WO2003018784A1 - Process for producing antigen-specific human t cells and drugs - Google Patents

Process for producing antigen-specific human t cells and drugs Download PDF

Info

Publication number
WO2003018784A1
WO2003018784A1 PCT/JP2002/008499 JP0208499W WO03018784A1 WO 2003018784 A1 WO2003018784 A1 WO 2003018784A1 JP 0208499 W JP0208499 W JP 0208499W WO 03018784 A1 WO03018784 A1 WO 03018784A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cancer
blood
patient
cell
Prior art date
Application number
PCT/JP2002/008499
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Nishimura
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Publication of WO2003018784A1 publication Critical patent/WO2003018784A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/124Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/48Blood cells, e.g. leukemia or lymphoma
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/22Colony stimulating factors (G-CSF, GM-CSF)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/24Interferons [IFN]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/11Coculture with; Conditioned medium produced by blood or immune system cells

Definitions

  • the present invention relates to a method for producing human Th1 cells, cells produced by the method, and pharmaceutical uses thereof.
  • the human Thl cells of the present invention are particularly useful for immunotherapy of cancer, host versus graft reaction, and the like.
  • cancer Treatment of cancer is one of the most important medical issues. To date, a variety of surgical, chemo, and radiation therapies have been tried, but the outcome has improved, but is still not at a satisfactory level. Since the 1980s, immunotherapy has also been attempted and progressed with improvements, and is expected as a new cancer treatment. Originally, it is thought that cancer cells can be eliminated by the immune function of the host.However, in patients who have a large amount of cancer cells in the body and are in an immunosuppressed state, the patient's own immune system alone is no longer sufficient for cancer. The cells cannot be eliminated.
  • immunotherapy is intended to treat cancer by administering various cytotoxic agents or immunostimulating substances from outside the body, or by enhancing the active immunity in the body by injecting activated lymphocytes. It is. To date, various methods have been tried, but the effect is still limited and further improvement is required (Fujimimoto T. et al: J. I. uno l 158: 5619, 199) Fu, Patent No. 2530966 and "Current State of Cellular Immunotherapy", History of Medicine, vol. 195, No. 1, 2000).
  • dendritic cells play a very important role in antigen presentation, the fundamental response of the immune response (Inaba. K. et al: Proc. Nat I. Acad Sc. USA 80: 6041, 1983, Banchereau J. et al: Nature 392: 245, 1998).
  • vaccine therapy for cancer using dendritic cells is currently receiving attention, and some of its promises have been reported (Sato ⁇ et al: Int. Immunol. 12: 335, 2000, "The Present Situation of Cellular Immunotherapy", History of Medicine, vo 1.195, No. 1, 2000).
  • the dendritic cells are transfused into a patient, and the dendritic cells are further transferred to the patient.
  • This method involves inducing cytotoxic T cells (GTL) from peripheral blood lymphocytes of patients as stimulator cells and injecting them into cancer patients.
  • GTL cytotoxic T cells
  • Such immunotherapy can specifically sensitize antigen-presenting cells when sensitizing dendritic cells and other antigen-presenting cells with cancer antigen-cancer antigen-derived peptides in vitro. Then, how efficiently the required amount of GTL can be induced, and how efficiently the GTL can reach the lesion in the cancer patient, are important matters for improving the therapeutic effect.
  • the most rational antigen used to sensitize dendritic cells is the cancer cell antigen of the patient, but the cancer peptide antigen is the major histocompatibility complex of the patient.
  • MHG MHG
  • MHG restriction MHG restriction
  • the specific antigen used in this case is an MHG class I binding peptide (expressed on all nucleated cells and platelets, (A peptide derived from a cytoplasmic protein is presented to cytotoxic GD8-positive killer cells.)
  • MHG class I binding peptide expressed on all nucleated cells and platelets, (A peptide derived from a cytoplasmic protein is presented to cytotoxic GD8-positive killer cells.)
  • GTL class I-binding peptide alone
  • attempts to overcome this problem by using various adjuvants to enhance immunity have continued.
  • a practical method has not yet been established. For example, trials using interleukin 2 (IL-2), IL-12, etc. (Ribas A et al: Cancer Res 57: 2865,
  • MHG class I MHG class II
  • GD4-positive helper T cells peptides mainly expressed on antigen presenting cells and derived from plasma membrane and extracellular proteins
  • MHG class II-restricted antigen-specific killer T cells GD4 positive GT1J or GD4 positive helper. It is extremely important to create an environment in which Th1-driven systemic cellular immunity, which is the induction of Nokiller cells, is activated.
  • helper T cells are divided into two subtypes, TM and Th2, and that many immune responses are controlled in the mouse system ( Mosmann, TR: Ann. NY Acd. Sci. 664: 89, 1992). It was also revealed that a similar helper T cell subset exists in humans, and it has been speculated that the balance between Th1 and Th2 plays an important role in the development of a number of diseases including cancer (Sal game, P. et. Science, 254: 279, 1991, Abbas. AK et al. Nature 383: 787, 1996).
  • Th1 and Th2 are in a functional balance with each other, and when this balance is maintained, they are healthy, but when Th1 becomes excessive, autoimmune diseases, rheumatoid arthritis, etc. In multiple sclerosis and the like, it is said that excess Th2 causes cancer, immunodeficiency, allergic disease and the like.
  • This method of immunoregulation based on TM ZTh2 balance is also expected to lead to effective treatment of cancer, but no efficient method for inducing Thl cells and Th2 cells has been established, and specific clinical applications have not been established. Not yet done.
  • the concept of Th1 / Th2 balance was originally proposed in mouse experiments. It is necessary to verify whether they have the ability to induce T cells and produce cytokines that control cancer cytotoxicity and immune balance that have functions applicable to immunotherapy. This verification is not yet sufficient.
  • bone marrow transplantation and hematopoietic stem cell transplantation can also be considered as one of the immunotherapy using Th1 cells.
  • Bone marrow transplants are used to treat leukemia and aplastic anemia
  • hematopoietic stem cell transplants are used in solid tumors after high-dose chemotherapy or intense radiation therapy (myeloablative hematopoietic stem cell transplants) and in patients with solid cancers. After a small amount of chemotherapy or radiation therapy (non-myeloablative hematopoietic stem cell transplantation), 02 08499
  • HVGD host-graft reaction
  • GVHD weak graft-versus-host reaction
  • immunotherapy requires the isolation of antigen-presenting cells and antigen sensitization, followed by cultivation, and separate isolation and culturing of T cells, which requires a great deal of labor and high know-how. Desired.
  • there remain issues such as difficulties in obtaining antigens such as cancer cells and cancer peptides, complicated procedures for handling them, and adequate facilities.
  • the use of patient cells poses medical problems, such as the invasion and burden on patients, and the fact that it is virtually impossible to draw blood from patients who have become extremely anemic due to chemotherapy or radiation therapy. is there. Therefore, in the case of using blood cells derived from a patient, it is extremely important for practical use that the target cells are easily and efficiently induced from a small amount of sample.
  • immunotherapy has many challenges, including not only the concept verification but also the development of corresponding medical technologies, and simple and useful treatments including these have not yet been established. There is no present.
  • An object of the present invention is to provide a method for producing human Th1 cells, which solves these problems, and enables a new therapeutic method for cancer and immune diseases, a medicament comprising cells produced by the production method,
  • An object of the present invention is to provide a use for a disease that can be treated with cells produced by the production method.
  • the present inventors have made it possible to easily obtain MHG class II-restricted antigen-specific human Th1 cells having cytotoxic activity using exogenous cytokines from peripheral blood and bone marrow cells of patients.
  • the present inventors have found that the human Th1 cells can be used for cancer treatment, bone marrow transplantation, and the like, and have completed the present invention.
  • the present invention provides a method for inducing dendritic cells by using peripheral blood or bone marrow collected from a patient as a material, and culturing the cells in vitro without adding a disease-derived antigen from the outside and using an exogenous cytokine.
  • a major histocompatibility complex class 11-restricted antigen which comprises culturing CD4 positive T cells contained in a substance in the presence of the dendritic cells and inducing human Th1 cells having cytotoxic activity.
  • a method for producing a specific human Th1 cell is provided.
  • the present invention also provides a human Th1 cell produced by the method of the present invention, and provides a medicine or a pharmaceutical composition containing the human Th1 cell.
  • the present invention provides drugs for treating cancer, drugs for treating malignant diseases of the blood or hematopoietic system, and drugs for controlling host versus graft reactions.
  • therapeutic agents for malignant diseases of the blood or hematopoietic system include various therapeutic agents for leukemia, malignant lymphoma, multiple myeloma, myelodysplastic syndrome, or aplastic anemia.
  • the present invention provides a use of the above-mentioned cell of the present invention for producing a cancer therapeutic agent, a therapeutic agent for blood or hematopoietic malignancy, or a host versus graft reaction control agent.
  • the present invention provides a method for treating cancer, blood or hematopoietic malignant disease, which comprises administering an effective amount of the above-described cell of the present invention to each patient of cancer, immune disease, blood or hematopoietic malignant disease.
  • the present invention also provides a method for controlling a host-graft reaction, which comprises administering an effective amount of the above-described cell of the present invention to a patient who wants to control the host-graft reaction.
  • the antigen-specific Th1 cells obtained by the method of the present invention also produce cytokines, and can exert specific cytotoxic activity against target cells and precise cytotoxic activity against target cells, so that therapeutic effects on patients are obtained. Can induce a Th1-driven systemic cellular immune state with Moreover, since the obtained Th1 cells are derived from the T lymphocytes of the patient, even if they are returned to the body of the patient, no problem such as harmful rejection occurs. Therefore, effective immunotherapy for various cancers including leukemia can be performed. It is also useful as a method for controlling host-graft reactions. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a diagram showing a method for inducing activated T cells using leukemia cells as an example. The commonly used conventional method (A) and the method (B) of the present invention are shown.
  • FIG. 2 is a diagram showing the results of identification of lymphocyte surface antigens before and after culture in Example 1. After culturing, pure CD4-positive cells are obtained. GD4-positive and ZGD8-negative helper T cells, which had only 0.92% before culture (before culture), were induced to 94.66% after culture (after culture). It turns out that it is a pure CD4 positive helper killer cell population.
  • FIG. 3 shows the cytotoxicity of T lymphocytes against autologous cancer obtained by the method of the present invention (Th1 condition) or the method of the comparative example (Th0 condition and Th2 condition) in Examples 1 to 3.
  • ThO ThO-type helper T cell induction condition; Th0 / 1; ThO and Thl-type helper T cell induction condition; Th1; Th1-type helper T cell induction condition; Th2; Th2-type helper T cell induction condition
  • the expression is as follows, and it can be seen that the cytotoxicity is highest when induced by Th1 type.
  • FIG. 4 is a diagram showing the amounts of IFN-r production obtained in Examples 1 to 3 by the method of the present invention (Th1 condition) or the method of the comparative example (Th0 condition and Th2 condition).
  • ThO In the case of ThO type helper T cell induction condition, Thl; In the case of Th1 type helper T cell induction condition, Th2; In the case of Th2 type helper T cell induction condition,
  • FIG. 5 is a diagram showing MHG class II antigen restriction of Example 3. Inhibition of IFN-r production by autologous cancer cell stimulation and cytotoxicity against autologous cancer cells by antibodies against MHG class 11 antigens shown by Th1 cells induced from IM patients.
  • the MHG class 11 antibody inhibits IFN- production and cytotoxic activity and clearly shows MHG class 11 restriction.
  • the present invention preferably induces dendritic cells from granulocyte macrophage colony stimulating factor (GM-GSF) and IL-3 from a patient's bone marrow or peripheral blood without externally adding an antigenic substance. Then, by adding IL-2 to the culture system, a small amount of GD4-positive T cells were allowed to interact with dendritic cells and proliferated. Cytotoxic activity against autologous cancer cells and production of IFN- ⁇ can be obtained by culturing CD4-positive T cells with Th1-inducible cytokines such as IL-12 and interferon ⁇ (IFN-r). The following are the Th1 cell type GD4-positive helper killer cells and the method of inducing them.
  • Th1-type GD4-positive helper killer cells have strong cytotoxicity and high IFN-T production ability, so they elicit an immune response in the patient and induce a Th1-driven systemic cellular immune state You can expect the ability to do it. Since the immunotherapeutic activity is extremely high, it can be used to treat cancer and control host-graft reactions. Also, since the patient's original autologous cells are used, it is highly safe and can be expected to avoid serious side effects.
  • Fig. 1 shows an example of a conventional method for sensitizing cancer antigens followed by a method for inducing activated T cells (Fig. 1A), using leukemia as an example.
  • Fig. 1A shows the present invention (FIG. 1B) using killer cells.
  • cytokines are added over time in a single culture system that does not require a foreign cancer antigen, which is conventionally required, and is performed without mixing with another cell. This makes it possible to obtain MHG class II-restricted Th1-type CD4-positive helper killer cells very simply and efficiently.
  • the cells used here are not particularly limited as long as they are peripheral blood or bone marrow of various cancer patients, but can be preferably obtained from blood cancer patients such as leukemia and malignant lymphoma.
  • the peripheral blood or bone marrow may be any of a fresh sample, a cryopreserved sample, and a cryopreserved sample. Since the amount of the sample required for the present invention may be a very small amount of about a few mL of bone marrow or peripheral blood, it may be a small sample for examination or a residual sample, or may be a frozen sample. Therefore, it can be applied to cancer patients with extreme anemia and leukemia patients with few normal blood cells, and has the advantage that it can be applied to many target diseases with little burden on patients. For example, it is possible to induce 10 7 to 10 8 cells required for normal adoptive immunotherapy from 1 to 2 mL of leukemia blood.
  • peripheral blood whole blood may be cultured, or only white blood cell components may be separated and cultured, but the latter is more efficient and preferable.
  • mononuclear cells may be separated from leukocyte components.
  • the whole cells that make up the bone marrow are cultured.
  • mononuclear cells may be separated and cultured therefrom.
  • Peripheral blood and its leukocyte components and bone marrow cells include monocytes, dendritic cells, hematopoietic stem cells or immature dendritic cells, GD4-positive cells, and target cells such as blood cancer cells. Cancer cells are also included.
  • Th1-driven systemic cell-mediated immunity is not formed in which peripheral blood and bone marrow remain in a state where a sufficient therapeutic effect can be obtained. Is obtained.
  • Th1 cells can be prepared from blood from a very small amount, which was conventionally impossible or extremely difficult to prepare.
  • the ability to induce cells from frozen lymphocytes greatly reduces the burden on patients. For example, compared with the conventional method, where blood is collected at a time of about 20 mL and blood is collected once every two weeks, this method freezes lymphocytes with 5 mL of blood at a time. Store and make 5 servings per 1 mL. Patients with leukemia or solid cancer are often anemic, and frequent blood collections place a heavy burden on patients, but this law greatly reduces the burden.
  • cells provided from donors can be similarly cultured by this method, and the host-graft reaction can be appropriately controlled, thereby improving graft survival and treating underlying diseases.
  • the host-graft reaction can be appropriately controlled, thereby improving graft survival and treating underlying diseases.
  • the production method of the present invention can be carried out in a single step by adding the above-described various cytotoxic agents to a medium, or a first step of inducing dendritic cells, and GD4-positive T cells contained in a culture. Is cultured in the presence of the above-mentioned dendritic cells, and a second step of inducing human Th1 cells having cytotoxic activity can also be performed.
  • the cytodynamic force used for stimulating cells in the present invention is preferably at least GM-GSF, IL-3, IL-2 and IFN-.
  • Other cytokines, such as IL-12, may be used as needed.
  • culture period The period is not particularly limited as long as the required number of dendritic cells or Th1-type CD4-positive helper / killer T cells are induced, but is usually performed for 3 to 8 weeks.
  • the first step is performed in the presence of granulocyte macrophage colony stimulating factor and / or interleukin 3, and the second step is to add interleukin 2 to the culture obtained in the first step. And growing the CD4-positive T cells while interacting with the dendritic cells, and further adding interferon r and / or interleukin 12 to obtain human Th1 having cytotoxic activity. Inducing into cells.
  • the culture obtained in the first step is preferably interleukin 2 and granulocyte-macrophage coagulation stimulating factor or interleukin 3, more preferably Granulocyte macrophage colony stimulating factor and interleukin 3 may be further added to interleukin 2 to the culture obtained in the step, and the culture may be continued.
  • the second step can be carried out in one step or in two steps, but when it is carried out in two steps, the step of expanding GD4-positive T cells and human Th1 cells having cytotoxic activity Add the cytokines used in any of the steps of induction.
  • the culture period is not particularly limited as long as the required number of dendritic cells and Th1-type GD4-positive helper killer T cells are induced, but usually the first step is 1 to 7 days, preferably 2, The first stage of the second step is 2 to 6 weeks, preferably 2 to 3 weeks, and the second stage of the second step is 2 to 7 days, preferably 2 days.
  • any cytokine may be used, such as a natural type or a genetically modified type, as long as it has characteristics that have been confirmed to be safe and bioactive. However, it is preferable to use a standard that has been used for medical purposes and that has been assured of the required quality in the minimum amount required.
  • the concentration of the cytokine to be added is not particularly limited in any of the methods and steps described above, as long as dendritic cells and TM-type GD4-positive helper killer T cells are induced. The concentration is preferably about 10-1000 ng / mL, more preferably about 20-500 ng / mL.
  • the concentration of each cytokine is usually preferably 1 ng / nl or more.
  • Culture is white It can be performed using a well-known medium usually used for culturing blood cells.
  • the culture temperature is not particularly limited as long as leukocyte proliferation is possible, but the human body temperature of about 37 ° C is most preferable.
  • the gaseous environment in the culture is not limited especially as long as the proliferation of white blood cells, it is preferable to vent the 5% G0 2.
  • the equipment used for cell separation and culture can be appropriately used. It is preferable that safety is confirmed for medical use, and that the operation is stable and simple.
  • for cell culture devices irrespective of general containers such as petri dishes, flasks, bottles, etc., stacked containers, multi-stage containers, roller bottles, spinner bottles, bag type incubators, hollow fiber columns, etc. can also be used. .
  • the following procedure is considered as a specific treatment form. That is, blood is collected from a patient with the target disease, lymphocyte and leukocyte components are separated, culture is started, and the Th1-type GD4-positive helper killer T cells induced 2 to 4 weeks later are infused into the patient themselves .
  • the burden on the patient is basically only blood collection and transfusion, and the cancer cells are suppressed by the induced Th1-type GD4-positive helper killer T cells, and as a result are treated.
  • cells provided by donors are similarly cultured, and host-graft reactions are controlled, leading to improved graft survival and treatment of primary diseases be able to.
  • Thl cells When using the Th1 cells obtained by the present invention for therapy, it is preferable to administer Thl cells to peripheral blood by intravenous injection, infusion, or the like. In the case of solid cancer, it may be administered to peripheral blood or directly into cancer tissue.
  • the number of cells to be administered can be appropriately set depending on the patient's condition, etc., but when administered to peripheral blood, it is usually about 10 7 to 10 11 cells per adult patient, preferably 10 8 to 10 9 About one.
  • ALL Human acute lymphocytic leukemia separating mononuclear from bone marrow cells or peripheral blood of patients, 2 ⁇ 10 6 cells Roh including mL concentration in 10% human serum AIM-V medium (GI BG0 - BRL), seeded in a 12-well plate, seeded with GM-GSF (30 ng / mL) and IL-3 (30 ng / mL). ) was added and cultured for 2 days to induce dendritic cells. Thereafter, IL-2 (100 U / mL (10 ng / mD) was added to the culture solution, and cultured for 14 to 21 days to obtain a large amount of GD4-positive T cells.
  • GI BG0 - BRL human serum AIM-V medium
  • GM-GSF 30 ng / mL
  • IL-3 30 ng / mL
  • the cells were stained with GD4 antibody and Fluorescein isot hiocyanate-labeled anti-human GD8 antibody, and confirmed by flow cytometry (see Fig. 2) (Immunological Experiment Procedures, 1995, Namedo Co., Ltd.).
  • the GD4-positive T cells were further cultured for two days in a culture solution containing -12 (40 U / mL (4 ng / mL)) and! FN-r (30 ng / mL). If the volume exceeds 5 ⁇ 10 6 mL, collect the cells with a glass pipette while stirring, re-appear with approximately 1 ⁇ 10 6 mL of the above-mentioned cytokine-supplemented culture medium, and renew the plate.
  • the obtained CD4-positive T cells were collected in a centrifuge tube using a glass pipette with stirring, and centrifuged. Recovered.
  • Th2 conditions were added at the concentration of IL-4 (30 ng / mL) from the beginning of the culture, and no IL-12 and IFN-r were added at the final stage, or ThO conditions (ThO conditions).
  • ThO conditions ThO conditions
  • Cells or Th1 / 2 progenitor cells) at the final stage without -12 and IFN-r were also cultured and recovered in the same manner as above.
  • CIVIL chronic myelogenous leukemia
  • peripheral blood from mononuclear isolated minute
  • 2Kai10 6 pieces Roh including mL concentration in 10% human serum AIM-V medium (manufactured by GIBC0-BRL Co.)
  • the cells were opaque, seeded on a 12-well plate, added with GM-GSF (30 ng / mL) and IL-3 (30 ng / mL), and cultured for 2 days to induce dendritic cells. Thereafter, IL-2 (100 U / mL (10 ng / mD) was added to the culture solution, and cultured for 14 to 21 days to obtain a large amount of CD4-positive T cells.
  • Example 1 (4 ng / mD) and culture medium containing IFN-r (30 ng / mL) and continued culturing for another 2 days, and CD4-positive T cells were collected in the same manner as in Example 1.
  • the cells were cultured under Th2 conditions and ThO conditions in the same manner as in 1, and collected in the same manner as described above.
  • AMIL (M4) Human acute monocytic leukemia (AMoL (M4)) mononuclear than bone marrow cells or peripheral blood of a patient is separated, 2x10 containing six mL concentration in 10% human serum AIM-V medium (GIBG 0-BRL), seeded on a 12-well plate, added GM-GSF (30 ng / mL) and IL-3 (30 ng Ml), and cultured for 2 days to induce dendritic cells. Thereafter, -2 (100 U / mL (10 ng / mD) was added to the culture solution, and the mixture was cultured for 14 to 21 days to obtain a large amount of GD4-positive T cells.
  • GIBG 0-BRL human serum AIM-V medium
  • Example 1 mL (4 ng / mL)) and IFN-r (30 ng / mL) were further cultured for 2 days in a culture solution containing the same, and GD4-positive T cells were collected in the same manner as in Example 1. Therefore, the cells were cultured under Th2 and ThO conditions in the same manner as in Example 1. The cells were collected in the same manner as described above, and IL-12 (40 U / mL (4 ng / mD) and IFN-r (30 ng / mL) were continuously added, and CD4-positive T cells were collected in the same manner as described above. It was bad condition.
  • the cytotoxic activity of the CD4-positive T cells obtained in Examples 1 to 3 on leukemia cells of the patient was examined.
  • a specific method for examining the cytotoxic activity was as follows: the leukemia cells stored in a frozen state of the patient were frozen and thawed, then cultured, radiolabeled with 51 Cr according to a standard method during the experiment, and the GD4 positive obtained in the patient was obtained. T cells and radiolabeled leukemia cells were mixed and cultured at each effector cell-to-target cell ratio, and after 4 hours, the radioactivity released into the culture supernatant was measured to determine the cytotoxic activity. (Ishi 1995, Nankodo Co., Ltd.).
  • GD4-positive T cells obtained from each patient by the method of the present invention are high on leukemia cells of each patient and show cytotoxic activity.
  • the IFN-r producing ability of the GD4-positive T cells obtained in Examples 1 to 3 was examined. This was specifically performed as follows. Processing the leukemic cells obtained from patients with mitomycin C (50 g / mL) ( ( Ltd.) Kyowa Hakko), obtained from the My Bok mycin C treatment leukemia cells (5 ⁇ 10 4 cells) and patient The obtained CD4-positive ⁇ cells (2 ⁇ 10 5 ) were mixed and cultured, and 48 hours later, IFN-r produced in the culture supernatant was measured using an IFM-r ELISA kit (manufactured by R & D). Fig. 4 shows the results. As shown in FIG. 4, the GD4-positive T cells obtained by the method of the present invention (Th1 condition) showed IFN-r-producing ability, indicating that they were Th1-type cells.
  • the suppression of IFN- ⁇ production and cytotoxic activity against autologous cancer cells by antibodies against MHG class II by stimulation of autologous cancer cells exhibited by the Th1 cells of the present invention obtained in Experimental Example 3 was examined. This was specifically performed as follows. The test was performed in the same manner as in the test system performed in Example 4 and Example 5, and the antiserum against MHG class I or antiserum against class II was added to the mixed culture system at a dilution of 100-fold, and the test was performed. .
  • FIG. 5 shows the results.
  • Figure 5 shows that the production of IFM- ⁇ by stimulation of autologous cancer cells was completely suppressed by the addition of antiserum to MHC Class II (a), and the cytotoxic activity against autologous cancer cells was also reduced by the addition of antiserum to MHG Class II. As a result, it was reduced by about 40% (b). This indicates that the induced GD4-positive T cells are restricted to MHC class II.
  • OVA ovalbumin
  • IL-12 (20 U / mL)
  • IFN-r (1 ng / ml
  • mice 2 ⁇ 10 6 cancer cells (A20-0VA) expressing the OVA antigen by gene transfer were transplanted intradermally into mice, and when the 0VA antigen-expressing carcinoma grew to 6-8 mm, 2-10 7 induced 0V A antigen-specific Th1 cells were transferred to the tumor-bearing mice.
  • A20-0VA cancer cells expressing the OVA antigen by gene transfer were transplanted intradermally into mice, and when the 0VA antigen-expressing carcinoma grew to 6-8 mm, 2-10 7 induced 0V A antigen-specific Th1 cells were transferred to the tumor-bearing mice.
  • disappearance of cancer was observed in all cases, and a marked antitumor effect was observed by injection into antigen-specific Thl cells.
  • Reference example 1 The effect of Th1 cell control on transplant cell engraftment was investigated in a mouse bone marrow transplantation model. That is, the 5 X 1 0 7 or lymphocytes G57BL / 6 mice BDF1 mice transplanted with intravenous injection was measured the induced IFN-r. As a result, 5 to 7 days after transplantation, IFN-r was detected in the serum from 50 Opg / mL to 200 Opg / mL in serum, and 10 to 4 days later. All cells were replaced by cells from transplanted mice, whereas when IFN-r was 1 Opg / nt or less, transplanted lymphocytes did not survive.
  • graft-versus-host disease graft-versus-host disease
  • transplantation during allogeneic hematopoietic cell transplantation in patients with hematopoietic tumors, such as leukemia patients.
  • This is considered to be an important finding in controlling hematopoietic leukemia lymphoma (graft-versus-leukemia / lymphoma: GVL).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Oncology (AREA)
  • Diabetes (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

A process for producing major histocompatibility complex class II-restricted antigen-specific human Th1 cells which enable a novel therapy for cancer or immune diseases. This process comprises starting with peripheral blood or bone marrow collected from a patient, culturing it in vitro using an exogenous cytokine without adding any disease-origin antigen outside, thus inducing dendrocytes, culturing CD4-positive T cells contained in the culture in the coexistence with the above dendrocytes and thus inducing into cytotoxic human Th1 cells. By administering the cytotoxic human Th1 cells thus produced to patients, cancer and immune diseases can be treated.

Description

抗原特異的ヒ ト T細胞の製造方法及び医薬  Method for producing antigen-specific human T cells and pharmaceutical
技術分野  Technical field
本発明は、 ヒ卜 Th1細胞の製造方法、 該製造方法によリ製造された細胞及びそ の医薬用途に関する。 本発明のヒ 卜 Thl細胞は、 特に癌や宿主対移植片反応等の 免疫療法に有用である。  The present invention relates to a method for producing human Th1 cells, cells produced by the method, and pharmaceutical uses thereof. The human Thl cells of the present invention are particularly useful for immunotherapy of cancer, host versus graft reaction, and the like.
背景技術  Background art
癌の治療は医療上の最重要課題のひとつである。 現在までに、 さまざまな外科 療法、 化学療法、 放射線療法が試みられており、 治療成績は向上してきているも のの、 未だ満足できるレベルにはない。 1980年代からは免疫療法も試みられ、 改良が加えられながら進展してきており、 新しい癌の治療法として期待されてい る。 本来、 癌細胞は宿主の免疫機能により排除され得るものと考えられるが、 癌 細胞が体内に多量に存在していて免疫抑制状態にある患者においては、 患者自身 の免疫系だけではもはや十分に癌細胞を排除できない状態にある。 このため、 体 外から各種のサイ卜力インや免疫賦活化物質を投与したり、 さらには活性化リン パ球の注入などで体内の能動免疫を高め、 癌を治療しょうとするのが免疫療法で ある。 現在までに様々な手法が試みられているが、 効果はまだ限定的であり、 さ らなる改良が求められている (Fuj imoto T. et a l : J. I國 uno l 158: 5619, 19 9フ、 特許番号第 2530966号および 「細胞免疫療法の現状」 、 医学のあゆみ、 vo l . 195, No. 1 , 2000) 。  Treatment of cancer is one of the most important medical issues. To date, a variety of surgical, chemo, and radiation therapies have been tried, but the outcome has improved, but is still not at a satisfactory level. Since the 1980s, immunotherapy has also been attempted and progressed with improvements, and is expected as a new cancer treatment. Originally, it is thought that cancer cells can be eliminated by the immune function of the host.However, in patients who have a large amount of cancer cells in the body and are in an immunosuppressed state, the patient's own immune system alone is no longer sufficient for cancer. The cells cannot be eliminated. For this reason, immunotherapy is intended to treat cancer by administering various cytotoxic agents or immunostimulating substances from outside the body, or by enhancing the active immunity in the body by injecting activated lymphocytes. It is. To date, various methods have been tried, but the effect is still limited and further improvement is required (Fujimimoto T. et al: J. I. uno l 158: 5619, 199) Fu, Patent No. 2530966 and "Current State of Cellular Immunotherapy", History of Medicine, vol. 195, No. 1, 2000).
最近、 免疫応答の根本的な反応である抗原提示に関して、 樹状細胞が極めて重 要な役割を果たしていることが明らかになつてきた (I naba. K. et a l : Proc. N at I . Acad. Sc i . USA 80: 6041 , 1983, Banchereau J. et a I : Nature 392: 2 45, 1998) 。 癌の免疫療法でもこの樹状細胞を用いた癌のワクチン療法は現在注 目を浴びており、 その有望性についてはいくつか報告されている (Sato Μ· et a I: I nt. Immuno l . 12: 335, 2000、 「細胞免疫療法の現状」 、 医学のあゆみ、 vo 1. 195, No. 1 , 2000) 。 具体的には、 癌ペプチド抗原と樹状細胞を数時間培養し て抗原提示能を高めた後、 樹状細胞を患者に輸注したり、 さらにその樹状細胞を 刺激細胞として患者末梢血リンパ球から細胞傷害性 T細胞 (GTL) を誘導して癌 患者に輸注するという方法であり、 すでに悪性黒色腫、 前立腺癌、 乳癌等に対し て臨床試験が進められている。 Recently, it has become clear that dendritic cells play a very important role in antigen presentation, the fundamental response of the immune response (Inaba. K. et al: Proc. Nat I. Acad Sc. USA 80: 6041, 1983, Banchereau J. et al: Nature 392: 245, 1998). In cancer immunotherapy, vaccine therapy for cancer using dendritic cells is currently receiving attention, and some of its promises have been reported (Sato Μ et al: Int. Immunol. 12: 335, 2000, "The Present Situation of Cellular Immunotherapy", History of Medicine, vo 1.195, No. 1, 2000). Specifically, after a cancer peptide antigen and dendritic cells are cultured for several hours to enhance antigen presentation ability, the dendritic cells are transfused into a patient, and the dendritic cells are further transferred to the patient. This method involves inducing cytotoxic T cells (GTL) from peripheral blood lymphocytes of patients as stimulator cells and injecting them into cancer patients. Clinical trials have already been conducted for melanoma, prostate cancer, breast cancer, etc. I have.
このような免疫療法では、 樹状細胞を始めとする抗原提示細胞に癌抗原ゃ癌抗 原由来ペプチドをイン ' ビトロで感作させる場合に、 いかに特異的に抗原提示細 胞を感作し得るか、 次にいかに効率よく必要量の GTLを誘導し得るか、 さらに癌 患者体内でいかに効率よく GTLを病巣に到達させ得るかということが、 治療効果 を上げるための重要事項である。 樹状細胞の感作に用いる抗原は、 患者の癌細胞 抗原が最も合理的であるが、 癌べプチド抗原が患者の主要組織適合遺伝子複合体 Such immunotherapy can specifically sensitize antigen-presenting cells when sensitizing dendritic cells and other antigen-presenting cells with cancer antigen-cancer antigen-derived peptides in vitro. Then, how efficiently the required amount of GTL can be induced, and how efficiently the GTL can reach the lesion in the cancer patient, are important matters for improving the therapeutic effect. The most rational antigen used to sensitize dendritic cells is the cancer cell antigen of the patient, but the cancer peptide antigen is the major histocompatibility complex of the patient.
(MHG) 分子に提示され得るものであることが必須であり (MHG拘束性) 、 その 際に用いる具体的な抗原としては MHGクラス I結合べプチド (すべての有核細胞 と血小板に発現し、 細胞質タンパク質に由来するべプチドを細胞傷害性 GD8陽性 キラ一 Τ細胞に提示する) を用いることが一般的である。 し力、し、 抗原に特異的 な GTLをクラス I結合性ペプチドのみで誘導することは困難であり、 種々のアジ ュバン卜を用いて免疫増強を図ることによりこの問題を克服する試みが続けられ ているが、 まだ実用レベルの手法は確立されていない。 たとえば、 インタ一ロイ キン 2 ( I L-2) 、 IL - 12等を用いた試み (R ibas A et a l : Cancer Res 57: 2865,(MHG) It is essential that it be able to be displayed on the molecule (MHG restriction), and the specific antigen used in this case is an MHG class I binding peptide (expressed on all nucleated cells and platelets, (A peptide derived from a cytoplasmic protein is presented to cytotoxic GD8-positive killer cells.) It is difficult to induce antigen-specific GTL with class I-binding peptide alone, and attempts to overcome this problem by using various adjuvants to enhance immunity have continued. However, a practical method has not yet been established. For example, trials using interleukin 2 (IL-2), IL-12, etc. (Ribas A et al: Cancer Res 57: 2865,
1997) では、 わずかな癌の縮小と延命という治療成績しか得られていない。 免疫療法では 2種類ある MHG分子のうち、 MHGクラス Iだけでなく、 MHGクラス I I (主に抗原提示細胞に発現し、 形質膜および細胞外タンパク質に由来するぺプ チドを GD4陽性ヘルパー T細胞に提示する) を介した免疫応答も誘導することが 重要であるが、 この誘導技術は未だ確立されていない。 In 1997), only a small cancer reduction and survival benefit were obtained. In immunotherapy, of the two types of MHG molecules, not only MHG class I but also MHG class II (peptides mainly expressed on antigen presenting cells and derived from plasma membrane and extracellular proteins are converted to GD4-positive helper T cells. It is important to induce an immune response through (presentation), but this induction technique has not yet been established.
まだ十分な免疫制御法は確立されていない癌、 アレルギー、 自己免疫病の治療 に有用な細胞免疫制御法を確立するためには、 MHGクラス I結合性抗原べプチド による GTLの活性化とともに、 MHGクラス I I結合性抗原ペプチドによる Th1細 胞の活性化を行うことが必要である。 それは、 この細胞集団は免疫療法に非常に 有用で、 細胞傷害性とサイ トカイン産生能が高く、 MHGクラス I I拘束性である ため、 ターゲットとなる癌細胞や病因に関連する細胞に対して強い細胞傷害性 G D4陽性 GTしを得ることができるからである。 すなわち、 免疫療法において高い 治療効果を得るためには、 抗原特異的な Th1細胞の活性化と、 それに引き続く M HGクラス I I拘束性の抗原特異的なキラー T細胞 (GD4陽性 GT1J あるいは GD4陽 性ヘルパーノキラー細胞の誘導という、 Th1主導型の全身性細胞性免疫が賦活さ れた環境を作り出すこと力極めて重要である。 To establish a cell immunity control method that is useful for the treatment of cancer, allergy, and autoimmune diseases for which a sufficient immunoregulation method has not yet been established, it is necessary to activate GTL with MHG class I-binding antigen It is necessary to activate Th1 cells with class II binding antigen peptides. This is because this cell population is very useful for immunotherapy, has high cytotoxicity and cytokine-producing ability, and is MHG class II-restricted, so it is a strong cell against target cancer cells and cells associated with pathogenesis. Injury G This is because a D4 positive GT can be obtained. In other words, in order to obtain a high therapeutic effect in immunotherapy, activation of antigen-specific Th1 cells is followed by MHG class II-restricted antigen-specific killer T cells (GD4 positive GT1J or GD4 positive helper). It is extremely important to create an environment in which Th1-driven systemic cellular immunity, which is the induction of Nokiller cells, is activated.
一方、 T細胞の関する最近の免疫研究の進展から、 ヘルパー T細胞が TM と Th 2という 2つのサブタイプに分かれ、 多くの免疫反応がコントロールされている ことがマウスの系で明らかにされた (Mosmann, T. R.: Ann. NY Acd. Sc i . 664: 89, 1992) 。 同様のヘルパー T細胞サブセットがヒトでも存在することも明らか となり、 Th1 と Th2のバランスが癌を含む数々の病気の発症に重要な働きを持つ ことが推測されている (Sa l game, P. et a l . Sc i ence, 254: 279, 1991 , Abbas. A. K. et a l . Nature 383: 787, 1996) 。 それらによれば、 Th1 と Th2は相互に 機能的バランスをとつておリ、 このバランスが保たれている場合には健康な状態 であるが、 Th1が過剰になると、 自己免疫疾患、 慢性関節リウマチ、 多発性硬化 症等が、 Th2が過剰になると癌、 免疫不全、 アレルギー疾患等が発症するとされ ている。 この TM ZTh2バランスに基づく免疫制御法も癌の有効な治療に結びつ くと期待されているが、 Thl細胞および Th2細胞の効率的な誘導法は確立されて おらず、 具体的な臨床応用もまだ行われていない。 実際のヒ卜への臨床応用に 当たっては、 Th1 /Th2バランスの概念は当初マウスの実験で提唱されたものであ ることから、 少なくとも、 実際に対応するヒ卜型の Th1および Th2のヘルパー T 細胞を誘導して、 それらが免疫療法に適用得る機能を持つ癌細胞傷害性や免疫バ ランスを制御するサイトカインの産生能を有するかどうかの検証が必要とされる。 この検証は、 まだ十分とは言えない。  On the other hand, recent advances in immunity research on T cells have revealed that helper T cells are divided into two subtypes, TM and Th2, and that many immune responses are controlled in the mouse system ( Mosmann, TR: Ann. NY Acd. Sci. 664: 89, 1992). It was also revealed that a similar helper T cell subset exists in humans, and it has been speculated that the balance between Th1 and Th2 plays an important role in the development of a number of diseases including cancer (Sal game, P. et. Science, 254: 279, 1991, Abbas. AK et al. Nature 383: 787, 1996). According to them, Th1 and Th2 are in a functional balance with each other, and when this balance is maintained, they are healthy, but when Th1 becomes excessive, autoimmune diseases, rheumatoid arthritis, etc. In multiple sclerosis and the like, it is said that excess Th2 causes cancer, immunodeficiency, allergic disease and the like. This method of immunoregulation based on TM ZTh2 balance is also expected to lead to effective treatment of cancer, but no efficient method for inducing Thl cells and Th2 cells has been established, and specific clinical applications have not been established. Not yet done. In clinical application to humans, the concept of Th1 / Th2 balance was originally proposed in mouse experiments. It is necessary to verify whether they have the ability to induce T cells and produce cytokines that control cancer cytotoxicity and immune balance that have functions applicable to immunotherapy. This verification is not yet sufficient.
上述したような癌の免疫療法に加えて、 骨髄移植や造血幹細胞移植も、 Th1細 胞を用いた免疫療法のひとつとして捉えることができる。 骨髄移植は、 白血病や 再生不良性貧血の治療のために行われ、 造血幹細胞移植は、 固形癌で大量の化学 療法や強い放射線療法後 (骨髄破壊的造血幹細胞移植) や固形癌の患者にごく少 量の化学療法剤や放射線治療を施した後 (骨髄非破壊的造血幹細胞移植) 、 さら 02 08499 In addition to the cancer immunotherapy described above, bone marrow transplantation and hematopoietic stem cell transplantation can also be considered as one of the immunotherapy using Th1 cells. Bone marrow transplants are used to treat leukemia and aplastic anemia, and hematopoietic stem cell transplants are used in solid tumors after high-dose chemotherapy or intense radiation therapy (myeloablative hematopoietic stem cell transplants) and in patients with solid cancers. After a small amount of chemotherapy or radiation therapy (non-myeloablative hematopoietic stem cell transplantation), 02 08499
4  Four
に血液細胞に依存する先天性代謝異常症にも試みられている。 骨髄移植や造血幹 細胞移植の場合、 宿主対移植片反応 (HVGD) が生じ、 移植片対宿主反応 (GVHD) が弱いと、 移植片生着の不良や原疾患の再発などにつながることが知られている 力 GVHDが起こるか否かは偶然に頼っており、 骨髄移植や造血幹細胞移植の成 功の鍵となる GVHDを制御することは、 医療上の大きな課題になっている (Yabe . et aに: Bone Marrow Transp l antat i on. 24: 29, 1999) 0 Attempts have also been made for inborn errors of metabolism that depend on blood cells. In the case of bone marrow transplantation or hematopoietic stem cell transplantation, host-graft reaction (HVGD) occurs, and weak graft-versus-host reaction (GVHD) is known to lead to poor graft survival or recurrence of the underlying disease. Whether GVHD occurs depends on chance and controlling GVHD, which is key to the success of bone marrow transplantation and hematopoietic stem cell transplantation, is a major medical challenge (Yabe. Et al.). a: Bone Marrow Transp l antat i on. 24: 29, 1999) 0
免疫療法を実際に行う場合には、 抗原提示細胞の分離と抗原感作処理、 それに 引き続く培養、 また、 それとは別に T細胞の分離と培養等が必要とされ、 多大の 手間と高度のノウハウが求められる。 加えて、 癌細胞や癌ペプチド等の抗原の入 手の困難さやそれらを扱う手技の煩雑さ、 十分な設備的な対応などの課題も残つ ている。 さらに患者の細胞を用いる場合には、 患者への侵襲や負担、 また化学療 法や放射線療法のために極度の貧血に陥っている患者からの採血は事実上困難で あるという医療上の問題がある。 したがって、 患者由来の血球を用いる場合には、 微量な試料から、 簡便に効率よく、 目的とする細胞が誘導することが、 実用化の ためには極めて重要な要件となる。  In practice, immunotherapy requires the isolation of antigen-presenting cells and antigen sensitization, followed by cultivation, and separate isolation and culturing of T cells, which requires a great deal of labor and high know-how. Desired. In addition, there remain issues such as difficulties in obtaining antigens such as cancer cells and cancer peptides, complicated procedures for handling them, and adequate facilities. In addition, the use of patient cells poses medical problems, such as the invasion and burden on patients, and the fact that it is virtually impossible to draw blood from patients who have become extremely anemic due to chemotherapy or radiation therapy. is there. Therefore, in the case of using blood cells derived from a patient, it is extremely important for practical use that the target cells are easily and efficiently induced from a small amount of sample.
これらの問題点は、 癌治療や骨髄移植のみならず、 今後免疫療法の対象となる 難治性疾患に共通の課題となっている。  These problems are common issues not only in cancer treatment and bone marrow transplantation, but also in intractable diseases targeted for immunotherapy in the future.
以上のように、 免疫療法には、 コンセプトの検証のみならず、 対応する医療技 術の整備など、 多くの課題が山積しており、 これらを含めた簡便で有用な治療法 はまだ確立されていないのが現状である。  As described above, immunotherapy has many challenges, including not only the concept verification but also the development of corresponding medical technologies, and simple and useful treatments including these have not yet been established. There is no present.
上述のように、 癌治療や骨髄移植という免疫療法において、 MHGクラス I I拘 束性の GTLや Th1細胞を誘導する安全で簡便な手法の開発とそれらの治療への応 用は、 医療上の大きな課題となっている。  As mentioned above, in cancer therapy and immunotherapy such as bone marrow transplantation, the development of safe and simple methods to induce MHG class II-restricted GTL and Th1 cells, and their application to treatment, is a major medical challenge. It has become a challenge.
発明の開示  Disclosure of the invention
本発明の目的は、 これらの課題を解決し、 癌や免疫疾患に対して新たな治療法 を可能にするヒト Th1細胞の製造方法、 該製造方法により製造された細胞からな る医薬、 さらに該製造方法により製造された細胞で治療しえる疾患への用途を提 供することにある。 本発明者らは、 鋭意研究の結果、 患者の末梢血や骨髄細胞より、 外来的なサイ トカインを用いて細胞傷害活性を有する MHGクラス I I拘束性の抗原特異的なヒ 卜 Th1細胞を簡便に得ることができることを見出し、 このヒト Th1細胞を用いて 癌の治療や骨髄移植等を行うことができることに想到し、 本発明を完成した。 すなわち、 本発明は、 患者から採取した末梢血又は骨髄を材料とし、 疾患由来 抗原を外部から加えずに、 また外来的なサイトカインを用いて体外培養すること により、 樹状細胞を誘導し、 培養物中に含まれる CD4陽性 T細胞を前記樹状細胞 との共存下で培養し、 細胞傷害活性を有するヒト Th1細胞に誘導することを含む、 主要組織適合遺伝子複合体クラス 1 1拘束性の抗原特異的なヒト Th1細胞の製造 方法を提供する。 また、 本発明は、 上記本発明の方法により製造されたヒト Th1 細胞を提供し、 該ヒト Th1細胞を含む医薬あるいは医薬組成物を提供する。 例え ば、 癌治療薬、 血液あるいは造血系の悪性疾患治療薬、 宿主対移植片反応制御薬 を提供する。 血液あるいは造血系の悪性疾患治療薬としては、 具体的には、 白血 病、 悪性リンパ腫、 多発性骨髄腫、 骨髄異形成症候群あるいは再生不良性貧血の 各治療薬を挙げることができる。 さらに、 本発明は、 上記本発明の細胞の癌治療 薬、 血液あるいは造血系の悪性疾患治療薬、 宿主対移植片反応制御薬の製造のた めの用途を提供する。 さらに、 本発明は、 上記本発明の細胞の有効量を癌、 免疫 疾患、 血液あるいは造血系の悪性疾患の各患者に投与することを含む癌、 血液あ るいは造血系の悪性疾患の治療方法を提供する。 また本発明は、 上記本発明の細 胞の有効量を、 宿主対移植片反応を制御することが望まれる患者に投与すること を含む、 宿主対移植片反応の制御方法を提供する。 An object of the present invention is to provide a method for producing human Th1 cells, which solves these problems, and enables a new therapeutic method for cancer and immune diseases, a medicament comprising cells produced by the production method, An object of the present invention is to provide a use for a disease that can be treated with cells produced by the production method. As a result of intensive studies, the present inventors have made it possible to easily obtain MHG class II-restricted antigen-specific human Th1 cells having cytotoxic activity using exogenous cytokines from peripheral blood and bone marrow cells of patients. The present inventors have found that the human Th1 cells can be used for cancer treatment, bone marrow transplantation, and the like, and have completed the present invention. That is, the present invention provides a method for inducing dendritic cells by using peripheral blood or bone marrow collected from a patient as a material, and culturing the cells in vitro without adding a disease-derived antigen from the outside and using an exogenous cytokine. A major histocompatibility complex class 11-restricted antigen, which comprises culturing CD4 positive T cells contained in a substance in the presence of the dendritic cells and inducing human Th1 cells having cytotoxic activity. A method for producing a specific human Th1 cell is provided. The present invention also provides a human Th1 cell produced by the method of the present invention, and provides a medicine or a pharmaceutical composition containing the human Th1 cell. For example, it provides drugs for treating cancer, drugs for treating malignant diseases of the blood or hematopoietic system, and drugs for controlling host versus graft reactions. Specific examples of therapeutic agents for malignant diseases of the blood or hematopoietic system include various therapeutic agents for leukemia, malignant lymphoma, multiple myeloma, myelodysplastic syndrome, or aplastic anemia. Further, the present invention provides a use of the above-mentioned cell of the present invention for producing a cancer therapeutic agent, a therapeutic agent for blood or hematopoietic malignancy, or a host versus graft reaction control agent. Further, the present invention provides a method for treating cancer, blood or hematopoietic malignant disease, which comprises administering an effective amount of the above-described cell of the present invention to each patient of cancer, immune disease, blood or hematopoietic malignant disease. I will provide a. The present invention also provides a method for controlling a host-graft reaction, which comprises administering an effective amount of the above-described cell of the present invention to a patient who wants to control the host-graft reaction.
本発明の方法により得られる抗原特異的 Th1細胞は、 サイ トカイン産生も行い、 かつ標的細胞に対して特異的で標的細胞に対する的確な細胞傷害性活性を発揮し 得ることから、 患者に治療的効果を有する Th1主導型の全身性細胞性免疫状態を 誘導することができる。 しかも、 得られる Th1細胞は患者の Tリンパ球に由来す るものであることから、 これを該患者の体内に戻しても有害な拒絶反応等の問題 は起きない。 したがって、 白血病を始めとする各種癌に有効な免疫療法を実施す ることができる。 また、 宿主対移植片反応の制御方法としても有用である。 図面の簡単な説明 The antigen-specific Th1 cells obtained by the method of the present invention also produce cytokines, and can exert specific cytotoxic activity against target cells and precise cytotoxic activity against target cells, so that therapeutic effects on patients are obtained. Can induce a Th1-driven systemic cellular immune state with Moreover, since the obtained Th1 cells are derived from the T lymphocytes of the patient, even if they are returned to the body of the patient, no problem such as harmful rejection occurs. Therefore, effective immunotherapy for various cancers including leukemia can be performed. It is also useful as a method for controlling host-graft reactions. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 白血病細胞を例とした活性化 T細胞の誘導法を示す図である。 一般的 に用いられている従来法 (A) と本発明の方法 (B) を示す。  FIG. 1 is a diagram showing a method for inducing activated T cells using leukemia cells as an example. The commonly used conventional method (A) and the method (B) of the present invention are shown.
図 2は、 実施例 1における培養前後のリンパ球表面抗原の同定の結果を示す図 である。 培養後には純粋な CD4陽性細胞が得られる。 培養前 (before cu l ture) 0. 92%しか存在しなかった GD4陽性 ZGD8陰性のヘルパー T細胞が、 培養後(after cu I ture) には 94. 66%の存在比にまで誘導され、 ほぼ純粋な CD4陽性ヘルパーノキ ラー細胞集団になっていることがわかる。  FIG. 2 is a diagram showing the results of identification of lymphocyte surface antigens before and after culture in Example 1. After culturing, pure CD4-positive cells are obtained. GD4-positive and ZGD8-negative helper T cells, which had only 0.92% before culture (before culture), were induced to 94.66% after culture (after culture). It turns out that it is a pure CD4 positive helper killer cell population.
図 3は、 実施例 1 ~3において、 本発明の方法 (Th1条件) 又は比較例の方法 (T hO条件及び Th2条件) によリ得られた Tリンパ球の自己癌に対する細胞傷害性を示 す図である。 ThO; ThO型ヘルパー T細胞誘導条件の場合、 Th0/1 ; ThOおよび Thl型 ヘルパー T細胞誘導条件の場合、 Th1 ; Th1型ヘルパー T細胞誘導条件の場合、 Th2 ; Th2型ヘルパー T細胞誘導条件の場合、 であり、 Th1型に誘導された場合が最も 細胞傷害性が高いことがわかる。  FIG. 3 shows the cytotoxicity of T lymphocytes against autologous cancer obtained by the method of the present invention (Th1 condition) or the method of the comparative example (Th0 condition and Th2 condition) in Examples 1 to 3. FIG. ThO; ThO-type helper T cell induction condition; Th0 / 1; ThO and Thl-type helper T cell induction condition; Th1; Th1-type helper T cell induction condition; Th2; Th2-type helper T cell induction condition In this case, the expression is as follows, and it can be seen that the cytotoxicity is highest when induced by Th1 type.
図 4は、 実施例 1〜3において、 本発明の方法 (Th1条件) 又は比較例の方法 (T hO条件及び Th2条件) により得られた IFN- r産生量を示す図である。 ThO; ThO型 ヘルパー T細胞誘導条件の場合、 Thl ; Th1型ヘルパー T細胞誘導条件の場合、 Th2 ; Th2型ヘルパー T細胞誘導条件の場合、 であり、 Th1型に誘導された場合が最も I FIG. 4 is a diagram showing the amounts of IFN-r production obtained in Examples 1 to 3 by the method of the present invention (Th1 condition) or the method of the comparative example (Th0 condition and Th2 condition). ThO: In the case of ThO type helper T cell induction condition, Thl; In the case of Th1 type helper T cell induction condition, Th2; In the case of Th2 type helper T cell induction condition,
FN - r産生が高いことがわかる。 It turns out that FN-r production is high.
図 5は、 実施例 3の MHGクラス I I抗原拘束性を示す図である。 IM患者から誘導さ れた Th1細胞が示す自己癌細胞刺激による I FN- r産生および自己癌細胞に対する 細胞傷害性の MHGクラス 1 1抗原に対する抗体での抑制。 MHGクラス 1 1抗体によリ、 I FN- 産生と細胞傷害活性が阻害され、 明確に MHGクラス 1 1拘束性を示す。  FIG. 5 is a diagram showing MHG class II antigen restriction of Example 3. Inhibition of IFN-r production by autologous cancer cell stimulation and cytotoxicity against autologous cancer cells by antibodies against MHG class 11 antigens shown by Th1 cells induced from IM patients. The MHG class 11 antibody inhibits IFN- production and cytotoxic activity and clearly shows MHG class 11 restriction.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 好ましくは、 患者の骨髄または末梢血から、 外来的に抗原物質を加 えることなく、 顆粒球マクロファージコロニー刺激因子 (GM-GSF) と I L- 3によ リ樹状細胞を誘導し、 その培養系に I L - 2を加えることにより、 わずかに存在す る GD4陽性 T細胞を樹状細胞と相互作用させて増殖させ、 さらに、 この増殖した CD4陽性 T細胞を I L-12やインタ一フエロン τ ( I FN- r ) などの Th1誘導性サイ トカインで培養することにより得られる、 自己癌細胞に対する細胞傷害活性や I FN - χの産生を示す Th1細胞型 GD4陽性ヘルパー キラー細胞と、 その誘導法で ある。 この Th 1型の GD4 陽性ヘルパー キラー細胞は強い細胞傷害活性を有し、 さらに IFN- T産生能が高いため、 患者体内で免疫応答を惹起して Th1主導型の 全身性細胞性免疫状態に誘導する能力が期待できる。 このように免疫治療活性が 極めて高いことから、 これを用いて癌の治療や宿主対移植片反応の制御を行うこ とが可能となる。 また、 患者本来の自家細胞を使うために、 安全性が高く、 重篤 な副作用を回避することも期待できる。 The present invention preferably induces dendritic cells from granulocyte macrophage colony stimulating factor (GM-GSF) and IL-3 from a patient's bone marrow or peripheral blood without externally adding an antigenic substance. Then, by adding IL-2 to the culture system, a small amount of GD4-positive T cells were allowed to interact with dendritic cells and proliferated. Cytotoxic activity against autologous cancer cells and production of IFN-χ can be obtained by culturing CD4-positive T cells with Th1-inducible cytokines such as IL-12 and interferon τ (IFN-r). The following are the Th1 cell type GD4-positive helper killer cells and the method of inducing them. These Th1-type GD4-positive helper killer cells have strong cytotoxicity and high IFN-T production ability, so they elicit an immune response in the patient and induce a Th1-driven systemic cellular immune state You can expect the ability to do it. Since the immunotherapeutic activity is extremely high, it can be used to treat cancer and control host-graft reactions. Also, since the patient's original autologous cells are used, it is highly safe and can be expected to avoid serious side effects.
図 1には、 白血病を例として、 従来より一般的に用いられている癌抗原の感作 法とそれに続く活性化 T細胞の誘導法 (図 1A) と、 効率よく Th1型 CD4陽性へ ルパー Zキラー細胞が用いられる本発明 (図 1B) を示したものである。 本発明 においては、 従来必要とされてきた、 外来性の癌抗原を必要とせず、 また新たに 別の細胞と混合することなく実施する単一の培養系において、 経時的にサイトカ インを添加することにより、 非常に簡便に、 かつ効率よく MHGクラス I I拘束性 の Th1型 CD4陽性ヘルパー キラー細胞を得ることができる。  Fig. 1 shows an example of a conventional method for sensitizing cancer antigens followed by a method for inducing activated T cells (Fig. 1A), using leukemia as an example. 1 shows the present invention (FIG. 1B) using killer cells. In the present invention, cytokines are added over time in a single culture system that does not require a foreign cancer antigen, which is conventionally required, and is performed without mixing with another cell. This makes it possible to obtain MHG class II-restricted Th1-type CD4-positive helper killer cells very simply and efficiently.
ここで用いる細胞は、 各種の癌患者の末梢血または骨髄であれば特に限定され ないが、 好ましくは白血病、 悪性リンパ腫等の血液癌の患者から得ることができ る。 また、 末梢血または骨髄は新鮮試料、 低温保存試料及び凍結保存試料のいず れでもよい。 本発明に必要とされる検体量は数 mL程度の極めて少量の骨髄また は末梢血でもよいことから、 検査用の少量サンプルや残検体で済むほか、 凍結保 存したサンプルでもよい。 このため、 極度の貧血に陥った癌患者や正常血液細胞 の少ない白血病患者に対しても適用でき、 患者にほとんど負担をかけずに多くの 対象疾患に適用可能である利点がある。 たとえば、 1〜2mLの白血病患者の血液 から通常の養子免疫療法に必要とされる 107〜108個の誘導も可能である。 The cells used here are not particularly limited as long as they are peripheral blood or bone marrow of various cancer patients, but can be preferably obtained from blood cancer patients such as leukemia and malignant lymphoma. The peripheral blood or bone marrow may be any of a fresh sample, a cryopreserved sample, and a cryopreserved sample. Since the amount of the sample required for the present invention may be a very small amount of about a few mL of bone marrow or peripheral blood, it may be a small sample for examination or a residual sample, or may be a frozen sample. Therefore, it can be applied to cancer patients with extreme anemia and leukemia patients with few normal blood cells, and has the advantage that it can be applied to many target diseases with little burden on patients. For example, it is possible to induce 10 7 to 10 8 cells required for normal adoptive immunotherapy from 1 to 2 mL of leukemia blood.
末梢血は、 全血を培養してもよいし、 白血球成分だけを分離して培養してもよ いが、 後者の方が効率的で好ましい。 さらに白血球成分の中でも単核球を分離し てもよい。 また、 骨髄を起源とする場合には、 骨髄を構成する細胞全体を培養し てもよいし、 これから単核球を分離して培養してもよい。 末梢血やその白血球成 分、 骨髄細胞には、 樹状細胞の起源となる単核球、 造血幹細胞又は未成熟樹状細 胞ゃ GD4陽性細胞、 さらには標的細胞である血液癌細胞のような癌細胞等も含ま れている。 しかし、 末梢血や骨髄の状態のままでは十分に治療的な効果が得られ る Th1主導型の全身性細胞性免疫を形成する状態にはなっておらず、 本発明によ つて十分な治療効果が得られる。 As for peripheral blood, whole blood may be cultured, or only white blood cell components may be separated and cultured, but the latter is more efficient and preferable. Further, mononuclear cells may be separated from leukocyte components. In the case of bone marrow, the whole cells that make up the bone marrow are cultured. Alternatively, mononuclear cells may be separated and cultured therefrom. Peripheral blood and its leukocyte components and bone marrow cells include monocytes, dendritic cells, hematopoietic stem cells or immature dendritic cells, GD4-positive cells, and target cells such as blood cancer cells. Cancer cells are also included. However, Th1-driven systemic cell-mediated immunity is not formed in which peripheral blood and bone marrow remain in a state where a sufficient therapeutic effect can be obtained. Is obtained.
一般に白血病やリンパ腫では、 図 2に示したように、 患者から得られる培養前 の状態の骨髄細胞や末梢血には正常な CD4陽性 T細胞は数%と極めて少ないため (実施例 1参照) 、 従来法ではここから GD4陽性 T細胞を十分に分離することは できず、 その後のヘルパー T細胞の誘導は実質的に不可能である。 本発明によれ ば、 従来には調製が実施できなかったり、 極めて困難とされていた極少量からの 血液から Th1細胞の調製が可能である。 さらに、 凍結されたリンパ球からも誘導 が可能であることから、 患者に対する負担が非常に軽減される。 たとえば、 従来 の方法で一度の採血にはおおむね 20mL以上で、 2週間に一度の採血というレジ メンで治療が実施される場合に比較して、 本法では一度に 5mLの採血でリンパ 球を凍結保存し、 1 mL毎に 5回分の材料とすることができる。 白血病や固形癌 患者では貧血状態になっている場合も多く、 頻回の採血は患者に大きな負担とな るが、 本法によればその負担が大きく軽減される。  In general, in leukemia and lymphoma, as shown in Figure 2, normal bone marrow cells and peripheral blood obtained from a patient have very few normal CD4-positive T cells at several percent (see Example 1). Conventional methods do not allow sufficient isolation of GD4-positive T cells, and subsequent induction of helper T cells is virtually impossible. According to the present invention, Th1 cells can be prepared from blood from a very small amount, which was conventionally impossible or extremely difficult to prepare. In addition, the ability to induce cells from frozen lymphocytes greatly reduces the burden on patients. For example, compared with the conventional method, where blood is collected at a time of about 20 mL and blood is collected once every two weeks, this method freezes lymphocytes with 5 mL of blood at a time. Store and make 5 servings per 1 mL. Patients with leukemia or solid cancer are often anemic, and frequent blood collections place a heavy burden on patients, but this law greatly reduces the burden.
また、 骨髄移植や血液幹細胞移植では、 本方法でドナ一から提供された細胞を 同様に培養し、 宿主対移植片反応を適度に制御できることにより、 移植片の生着 向上や原疾患の治療等につなげることができる。  In addition, in bone marrow transplantation and blood stem cell transplantation, cells provided from donors can be similarly cultured by this method, and the host-graft reaction can be appropriately controlled, thereby improving graft survival and treating underlying diseases. Can be connected to
本発明の製造方法は、 上記した各種サイ卜力インを培地に添加して 1工程で 行うこともできるし、 樹状細胞を誘導する第 1工程と、 培養物中に含まれる GD4 陽性 T細胞を前記樹状細胞との共存下で培養し、 細胞傷害活性を有するヒト Th1 細胞に誘導する第 2工程とに分けて行うこともできる。  The production method of the present invention can be carried out in a single step by adding the above-described various cytotoxic agents to a medium, or a first step of inducing dendritic cells, and GD4-positive T cells contained in a culture. Is cultured in the presence of the above-mentioned dendritic cells, and a second step of inducing human Th1 cells having cytotoxic activity can also be performed.
1工程で行う場合、 本発明で細胞の刺激に用いられるサイト力インは、 好まし くは、 少なくとも GM-GSF、 I L- 3、 I L-2及び I FN- であり、 これ以外に例えば I L - 12のような、 他種のサイトカインも必要により用いられる。 また、 培養期間 は、 必要数の樹状細胞や Th1型の CD4陽性ヘルパー/キラ一 T細胞が誘導される 期間であれば特に限定されないが、 通常 3曰〜 8週間の間で行われる。 When performed in a single step, the cytodynamic force used for stimulating cells in the present invention is preferably at least GM-GSF, IL-3, IL-2 and IFN-. Other cytokines, such as IL-12, may be used as needed. In addition, culture period The period is not particularly limited as long as the required number of dendritic cells or Th1-type CD4-positive helper / killer T cells are induced, but is usually performed for 3 to 8 weeks.
2工程で行う場合、 第 1工程は、 顆粒球マクロファージコロニー刺激因子及び 又はインターロイキン 3の存在下で行い、 第 2工程は、 第 1工程で得られた培 養物にィンターロイキン 2を添加して培養を続けて CD4陽性 T細胞を前記樹状細 胞と相互作用させながら増殖させる工程と、 さらにインターフヱロン r及び 又 はインターロイキン 1 2を添加して細胞傷害活性を有するヒ卜 Th1細胞に誘導す る工程とからなる。 第 2工程の CD4陽性 T細胞を増殖させる工程では、 好ましく は第 1工程で得られた培養物にインタ一ロイキン 2に顆粒球マクロファージコ口 ニー刺激因子あるいはインターロイキン 3を、 さらに好ましくは第 1工程で得ら れた培養物にィンターロイキン 2に顆粒球マクロファージコロニー刺激因子及び インターロイキン 3をさらに添加して培養を続けてもよい。 第 2工程とは一段階 で行うことも、 2段階に分けて行うこともできるが、 2段階に分けて行う場合に は、 GD4陽性 T細胞を増殖させる工程及び細胞傷害活性を有するヒト Th1細胞に 誘導する工程のいずれにおいても用いたサイ トカインを添加する。 培養期間は、 必要数の樹状細胞や Th1型の GD4陽性ヘルパー キラー T細胞が誘導される期間 であれば特に限定されないが、 通常、 上記第 1工程が 1 〜7日、 好ましくは 2曰、 上記第 2工程前段が 2〜 6週間、 好ましくは 2〜 3週間、 上記第 2工程後段が 2 〜7日、 好ましくは 2日である。  When performed in two steps, the first step is performed in the presence of granulocyte macrophage colony stimulating factor and / or interleukin 3, and the second step is to add interleukin 2 to the culture obtained in the first step. And growing the CD4-positive T cells while interacting with the dendritic cells, and further adding interferon r and / or interleukin 12 to obtain human Th1 having cytotoxic activity. Inducing into cells. In the step of expanding CD4-positive T cells in the second step, the culture obtained in the first step is preferably interleukin 2 and granulocyte-macrophage coagulation stimulating factor or interleukin 3, more preferably Granulocyte macrophage colony stimulating factor and interleukin 3 may be further added to interleukin 2 to the culture obtained in the step, and the culture may be continued. The second step can be carried out in one step or in two steps, but when it is carried out in two steps, the step of expanding GD4-positive T cells and human Th1 cells having cytotoxic activity Add the cytokines used in any of the steps of induction. The culture period is not particularly limited as long as the required number of dendritic cells and Th1-type GD4-positive helper killer T cells are induced, but usually the first step is 1 to 7 days, preferably 2, The first stage of the second step is 2 to 6 weeks, preferably 2 to 3 weeks, and the second stage of the second step is 2 to 7 days, preferably 2 days.
上記したいずれの方法及びいずれの工程においても、 用いられるサイ トカイン は、 安全性と生理活性が確認された特性のものであれば、 天然型、 あるいは遺伝 子組み換え型等、 その生産手法については問わないが、 好ましくは医療用に用い られる品質が確保された標品が必要最低量で用いられる。 添加するサイトカイン の濃度は、 上記したいずれの方法及びいずれの工程においても、 樹状細胞や TM 型の GD4陽性ヘルパー キラー T細胞が誘導される濃度であれば特に限定されず、 通常サイ トカインの合計濃度で 10〜1000ng/mL程度が好ましく、 さらに好ましく は 20〜500ng/mL程度である。 また、 複数のサイト力インが用いられる場合、 各 サイトカインの濃度は、 通常、 1 ng/nl以上であることが好ましい。 培養は、 白 血球の培養に通常用いられている周知の培地を用いて行うことができる。 培養温 度は白血球の増殖が可能であれば特に限定されないが、 ヒ卜の体温である 37°C 程度が最も好ましい。 また、 培養中の気体環境は白血球の増殖が可能であれば特 に限定されないが、 5%G02を通気することが好ましい。 細胞の分離や培養に供さ れる機器は、 適宜適当なものを用いることができる力 医療用に安全性が確認さ れ、 かつ操作が安定して簡便であることが好ましい。 特に細胞培養装置について は、 シャーレ、 フラスコ、 ボトル等の一般的容器に拘わらず、 積層型容器や多段 式容器、 ローラーボトル、 スピナ一式ボトル、 バッグ式培養器、 中空糸カラム等 も用いることができる。 In any of the above methods and any steps, any cytokine may be used, such as a natural type or a genetically modified type, as long as it has characteristics that have been confirmed to be safe and bioactive. However, it is preferable to use a standard that has been used for medical purposes and that has been assured of the required quality in the minimum amount required. The concentration of the cytokine to be added is not particularly limited in any of the methods and steps described above, as long as dendritic cells and TM-type GD4-positive helper killer T cells are induced. The concentration is preferably about 10-1000 ng / mL, more preferably about 20-500 ng / mL. When a plurality of cytokins are used, the concentration of each cytokine is usually preferably 1 ng / nl or more. Culture is white It can be performed using a well-known medium usually used for culturing blood cells. The culture temperature is not particularly limited as long as leukocyte proliferation is possible, but the human body temperature of about 37 ° C is most preferable. Also, the gaseous environment in the culture is not limited especially as long as the proliferation of white blood cells, it is preferable to vent the 5% G0 2. The equipment used for cell separation and culture can be appropriately used. It is preferable that safety is confirmed for medical use, and that the operation is stable and simple. In particular, for cell culture devices, irrespective of general containers such as petri dishes, flasks, bottles, etc., stacked containers, multi-stage containers, roller bottles, spinner bottles, bag type incubators, hollow fiber columns, etc. can also be used. .
具体的な治療形態としては次の手順が考えられる。 すなわち、 対象疾患の患者 から採血し、 リンパ球および白血球成分を分離して、 培養を始め、 2〜4週間後 に誘導された Th 1型の GD4陽性ヘルパー キラー T細胞を、 患者自身に輸注する。 患者にかかる負担は基本的に採血と輸注のみであり、 癌細胞は誘導された Th1型 の GD4陽性ヘルパー キラー T細胞により抑制され、 結果として治療される。 また、 骨髄移植や血液幹細胞移植では、 ドナーから提供された細胞を同様に培 養し、 宿主対移植片反応が制御して、 移植片の生着向上や原疾患の治療等につな げることができる。  The following procedure is considered as a specific treatment form. That is, blood is collected from a patient with the target disease, lymphocyte and leukocyte components are separated, culture is started, and the Th1-type GD4-positive helper killer T cells induced 2 to 4 weeks later are infused into the patient themselves . The burden on the patient is basically only blood collection and transfusion, and the cancer cells are suppressed by the induced Th1-type GD4-positive helper killer T cells, and as a result are treated. In bone marrow transplantation and blood stem cell transplantation, cells provided by donors are similarly cultured, and host-graft reactions are controlled, leading to improved graft survival and treatment of primary diseases be able to.
本発明により得られる T h 1 細胞を治療に用いる場合、 Thl 細胞を静脈内注射、 点滴等により末梢血に投与することが好ましい。 また、 固形癌の場合には、 末梢 血に投与してもよいし、 癌組織中に直接投与してもよい。 投与する細胞の数は、 患者の症状等により適宜設定できるが、 末梢血に投与する場合、 通常、 成人患者 1回の治療当たり 107〜1011個程度であり、 好ましくは 108〜109個程度である。 実施例 When using the Th1 cells obtained by the present invention for therapy, it is preferable to administer Thl cells to peripheral blood by intravenous injection, infusion, or the like. In the case of solid cancer, it may be administered to peripheral blood or directly into cancer tissue. The number of cells to be administered can be appropriately set depending on the patient's condition, etc., but when administered to peripheral blood, it is usually about 10 7 to 10 11 cells per adult patient, preferably 10 8 to 10 9 About one. Example
次に実施例を挙げて本発明をさらに具体的に説明する。  Next, the present invention will be described more specifically with reference to examples.
実施例 1 Th1細胞の製造 (その 1 ) Example 1 Production of Th1 cells (Part 1)
ヒ ト急性リンパ球性白血病 (ALL) 患者の骨髄細胞あるいは末梢血より単核球 を分離し、 2 χ 106個ノ mLの濃度で 10%ヒト血清を含んだ AIM-V培地 (G I BG0 - B RL社製) に顕濁し、 12穴プレートに播種し GM-GSF (30ng/mL) と I L-3 (30ng/mL ) を添加し、 2日間培養して樹状細胞を誘導した。 その後培養液に IL-2 (100U/m L(10ng/mD) を添加し、 14〜21 日間培養し GD4陽性 T細胞を大量に得た。 なお、 CD4陽性か否かは、 Phycoerythrin標識抗ヒト GD4抗体および Fluorescein isot hiocyanate標識抗ヒト GD8抗体にて細胞を染色し、 フローサイトメ一ターにて 確認した (図 2参照) (免疫実験操作法 l, lし 1995年、 (株) 南江堂) 。 この GD4陽性 T細胞を - 12 (40U/mL(4ng/mL)) 、 !FN-r (30ng/mL) を含んだ培養液 にて、 さらに 2日間培養を続けた。 なお培養期間中細胞濃度が 5 x106個 mL を越えた場合には、 細胞をガラスピペットで撹拌しながら回収し、 およそ 1 x10 6個 mL程度に上記のサイトカインを添加した培養液で再顕濁し、 すべて新た なプレー卜に播種した。 得られた CD4陽性 T細胞をガラスピペットを用い、 撹拌 しながら遠心管に集め、 遠心分離することにより回収した。 Human acute lymphocytic leukemia (ALL) separating mononuclear from bone marrow cells or peripheral blood of patients, 2 χ 10 6 cells Roh including mL concentration in 10% human serum AIM-V medium (GI BG0 - BRL), seeded in a 12-well plate, seeded with GM-GSF (30 ng / mL) and IL-3 (30 ng / mL). ) Was added and cultured for 2 days to induce dendritic cells. Thereafter, IL-2 (100 U / mL (10 ng / mD) was added to the culture solution, and cultured for 14 to 21 days to obtain a large amount of GD4-positive T cells. The cells were stained with GD4 antibody and Fluorescein isot hiocyanate-labeled anti-human GD8 antibody, and confirmed by flow cytometry (see Fig. 2) (Immunological Experiment Procedures, 1995, Namedo Co., Ltd.). The GD4-positive T cells were further cultured for two days in a culture solution containing -12 (40 U / mL (4 ng / mL)) and! FN-r (30 ng / mL). If the volume exceeds 5 × 10 6 mL, collect the cells with a glass pipette while stirring, re-appear with approximately 1 × 10 6 mL of the above-mentioned cytokine-supplemented culture medium, and renew the plate. The obtained CD4-positive T cells were collected in a centrifuge tube using a glass pipette with stirring, and centrifuged. Recovered.
また比較のため、 Th2条件として、 培養の最初より IL - 4 (30ng/mL) の濃度で 添加しておき、 最後の段階の IL- 12および IFN-rを加えないもの、 または ThO 条件 (ThO細胞あるいは Th1/2前駆細胞) として最後の段階の - 12および IFN- rを加えないものも培養し、 上記と同様に回収した。  For comparison, Th2 conditions were added at the concentration of IL-4 (30 ng / mL) from the beginning of the culture, and no IL-12 and IFN-r were added at the final stage, or ThO conditions (ThO conditions). Cells or Th1 / 2 progenitor cells) at the final stage without -12 and IFN-r were also cultured and recovered in the same manner as above.
実施例 2 Th1細胞の製造 (その 2) Example 2 Production of Th1 cells (Part 2)
ヒト慢性骨髄性白血病 (CIVIL) 患者の骨髄細胞あるいは末梢血より単核球を分 離し、 2χ106個ノ mLの濃度で 10%ヒト血清を含んだ AIM-V培地 (GIBC0-BRL社 製) に顕濁し、 12穴プレートに播種し GM - GSF (30ng/mL) と IL-3 (30ng/mL) を 添加し、 2日間培養して樹状細胞を誘導した。 その後培養液に IL - 2 (100U/mL(10 ng/mD) を添加し、 14〜21 日間培養し CD4陽性 T細胞を大量に得た。 この GD4 陽性 T細胞を - 12 (40U/mL(4ng/mD) 、 IFN-r (30ng/mL) を含んだ培養液に て、 さらに 2日間培養を続け、 実施例 1と同様に CD4陽性 T細胞を回収した。 ま た比較のため、 実施例 1と同様に Th2条件下および ThO条件下においても培養し、 上記と同様に回収した。 The human chronic myelogenous leukemia (CIVIL) patients bone marrow cells or peripheral blood from mononuclear isolated minute, the 2Kai10 6 pieces Roh including mL concentration in 10% human serum AIM-V medium (manufactured by GIBC0-BRL Co.) The cells were opaque, seeded on a 12-well plate, added with GM-GSF (30 ng / mL) and IL-3 (30 ng / mL), and cultured for 2 days to induce dendritic cells. Thereafter, IL-2 (100 U / mL (10 ng / mD) was added to the culture solution, and cultured for 14 to 21 days to obtain a large amount of CD4-positive T cells. (4 ng / mD) and culture medium containing IFN-r (30 ng / mL) and continued culturing for another 2 days, and CD4-positive T cells were collected in the same manner as in Example 1. The cells were cultured under Th2 conditions and ThO conditions in the same manner as in 1, and collected in the same manner as described above.
実施例 3 Th1細胞の製造 (その 3) Example 3 Production of Th1 cells (Part 3)
ヒト急性単球性白血病 (AMoL (M4)) 患者の骨髄細胞あるいは末梢血より単核 球を分離し、 2x106個 mLの濃度で 10%ヒト血清を含んだ AIM-V培地 (GIBG 0-BRL社製) に顕濁し、 12穴プレートに播種し GM-GSF (30ng/mL) と I L-3 (30ng Ml) を添加し、 2日間培養して樹状細胞を誘導した。 その後培養液に - 2 (100 U/mL (10ng/mD ) を添加し、 14〜21 日間培養し GD4陽性 T細胞を大量に得た。 こ の GD4陽性 T細胞を I L- 12 (40U/mL (4ng/mL) ) 、 I FN- r (30ng/mL) を含んだ培 養液にて、 さらに 2日間培養を続け、 実施例 1と同様に GD4陽性 T細胞を回収し た。 また比較のため、 実施例 1 と同様に Th2条件下および ThO条件下においても 培養し、 上記と同様に回収した。 さらには ThO/1条件として培養の最初より I L- 12 (40U/mL (4ng/mD ) 、 I FN- r (30ng/mL) を加え続ける条件にて培養し、 CD4 陽性 T細胞を上記と同様にして回収した。 ただしこの ThO/1条件の培養は、 細胞 増殖率が他の条件よリ悪かった。 Human acute monocytic leukemia (AMoL (M4)) mononuclear than bone marrow cells or peripheral blood of a patient is separated, 2x10 containing six mL concentration in 10% human serum AIM-V medium (GIBG 0-BRL), seeded on a 12-well plate, added GM-GSF (30 ng / mL) and IL-3 (30 ng Ml), and cultured for 2 days to induce dendritic cells. Thereafter, -2 (100 U / mL (10 ng / mD) was added to the culture solution, and the mixture was cultured for 14 to 21 days to obtain a large amount of GD4-positive T cells. mL (4 ng / mL)) and IFN-r (30 ng / mL) were further cultured for 2 days in a culture solution containing the same, and GD4-positive T cells were collected in the same manner as in Example 1. Therefore, the cells were cultured under Th2 and ThO conditions in the same manner as in Example 1. The cells were collected in the same manner as described above, and IL-12 (40 U / mL (4 ng / mD) and IFN-r (30 ng / mL) were continuously added, and CD4-positive T cells were collected in the same manner as described above. It was bad condition.
実施例 4 細胞の性質 (その 1 ) Example 4 Properties of Cells (Part 1)
実施例 1〜 3で得られた CD4陽性 T細胞の、 該患者の白血病細胞に対する細胞 傷害活性を調べた。 細胞傷害活性を調べた具体的な方法は、 該患者の凍結保存し てある白血病細胞を凍結融解後培養し、 実験時に定法に従い 51Cr で放射標識し、 該患者の誘導し得られた GD4陽性 T細胞と放射標識白血病細胞を各エフェクター 細胞対標的細胞比にて混合培養し、 4時間後に培養上清に放出される放射能活性 を測定し、 細胞傷害活性を求めた (免疫実験操作法し Iし 1 995年、 (株) 南江 堂) 。 The cytotoxic activity of the CD4-positive T cells obtained in Examples 1 to 3 on leukemia cells of the patient was examined. A specific method for examining the cytotoxic activity was as follows: the leukemia cells stored in a frozen state of the patient were frozen and thawed, then cultured, radiolabeled with 51 Cr according to a standard method during the experiment, and the GD4 positive obtained in the patient was obtained. T cells and radiolabeled leukemia cells were mixed and cultured at each effector cell-to-target cell ratio, and after 4 hours, the radioactivity released into the culture supernatant was measured to determine the cytotoxic activity. (Ishi 1995, Nankodo Co., Ltd.).
結果を図 3に示す。 図 3に示されるように、 本発明の方法 (Th1条件あるいは ThO/1条件) により各患者から得られた GD4陽性 T細胞は、 各患者の白血病細胞 に対して高し、細胞傷害活性を示した。  The results are shown in Figure 3. As shown in FIG. 3, GD4-positive T cells obtained from each patient by the method of the present invention (Th1 condition or ThO / 1 condition) are high on leukemia cells of each patient and show cytotoxic activity. Was.
実施例 5 細胞の性質 (その 2 ) Example 5 Properties of cells (Part 2)
また、 実施例 1〜 3で得られた GD4陽性 T細胞の I FN- r産生能を調べた。 こ れは具体的には次のようにして行った。 患者より得られた白血病細胞をマイトマ イシン C (50 g/mL) ( (株) 協和発酵) にて処理し、 このマイ卜マイシン C処 理白血病細胞 (5 χ 104個) と該患者より得られた CD4陽性 Τ細胞 (2 χ 105個) を 混合培養し、 その 4 8時間後に培養上清に産生された IFN - rを、 IFM- r ELISA k i t (R&D社製) にて測定した。 結果を図 4に示す。 図 4に示されるように、 本発明の方法 (Th1条件) により 得られた GD4陽性 T細胞は、 IFN-r産生能を示したことから Th1型の細胞である こと力わかった。 In addition, the IFN-r producing ability of the GD4-positive T cells obtained in Examples 1 to 3 was examined. This was specifically performed as follows. Processing the leukemic cells obtained from patients with mitomycin C (50 g / mL) ( ( Ltd.) Kyowa Hakko), obtained from the My Bok mycin C treatment leukemia cells (5 χ 10 4 cells) and patient The obtained CD4-positive Τ cells (2χ10 5 ) were mixed and cultured, and 48 hours later, IFN-r produced in the culture supernatant was measured using an IFM-r ELISA kit (manufactured by R & D). Fig. 4 shows the results. As shown in FIG. 4, the GD4-positive T cells obtained by the method of the present invention (Th1 condition) showed IFN-r-producing ability, indicating that they were Th1-type cells.
これらのことから、 癌の免疫療法および GVHDの制御に有望と考えられる GD4 陽性ヘルパー キラー細胞が効率的に誘導できた。  These results enabled efficient induction of GD4-positive helper killer cells, which are considered promising for cancer immunotherapy and GVHD control.
実施例 6 細胞の性質 (その 3) Example 6 Properties of cells (Part 3)
実験例 3で得られた本発明の Th1細胞が示す自己癌細胞刺激により IFN- τ産 生及び自己癌細胞に対する細胞傷害活性の MHGクラス IIに対する抗体での抑制 を調べた。 これは具体的に次のようにして行った。 実施例 4および実施例 5で行 つた試験系と同様におこない、 その混合培養系に MHGクラス I に対する抗血清あ るいは クラス I Iに対する抗血清を 100倍希釈になるように加え、 試験を行 つた。  The suppression of IFN-τ production and cytotoxic activity against autologous cancer cells by antibodies against MHG class II by stimulation of autologous cancer cells exhibited by the Th1 cells of the present invention obtained in Experimental Example 3 was examined. This was specifically performed as follows. The test was performed in the same manner as in the test system performed in Example 4 and Example 5, and the antiserum against MHG class I or antiserum against class II was added to the mixed culture system at a dilution of 100-fold, and the test was performed. .
結果を図 5に示す。 図 5より自己癌細胞刺激による IFM- τの産生は MHCクラ ス IIに対する抗血清を加えることにより完全に抑制され (a) 、 自己癌細胞に 対する細胞傷害活性も MHGクラス I Iに対する抗血清を加えることにより、 約 40 %抑制された (b) 。 このことより、 誘導された GD4陽性 T細胞が、 MHCクラス IIに拘束されていることがわかる。  Fig. 5 shows the results. Figure 5 shows that the production of IFM-τ by stimulation of autologous cancer cells was completely suppressed by the addition of antiserum to MHC Class II (a), and the cytotoxic activity against autologous cancer cells was also reduced by the addition of antiserum to MHG Class II. As a result, it was reduced by about 40% (b). This indicates that the induced GD4-positive T cells are restricted to MHC class II.
参考例 1 Reference example 1
マウスのォブアルブミン (OVA) 抗原特異的リンパ球を、 抗原提示細胞 (マウ ス脾細胞) とともに、 OVAペプチド (10〃 g/mL) 、 IL-12 (20U/mL) , IFN-r (1 ng/mL) , IL-2 (20U/mL)、 抗 IL-4抗体 (50 g/mL) 、 牛胎児血清 (10%) を添加 した RPM卜 1640培地で培養し、 OVA抗原特異的 Th1細胞を誘導した。 マウス 6匹 に OVA抗原を遺伝子導入によリ発現させた癌細胞 (A20- 0VA)をマウスの皮内に 2 χ106個移植し、 0VA抗原発現の癌腫が 6〜8mmに増殖した時点で、 誘導した 0V A抗原特異的 Th1細胞 2χ107個をその担癌マウスに移入した。 その結果、 全例 で癌の消失が認められ、 抗原特異的 Thl細胞に注入による著明な抗腫瘍効果を認 めた。 Mouse ovalbumin (OVA) antigen-specific lymphocytes, together with antigen-presenting cells (mouse splenocytes), were combined with OVA peptide (10 μg / mL), IL-12 (20 U / mL), IFN-r (1 ng / ml). Cultured in RPMT 1640 medium supplemented with (mL), IL-2 (20 U / mL), anti-IL-4 antibody (50 g / mL), and fetal calf serum (10%) to induce OVA antigen-specific Th1 cells did. In 6 mice, 2 内 10 6 cancer cells (A20-0VA) expressing the OVA antigen by gene transfer were transplanted intradermally into mice, and when the 0VA antigen-expressing carcinoma grew to 6-8 mm, 2-10 7 induced 0V A antigen-specific Th1 cells were transferred to the tumor-bearing mice. As a result, disappearance of cancer was observed in all cases, and a marked antitumor effect was observed by injection into antigen-specific Thl cells.
参考例 1 マウス骨髄移植モデルで Th1細胞の制御による移植細胞の生着に対する効果を調 ベた。 すなわち、 BDF1マウスに G57BL/6マウスのリンパ球を 5 X 1 07個を静脈 内注射にて移植し、 誘導される IFN-rを測定した。 その結果、 移植後、 5〜7 日後に血清中に IFN - rが 50 Opg/mLから 200 Opg/mL検出され、 1 0〜"! 4 日後には、 移植を受けたマウスのリンパ球は、 すべて移植したマウスの細胞に置 き換わっていた。 一方、 IFN- rが 1 Opg/nt以下の場合には移植リンパ球は生着 しなかった。 以上の結果より、 Th1反応が誘導されることが移植する細胞の定着 に重要なことが判明した。 このことは白血病患者などの造血器腫瘍患者に対する 同種造血細胞移植時の移植片対宿主病 (graft-versus- host disease : GVHD) お よび移植片対白血病 リンパ腫 (graft- versus- leukemia/ lymphoma : GVL) の制 御に重要な知見と考えられる。 Reference example 1 The effect of Th1 cell control on transplant cell engraftment was investigated in a mouse bone marrow transplantation model. That is, the 5 X 1 0 7 or lymphocytes G57BL / 6 mice BDF1 mice transplanted with intravenous injection was measured the induced IFN-r. As a result, 5 to 7 days after transplantation, IFN-r was detected in the serum from 50 Opg / mL to 200 Opg / mL in serum, and 10 to 4 days later. All cells were replaced by cells from transplanted mice, whereas when IFN-r was 1 Opg / nt or less, transplanted lymphocytes did not survive. Was found to be important for colonization of the transplanted cells, indicating that graft-versus-host disease (GVHD) and transplantation during allogeneic hematopoietic cell transplantation in patients with hematopoietic tumors, such as leukemia patients. This is considered to be an important finding in controlling hematopoietic leukemia lymphoma (graft-versus-leukemia / lymphoma: GVL).

Claims

求の範囲 Scope
1 . 患者から採取した末梢血又は骨髄を材料とし、 疾患由来抗原を外部から加 えずに、 また外来的なサイ ト力インを用いて体外培養することにより、 樹状細胞 を誘導し、 培養物中に含まれる CD4陽性 T細胞を前記樹状細胞との共存下で培養 し、 細胞傷害活性を有するヒ ト Th1細胞に誘導することを含む、 主要組織適合遺 伝子複合体クラス 1 1拘束性の抗原特異的なヒト Th1細胞の製造方法。  1. Dendritic cells are induced and cultured by using peripheral blood or bone marrow collected from a patient as a material, and culturing the cells in vitro without adding a disease-derived antigen from the outside and using an exogenous site force-in. Major histocompatibility complex class 11 restriction, including culturing CD4-positive T cells contained in cells in the presence of the dendritic cells and inducing human Th1 cells having cytotoxic activity For producing human Th1 cells specific for a specific antigen.
2 . 患者の疾患が癌である請求項 1記載の方法。  2. The method according to claim 1, wherein the patient's disease is cancer.
3 . 患者の疾患が血液あるいは造血器系の悪性疾患である請求項 1記載の方法 c 3. The method c according to claim 1, wherein the patient's disease is a blood or hematopoietic malignancy.
4 . 患者の疾患が白血病、 悪性リンパ腫、 多発性骨髄腫、 骨髄異形成症候群あ るいは再生不良性貧血である請求項 2記載の方法。 4. The method according to claim 2, wherein the disease of the patient is leukemia, malignant lymphoma, multiple myeloma, myelodysplastic syndrome, or aplastic anemia.
5 . 外来的なサイ トカインが、 少なくとも顆粒球マクロファージコロニ一刺激 因子、 インターロイキン 3及びインタ一ロイキン 2にインタ一フエロン 及び 又はィンタ一ロイキン 12を加えた群である請求項 1ないし 5のいずれか 1項に 記載の方法。  5. The exogenous cytokine is a group obtained by adding at least interferon and / or interleukin 12 to granulocyte macrophage colony-stimulating factor, interleukin 3 and interleukin 2 at least. The method described in paragraph 1.
6 . 前記樹状細胞は、 顆粒球マクロファージコロニー刺激因子及びインター口 ィキン 3から成る群より選ばれる少なくとも 1種のサイトカイン存在下で前記骨 髄細胞又は白血球成分を培養することにより誘導される請求項 1ないし 5のいず れか 1項に記載の方法。  6. The dendritic cell is induced by culturing the bone marrow cell or leukocyte component in the presence of at least one cytokine selected from the group consisting of granulocyte macrophage colony stimulating factor and intermouthin 3. Any of 1 to 5 above.
7 . 培養物中に含まれる GD4陽性 T細胞を前記樹状細胞との共存下で培養し、 細 胞傷害活性を有するヒト Th1細胞に誘導することには、 前記 GD4陽性 T細胞を、 インターロイキン 2存在下で前記樹状細胞と相互作用させながら増殖させ、 つい で、 インターフェロン r及びノ又はインターロイキン 12を加える培養条件下で ヒト Th1細胞に誘導させることを含む請求項 1ないし 6のいずれか 1項に記載の 方法。  7. To culture GD4-positive T cells contained in the culture in the presence of the dendritic cells and to induce human Th1 cells having cytotoxic activity, the GD4-positive T cells are interleukin The method according to any one of claims 1 to 6, further comprising the step of: proliferating while interacting with the dendritic cells in the presence of the cells; and inducing human Th1 cells under culture conditions in which interferon r and no or interleukin 12 are added. The method of paragraph 1.
9 . 樹状細胞を誘導する第 1工程と、 培養物中に含まれる CD4陽性 T細胞を前 記樹状細胞との共存下で培養し、 細胞傷害活性を有するヒト Th1細胞に誘導する 第 2工程とを含む請求項 1ないし 5のいずれか 1項に記載の方法。  9. The first step of inducing dendritic cells, and the second step of culturing CD4-positive T cells contained in the culture in the presence of the above-mentioned dendritic cells to induce human Th1 cells having cytotoxic activity 6. The method according to claim 1, comprising the steps of:
1 0 . 前記第 1工程は、 顆粒球マクロファージコロニー刺激因子及び 又はィ ンターロイキン 3の存在下で行い、 前記第 2工程は、 前記第 1工程で得られた培 養物にィンタ一ロイキン 2を添加して培養を続けて GD4陽性 T細胞を増殖させる 工程と、 さらにインターフ: cロン r及ぴ 又はインターロイキン 1 2を添加して 細胞傷害活性を有するヒ卜 Th1細胞に誘導する工程とを含む請求項 9記載の方法。 1 1 . 請求項 1 ないし 10のいずれか 1 項に記載の方法により製造された細胞。10. The first step comprises: granulocyte macrophage colony stimulating factor and / or Carried out in the presence of interleukin 3, wherein the second step comprises adding interleukin 2 to the culture obtained in the first step and continuing the culture to grow GD4-positive T cells; and 10. The method according to claim 9, further comprising the step of: adding cron r and / or interleukin 12 to induce the cells to have human Th1 cells having cytotoxic activity. 11. A cell produced by the method according to any one of claims 1 to 10.
1 2 . 請求項 1 1記載の細胞を含む医薬。 12. A medicament comprising the cell according to claim 11.
1 3 . 請求項 1 1記載の細胞を含む医薬組成物。  13. A pharmaceutical composition comprising the cell of claim 11.
1 4 . 請求項 1 1記載の細胞を含む癌治療薬。  14. A therapeutic agent for cancer comprising the cell according to claim 11.
1 5 . 請求項 1 1記載の細胞を含む血液あるいは造血器系の悪性疾患治療薬。 15. A therapeutic drug for malignant diseases of the blood or hematopoietic system containing the cells of claim 11.
1 6 . 前記血液あるいは造血器系の悪性疾患が白血病、 悪性リンパ腫、 多発性 骨髄腫、 骨髄異形成症候群あるいは再生不良性貧血治療薬である請求項 1 5記載 の血液あるいは造血器系の悪性疾患治療薬。 16. The blood or hematopoietic malignancy according to claim 15, wherein the blood or hematopoietic malignancy is a therapeutic drug for leukemia, malignant lymphoma, multiple myeloma, myelodysplastic syndrome or aplastic anemia. Therapeutic drugs.
1 7 . 請求項 1 1記載の細胞を含む宿主対移植片反応制御薬。  17. A host-graft reaction control agent comprising the cell according to claim 11.
1 8 . 請求項 1 1記載の細胞の癌治療薬製造のための用途。  18. Use of the cell according to claim 11 for producing a therapeutic agent for cancer.
1 9 . 請求項 1 1記載の細胞の血液あるいは造血器系の悪性疾患癌治療薬製造 のための用途。  19. Use of the cell according to claim 11 for producing a therapeutic drug for cancer of malignant diseases of blood or hematopoietic system.
2 0 . 前記血液あるいは造血器系の悪性疾患が白血病、 悪性リンパ腫、 多発性 骨髄腫骨髄異形成症候群あるいは再生不良性貧血である請求項 1 9記載の用途。 2 1 . 請求項 1 1.記載の細胞の宿主対移植片反応制御薬製造のための用途。 20. The use according to claim 19, wherein the blood or hematopoietic malignancy is leukemia, malignant lymphoma, multiple myeloma myelodysplastic syndrome or aplastic anemia. 21. Use of the cell according to claim 1 for producing a host-graft reaction controlling drug.
2 2 . 請求項 1 1記載の細胞の有効量を癌又は免疫疾患患者に投与することを 含む癌の治療方法。 22. A method for treating cancer, comprising administering an effective amount of the cell according to claim 11 to a patient with cancer or an immune disease.
2 3 . 請求項 1 1記載の細胞の有効量を血液あるいは造血器系の悪性疾患患者 の治療方法。  23. A method for treating a patient with a blood or hematopoietic malignancy using an effective amount of the cell according to claim 11.
2 4 . 前記血液あるいは造血器系の悪性疾患が白血病、 悪性リンパ腫、 多発性 骨髄腫骨髄異形成症候群あるいは再生不良性貧血患者である請求項 2 3記載の治 療方法。  24. The therapeutic method according to claim 23, wherein the blood or hematopoietic malignancy is a leukemia, malignant lymphoma, multiple myeloma myelodysplastic syndrome or aplastic anemia patient.
2 5 . 請求項 1 1記載の細胞の有効量を、 宿主対移植片反応を制御することが 望まれる患者に投与することを含む、 宿主対移植片反応の制御方法。  25. A method for controlling a host-graft reaction, comprising administering an effective amount of the cell according to claim 11 to a patient in whom it is desired to control the host-graft reaction.
PCT/JP2002/008499 2001-08-24 2002-08-23 Process for producing antigen-specific human t cells and drugs WO2003018784A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-255095 2001-08-24
JP2001255095 2001-08-24

Publications (1)

Publication Number Publication Date
WO2003018784A1 true WO2003018784A1 (en) 2003-03-06

Family

ID=19083132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/008499 WO2003018784A1 (en) 2001-08-24 2002-08-23 Process for producing antigen-specific human t cells and drugs

Country Status (1)

Country Link
WO (1) WO2003018784A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143534A (en) * 1998-11-13 2000-05-23 Asahi Chem Ind Co Ltd Dendritic cell vaccine and its production
JP2002065263A (en) * 2000-08-23 2002-03-05 Toyobo Co Ltd METHOD FOR AMPLIFYING cDNA AND METHOD FOR PREPARING LABELED cDNA
JP2002069001A (en) * 2000-08-29 2002-03-08 Asahi Kasei Corp Cell vaccine consisting mainly of dendritic cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143534A (en) * 1998-11-13 2000-05-23 Asahi Chem Ind Co Ltd Dendritic cell vaccine and its production
JP2002065263A (en) * 2000-08-23 2002-03-05 Toyobo Co Ltd METHOD FOR AMPLIFYING cDNA AND METHOD FOR PREPARING LABELED cDNA
JP2002069001A (en) * 2000-08-29 2002-03-08 Asahi Kasei Corp Cell vaccine consisting mainly of dendritic cell

Similar Documents

Publication Publication Date Title
US10806777B2 (en) Method for allogeneic cell therapy
AU2019215034B2 (en) Method of producing natural killer cells and composition for treating cancer
TW585915B (en) Methods for activating natural killer (NK) cells
JPH11505512A (en) Method for preparing macrophages, and kits and compositions therefor
WO2014161887A1 (en) Targeted cancer immune therapy
CN107488235B (en) A kind of preparation and application of new enhanced antigen joint polypeptid induction liver cancer-specific CTL cell
US20030124091A1 (en) Endothelial cell derived hematopoietic growth factor
Yannelli et al. The large scale generation of dendritic cells for the immunization of patients with non-small cell lung cancer (NSCLC)
WO2019152663A1 (en) Method of producing natural killer cells and composition for treating cancer
JP2001181205A (en) Method for producing tumor-specific anti-tumor cellular vaccine using dendritic cell and tumor cell
EP1959007A1 (en) Method for providing mature dendritic cells
KR100797050B1 (en) Cd8 t cells having therapeutic effects on atopic dermatitis
WO2003018784A1 (en) Process for producing antigen-specific human t cells and drugs
JP4106488B2 (en) Use of stem cells and CD6-depleted stem cells for induction of immune tolerance against allografts and / or treatment of leukemia
KR100797049B1 (en) Cd4 t cells having therapeutic effects on atopic dermatitis
WO2009008666A2 (en) Autologous dendritic cell mediated by photodynamic therapy having the ability to suppress the growth of tumor
Burgoyne Improved dendritic cell therapy for cancer by enhancing in vivo lymph node migration using a novel chemokine-based sorting method
JP2004248504A (en) METHOD FOR AMPLIFYING NATURAL KILLER T CELL SHIFTED TO Th2 TYPE OR Th1 TYPE
JP5084012B2 (en) Idiotype antigen carrier and idiotype vaccine using the same
US20020182231A1 (en) Methods of stem cell manipulation for immunotherapy
De Silvestro et al. Legislative and ethical aspects of administering granulocyte colony-stimulating factor to normal donors
CZ29538U1 (en) Kit for the preparation of antitumor vaccine, antitumor vaccine per se inclusive of efficiency intensification
WO2002055103A1 (en) Tumor vaccines
JP2001026545A (en) Immune response activating preparation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase