WO2003019232A1 - Verfahren zum betrieb eines aktiven hinderniswarnsystems - Google Patents

Verfahren zum betrieb eines aktiven hinderniswarnsystems Download PDF

Info

Publication number
WO2003019232A1
WO2003019232A1 PCT/DE2002/002865 DE0202865W WO03019232A1 WO 2003019232 A1 WO2003019232 A1 WO 2003019232A1 DE 0202865 W DE0202865 W DE 0202865W WO 03019232 A1 WO03019232 A1 WO 03019232A1
Authority
WO
WIPO (PCT)
Prior art keywords
warning system
obstacle
obstacle warning
transmission power
time
Prior art date
Application number
PCT/DE2002/002865
Other languages
English (en)
French (fr)
Inventor
Josef Bärenweiler
Günther Fendt
Helmut Riedel
Original Assignee
Conti Temic Microelectronic Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conti Temic Microelectronic Gmbh filed Critical Conti Temic Microelectronic Gmbh
Publication of WO2003019232A1 publication Critical patent/WO2003019232A1/de
Priority to US10/781,337 priority Critical patent/US6987447B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/165Anti-collision systems for passive traffic, e.g. including static obstacles, trees
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates

Definitions

  • the invention relates to a method for operating an active obstacle warning system according to the preamble of patent claim 1.
  • obstacle warning systems are increasingly being installed in vehicles which, to support the driver, primarily record the immediate area in front of the moving vehicle, warn of sources of danger such as standing or moving obstacles on the road and even in are able to brake the vehicle, especially if the driver does not react.
  • laser or radar-based obstacle warning systems are being tested or are already in use, with which the distance to obstacles is measured over the transit time of emitted and reflected electromagnetic waves.
  • Such obstacle warning systems based on laser or radar have the disadvantage, however, that apart from the distance and - taking into account the own speed - the relative speed of an obstacle, no further information can be generated to identify the obstacle.
  • PMD sensor photonic mixer detector, photonic mixer device
  • Such an arrangement is suitable for optical monitoring, in particular of the surroundings, in front of a moving vehicle and has the advantage over the obstacle warning systems already mentioned that, in addition to the distance information, it can also obtain image information about a stationary or moving obstacle.
  • a particularly suitable place to arrange such a PMD sensor as an obstacle warning system in the interior are the front nodes on the headlining of a vehicle. In this position predestined for such obstacle warning systems, however, the problem of the high operating temperature due to excessive heating occurs, particularly in the case of additional direct sunlight. Measurements show that ambient temperatures of 90 ° C and more are reached here. Given the resulting high operating temperatures, optical components in particular are operated at the upper end of their temperature range, so that their efficiency is increased with an already low signal-to-noise ratio
  • the invention has for its object to propose a method for operating an active obstacle warning system according to the preamble of claim 1, with which the operating temperature of an obstacle warning system operated at the front nodes of the headliner of a vehicle is markedly reduced.
  • the method according to claim 1 has the advantages that, with the operational readiness unchanged, the power loss of the obstacle warning system is fingered, for example, by its own power supply and thus also the operating temperature.
  • the reduced operating temperature also results in a longer service life for the obstacle warning system, since its components are less stressed.
  • the range can be increased by briefly increasing the transmission power and the functionality of the obstacle warning system can be maintained in particularly intense sunlight.
  • the invention is particularly suitable for the operation of an obstacle warning system in a vehicle.
  • FIG. 1 a shows a roadway 1 with a vehicle 2, which approaches a standing or moving obstacle 3.
  • An obstacle warning system 4 is installed in the vehicle 2, preferably at the node in the middle of its roof lining, which emits at least two directed beam lobes 5 and 6 in the direction of travel.
  • the obstacle warning system is preferably a PMD known from WO 99/60629 A1.
  • the first beam lobe 5 of the obstacle warning system 4 is directed forwards in a straight direction, while the second beam lobe 6 deviates from the straight direction by a few degrees and is directed slightly towards the center of the lane and the opposite lane.
  • the range of the beam lobes 5 and 6 is approximately the same in the basic setting shown here due to the same high transmission power.
  • the beam lobes 5, 6 are emitted simultaneously, alternately, sequentially or in another time sequence. Instead of the two beams 5 and 6 described here, only one beam or more than two beams can be emitted.
  • Fig. 1b the transmission power of the beam lobes 5 and 6 or their respective reflection is plotted against time for the basic setting.
  • a curve 7 shows the transmission power of the beam lobe 5, a curve 8 the associated reflection.
  • a curve 9 shows the transmission power of the beam lobe 6, a curve 10 the associated reflection.
  • a curve 11 shows a preset target value for the reflections according to curves 8 and 10.
  • the beam lobe 5 - curve 7 - is emitted with a relative transmission power of 100%.
  • the obstacle warning system 4 according to curve 8 receives the reflection of the previously transmitted beam lobe 5, which is, for example, only 50% of a preset target value according to curve 11.
  • the beam lobe 6 - curve 9 - is also emitted from a time t 5 to a time t 7 - also with a relative transmission power of 100% and the associated reflection arriving from a time t 6 to a time t 8 from the obstacle warning system 4 - Curve 10 - measured, which is here, for example, 50% of a specific target value according to curve 11.
  • the transmission of a beam lobe 5 or 6 and the reception of the associated reflection takes, for example, approximately 500 ⁇ s, so that with two beam lobes, including the switchover and dead times, a cycle time takes approximately 1 ms.
  • the emission of the beam lobes 5 and 6 and the measurement of the respectively associated reflection are repeated.
  • the beams 5 and 6 are not only emitted with a constant relative transmission power of 100%. It is proposed, for example, that the transmission power of the obstacle warning system 4 is reduced to reduce its operating temperature or in emergency operation, or that the transmission power is increased to increase the range of the modulated light waves or in the event of intense solar radiation. Further situations are known to the person skilled in the art in which the transmission power of the obstacle warning system 4 is advantageously reduced or increased.
  • FIG. 2a shows the increase in the range of the obstacle warning system 4 in the vehicle 2 by increasing the transmission power of the beam lobes 5 and 6.
  • the beam lobes 5 and 6 are not transmitted with constant power, but rather the transmission power is transmitted within the transmission period of, for example, 500 ⁇ s, based on a relative transmission power of 100%, increased until the reflection reaches a preset target value.
  • This operating mode which is usually only set for a short time, allows the range of the beam lobes 5 and 6 to be increased in the absence of an obstacle 3 in order to detect obstacles 3 further away in good time.
  • the range of the beam lobes 5 and 6 in the basic setting with 100% transmission power is symbolized with broken lines, the greater range with increased transmission power with dotted lines. It can be seen from FIG. 2a that only the beam lobe 5 strikes the obstacle 3 with increased transmission power (broken lines).
  • a curve 12 shows the transmission power of the beam lobe 5, a curve 13 the associated reflection.
  • a curve 14 shows the transmission power of the beam lobe 6 and a curve 15 the associated reflection.
  • Curve 11 again shows a preset target value for the reflections of curves 13 and 15.
  • the beam lobe 5 - curve 12 - is emitted, starting with a relative transmission power of 100%. Since the associated reflection arriving at time t-io according to curve 13 does not reach the preset target value according to curve 11, the transmission power is increased, for example linearly or exponentially in certain cases. Corresponding to the increase in the transmission power, the range of the beam lobe 5 also increases, which (in contrast to the basic setting with constant relative transmission power of 100%) detects an obstacle 3 which is further away.
  • the beam lobe 6 - curve 14 - is also emitted from a time tu to a time t ⁇ 6 , starting with a relative transmission power of 100%. Since the associated reflection according to curve 15 arriving at time _ does not reach the preset soli value according to curve 11, the transmission power is increased, analogously to beam lobe 5 before. However, since the associated reflection according to curve 15 does not or If the setpoint according to curve 11 is not reached by the time t 16 , the transmission power of the beam lobe 6 is increased further until it is reduced to zero after the preset transmission time of approximately 500 ⁇ s at the time t 16 . The associated reflection according to curve 15 ends at a time t
  • FIG. 3a shows the reduction and increase in the range of the obstacle warning system 4 in the vehicle 2 by reducing the transmission power of the beam lobe 5 and by increasing the range of the beam lobe 6.
  • This operating mode is advantageous if the obstacle warning system 4 reaches a critical operating temperature, for example as a result of strong solar radiation, and further self-heating must be prevented.
  • the strong solar radiation can also be used to better illuminate the obstacle 3 if certain parts of the spectrum are evaluated.
  • This operating mode is a kind of emergency operation, since in this case of the reduced or missing modulated light spectrum, no distance information and only gray value images can be obtained. As soon as an approaching obstacle 3 is recognized or suspected during the evaluation of the gray value images, however, it is possible to switch back to another operating mode. It can be seen from FIG. 3a that only the beam lobe 5 strikes the obstacle 3.
  • the beam lobes 5 and 6 are initially transmitted with a relative transmission power of 100% within the transmission duration of 500 ⁇ s, for example.
  • the obstacle 3 is closer than that
  • the transmission power of the beam lobe 5 can be reduced without a loss of safety and the obstacle is no longer recognized.
  • the associated reflection over time is plotted for the reduced transmission power of the beam lobe 5 or for the increased transmission power of the radiation lobe 6.
  • a curve 16 shows the transmission power of the beam lobe 5, a curve 17 the associated reflection.
  • a curve 18 shows the transmission power of the beam lobe 6, a curve 19 the associated reflection.
  • Curve 11 again shows a preset target value for the reflections according to curves 17 and 19.
  • the beam lobe 5 - curve 16 - is emitted, starting with a relative transmission power of 100%. Since the associated reflection according to curve 17 arriving at time t 19 exceeds the preset target value according to curve 11, the transmission power becomes from time t
  • the beam lobe 6 - curve 18 - is then also emitted from a time t 23 to a time t 25 , starting with a relative transmission power of 100%. Since the associated reflection according to curve 19 arriving at time t 24 does not reach the preset target value according to curve 11, the transmission power is increased, analogously to the example in FIG. 2b. However, since the associated reflection in accordance with curve 19 does not reach the desired value in accordance with curve 11 at all or does not reach the time t 25 , the transmission power of the beam lobe 6 is increased further until after the preset transmission time of approximately 500 ⁇ s Time t 25 is reduced to zero. The associated reflection according to curve 19 ends at a time t 26 with a time delay.
  • Fig. 4a shows the increase in the range of the beams 5 and 6 of the
  • Obstacle warning system 4 in the vehicle 2 from a minimum setting and the associated FIG. 4b the increase in the transmission power of the obstacle warning system 4 from the minimum setting according to FIG. 4a. It can be seen from FIG. 4 a that only the beam lobe 5 strikes the obstacle 3.
  • the transmission power of the beam lobes 5 and 6 is continuously increased, for example linearly, until either the associated reflection has reached a preset target value or the transmission time of, for example, 500 ⁇ s is over.
  • This operating mode can save energy, for example, or, if there is a risk of overheating, the operating temperature can be reduced by reduced heat loss.
  • the beam lobe 5 - curve 20 - is emitted from a time t 27 to a time t 30 , starting with a relative transmission power of approximately zero. Since the associated reflection according to curve 21 arriving at time t 28 does not reach the preset target value according to curve 11, the transmission power is increased, for example linearly or exponentially in certain cases. The range of the beam lobe 5 also increases in accordance with the increase in the transmission power.
  • the beam lobe 6 - curve 22 - is also emitted from a time t 32 to a time t 34 , starting with a relative transmission power of approximately zero. Since the associated reflection arriving at time t 33 according to curve 23 does not reach the preset target value according to curve 11, the transmission power is increased, analogously to beam lobe 5, but since the associated reflection according to curve 23 If the target value according to curve 11 is not reached at all or not until time t 3 , the transmission power of beam lobe 6 is increased further until it is reduced to zero after time t 34 after the preset transmission time of approximately 500 ⁇ s. The associated reflection according to curve 23 ends at a time t 35 with a time delay.
  • the invention shows an advantageous method for operating an active obstacle warning system for a vehicle, in which the transmission power of the obstacle warning system is changed depending on the situation.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Verfahren zum Betrieb eines aktiven Hinderniswarnsystems Besonders geeignete Stellen, ein Hinderniswarnsystem im Innenraum eines Fahrzeugs anzuordnen, sind die vorderen Knotenpunkte am Dachhimmel. Bei dieser für Hinderniswarnsysteme prädestinierten Position tritt jedoch das Problem der hohen Betriebstemperatur durch starke Erwärmung, besonders bei zusätzlicher direkter Sonneneinstrahlung, auf. Bei den sich daraus ergebenden hohen Betriebstemperaturen werden insbesondere optische Bauelemente am oberen Ende ihres Temperatureinsatzbereiches betrieben, so dass ihr Wirkungsgrad bei einem ohnehin geringen Signal-Rausch-Abstand durch einen erhöhten Rauschanteil deutlich reduziert wird. Verfahren zum Betrieb eines aktiven Hinderniswarnsystems, das zur Messung des Abstands zu einem Hindernis modulierte Lichtwellen aussendet und anhand der Laufzeit des reflektierten Lichtanteils den Abstand zum Hindernis bestimmt, das dadurch gekennzeichnet ist, dass die Sendeleistung des Hinderniswarnsystems situationsabhängig verändert wird. Die Erfindung eignet sich insbesondere für den Betrieb eines Hinderniswarnsystems in einem Fahrzeug.

Description

Verfahren zum Betrieb eines aktiven Hindemiswarnsystems
Die Erfindung betrifft ein Verfahren zum Betrieb eines aktiven Hinderniswarnsystems nach dem Oberbegriff des Patentanspruchs 1.
Um die Sicherheit im Straßenverkehr zu verbessern, werden verstärkt Hin- derniswarnsysteme in Fahrzeuge eingebaut, die zur Unterstützung des Fahrers vor allem die unmittelbare Umgebung vor dem sich bewegenden Fahrzeug erfassen, vor Gefahrenquellen wie beispielsweise stehenden oder sich bewegenden Hindernissen auf der Fahrbahn warnen und sogar in der Lage sind, das Fahrzeug abzubremsen, insbesondere bei fehlender Reaktion des Fahrers.
Zur Überwachung der Umgebung vor dem Fahrzeug sind Hinderniswarnsysteme auf Laser- bzw. Radar-Basis in Erprobung oder bereits im Einsatz, mit denen über die Laufzeit von ausgesendeten und reflektierten elektromagnetischen Wellen die Entfernung zu Hindernissen gemessen wird. Derartige Hin- derniswarnsysteme auf Laser- bzw. Radar-Basis weisen jedoch den Nachteil auf, dass außer der Entfernung und - bei Berücksichtigung der Eigengeschwindigkeit - der Relativgeschwindigkeit eines Hindernisses keine weiteren Informationen zur Identifizierung des Hindernisses erzeugt werden können.
Aus der WO 99/60629 A1 ist ein sogenannter PMD-Sensor (Photomischde- tektor, photonic mixer device) bekannt. Eine solche Anordnung ist zur optischen Überwachung insbesondere der Umgebung vor einem sich bewegenden Fahrzeug geeignet und hat gegenüber den bereits genannten Hinderniswarnsystemen den Vorteil, neben der Entfernungsinformation auch Bildinformationen über ein stehendes oder sich bewegendes Hindernis gewinnen zu können. Eine besonders geeignete Stelle, einen solchen PMD-Sensor als Hinderniswarnsystem im Innenraum anzuordnen, sind die vorderen Knotenpunkte am Dachhimmel eines Fahrzeugs. Bei dieser für derartige Hinderniswarnsysteme prädestinierten Position tritt jedoch das Problem der hohen Betriebstempera- tur durch starke Erwärmung, besonders bei zusätzlicher direkter Sonneneinstrahlung, auf. Messungen zeigen, dass hier Umgebungstemperaturen von 90 °C und mehr erreicht werden. Bei den sich daraus ergebenden hohen Betriebstemperaturen werden insbesondere optische Bauelemente am oberen Ende ihres Temperatureinsatzbereiches betrieben, so dass ihr Wirkungsgrad bei einem ohnehin geringen Signal-Rausch-Abstand durch einen erhöhten
Rauschanteil deutlich reduziert wird.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betrieb eines aktiven Hinderniswarnsystems nach dem Oberbegriff des Anspruchs 1 vorzuschlagen, mit dem die Betriebstemperatur eines an den vorderen Knoten- punkten des Dachhimmels eines Fahrzeugs betriebenen Hinderniswarnsystems merklich verringert wird.
Gelöst wird diese Aufgabe durch ein Verfahren mit den im Anspruch 1 angegebenen Merkmalen.
Das Verfahren nach Anspruch 1 weist die Vorteile auf, dass bei unveränder- ter Einsatzbereitschaft die Verlustleistung des Hinderniswarnsystems beispielsweise durch die eigene Spannungsversorgung und somit auch die Betriebstemperatur verfingert wird. Die reduzierte Betriebstemperatur bewirkt auch eine längere Lebensdauer des Hinderniswarnsystems, da seine Bauteile weniger beansprucht werden. Durch die kurzzeitige Erhöhung der Sen- deleistung kann die Reichweite vergrößert und bei besonders intensiver Sonneneinstrahlung die Funktionsfähigkeit des Hinderniswarnsystems erhalten werden.
Die Erfindung eignet sich insbesondere für den Betrieb eines Hinderniswarnsystems in einem Fahrzeug.
Vorteilhafte Ausgestaltungen des Verfahrens nach Anspruch 1 sind in den Unteransprüchen angegeben. Die Erfindung wird nun anhand eines Ausführungsbeispiels unter Zuhilfenahme der Zeichnung erläutert.
Es zeigen
Fig. 1a: die Reichweite eines Hinderniswarnsystems in einer Grundeinstel- lung,
Fig. 1b: die Grundeinstellung der Sendeleistung des Hinderniswarnsystems gemäß Fig. 1a,
Fig. 2a: die Erhöhung der Reichweite des Hinderniswarnsystems von der Grundeinstellung aus,
Fig. 2b: die Erhöhung der Sendeleistung des Hinderniswamsystems von der Grundeinstellung aus gemäß Fig. 2a,
Fig. 3a: die Verringerung und Erhöhung der Reichweite des Hinderniswamsystems von der Grundeinstellung aus,
Fig. 3b: die Verringerung und Erhöhung der Sendeleistung des Hindernis- warnsystems von der Grundeinstellung aus gemäß Fig. 3a,
Fig. 4a: die Erhöhung der Reichweite des Hinderniswarnsystems von einer Minimaleinstellung aus und
Fig. 4b: die Erhöhung der Sendeleistung des Hinderniswarnsystems von der Minimaleinstellung aus gemäß Fig. 4a.
Die Fig. 1a zeigt eine Fahrbahn 1 mit einem Fahrzeug 2, das auf ein stehendes oder sich bewegendes Hindernis 3 zufährt. Ins Fahrzeug 2, und zwar bevorzugt am Knotenpunkt in der Mitte seines Dachhimmels, ist ein Hinderniswarnsystem 4 eingebaut, das wenigstens zwei gerichtete Strahlenkeulen 5 und 6 in Fahrtrichtung aussendet. Bei dem Hinderniswarnsystem handelt es sich vorzugsweise um einen aus der WO 99/60629 A1 bekannten PMD-
Sensor (Photomischdetektor, photonic mixer device), der zur Messung des Abstands zu einem Hindernis modulierte Lichtwellen aussendet und anhand der Phaseninformation des reflektierten Lichtanteils den Abstand zum Hindernis bestimmt.
Die erste Strahlenkeule 5 des Hinderniswarnsystems 4 ist in gerader Richtung nach vorne gerichtet, während die zweite Strahlenkeule 6 um wenige Grad von der geraden Richtung abweicht und leicht zur Fahrbahnmitte und zur Gegenfahrbahn hin gerichtet ist. Die Reichweite der Strahlenkeulen 5 und 6 ist bei der hier gezeigten Grundeinstellung auf Grund der gleich hohen Sendeleistung in etwa gleich.
Die Strahlenkeulen 5, 6 werden gleichzeitig, alternierend, sequentiell oder in einer anderen zeitlichen Abfolge ausgesendet. Statt der beiden hier beschriebenen Strahlenkeulen 5 und 6 können auch nur eine Strahlenkeule oder mehr als zwei Strahlenkeulen ausgesendet werden.
In Fig. 1b ist für die Grundeinstellung die Sendeleistung der Strahlenkeulen 5 und 6 bzw. ihre jeweils zugehörige Reflexion über der Zeit aufgetragen. Eine Kurve 7 zeigt die Sendeleistung der Strahlenkeule 5, eine Kurve 8 die zugehörige Reflexion. Eine Kurve 9 zeigt die Sendeleistung der Strahlenkeule 6, eine Kurve 10 die zugehörige Reflexion. Eine Kurve 11 zeigt einen voreingestellten Sollwert für die Reflexionen nach den Kurven 8 und 10.
Ab einem Zeitpunkt t| bis zu einem Zeitpunkt t3 wird die Strahlenkeule 5 - Kurve 7 - mit einer relativen Sendeleistung von 100 % ausgesendet. Ab einem Zeitpunkt t2 bis zu einem Zeitpunkt t wird vom Hinderniswarnsystems 4 gemäß der Kurve 8 die Reflexion der zuvor ausgesendeten Strahlenkeule 5 empfangen, die beispielsweise nur bei 50 % eines voreingestellten Sollwertes gemäß Kurve 11 liegt.
Anschließend wird ab einem Zeitpunkt t5 bis zu einem Zeitpunkt t7 die Strahlenkeule 6 - Kurve 9 - ebenfalls mit einer relativen Sendeleistung von 100 % ausgesendet und vom Hinderniswarnsystems 4 die zugehörige und ab einem Zeitpunkt t6 bis zu einem Zeitpunkt t8 eintreffende Reflexion - Kurve 10 - gemessen, die auch hier beispielsweise 50 % eines bestimmten Sollwertes nach Kurve 11 liegt. Das Aussenden einer Strahlenkeule 5 oder 6 und das Empfangen der zugehörigen Reflexion dauert beispielsweise ca. 500 μs, so dass bei zwei Strahlenkeulen einschließlich der Umschalt- und Totzeiten eine Zykluszeit ungefähr 1 ms dauert. Nach dem Zeitpunkt t8 und einer eventuellen Umschaltzeit wird das Aussenden der Strahlenkeulen 5 bzw. 6 und das Messen der jeweils zugehörigen Reflexion wiederholt.
Wie im Zusammenhang mit den Fig. 2a, 2b, 3a, 3b, 4a und 4b im weiteren beschrieben wird, ist es vorteilhaft, wenn die die Strahlenkeulen 5 und 6 nicht nur mit einer konstanten relativen Sendeleistung von 100 % ausgesendet werden. Vorgeschlagen wird beispielsweise, dass die Sendeleistung des Hinderniswarnsystems 4 zur Verringerung seiner Betriebstemperatur oder im Notlaufbetrieb verringert wird, oder dass die Sendeleistung zur Erhöhung der Reichweite der modulierten Lichtwellen oder bei intensiver Sonneneinstrahlung erhöht wird. Dem Fachmann sind weitere Situationen bekannt, in denen die Sendeleistung des Hinderniswarnsystems 4 vorteilhaft verringert oder erhöht wird.
Fig. 2a zeigt die Erhöhung der Reichweite des Hinderniswarnsystems 4 im Fahrzeug 2 durch Erhöhen der Sendeleistung der Strahlenkeulen 5 und 6. Im Unterschied zum Beispiel der Fig. 1a, b werden die Strahlenkeulen 5 und 6 nicht mit konstanter Leistung gesendet, sondern die Sendeleistung wird innerhalb der Sendedauer von beispielsweise 500 μs ausgehend von einer relativen Sendeleistung von 100 % solange erhöht, bis die Reflexion einen voreingestellten Sollwert erreicht. Durch diese Betriebsart, die in der Regel nur für kurze Zeit eingestellt wird, kann bei fehlendem Hindernis 3 die Reichweite der Strahlenkeulen 5 und 6 erhöht werden, um weiter entfernte Hindernisse 3 rechtzeitig wahrzunehmen.
Die Reichweite der Strahlenkeulen 5 und 6 in der Grundeinstellung bei 100 % Sendeleistung ist mit jeweils unterbrochenen Linien symbolisiert, die größere Reichweite bei erhöhter Sendeleistung mit gepunkteten Linien. Aus der Fig. 2a ist ersichtlich, dass nur die Strahlenkeule 5 bei erhöhter Sendeleistung (unterbrochene Linien) auf das Hindernis 3 auftrifft.
In Fig. 2b ist für die erhöhte Sendeleistung der Strahlenkeulen 5 und 6 bzw. ihre jeweils zugehörige Reflexion über der Zeit aufgetragen. Eine Kurve 12 zeigt die Sendeleistung der Strahlenkeule 5, eine Kurve 13 die zugehörige Reflexion. Eine Kurve 14 zeigt die Sendeleistung der Strahlenkeule 6 und eine Kurve 15 die zugehörige Reflexion. Die Kurve 11 zeigt wiederum einen voreingestellten Sollwert für die Reflexionen der Kurven 13 und 15.
Ab einem Zeitpunkt t9 bis zu einem Zeitpunkt t12 wird die Strahlenkeule 5 - Kurve 12 - ausgesendet, beginnend mit einer relativen Sendeleistung von 100 %. Da die zeitlich versetzt zum Zeitpunkt t-io eintreffende, zugehörige Reflexion gemäß der Kurve 13 nicht den voreingestellten Sollwert gemäß der Kurve 11 erreicht, wird die Sendeleistung erhöht, beispielsweise linear oder auch in bestimmten Fällen exponentiell. Entsprechend der Erhöhung der Sendeleistung erhöht sich auch die Reichweite der Strahlenkeule 5, wodurch (im Unterschied zur Grundeinstellung mit konstanter relativer Sendeleistung von 100 %) ein weiter entferntes Hindernis 3 erkannt wird.
Sobald zu einem Zeitpunkt tu die zur Strahlenkeule 5 gehörende Reflexion - Kurve 13 - den voreingestellten Sollwert gemäß der Kurve 11 erreicht, weil beispielsweise die Strahlenkeule 5 auf ein Hindernis auftrifft, wird die Sendeleistung der Strahlenkeule 5 nicht weiter erhöht und bis zum Ende der Sendedauer zum Zeitpunkt t-ι2 konstant gehalten. Die zugehörige Reflexion gemäß der Kurve 13 endet zeitversetzt zu einem Zeitpunkt t|3.
Anschließend wird ab einem Zeitpunkt tu bis zu einem Zeitpunkt tι6 die Strahlenkeule 6 - Kurve 14 - ebenfalls ausgesendet, beginnend mit einer relativen Sendeleistung von 100 %. Da die zeitlich versetzt zum Zeitpunkt _ eintreffende, zugehörige Reflexion gemäß der Kurve 15 nicht den voreingestellten Soliwert gemäß der Kurve 11 erreicht, wird die Sendeleistung erhöht, analog wie zuvor bei der Strahlenkeule 5. Da jedoch die zugehörige Reflexion gemäß der Kurve 15 überhaupt nicht bzw. nicht bis zum Zeitpunkt t16 den Sollwert gemäß der Kurve 11 erreicht, wird die Sendeleistung der Strahlenkeule 6 weiter erhöht, bis sie nach der voreingestellten Sendezeit von ca. 500 μs zum Zeitpunkt t16 auf Null zurück gefahren wird. Die zugehörige Reflexion gemäß der Kurve 15 endet zeitversetzt zu einem Zeitpunkt t| .
Fig. 3a zeigt die Verringerung und Erhöhung der Reichweite des Hinderniswarnsystems 4 im Fahrzeug 2 durch Verringern der Sendeleistung der Strahlenkeule 5 und durch Erhöhen der Reichweite der Strahlenkeule 6. Die- se Betriebsart ist dann von Vorteil, wenn das Hinderniswarnsystem 4 beispielsweise in Folge starker Sonneneinstrahlung eine kritische Betriebstemperatur erreicht und eine weitere Eigenerwärmung verhindert werden muss.
Die starke Sonneneinstrahlung kann jedoch auch zur besseren Beleuchtung des Hindernisses 3 verwendet werden, wenn bestimmte Anteile des Spektrums ausgewertet werden. Bei dieser Betriebsart handelt es um eine Art Notlaufbetrieb, da in diesem Fall des reduzierten oder fehlenden modulierten Lichtspektrums keine Entfernungsinformationen und lediglich Grauwertbilder gewonnen werden können. Sobald bei der Auswertung der Grauwertbilder ein sich nahendes Hindernis 3 erkannt oder vermutet wird, kann jedoch wieder in eine andere Betriebsart umgeschaltet werden. Aus der Fig. 3a ist ersichtlich, dass nur die Strahlenkeule 5 auf das Hindernis 3 auftrifft.
In diesem Fall werden die Strahlenkeulen 5 und 6 innerhalb der Sendedauer von beispielsweise 500 μs zu Anfang mit einer relativen Sendeleistung von 100 % gesendet. Da in diesem Fall jedoch das Hindernis 3 näher ist als die
Reichweite der Strahlenkeule 5, kann die Sendeleistung der Strahlenkeule 5 zurück genommen werden, ohne ein Verlust an Sicherheit auftritt und das Hindernis nicht mehr erkannt wird.
In Fig. 3b ist für die verringerte Sendeleistung der Strahlenkeule 5 bzw. für die erhöhte Sendeleistung der Strahlenkeule 6 ihre jeweils zugehörige Reflexion über der Zeit aufgetragen. Eine Kurve 16 zeigt die Sendeleistung der Strahlenkeule 5, eine Kurve 17 die zugehörige Reflexion. Eine Kurve 18 zeigt die Sendeleistung der Strahlenkeule 6, eine Kurve 19 die zugehörige Reflexion. Die Kurve 11 zeigt wiederum einen voreingestellten Sollwert für die Refle- xionen gemäß der Kurven 17 und 19.
Ab einem Zeitpunkt tι8 bis zu einem Zeitpunkt t20 wird die Strahlenkeule 5 - Kurve 16 - ausgesendet, beginnend mit einer relativen Sendeleistung von 100 %. Da die zeitlich versetzt zum Zeitpunkt t19 eintreffende, zugehörige Reflexion gemäß der Kurve 17 den voreingestellten Sollwert gemäß der Kurve 11 überschreitet, wird die Sendeleistung ab dem Zeitpunkt t|8 bis zum Zeitpunkt t20 verringert, beispielsweise linear oder auch in bestimmten Fällen ex- ponentiell. Entsprechend der Verringerung der Sendeleistung verringert sich auch die Reichweite der Strahlenkeule 5 ab dem Zeitpunkt t18, ohne dass je- doch ein Verlust an Sicherheit auftritt. Zu dem Zeitpunkt t2ι endet das Aussenden der Strahlenkeule 5 gemäß der Kurve 16 und folglich zu einem Zeitpunkt t22 die zugehörige Reflexion gemäß der Kurve 17.
Anschließend wird ab einem Zeitpunkt t23 bis zu einem Zeitpunkt t25 die Strahlenkeule 6 - Kurve 18 - ebenfalls ausgesendet, beginnend mit einer relativen Sendeleistung von 100 %. Da die zeitlich versetzt zum Zeitpunkt t24 eintreffende, zugehörige Reflexion gemäß der Kurve 19 nicht den voreingestellten Sollwert gemäß der Kurve 11 erreicht, wird die Sendeleistung erhöht, analog wie im Beispiel der Fig. 2b. Da jedoch die zugehörige Reflexion ge- maß der Kurve 19 überhaupt nicht bzw. nicht bis zum Zeitpunkt t25 den Sollwert gemäß der Kurve 11 erreicht, wird die Sendeleistung der Strahlenkeule 6 weiter erhöht, bis sie nach der voreingestellten Sendezeit von ca. 500 μs zum Zeitpunkt t25 auf Null zurück gefahren wird. Die zugehörige Reflexion gemäß der Kurve 19 endet zeitversetzt zu einem Zeitpunkt t26.
Fig. 4a zeigt die Erhöhung der Reichweite der Strahlenkeulen 5 und 6 des
Hinderniswarnsystems 4 im Fahrzeug 2 von einer Minimaleinstellung aus und die zugehörige Fig. 4b die Erhöhung der Sendeleistung des Hinderniswarnsystems 4 von der Minimaleinstellung aus gemäß der Fig. 4a. Aus der Fig. 4a ist ersichtlich, dass nur die Strahlenkeule 5 auf das Hindernis 3 auftrifft.
In diesem Beispiel wird die Sendeleistung der Strahlenkeulen 5 und 6 kontinuierlich erhöht, beispielsweise linear, bis entweder die zugehörige Reflexion einen voreingestellten Sollwert erreicht hat oder die Sendedauer von beispielsweise 500 μs vorbei ist. Durch diese Betriebsart kann beispielsweise Energie eingespart oder bei drohender Überhitzung die Betriebstemperatur durch reduzierte Verlustwärme erniedrigt werden.
In Fig. 4b wird ab einem Zeitpunkt t27 bis zu einem Zeitpunkt t30 die Strahlenkeule 5 - Kurve 20 - ausgesendet, beginnend mit einer relativen Sendeleistung von ungefähr Null. Da die zeitlich versetzt zum Zeitpunkt t28 eintreffende, zugehörige Reflexion gemäß der Kurve 21 nicht den voreingestellten Sollwert gemäß der Kurve 11 erreicht, wird die Sendeleistung erhöht, beispielsweise linear oder auch in bestimmten Fällen exponentiell. Entsprechend der Erhöhung der Sendeleistung erhöht sich auch die Reichweite der Strahlenkeule 5. Sobald zu einem Zeitpunkt t29 die zur Strahlenkeule 5 gehörende Reflexion - Kurve 21 - den voreingestellten Sollwert gemäß der Kurve 11 erreicht, weil beispielsweise die Strahlenkeule 5 auf ein Hindernis auftrifft, wird die Sendeleistung der Strahlenkeule 5 nicht weiter erhöht und bis zum Ende der Sen- dedauer zum Zeitpunkt t30 konstant gehalten. Die zugehörige Reflexion gemäß der Kurve 21 endet zeitversetzt zu einem Zeitpunkt t31.
Anschließend wird ab einem Zeitpunkt t32 bis zu einem Zeitpunkt t34 die Strahlenkeule 6 - Kurve 22 - ebenfalls ausgesendet, beginnend mit einer relativen Sendeleistung von ungefähr Null. Da die zeitlich versetzt zum Zeit- punkt t33 eintreffende, zugehörige Reflexion gemäß der Kurve 23 nicht den voreingestellten Sollwert gemäß der Kurve 11 erreicht, wird die Sendeleistung erhöht, analog wie zuvor bei der Strahlenkeule 5. Da jedoch die zugehörige Reflexion gemäß der Kurve 23 überhaupt nicht bzw. nicht bis zum Zeitpunkt t3 den Sollwert gemäß der Kurve 11 erreicht, wird die Sendeleistung der Strahlenkeule 6 weiter erhöht, bis sie nach der voreingestellten Sendezeit von ca. 500 μs zum Zeitpunkt t34 auf Null zurück gefahren wird. Die zugehörige Reflexion gemäß der Kurve 23 endet zeitversetzt zu einem Zeitpunkt t35.
Die Erfindung zeigt ein vorteilhaftes Verfahren zum Betrieb eines aktiven Hinderniswarnsystems für ein Fahrzeug, bei dem die Sendeleistung des Hinder- niswamsystems situationsabhängig verändert wird.

Claims

Patentansprüche
1. Verfahren zum Betrieb eines aktiven Hinderniswarnsystems (4), das zur Messung des Abstands zu einem Hindernis (3) modulierte Lichtwellen aussendet und anhand der Laufzeit des reflektierten Lichtanteils den Abstand zum Hindernis (3) bestimmt, dadurch gekennzeichnet, dass die Sendeleistung des Hinderniswarnsystems (4) situationsabhängig verändert wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Sende- leistung des Hinderniswarnsystems (4) zur Verringerung seiner Betriebstemperatur verringert wird.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Sendeleistung des Hinderniswarnsystems (4) im Notlaufbetrieb verringert wird.
4. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Sende- leistung des Hinderniswarnsystems (4) zur Erhöhung der Reichweite der modulierten Lichtwellen erhöht wird.
5. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Sendeleistung des Hinderniswarnsystems (4) bei intensiver Sonneneinstrahlung erhöht wird.
6 Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Hinderniswarnsystem eine Strahlenkeule (5, 6) mit modulierten Lichtwellen aussendet.
7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Hinderniswarnsystem mehrere Strahlenkeulen (5, 6) mit modulier- ten Lichtwellen aussendet.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Strahlenkeulen (5, 6) gleichzeitig ausgesendet werden.
9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Strahlenkeulen (5, 6) alternierend ausgesendet werden.
10. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Strahlenkeulen (5, 6) sequentiell ausgesendet werden.
PCT/DE2002/002865 2001-08-16 2002-07-31 Verfahren zum betrieb eines aktiven hinderniswarnsystems WO2003019232A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/781,337 US6987447B2 (en) 2001-08-16 2004-02-17 Method of operating an active obstacle warning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10140096A DE10140096A1 (de) 2001-08-16 2001-08-16 Verfahren zum Betrieb eines aktiven Hinderniswarnsystem
DE10140096.9 2001-08-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/781,337 Continuation-In-Part US6987447B2 (en) 2001-08-16 2004-02-17 Method of operating an active obstacle warning system

Publications (1)

Publication Number Publication Date
WO2003019232A1 true WO2003019232A1 (de) 2003-03-06

Family

ID=7695551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/002865 WO2003019232A1 (de) 2001-08-16 2002-07-31 Verfahren zum betrieb eines aktiven hinderniswarnsystems

Country Status (3)

Country Link
US (1) US6987447B2 (de)
DE (1) DE10140096A1 (de)
WO (1) WO2003019232A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004037946B4 (de) * 2004-08-04 2012-11-22 Günter Fendt Überrollschutzsystem
DE102005040763B4 (de) * 2005-08-26 2022-02-10 Cedes Ag Türsensoranordnung
DE102006052006A1 (de) * 2006-11-03 2008-05-08 Webasto Ag Verfahren zum Bereitstellen eines Einklemmschutzes für bewegte Teile eines Kraftfahrzeugs, insbesondere zur Verwirklichung eines Einklemmschutzes bei einem Cabriolet-Fahrzeug, und Einklemmschutzvorrichtung
ITRE20060152A1 (it) * 2006-12-15 2008-06-16 Franco Baldi Perfezionamenti a rilevatore di ostacoli a collimazione e focalizzazione dell'onda emessa.
US8344949B2 (en) * 2008-03-31 2013-01-01 Golba Llc Wireless positioning approach using time-delay of signals with a known transmission pattern
US10203399B2 (en) 2013-11-12 2019-02-12 Big Sky Financial Corporation Methods and apparatus for array based LiDAR systems with reduced interference
US9360554B2 (en) 2014-04-11 2016-06-07 Facet Technology Corp. Methods and apparatus for object detection and identification in a multiple detector lidar array
US10036801B2 (en) 2015-03-05 2018-07-31 Big Sky Financial Corporation Methods and apparatus for increased precision and improved range in a multiple detector LiDAR array
DE102015208790A1 (de) * 2015-05-12 2016-11-17 Volkswagen Aktiengesellschaft Bestimmen einer Trajektorie für ein Fahrzeug
GB2547488B (en) * 2016-02-18 2020-04-15 Trw Autocruise S A S Radar apparatus
US9866816B2 (en) 2016-03-03 2018-01-09 4D Intellectual Properties, Llc Methods and apparatus for an active pulsed 4D camera for image acquisition and analysis
JP2018205042A (ja) * 2017-05-31 2018-12-27 日本信号株式会社 レーザー測距装置
CN110509841A (zh) * 2019-08-13 2019-11-29 南京金龙客车制造有限公司 一种针对新能源且具备能量回收功能车辆的安全节能系统的工作方法
DE102020103101B4 (de) 2020-02-06 2022-07-28 Audi Aktiengesellschaft Verfahren zum Betrieb eines Radarsensors in einem Kraftfahrzeug und Kraftfahrzeug
CN111650575B (zh) * 2020-05-30 2022-10-28 Oppo广东移动通信有限公司 障碍物检测方法、装置、电子设备及存储介质
CN112596111B (zh) * 2020-11-04 2024-02-13 普联技术有限公司 障碍物识别方法、装置、设备及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3903501A1 (de) * 1988-02-10 1989-08-24 Messerschmitt Boelkow Blohm Optisches abstands-messgeraet fuer fahrzeuge
DE19707936A1 (de) * 1997-02-27 1998-09-03 Volkswagen Ag Vorrichtung und Verfahren zum Bestimmen eines Abstandes zwischen Fahrzeug und Hindernissen
WO2000054070A1 (de) * 1999-03-11 2000-09-14 Volkswagen Aktiengesellschaft Vorrichtung mit mindestens einem lasersensor und verfahren zum betreiben eines lasersensors

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT307762B (de) * 1971-04-28 1973-06-12 Eumig Verfahren und Einrichtung zur Entfernungsmessung
SE358243B (de) * 1971-11-25 1973-07-23 Aga Ab
US5122796A (en) * 1986-02-19 1992-06-16 Auto-Sense, Limited Object detection method and apparatus emplying electro-optics
US5463384A (en) * 1991-02-11 1995-10-31 Auto-Sense, Ltd. Collision avoidance system for vehicles
EP0569686B1 (de) 1992-05-09 1997-06-04 Leuze electronic GmbH + Co. Einen Sender, einen Empfänger und eine Schaltungsanordnung zur Signalauswertung aufweisende lichtelektrische Überwachungseinrichtung
DE4402642C2 (de) * 1994-01-29 1995-11-23 Leuze Electronic Gmbh & Co Optoelektronische Vorrichtung zum Orten von Hindernissen
JP3205477B2 (ja) * 1994-02-17 2001-09-04 富士フイルムマイクロデバイス株式会社 車間距離検出装置
DE19543402A1 (de) * 1995-11-21 1997-05-22 Bayerische Motoren Werke Ag Vorrichtung zur Abstandsbestimmung von Fahrzeugen
DE19821974B4 (de) 1998-05-18 2008-04-10 Schwarte, Rudolf, Prof. Dr.-Ing. Vorrichtung und Verfahren zur Erfassung von Phase und Amplitude elektromagnetischer Wellen
US6771103B2 (en) * 2001-03-14 2004-08-03 Denso Corporation Time measurement apparatus, distance measurement apparatus, and clock signal generating apparatus usable therein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3903501A1 (de) * 1988-02-10 1989-08-24 Messerschmitt Boelkow Blohm Optisches abstands-messgeraet fuer fahrzeuge
DE19707936A1 (de) * 1997-02-27 1998-09-03 Volkswagen Ag Vorrichtung und Verfahren zum Bestimmen eines Abstandes zwischen Fahrzeug und Hindernissen
WO2000054070A1 (de) * 1999-03-11 2000-09-14 Volkswagen Aktiengesellschaft Vorrichtung mit mindestens einem lasersensor und verfahren zum betreiben eines lasersensors

Also Published As

Publication number Publication date
US20040183662A1 (en) 2004-09-23
DE10140096A1 (de) 2003-02-27
US6987447B2 (en) 2006-01-17

Similar Documents

Publication Publication Date Title
WO2003019232A1 (de) Verfahren zum betrieb eines aktiven hinderniswarnsystems
EP2800982B1 (de) Verfahren und vorrichtung zur radunabhängigen geschwindigkeitsmessung bei einem fahrzeug
DE102010045657A1 (de) Umfeld-Überwachungssystem für ein Fahrzeug
EP0444402A2 (de) Verfahren und Anordnung zum Ermitteln der Sichtweite für Autofahrer beim Auftreten von Nebel
EP1131651B1 (de) Verfahren und vorrichtung zur zustandserkennung bei einem system zur automatischen längs- und/oder querregelung bei einem kraftfahrzeug
DE102015011020B3 (de) Verfahren zur Zuordnung von vorgegebenen Einbaupositionen zu an den Einbaupositionen in einem Kraftfahrzeug verbauten Radarsensoren und Kraftfahrzeug
DE102013008953A1 (de) Verfahren zum Betreiben einer Radareinrichtung eines Fahrzeugs, insbesondere eines Kraftwagens, sowie Radareinrichtung für ein Fahrzeug, insbesondere einen Kraftwagen
DE4040894C1 (en) Motor vehicle parking aid using pulsed laser - evaluates signal reflected from obstacle and received by semiconductor diode at rear corner of vehicle
DE102018110566A1 (de) Verfahren zur Überprüfung der Funktionsfähigkeit eines Laserscanners und Laserscanner
DE102010021053B3 (de) Verfahren zur Detektion von Störungen des Messbetriebs einer Ultraschall-Messanordnung eines Kraftfahrzeugs und Kraftfahrzeug
EP3867666B1 (de) Verfahren zur erfassung wenigstens von partikelzusammensetzungen in einem überwachungsbereich mit einer optischen detektionsvorrichtung und detektionsvorrichtung
DE102018119632B4 (de) Verfahren zur Bestimmung der Detektionsreichweite eines Umgebungssensors
WO2022112203A1 (de) Verfahren zum betreiben einer detektionsvorrichtung zur bestimmung von temperaturkorrigierten entfernungsgrössen, entsprechende detektionsvorrichtung und fahrzeug mit wenigstens einer solchen detektionsvorrichtung
WO2019101506A1 (de) Verfahren zum betreiben eines lidar-sensors und lidar-sensor
DE3004250C2 (de) Optischer Annäherungssensor
DE102020121108A1 (de) Verfahren zum Erkennen von Verkehrsteilnehmern in einer Umgebung eines Fahrzeugs anhand von Messungen eines Radarsensors durch Identifizieren von Stördetektionen sowie Recheneinrichtung
DE112007001724B4 (de) Bestimmung der Position eines Objekts mit einem Sensor
DE102018008903A1 (de) Verfahren zur Ermittlung einer Sichtweite eines Sensors
DE102018126497A1 (de) Verfahren zur Überprüfung einer Reichweite einer optischen Detektionsvorrichtung und optische Detektionsvorrichtung
DE102020128877B3 (de) Verfahren zur Ermittlung einer Änderung einer Reichweite eines Lidarsensors
DE102013018799A1 (de) Verfahren und Vorrichtung zum optischen Bestimmen von Abständen zu Objekten, insbesondere zu Hindernissen für Fahrzeuge, in einem Überwachungsbereich
DE102020103101B4 (de) Verfahren zum Betrieb eines Radarsensors in einem Kraftfahrzeug und Kraftfahrzeug
DE102017118387A1 (de) Radarsensor für Fahrzeuge und Verfahren zur Richtungsbestimmung von Objekten
DE102021117361A1 (de) Verfahren zum Betreiben einer optischen Detektionsvorrichtung, Detektionsvorrichtung und Fahrzeug mit wenigstens einer Detektionsvorrichtung
DE3612901C1 (de) Verarbeitungsschaltung für Signale eines IR-Detektors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10781337

Country of ref document: US

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP