WO2003021627A1 - Cathode-ray tube and display apparatus - Google Patents
Cathode-ray tube and display apparatus Download PDFInfo
- Publication number
- WO2003021627A1 WO2003021627A1 PCT/JP2002/007966 JP0207966W WO03021627A1 WO 2003021627 A1 WO2003021627 A1 WO 2003021627A1 JP 0207966 W JP0207966 W JP 0207966W WO 03021627 A1 WO03021627 A1 WO 03021627A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- electrode plate
- electrode
- ray tube
- focus
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J29/00—Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
- H01J29/46—Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
- H01J29/48—Electron guns
- H01J29/51—Arrangements for controlling convergence of a plurality of beams by means of electric field only
Definitions
- the present invention relates to a cathode ray tube provided with an electron gun with a compassence electrode, and a display device using the same.
- a display device with a larger screen size is demanded in order to provide viewers with a large screen that has a sense of reality and a powerful image.
- a large display device with a screen size equivalent to a 40-inch has been realized.
- such a large-sized display device weighs more than 100 Kg, which makes it difficult to install it in a general home. Therefore, a rear-type projector device using a cathode ray tube has been used as a device that can easily enjoy a large screen even in ordinary households.
- the rear-type projector uses three single-color cathode ray tubes corresponding to red, green, and blue, respectively, and enlarges and projects the image projected on each cathode ray tube on a transmission screen with a lens. I do. As a result, a color image obtained by synthesizing the video corresponding to each color is displayed on the screen, so that the synthesized image (color image) can be viewed through the transmissive screen.
- the screen size of a single-color cathode ray tube is as small as 7 to 9 inches, and the image projected on this small screen is enlarged and projected on a large screen. It is difficult to obtain high brightness. Therefore, one of the methods to improve brightness Thus, a method has been proposed to increase the number of electron beams in a monochromatic cathode ray tube from one to a plurality.
- the method described in the above (1) has a disadvantage that the spot shape of the electron beam is distorted or the focus is deteriorated in the peripheral portion of the screen due to the distortion of the deflection magnetic field.
- the present invention has been made to solve the above problems, and its main purpose is to provide a cathode ray tube capable of performing dynamic convergence correction without causing spot distortion and focus deterioration. It is an object of the present invention to provide a display device using the same. Disclosure of the invention
- the cathode ray tube according to the present invention deflects the two electron beams that have passed through the main focus lens, and has an inner electrode plate to which a first voltage is applied, and a first voltage facing the inner electrode plate and having a first voltage.
- An electron gun having an outer electrode plate to which a lower second voltage is applied, and a parabolic compensence voltage synchronized with the horizontal deflection period and amplitude-modulated with the vertical deflection period.
- a voltage applying means for applying a voltage to the outer electrode plate of the comprence electrode uses the cathode ray tube having the above configuration.
- FIG. 1 is a schematic diagram showing an overall configuration of a cathode ray tube according to an embodiment of the present invention.
- FIG. 2 is a waveform diagram of a dynamic focus voltage.
- FIG. 3A to FIG. 3B are diagrams for explaining specific structural examples of the electrostatic coupling.
- FIGS. 4A to 4B are diagrams for explaining another example of the structure of the electrostatic coupling.
- FIG. 5 is a diagram for explaining the deviation of the comparence on the screen.
- FIG. 6 is a diagram for explaining another application example of the present invention.
- FIG. 1 is a schematic diagram showing the overall configuration of a cathode ray tube according to an embodiment of the present invention.
- the main body of the cathode ray tube 1 is constituted by a glass bulb composed of a panel part 2, a funnel part 3 and a neck part 4.
- a fluorescent screen is formed on the inner surface of the panel unit 2 in a predetermined pattern.
- the funnel section 3 is provided with a ground terminal 5.
- a high voltage (anode voltage) is applied to the anode terminal 5 from an anode power supply 6 serving as a high voltage power supply.
- an electron gun 7 is incorporated in the neck 4.
- the electron gun 7 has two force sources 8 and 9 and a plurality of electrodes G 1, G 2, which control the amount, moving speed, orbit, and the like of the electrons (beams) emitted from these force sources 8 and 9. It comprises G 3, G 4, G 5, and a compassence electrode 10.
- Each of the force swords 8 and 9 has a base metal coated or impregnated with an electron-emitting substance, a cylindrical holding member for holding the base metal, and a heater inserted into a cylinder of the holding member. Heat is used to heat the base metal to a predetermined temperature to emit electrons (thermoelectrons).
- These cathodes 8 and 9 are arranged side by side in the Y axis direction which is the vertical axis direction of the screen of the cathode ray tube 1.
- Each of the electrodes G1 to G5 is arranged in series in the central axis direction of the electron gun 7 (the tube axis direction of the cathode ray tube 1), and the first electrode Gl, The second electrode G2, the third electrode G3, the fourth electrode G4, and the fifth electrode G5.
- the comprence electrode 10 is arranged at the tip of the electron gun 7 adjacent to the last electrode G5.
- the compassence electrode 10 has one inner electrode plate 11 and a pair of outer electrode plates 12 arranged outside the inner electrode plate 11 so as to face the inner electrode plate 11. Further, the pair of outer electrode plates 12 are arranged to face each other with the inner electrode plate 11 interposed therebetween.
- the third electrode G3, the fourth electrode G4, and the fifth electrode G5 form a main focus lens (electron lens) on the trajectory of the electron beam.
- a dynamic focus voltage is applied to the fourth electrode G4 by the focus power supply 13 and the dynamic focus signal generator 14, and the third electrode G3 and the A high voltage supplied from the anode power supply 6 via the anode terminal 5 is applied to the fifth electrode G5.
- the dynamic focus voltage is obtained by modulating the focus voltage supplied from the focus power supply 13 with the dynamic focus signal generator 14, and the waveform diagram is shown in FIG.
- the dynamic focus voltage has a parabolic waveform synchronized with the horizontal deflection period (1H), and its amplitude is modulated by the vertical deflection period (IV).
- ⁇ ⁇ in the figure indicates the potential difference in the horizontal deflection cycle
- ⁇ indicates the potential difference in the vertical deflection cycle.
- a high voltage (same potential) as that of the third electrode G 3 and the fifth electrode G 5 is applied to the inner electrode plate 11, and a pair of outer electrode plates 1 For 2, a voltage (hereinafter, referred to as a second voltage) slightly lower than the high voltage (hereinafter, referred to as a first voltage) applied to the inner electrode plate 11 is applied.
- the second voltage applied to the outer electrode plate 12 is divided using two resistors R 1 and R 2.
- a variable resistor VR is connected in series to the resistor R2. This variable resistor VR adjusts the voltage applied to the outer electrode plate 12 so that the two electron beams ⁇ 1 and ⁇ 2 emitted from the power sources 8 and 9 are compared at the center of the screen. It is for doing.
- the cathode ray tube 1 is provided with a voltage applying means for applying the dynamic focus voltage shown in FIG. 2 as a compensating voltage to the outer electrode plate 12 of the convergence electrode 10. It has a configuration.
- This voltage applying means is configured by coupling the fourth electrode G4 and the outer electrode plate 12 with a capacitance C.
- a conductive (metal or the like) having an inner diameter larger than the outer diameter of the fourth electrode G4 is used.
- a cylindrical body 15 is provided, and the fourth electrode G4 is coaxially inserted into the cylindrical body 15 and arranged. Then, the cylindrical body 15 and the outer electrode plate 12 are electrically connected by a lead or the like.
- a capacitance is provided in the gap between the fourth electrode G4 and the cylindrical body 15, so that a state in which the fourth electrode G4 and the outer electrode plate 12 are electrostatically coupled is obtained.
- a dielectric material may be interposed between the fourth electrode G4 and the cylindrical body 15 to have a capacitance.
- a conductive film 17 is formed on the outer surface of one outer electrode plate 12 via an insulating film 16.
- This conductive film 17 is electrically connected to the fourth electrode G4.
- the insulating film 16 has a capacitance at the portion, so that a state where the fourth electrode G4 and the outer electrode plate 12 are electrostatically coupled can be obtained.
- two electron beams E 1 and E 2 each of which has an emission source of each of the power sources 8 and 9, are a main focus lens formed by a third electrode G 3, a fourth electrode G 4, and a fifth electrode G 5. After crossing at the center of, it spreads outward once and enters the comparison electrode 10. At this time, the electron beam E 1 having the force source 8 as the emission source passes between the outer electrode plate 12 and the inner electrode plate 11 at the bottom of FIG. The emitted electron beam E 2 passes between the other outer electrode plate 12 (upper part in FIG. 1) and the inner electrode plate 11.
- the first voltage high voltage
- the second voltage is applied to the pair of outer electrode plates 12.
- the electron beams El and E2 are deflected inward from each other according to the potential difference therebetween.
- the amount of deflection of the electron beams E 1 and E 2 by the comparison electrode 10 increases as the difference (potential difference) between the first voltage and the second voltage increases. Therefore, by appropriately adjusting the voltage applied to the outer electrode plate 12 with the variable resistor VR, the two electron beams E 1 and E 2 can be made to collage at the center of the screen.
- the dynamic focus voltage applied to the fourth electrode G 4 is the same as that of the fourth embodiment.
- a convergence voltage having the following waveform is applied to the outer electrode plate 12.
- the first voltage applied to the inner electrode plate 11 is a fixed voltage
- the second voltage applied to the outer electrode plate 12 is dynamic according to the waveform diagram shown in FIG. Will fluctuate.
- the compassence voltage is applied to the outer electrode plate 12 in the form that the dynamic focus voltage is superimposed on the voltage divided by the resistors R 1 and R 2 and the voltage adjusted by the variable resistor VR.
- the voltage components due to the resistors R 1 and R 2 and the variable resistor VR are kept constant.
- the voltage level changes from the high voltage side to the low voltage side. And then fluctuates from the low pressure side to the high pressure side. In this case, the voltage level becomes the maximum when beam scanning the X-axis end of the screen. Minimum when scanning the intersection with the Y axis.
- the deflection amount (degree of inward) of the electron beams ⁇ 1 and ⁇ 2 due to the convergence electrode 10 becomes smaller as the beam scanning position approaches the X-axis end of the screen.
- the voltage level fluctuates from the high voltage side to the low voltage side and then from the low voltage side to the high voltage side. I do.
- the voltage level becomes maximum when beam scanning is performed at the ⁇ -axis end of the screen, and becomes minimum when beam scanning is performed at an intersection with the X-axis.
- the deflection amount (degree of inward) of the electron beam E l, ⁇ 2 by the compassence electrode 10 becomes smaller as the beam scanning position approaches the ⁇ -axis end.
- the amount of deflection of the two electron beams El, ⁇ 2 at the compensence electrode 10 dynamically changes according to the waveform of the dynamic focus voltage (comparance voltage). Therefore, the two electron beams ⁇ 1 and ⁇ 2 passing through the compar- ence electrode 10 move as the beam scanning position moves away from the center of the screen (the intersection of the X axis and the ⁇ axis). Focus more far away. As a result, dynamic convergence correction is realized, so that the two electronic beams # 1 and # 2 can be concentrated at one point in all areas of the screen.
- the respective electron beams E l and ⁇ 2 pass through the compensence electrode 10
- the respective electron beams E l and ⁇ 2 are deflected without being subjected to the concentration action by the magnetic field,
- the distortion of the beam spot on the screen can be reduced.
- the fourth electrode G 4 and the outer electrode plate 12 are electrostatically coupled to each other, a configuration that can apply a compassence voltage to the outer electrode plate 12 is adopted. There is no need to provide a separate external device for dynamic convergence correction. Therefore, it is possible to significantly reduce costs and power consumption.
- an electron gun of a type in which one electron beam is extracted from one force sword has been described as an example.
- a plurality of electron beams can be extracted from one cathode.
- a so-called multi-beam type electron gun may be used.
- FIG. 6 is a schematic diagram showing an example of application to a trinitron color cathode ray tube.
- This type of color cathode ray tube is composed of three force sources 21 1, 22, and 23 corresponding to red, green, and blue colors, a plurality of electrodes G 1 to G 5, and a compensating electrode 24.
- In-line type electron gun 25 is provided. The three electron beams R, G, and B emitted in an in-line arrangement from the electron gun 25 irradiate the phosphor screen 27 through a blind aperture grill 26.
- Compensation electrode 24 includes a pair of inner electrode plates 28 arranged opposite to each other, and a pair of outer electrode plates 29 arranged outside each inner electrode plate 28 so as to face each other. Have.
- the electron beam R for the green color passes through the space between the inner electrode plate 28 and the outer electrode plate 29 on the lower side in the figure, and the electron beam R for the green color is emitted from the compensence electrode 24 having the above-described configuration.
- G passes between a pair of inner electrode plates 28,
- the electron beam B for blue passes between the other inner electrode plate 28 and the outer electrode plate 29 (upper part of the figure).
- the fourth electrode G4 and the outer electrode plate 29 are coupled with a capacitance C, whereby the dynamic focus voltage applied to the fourth electrode G4 is converted into a dispersion voltage as the outer electrode plate.
- a voltage applying means for applying a parabolic compassence voltage, which is synchronized with the horizontal deflection cycle and amplitude-modulated at the vertical deflection cycle, to the outer electrode plate of the comparence electrode.
- the second voltage applied to the outer electrode plate can be dynamically changed so that the two electron beams can be concentrated at one point in each part (the center, the periphery, etc.) on the screen.
Landscapes
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
- Video Image Reproduction Devices For Color Tv Systems (AREA)
Abstract
A cathode-ray tube capable of performing dynamic convergence correction without distorting a spot or deteriorating focus. The cathode-ray tube deflects two electron beams (E1, E2) which have passed through a main focus lens. A convergence electrode (10) has an inner electrode plate (11) to which a first voltage is applied and an outer electrode plate (12) which opposes to the inner electrode plate and to which a second voltage lower than the first voltage is applied. The cathode-ray tube includes an electron gun (7) having the convergence electrode (10) and a focus electrode (G4) to which parabolic dynamic focus voltage which has been synchronized with the horizontal deflection cycle and amplitude-modulated by the vertical deflection cycle is applied. The focus electrode (G4) and the outer electrode plate (12) of the convergence electrode (10) are coupled by an electrostatic capacity (C), so as to dynamically change the second voltage applied to the outer electrode plate, thereby performing dynamic convergence correction.
Description
明細書 陰極線管及び表示装置 技術分野 Description cathode ray tube and display device
本発明は、 コンパージエンス電極付きの電子銃を備える陰極線管とこ れを用いた表示装置に関する。 背景技術 The present invention relates to a cathode ray tube provided with an electron gun with a compassence electrode, and a display device using the same. Background art
テレビジョン受像機などでは、 大画面で臨場感があり、 しかも迫力あ る映像を視聴者に提供するため、 より画面サイズの大きい表示装置が求 められている。 現状のカラ一陰極線管では 4 0型相当の画面サイズをも つ大型の表示装置も実現されている。 しかし、 このような大型の表示装 置では 1 0 0 K g超の重さになるため、 一般家庭に設置することが困難 となる。 そこで、 一般家庭でも容易に大画面を楽しむことができるもの として、 陰極線管を用いたリァ型プロジェクタ装置が^られている。 In television receivers and the like, a display device with a larger screen size is demanded in order to provide viewers with a large screen that has a sense of reality and a powerful image. With the current color cathode ray tube, a large display device with a screen size equivalent to a 40-inch has been realized. However, such a large-sized display device weighs more than 100 Kg, which makes it difficult to install it in a general home. Therefore, a rear-type projector device using a cathode ray tube has been used as a device that can easily enjoy a large screen even in ordinary households.
リア型プロジェクタ装置においては、 赤, 緑, 青の各色に対応する単 色の陰極線管を 3つ使用して、 各々の陰極線管に映し出された映像をレ ンズで透過型のスクリーンに拡大、 投影する。 これにより、 スクリーン 上には各色に対応する映像を合成したカラーの画像が映し出されるため、 その合成画像 (カラー画像) を透過型のスクリーンを通して見ることが できる。 The rear-type projector uses three single-color cathode ray tubes corresponding to red, green, and blue, respectively, and enlarges and projects the image projected on each cathode ray tube on a transmission screen with a lens. I do. As a result, a color image obtained by synthesizing the video corresponding to each color is displayed on the screen, so that the synthesized image (color image) can be viewed through the transmissive screen.
ところで、 こうしたリア型プロジェクタ装置の場合は、 単色の陰極線 管の画面サイズが 7型〜 9型と小型で、 この小型画面に映し出された映 像を大きなスクリーンに拡大して投影することから、 十分な輝度が得ら れにくいという難点がある。 そこで、 輝度を向上させる手法の一つとし
て、 単色の陰極線管における電子ビームの本数を 1本から複数本に増や す手法が提案されている。 By the way, in the case of such a rear-type projector, the screen size of a single-color cathode ray tube is as small as 7 to 9 inches, and the image projected on this small screen is enlarged and projected on a large screen. It is difficult to obtain high brightness. Therefore, one of the methods to improve brightness Thus, a method has been proposed to increase the number of electron beams in a monochromatic cathode ray tube from one to a plurality.
ところが、 電子ビームの本数を増やすにあたっては、 陰極線管の画面 上で各々の電子ビームを走査したときに、 画面上の全ての領域で電子ビ ームを一点に集中 (コンパージエンス) させる必要がある。 この理由は、 画面上で電子ビームが一点に集中しない、 いわゆるコンパージエンスの ずれが発生すると、 その部分で画像がボケたように見えてしまうためで ある。 そこで、 画面上でのコンパ一ジエンスのずれを補正する技術とし て、 以下の ( 1 ) 〜 (3 ) の手法によるダイナミックコンパージエンス 補正技術が知られている。 However, in order to increase the number of electron beams, when each electron beam is scanned on the screen of the cathode ray tube, it is necessary to concentrate the electron beam at one point in all areas on the screen (compensation ence). is there. The reason for this is that if the electron beam does not concentrate on one point on the screen, that is, if the so-called deviation of the convergence occurs, the image will appear blurred at that point. Therefore, as a technology for correcting the deviation of the comparence on the screen, a dynamic convergence correction technology using the following methods (1) to (3) is known.
( 1 ) 偏向ヨーク(Def lection Yoke)の偏向磁界を、 水平偏向磁界 はピンクッション形に、 垂直偏向磁界はバレル形にそれぞれ歪ませるこ とにより、 ダイナミックコンパージエンス補正を行う方法。 (1) A method for correcting dynamic compensity by deflecting the deflection magnetic field of the deflection yoke, the horizontal deflection magnetic field into a pincushion shape, and the vertical deflection magnetic field into a barrel shape.
( 2 ) 陰極線管にコンパージエンスヨーク(Convergence Yoke)を搭 載し、 このコンパージエンスヨークに補正信号を供給することにより、 ダイナミックコンパージエンス補正を行う方法。 (2) A method of mounting a convergence yoke on a cathode ray tube and supplying a correction signal to the convergence yoke to perform dynamic convergence correction.
( 3 ) 外部トランスによって変調したコンパージエンス電圧を同軸ケ 一ブルにより電子銃のコンパージエンスプレー卜に供給することにより、 ダイナミックコンパージエンス補正を行う方法。 (3) A method of performing dynamic Compensation correction by supplying the Compensation voltage modulated by an external transformer to the Compensation Entry of the electron gun using a coaxial cable.
しかしながら、 上記 ( 1 ) に記述した手法では、 偏向磁界を歪ませる ために、 画面の周辺部で電子ビームのスポッ ト形状が歪んだり、 フォー カスが劣化したりする不具合があった。 However, the method described in the above (1) has a disadvantage that the spot shape of the electron beam is distorted or the focus is deteriorated in the peripheral portion of the screen due to the distortion of the deflection magnetic field.
また、 上記 (2 ) に記述した手法では、 コンパージエンスヨークが形 成する四重極磁界によって電子ビームを偏向させる方式であるため、 補 正量が大きくなる画面の周辺部では、 四重極磁界の影響で電子ビームの スポッ ト形状が歪んだり、 フォーカスが劣化したりする不具合があった。
一方、 上記 (3 ) に記述した手法では、 電子銃のコンパージヱンスプ レートに補正電圧を直接印加するため、 アノード電圧の約 9 5 %ほどの 直流電圧にコンパージエンス補正信号を重畳する必要がある。 そのため、 これを実現する外部トランスにあっては、 高電圧に対する絶縁処理を十 分に施す必要性から非常に高価なものとなってしまう。 Also, in the method described in (2) above, since the electron beam is deflected by the quadrupole magnetic field formed by the compensence yoke, the quadrupole at the periphery of the screen where the correction amount is large is used. The spot shape of the electron beam was distorted and the focus deteriorated due to the effect of the magnetic field. On the other hand, in the method described in (3) above, since the correction voltage is directly applied to the electron gun compass plate, the compensence correction signal is superimposed on a DC voltage of about 95% of the anode voltage. There is a need. As a result, external transformers that achieve this are very expensive because of the need to provide sufficient insulation for high voltages.
本発明は、 上記課題を解決するためになされたもので、 その主たる目 的は、 スポッ トの歪みやフォーカスの劣化を招くことなく、 ダイナミツ クコンパージエンス補正を行うことができる陰極線管とこれを用いた表 示装置を提供することにある。 発明の開示 The present invention has been made to solve the above problems, and its main purpose is to provide a cathode ray tube capable of performing dynamic convergence correction without causing spot distortion and focus deterioration. It is an object of the present invention to provide a display device using the same. Disclosure of the invention
本発明に係る陰極線管は、 メインフォーカスレンズを通過した 2本の 電子ビームを偏向するもので、 第 1の電圧が印加される内側電極板と、 この内側電極板に対向しかつ第 1の電圧よりも低い第 2の電圧が印加さ れる外側電極板とを有するコンパージエンス電極を備える電子銃と、 水 平偏向周期に同期しかつ垂直偏向周期で振幅変調されたパラボラ状のコ ンパージエンス電圧をコンパージエンス電極の外側電極板に印加する電 圧印加手段とを具備した構成となっている。 また、 本発明に係る表示装 置は、 上記構成の陰極線管を用いたものとなっている。 The cathode ray tube according to the present invention deflects the two electron beams that have passed through the main focus lens, and has an inner electrode plate to which a first voltage is applied, and a first voltage facing the inner electrode plate and having a first voltage. An electron gun having an outer electrode plate to which a lower second voltage is applied, and a parabolic compensence voltage synchronized with the horizontal deflection period and amplitude-modulated with the vertical deflection period. And a voltage applying means for applying a voltage to the outer electrode plate of the comprence electrode. Further, a display device according to the present invention uses the cathode ray tube having the above configuration.
上記構成の陰極線管とこれを用いた表示装置においては、 メインフォ 一カスレンズを通過した 2本の電子ビームをコンパ一ジエンス電極で偏 向するにあたり、 水平偏向周期に同期しかつ垂直偏向周期で振幅変調さ れたパラボラ状のコンパージエンス電圧をコンパージエンス電極の外側 電極板に印加することにより、 内側電極板に印加される第 1の電圧に対 して、 外側電極板に印加される第 2の電圧がダイナミックに変動するよ うになる。 これにより、 コンパージエンス電極における 2本の電子ビー
ムの偏向量はコンパージエンス電圧の波形に応じてダイナミツクに変化 するため、 コンパージエンス電極を用いてダイナミックコンバージェン ス補正を行うことが可能となる。 図面の簡単な説明 In the cathode ray tube having the above configuration and a display device using the same, when two electron beams passing through the main focus lens are deflected by the comparability electrode, amplitude modulation is performed in synchronization with the horizontal deflection period and in the vertical deflection period. By applying the parabola-shaped compass ence voltage to the outer electrode plate of the comperence electrode, the second voltage applied to the outer electrode plate with respect to the first voltage applied to the inner electrode plate is increased. Voltage fluctuates dynamically. As a result, two electron beams at the compassence electrode Since the deflection amount of the system dynamically changes in accordance with the waveform of the Compurgeence voltage, it is possible to perform dynamic convergence correction using the Compensation electrode. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施形態に係る陰極線管の全体構成を示す概略図 である。 FIG. 1 is a schematic diagram showing an overall configuration of a cathode ray tube according to an embodiment of the present invention.
第 2図は、 ダイナミックフォーカス電圧の波形図である。 FIG. 2 is a waveform diagram of a dynamic focus voltage.
第 3 A図乃至第 3 B図は、 静電結合の具体的な構造例を説明する図で ある。 FIG. 3A to FIG. 3B are diagrams for explaining specific structural examples of the electrostatic coupling.
第 4 A図乃至第 4 B図は、 静電結合の他の構造例を説明する図である。 第 5図は、 画面上でのコンパ一ジエンスのずれを説明する図である。 第 6図は、 本発明の他の適用例を説明する図である。 発明を実施するための最良の形態 4A to 4B are diagrams for explaining another example of the structure of the electrostatic coupling. FIG. 5 is a diagram for explaining the deviation of the comparence on the screen. FIG. 6 is a diagram for explaining another application example of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 例えばリァ型プロジェクタ装置に用いられる単色の陰極線管に 適用した場合の本発明の実施の形態につき、 図面を参照しつつ詳細に説 明する。 Hereinafter, embodiments of the present invention when applied to a monochromatic cathode ray tube used in, for example, a rear-type projector will be described in detail with reference to the drawings.
第 1図は本発明の実施形態に係る陰極線管の全体構成を示す概略図で ある。 第 1図において、 陰極線管 1の本体部は、 パネル部 2、 フアンネ ル部 3及びネック部 4からなるガラスバルブによつて構成されている。 パネル部 2の内面には所定のパターンで蛍光面が形成されている。 また、 ファンネル部 3にはァノ一ド端子 5が設けられている。 このァノード端 子 5には、 高圧電源となるアノード電源 6から高電圧 (アノード電圧) が印加される。
一方、 ネック部 4には電子銃 7が組み込まれている。 この電子銃 7は、 2つの力ソード 8, 9と、 これらの力ソード 8 , 9から放出された電子 (ビーム) の量や移動速度、 軌道等を制御する複数の電極 G 1 , G 2 , G 3, G 4 , G 5と、 コンパージエンス電極 1 0とを備えて構成されて いる。 FIG. 1 is a schematic diagram showing the overall configuration of a cathode ray tube according to an embodiment of the present invention. In FIG. 1, the main body of the cathode ray tube 1 is constituted by a glass bulb composed of a panel part 2, a funnel part 3 and a neck part 4. A fluorescent screen is formed on the inner surface of the panel unit 2 in a predetermined pattern. The funnel section 3 is provided with a ground terminal 5. A high voltage (anode voltage) is applied to the anode terminal 5 from an anode power supply 6 serving as a high voltage power supply. On the other hand, an electron gun 7 is incorporated in the neck 4. The electron gun 7 has two force sources 8 and 9 and a plurality of electrodes G 1, G 2, which control the amount, moving speed, orbit, and the like of the electrons (beams) emitted from these force sources 8 and 9. It comprises G 3, G 4, G 5, and a compassence electrode 10.
各々の力ソード 8 , 9は、 電子放射物質を塗布又は含浸した基体金属 と、 この基体金属を保持する筒状の保持部材と、 この保持部材の筒内に 挿入されたヒータとを有し、 ヒー夕によって基体金属を所定の温度に加 熱することにより電子 (熱電子) を放出するものである。 これらのカソ ード 8 , 9は、 陰極線管 1の画面の垂直軸方向となる Y軸方向に並んで 配置されている。 Each of the force swords 8 and 9 has a base metal coated or impregnated with an electron-emitting substance, a cylindrical holding member for holding the base metal, and a heater inserted into a cylinder of the holding member. Heat is used to heat the base metal to a predetermined temperature to emit electrons (thermoelectrons). These cathodes 8 and 9 are arranged side by side in the Y axis direction which is the vertical axis direction of the screen of the cathode ray tube 1.
各々の電極 G 1〜G 5は、 電子銃 7の中心軸方向 (陰極線管 1の管軸 方向) に直列に配置され、 力ソード 8, 9に最も近い側から順に第 1電 極 G l、 第 2電極 G 2、 第 3電極 G 3、 第 4電極 G 4、 第 5電極 G 5と なっている。 Each of the electrodes G1 to G5 is arranged in series in the central axis direction of the electron gun 7 (the tube axis direction of the cathode ray tube 1), and the first electrode Gl, The second electrode G2, the third electrode G3, the fourth electrode G4, and the fifth electrode G5.
コンパージエンス電極 1 0は、 最後段の電極 G 5に隣り合うかたちで 電子銃 7の先端部に配置されている。 このコンパージエンス電極 1 0は、 一つの内側電極板 1 1 と、 この内側電極板 1 1の外側にこれと対向する 状態に配置された一対の外側電極板 1 2とを有している。 また、 一対の 外側電極板 1 2同士は、 内側電極板 1 1を間に挟んで対向する状態に配 置されている。 The comprence electrode 10 is arranged at the tip of the electron gun 7 adjacent to the last electrode G5. The compassence electrode 10 has one inner electrode plate 11 and a pair of outer electrode plates 12 arranged outside the inner electrode plate 11 so as to face the inner electrode plate 11. Further, the pair of outer electrode plates 12 are arranged to face each other with the inner electrode plate 11 interposed therebetween.
ここで、 上記第 3電極 G 3、 第 4電極 G 4及び第 5電極 G 5は、 電子 ビームの軌道上にメインフォーカスレンズ (電子レンズ) を形成するも のである。 このメインフォーカスレンズを形成するにあたって、 第 4電 極 G 4には、 フォーカス電源 1 3及びダイナミックフォーカス信号発生 器 1 4によりダイナミックフォーカス電圧が印加され、 第 3電極 G 3及
び第 5電極 G 5には、 ァノード電源 6からァノード端子 5を介して供給 される高電圧が印加される。 Here, the third electrode G3, the fourth electrode G4, and the fifth electrode G5 form a main focus lens (electron lens) on the trajectory of the electron beam. In forming this main focus lens, a dynamic focus voltage is applied to the fourth electrode G4 by the focus power supply 13 and the dynamic focus signal generator 14, and the third electrode G3 and the A high voltage supplied from the anode power supply 6 via the anode terminal 5 is applied to the fifth electrode G5.
ダイナミックフォーカス電圧は、 フォーカス電源 1 3から供給された フォーカス電圧をダイナミックフォーカス信号発生器 1 4で変調して得 られるもので、 その波形図を第 2図に示す。 図示のように、 ダイナミツ クフォーカス電圧は水平偏向周期 ( 1 H ) に同期したパラボラ状の波形 を有するもので、 その振幅は垂直偏向周期 ( I V ) で変調されている。 ちなみに、 図中の Δ Ηは水平偏向周期における電位差を、 Δ νは垂直 偏向周期における電位差をそれぞれ示している。 The dynamic focus voltage is obtained by modulating the focus voltage supplied from the focus power supply 13 with the dynamic focus signal generator 14, and the waveform diagram is shown in FIG. As shown in the figure, the dynamic focus voltage has a parabolic waveform synchronized with the horizontal deflection period (1H), and its amplitude is modulated by the vertical deflection period (IV). Incidentally, Δ Δ in the figure indicates the potential difference in the horizontal deflection cycle, and Δν indicates the potential difference in the vertical deflection cycle.
一方、 コンパ一ジエンス電極 1 0においては、 内側電極板 1 1に対し て上記第 3電極 G 3及び第 5電極 G 5と同様 (同電位) の高電圧が印加 され、 一対の外側電極板 1 2に対しては、 内側電極板 1 1に印加される 高電圧 (以下、 第 1の電圧という) よりも若干低い電圧 (以下、 第 2の 電圧という) が印加される。 On the other hand, in the comparison electrode 10, a high voltage (same potential) as that of the third electrode G 3 and the fifth electrode G 5 is applied to the inner electrode plate 11, and a pair of outer electrode plates 1 For 2, a voltage (hereinafter, referred to as a second voltage) slightly lower than the high voltage (hereinafter, referred to as a first voltage) applied to the inner electrode plate 11 is applied.
外側電極板 1 2に印加される第 2の電圧は、 2つの抵抗器 R l , R 2 を用いて分圧されるものである。 抵抗器 R 2には可変抵抗 V Rが直列に 接続されている。 この可変抵抗 V Rは、 力ソード 8 , 9を放出源とする 2本の電子ビーム Ε 1, Ε 2が画面の中央部でコンパ一ジエンスするよ う、 外側電極板 1 2への印加電圧を調整するためのものである。 The second voltage applied to the outer electrode plate 12 is divided using two resistors R 1 and R 2. A variable resistor VR is connected in series to the resistor R2. This variable resistor VR adjusts the voltage applied to the outer electrode plate 12 so that the two electron beams Ε1 and Ε2 emitted from the power sources 8 and 9 are compared at the center of the screen. It is for doing.
ここで本実施形態に係る陰極線管 1においては、 先の第 2図に示した ダイナミックフォーカス電圧をコンパージエンス電圧として、 コンバー ジエンス電極 1 0の外側電極板 1 2に印加する電圧印加手段を備えた構 成となっている。 この電圧印加手段は、 第 4電極 G 4と外側電極板 1 2 とを静電容量 Cで結合することにより構成されている。 Here, the cathode ray tube 1 according to the present embodiment is provided with a voltage applying means for applying the dynamic focus voltage shown in FIG. 2 as a compensating voltage to the outer electrode plate 12 of the convergence electrode 10. It has a configuration. This voltage applying means is configured by coupling the fourth electrode G4 and the outer electrode plate 12 with a capacitance C.
静電結合の具体的な構造例としては、 第 3 Α図乃至第 3 Β図に示すよ うに、 第 4電極 G 4の外径よりも大きな内径をもつ導電性 (金属等) の
筒体 1 5を設け、 この筒体 1 5に第 4電極 G 4を同軸に挿入して配置す る。 そして、 筒体 1 5と外側電極板 1 2とをリード等で電気的に接続す る。 これにより、 第 4電極 G 4と筒体 1 5との間隙部分で静電容量をも つようになるため、 第 4電極 G 4と外側電極板 1 2とを静電結合した状 態が得られる。 また、 第 4電極 G 4と筒体 1 5との間に誘電体 (絶縁 物) を介装して静電容量をもつようにしてもよい。 As a specific example of the structure of the electrostatic coupling, as shown in FIGS. 3 to 3, a conductive (metal or the like) having an inner diameter larger than the outer diameter of the fourth electrode G4 is used. A cylindrical body 15 is provided, and the fourth electrode G4 is coaxially inserted into the cylindrical body 15 and arranged. Then, the cylindrical body 15 and the outer electrode plate 12 are electrically connected by a lead or the like. As a result, a capacitance is provided in the gap between the fourth electrode G4 and the cylindrical body 15, so that a state in which the fourth electrode G4 and the outer electrode plate 12 are electrostatically coupled is obtained. Can be Further, a dielectric material (insulator) may be interposed between the fourth electrode G4 and the cylindrical body 15 to have a capacitance.
また、 静電結合の他の構造例として、 第 4 A図乃至第 4 B図に示すよ うに、 一方の外側電極板 1 2の外面に絶縁膜 1 6を介して導電膜 1 7を 形成し、 この導電膜 1 7と第 4電極 G 4とを電気的に接続する。 これに より、 絶縁膜 1 6の部分で静電容量をもつようになるため、 第 4電極 G 4と外側電極板 1 2とを静電結合した状態が得られる。 As another example of the structure of the electrostatic coupling, as shown in FIGS. 4A to 4B, a conductive film 17 is formed on the outer surface of one outer electrode plate 12 via an insulating film 16. This conductive film 17 is electrically connected to the fourth electrode G4. As a result, the insulating film 16 has a capacitance at the portion, so that a state where the fourth electrode G4 and the outer electrode plate 12 are electrostatically coupled can be obtained.
続いて、 上記構成からなる陰極線管 1の動作機能について説明する。 先ず、 各々の力ソード 8 , 9を放出源とする 2本の電子ビーム E 1 , E 2は、 第 3電極 G 3、 第 4電極 G 4及び第 5電極 G 5によって形成さ れるメインフォ一カスレンズの中心で交叉した後、 一旦外側に広がって コンパ一ジエンス電極 1 0に入射する。 このとき、 力ソード 8を放出源 とする電子ビーム E 1は一方 (第 1図の下方) の外側電極板 1 2と内側 電極板 1 1との間を通過し、 力ソード 9を放出源とする電子ビーム E 2 は他方 (第 1図の上方) の外側電極板 1 2と内側電極板 1 1との間を通 過する。 Next, an operation function of the cathode ray tube 1 having the above configuration will be described. First, two electron beams E 1 and E 2, each of which has an emission source of each of the power sources 8 and 9, are a main focus lens formed by a third electrode G 3, a fourth electrode G 4, and a fifth electrode G 5. After crossing at the center of, it spreads outward once and enters the comparison electrode 10. At this time, the electron beam E 1 having the force source 8 as the emission source passes between the outer electrode plate 12 and the inner electrode plate 11 at the bottom of FIG. The emitted electron beam E 2 passes between the other outer electrode plate 12 (upper part in FIG. 1) and the inner electrode plate 11.
このように電子ビーム E 1 , E 2を通過させるにあたり、 内側電極板 1 1に第 1の電圧 (高電圧) を印加するとともに、 一対の外側電極板 1 2に第 2の電圧を印加することにより、 それらの電位差に応じて電子ビ ーム E l, E 2が互いに内向きに偏向される。 このコンパ一ジエンス電 極 1 0による電子ビーム E 1, E 2の偏向量は、 第 1の電圧と第 2の電 圧との差 (電位差) が大きくなるにつれて多くなる。
そのため、 外側電極板 1 2への印加電圧を可変抵抗器 V Rで適宜調整 することにより、 2本の電子ビーム E l , E 2を画面の中央部でコンパ ージエンスさせることができる。 ただし、 外側電極板 1 2への印加電圧 を一定とした条件で、 2本の電子ビーム E l, E 2を偏向ヨーク (不図 示) の偏向磁界で水平及び垂直方向に偏向した場合は、 陰極線管 1の画 面上で第 5図に示すようなコンパージエンスのずれが発生する。 即ち、 画面の中央部となる X軸と Y軸の交点部分では 2本の電子ビーム E 1, E 2がー点に集中するものの、 そこから X軸端及び Y軸端に近づくにし たがってコンパージエンスのずれが大きくなる。 その結果、 画面の周辺 部 (コーナー部) でコンパージエンスのずれが最大となる。 As described above, when passing the electron beams E 1 and E 2, the first voltage (high voltage) is applied to the inner electrode plate 11 and the second voltage is applied to the pair of outer electrode plates 12. As a result, the electron beams El and E2 are deflected inward from each other according to the potential difference therebetween. The amount of deflection of the electron beams E 1 and E 2 by the comparison electrode 10 increases as the difference (potential difference) between the first voltage and the second voltage increases. Therefore, by appropriately adjusting the voltage applied to the outer electrode plate 12 with the variable resistor VR, the two electron beams E 1 and E 2 can be made to collage at the center of the screen. However, when the two electron beams E 1 and E 2 are deflected horizontally and vertically by the deflection magnetic field of the deflection yoke (not shown) under the condition that the voltage applied to the outer electrode plate 12 is kept constant, On the screen of the cathode ray tube 1, a deviation of the compensence occurs as shown in FIG. In other words, at the intersection of the X-axis and Y-axis, which is the center of the screen, the two electron beams E 1 and E 2 are concentrated at the-point. The deviation of the purge ence becomes large. As a result, the deviation of the compass ence becomes maximum at the peripheral portion (corner portion) of the screen.
これに対して、 フォーカス電極となる第 4電極 G 4とコンバージェン ス電極 1 0の外側電極板 1 2とを静電結合した構成では、 第 4電極 G 4 に印加されるダイナミックフォーカス電圧と同様の波形をもつコンバー ジエンス電圧が外側電極板 1 2に印加される。 そうした場合、 内側電極 板 1 1に印加される第 1の電圧を固定電圧として、 外側電極板 1 2に印 加される第 2の電圧が、 先の第 2図に示す波形図にしたがってダイナミ ックに変動することになる。 On the other hand, in the configuration in which the fourth electrode G 4 serving as the focus electrode and the outer electrode plate 12 of the convergence electrode 10 are electrostatically coupled, the dynamic focus voltage applied to the fourth electrode G 4 is the same as that of the fourth embodiment. A convergence voltage having the following waveform is applied to the outer electrode plate 12. In such a case, the first voltage applied to the inner electrode plate 11 is a fixed voltage, and the second voltage applied to the outer electrode plate 12 is dynamic according to the waveform diagram shown in FIG. Will fluctuate.
ちなみに、 実際の回路動作では、 抵抗 R l, R 2で分圧されかつ可変 抵抗 V Rで調整された電圧にダイナミックフォーカス電圧が重畳された かたちで、 外側電極板 1 2にコンパージエンス電圧が印加されることに なるが、 電子ビームを偏向する際には抵抗 R 1, R 2と可変抵抗 V Rに よる電圧成分が一定に保持されることになる。 By the way, in the actual circuit operation, the compassence voltage is applied to the outer electrode plate 12 in the form that the dynamic focus voltage is superimposed on the voltage divided by the resistors R 1 and R 2 and the voltage adjusted by the variable resistor VR. However, when deflecting the electron beam, the voltage components due to the resistors R 1 and R 2 and the variable resistor VR are kept constant.
ここで、 第 2図に示す波形図において、 電子ビーム E l , E 2を画面 の X軸方向に沿って走査する水平偏向期間 ( 1 H ) 内では、 電圧のレべ ルが高圧側から低圧側に変動した後、 低圧側から高圧側に変動する。 こ の場合の電圧レベルは、 画面の X軸端をビーム走査するときに最大とな
り、 Y軸に対する交差部を走査するときに最小となる。 これにより、 コ ンバ一ジエンス電極 1 0による電子ビーム Ε 1 , Ε 2の偏向量 (内向き の度合い) は、 ビーム走査位置が画面の X軸端に近づくにしたがって小 さくなる。 Here, in the waveform diagram shown in FIG. 2, during the horizontal deflection period (1H) in which the electron beams El and E2 are scanned along the X-axis direction of the screen, the voltage level changes from the high voltage side to the low voltage side. And then fluctuates from the low pressure side to the high pressure side. In this case, the voltage level becomes the maximum when beam scanning the X-axis end of the screen. Minimum when scanning the intersection with the Y axis. As a result, the deflection amount (degree of inward) of the electron beams Ε 1 and Ε 2 due to the convergence electrode 10 becomes smaller as the beam scanning position approaches the X-axis end of the screen.
また、 電子ビーム E l , Ε 2を画面の Υ軸方向に沿って走査する垂直 偏向期間 ( I V ) 内では、 電圧のレベルが高圧側から低圧側に変動した 後、 低圧側から高圧側に変動する。 この場合の電圧レベルは、 画面の Υ 軸端をビーム走査するときに最大となり、 X軸に対する交差部分をビー ム走査するときに最小となる。 これにより、 コンパージエンス電極 1 0 による電子ビーム E l, Ε 2の偏向量 (内向きの度合い) は、 ビーム走 査位置が Υ軸端に近づくにしたがって小さくなる。 Also, during the vertical deflection period (IV) in which the electron beam El, Ε2 is scanned along the Υ-axis direction of the screen, the voltage level fluctuates from the high voltage side to the low voltage side and then from the low voltage side to the high voltage side. I do. In this case, the voltage level becomes maximum when beam scanning is performed at the Υ-axis end of the screen, and becomes minimum when beam scanning is performed at an intersection with the X-axis. As a result, the deflection amount (degree of inward) of the electron beam E l, Ε 2 by the compassence electrode 10 becomes smaller as the beam scanning position approaches the Υ-axis end.
以上のように、 コンパージエンス電極 1 0における 2本の電子ビーム E l, Ε 2の偏向量は、 ダイナミックフォーカス電圧 (コンパ一ジェン ス電圧) の波形に応じてダイナミックに変化する。 そのため、 コンパ一 ジエンス電極 1 0を通過した 2本の電子ビーム Ε 1 , Ε 2は、 ビーム走 査位置が画面の中央部 (X軸と Τ軸の交点部分) から離れるにしたがつ て、 より遠くで集中するようになる。 これにより、 ダイナミックコンパ ージエンス補正が実現されるため、 画面の全ての領域で 2本の電子ビー ム Ε 1 , Ε 2を一点に集中させることが可能となる。 As described above, the amount of deflection of the two electron beams El, Ε2 at the compensence electrode 10 dynamically changes according to the waveform of the dynamic focus voltage (comparance voltage). Therefore, the two electron beams Ε 1 and Ε 2 passing through the compar- ence electrode 10 move as the beam scanning position moves away from the center of the screen (the intersection of the X axis and the 走 axis). Focus more far away. As a result, dynamic convergence correction is realized, so that the two electronic beams # 1 and # 2 can be concentrated at one point in all areas of the screen.
また、 2本の電子ビーム E l, Ε 2がコンパージエンス電極 1 0を通 過する際には、 各々の電子ビーム E l , Ε 2が磁界による集中作用を受 けずに偏向されるため、 画面上でのビームスポッ 卜の歪みを低減するこ とができる。 その結果、 フォーカス特性の改善とダイナミックコンパ一 ジエンス補正を同時に実現することができる。 Further, when the two electron beams E l and Ε 2 pass through the compensence electrode 10, the respective electron beams E l and Ε 2 are deflected without being subjected to the concentration action by the magnetic field, The distortion of the beam spot on the screen can be reduced. As a result, it is possible to simultaneously improve the focus characteristics and correct the dynamic variance.
さらに、 第 4電極 G 4と外側電極板 1 2とを静電結合することにより、 外側電極板 1 2にコンパージエンス電圧を印加し得る構成としたので、
ダイナミックコンパージエンス補正のための外部装置を別途設ける必要 がない。 したがって、 大幅なコストの削減と消費電力の低減を図ること ができる。 Furthermore, since the fourth electrode G 4 and the outer electrode plate 12 are electrostatically coupled to each other, a configuration that can apply a compassence voltage to the outer electrode plate 12 is adopted. There is no need to provide a separate external device for dynamic convergence correction. Therefore, it is possible to significantly reduce costs and power consumption.
なお、 上記実施形態においては、 一つの力ソードから 1本の電子ビー ムを取り出すタイプの電子銃を例に挙げて説明したが、 これ以外にも、 一つのカソードから複数本の電子ビームを取り出す、 いわゆるマルチビ ームタイプの電子銃を備えたものであってもよい。 In the above embodiment, an electron gun of a type in which one electron beam is extracted from one force sword has been described as an example. In addition, a plurality of electron beams can be extracted from one cathode. A so-called multi-beam type electron gun may be used.
また、 上記実施形態においては、 リア型プロジェクタ装置に用いられ る単色の陰極線管への適用例について説明したが、 本発明はこれに限ら ず、 テレビジョン受像機等に用いられるカラー陰極線管にも適用可能で ある。 Further, in the above-described embodiment, an example in which the invention is applied to a monochromatic cathode ray tube used in a rear-type projector device has been described. However, the present invention is not limited to this. Applicable.
第 6図はトリ二トロン方式のカラー陰極線管への適用例を示す概略図 である。 この種のカラー陰極線管は、 赤, 緑, 青の各色に対応する 3つ の力ソード 2 1 , 2 2, 2 3と、 複数の電極 G 1〜G 5と、 コンパージ エンス電極 2 4とを有するインライン形の電子銃 2 5を備えている。 電 子銃 2 5からインライン配列で出射された 3本の電子ビーム R , G , B は、 簾状のアパーチャグリル 2 6を通して蛍光面 2 7に照射する。 FIG. 6 is a schematic diagram showing an example of application to a trinitron color cathode ray tube. This type of color cathode ray tube is composed of three force sources 21 1, 22, and 23 corresponding to red, green, and blue colors, a plurality of electrodes G 1 to G 5, and a compensating electrode 24. In-line type electron gun 25 is provided. The three electron beams R, G, and B emitted in an in-line arrangement from the electron gun 25 irradiate the phosphor screen 27 through a blind aperture grill 26.
各々の力ソード 2 1 , 2 2, 2 3を放出源となる 3本の電子ビーム R , G, Bは、 第 3電極 G 3、 第 4電極 G 4及び第 5電極 G 5によって形成 されるメインフォーカスレンズを通過した後、 コンパ一ジエンス電極 2 4に入射する。 コンパージエンス電極 2 4は、 互いに対向状態で配置さ れた一対の内側電極板 2 8と、 各々の内側電極板 2 8の外側に対向状態 で配置された一対の外側電極板 2 9とを有している。 The three electron beams R, G, and B emitting from each of the force sources 21, 22, and 23 are formed by the third electrode G3, the fourth electrode G4, and the fifth electrode G5. After passing through the main focus lens, the light enters the comparison electrode 24. Compensation electrode 24 includes a pair of inner electrode plates 28 arranged opposite to each other, and a pair of outer electrode plates 29 arranged outside each inner electrode plate 28 so as to face each other. Have.
上記構成のコンパージエンス電極 2 4において、 緑色用の電子ビーム Rは、 一方 (図の下方) の内側電極板 2 8と外側電極板 2 9との間を通 過し、 緑色用の電子ビーム Gは、 一対の内側電極板 2 8の間を通過し、
青色用の電子ビーム Bは、 他方 (図の上方) の内側電極板 2 8と外側電 極板 2 9との間を通過する。 このとき、 第 4電極 G 4と外側電極板 2 9 とを静電容量 Cで結合し、 これによつて第 4電極 G 4に印加されるダイ ナミックフォーカス電圧をコンパ一ジエンス電圧として外側電極板 2 9 に印加する構成とすることにより、 上記実施形態と同様の作用効果を得 ることができる。 The electron beam R for the green color passes through the space between the inner electrode plate 28 and the outer electrode plate 29 on the lower side in the figure, and the electron beam R for the green color is emitted from the compensence electrode 24 having the above-described configuration. G passes between a pair of inner electrode plates 28, The electron beam B for blue passes between the other inner electrode plate 28 and the outer electrode plate 29 (upper part of the figure). At this time, the fourth electrode G4 and the outer electrode plate 29 are coupled with a capacitance C, whereby the dynamic focus voltage applied to the fourth electrode G4 is converted into a dispersion voltage as the outer electrode plate. By adopting a configuration in which the voltage is applied to 29, the same operation and effect as in the above embodiment can be obtained.
以上説明したように本発明によれば、 水平偏向周期に同期しかつ垂直 偏向周期で振幅変調されたパラボラ状のコンパージエンス電圧をコンパ ージエンス電極の外側電極板に印加する電圧印加手段を備えたことによ り、 外側電極板に印加される第 2の電圧をダイナミックに変動させて 2 本の電子ビームを画面上の各部 (中央部、 周辺部等) で一点に集中させ ることができる。 これにより、 フォーカス特性の改善とダイナミックコ ンパージエンス補正を同時に実現することが可能となる。
As described above, according to the present invention, there is provided a voltage applying means for applying a parabolic compassence voltage, which is synchronized with the horizontal deflection cycle and amplitude-modulated at the vertical deflection cycle, to the outer electrode plate of the comparence electrode. Thus, the second voltage applied to the outer electrode plate can be dynamically changed so that the two electron beams can be concentrated at one point in each part (the center, the periphery, etc.) on the screen. As a result, it is possible to simultaneously improve the focus characteristics and correct the dynamic convergence.
Claims
1 . メインフォーカスレンズを通過した 2本の電子ビームを偏向する もので、 第 1の電圧が印加される内側電極板と、 この内側電極板に対向 しかつ前記第 1の電圧よりも低い第 2の電圧が印加される外側電極板と を有するコンパ一ジエンス電極を備える電子銃と、 1. It deflects the two electron beams that have passed through the main focus lens, and an inner electrode plate to which a first voltage is applied, and a second electrode plate facing the inner electrode plate and lower than the first voltage. And an outer electrode plate to which a voltage is applied.
水平偏向周期に同期しかつ垂直偏向周期で振幅変調されたパラボラ状 のコンパージエンス電圧を前記コンパージエンス電極の前記外側電極板 に印加する電圧印加手段と Voltage applying means for applying a parabola-shaped compensence voltage synchronized with a horizontal deflection cycle and amplitude-modulated with a vertical deflection cycle to the outer electrode plate of the compensence electrode;
を具備することを特徴とする陰極線管。 A cathode ray tube comprising:
2 . 前記電子銃は、 前記メインフォーカスレンズを形成するとともに、 水平偏向周期に同期しかつ垂直偏向周期で振幅変調されたパラボラ状の ダイナミックフォーカス電圧が印加されるフォーカス電極を有するもの であって、 前記フォーカス電極と前記コンパージエンス電極の前記外側 電極板とを静電結合することにより前記電圧印加手段を構成してなるこ とを特徴とする請求の範囲第 1項記載の陰極線管。 2. The electron gun forms the main focus lens and has a focus electrode to which a parabolic dynamic focus voltage synchronized with a horizontal deflection cycle and amplitude-modulated with a vertical deflection cycle is applied, 2. The cathode ray tube according to claim 1, wherein said voltage applying means is constituted by electrostatically coupling said focus electrode and said outer electrode plate of said Compensation electrode.
3 . メインフォーカスレンズを通過した 2本の電子ビームを偏向する もので、 第 1の電圧が印加される内側電極板と、 この内側電極板に対向 しかつ前記第 1の電圧よりも低い第 2の電圧が印加される外側電極板と を有するコンパ一ジエンス電極を備える電子銃と、 3. It deflects the two electron beams that have passed through the main focus lens, and an inner electrode plate to which a first voltage is applied, and a second electrode plate facing the inner electrode plate and lower than the first voltage. And an outer electrode plate to which a voltage is applied.
水平偏向周期に同期しかつ垂直偏向周期で振幅変調されたパラボラ状 のコンパージエンス電圧を前記コンパージエンス電極の前記外側電極板 に印加する電圧印加手段と Voltage applying means for applying a parabola-shaped compensence voltage synchronized with a horizontal deflection cycle and amplitude-modulated with a vertical deflection cycle to the outer electrode plate of the compensence electrode;
を具備する陰極線管を用いたことを特徴とする表示装置。
A display device using a cathode ray tube comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001263451A JP2003077405A (en) | 2001-08-31 | 2001-08-31 | Cathode-ray tube and display device |
JP2001-263451 | 2001-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003021627A1 true WO2003021627A1 (en) | 2003-03-13 |
Family
ID=19090204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/007966 WO2003021627A1 (en) | 2001-08-31 | 2002-08-05 | Cathode-ray tube and display apparatus |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2003077405A (en) |
WO (1) | WO2003021627A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5218546B1 (en) * | 1970-03-27 | 1977-05-23 | ||
JPS5920952A (en) * | 1982-07-23 | 1984-02-02 | Sony Corp | Two-beam cathode-ray tube |
JPH06165195A (en) * | 1992-09-28 | 1994-06-10 | Sony Corp | Dynamic convergence device |
JPH0850863A (en) * | 1994-08-05 | 1996-02-20 | Sony Corp | Electron gun for cathode ray tube |
-
2001
- 2001-08-31 JP JP2001263451A patent/JP2003077405A/en active Pending
-
2002
- 2002-08-05 WO PCT/JP2002/007966 patent/WO2003021627A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5218546B1 (en) * | 1970-03-27 | 1977-05-23 | ||
JPS5920952A (en) * | 1982-07-23 | 1984-02-02 | Sony Corp | Two-beam cathode-ray tube |
JPH06165195A (en) * | 1992-09-28 | 1994-06-10 | Sony Corp | Dynamic convergence device |
JPH0850863A (en) * | 1994-08-05 | 1996-02-20 | Sony Corp | Electron gun for cathode ray tube |
Also Published As
Publication number | Publication date |
---|---|
JP2003077405A (en) | 2003-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0424888B1 (en) | Color cathode ray tube apparatus | |
JP2693419B2 (en) | Color image receiving device | |
JPS63133437A (en) | Color braun tube and electronic gun used therefor | |
US6396221B1 (en) | Color cathode-ray tube | |
US5631521A (en) | Electron gun for color cathode ray tube | |
WO2003021627A1 (en) | Cathode-ray tube and display apparatus | |
JP3053842B2 (en) | Color picture tube equipment | |
JPS6310444A (en) | Color crt and color display unit | |
JP3443437B2 (en) | Color picture tube equipment | |
KR930007366B1 (en) | Cathode-ray tube and driving method | |
JPH10321157A (en) | Cathode-ray tube device | |
JP2001084921A (en) | Color cathode-ray tube device | |
JP2643208B2 (en) | Electron gun device | |
KR100252959B1 (en) | Electron gun for color cathode ray tube | |
EP0427235B1 (en) | Color cathode ray tube apparatus and method for driving the same | |
JP2005050650A (en) | Cathode-ray tube, control method of projection type display device, and projection type display device | |
JP2002290982A (en) | Deflecting yoke for projection cathode-ray tube and cathode-ray tube | |
JP2001006583A (en) | Cathode-ray tube | |
JPH07147145A (en) | Electron gun for cathode-ray tube | |
KR19990065073A (en) | Electron gun for color cathode ray tube | |
US20040056603A1 (en) | Electron gun and cathode-ray tube | |
JPH06162955A (en) | Color cathode-ray tube | |
JP2000285823A (en) | Color cathode-ray tube device | |
JP2000306523A (en) | Image display device | |
JPH10224811A (en) | Landing correction device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN KR Kind code of ref document: A1 Designated state(s): CN KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |