14 | The Boeing Company | Parametrically disciplined operation of a vibratory gyroscope |
US7434465B1 (en) * | 2006-08-07 | 2008-10-14 | Litton Systems Inc. | Ring resonator gyroscope with cylindrical ring suspension |
JP5142623B2 (en) * | 2007-08-10 | 2013-02-13 | 住友精密工業株式会社 | Two-dimensional optical scanning device |
US7992438B2 (en) * | 2007-11-28 | 2011-08-09 | Chung Shan Institute Of Science And Technology, Armaments Bureau, M.N.D. | Multiaxial gyroscope |
CN101910790A (en) * | 2008-01-29 | 2010-12-08 | 住友精密工业株式会社 | Vibrating gyroscope using piezoelectric film and method for manufacturing the same |
JP5523755B2 (en) * | 2009-02-11 | 2014-06-18 | 住友精密工業株式会社 | Vibrating gyroscope using piezoelectric film and method for manufacturing the same |
US9091544B2 (en) * | 2010-11-05 | 2015-07-28 | Analog Devices, Inc. | XY-axis shell-type gyroscopes with reduced cross-talk sensitivity and/or mode matching |
US9709595B2 (en) | 2013-11-14 | 2017-07-18 | Analog Devices, Inc. | Method and apparatus for detecting linear and rotational movement |
US9599471B2 (en) | 2013-11-14 | 2017-03-21 | Analog Devices, Inc. | Dual use of a ring structure as gyroscope and accelerometer |
CN103629229A (en) * | 2013-11-18 | 2014-03-12 | 华南理工大学 | Large-flexibility rotary hinge with annularly and uniformly distributed semi-ring sheets |
US10746548B2 (en) | 2014-11-04 | 2020-08-18 | Analog Devices, Inc. | Ring gyroscope structural features |
US10571267B1 (en) * | 2015-09-01 | 2020-02-25 | Hrl Laboratories, Llc | High stability angular sensor |
GB2565298B (en) | 2017-08-07 | 2022-03-16 | Atlantic Inertial Systems Ltd | Angular rate sensors |
GB2567479B (en) * | 2017-10-13 | 2022-04-06 | Atlantic Inertial Systems Ltd | Angular rate sensors |
GB2570732B (en) * | 2018-02-06 | 2023-01-11 | Atlantic Inertial Systems Ltd | Angular rate sensors |
US11656077B2 (en) | 2019-01-31 | 2023-05-23 | Analog Devices, Inc. | Pseudo-extensional mode MEMS ring gyroscope |
CN109900262B (en) * | 2019-04-08 | 2021-08-10 | 瑞声科技(新加坡)有限公司 | Gyroscope |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0836073A2 (en) * | 1996-10-08 | 1998-04-15 | British Aerospace Public Limited Company | A rate sensor |
WO1999047890A1 (en) * | 1998-03-14 | 1999-09-23 | Bae Systems Plc | A gyroscope |
US6282958B1 (en) * | 1998-08-11 | 2001-09-04 | Bae Systems Plc | Angular rate sensor |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2056580T3 (en) * | 1990-05-18 | 1994-10-01 | British Aerospace | INERTIAL SENSORS. |
GB2276976B (en) | 1993-04-07 | 1996-10-23 | British Aerospace | Method of manufacturing a motion sensor |
JPH08271258A (en) * | 1995-03-28 | 1996-10-18 | Taiyo Yuden Co Ltd | Support structure of annular vibrator |
US5817940A (en) * | 1996-03-14 | 1998-10-06 | Aisin Seiki Kabishiki Kaisha | Angular rate detector |
JPH10115526A (en) * | 1996-10-15 | 1998-05-06 | Ngk Insulators Ltd | Vibration gyro sensor and manufacture of vibration gyro sensor |
GB2322196B (en) * | 1997-02-18 | 2000-10-18 | British Aerospace | A vibrating structure gyroscope |
GB9722865D0 (en) | 1997-10-29 | 1997-12-24 | British Tech Group | Multi-axis gyroscope |
GB2338781B (en) | 1998-03-14 | 2002-04-03 | British Aerospace | A gyroscope |
US6151964A (en) * | 1998-05-25 | 2000-11-28 | Citizen Watch Co., Ltd. | Angular velocity sensing device |
JP2000009473A (en) * | 1998-06-22 | 2000-01-14 | Tokai Rika Co Ltd | Biaxial yaw rate sensor and its manufacturing method |
US6272925B1 (en) * | 1999-09-16 | 2001-08-14 | William S. Watson | High Q angular rate sensing gyroscope |
GB0001294D0 (en) | 2000-01-20 | 2000-03-08 | British Aerospace | Multi-axis sensing device |
GB0001775D0 (en) | 2000-01-27 | 2000-03-22 | British Aerospace | Improvements relating to angular rate sensor devices |
-
2001
- 2001-09-14 GB GBGB0122256.1A patent/GB0122256D0/en not_active Ceased
-
2002
- 2002-09-06 KR KR10-2004-7003779A patent/KR20040031091A/en not_active Application Discontinuation
- 2002-09-06 JP JP2003529087A patent/JP4774497B2/en not_active Expired - Fee Related
- 2002-09-06 WO PCT/GB2002/004056 patent/WO2003025503A1/en active Application Filing
- 2002-09-06 US US10/475,015 patent/US6978674B2/en not_active Expired - Fee Related
- 2002-09-06 EP EP02755327A patent/EP1427987B1/en not_active Expired - Lifetime
- 2002-09-06 CA CA002458601A patent/CA2458601A1/en not_active Abandoned
- 2002-09-06 AT AT02755327T patent/ATE552474T1/en active
- 2002-09-06 CN CN02820441.7A patent/CN1610819A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0836073A2 (en) * | 1996-10-08 | 1998-04-15 | British Aerospace Public Limited Company | A rate sensor |
WO1999047890A1 (en) * | 1998-03-14 | 1999-09-23 | Bae Systems Plc | A gyroscope |
US6282958B1 (en) * | 1998-08-11 | 2001-09-04 | Bae Systems Plc | Angular rate sensor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8375792B2 (en) | 2008-03-25 | 2013-02-19 | Sumitomo Precision Products Co., Ltd. | Vibratory gyroscope using piezoelectric film |
US8601872B2 (en) | 2008-03-25 | 2013-12-10 | Sumitomo Precision Products Co., Ltd. | Vibratory gyroscope using piezoelectric film |
US8756994B2 (en) | 2008-12-09 | 2014-06-24 | Murata Manufacturing Co., Ltd. | Vibrating gyro device and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
CN1610819A (en) | 2005-04-27 |
US20040134278A1 (en) | 2004-07-15 |
CA2458601A1 (en) | 2003-03-27 |
ATE552474T1 (en) | 2012-04-15 |
US6978674B2 (en) | 2005-12-27 |
KR20040031091A (en) | 2004-04-09 |
JP4774497B2 (en) | 2011-09-14 |
EP1427987A1 (en) | 2004-06-16 |
WO2003025503A9 (en) | 2003-12-18 |
GB0122256D0 (en) | 2001-11-07 |
JP2005529306A (en) | 2005-09-29 |
EP1427987B1 (en) | 2012-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1427988B1 (en) | Vibratory gyroscopic rate sensor | |
US6978674B2 (en) | Vibratory gyroscopic rate sensor | |
JP4375818B2 (en) | Gyroscope | |
CA2217683C (en) | A rate sensor for sensing a rate on at least two and preferably three axes | |
EP1425554B1 (en) | Vibratory gyroscopic rate sensor | |
KR100594957B1 (en) | An angular rate sensor | |
WO1999047891A1 (en) | A two axis gyroscope | |
US20040118204A1 (en) | Vibratory gyroscopic rate sensor | |
US20040118205A1 (en) | Vibratory gyroscopic rate sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 10475015 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003529087 Country of ref document: JP |
|
COP | Corrected version of pamphlet |
Free format text: PUBLISHED INTERNATIONAL SEARCH REPORT (5 PAGES) REPLACED BY CORRECT INTERNATIONAL SEARCH REPORT (5 PAGES) |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2458601 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020047003779 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002755327 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20028204417 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2002755327 Country of ref document: EP |