WO2003018626A2 - Novel genetic products from ashbya gossypii, associated with the structure of the cell wall or the cytoskeleton - Google Patents

Novel genetic products from ashbya gossypii, associated with the structure of the cell wall or the cytoskeleton Download PDF

Info

Publication number
WO2003018626A2
WO2003018626A2 PCT/EP2002/009355 EP0209355W WO03018626A2 WO 2003018626 A2 WO2003018626 A2 WO 2003018626A2 EP 0209355 W EP0209355 W EP 0209355W WO 03018626 A2 WO03018626 A2 WO 03018626A2
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
sequence
acid sequence
seq
vitamin
Prior art date
Application number
PCT/EP2002/009355
Other languages
German (de)
French (fr)
Other versions
WO2003018626A3 (en
Inventor
Marvin Karos
Henning ALTHÖFER
Burkhard Kröger
Jose L. Revuelta Doval
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to JP2003523485A priority Critical patent/JP2005522984A/en
Priority to AU2002327839A priority patent/AU2002327839A1/en
Priority to US10/487,475 priority patent/US20050221460A1/en
Priority to EP02762453A priority patent/EP1421110A2/en
Priority to CA002456828A priority patent/CA2456828A1/en
Priority to KR10-2004-7002636A priority patent/KR20040029000A/en
Publication of WO2003018626A2 publication Critical patent/WO2003018626A2/en
Publication of WO2003018626A3 publication Critical patent/WO2003018626A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • New gene products from Ashbya gossypu which are associated with the structure of the cell wall or the cytoskeleton.
  • the present invention relates to novel polynucleotides from Ashbya gossypu; oligonucleotides hybridizing therewith; Expression cassettes and vectors containing these polynucleotides; microorganisms transformed therewith; polypeptides encoded by these polynucleotides; and the use of the new polypeptides and polynucleotides as targets for modulating the cell wall or cytoskeleton properties and in particular for improving vitamin B2 production in microorganisms of the genus Ashbya.
  • Vitamin B2 (riboflavin, lactoflavin) is an alkali and light sensitive vitamin that fluoresces yellow-green in solution. Vitamin B2 deficiency can lead to ectoderm damage, especially clouding of the lens, keratitis, comea vascularization, neurovegetative and urogenital disorders. Vitamin B2 is the precursor for the biological hydrogen transfer molecules FAD and FMN, which are important in addition to NAD * and NADP + . These are formed from vitamin B2 by phosphorylation (FMN) and subsequent adenylation (FAD).
  • FMN biological hydrogen transfer molecules
  • Vitamin B2 is synthesized in plants, yeasts and many microorganisms from GTP and ribulose-5-phosphate.
  • the pathway begins with the opening of the imidazole ring from GTP and the cleavage of a phosphate residue.
  • 5-Amino-6-ribitylamino-2,4-pyrimidinone is formed by deamination, reduction and elimination of the remaining phosphate.
  • the reaction of this compound with 3,4-dihydroxy-2-butanone-4-phosphate leads to the bicyclic molecule 6,7-dimethyl-8-ribityllumazine.
  • This compound is converted into the tricyclic compound riboflavin by dismutation, in which a 4-carbon unit is transferred.
  • Vitamin B2 is found in many vegetables and meat, less in cereal products. An adult's daily vitamin B2 requirement is around 1.4 to 2 mg. The main breakdown product of the FMN and FAD coenzymes in humans is again riboflavin, which is excreted as such.
  • Vitamin B2 is therefore an important nutritional supplement for humans and animals. There is therefore a desire to make vitamin B2 accessible on a technical scale. It has therefore been proposed to synthesize vitamin B2 in a microbiological way.
  • Useful microorganisms for this are, for example, Bacillus subtilis, the Ascomycetes Eremothecium ashbyii, Ashbya gossypu and the yeasts Candida flareri and Saccharomyces cerevisiae.
  • the nutrient media used for this include molasses or vegetable oils as a carbon source, inorganic salts, amino acids, animal or vegetable peptones and proteins as well as vitamin additives.
  • vitamin B2 The microbiological production of vitamin B2 is described, for example, in WO-A-92/01060, EP-A-0 405 370 and EP-A-0 531 708.
  • vitamin B2 An overview of the meaning, occurrence, production, biosynthesis and use of vitamin B2 can be found, for example, in Ullmann's Encyclopaedia of Industrial Chemistry, volume A27, pages 521 ff.
  • the cell wall and the cytoskeleton serve a eukaryotic cell primarily for the maintenance of the external and internal structure.
  • the functions of these components can be compared with those of a tarpaulin and the associated tent poles.
  • living cells do not have a rigid, but because of growth and environmental conditions required, flexible and adaptable cell structure, the structure and composition of external factors, such as Temperature and pH value, but also influenced by internal factors such as the ATP content or the ion concentration of the cell.
  • the fungal cell wall plays a crucial role during the growth, development or interaction of the fungus with the environment or with other cells. It primarily has a protective function, ie protecting the cell against osmotic, chemical or biological damage. Furthermore, the cell wall is also involved in morphological responses, antigen expression, adhesion and cell-cell interaction.
  • the fungal cell wall is made up of a mixture of different polymers. There are two categories. On the one hand in the so-called structural polymers which are responsible for the rigidity of the structure, and on the other hand in the matrix polymers in which they are embedded and which ensure pressure resistance. For most fungi, chitin, glucans and mannoproteins are the most important cell wall components.
  • Chitin and glucans take on a structural function.
  • the cell wall synthesis takes place via a composition of the individual components in different stages.
  • the individual components must first be synthesized intracellularly or at the plasma / wall boundary layer. After all the polymers have been secreted into the expanding wall, they are initially stored loosely via molecular interactions together before they are firmly connected to each other via covalent bonds.
  • the cytoskeleton is a coordinated network of filamentous polymers which are linked to other cellular structures by different molecules. The organization and properties of this network are under precise development-dependent and functional control.
  • the main structural components of the cytoskeleton are the actin filaments (F-actin), microtubules and the intermediate filaments.
  • the cytosol can be compared to a highly organized gel rather than a homogeneous solution, in which the composition can differ significantly in different regions of the cell.
  • the cytoskeleton takes on important tasks in this structuring, but also in cell division and organ transport. In the figurative sense, it takes on the function of railroad tracks on which the most diverse cell components move along with the help of cell motors such as dynein or kinesin.
  • the structure of the cytoskeleton is not characterized by the formation of covalent bonds. Since it must have a much greater flexibility, it is characterized by "dynamic instability" as in the case of microtubules.
  • Tubulin subunits are polymerized using GTP. However, since the GTP has the property of decaying to GDP + Pi under cell physiological conditions, the structure of the microtubules is also weakened, so that they must therefore be continuously synthesized in order to then decay again.
  • Proteins associated with microtubules MAP
  • MAP's have a high or low affinity and thus a controllable stabilizing effect on the microtubules.
  • the polymerization of microfilaments from actin and the regulation of the stability of these polymers takes place in the cell analogously to that of tubulin.
  • the polymerization process is accelerated by ATP.
  • Actin-binding proteins influence the build-up and breakdown of the microfilaments and, as in the case of the profilin, can even prevent the actin from polymerizing.
  • genes associated with the synthesis of the cell wall and / or the cytoskeleton for the generation of microorganisms preferably of the genus Ashbya, especially of Ashbya gossypii strains, with modified cytoskeleton or modified cell wall and e.g. associated modified (higher) resistance to external influences has not yet been described.
  • the object of the present invention is therefore to provide new targets for influencing the cell wall and cytoskeleton properties in microorganisms of the genus Ashbya, in particular in Ashbya gossypii.
  • Another task is the improvement of vitamin B2 production by such microorganisms.
  • the above object is achieved by providing coding nucleic acid sequences which are up or regulated in Ashbya gossypii during vitamin B2 production (based on results determined using the MPSS analysis method described in more detail in the experimental part), in particular:
  • a DNA clone was isolated which codes for a characteristic partial sequence of the nucleic acid sequence according to the invention and which bears the internal name “Oligo 8”. According to a further preferred embodiment, a DNA clone was isolated according to the invention which codes for the full sequence of the nucleic acid according to the invention and which bears the internal name “Oligo 8v”.
  • a first subject of the present invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 1.
  • Another subject of the invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 4 or a fragment thereof.
  • the polynucleotides can preferably be isolated from a microorganism of the genus Ashbya, in particular A. gossypii.
  • the invention also relates to the complementary polynucleotides; and the sequences derived from these polynucleotides by degenerating the genetic code.
  • the inserts of "Oligo 8" and “Oligo 8v” have significant homologies with the MIPS tag "Cwp1" from S. cerevisiae.
  • the inserts have a nucleic acid sequence according to SEQ ID NO: 1 and SEQ ID NO: 4, respectively.
  • Those of the complementary strand (Counter strand) to SEQ ID NO: 1 or the amino acid sequence or partial amino acid sequence derived from the coding strand according to SEQ ID NO: 4 has significant sequence homology with the cell wall precursor protein Cwp1 from S. cerevisiae, described by Shimoni H., et al. , in J. Biochem. 118: 302-311 (1995)
  • a DNA clone was isolated which codes for a characteristic partial sequence of the nucleic acid sequence according to the invention and which bears the internal name “Oligo 25/39”.
  • a DNA clone was isolated according to the invention which codes for the full sequence of the nucleic acid according to the invention and which bears the internal name “Oligo 25 / 39v”.
  • a first subject of the present invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 8.
  • Another subject of the invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 10 or a fragment thereof.
  • the polynucleotides are preferably from a microorganism of the genus Ashbya, in particular A. gossypii. isolated.
  • the invention also relates to the complementary polynucleotides; and the sequences derived from these polynucleotides by degenerating the genetic code.
  • the inserts of "Oligo 25/39” and “Oligo 25 / 39v” have significant homologies with the MIPS tag "ARK1" from S. cerevisiae.
  • the inserts have a nucleic acid sequence according to SEQ ID NO: 8 and SEQ ID NO: 10, respectively.
  • the amino acid sequence derived from the corresponding counter strand to SEQ ID NO: 8 or from the coding strand of SEQ ID NO: 10 has significant sequence homology with a serine-threonine protein kinase from S. cerevisiae.
  • a, preferably upregulated, nucleic acid sequence which codes for a protein with the function of a GTPase-activating protein e.g., a, preferably upregulated, nucleic acid sequence which codes for a protein with the function of a GTPase-activating protein.
  • a DNA clone was isolated which codes for a characteristic partial sequence of the nucleic acid sequence according to the invention and which bears the internal name “Oligo 46”.
  • a DNA clone was isolated according to the invention which codes for the full sequence of the nucleic acid according to the invention and which bears the internal name “Oligo 46v”.
  • a first subject of the present invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 12.
  • Another subject of the invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 15 or a fragment thereof.
  • the polynucleotides can preferably be isolated from a microorganism of the genus Ashbya, in particular A. gossypii.
  • the invention also relates to the complementary polynucleotides; and the sequences derived from these polynucleotides by degeneracy of the genetic code.
  • the inserts of "Oligo 46" and “Oligo 46v” have significant homologies with the MIPS tag "BUD2 / CLA2" from S. cerevisiae.
  • the inserts have a nucleic acid sequence as shown in SEQ ID NO: 12 and SEQ ID NO: 15, respectively
  • the corresponding counter strand of SEQ ID NO: 12 or of the coding strand derived from SEQ ID NO: 15 has an amino acid sequence or partial amino acid sequence which has significant sequence homology with a GTPase-activating protein from S. cerevisiae, in particular homology to the GTPase-activating protein encoded by BUD2 BUD2 / Rsr1 described by Park H.-O., et al., In Nature 365: 269-274, (1993).
  • a, preferably upregulated, nucleic acid sequence which codes for a protein with the function of resistance to actin overexpression.
  • a DNA clone was isolated which codes for a characteristic partial sequence of the nucleic acid sequence according to the invention and which bears the internal name “Oligo 103”.
  • a DNA clone was isolated according to the invention which codes for the full sequence of the nucleic acid according to the invention and which bears the internal name “Oligo 103v”.
  • a first subject of the present invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 17.
  • Another subject of the invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 19 or a fragment thereof.
  • the polynucleotides can preferably be isolated from a microorganism of the genus Ashbya, in particular A. gossypii.
  • the invention also relates to the complementary polynucleotides; and the sequences derived from these polynucleotides by degenerating the genetic code.
  • the inserts of "Oligo 103" and “Oligo 103v” have significant homologies with the MIPS tag "Aor1" from S. cerevisiae.
  • the inserts have a nucleic acid sequence according to SEQ ID NO: 17 and SEQ ID NO: 19. That of the corresponding opposite strand for SEQ ID NO: 17 or the amino acid sequence or partial amino acid sequence derived from the coding strand according to SEQ ID NO: 19 has significant sequence homology with a protein from S. cerevisiae which has resistance to actin overexpression or contributes to this resistance.
  • nucleic acid sequence which codes for a protein with the function of a protein similar to Nuflp.
  • a DNA clone was isolated which codes for a characteristic partial sequence of the nucleic acid sequence according to the invention and which bears the internal name “Oligo 128”.
  • a DNA clone was isolated according to the invention which codes for the full sequence of the nucleic acid according to the invention and which bears the internal name “Oligo 128v”.
  • a first subject of the present invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 21.
  • Another subject of the invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 23 or a fragment thereof.
  • the polynucleotides can preferably be isolated from a microorganism of the genus Ashbya, in particular A. gossypii.
  • the invention also relates to the complementary polynucleotides; and the sequences derived from these polynucleotides by degenerating the genetic code.
  • the inserts of "Oligo 128” and “Oligo 128v” have significant homologies with the MIPS tag “Ykl179c” from S. thoroughlyvisiae.
  • the inserts have a nucleic acid sequence according to SEQ ID NO: 21 and SEQ ID NO: 23, respectively coding strand derived amino acid sequence or partial amino acid sequence has significant sequence homology with a protein from S. cerevisiae similar to Nuflp (cf. Wiemann S., et al., Yeast 9: 1343-1348 (1993)).
  • a DNA clone was isolated which codes for a characteristic partial sequence of the nucleic acid sequence according to the invention and which bears the internal name “Oligo 150”.
  • a DNA clone was isolated according to the invention which codes for the full sequence of the nucleic acid according to the invention and which bears the internal name “Oligo 150v”.
  • a first subject of the present invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 26.
  • Another subject of the invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 28 or a fragment thereof.
  • the polynucleotides can preferably be isolated from a microorganism of the genus Ashbya, in particular A. gossypii.
  • the invention also relates to the complementary polynucleotides; and the sequences derived from these polynucleotides by degenerating the genetic code.
  • the inserts of "Oligo 150" and “Oligo 150v” have significant homologies with the MIPS tag "Scp1" from S. cerevisiae.
  • the inserts have a nucleic acid sequence according to SEQ ID NO:
  • amino acid sequences derived in each case from the coding strand zen has significant sequence homology with a calponin or protein from S. cerevisiae homologous to calponin.
  • a, preferably up-regulated, nucleic acid sequence which codes for a protein which is essential for the pseudohyphene development in Candida maitose.
  • a DNA clone was isolated which codes for a characteristic part-sequence of the nucleic acid sequence according to the invention and which bears the internal name “Oligo 177”.
  • a DNA clone was isolated according to the invention which codes for the full sequence of the nucleic acid according to the invention and which bears the internal name “Oligo 177v”.
  • a first subject of the present invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 30.
  • Another subject of the invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 34.
  • the polynucleotides are preferably from a microorganism of the genus Ashbya, especially A. gossypii isolable.
  • the invention also relates to the complementary polynucleotides; and the sequences derived from these polynucleotides by degenerating the genetic code.
  • the inserts of "Oligo 177" and “Oligo 177v” have significant homologies with the MIPS tag "EPD1" from Candida maltosa.
  • the inserts have a nucleic acid sequence according to SEQ ID NO: 30 and SEQ ID NO: 34, respectively. From the corresponding opposite strand of SEQ ID NO: 30 or amino acid sequences which can be derived from the coding strand according to SEQ ID NO: 34 have significant sequence homology with a protein from Candida maltosa, in particular with a protein which is essential for the development of pseudohyphae in C. maltosa (cf. kazawa T., et al., J. Bacteriol., 180 (8), 2079-2086, (1998). Homology to a corresponding protein from S. cerevisiae was also found.
  • h a, preferably down-regulated, nucleic acid sequence which codes for a protein with the function of a protein interacting with actin.
  • a DNA clone was isolated which codes for a characteristic partial sequence of the nucleic acid sequence according to the invention and which bears the internal name “Oligo 145”. According to a further preferred embodiment, a DNA clone was isolated according to the invention which codes for the full sequence of the nucleic acid according to the invention and which bears the internal name “Oligo 145v”.
  • a first subject of the present invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 36.
  • Another subject of the invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 38 or a fragment thereof.
  • the polynucleotides can preferably be isolated from a microorganism of the genus Ashbya, in particular A. gossypii.
  • the invention also relates to the complementary polynucleotides; and the sequences derived from these polynucleotides by degenerating the genetic code.
  • the inserts of "Oligo145” and “Oligo 145v” have significant homologies with the MIPS tag "Aip2" from S. cerevisiae.
  • the inserts have a nucleic acid sequence as shown in SEQ ID NO: 36 and SEQ ID NO: 38, respectively Strand-derived amino acid sequence or partial amino acid sequence has significant sequence homology with a protein from S. cerevisiae which interacts with actin (cf. Chelstowska A., et al., Yeast 15 (13), 1377-1391 (1999)).
  • Another object of the invention relates to oligonucleotides which hybridize with one of the above polynucleotides, in particular under stringent conditions.
  • the invention further relates to polynucleotides which hybridize with one of the oligonucleotides according to the invention and code for a gene product from microorganisms of the genus Ashbya or a functional equivalent of this gene product.
  • the invention further relates to polypeptides or proteins which are encoded by the polynucleotides described above; and peptide fragments thereof, which have an amino acid sequence, the at least 10 contiguous amino acid residues according to SEQ ID NO: 2, 3, 5, 6, 7, 9, 11, 13, 14, 16, 18, 20, 22, 24, 25, 27 , 29, 31, 32, 33, 35, 37, or SEQ ID NO: 39; and functional equivalents of the polypeptides or proteins according to the invention.
  • Inversion at at least one, for example 1 to 30 or 1 to 20 or 1 to 10, sequence positions without the originally observed and derivable by sequence comparison with other proteins re losing protein function. This means that equivalents can have essentially identical, higher or lower activities compared to the native protein.
  • inventions relate to expression cassettes for the recombinant production of proteins according to the invention, comprising, in operative linkage with at least one regulatory nucleic acid sequence, one of the nucleic acid sequences defined above; as well as recombinant vectors comprising at least one such expression cassette according to the invention.
  • prokaryotic or eukaryotic hosts are also provided which are transformed with at least one vector of the above type.
  • such prokaryotic or eukaryotic hosts are provided in which the functional expression of at least one gene is modulated (e.g. inhibition or overexpression) which codes for a polypeptide according to the invention as defined above; or in which the biological activity of a polypeptide is reduced or increased as defined above.
  • Preferred hosts are selected from Ascomycetes (tubular mushrooms), in particular those of the genus Ashbya and preferably strains of A. gossypii.
  • Modulation of gene expression in the above sense includes both its inhibition, e.g. by blocking an expression level (in particular transcription or translation) or by deliberately overexpressing a gene (e.g. by modifying regulatory sequences or increasing the number of copies of the coding sequence).
  • the invention further relates to the use of an expression cassette according to the invention, a vector according to the invention or a host according to the invention for the microbiological production of vitamin B2 and / or precursors and / or derivatives thereof.
  • Another object of the invention relates to the use of an expression cassette according to the invention, a vector according to the invention or a host according to the invention for the recombinant production of a polypeptide according to the invention as defined above.
  • a method for the detection or validation of an effector target for the modulation of the microbiological production of vitamin B2 and / or precursors and / or derivatives thereof is also provided.
  • a microorganism which is capable of microbiological production of vitamin B2 and / or precursors and / or derivatives thereof is treated with an effector which has a target selected from a polypeptide according to the invention as defined above or a nucleic acid coding for it. quenz, interacts (such as non-covalently binds to them), validates the influence of the effector on the amount of microbiologically produced vitamin B2 and / or the precursor and / or a derivative thereof; and optionally isolating the target.
  • the validation is preferably carried out by direct comparison with the microbiological vitamin B2 production in the absence of the effector under otherwise identical conditions.
  • Another object of the invention relates to a method for modulating (in terms of quantity and / or speed) the microbiological production of vitamin B2 and / or precursors and / or derivatives thereof, using a microorganism which is used for the microbiological production of vitamin B2 and / or precursors and / or derivatives thereof is treated with an effector which interacts with a target selected from a polypeptide according to the invention as defined above or a nucleic acid sequence coding therefor.
  • Preferred examples of the above-mentioned effectors are: a) antibodies or antigen-binding fragments thereof; b) polypeptide ligands which differ from a) and which interact with a polypeptide according to the invention; c) low molecular weight effectors which modulate the biological activity of a polypeptide according to the invention; d) antisense nucleic acid sequences which interact with a nucleic acid sequence according to the invention.
  • Another object of the invention relates to a method for the microbiological production of vitamin B2 and / or precursors and / or derivatives thereof, wherein a host is cultivated according to the above definition under conditions which favor the production of vitamin B2 and / or precursors and / or derivatives thereof and isolate the desired product (s) from the culture batch. It is preferred that the host is treated with an effector according to the above definition before and / or during cultivation.
  • a preferred host is selected from microorganisms of the genus Ashbya; especially transformed, as described above.
  • a final object of the invention relates to the use of a polynucleotide or polypeptide according to the invention as a target for modulating the production of vitamin B2 and / or precursors and / or derivatives thereof in a microorganism of the genus Ashbya.
  • FIG. 1 shows an alignment between an amino acid partial sequence according to the invention (corresponding to the counter strand to positions 1092 to 595 in SEQ ID NO: 1) (upper sequence) and a partial sequence of the MIPS tag “Cwp1” from S. cerevisiae (lower sequence). Identical sequence positions are indicated between the two sequences. Similar sequence positions are marked with "+”.
  • FIG. 2 shows an alignment between an amino acid partial sequence according to the invention (corresponding to the counter strand to positions 1067 to 84 in SEQ ID NO: 8) (upper sequence) and a partial sequence of the MIPS tag ARK1 from S. cerevisiae (lower sequence). Identical sequence positions are indicated between the two sequences. Similar sequence positions are marked with "+”.
  • FIG. 3A shows an alignment between an amino acid partial sequence according to the invention (corresponding to the counter strand to positions 475 to 353 in SEQ ID NO: 12) (upper sequence) and a partial sequence of the MIPS tag BUD2 / CLA2 from S. cerevisiae (lower sequence ).
  • FIG. 3B shows an alignment between a partial amino acid sequence according to the invention (corresponding to the counter strand to position 351 to 1 in SEQ ID NO: 12) (upper sequence) and a partial sequence of the MIPS tag BUD2 / CLA2 from S. cerevisiae (lower sequence). Identical sequence positions are given between the two sequences. Similar sequence positions are marked with "+".
  • FIG. 4 shows an alignment between an amino acid partial sequence according to the invention (corresponding to the counter strand to positions 933 to 157 in SEQ ID NO: 17) (upper sequence) and a partial sequence of the MIPS tag Aor1 from S. cerevisiae (lower sequence). Identical sequence positions are indicated between the two sequences. Similar sequence positions are marked with "+”.
  • FIG. 5 shows an alignment between a partial amino acid sequence according to the invention (corresponding to the strand to positions 117 to 794 in SEQ ID NO: 21) (upper sequence) and one
  • FIG. 6 shows an alignment between an amino acid partial sequence according to the invention (corresponding to the strand to positions 438 to 767 in SEQ ID NO: 26) (upper sequence) and a partial sequence of the MIPS tag Scp1 from S. cerevisiae (lower sequence). Identical sequence positions are indicated between the two sequences. Similar sequence positions are marked with "+”.
  • FIG. 7A shows an alignment between a partial amino acid sequence according to the invention (corresponding to the counter strand to positions 983 to 651 in SEQ ID NO: 30) (upper sequence) and a partial sequence of the MIPS tag EPD1 from C. maltosa (lower sequence).
  • FIG. 7B shows an alignment between an amino acid partial sequence according to the invention (corresponding to the counter strand to positions 661 to 596 in SEQ ID NO: 30) (upper sequence) and a partial sequence of the MIPS tag EPD1 from C. maltosa (lower sequence).
  • FIG. 7A shows an alignment between a partial amino acid sequence according to the invention (corresponding to the counter strand to positions 983 to 651 in SEQ ID NO: 30) (upper sequence) and a partial sequence of the MIPS tag EPD1 from C. maltosa (lower sequence).
  • FIG. 7A shows an alignment between a partial amino acid sequence according to the invention (corresponding to the counter strand to positions 983 to 651 in SEQ ID NO: 30) (upper
  • FIG. 7C shows an alignment between an amino acid partial sequence according to the invention (corresponding to the counter strand to position 591 to 1 in SEQ ID NO: 30) (upper sequence) and a partial sequence of the MIPS tag EPD1 from C. maltosa (lower sequence). Identical sequence positions are given between the two sequences. Similar sequence positions are marked with "+”.
  • FIG. 8 shows an alignment between an amino acid partial sequence according to the invention (corresponding to the strand to positions 2 to 148 in SEQ ID NO: 36) (upper sequence) and a partial sequence of the MIPS tag Aip2 from S. cerevisiae (lower sequence). Identical sequence positions are indicated between the two sequences. Similar sequence positions are marked with "+”.
  • the nucleic acid molecules according to the invention encode proteins or proteins which are referred to here as proteins of the cell wall or cytoskeleton structure (for example with activity relating to cell wall synthesis or cytoskeleton structure) or briefly as “ZC proteins”.
  • ZC proteins have a function, for example the synthesis or restructuring of the cell wall or cytoskeleton, for example in the case of development-specific or environmental morphological changes in the cell, due to the availability of cloning vectors which can be used in Ashbya gossypii, as disclosed, for example, in Wright and Philipsen (1991) Gene, 109, 99-105., and von Techniques for the genetic manipulation of A.
  • gossypii and the related types of yeast can be used in the nucleic acid molecules according to the invention for the genetic manipulation of these organisms, especially use of A. gossypii to make them better and more efficient as producers of vitamin B2 and / or precursors and / or derivatives thereof.
  • This improved production or efficiency can take place due to a direct effect of the manipulation of a gene according to the invention or due to an indirect effect of such a manipulation.
  • the present invention is based on the provision of new molecules, referred to here as ZC nucleic acids and ZC proteins, which are involved in the construction of the cell wall and cytoskeleton, in particular in Ashbya gossypii (e.g. in the synthesis or restructuring of the cell wall and cytoskeleton).
  • ZC nucleic acids and ZC proteins which are involved in the construction of the cell wall and cytoskeleton, in particular in Ashbya gossypii (e.g. in the synthesis or restructuring of the cell wall and cytoskeleton).
  • the activity of the ZC molecules according to the invention in A. gossypii influences the vitamin B2 production by this organism.
  • the activity of the ZC molecules according to the invention is preferably modulated such that the metabolic and / or energy pathways of A.
  • gossypii in which the ZC proteins according to the invention participate are modulated with regard to the yield, production and / or efficiency of vitamin B2 production , which directly or indirectly modulates the yield, production and / or efficiency of vitamin B2 production in A. gossypii.
  • nucleic acid sequences provided according to the invention can be isolated, for example, from the genome of an Ashbya gossyp // strain which is freely available from the American Type Culture Collection under the name ATCC 10895.
  • the cell can be made more robust against external influences, so that the viability and thus the productivity in the fermenter is increased.
  • the mutagenesis of one or more ZC proteins according to the invention can also lead to ZC proteins with modified (increased or decreased) activities which indirectly influence the production of the desired product from A. gossypii.
  • the stability of the cells and the vesicle transport in the cells can be adapted to the respective environmental or culture conditions with the help of the ZC proteins and thus the function of essential metabolic processes can be maintained.
  • the product also includes the structure of the cell walls, transcription, translation, the biosynthesis of compounds that are necessary for the growth and division of cells (e.g. nucleotides, amino acids, vitamins, lipids, etc.) (Lengeieretal. (1999)).
  • the invention relates to polypeptides which comprise the above-mentioned amino acid sequences or characteristic partial sequences thereof and / or are encoded by the nucleic acid sequences described herein.
  • “Functional equivalents” or analogs of the specifically disclosed polypeptides are, within the scope of the present invention, different polypeptides which furthermore have the desired biological activity (such as substrate specificity).
  • “functional equivalents” are understood to mean, in particular, mutants which have an amino acid other than the one specifically mentioned in at least one of the sequence positions mentioned above, but nevertheless have one of the biological activities mentioned above. "Functional equivalents” thus encompass the mutants obtainable by one or more amino acid additions, substitutions, deletions and / or inversions, the changes mentioned being able to occur in any sequence position as long as they lead to a mutant with the property profile according to the invention. Functional equivalence is particularly given when the reactivity patterns between mutant and unchanged polypeptide match qualitatively, i.e. for example, the same substrates can be implemented at different speeds.
  • Salts means both salts of carboxyl groups and acid addition salts of amino nogroups of the protein molecules according to the invention.
  • Salts of carboxyl groups can be prepared in a manner known per se and include inorganic salts, such as, for example, sodium, calcium, ammonium, iron and zinc salts, and salts with organic bases, such as, for example, amines, such as triethanolamine, arginine, lysine , Piperidine and the like.
  • Acid addition salts such as, for example, salts with mineral acids, such as hydrochloric acid or sulfuric acid, and salts with organic acids, such as acetic acid and oxalic acid, are also a subject of the invention.
  • “Functional derivatives” of polypeptides according to the invention can also be prepared on functional amino acid side groups or on their N- or C-terminal end using known techniques.
  • Such derivatives include, for example, aliphatic esters of carboxylic acid groups, amides of carboxylic acid groups, obtainable by reaction with ammonia or with a primary or secondary amine; N-acyl derivatives of free amino groups, prepared by reaction with acyl groups; or O-acyl derivatives of free hydroxyl groups, produced by reaction with acyl groups.
  • “Functional equivalents” naturally also include polypeptides that are accessible from other organisms, as well as naturally occurring variants. For example, regions of homologous sequence regions can be determined by sequence comparison and equivalent enzymes can be determined based on the specific requirements of the invention.
  • “Functional equivalents” also include fragments, preferably individual domains or sequence motifs, of the polypeptides according to the invention which, for example, have the desired biological function.
  • “Functional equivalents” are also fusion proteins which contain one of the abovementioned polypeptide sequences or functional equivalents derived therefrom and at least one further, functionally different, heterologous sequence in functional N- or C-terminal linkage (ie without mutual substantial functional impairment of the fusion protein).
  • heterologous sequences are, for example, signal peptides, enzymes, immunoglobulins, surface antigens, receptors or receptor ligands.
  • “Functional equivalents” encompassed according to the invention are homologs to the specifically hard proteins. These have at least 60%, preferably at least 75%, in particular at least 85%, such as 90%, 95% or 99%, homology to one of the specifically disclosed Sequences calculated according to the algorithm by Pearson and Lipman, Proc. Natl. Acad, Be. (USA) 85 (8), 1988, 2444-2448.
  • equivalents according to the invention include proteins of the type described above in deglycosylated or glycosylated form and also modified forms obtainable by changing the glycosylation pattern.
  • homologs of the proteins or polypeptides of the invention can be generated by mutagenesis, e.g. by point mutation or shortening of the protein.
  • the term "homolog” as used here refers to a variant form of the protein which acts as an agonist or antagonist of protein activity.
  • Homologs of the proteins of the invention can be obtained by screening combinatorial libraries of mutants, e.g. Shortening mutants can be identified.
  • a varied library of protein variants can be generated by combinatorial mutagenesis at the nucleic acid level, e.g. by enzymatically ligating a mixture of synthetic oligonucleotides.
  • methods that can be used to generate banks of potential homologs from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automated DNA synthesizer, and the synthetic gene can then be ligated into an appropriate expression vector.
  • degenerate gene set allows all sequences to be provided in a mixture which encode the desired set of potential protein sequences.
  • Methods for the synthesis of degenerate oligonucleotides are known to the person skilled in the art (eg Narang, SA (1983) Tetrahedron 39: 3; Itakura et al. (1984) Annu. Rev. Biochem. 53: 323; Itakura et al., (1984) Science 198: 1056; Ike et al. (1983) Nucleic Acids Res. 11: 477).
  • a bank of coding sequence fragments can be obtained by treating a double-stranded PCR fragment of a coding sequence with a nuclease under conditions under which nicking occurs only about once per molecule, denaturing the double-stranded DNA, renaturing the DNA to form double-stranded DNA Sense / antisense pairs of different nodded products can be removed, single-stranded sections removed from newly formed duplexes by treatment with S1 nuclease and ligating the resulting fragment library into an expression vector.
  • a Expression bank can be derived, which encodes N-terminal, C-terminal and internal fragments with different sizes of the protein according to the invention.
  • REM Recursive ensemble mutagenesis
  • polypeptides according to the invention can be produced recombinantly (cf. the following sections) or can be in native form using conventional biochemical procedures (cf. Cooper, TG, Biochemical Working Methods, Verlag Walter de Gruyter, Berlin, New York or in Scopes, R. , Protein Purification, Springer Verlag, New York, Heidelberg, Berlin) from microorganisms, in particular those of the genus Ashbya, can be isolated.
  • biochemical procedures cf. Cooper, TG, Biochemical Working Methods, Verlag Walter de Gruyter, Berlin, New York or in Scopes, R. , Protein Purification, Springer Verlag, New York, Heidelberg, Berlin
  • the invention also relates to nucleic acid sequences (single and double stranded DNA and RNA sequences, such as cDNA and mRNA) coding for one of the above polypeptides and their functional equivalents, which e.g. are accessible using artificial nucleotide analogs.
  • the invention relates both to isolated nucleic acid molecules which code for polypeptides or proteins or biologically active sections thereof, and to nucleic acid fragments which can be used, for example, for use as hybridization probes or primers for identifying or amplifying coding nucleic acids according to the invention.
  • the nucleic acid molecules according to the invention can also contain untranslated sequences from the 3 'and / or 5' end of the coding gene region.
  • nucleic acid molecule is separated from other nucleic acid molecules that are present in the natural source of the nucleic acid and, moreover, can be substantially free of other cellular material or culture medium when produced by recombinant techniques, or free of chemical precursors or other chemicals be when it's chemically synthesized.
  • a nucleic acid molecule according to the invention can be isolated using standard molecular biological techniques and the sequence information provided according to the invention.
  • cDNA can be isolated from a suitable cDNA library by using one of the specifically disclosed complete sequences or a section thereof as a hybridization probe and standard hybridization techniques (as described, for example, in Sambrook, J., Fritsch, EF and Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).
  • a nucleic acid molecule comprising one of the disclosed sequences or a portion thereof can be isolated by polymerase chain reaction using the oligonucleotide primers created based on this sequence.
  • the nucleic acid amplified in this way can be cloned into a suitable vector and characterized by DNA sequence analysis.
  • the oligonucleotides according to the invention which correspond to an SA nucleotide sequence can also be obtained by standard synthesis methods, e.g. with an automatic DNA synthesizer.
  • the invention further comprises the nucleic acid molecules complementary to the specifically described nucleotide sequences or a section thereof.
  • the nucleotide sequences according to the invention enable the generation of probes and primers which can be used for the identification and / or cloning of homologous sequences in other cell types and organisms.
  • probes or primers usually comprise a nucleotide sequence region which, under stringent conditions, can be attached to at least about 12, preferably at least about 25, e.g. about 40, 50 or 75 successive nucleotides of a sense strand of a nucleic acid sequence according to the invention or a corresponding antisense strand are hybridized.
  • nucleic acid sequences according to the invention are derived from SEQ ID NO: 1, 4, 8, 10, 12, 15, 17, 19, 21, 23, 26, 28, 30, 34, 36 or SEQ ID NO: 38 and differ from them by addition, substitution, insertion or deletion of one or more nucleotides, but continue to code for polypeptides with the desired property profile.
  • nucleic acid sequences which comprise so-called silent mutations or which have been modified in accordance with the codon usage of a specific source or host organism, in comparison to a specifically named sequence, as well as naturally occurring variants, such as e.g. Splice variants or allele variants, thereof.
  • Sequences obtainable by conservative nucleotide substitutions i.e. the amino acid in question is replaced by an amino acid of the same charge, size, polarity and / or solubility are also a subject of the invention.
  • the invention also relates to the molecules derived from the specifically disclosed nucleic acids by sequence polymorphisms. These genetic polymorphisms can exist between individuals within a population due to natural variation. These natural variations usually cause a variance of 1 to 5% in the nucleotide sequence of a gene.
  • the invention also encompasses nucleic acid sequences which hybridize with the above-mentioned coding sequences or are complementary thereto.
  • These polynucleotides can be found when screening genomic or cDNA libraries and, if appropriate, can be multiplied therefrom using suitable primers by means of PCR and then isolated, for example, using suitable probes.
  • Another possibility is the transformation of suitable microorganisms with polynucleotides or vectors according to the invention, the multiplication of the microorganisms and thus the polynucleotides and their subsequent isolation.
  • polynucleotides according to the invention can also be synthesized chemically.
  • the property of being able to “hybridize” to polynucleotides means the ability of a poly- or oligonucleotide to bind to an almost complementary sequence under stringent conditions, while under these conditions there are no unspecific bindings between non-complementary partners -100%, preferably 90-100%, complementary
  • complementary sequences to be able to specifically bind to one another is made for example in the Northern or Southern blot technique or in the primer binding in PCR or RT PCR is usually used for this purpose, oligonucleotides with a length of 30 base pairs or more, stringent conditions mean, for example in the Northem blot technique, the use of a washing solution which is 50-70 ° C., preferably 60-65 ° C., for example 0.1x SSC buffer with 0.1% SDS (20x SSC: 3M NaCl, 0.3M Na citrate, pH 7.0) for the elution of non-specifically hybridized cDNA probes or oligonucleot
  • Another aspect of the invention relates to "antisense" nucleic acids.
  • This comprises a nucleotide sequence that is complementary to a coding "sense" nucleic acid.
  • the antisense nucleic acid can be complementary to the entire coding strand or only to a portion thereof
  • the antisense nucleic acid molecule is antisense to a non-coding region of the coding strand of a nucleotide sequence.
  • non-coding region relates to the sequence segments referred to as 5'- and 3'-untranslated regions.
  • An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides long.
  • An antisense nucleic acid of the invention can be constructed by chemical synthesis and enzymatic ligation reactions using methods known in the art.
  • An antisense nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides which are designed to increase the biological stability of the molecules or to increase the physical stability of the duplex which is between the antisense and Sense nucleic acid has arisen. For example, phosphorothioate derivatives and acridine substituted nucleotides can be used.
  • modified nucleosides that can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-ioduracil, hypoxanthine, xanthine, 4-acetylcytosine, 5- (carboxyhydroxymethyl) uracil, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-ioduracil, hypoxanthine, xanthine, 4-acetylcytosine, 5- (carboxyhydroxymethyl) uracil, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-ioduracil, hypoxanthine, xanthine, 4-acetylcytosine, 5- (carboxyhydroxymethyl) uracil, 5-
  • Carboxymethylaminomethyl-2-thiouridine 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 3-methylguanine Methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, ⁇ '-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-nadenine, N6-is6 -5-oxyacetic acid (v), wybutoxosin, pseudouracil, queosin, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouraci
  • the antisense nucleic acid can also be produced biologically using an expression vector in which a nucleic acid has been subcloned in the antisense direction.
  • the antisense nucleic acid molecules according to the invention are usually administered to a cell or generated in situ so that they hybridize with or bind to the cellular mRNA and / or a coding DNA, so that the expression of the protein, for example by inhibiting transcription and / or translation , is inhibited.
  • the antisense molecule can be modified to specifically bind to a receptor or to an antigen that is expressed on a selected cell surface, e.g. by linking the antisense nucleic acid molecule to a peptide or an antibody that binds to a cell surface receptor or antigen.
  • the antisense nucleic acid molecule can also be administered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is under the control of a strong bacterial, viral or eukaryotic promoter are preferred.
  • the antisense nucleic acid molecule according to the invention is an alpha-anomeric nucleic acid molecule.
  • An alpha-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA, the strands running parallel to one another in contrast to conventional alpha units.
  • the antisense nucleic acid molecule can also be a 2'-0-methyl ribonucleotide (Inoue et al., (1987) Nucleic Acids Res. 15: 6131-6148) or a chimeric RNA-DNA analog (Inoue et al. (1987) FEBS Lett 215: 327-330).
  • the invention also relates to ribozymes.
  • ribozymes are catalytic RNA molecules with ribonuclease activity that can cleave a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region.
  • Ribozymes for example Hammerhead-Ribozymes (described in Haselhoff and Gerlach (1988) Nature 334: 585-591)
  • a ribozyme with specificity for a coding nucleic acid according to the invention can be formed, for example, on the basis of a cDNA specifically disclosed herein.
  • a derivative of a Tetrahymena L-19 IVS RNA can be constructed where the nucleotide sequence of the active site is complementary to the nucleotide sequence that is to be cleaved in a coding mRNA according to the invention.
  • mRNA can be used to select a catalytic RNA with specific ribonuclease activity from a pool of RNA molecules (see, for example, Bartel, D., and Szostak, JW (1993) Science 261: 1411-1418).
  • sequences according to the invention can alternatively be inhibited by directing nucleotide sequences which are complementary to the regulatory region of a nucleotide sequence according to the invention (for example to a promoter and / or enhancer of a coding sequence) in such a way that triple helix structures are formed which transcribe of the corresponding gene in target cells (Helene, C. (1991) Anticancer Drug Res. 6 (6) 569-584; Helene, C. et al., (1992) Ann. NY Acad. Sci. 660: 27- 36; and Mower. LJ (1992) Bioassays 14 (12): 807-815).
  • the invention also relates to expression constructs containing, under the genetic control of regulatory nucleic acid sequences, a nucleic acid sequence coding for a polypeptide according to the invention; and vectors comprising at least one of these expression constructs.
  • Such constructs according to the invention preferably comprise a promoter 5'-upstream of the respective coding sequence and 3'-downstream a terminator sequence and, if appropriate, further customary regulatory elements, in each case operatively linked to the coding sequence.
  • An “operative linkage” is understood to mean the sequential arrangement of promoter, coding sequence, terminator and optionally further regulatory elements in such a way that each of the regulatory elements can fulfill its function in the expression of the coding sequence as intended.
  • sequences which can be linked operatively are Targeting sequences and enhancers, polyadenylation signals and the like.
  • Further regulatory elements include selectable markers, amplification signals, origins of replication and the like. Suitable regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego , CA (1990).
  • the natural regulatory sequence can still be present before the actual structural gene. This natural regulation can possibly be switched off by genetic modification and the expression of the genes increased or decreased.
  • the gene construct can also have a simpler structure, ie no additional regulation signals are inserted in front of the structural gene and the natural promoter with its regulation is not removed. Instead, the natural regulatory sequence is mutated so that regulation no longer takes place and gene expression is increased or decreased.
  • the nucleic acid sequences can be contained in one or more copies in the gene construct.
  • Examples of useful promoters are: cos, tac, trp, tet, trp-tet, Ipp, lac, Ipp-lac, laclq, T7, T5, T3, gal, trc -, ara, SP6, ⁇ -PR or in the ⁇ -PL promoter, which are advantageously used in gram-negative bacteria; as well as the gram-positive promoters amy and SP02, the yeast promoters ADC1, MF ⁇ , AC, P-60, CYC1, GAPDH or the plant promoters CaMV / 35S, SSU, OCS, Iib4, usp, STLS1, B33, not or the ubiquitin or phaseolin promoter.
  • inducible promoters such as, for example, light-inducible and in particular temperature-inducible promoters, such as the P r P r promoter
  • inducible promoters such as, for example, light-inducible and in particular temperature-inducible promoters, such as the P r P r promoter
  • all natural promoters with their regulatory sequences can be used.
  • synthetic promoters can also be used advantageously.
  • the regulatory sequences mentioned are intended to enable the targeted expression of the nucleic acid sequences. Depending on the host organism, this can mean, for example, that the gene is only expressed or overexpressed after induction, or that it is expressed and / or overexpressed immediately.
  • the regulatory sequences or factors can preferably have a positive influence on the expression and thereby increase or decrease it.
  • the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers".
  • an increase in translation is also possible, for example, by improving the stability of the mRNA.
  • An expression cassette is produced by fusing a suitable promoter with a suitable nucleotide sequence according to the invention and a terminator or polyadenylation signal.
  • Common recombination and cloning techniques such as those described in T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) and in T.J. Silhavy, M.L. Berman and L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) and in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987).
  • the recombinant nucleic acid construct or gene construct is advantageously inserted into a host-specific vector which enables optimal expression of the genes in the host.
  • Vectors are well known to those skilled in the art and can be found, for example, in "Cloning Vectors" (Pouwels PH et al., Ed., Elsevier, Amsterdam-New York-Oxford, 1985).
  • vectors also include all other vectors known to the person skilled in the art, such as phages, viruses, such as SV40, CMV, baculovirus and adenovirus, transposons, IS elements, phasmids, cosmids, and linear or circular DNA to understand. These vectors can be replicated autonomously in the host organism or can be replicated chromosomally.
  • fusion expression vectors such as pGEX (Pharmacia Biotech Ine; Smith, DB and Johnson, KS (1988) Gene 67: 31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT 5 (Pharmacia, Piscataway, NJ) which glutathione-S-transferase (GST), maltose E-binding protein or protein A is fused to the recombinant target protein.
  • GST glutathione-S-transferase
  • Non-fusion protein expression vectors such as pTrc (Amann et al., (1988) Gene 69: 301-315) and pET 11d (Studier et al. Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California ( 1990) 60-89).
  • Yeast expression vector for expression in the yeast S. cerevisiae such as pYepSed (Baldari et al., (1987) Embo J. 6: 229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30: 933-943), pJRY88 (Schultz et al. (1987) Gene 54: 113-123) and pYES2 (Invitrogen Corporation, San Diego, CA).
  • Vectors and methods of constructing vectors suitable for use in other fungi, such as filamentous fungi include those described in detail in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer Systems and vector developmentforfilamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy et al., Eds., Pp. 1-28, Cambridge University Press: Cambridge.
  • Baulovirus vectors available for expression of proteins in cultured insect cells include the pAc series (Smith et al., (1983) Mol. Cell BioL 3: 2156-2165) and the pVL- Series (Lucklow and Summers (1989) Virology 170: 31-39).
  • Plant expression vectors such as those described in detail in: Becker, D., Kemper, E., Schell, J. and Masterson, R. (1992) "New plant binary vectors with seleetable markers located proximal to the left border” , Plant Mol. Biol. 20: 1195-1197; and Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12: 8711-8721.
  • Mammalian expression vectors such as pCDM8 (Seed, B. (1987) Nature 329: 840) and pMT2PC (Kaufman et al. (1987) EMBO J. 6: 187-195).
  • Further suitable expression systems for prokaryotic and eukaryotic cells are in chapters 16 and 17 of Sambrook, J., Fritsch, EF and Maniatis, T., Molecular cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press , Cold Spring Harbor, NY, 1989.
  • recombinant microorganisms can be produced which, for example, have been transformed with at least one vector according to the invention and can be used to produce the polypeptides according to the invention.
  • the recombinant constructs according to the invention described above are advantageously introduced and expressed in a suitable host system.
  • Common cloning and transfection methods known to the person skilled in the art such as, for example, co-precipitation, protoplast fusion, electroporation, retroviral transfection and the like, are preferably used to bring the nucleic acids mentioned into expression in the respective expression system. Suitable systems are described, for example, in Current Protocols in Molecular Biology, F.
  • homologously recombined microorganisms can also be produced.
  • a vector is produced which contains at least a section of a gene or a coding sequence according to the invention, in which at least one amino acid deletion, addition or substitution has optionally been introduced in order to change the sequence according to the invention, e.g. functionally disrupt ("Knockouf 'vector).
  • the introduced sequence can also be, for example, a homolog from a related microorganism or derived from a mammalian, yeast or insect source.
  • the vector used for homologous recombination can alternatively be designed such that the endogenous gene is mutated or otherwise altered in homologous recombination, but still encodes the functional protein (for example, the upstream regulatory region can be altered in such a way that the expression of the endogenous protein is thereby altered).
  • the altered section of the ZC gene is in the homologous recombination vector.
  • all organisms which allow expression of the nucleic acids according to the invention, their allele variants, their functional equivalents or derivatives are suitable as host organisms.
  • host organisms are, for example, bacteria, fungi, yeasts, vegetable or to understand animal cells.
  • Preferred organisms are bacteria, such as those of the genera Escherichia, such as. B. Escherichia coli, Streptomyces, Bacillus or Pseudomonas, eukaryotic microorganisms such as Saccharomyces cerevisiae, Aspergillus, higher eukaryotic cells from animals or plants, for example Sf9 or CHO cells.
  • Preferred organisms are selected from the genus Ashbya, in particular from A. gossyp // ' strains.
  • Successfully transformed organisms can be selected using marker genes which are also contained in the vector or in the expression cassette.
  • marker genes are genes for antibiotic resistance and for enzymes which catalyze a coloring reaction which stains the transformed cell. These can then be selected using automatic cell sorting.
  • Microorganisms successfully transformed with a vector and carrying an appropriate antibiotic resistance gene e.g. G418 or hygromycin
  • an appropriate antibiotic resistance gene e.g. G418 or hygromycin
  • Marker proteins that are presented on the cell surface can be used for selection by means of affinity chromatography.
  • the combination of the host organisms and the vectors which match the organisms, such as plasmids, viruses or phages, such as, for example, plasmids with the RNA polymerase / promoter system, the phages ⁇ or ⁇ or other temperate phages or transposons and / or further advantageous regulatory ones Sequences form an expression system.
  • expression system means the combination of mammalian cells, such as CHO cells, and vectors, such as pcDNA3neo vector, which are suitable for mammalian cells.
  • the gene product can also be expressed in transgenic organisms such as transgenic animals, such as in particular mice, sheep or transgenic plants.
  • the invention furthermore relates to processes for the recombinant production of a polypeptide according to the invention or functional, biologically active fragments thereof, wherein a polypeptide-producing microorganism is cultivated, where appropriate the expression of the polypeptides is induced and these are isolated from the culture.
  • the polypeptides can thus also be produced on an industrial scale, if this is desired.
  • the recombinant microorganism can be cultivated and fermented by known methods.
  • Bacteria can, for example, in TB or LB medium and at a temperature of 20 to 40 ° C and a pH of 6 to 9 can be increased. Suitable cultivation conditions are described in detail, for example, in T. Maniatis, EF Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).
  • the cells are then disrupted and the product is obtained from the lysate by known protein isolation methods.
  • the cells can optionally be operated by high-frequency ultrasound, by high pressure, e.g. in a French pressure cell, by osmolysis, by the action of detergents, lytic enzymes or organic solvents, by homogenizers or by a combination of several of the processes listed.
  • Purification of the polypeptides can be achieved with known chromatographic methods, such as molecular sieve chromatography (gel filtration), such as Q-Sepharose chromatography, ion exchange chromatography and hydrophobic chromatography, and with other conventional methods such as ultrafiltration, crystallization, salting out, dialysis and native gel electrophoresis. Suitable methods are described, for example, in Cooper, T.G., Biochemical Working Methods, Walter de Gruyter Verlag, Berlin, New York or in Scopes, R., Protein Purification, Springer Verlag, New York, Heidelberg, Berlin.
  • vector systems or oligonucleotides which extend the cDNA by certain nucleotide sequences and thus code for modified polypeptides or fusion proteins which e.g. serve easier cleaning.
  • suitable modifications are, for example, so-called “tags” functioning as anchors, such as the modification known as hexa-histidine anchors, or epitopes that can be recognized as antigens of antibodies (described, for example, in Harlow, E. and Lane, D., 1988, Antibodies: A Laboratory Manual. Cold Spring Harbor (NY) Press ).
  • These anchors can be used to attach the proteins to a solid support, e.g. a polymer matrix, which can be filled, for example, in a chromatography column, or can be used on a microtiter plate or on another support.
  • these anchors can also be used to recognize the proteins.
  • customary markers such as fluorescent dyes, enzyme markers which form a detectable reaction product after reaction with a substrate, or radioactive markers, alone or in combination with the anchors, can be used to derivatize the proteins.
  • the invention also relates to a method for the microbiological production of vitamin B2 and / or precursors and / or derivatives thereof.
  • the microorganisms are preferably first cultivated in the presence of oxygen and in a complex medium, such as e.g. at a cultivation temperature of about 20 ° C or more, and a pH of about 6 to 9 until a sufficient cell density is reached.
  • a complex medium such as e.g. at a cultivation temperature of about 20 ° C or more, and a pH of about 6 to 9 until a sufficient cell density is reached.
  • an inducible promoter is preferred.
  • the cultivation is continued for 12 hours to 3 days after the induction of vitamin B2 production in the presence of oxygen.
  • the cloning steps performed in the present invention such as e.g. Restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linking of DNA fragments, transformation of E. coli cells, cultivation of bacteria, multiplication of phages and sequence analysis of recombinant DNA were carried out as in Sambrook et al. (1989) op. described.
  • the cultivation of recombinant E. coli strains DH5 ⁇ was carried out in LB-Amp medium (trypton 10.0 g, NaCl 5.0 g, yeast extract 5.0 g, ampicillin 100 g / ml H 2 O ad 1000 ml) at 37 ° C cultured.
  • LB-Amp medium trypton 10.0 g, NaCl 5.0 g, yeast extract 5.0 g, ampicillin 100 g / ml H 2 O ad 1000 ml
  • one colony was transferred from an agar plate into 5 ml LB-Amp using an inoculation loop. After culturing for about 18 hours at a shaking frequency of 220 rpm, 400 ml of medium were inoculated with 4 ml of culture in a 2 l flask.
  • P450 expression was induced in E. coli after an OD578 value between 0.8 and 1.0 was reached by inducing heat shock at 42 ° C. for three to four
  • the desired product can be obtained from the microorganism or from the culture supernatant by various methods known in the art. If the desired product is not secreted by the cells, the cells can be harvested from the culture by slow centrifugation, the cells can be lysed by standard techniques such as mechanical force or ultrasound treatment.
  • the cell debris is removed by centrifugation and the supernatant fraction containing the soluble proteins is obtained for further purification of the desired compound. If the product is secreted from the cells, the cells are removed from the culture by slow centrifugation and the supernatant fraction is retained for further purification.
  • the supernatant fraction from both purification processes is subjected to chromatography with a suitable resin, the desired molecule either being retained on the chromatography resin or passing through it with higher selectivity than the impurities. These chromatography steps can be repeated if necessary using the same or different chromatography resins.
  • the person skilled in the art is skilled in the selection of the suitable chromatography resins and their most effective application for a particular molecule to be purified.
  • the purified product can be concentrated by filtration or ultrafiltration and kept at a temperature at which the stability of the product is maximum.
  • the identity and purity of the isolated compounds can be determined by prior art techniques. These include high performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin-layer chromatography, NIRS, enzyme test or microbiological tests. These analysis methods are summarized in: Patek et al. (1994) Appl. Environ. Microbiol. 60: 133-140; Malakhova et al. (1996) Biotekhnologiya 11 27-32; and Schmidt et al. (1998) Bioprocess Engineer. 19: 67-70. Ullmann's Encyclopedia of Industrial Chemistry (1996) Vol. A27, VCH: Weinheim, pp. 89-90, pp. 521-540, pp. 540-547, pp.
  • HPLC high performance liquid chromatography
  • NIRS enzyme test or microbiological tests.
  • MPSS technology massive parallel signature sequencing, as described by Brenner et al, Nat. Biotechnol. (2000) 18, 630-634; to which express reference is made
  • the mRNA of the organism is isolated at a specific point in time X, transcribed into cDNA using the enzyme reverse transcriptase and then cloned into special vectors which have a specific tag sequence.
  • the number of vectors with different tag sequences is chosen so high (about 1000 times higher) that, statistically speaking, each DNA molecule is cloned into a vector that is unique due to its tag sequence.
  • the vector inserts are cut out together with the tag.
  • the DNA molecules thus obtained are then incubated with microspheres that have the molecular counterparts of the tags mentioned. After incubation, it can be assumed that each microsphere is loaded with only one type of DNA molecule via the specific tags or counterparts.
  • the beads are transferred to a special flow cell and fixed there, so that it is possible to carry out a mass sequencing of all beads using an adapted sequencing method based on fluorescent dyes and using a digital color camera. With this method, a numerically high evaluation is possible, but is limited by a reading range of approximately 16 to 20 base pairs. However, the sequence length is sufficient to allow a clear assignment between sequence and gene in most organisms (20 bp have a sequence frequency of -1x10 12 , the human genome has "only" a size of -3x10 9 bp in comparison).
  • Ashbya gossypii was cultivated in a manner known per se (nutrient medium: 27.5 g / l yeast extract; 0.5 g / l magnesium sulfate; 50 ml / l soybean oil; pH 7). Ashbya gossypii mycelium samples are taken at different times during the fermentation (24h, 48h and 72h) and the corresponding RNA or mRNA is prepared according to the protocol of Sambrook et al. (1989) isolated from it.
  • the determined data sets are subjected to a statistical evaluation and classified according to the significance of the expression differences. Both the increase and decrease in the level of expression were examined.
  • the expression change is classified into a) monotonous change, b) change after 24h, and c) change after 48h.
  • the 20bp sequences which represent an expression change and are determined by MPSS analysis, are then used as probes and hybridized against an Ashbya gossypii gene library with an average insert size of approximately 1 kb.
  • the hydriding temperature was in the range from about 30 to 57 ° C.
  • chromosomal DNA is first isolated using the method of Wright and Philippsen (Gene (1991) 109: 99-105) and Mohr (1995, PhD thesis, Biotechnik University Basel, Switzerland).
  • the DNA is partially digested with Sau3A.
  • Sau3A For this purpose, 6 ⁇ g genomic DNA is subjected to Sau3A digestion with different amounts of enzyme (0.1 to 1 U).
  • the fragments are fractionated in a sucrose density gradient.
  • the 1 kb region is isolated and subjected to QiaEx extraction.
  • the largest fragments are ligated with the Ba HI cut vector pRS416 (Sikorski and Hieter, Genetics (1988) 122; 19-27) (90 ng BamHI cut, dephosphorylated vector; 198ng insert DNA; 5ml water; 2 ul 10x ligation buffer; 1 U ligase). With this ligation approach £ co // laboratory strain XL-1 blue is transformed and the resulting clones are used to identify the insert.
  • nucleic acid sequences obtained i.e. their functional assignment to a functional amino acid sequence was carried out using a BLASTX search in sequence databases. Almost all of the amino acid sequence homologies found concerned Saccharomyces cerevisiae (baker's yeast). Since this organism has already been completely sequenced, more detailed information regarding these genes can be found at: http://www.mips.gsf.de/proi/yeast/search/code search.htm.
  • the amino acid sequence derived from the coding strand to SEQ ID NO: 1 has significant sequence homology with a cell wall precursor protein from S. cerevisiae.
  • a partial amino acid sequence derived therefrom (corresponding to nucleotides 1092 to 595 from SEQ ID NO: 1) with a partial sequence of the S. cerevisiae protein is shown in FIG. 1.
  • SEQ ID NO: 2 and SEQ ID NO: 3 each show an N-terminally extended amino acid partial sequence.
  • the A. gossypii nucleic acid sequence determined could thus be assigned the function of a cell wall precursor protein.
  • the amino acid sequence derived from the corresponding counter-strand to SEQ ID NO: 8 has significant sequence homology with a serine-threonine kinase from S. cerevisiae.
  • a partial amino acid sequence derived from it (corresponding to the nucleotides 1067 to 84 from SEQ ID NO: 8) with a partial sequence of the S. cerevisiae enzyme is shown in FIG. 2.
  • SEQ ID NO: 9 shows an N-terminally extended amino acid partial sequence.
  • the A. gossypii nucleic acid sequence determined could thus be assigned the function of a serine threonine kinase.
  • the amino acid sequence derived from the counter strand to SEQ ID NO: 12 has significant sequence homology with a GTPase-activating protein from S. cerevisiae.
  • a partial amino acid sequence derived therefrom (corresponding to nucleotides 475 to 353 from SEQ ID NO: 12) with a partial sequence of the S. cerevisiae protein is shown in FIG. 3A.
  • Another amino acid part-sequence derived therefrom corresponding to nucleotides 351 to 1 from SEQ ID NO: 12 with a part-sequence of the S. cerevisiae protein is shown in FIG. 3B.
  • SEQ ID NO: 13 and SEQ ID NO: 14 each show an N-terminally extended amino acid part-sequence.
  • the A. gossypii nucleic acid sequence determined could thus be assigned the function of a GTPase-activating protein.
  • the amino acid sequence derived from the corresponding counter strand to SEQ ID NO: 17 has significant sequence homology with a protein from S. cerevisiae, which is associated with resistance to actin overexpression.
  • An amino acid partial sequence derived therefrom (corresponding to nucleotides 933 to 157 from SEQ ID NO: 17) with a partial sequence of the S. cerevisiae protein is shown in FIG. 4.
  • SEQ ID NO: 18 shows an N-terminally extended amino acid partial sequence.
  • the A. gossypii nucleic acid sequence determined could thus be assigned to the function of a protein which is resistant to actin overexpression.
  • SEQ ID NO: 21 The amino acid sequence derived from the coding strand to SEQ ID NO: 21 has significant sequence complicity with a protein from S. cerevisiae similar to Nuflp. An amino acid partial sequence derived therefrom (corresponding to nucleotides 117 to 794 from SEQ ID NO: 21) with a partial sequence of the S. cerevisiae protein is shown in FIG. 5. SEQ ID NO: 22 shows an N-terminally extended amino acid partial sequence.
  • the A. gossypii nucleic acid sequence determined could thus be assigned the function of a protein similar to Nuf 1 p. f)
  • the amino acid sequence derived from the coding strand to SEQ ID NO: 26 has significant sequence homology with a protein from S. cerevisiae homologous to calponin.
  • An amino acid partial sequence derived therefrom (corresponding to nucleotides 438 to 767 from SEQ ID NO: 26) with a partial sequence of the S. cerevisiae protein is shown in FIG. 6.
  • SEQ ID NO: 27 shows an N-terminally extended amino acid partial sequence.
  • the A. gossypii nucleic acid sequence determined could thus be assigned the function of a protein homologous to calponin.
  • the amino acid sequence derived from the corresponding counter-strand to SEQ ID NO: 30 has significant sequence homology with a protein from C. maltosa, which is essential for pseudohyphene development in maltosa.
  • An amino acid partial sequence derived therefrom (corresponding to nucleotides 983 to 651 from SEQ ID NO: 30) with a partial sequence of the C. maltosa protein is shown in FIG. 7A.
  • a further partial amino acid sequence derived therefrom (corresponding to nucleotides 661 to 596 from SEQ ID NO: 30) with a partial sequence of the C. maltosa protein is shown in FIG. 7B.
  • a third amino acid partial sequence derived therefrom (corresponding to nucleotides 591 to 1 from SEQ ID NO: 30) with a partial sequence of the C. maltosa protein is shown in FIG. 7C.
  • SEQ ID NO: 31, SEQ ID NO: 32 and SEQ ID NO: 33 each show an N-terminally extended amino acid partial sequence
  • the A. gossypii nucleic acid sequence determined could thus be assigned to the function of a protein which is essential for the development of pseudohyphae in C. maltosa.
  • the amino acid sequence derived from the coding strand to SEQ ID NO: 36 has significant sequence homology with a protein from S. cerevisiae, which interacts with actin.
  • An amino acid partial sequence derived therefrom (corresponding to nucleotides 2 to 148 from SEQ ID NO: 36) with a partial sequence of the S. cerevisiae protein is shown in FIG. 8.
  • SEQ ID NO: 37 shows an N-terminally extended amino acid partial sequence.
  • the A. gossypii nucleic acid sequence determined could thus be assigned to the function of a protein which interacts with actin.
  • A. gossyp / 7 gene bank A. gossypii high molecular weight cellular DNA was prepared from a 2 day old 100 ml culture grown in a liquid MA2 medium (10 g glucose, 10 g peptone, 1 g yeast extract, 0.3 g Myo-Inositad 1000 ml). The mycelium was filtered off, twice with H 2 0 dest. washed, suspended in 10 ml of 1M sorbitol, 20 mM EDTA, containing 20 mg of zymolyase-20T, and incubated at 27 ° C. for 30 to 60 min with gentle shaking.
  • the protoplast suspension was adjusted to 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 100 mM EDTA and 0.5% sodium dodecyl sulfate (SDS) and incubated at 65 ° C. for 20 min. After two extractions with phenol-chloroform (1: 1 vol / vol), the DNA was precipitated with isopropanol, suspended in TE buffer, treated with RNase, precipitated again with isopropanol and resuspended in TE.
  • SDS sodium dodecyl sulfate
  • An A. gossyp // cosmid library was made by binding genomic DNA selected in size, partially digested with Sau3A, to the dephosphorylated arms of the cosmid vector Super-Cos1 (Stratagene).
  • the Super Cos1 vector was opened between the two cos sites by digestion with Xbal and dephosphorylation with alkaline calf intestinal phosphatase (Boehringer), followed by opening the cloning site with BamHI. The ligations were carried out overnight at 15 ° C.
  • a total of 4 ⁇ 10 4 fresh individual colonies were individually in wells of 96-well microtiter plates (Falcon, No. 3072) in 100 ⁇ l LB medium, supplemented with the freezing medium (36 mM K 2 HPO 4 / 13.2 mM KH 2 PO 4 , 1.7 mM sodium citrate, 0.4 mM MgSO 4 , 6.8 mM (NH 4 ) 2 SO 4 , 4.4% (wt / vol) glycerol) and ampicillin (50 ⁇ g / ml), inoculated, overnight Let grow at 37 ° C with shaking and freeze at -70 ° C.
  • the freezing medium 36 mM K 2 HPO 4 / 13.2 mM KH 2 PO 4 , 1.7 mM sodium citrate, 0.4 mM MgSO 4 , 6.8 mM (NH 4 ) 2 SO 4 , 4.4% (wt / vol) glycerol) and ampicillin (50 ⁇ g /
  • the plates were quickly thawed and then duplicated in fresh medium using a 96 series replicator which had been sterilized in an ethanol bath followed by evaporation of the ethanol on a hot plate.
  • the plates were briefly shaken in a microtiter shaker (Infors) to ensure a homogeneous cell suspension.
  • a robot system bio-robotics
  • nylon membrane GeneScreen Plus, New England Nuclear
  • the membranes were placed on the surface of LB agar with ampicillin (50 ⁇ g / ml) in 22 ⁇ 22 cm culture dishes (Nunc) and overnight at 37 ° C. incubated. Before cell confluence was reached, the membranes were processed as described by Herrmann, BG, Barlow, DP and Lehrach, H. (1987) in Cell 48, pp. 813-825, with an additional treatment after the first denaturation step being a 5- minutes of steaming the filters on a pad soaked in denaturing solution is added over a boiling water bath.
  • the membranes were prehybridized and 6 to 12 h at 42 ° C in 50% (vol / vol) formamide, 600 mM sodium phosphate, pH 7.2, 1 mM EDTA, 10% dextran sulfate, 1% SDS, and 10x Denhardt's solution, containing salmon sperm DNA (50 ug / ml) hybridized with 32 P-labeled probes (0.5-1 x 10 6 cpm / ml). Typically, washing steps were carried out for about 1 hour at 55 to 65 ° C.
  • the filters were 12 to 24 hours at -70 ° C autoradiographed with Kodak amplifier plates. So far, individual membranes have been successfully reused more than 20 times. Between the autoradiographs, the filters were stripped by incubation at 95 ° C for 2 x 20 min in 2 mM Tris-HCl, pH 8.0, 0.2 mM EDTA, 0.1% SDS.
  • the insert comprising the full sequence has a nucleic acid sequence as shown in SEQ ID NO: 4.
  • the protein encoded thereby preferably comprises at least one of the amino Acid sequences according to SEQ ID NO: 5, 6 and 7.
  • the insert comprising the full sequence has a nucleic acid sequence as shown in SEQ ID NO: 10.
  • the insert comprising the full sequence has a nucleic acid sequence as shown in SEQ ID NO: 19.
  • the insert comprising the full sequence has a nucleic acid sequence as shown in SEQ ID NO: 23.
  • the protein encoded therein preferably comprises at least one of the amino acid sequences as shown in SEQ ID NO: 24 and 25.
  • the insert comprising the full sequence has a nucleic acid sequence as shown in SEQ ID NO: 28.
  • the insert comprising the full sequence has a nucleic acid sequence as shown in SEQ ID NO: 34.
  • the insert comprising the full sequence has a nucleic acid sequence as shown in SEQ ID NO: 38.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Biotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Microbiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plant Pathology (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention relates to novel polynucleotides from Ashbya gossypii; oligonucleotides hybridised therewith; expression cassettes and vectors, containing said polynucleotide; microorganism transformed therewith; polypeptides coded by said polynucleotides and the use of the novel polypeptides and polynucleotides as targets for modulation of the cell wall or cytoskeletion construction and in particular for improving the production of vitamin B2 in microorganisms of the species Ashbya.

Description

Beschreibungdescription
Neue Genprodukte aus Ashbya gossypu, die mit dem Aufbau der Zellwand bzw. des Cytoske- letts assoziiert sind.New gene products from Ashbya gossypu, which are associated with the structure of the cell wall or the cytoskeleton.
Die vorliegende Erfindung betrifft neuartige Polynukleotide aus Ashbya gossypu; damit hybridisierende Oligonukleotide; Expressionskassetten und Vektoren, welche diese Polynukleotide enthalten; damit transformierte Mikroorganismen; von diesen Polynukleotiden kodierte Polypeptide; und die Anwendung der neuen Polypeptide und Polynukleotide als Targets zur Modulation des Zellwand- bzw. Cytoskeletteigenschaften und insbesondere der Verbesserung der Vitamin B2-Produktion in Mikroorganismen der Gattung Ashbya.The present invention relates to novel polynucleotides from Ashbya gossypu; oligonucleotides hybridizing therewith; Expression cassettes and vectors containing these polynucleotides; microorganisms transformed therewith; polypeptides encoded by these polynucleotides; and the use of the new polypeptides and polynucleotides as targets for modulating the cell wall or cytoskeleton properties and in particular for improving vitamin B2 production in microorganisms of the genus Ashbya.
Vitamin B2 (Riboflavin, Lactoflavin) ist ein alkali- und lichtempfindliches, in Lösung gelbgrün fluoreszierendes Vitamin. Vitamin B2-Mangel kann zu Ektodermschäden, insbesondere Linsentrü- bung, Keratitis, Komeavaskularisation, zu neurovegetativen und urogenitalen Störungen führen. Vitamin B2 ist Vorläufer für die neben NAD* und NADP+ wichtigen biologischen Wasserstoff- überträger-Moleküle FAD und FMN. Diese werden aus Vitamin B2 durch Phosphorylierung (FMN) und anschließende Adenylierung (FAD) gebildet.Vitamin B2 (riboflavin, lactoflavin) is an alkali and light sensitive vitamin that fluoresces yellow-green in solution. Vitamin B2 deficiency can lead to ectoderm damage, especially clouding of the lens, keratitis, comea vascularization, neurovegetative and urogenital disorders. Vitamin B2 is the precursor for the biological hydrogen transfer molecules FAD and FMN, which are important in addition to NAD * and NADP + . These are formed from vitamin B2 by phosphorylation (FMN) and subsequent adenylation (FAD).
Vitamin B2 wird in Pflanzen, Hefen und vielen Mikroorganismen aus GTP und Ribulose-5- phosphat synthetisiert. Der Reaktionsweg beginnt mit dem Öffnen des Imidazolrings von GTP und Abspaltung eines Phosphatrestes. Durch Desaminierung, Reduktion und Abspaltung des verbleibenden Phosphats entsteht 5-Amino-6-ribitylamino-2,4-pyrimidinon. Die Reaktion dieser Verbindung mit 3,4-Dihydroxy-2-butanon-4-phosphat führt zum bicyclischen Molekül 6,7- Dimethyl-8-ribityllumazin. Diese Verbindung wird durch Dismutation, bei der eine 4-Kohlenstoff- Einheit übertragen wird, in die tricyclische Verbindung Riboflavin umgesetzt.Vitamin B2 is synthesized in plants, yeasts and many microorganisms from GTP and ribulose-5-phosphate. The pathway begins with the opening of the imidazole ring from GTP and the cleavage of a phosphate residue. 5-Amino-6-ribitylamino-2,4-pyrimidinone is formed by deamination, reduction and elimination of the remaining phosphate. The reaction of this compound with 3,4-dihydroxy-2-butanone-4-phosphate leads to the bicyclic molecule 6,7-dimethyl-8-ribityllumazine. This compound is converted into the tricyclic compound riboflavin by dismutation, in which a 4-carbon unit is transferred.
Vitamin B2 kommt in vielen Gemüsen und in Fleisch vor, weniger in Getreideprodukten. Der tägliche Vitamin B2-Bedarf eines Erwachsenen liegt bei etwa 1,4 bis 2 mg. Hauptabbauprodukt der Coenzyme FMN und FAD beim Menschen ist wiederum Riboflavin, welches als solches ausgeschieden wird.Vitamin B2 is found in many vegetables and meat, less in cereal products. An adult's daily vitamin B2 requirement is around 1.4 to 2 mg. The main breakdown product of the FMN and FAD coenzymes in humans is again riboflavin, which is excreted as such.
Vitamin B2 stellt damit ein wichtiges Nahrungsergänzungsmittel für Mensch und Tier dar. Es besteht daher das Bestreben, Vitamin B2 in technischem Maßstab zugänglich zu machen. Es wurde daher vorgeschlagen, Vitamin B2 auf mikrobiologischem Weg zu synthetisieren. Brauchbare Mikroorganismen hierfür sind beispielsweise Bacillus subtilis, die Ascomyceten Eremothe- cium ashbyii, Ashbya gossypu sowie die Hefen Candida flareri und Saccharomyces cerevisiae. Die hierzu verwendeten Nährmedien umfassen Melasse oder Pflanzenöle als Kohlenstoffquelle, anorganische Salze, Aminosäuren, tierische oder pflanzliche Peptone und Proteine sowie Vitaminzusätze. In sterilen aeroben submersen Verfahren erhält man pro Liter Kulturbrühe Ausbeuten von mehr als 10 g Vitamin B2 innerhalb weniger Tage. Voraussetzung sind gute Belüftung der Kultur, sorgfältiges Rühren und Einstellung von Temperaturen unter etwa 30°C. Nach Abtrennen der Biomasse, Eindampfen und Trocknen des Konzentrates erhält man ein mit Vitamin B2 angereichertes Produkt.Vitamin B2 is therefore an important nutritional supplement for humans and animals. There is therefore a desire to make vitamin B2 accessible on a technical scale. It has therefore been proposed to synthesize vitamin B2 in a microbiological way. Useful microorganisms for this are, for example, Bacillus subtilis, the Ascomycetes Eremothecium ashbyii, Ashbya gossypu and the yeasts Candida flareri and Saccharomyces cerevisiae. The nutrient media used for this include molasses or vegetable oils as a carbon source, inorganic salts, amino acids, animal or vegetable peptones and proteins as well as vitamin additives. In sterile aerobic submerged processes, yields of more than 10 g of vitamin B2 are obtained within a few days per liter of culture broth. The prerequisites are good ventilation of the culture, careful stirring and setting temperatures below about 30 ° C. After separating the biomass, evaporating and drying the concentrate, a product enriched with vitamin B2 is obtained.
Die mikrobiologische Produktion von Vitamin B2 ist beispielsweise beschrieben in der WO-A- 92/01060, der EP-A-0 405 370 und EP-A-0 531 708.The microbiological production of vitamin B2 is described, for example, in WO-A-92/01060, EP-A-0 405 370 and EP-A-0 531 708.
Eine Übersicht über Bedeutung, Vorkommen, Herstellung, Biosynthese und Verwendung von Vitamin B2 ist beispielsweise in Ullmann's Encyclopaedia of Industrial Chemistry, Band A27, Seiten 521 ff. zu finden.An overview of the meaning, occurrence, production, biosynthesis and use of vitamin B2 can be found, for example, in Ullmann's Encyclopaedia of Industrial Chemistry, volume A27, pages 521 ff.
Die Zellwand und das Cytoskelett dienen einer eukaryotischen Zelle vor allem zum äußeren und inneren Strukturerhalt. Die Funktionen dieser Komponenten sind mit denen einer Zeltplane und dem dazugehörigen Zeltgestänge zu vergleichen. Da lebende Zellen jedoch kein starres, sondern aufgrund von Wachstum und Umweltbedingungen benötigtes, flexibles und anpassungsfä- higes Zellgerüst besitzen, wird der Aufbau und die Zusammensetzung von äußeren Faktoren, wie z.B. Temperatur und pH-Wert, aber auch von inneren Faktoren, wie z.B dem ATP-Gehalt oder der lonenkonzentration der Zelle beeinflußt.The cell wall and the cytoskeleton serve a eukaryotic cell primarily for the maintenance of the external and internal structure. The functions of these components can be compared with those of a tarpaulin and the associated tent poles. However, since living cells do not have a rigid, but because of growth and environmental conditions required, flexible and adaptable cell structure, the structure and composition of external factors, such as Temperature and pH value, but also influenced by internal factors such as the ATP content or the ion concentration of the cell.
Die pilzliche Zellwand spielt eine entscheidende Rolle während des Wachstums, der Entwick- lung oder der Interaktion des Pilzes mit der Umwelt bzw. mit anderen Zellen. Primär nimmt sie eine protektive Funktion, d.h. Schutz der Zelle gegen osmotische, chemische oder biologische Schäden, ein. Weiterhin ist die Zellwand aber auch in morphologische Antworten, Antigen- Expression, Adhäsion und Zell-Zell-Interaktion involviert. Die pilzliche Zellwand ist aus einer Mischung unterschiedlicher Polymere aufgebaut. Dabei unterscheidet man in zwei Kategorien. Zum einen in die sogenannten strukturellen Polymere die für die Steifheit der Struktur verantwortlich sind, und zum anderen in die Matrix-Polymere, in die sie eingebettet sind, und die einen Druckwiderstand gewährleisten. Für die meisten Pilze sind Chitin, Glucane und Mannoproteine die wichtigsten Zellwand Komponenten. Dabei übernehmen Chitin und Glucane strukturelle Funktion. Die Zellwandsynthese erfolgt über eine Zusammensetzung der Einzelkomponenten in verschiedenen Stufen. Zunächst muß eine Synthese der individuellen Komponenten intrazellulär oder an der Plasmalemma/Wand-Grenzschicht erfolgen. Nachdem alle Polymere in die expandierende Wand sekretiert wurden, lagern sie sich über molekulare Interaktionen zunächst lose zusammen, bevor sie über kovalente Bindungen fest miteinander verknüpft werden.The fungal cell wall plays a crucial role during the growth, development or interaction of the fungus with the environment or with other cells. It primarily has a protective function, ie protecting the cell against osmotic, chemical or biological damage. Furthermore, the cell wall is also involved in morphological responses, antigen expression, adhesion and cell-cell interaction. The fungal cell wall is made up of a mixture of different polymers. There are two categories. On the one hand in the so-called structural polymers which are responsible for the rigidity of the structure, and on the other hand in the matrix polymers in which they are embedded and which ensure pressure resistance. For most fungi, chitin, glucans and mannoproteins are the most important cell wall components. Chitin and glucans take on a structural function. The cell wall synthesis takes place via a composition of the individual components in different stages. The individual components must first be synthesized intracellularly or at the plasma / wall boundary layer. After all the polymers have been secreted into the expanding wall, they are initially stored loosely via molecular interactions together before they are firmly connected to each other via covalent bonds.
Das Cytoskelett ist dagegen ein koordiniertes Netzwerk aus filamentösen Polymeren, welche durch verschiedene Moleküle mit anderen zellulären Strukturen verknüpft sind. Die Organisation und die Eigenschaften dieses Netzwerkes stehen unter einer präzisen entwicklungsabhängigen und funktioneilen Kontrolle. Die Hauptstrukturkomponenten des Cytoskeletts bilden die Actinfi- lamente (F-Actin), Mikrotubuli und die intermediären Filamente. Das Cytosol kann eher mit einem hochorganisierten Gel als mit einer homogenen Lösung verglichen werden, bei dem die Zusammensetzung in verschiedenen Regionen der Zelle deutliche Unterschiede aufweisen kann. Das Cytoskelett übernimmt wichtige Aufgaben bei dieser Strukturierung, aber auch bei der Zellteilung und beim Organelltransport. Hierbei nimmt es im übertragenen Sinne die Funktion von Eisenbahnschienen ein, auf denen sich die unterschiedlichsten Zellkomponenten mit Hilfe von Zellmotoren wie dem Dynein oder Kinesin entlang bewegen.The cytoskeleton, on the other hand, is a coordinated network of filamentous polymers which are linked to other cellular structures by different molecules. The organization and properties of this network are under precise development-dependent and functional control. The main structural components of the cytoskeleton are the actin filaments (F-actin), microtubules and the intermediate filaments. The cytosol can be compared to a highly organized gel rather than a homogeneous solution, in which the composition can differ significantly in different regions of the cell. The cytoskeleton takes on important tasks in this structuring, but also in cell division and organ transport. In the figurative sense, it takes on the function of railroad tracks on which the most diverse cell components move along with the help of cell motors such as dynein or kinesin.
Der Aufbau des Cytoskeletts ist im Unterschied zur Zellwandstruktur nicht durch das Knüpfen kovalenter Bindungen charakterisiert. Da es eine wesentlich größere Flexibilität aufweisen muß ist es wie im Falle der Mikrotubuli durch eine "dynamische Instabilität" gekennzeichnet. Tubulin Untereinheiten werden mit Hilfe von GTP polymerisiert. Da das GTP allerdings die Eigenschaft besitzt, unter zellphysiologischen Bedingungen zu GDP + Pi zu zerfallen, wird auch die Struktur der Mikrotubuli geschwächt, so daß diese daher kontinuierlich synthetisiert werden müssen um anschließend wieder zu zerfallen. Durch Mikrotubuli assoziierte Proteine (MAP) ist es der Zelle möglich, eine stärkere beziehungsweise kontrollierbare Stabilisierung der Mikrotubuli zu erreichen. MAP's besitzen je nach Phosphorylierungsgrad eine hohe bzw. niedrige Affinität und somit eine regelbare stabilisierende Wirkung auf die Mikrotubuli.In contrast to the cell wall structure, the structure of the cytoskeleton is not characterized by the formation of covalent bonds. Since it must have a much greater flexibility, it is characterized by "dynamic instability" as in the case of microtubules. Tubulin subunits are polymerized using GTP. However, since the GTP has the property of decaying to GDP + Pi under cell physiological conditions, the structure of the microtubules is also weakened, so that they must therefore be continuously synthesized in order to then decay again. Proteins associated with microtubules (MAP) enable the cell to achieve stronger or controllable stabilization of the microtubules. Depending on the degree of phosphorylation, MAP's have a high or low affinity and thus a controllable stabilizing effect on the microtubules.
Die Polymerisation von Mikrofilamenten aus Actin und die Regulation der Stabilität dieser Polymere läuft in der Zelle analog zu der des Tubulins ab. Der Vorgang der Polymerisation wird hingegen durch ATP beschleunigt. Actin-bindende Proteine beeinflussen den Auf- und Abbau der Mikrofilamente und können wie im Falle des Profilins sogar eine Polymerisation des Actins ver- hindern.The polymerization of microfilaments from actin and the regulation of the stability of these polymers takes place in the cell analogously to that of tubulin. The polymerization process, on the other hand, is accelerated by ATP. Actin-binding proteins influence the build-up and breakdown of the microfilaments and, as in the case of the profilin, can even prevent the actin from polymerizing.
Während entwicklungsspezifischen, bzw. umweltbedingten Morphologieveränderung von Pilzen, beispielsweise beim Knospen, der Fruchtkörper- oder Pseudohyphenentwicklung kommt es sowohl bei der Zellwandsynthese, als auch beim Cytoskelettaufbau zu massiven Umstrukturierun- gen, die einer hochpräzisen zeitlichen, wie räumlichen Regulation unterliegen. Das strukturelle Grundgerüst der Zelle ist von essentieller Bedeutung für die Stabilität der Zelle, den Vesi- keltransport und bildet die Grundvoraussetzung zur Produktion von Biomasse. Für eine eingehendere Beschreibung des Zeilwandaufbaus und der Cytoskelett- Strukturierung siehe Wessels, J.G.H. (1990), Role of cell wall architecture in fungal tip growth generation. In: Heath I.B. (ed) Tip growth in plant and fungal cells. Academic Press, San Diego, pp 1 -29; Heath I.B. und Heath M.C. (1978), Microtubules and organeile movement in the rustfungus Uromyces phaseoli var. Vignae. Cytobiologie 16: 393-411 ; McConnel S.J., Yaffe M.P. (1993), Intermediate filament formation by a yeast protein essential for organelle inheritance. Science 260: 687-689; Esser K. und Lemke P.A. (ed) The Mycota - A comprehensive Treatise on fungi as experimental Systems for basic and applied research. Springer-Verlag, Berlin; Voet D. und VoetJ.G. (ed) Bio- Chemie. VCH, Weinheim, und die in jeder dieser Zitate enthaltenen Literaturstellen.During development-specific or environmental morphology changes of fungi, for example in buds, fruiting body or pseudo-hyphae development, there are massive restructurings in cell wall synthesis as well as in cytoskeleton development, which are subject to highly precise temporal and spatial regulation. The basic structural framework of the cell is essential for the stability of the cell, the vesicle transport and forms the basic prerequisite for the production of biomass. For a more detailed description of cell wall structure and cytoskeleton structuring, see Wessels, JGH (1990), Role of cell wall architecture in fungal tip growth generation. In: Heath IB (ed) Tip growth in plant and fungal cells. Academic Press, San Diego, pp 1-29; Heath IB and Heath MC (1978), Microtubules and organeile movement in the rustfungus Uromyces phaseoli var. Vignae. Cytobiology 16: 393-411; McConnel SJ, Yaffe MP (1993), Intermediate filament formation by a yeast protein essential for organic inheritance. Science 260: 687-689; Esser K. and Lemke PA (ed) The Mycota - A comprehensive Treatise on fungi as experimental Systems for basic and applied research. Springer-Verlag, Berlin; Voet D. and VoetJ.G. (ed) bio-chemistry. VCH, Weinheim, and the references contained in each of these citations.
Die Nutzung von Genen, die mit der Synthese der Zellwand und/oder des Cytoskeletts assoziiert sind, zur Generierung von Mikroorganismen, vorzugsweise der Gattung Ashbya, insbesondere von Ashbya gossypii Stämmen, mit modifiziertem Cytoskelett oder modifizierter Zellwand und z.B. damit verbundener modifizierter (höherer) Resistenz gegen äußere Einwirkungen ist noch nicht beschrieben.The use of genes associated with the synthesis of the cell wall and / or the cytoskeleton for the generation of microorganisms, preferably of the genus Ashbya, especially of Ashbya gossypii strains, with modified cytoskeleton or modified cell wall and e.g. associated modified (higher) resistance to external influences has not yet been described.
Aufgabe der vorliegenden Erfindung ist daher die Bereitstellung neuer Targets zur Beeinflussung derZellwand- und Cytoskeletteigenschaften in Mikroorganismen der Gattung Ashbya, ins- besondere in Ashbya gossypii. Insbesondere besteht die Aufgabe, die Stabilität der Zellen in derartigen Mikroorganismen zu verbessern. Eine weitere Aufgabe ist die Verbesserung der Vitamin B2-Produktion durch derartige Mikroorganismen.The object of the present invention is therefore to provide new targets for influencing the cell wall and cytoskeleton properties in microorganisms of the genus Ashbya, in particular in Ashbya gossypii. In particular, there is the task of improving the stability of the cells in such microorganisms. Another task is the improvement of vitamin B2 production by such microorganisms.
Gelöst wird obige Aufgabe durch Bereitstellung kodierender Nukleinsäuresequenzen, welche in Ashbya gossypii während der Vitamin B2-Produktion hoch- bzw. reguliert (basierend auf Ergebnissen, ermittelt mit Hilfe der im experimentellen Teil näher beschriebenen MPSS- Analysenmethode) sind, und zwar insbesondere:The above object is achieved by providing coding nucleic acid sequences which are up or regulated in Ashbya gossypii during vitamin B2 production (based on results determined using the MPSS analysis method described in more detail in the experimental part), in particular:
a) eine, vorzugsweise hochregulierte, Nukleinsäuresequenz, welche für ein Protein mitderFunk- tion eines Zellwand-Vorläufer-Proteins kodiert.a) a, preferably upregulated, nucleic acid sequence which codes for a protein with the function of a cell wall precursor protein.
Gemäß einer bevorzugten Ausführungsform dieses Aspekts der Erfindung wurde ein DNA-Klon isoliert, welche für eine charakteristische Teilsequenz der erfindungsgemäßen Nukleinsäuresequenz kodiert und die interne Bezeichnung „Oligo 8" trägt. Gemäß einer weiter bevorzugten Ausführungsform wurde erfindungsgemäß ein DNA-Klon isoliert, der für die Vollsequenz der erfindungsgemäßen Nukleinsäure kodiert und die interne Bezeichnung „Oligo 8v" trägt.According to a preferred embodiment of this aspect of the invention, a DNA clone was isolated which codes for a characteristic partial sequence of the nucleic acid sequence according to the invention and which bears the internal name “Oligo 8”. According to a further preferred embodiment, a DNA clone was isolated according to the invention which codes for the full sequence of the nucleic acid according to the invention and which bears the internal name “Oligo 8v”.
Ein erster Gegenstand der vorliegenden Erfindung betrifft ein Polynukleotid, umfassend eine Nukleinsäuresequenz gemäß SEQ ID NO: 1. Ein weiterer Gegenstand der Erfindung betrifft ein Polynukleotid, umfassend eine Nukleinsäuresequenz gemäß SEQ ID NO: 4 oder ein Fragment davon. Vorzugsweise sind die Polynukleotide aus einem Mikroorganismus der Gattung Ashbya, insbesondere A. gossypii isolierbar. Außerdem sind Gegenstand der Erfindung die dazu kom- plementären Polynukleotide; und die von diesen Polynukleotiden durch Entartung des genetischen Codes abgeleiteten Sequenzen.A first subject of the present invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 1. Another subject of the invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 4 or a fragment thereof. The polynucleotides can preferably be isolated from a microorganism of the genus Ashbya, in particular A. gossypii. The invention also relates to the complementary polynucleotides; and the sequences derived from these polynucleotides by degenerating the genetic code.
Die Inserts von „Oligo 8" und „Oligo 8v" besitzen mit dem MIPS Tag „Cwp1" aus S. cerevisiae signifikante Homologien. Die Inserts besitzen eine Nukleinsäuresequenz gemäß SEQ ID NO: 1 bzw. SEQ ID NO: 4. Die vom komplementären Strang (Gegenstrang) zu SEQ ID NO:1 bzw. vom kodierenden Strang gemäß SEQ ID NO:4 abgeleitete Aminosäuresequenz bzw. Aminosäureteilsequenz besitzt signifikante Sequenzhomologie mit dem Zellwand-Vorläufer-Protein Cwp1 aus S. cerevisiae, beschrieben von Shimoni H., et al., in J. Biochem. 118: 302-311 (1995)The inserts of "Oligo 8" and "Oligo 8v" have significant homologies with the MIPS tag "Cwp1" from S. cerevisiae. The inserts have a nucleic acid sequence according to SEQ ID NO: 1 and SEQ ID NO: 4, respectively. Those of the complementary strand (Counter strand) to SEQ ID NO: 1 or the amino acid sequence or partial amino acid sequence derived from the coding strand according to SEQ ID NO: 4 has significant sequence homology with the cell wall precursor protein Cwp1 from S. cerevisiae, described by Shimoni H., et al. , in J. Biochem. 118: 302-311 (1995)
b) eine, vorzugsweise hochregulierte, Nukleinsäuresequenz, welche fürein Protein mit der Funktion einer Serin-Threonin-Kinase kodiert.b) a, preferably upregulated, nucleic acid sequence which codes for a protein with the function of a serine-threonine kinase.
Gemäß einer bevorzugten Ausführungsform dieses Aspekts der Erfindung wurde ein DNA-Klon isoliert, welcher für eine charakteristische Teilsequenz der erfindungsgemäßen Nukleinsäurese- quenz kodiert und die interne Bezeichnung „Oligo 25/39" trägt.According to a preferred embodiment of this aspect of the invention, a DNA clone was isolated which codes for a characteristic partial sequence of the nucleic acid sequence according to the invention and which bears the internal name “Oligo 25/39”.
Gemäß einer weiter bevorzugten Ausführungsform wurde erfindungsgemäß ein DNA-Klon isoliert, der für die Vollsequenz der erfindungsgemäßen Nukleinsäure kodiert und die interne Bezeichnung „Oligo 25/39v" trägt.According to a further preferred embodiment, a DNA clone was isolated according to the invention which codes for the full sequence of the nucleic acid according to the invention and which bears the internal name “Oligo 25 / 39v”.
Ein erster Gegenstand der vorliegenden Erfindung betrifft ein Polynukleotid, umfassend eine Nukleinsäuresequenz gemäß SEQ ID NO: 8. Ein weiterer Gegenstand der Erfindung betrifft ein Polynukleotid, umfassend eine Nukleinsäuresequenz gemäß SEQ ID NO: 10 oder ein Fragment davon. Vorzugsweise sind die Polynukleotide aus einem Mikroorganismus der Gattung Ashbya, insbesondere A. gossypii. isolierbar. Außerdem sind Gegenstand der Erfindung die dazu komplementären Polynukleotide; und die von diesen Polynukleotiden durch Entartung des genetischen Codes abgeleiteten Sequenzen. Die Inserts von „Oligo 25/39" und „Oligo 25/39v" besitzen mit dem MIPS Tag „ARK1" aus S. cerevisiae signifikante Homologien. Die Inserts besitzen eine Nukleinsäuresequenz gemäß SEQ ID NO: 8 bzw. SEQ ID NO: 10. Die vom korrespondierenden Gegenstrang zur SEQ ID NO: 8 bzw. vom kodierenden Strang der SEQ ID NO: 10 abgeleitete Aminosäuresequenz besitzt signifikante Sequenzhomologie mit einer Serin-Threonin-Proteinkinase aus S. cerevisiae.A first subject of the present invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 8. Another subject of the invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 10 or a fragment thereof. The polynucleotides are preferably from a microorganism of the genus Ashbya, in particular A. gossypii. isolated. The invention also relates to the complementary polynucleotides; and the sequences derived from these polynucleotides by degenerating the genetic code. The inserts of "Oligo 25/39" and "Oligo 25 / 39v" have significant homologies with the MIPS tag "ARK1" from S. cerevisiae. The inserts have a nucleic acid sequence according to SEQ ID NO: 8 and SEQ ID NO: 10, respectively. The amino acid sequence derived from the corresponding counter strand to SEQ ID NO: 8 or from the coding strand of SEQ ID NO: 10 has significant sequence homology with a serine-threonine protein kinase from S. cerevisiae.
c) eine, vorzugsweise hochregulierte, Nukleinsäuresequenz, welche für ein Protein mit der Funktion eines GTPase-aktivierenden Proteins kodiert.c) a, preferably upregulated, nucleic acid sequence which codes for a protein with the function of a GTPase-activating protein.
Gemäß einer bevorzugten Ausführungsform dieses Aspekts der Erfindung wurde ein DNA-Klon isoliert, welche für eine charakteristische Teilsequenz der erfindungsgemäßen Nukleinsäuresequenz kodiert und die interne Bezeichnung „Oligo 46" trägt.According to a preferred embodiment of this aspect of the invention, a DNA clone was isolated which codes for a characteristic partial sequence of the nucleic acid sequence according to the invention and which bears the internal name “Oligo 46”.
Gemäß einer weiter bevorzugten Ausführungsform wurde erfindungsgemäß ein DNA-Klon isoliert, der für die Vollsequenz der erfindungsgemäßen Nukleinsäure kodiert und die interne Bezeichnung „Oligo 46v" trägt.According to a further preferred embodiment, a DNA clone was isolated according to the invention which codes for the full sequence of the nucleic acid according to the invention and which bears the internal name “Oligo 46v”.
Ein erster Gegenstand der vorliegenden Erfindung betrifft ein Polynukleotid, umfassend eine Nukleinsäuresequenz gemäß SEQ ID NO: 12. Ein weiterer Gegenstand der Erfindung betrifft ein Polynukleotid, umfassend eine Nukleinsäuresequenz gemäß SEQ ID NO: 15 oder ein Fragment davon. Vorzugsweise sind die Polynukleotide aus einem Mikroorganismus der Gattung Ashbya, insbesondere A. gossypii isolierbar. Außerdem sind Gegenstand der Erfindung die dazu komplementären Polynukleotide; und die von diesen Polynukleotiden durch Entartung des geneti- sehen Codes abgeleiteten Sequenzen.A first subject of the present invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 12. Another subject of the invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 15 or a fragment thereof. The polynucleotides can preferably be isolated from a microorganism of the genus Ashbya, in particular A. gossypii. The invention also relates to the complementary polynucleotides; and the sequences derived from these polynucleotides by degeneracy of the genetic code.
Die Inserts von „Oligo 46" und „Oligo 46v" besitzen mit dem MIPS Tag „BUD2/CLA2" aus S. cerevisiae signifikante Homologien. Die Inserts besitzen eine Nukleinsäuresequenz gemäß SEQ ID NO: 12 bzw. SEQ ID NO: 15. Die vom korrespondierenden Gegenstrang von SEQ ID NO: 12 bzw. von kodierenden Strang gemäß SEQ ID NO: 15 abgeleitete Aminosäuresequenz bzw. Aminosäureteilsequenz besitzt signifikante Sequenzhomologie mit einem GTPase-aktivierenden Protein aus S. cerevisiae, insbesondere Homologie zu dem von BUD2 kodierten GTPase- aktivierenden Protein für BUD2/Rsr1 beschrieben von Park H.-O., etal., in Nature 365: 269-274, (1993).The inserts of "Oligo 46" and "Oligo 46v" have significant homologies with the MIPS tag "BUD2 / CLA2" from S. cerevisiae. The inserts have a nucleic acid sequence as shown in SEQ ID NO: 12 and SEQ ID NO: 15, respectively The corresponding counter strand of SEQ ID NO: 12 or of the coding strand derived from SEQ ID NO: 15 has an amino acid sequence or partial amino acid sequence which has significant sequence homology with a GTPase-activating protein from S. cerevisiae, in particular homology to the GTPase-activating protein encoded by BUD2 BUD2 / Rsr1 described by Park H.-O., et al., In Nature 365: 269-274, (1993).
d) eine, vorzugsweise hochregulierte, Nukleinsäuresequenz, welche für ein Protein mit der Funktion einer Resistenz gegen eine Aktin-Überexpression kodiert. Gemäß einer bevorzugten Ausführungsform dieses Aspekts der Erfindung wurde ein DNA-Klon isoliert, welche für eine charakteristische Teilsequenz der erfindungsgemäßen Nukleinsäuresequenz kodiert und die interne Bezeichnung „Oligo 103" trägt.d) a, preferably upregulated, nucleic acid sequence which codes for a protein with the function of resistance to actin overexpression. According to a preferred embodiment of this aspect of the invention, a DNA clone was isolated which codes for a characteristic partial sequence of the nucleic acid sequence according to the invention and which bears the internal name “Oligo 103”.
Gemäß einer weiter bevorzugten Ausführungsform wurde erfindungsgemäß ein DNA-Klon isoliert, der für die Vollsequenz der erfindungsgemäßen Nukleinsäure kodiert und die interne Bezeichnung „Oligo 103v" trägt.According to a further preferred embodiment, a DNA clone was isolated according to the invention which codes for the full sequence of the nucleic acid according to the invention and which bears the internal name “Oligo 103v”.
Ein erster Gegenstand der vorliegenden Erfindung betrifft ein Polynukleotid, umfassend eine Nukleinsäuresequenzgemäß SEQ ID NO: 17. Ein weiterer Gegenstand der Erfindung betrifft ein Polynukleotid, umfassend eine Nukleinsäuresequenz gemäß SEQ ID NO: 19 oder ein Fragment davon. Vorzugsweise sind die Polynukleotide aus einem Mikroorganismus der Gattung Ashbya, insbesondere A. gossypii isolierbar. Außerdem sind Gegenstand der Erfindung die dazu kom- plementären Polynukleotide; und die von diesen Polynukleotiden durch Entartung des genetischen Codes abgeleiteten Sequenzen.A first subject of the present invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 17. Another subject of the invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 19 or a fragment thereof. The polynucleotides can preferably be isolated from a microorganism of the genus Ashbya, in particular A. gossypii. The invention also relates to the complementary polynucleotides; and the sequences derived from these polynucleotides by degenerating the genetic code.
Die Inserts von „Oligo 103" und „Oligo 103v" besitzen mit dem MIPS Tag „Aor1" aus S. cerevisiae signifikante Homologien. Die Inserts besitzen eine Nukleinsäuresequenz gemäß SEQ ID NO: 17 bzw. SEQ ID NO: 19. Die vom korrespondierenden Gegenstrang zu SEQ ID NO:17 bzw. vom kodierenden Strang gemäß SEQ ID NO: 19 abgeleitete Aminosäuresequenz bzw. Aminosäureteilsequenz besitzt signifikante Sequenzhomologie mit einem Protein aus S. cerevisiae, welches eine Resistenz gegen eine Aktin-Überexpression besitzt bzw. zu dieser Resistenz beiträgt.The inserts of "Oligo 103" and "Oligo 103v" have significant homologies with the MIPS tag "Aor1" from S. cerevisiae. The inserts have a nucleic acid sequence according to SEQ ID NO: 17 and SEQ ID NO: 19. That of the corresponding opposite strand for SEQ ID NO: 17 or the amino acid sequence or partial amino acid sequence derived from the coding strand according to SEQ ID NO: 19 has significant sequence homology with a protein from S. cerevisiae which has resistance to actin overexpression or contributes to this resistance.
e) eine, vorzugsweise niederregulierte, Nukleinsäuresequenz, welche für ein Protein mit der Funktion eines zu Nuflp ähnlichen Proteins kodiert.e) a, preferably downregulated, nucleic acid sequence which codes for a protein with the function of a protein similar to Nuflp.
Gemäß einer bevorzugten Ausführungsform dieses Aspekts der Erfindung wurde ein DNA-Klon isoliert, welche für eine charakteristische Teilsequenz der erfindungsgemäßen Nukleinsäuresequenz kodiert und die interne Bezeichnung „Oligo 128" trägt.According to a preferred embodiment of this aspect of the invention, a DNA clone was isolated which codes for a characteristic partial sequence of the nucleic acid sequence according to the invention and which bears the internal name “Oligo 128”.
Gemäß einer weiter bevorzugten Ausführungsform wurde erfindungsgemäß ein DNA-Klon isoliert, der für die Vollsequenz der erfindungsgemäßen Nukleinsäure kodiert und die interne Be- Zeichnung „Oligo 128v" trägt. Ein erster Gegenstand der vorliegenden Erfindung betrifft ein Polynukleotid, umfassend eine Nukleinsäuresequenz gemäß SEQ ID NO: 21. Ein weiterer Gegenstand der Erfindung betrifft ein Polynukleotid, umfassend eine Nukleinsäuresequenz gemäß SEQ ID NO: 23 oder ein Fragment davon. Vorzugsweise sind die Polynukleotide aus einem Mikroorganismus der Gattung Ashbya, insbesondere A. gossypii isolierbar. Außerdem sind Gegenstand der Erfindung die dazu komplementären Polynukleotide; und die von diesen Polynukleotiden durch Entartung des genetischen Codes abgeleiteten Sequenzen.According to a further preferred embodiment, a DNA clone was isolated according to the invention which codes for the full sequence of the nucleic acid according to the invention and which bears the internal name “Oligo 128v”. A first subject of the present invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 21. Another subject of the invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 23 or a fragment thereof. The polynucleotides can preferably be isolated from a microorganism of the genus Ashbya, in particular A. gossypii. The invention also relates to the complementary polynucleotides; and the sequences derived from these polynucleotides by degenerating the genetic code.
Die Inserts von „Oligo 128" und „Oligo 128v" besitzen mit dem MIPS Tag „Ykl179c" aus S. cere- visiae signifikante Homologien. Die Inserts besitzen eine Nukleinsäuresequenz gemäß SEQ ID NO: 21 bzw. SEQ ID NO: 23. Die vom kodierenden Strang abgeleitete Aminosäuresequenz bzw. Aminosäureteilsequenz besitzt signifikante Sequenzhomologie mit einem zu Nuflp ähnlichen Protein aus S. cerevisiae (vgl. Wiemann S., et al., Yeast 9: 1343-1348 (1993)).The inserts of "Oligo 128" and "Oligo 128v" have significant homologies with the MIPS tag "Ykl179c" from S. cererevisiae. The inserts have a nucleic acid sequence according to SEQ ID NO: 21 and SEQ ID NO: 23, respectively coding strand derived amino acid sequence or partial amino acid sequence has significant sequence homology with a protein from S. cerevisiae similar to Nuflp (cf. Wiemann S., et al., Yeast 9: 1343-1348 (1993)).
f) eine, vorzugsweise hochregulierte, Nukleinsäuresequenz, welche für ein Protein mit derf) a, preferably upregulated, nucleic acid sequence which is suitable for a protein with the
Funktion von Calponin oder eines zu Calponin homologen Proteins kodiert.Function encoded by calponin or a protein homologous to calponin.
Gemäß einer bevorzugten Ausführungsform dieses Aspekts der Erfindung wurde ein DNA-Klon isoliert, welche für eine charakteristische Teilsequenz der erfindungsgemäßen Nukleinsäurese- quenz kodiert und die interne Bezeichnung „Oligo 150" trägt.According to a preferred embodiment of this aspect of the invention, a DNA clone was isolated which codes for a characteristic partial sequence of the nucleic acid sequence according to the invention and which bears the internal name “Oligo 150”.
Gemäß einer weiter bevorzugten Ausführungsform wurde erfindungsgemäß ein DNA-Klon isoliert, der für die Vollsequenz der erfindungsgemäßen Nukleinsäure kodiert und die interne Bezeichnung „Oligo 150v" trägt.According to a further preferred embodiment, a DNA clone was isolated according to the invention which codes for the full sequence of the nucleic acid according to the invention and which bears the internal name “Oligo 150v”.
Ein erster Gegenstand der vorliegenden Erfindung betrifft ein Polynukleotid, umfassend eine Nukleinsäuresequenz gemäß SEQ ID NO: 26. Ein weiterer Gegenstand der Erfindung betrifft ein Polynukleotid, umfassend eine Nukleinsäuresequenz gemäß SEQ ID NO: 28 oder ein Fragment davon. Vorzugsweise sind die Polynukleotide aus einem Mikroorganismus der Gattung Ashbya, insbesondere A. gossypii isolierbar. Außerdem sind Gegenstand der Erfindung die dazu komplementären Polynukleotide; und die von diesen Polynukleotiden durch Entartung des genetischen Codes abgeleiteten Sequenzen.A first subject of the present invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 26. Another subject of the invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 28 or a fragment thereof. The polynucleotides can preferably be isolated from a microorganism of the genus Ashbya, in particular A. gossypii. The invention also relates to the complementary polynucleotides; and the sequences derived from these polynucleotides by degenerating the genetic code.
Die Inserts von „Oligo 150" und „Oligo 150v" besitzen mit dem MIPS Tag „Scp1" aus S. cerevisi- ae signifikante Homologien. Die Inserts besitzen eine Nukleinsäuresequenz gemäß SEQ ID NO:The inserts of "Oligo 150" and "Oligo 150v" have significant homologies with the MIPS tag "Scp1" from S. cerevisiae. The inserts have a nucleic acid sequence according to SEQ ID NO:
26 bzw. SEQ ID NO: 28. Die jeweils vom kodierenden Strang abgeleiteten Aminosäuresequen- zen besitzt signifikante Sequenzhomologie mit einem Calponin oder zu Calponin homologen Protein aus S. cerevisiae.26 or SEQ ID NO: 28. The amino acid sequences derived in each case from the coding strand zen has significant sequence homology with a calponin or protein from S. cerevisiae homologous to calponin.
g) eine, vorzugsweise hochregulierte, Nukleinsäuresequenz, welche für ein Protein, welches für die Pseudohyphen-Entwicklung in Candida maitose essentiell ist, kodiert.g) a, preferably up-regulated, nucleic acid sequence which codes for a protein which is essential for the pseudohyphene development in Candida maitose.
Gemäß einer bevorzugten Ausführungsform dieses Aspekts der Erfindung wurde ein DNA-Klon isoliert, welcher für eine charakteristische Teilsequenz der erfindungsgemäßen Nukleinsäuresequenz kodiert und die interne Bezeichnung „Oligo 177" trägt.According to a preferred embodiment of this aspect of the invention, a DNA clone was isolated which codes for a characteristic part-sequence of the nucleic acid sequence according to the invention and which bears the internal name “Oligo 177”.
Gemäß einer weiter bevorzugten Ausführungsform wurde erfindungsgemäß ein DNA-Klon isoliert, der für die Vollsequenz der erfindungsgemäßen Nukleinsäure kodiert und die interne Bezeichnung „Oligo 177v" trägt.According to a further preferred embodiment, a DNA clone was isolated according to the invention which codes for the full sequence of the nucleic acid according to the invention and which bears the internal name “Oligo 177v”.
Ein erster Gegenstand der vorliegenden Erfindung betrifft ein Polynukleotid, umfassend eine Nukleinsäuresequenz gemäß SEQ ID NO: 30. Ein weiterer Gegenstand der Erfindung betrifft ein Polynukleotid, umfassend eine Nukleinsäuresequenz gemäß SEQ ID NO: 34. Vorzugsweise sind die Polynukleotide aus einem Mikroorganismus der Gattung Ashbya, insbesondere A. gossypii isolierbar . Außerdem sind Gegenstand der Erfindung die dazu komplementären Poly- nukleotide; und die von diesen Polynukleotiden durch Entartung des genetischen Codes abgeleiteten Sequenzen.A first subject of the present invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 30. Another subject of the invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 34. The polynucleotides are preferably from a microorganism of the genus Ashbya, especially A. gossypii isolable. The invention also relates to the complementary polynucleotides; and the sequences derived from these polynucleotides by degenerating the genetic code.
Die Inserts von „Oligo 177" und „Oligo 177v" besitzen mit dem MIPS Tag „EPD1" aus Candida maltosa signifikante Homologien. Die Inserts besitzen eine Nukleinsäuresequenz gemäß SEQ ID NO: 30 bzw. SEQ ID NO: 34. Vom korrespondierenden Gegenstrang von SEQ ID NO:30 bzw. vom kodierenden Strang gemäß SEQ ID NO: 34 ableitbare Aminosäuresequenzen besitzen signifikante Sequenzhomologie mit einem Protein aus Candida maltosa, insbesondere zu einem Protein, welches für die Pseudohyphen-Entwicklung in C. maltosa essentiell ist, (vgl. Na- kazawa T., et al., J. Bacteriol., 180(8), 2079-2086, (1998)). Ebenfalls konnte Homologie zu ei- nem entsprechenden Protein aus S. cerevisiae festgestellt werden.The inserts of "Oligo 177" and "Oligo 177v" have significant homologies with the MIPS tag "EPD1" from Candida maltosa. The inserts have a nucleic acid sequence according to SEQ ID NO: 30 and SEQ ID NO: 34, respectively. From the corresponding opposite strand of SEQ ID NO: 30 or amino acid sequences which can be derived from the coding strand according to SEQ ID NO: 34 have significant sequence homology with a protein from Candida maltosa, in particular with a protein which is essential for the development of pseudohyphae in C. maltosa (cf. kazawa T., et al., J. Bacteriol., 180 (8), 2079-2086, (1998). Homology to a corresponding protein from S. cerevisiae was also found.
h) eine, vorzugsweise niederregulierte, Nukleinsäuresequenz, welche für ein Protein mit der Funktion eines mit Aktin wechselwirkenden Proteins kodiert.h) a, preferably down-regulated, nucleic acid sequence which codes for a protein with the function of a protein interacting with actin.
Gemäß einer bevorzugten Ausführungsform dieses Aspekts der Erfindung wurde ein DNA-Klon isoliert, welche für eine charakteristische Teilsequenz der erfindungsgemäßen Nukleinsäuresequenz kodiert und die interne Bezeichnung „Oligo 145" trägt. Gemäß einer weiter bevorzugten Ausführungsform wurde erfindungsgemäß ein DNA-Klon isoliert, der für die Vollsequenz der erfindungsgemäßen Nukleinsäure kodiert und die interne Bezeichnung „Oligo 145v" trägt.According to a preferred embodiment of this aspect of the invention, a DNA clone was isolated which codes for a characteristic partial sequence of the nucleic acid sequence according to the invention and which bears the internal name “Oligo 145”. According to a further preferred embodiment, a DNA clone was isolated according to the invention which codes for the full sequence of the nucleic acid according to the invention and which bears the internal name “Oligo 145v”.
Ein erster Gegenstand der vorliegenden Erfindung betrifft ein Polynukleotid, umfassend eine Nukleinsäuresequenz gemäß SEQ ID NO: 36. Ein weiterer Gegenstand der Erfindung betrifft ein Polynukleotid, umfassend eine Nukleinsäuresequenz gemäß SEQ ID NO: 38 oder ein Fragment davon. Vorzugsweise sind die Polynukleotide aus einem Mikroorganismus der Gattung Ashbya, insbesondere A. gossypii isolierbar. Außerdem sind Gegenstand der Erfindung die dazu komplementären Polynukleotide; und die von diesen Polynukleotiden durch Entartung des genetischen Codes abgeleiteten Sequenzen.A first subject of the present invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 36. Another subject of the invention relates to a polynucleotide comprising a nucleic acid sequence according to SEQ ID NO: 38 or a fragment thereof. The polynucleotides can preferably be isolated from a microorganism of the genus Ashbya, in particular A. gossypii. The invention also relates to the complementary polynucleotides; and the sequences derived from these polynucleotides by degenerating the genetic code.
Die Inserts von „Oligo145 " und „Oligo 145v" besitzen mit dem MIPS Tag „Aip2" aus S. cerevisi- ae signifikante Homologien. Die Inserts besitzen eine Nukleinsäuresequenz gemäß SEQ ID NO: 36 bzw. SEQ ID NO: 38. Die vom kodierenden Strang abgeleitete Aminosäuresequenz bzw. A- minosäureteilsequenz besitzt signifikante Sequenzhomologie mit einem Protein aus S. cerevisiae, welches mit Aktin wechselwirkt (vgl. Chelstowska A., et al., Yeast 15 (13), 1377-1391 (1999)).The inserts of "Oligo145" and "Oligo 145v" have significant homologies with the MIPS tag "Aip2" from S. cerevisiae. The inserts have a nucleic acid sequence as shown in SEQ ID NO: 36 and SEQ ID NO: 38, respectively Strand-derived amino acid sequence or partial amino acid sequence has significant sequence homology with a protein from S. cerevisiae which interacts with actin (cf. Chelstowska A., et al., Yeast 15 (13), 1377-1391 (1999)).
Ein weiterer Gegenstand der Erfindung betrifft Oligonukleotide, welche mit einem der obigen Polynukleotide, insbesondere unter stringenten Bedingungen, hybridisieren.Another object of the invention relates to oligonucleotides which hybridize with one of the above polynucleotides, in particular under stringent conditions.
Gegenstand der Erfindung sind weiterhin Polynukleotide, welche mit einem der erfindungsge- mäßen Oligonukleotide hybridisieren und für ein Genprodukt aus Mikroorganismen der Gattung Ashbya oder ein funktionales Äquivalent dieses Genproduktes kodieren.The invention further relates to polynucleotides which hybridize with one of the oligonucleotides according to the invention and code for a gene product from microorganisms of the genus Ashbya or a functional equivalent of this gene product.
Die Erfindung betrifft weiterhin Polypeptide bzw. Proteine, welche von den oben beschriebenen Polynukleotiden kodiert werden; sowie Peptidfragmente davon, welche eine Aminosäuresequenz aufweisen, die wenigstens 10 zusammenhängende Aminosäurereste gemäß SEQ ID NO: 2, 3, 5, 6, 7, 9, 11 , 13, 14, 16, 18, 20, 22, 24, 25, 27, 29, 31 , 32, 33, 35, 37, oder SEQ ID NO: 39 um- fasst; sowie funktionale Äquivalente der erfindungsgemäßen Polypeptide bzw. Proteine.The invention further relates to polypeptides or proteins which are encoded by the polynucleotides described above; and peptide fragments thereof, which have an amino acid sequence, the at least 10 contiguous amino acid residues according to SEQ ID NO: 2, 3, 5, 6, 7, 9, 11, 13, 14, 16, 18, 20, 22, 24, 25, 27 , 29, 31, 32, 33, 35, 37, or SEQ ID NO: 39; and functional equivalents of the polypeptides or proteins according to the invention.
Funktionale Äquivalente unterscheiden sich dabei von den erfindungsgemäß konkret offenbar- ten Produkten in ihrer Aminosäuresequenz durch Addition, Insertion, Substitution, Deletion oderFunctional equivalents differ from the products specifically disclosed according to the invention in their amino acid sequence by addition, insertion, substitution, deletion or
Inversion an wenigstens einer, wie z.B. 1 bis 30 oder 1 bis 20 oder 1 bis 10, Sequenzpositionen ohne die ursprünglich beobachtete und durch Sequenzvergleich mit anderen Proteinen ableitba- re Proteinfunktion zu verlieren. Damit können Äquivalente im wesentlichen identische, höhere oder niedrigere Aktivitäten im Vergleich zum nativen Protein besitzen.Inversion at at least one, for example 1 to 30 or 1 to 20 or 1 to 10, sequence positions without the originally observed and derivable by sequence comparison with other proteins re losing protein function. This means that equivalents can have essentially identical, higher or lower activities compared to the native protein.
Weitere Gegenstände der Erfindung betreffen Expressionskassetten zurrekombinanten Produk- tion erfindungsgemäßer Proteine, umfassend in operativer Verknüpfung mit wenigstens einer regulativen Nukleinsäuresequenz eine der oben definierten Nukleinsäuresequenzen; sowie re- kombinante Vektoren, umfassend wenigstens eine solche erfindungsgemäße Expressionskassette.Further objects of the invention relate to expression cassettes for the recombinant production of proteins according to the invention, comprising, in operative linkage with at least one regulatory nucleic acid sequence, one of the nucleic acid sequences defined above; as well as recombinant vectors comprising at least one such expression cassette according to the invention.
Erfindungsgemäß bereitgestellt werden außerdem prokaryotische oder eukaryotische Wirte, welche mit wenigstens einem Vektor obigen Typs transformiert sind. Gemäß einer bevorzugten Ausführungsform werden solche prokaryotischen oder eukaryotischen Wirte bereitgestellt, in welchen die funktionale Expression wenigstens eines Gens moduliert (z.B. Inhibition oder Überexpression) ist, das für ein erfindungsgemäßes Polypeptid nach obiger Definition kodiert; oder in welchen die biologische Aktivität eines Polypeptids nach obiger Definition emiedrigt oder erhöht ist. Bevorzugte Wirte sind ausgewählt unter Ascomyceten (Schlauchpilzen), insbesondere solchen der Gattung Ashbya und vorzugsweise Stämmen von A. gossypii.According to the invention, prokaryotic or eukaryotic hosts are also provided which are transformed with at least one vector of the above type. According to a preferred embodiment, such prokaryotic or eukaryotic hosts are provided in which the functional expression of at least one gene is modulated (e.g. inhibition or overexpression) which codes for a polypeptide according to the invention as defined above; or in which the biological activity of a polypeptide is reduced or increased as defined above. Preferred hosts are selected from Ascomycetes (tubular mushrooms), in particular those of the genus Ashbya and preferably strains of A. gossypii.
Eine Modulation der Genexpression im obigen Sinn umfasst sowohl deren Inhibition, z.B. durch Blockade einer Expressionsstufe (insbesondere Transkription oder Translation) oder eine gezielte Überexpression eines Gens (z.B. durch Modifikation regulativer Sequenzen oder Erhöhung der Kopienzahl der kodierenden Sequenz).Modulation of gene expression in the above sense includes both its inhibition, e.g. by blocking an expression level (in particular transcription or translation) or by deliberately overexpressing a gene (e.g. by modifying regulatory sequences or increasing the number of copies of the coding sequence).
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung einer erfindungsgemäßen Ex- pressionskassette, eines erfindungsgemäßen Vektors oder eines erfindungsgemäßen Wirts zur mikrobiologischen Produktion von Vitamin B2 und/oder Präkursoren und/oder Derivaten davon.The invention further relates to the use of an expression cassette according to the invention, a vector according to the invention or a host according to the invention for the microbiological production of vitamin B2 and / or precursors and / or derivatives thereof.
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung einer erfindungsgemäßen Expressionskassette, eines erfindungsgemäßen Vektors oder eines erfindungsgemäßen Wirts zur rekombinanten Herstellung eines erfindungsgemäßen Polypeptids nach obiger Definition.Another object of the invention relates to the use of an expression cassette according to the invention, a vector according to the invention or a host according to the invention for the recombinant production of a polypeptide according to the invention as defined above.
Erfindungsgemäß wird weiterhin ein Verfahren zur Nachweis bzw. zur Validierung eines Effektortargets für die Modulation der mikrobiologischen Produktion von Vitamin B2 und/oder Präkursoren und/oder Derivaten davon bereitgestellt. Dabei behandelt man einen Mikroorganismus, der zur mikrobiologischen Produktion von Vitamin B2 und/oder Präkursoren und/oder Derivaten davon befähigt ist, mit einem Effektor, welcher mit einem Target, ausgewählt unter einem erfindungsgemäßen Polypeptid nach obiger Definition oder einer dafür kodierenden Nukleinsäurese- quenz, wechselwirkt ( wie z.B. an diese nicht-kovalent bindet), den Einfluß des Effektors auf die Menge des mikrobiologisch produzierten Vitamins B2 und/oder des Präkursors und/oder eines Derivats davon validiert; und das Target gegebenenfalls isoliert. Die Validierung erfolgt dabei bevorzugt durch direkten Vergleich mit der mikrobiologischen Vitamin B2-Produktion in Abwe- senheit des Effektors unter ansonsten gleichen Bedingungen.According to the invention, a method for the detection or validation of an effector target for the modulation of the microbiological production of vitamin B2 and / or precursors and / or derivatives thereof is also provided. A microorganism which is capable of microbiological production of vitamin B2 and / or precursors and / or derivatives thereof is treated with an effector which has a target selected from a polypeptide according to the invention as defined above or a nucleic acid coding for it. quenz, interacts (such as non-covalently binds to them), validates the influence of the effector on the amount of microbiologically produced vitamin B2 and / or the precursor and / or a derivative thereof; and optionally isolating the target. The validation is preferably carried out by direct comparison with the microbiological vitamin B2 production in the absence of the effector under otherwise identical conditions.
Ein weiterer Gegenstand der Erfindung betrifft ein Verfahren zur Modulation (in Bezug auf Menge und/oder Geschwindigkeit) der mikrobiologischen Produktion von Vitamin B2 und/oder Präkursoren und/oder Derivaten davon, wobei man einen Mikroorganismus, der zur mikrobiologi- sehen Produktion von Vitamin B2 und/oder Präkursoren und/oder Derivaten davon befähigt ist, mit einem Effektor behandelt, welcher mit einem Target, ausgewählt unter einem erfindungsgemäßen Polypeptid nach obiger Definition oder einer dafür kodierenden Nukleinsäuresequenz, wechselwirkt.Another object of the invention relates to a method for modulating (in terms of quantity and / or speed) the microbiological production of vitamin B2 and / or precursors and / or derivatives thereof, using a microorganism which is used for the microbiological production of vitamin B2 and / or precursors and / or derivatives thereof is treated with an effector which interacts with a target selected from a polypeptide according to the invention as defined above or a nucleic acid sequence coding therefor.
Als bevorzugte Beispiele für oben genannte Effektoren sind zu nennen: a) Antikörper oder antigenbindene Fragmenten davon; b) von a) verschiedenen Polypeptid-Liganden, welche mit einem erfindungsgemäßen Polypeptid wechselwirken; c) niedermolekulare Effektoren, welche die biologische Aktivität eines erfindungsgemäßen Polypeptids modulieren; d) Antisense-Nukleinsäuresequenzen, welche mit einer erfindungsgemäßen Nukleinsäuresequenz wechselwirken.Preferred examples of the above-mentioned effectors are: a) antibodies or antigen-binding fragments thereof; b) polypeptide ligands which differ from a) and which interact with a polypeptide according to the invention; c) low molecular weight effectors which modulate the biological activity of a polypeptide according to the invention; d) antisense nucleic acid sequences which interact with a nucleic acid sequence according to the invention.
Oben genannte Effektoren mit Spezifität für wenigstens eines der oben definierten erfindungs- gemäßen Targets sind ebenfalls Gegenstand der Erfindung.The above-mentioned effectors with specificity for at least one of the inventive targets defined above are also the subject of the invention.
Ein weiterer Gegenstand der Erfindung betrifft ein Verfahren zur mikrobiologischen Produktion von Vitamin B2 und/oder Präkursoren und/oder Derivaten davon, wobei man einen Wirt gemäß obiger Definition unter die Produktion von Vitamin B2 und/oder Präkursoren und/oder Derivaten davon begünstigenden Bedingungen kultiviert und das(die) gewünschte(n) Produkt(e) aus dem Kulturansatz isoliert. Bevorzugt ist dabei, dass man den Wirt vor und/oder während der Kultivierung mit einem Effektor nach obiger Definition behandelt. Ein bevorzugter Wirt ist dabei ausgewählt unter Mikroorganismen der Gattung Ashbya; insbesondere transformiert, wie oben beschrieben. Ein letzter Gegenstand der Erfindung betrifft die Verwendung eines erfindungsgemäßen Poly- nukleotids oder Polypeptids als Target zur Modulation der Produktion von Vitamin B2 und/oder Präkursoren und/oder Derivaten davon in einem Mikroorganismus der Gattung Ashbya.Another object of the invention relates to a method for the microbiological production of vitamin B2 and / or precursors and / or derivatives thereof, wherein a host is cultivated according to the above definition under conditions which favor the production of vitamin B2 and / or precursors and / or derivatives thereof and isolate the desired product (s) from the culture batch. It is preferred that the host is treated with an effector according to the above definition before and / or during cultivation. A preferred host is selected from microorganisms of the genus Ashbya; especially transformed, as described above. A final object of the invention relates to the use of a polynucleotide or polypeptide according to the invention as a target for modulating the production of vitamin B2 and / or precursors and / or derivatives thereof in a microorganism of the genus Ashbya.
Figurenbeschreibung:Brief Description:
Figur 1 zeigt ein Alignment zwischen einer erfindungsgemäßen Aminosäure-Teilsequenz (entsprechend dem Gegenstrang zu Position 1092 bis 595 in SEQ ID NO: 1) (obere Sequenz) und einer Teilsequenz des MIPS-Tags „Cwp1" aus S. cerevisiae (untere Sequenz). Identische Se- quenzpositionen sind zwischen den beiden Sequenzen angegeben. Ähnliche Sequenzpositionen sind mit „+" gekennzeichnet.FIG. 1 shows an alignment between an amino acid partial sequence according to the invention (corresponding to the counter strand to positions 1092 to 595 in SEQ ID NO: 1) (upper sequence) and a partial sequence of the MIPS tag “Cwp1” from S. cerevisiae (lower sequence). Identical sequence positions are indicated between the two sequences. Similar sequence positions are marked with "+".
Figur 2 zeigt ein Alignment zwischen einer erfindungsgemäßen Aminosäure-Teilsequenz (entsprechend dem Gegenstrang zu Position 1067 bis 84 in SEQ ID NO:8) (obere Sequenz) und einer Teilsequenz des MIPS-Tags ARK1 aus S. cerevisiae (untere Sequenz). Identische Sequenzpositionen sind zwischen den beiden Sequenzen angegeben. Ähnliche Sequenzpositionen sind mit „+" gekennzeichnet.FIG. 2 shows an alignment between an amino acid partial sequence according to the invention (corresponding to the counter strand to positions 1067 to 84 in SEQ ID NO: 8) (upper sequence) and a partial sequence of the MIPS tag ARK1 from S. cerevisiae (lower sequence). Identical sequence positions are indicated between the two sequences. Similar sequence positions are marked with "+".
Figur 3A zeigt ein Alignment zwischen einer erfindungsgemäßen Aminosäure-Teilsequenz (ent- sprechend dem Gegenstrang zu Position 475 bis 353 in SEQ ID NO: 12) (obere Sequenz) und einer Teilsequenz des MIPS-Tags BUD2/CLA2 aus S. cerevisiae (untere Sequenz). Figur 3B zeigt ein Alignment zwischen einer erfindungsgemäßen Aminosäure-Teilsequenz (entsprechend dem Gegenstrang zu Position 351 bis 1 in SEQ ID NO:12) (obere Sequenz) und einer Teilsequenz des MIPS-Tags BUD2/CLA2 aus S. cerevisiae (untere Sequenz). Identische Sequenzpo- sitionen sind zwischen den beiden Sequenzen angegeben. Ähnliche Sequenzpositionen sind mit „+" gekennzeichnet.FIG. 3A shows an alignment between an amino acid partial sequence according to the invention (corresponding to the counter strand to positions 475 to 353 in SEQ ID NO: 12) (upper sequence) and a partial sequence of the MIPS tag BUD2 / CLA2 from S. cerevisiae (lower sequence ). FIG. 3B shows an alignment between a partial amino acid sequence according to the invention (corresponding to the counter strand to position 351 to 1 in SEQ ID NO: 12) (upper sequence) and a partial sequence of the MIPS tag BUD2 / CLA2 from S. cerevisiae (lower sequence). Identical sequence positions are given between the two sequences. Similar sequence positions are marked with "+".
Figur 4 zeigt ein Alignment zwischen einer erfindungsgemäßen Aminosäure-Teilsequenz (entsprechend dem Gegenstrang zu Position 933 bis 157 in SEQ ID NO: 17) (obere Sequenz) und einer Teilsequenz des MIPS-Tags Aor1 aus S. cerevisiae (untere Sequenz). Identische Sequenzpositionen sind zwischen den beiden Sequenzen angegeben. Ähnliche Sequenzpositionen sind mit „+" gekennzeichnet.FIG. 4 shows an alignment between an amino acid partial sequence according to the invention (corresponding to the counter strand to positions 933 to 157 in SEQ ID NO: 17) (upper sequence) and a partial sequence of the MIPS tag Aor1 from S. cerevisiae (lower sequence). Identical sequence positions are indicated between the two sequences. Similar sequence positions are marked with "+".
Figur 5 zeigt ein Alignment zwischen einer erfindungsgemäßen Aminosäure-Teilsequenz (ent- sprechend dem Strang zu Position 117 bis 794 in SEQ ID NO:21) (obere Sequenz) und einerFIG. 5 shows an alignment between a partial amino acid sequence according to the invention (corresponding to the strand to positions 117 to 794 in SEQ ID NO: 21) (upper sequence) and one
Teilsequenz des MIPS-Tags Ykl179c aus S. cerevisiae (untere Sequenz). Identische Sequenz- Positionen sind zwischen den beiden Sequenzen angegeben. Ähnliche Sequenzpositionen sind mit „+" gekennzeichnet.Partial sequence of the MIPS tag Ykl179c from S. cerevisiae (lower sequence). Identical sequence Positions are indicated between the two sequences. Similar sequence positions are marked with "+".
Figur 6 zeigt ein Alignment zwischen einer erfindungsgemäßen Aminosäure-Teilsequenz (ent- sprechend dem Strang zu Position 438 bis 767 in SEQ ID NO:26) (obere Sequenz) und einer Teilsequenz des MIPS-Tags Scp1 aus S. cerevisiae (untere Sequenz). Identische Sequenzpositionen sind zwischen den beiden Sequenzen angegeben. Ähnliche Sequenzpositionen sind mit „+" gekennzeichnet.FIG. 6 shows an alignment between an amino acid partial sequence according to the invention (corresponding to the strand to positions 438 to 767 in SEQ ID NO: 26) (upper sequence) and a partial sequence of the MIPS tag Scp1 from S. cerevisiae (lower sequence). Identical sequence positions are indicated between the two sequences. Similar sequence positions are marked with "+".
Figur 7A zeigt ein Alignment zwischen einer erfindungsgemäßen Aminosäure-Teilsequenz (entsprechend dem Gegenstrang zu Position 983 bis 651 in SEQ ID NO:30) (obere Sequenz) und einer Teilsequenz des MIPS-Tags EPD1 aus C. maltosa (untere Sequenz). Figur 7B zeigt ein Alignment zwischen einer erfindungsgemäßen Aminosäure-Teilsequenz (entsprechend dem Gegenstrang zu Position 661 bis 596 in SEQ ID NO:30) (obere Sequenz) und einer Teilsequenz des MIPS-Tags EPD1 aus C. maltosa (untere Sequenz). Figur 7C zeigt ein Alignment zwischen einer erfindungsgemäßen Aminosäure-Teilsequenz (entsprechend dem Gegenstrang zu Position 591 bis 1 in SEQ ID NO:30) (obere Sequenz) und einer Teilsequenz des MIPS-Tags EPD1 aus C. maltosa (untere Sequenz). Identische Sequenzpositionen sind jeweils zwischen den beiden Sequenzen angegeben. Ähnliche Sequenzpositionen sind mit „+" gekennzeichnet.FIG. 7A shows an alignment between a partial amino acid sequence according to the invention (corresponding to the counter strand to positions 983 to 651 in SEQ ID NO: 30) (upper sequence) and a partial sequence of the MIPS tag EPD1 from C. maltosa (lower sequence). FIG. 7B shows an alignment between an amino acid partial sequence according to the invention (corresponding to the counter strand to positions 661 to 596 in SEQ ID NO: 30) (upper sequence) and a partial sequence of the MIPS tag EPD1 from C. maltosa (lower sequence). FIG. 7C shows an alignment between an amino acid partial sequence according to the invention (corresponding to the counter strand to position 591 to 1 in SEQ ID NO: 30) (upper sequence) and a partial sequence of the MIPS tag EPD1 from C. maltosa (lower sequence). Identical sequence positions are given between the two sequences. Similar sequence positions are marked with "+".
Figur 8 zeigt ein Alignment zwischen einer erfindungsgemäßen Aminosäure-Teilsequenz (entsprechend dem Strang zu Position 2 bis 148 in SEQ ID NO:36) (obere Sequenz) und einer Teilsequenz des MIPS-Tags Aip2 aus S. cerevisiae (untere Sequenz). Identische Sequenzpositionen sind zwischen den beiden Sequenzen angegeben. Ähnliche Sequenzpositionen sind mit „+" gekennzeichnet.FIG. 8 shows an alignment between an amino acid partial sequence according to the invention (corresponding to the strand to positions 2 to 148 in SEQ ID NO: 36) (upper sequence) and a partial sequence of the MIPS tag Aip2 from S. cerevisiae (lower sequence). Identical sequence positions are indicated between the two sequences. Similar sequence positions are marked with "+".
Detaillierte Beschreibung der Erfindung:Detailed description of the invention:
Die erfindungsgemäßen Nukleinsäuremoleküle kodieren Proteine bzw. Proteine, die hier als Proteine des Zellwand- bzw. Cytoskelettaufbaus (z.B. mit Aktivität bezüglich der Zellwandsynthese oder des Cytoskelettaufbaus) oder kurz als „ZC-Proteine" bezeichnet werden. Diese ZC- Proteine haben z.B. eine Funktion bei der Synthese oder Umstrukturierung von Zellwand oder Cytoskelett z.B. bei entwicklungsspezifischen oder umweltbedingten Morphologieveränderungen der Zelle. Aufgrund der Verfügbarkeit von in Ashbya gossypii verwendbaren Klonierungsvekto- ren, wie z.B. offenbart in Wright und Philipsen (1991) Gene, 109, 99-105., und von Techniken zur genetischen Manipulation von A. gossypii und den verwandten Hefe-Arten lassen sich die erfindungsgemäßen Nukleinsäuremoleküle zur genetischen Manipulation dieser Organismen, insbesondere von A. gossypii verwenden, um sie als Produzenten von Vitamin B2 und/oder Präkursoren und/oder Derivate davon besser und effizienter zu machen. Diese verbesserte Produktion oder Effizienz kann aufgrund einer direkten Wirkung der Manipulation eines erfindungsgemäßen Gens oder aufgrund einer indirekten Wirkung einer solchen Manipulation erfolgen.The nucleic acid molecules according to the invention encode proteins or proteins which are referred to here as proteins of the cell wall or cytoskeleton structure (for example with activity relating to cell wall synthesis or cytoskeleton structure) or briefly as “ZC proteins”. These ZC proteins have a function, for example the synthesis or restructuring of the cell wall or cytoskeleton, for example in the case of development-specific or environmental morphological changes in the cell, due to the availability of cloning vectors which can be used in Ashbya gossypii, as disclosed, for example, in Wright and Philipsen (1991) Gene, 109, 99-105., and von Techniques for the genetic manipulation of A. gossypii and the related types of yeast can be used in the nucleic acid molecules according to the invention for the genetic manipulation of these organisms, especially use of A. gossypii to make them better and more efficient as producers of vitamin B2 and / or precursors and / or derivatives thereof. This improved production or efficiency can take place due to a direct effect of the manipulation of a gene according to the invention or due to an indirect effect of such a manipulation.
Die vorliegende Erfindung beruht auf der Bereitstellung neuer Molekülen, die hier als ZC- Nukleinsäuren und ZC-Proteine bezeichnet werden und am Aufbau von Zellwand und Cytoskelett, insbesondere in Ashbya gossypii, (z.B. bei der Synthese oder Umstrukturierung von Zellwand und Cytoskelett ) beteiligt sind. Die Aktivität der erfindungsgemäßen ZC-Moleküle in A. gossypii beeinflußt die Vitamin B2-Produktion durch diesen Organismus. Vorzugsweise wird die Aktivität der erfindungsgemäßen ZC-Moleküle so moduliert, dass die Stoffwechsel- und/oder Energiewege von A. gossypii, an denen die erfindungsgemäßen ZC-Proteine teilnehmen, hinsichtlich der Ausbeute, Produktion und/oder Effizienz der Vitamin B2-Produktion moduliert werden, was entweder direkt oder indirekt die Ausbeute, Produktion und/oder Effizienz der Vitamin B2-Produktion in A. gossypii moduliert.The present invention is based on the provision of new molecules, referred to here as ZC nucleic acids and ZC proteins, which are involved in the construction of the cell wall and cytoskeleton, in particular in Ashbya gossypii (e.g. in the synthesis or restructuring of the cell wall and cytoskeleton). The activity of the ZC molecules according to the invention in A. gossypii influences the vitamin B2 production by this organism. The activity of the ZC molecules according to the invention is preferably modulated such that the metabolic and / or energy pathways of A. gossypii in which the ZC proteins according to the invention participate are modulated with regard to the yield, production and / or efficiency of vitamin B2 production , which directly or indirectly modulates the yield, production and / or efficiency of vitamin B2 production in A. gossypii.
Die erfindungsgemäß bereitgestellten Nukleinsäuresequenzen sind beispielsweise aus dem Genom eines Ashbya gossyp//-Stammes isolierbar, der von der American Type Culture Collecti- on unter der Bezeichnung ATCC 10895 frei erhältlich ist.The nucleic acid sequences provided according to the invention can be isolated, for example, from the genome of an Ashbya gossyp // strain which is freely available from the American Type Culture Collection under the name ATCC 10895.
Verbesserung der Vitamin B2-Produktion:Improving vitamin B2 production:
Es gibt eine Reihe von möglichen Mechanismen, über welche man durch Veränderung von Menge und/oder Aktivität eines erfindungsgemäßen ZC-Proteins die Ausbeute, Produktion und/oder Effizienz der Produktion von Vitamin B2 durch einem A. gossypii-Stamm direkt beeinflussen kann.There are a number of possible mechanisms by which the yield, production and / or efficiency of the production of vitamin B2 by an A. gossypii strain can be directly influenced by changing the amount and / or activity of a ZC protein according to the invention.
So kann durch eine effizientere Synthese von Zellwand und Cytoskelett, die Zelle robuster gegen äußere Einflüsse gemacht werden, so dass die Lebensfähigkeit und damit die Produktivität im Fermenter erhöht wird.Through a more efficient synthesis of the cell wall and cytoskeleton, the cell can be made more robust against external influences, so that the viability and thus the productivity in the fermenter is increased.
Die Mutagenese von einem oder mehreren erfindungsgemäßen ZC-Proteinen kann auch zu ZC- Proteinen mit geänderten (erhöhten oder verminderten) Aktivitäten führen, die indirekt die Produktion des gewünschten Produkts aus A. gossypii beeinflussen. Beispielsweise kann man mit Hilfe der ZC-Proteine die Stabilität der Zellen und der Vesikeltransport in den Zellen an die jeweiligen Umwelt- bzw. Kulturbedingungen anpassen und so die Funktion von essentiellen Stoffwechselprozessen aufrecht erhalten. Zu diesen Prozessen gehört neben der Biosynthese des Produkts auch der Aufbau der Zellwände, die Transkription, Translation, die Biosynthese von Verbindungen, die für das Wachstum und die Teilung von Zellen nötig sind (z.B. Nukleotide, Aminosäuren, Vitamine, Lipide usw.) (Lengeieretal. (1999)). Durch Verbesserung von Wachstum und Vermehrung dieser veränderten Zellen ist es möglich, die Lebensfähigkeit der Zellen in Kulturen im Großmaßstab zu steigern und auch ihre Teilungsrate so zu verbessern, dass eine vergleichsweise größere Anzahl von produzierenden Zellen in der Fermenterkultur überleben kann. Die Ausbeute, Produktion oder Effizienz der Produktion kann zumindest aufgrund der Anwesenheit einer größeren Anzahl lebensfähiger Zellen, die jeweils das gewünschte Produkt produzieren, erhöht werden.The mutagenesis of one or more ZC proteins according to the invention can also lead to ZC proteins with modified (increased or decreased) activities which indirectly influence the production of the desired product from A. gossypii. For example, the stability of the cells and the vesicle transport in the cells can be adapted to the respective environmental or culture conditions with the help of the ZC proteins and thus the function of essential metabolic processes can be maintained. In addition to the biosynthesis of the The product also includes the structure of the cell walls, transcription, translation, the biosynthesis of compounds that are necessary for the growth and division of cells (e.g. nucleotides, amino acids, vitamins, lipids, etc.) (Lengeieretal. (1999)). By improving the growth and multiplication of these altered cells, it is possible to increase the viability of the cells in cultures on a large scale and also to improve their division rate in such a way that a comparatively larger number of producing cells can survive in the fermenter culture. The yield, production or efficiency of production can be increased at least due to the presence of a larger number of viable cells, each of which produces the desired product.
Polypeptidepolypeptides
Gegenstand der Erfindung sind Polypeptide, welche die oben genannten Aminosäuresequenzen oder charakteristische Teilsequenzen davon umfassen und/oder von den hierin beschriebenen Nukleinsäuresequenzen kodiert werden.The invention relates to polypeptides which comprise the above-mentioned amino acid sequences or characteristic partial sequences thereof and / or are encoded by the nucleic acid sequences described herein.
Erfindungsgemäß mit umfasst sind ebenfalls „funktionale Äquivalente" der konkret offenbarten neuen Polypeptide.Also included according to the invention are “functional equivalents” of the specifically disclosed new polypeptides.
„Funktionale Äquivalente" oder Analoga der konkret offenbarten Polypeptide sind im Rahmen der vorliegenden Erfindung davon verschiedene Polypeptide, welche weiterhin die gewünschte biologische Aktivität, (wie z.B. Substratspezifität) besitzen."Functional equivalents" or analogs of the specifically disclosed polypeptides are, within the scope of the present invention, different polypeptides which furthermore have the desired biological activity (such as substrate specificity).
Unter "funktionalen Äquivalenten" versteht man erfindungsgemäß insbesondere Mutanten, wel- ehe in wenigstens einer der oben genannten Sequenzpositionen eine andere als die konkret genannte Aminosäure aufweisen aber trotzdem eine der oben genannten biologischen Aktivitäten besitzen. "Funktionale Äquivalente" umfassen somit die durch eine oder mehrere Aminosäure-Additionen, -Substitutionen, -Deletionen und/ oder -Inversionen erhältlichen Mutanten, wobei die genannten Veränderungen in jeglicher Sequenzposition auftreten können, solange sie zu einer Mutante mit dem erfindungsgemäßen Eigenschaftsprofil führen. Funktionale Äquivalenz ist insbesondere auch dann gegeben, wenn die Reaktivitätsmuster zwischen Mutante und unverändertem Polypeptid qualitativ übereinstimmen, d.h. beispielsweise gleiche Substrate mit unterschiedlicher Geschwindigkeit umgesetzt werden.According to the invention, “functional equivalents” are understood to mean, in particular, mutants which have an amino acid other than the one specifically mentioned in at least one of the sequence positions mentioned above, but nevertheless have one of the biological activities mentioned above. "Functional equivalents" thus encompass the mutants obtainable by one or more amino acid additions, substitutions, deletions and / or inversions, the changes mentioned being able to occur in any sequence position as long as they lead to a mutant with the property profile according to the invention. Functional equivalence is particularly given when the reactivity patterns between mutant and unchanged polypeptide match qualitatively, i.e. for example, the same substrates can be implemented at different speeds.
„Funktionale Äquivalente" im obigen Sinne sind auch Präkursoren der beschriebenen Polypeptide sowie funktionale Derivate und Salze der Polypeptide. Unter dem Ausdruck „Salze" versteht man sowohl Salze von Carboxylgruppen als auch Säureadditionssalze von Ami- nogruppen der erfindungsgemäßen Proteinmoleküle. Salze von Carboxylgruppen können in an sich bekannter Weise hergestellt werden und umfassen anorganische Salze, wie zum Beispiel Natrium-, Calcium-, Ammonium-, Eisen- und Zinksalze, sowie Salze mit organischen Basen, wie zum Beispiel Aminen, wie Triethanolamin, Arginin, Lysin, Piperidin und derglei- chen. Säureadditionssalze, wie zum Beispiel Salze mit Mineralsäuren, wie Salzsäure oder Schwefelsäure und Salze mit organischen Säuren, wie Essigsäure und Oxalsäure sind ebenfalls Gegenstand der Erfindung."Functional equivalents" in the above sense are also precursors of the polypeptides described and functional derivatives and salts of the polypeptides. The term "salts" means both salts of carboxyl groups and acid addition salts of amino nogroups of the protein molecules according to the invention. Salts of carboxyl groups can be prepared in a manner known per se and include inorganic salts, such as, for example, sodium, calcium, ammonium, iron and zinc salts, and salts with organic bases, such as, for example, amines, such as triethanolamine, arginine, lysine , Piperidine and the like. Acid addition salts, such as, for example, salts with mineral acids, such as hydrochloric acid or sulfuric acid, and salts with organic acids, such as acetic acid and oxalic acid, are also a subject of the invention.
„Funktionale Derivate" erfindungsgemäßer Polypeptide können an funktioneilen Aminosäure- Seitengruppen oder an deren N- oder C-terminalen Ende mit Hilfe bekannter Techniken ebenfalls hergestellt werden. Derartige Derivate umfassen beispielsweise aliphatische Ester von Carbonsäuregruppen, Amide von Carbonsäuregruppen, erhältlich durch Umsetzung mit Ammoniak oder mit einem primären oder sekundären Amin; N-Acylderivate freier Aminogruppen, hergestellt durch Umsetzung mit Acylgruppen; oder O-Acylderivate freier Hydroxylgruppen, hergestellt durch Umsetzung mit Acylgruppen."Functional derivatives" of polypeptides according to the invention can also be prepared on functional amino acid side groups or on their N- or C-terminal end using known techniques. Such derivatives include, for example, aliphatic esters of carboxylic acid groups, amides of carboxylic acid groups, obtainable by reaction with ammonia or with a primary or secondary amine; N-acyl derivatives of free amino groups, prepared by reaction with acyl groups; or O-acyl derivatives of free hydroxyl groups, produced by reaction with acyl groups.
"Funktionale Äquivalente" umfassen natürlich auch Polypeptide welche aus anderen Organismen, zugänglich sind, sowie natürlich vorkommende Varianten. Beispielsweise lassen sich durch Sequenzvergleich Bereiche homologer Sequenzregionen festlegen und in Anlehnung an die konkreten Vorgaben der Erfindung äquivalente Enzyme ermitteln."Functional equivalents" naturally also include polypeptides that are accessible from other organisms, as well as naturally occurring variants. For example, regions of homologous sequence regions can be determined by sequence comparison and equivalent enzymes can be determined based on the specific requirements of the invention.
„Funktionale Äquivalente" umfassen ebenfalls Fragmente, vorzugsweise einzelne Domänen o- der Sequenzmotive, der erfindungsgemäßen Polypeptide, welche z.B. die gewünschte biologische Funktion aufweisen."Functional equivalents" also include fragments, preferably individual domains or sequence motifs, of the polypeptides according to the invention which, for example, have the desired biological function.
„Funktionale Äquivalente" sind außerdem Fusionsproteine, welche ein der oben genannten Po- lypeptidsequenzen oder davon abgeleitete funktionale Äquivalente und wenigstens eine weitere, davon funktionell verschiedene, heterologe Sequenz in funktioneller N- oder C-terminaler Verknüpfung (d.h. ohne gegenseitigen wesentliche funktioneile Beeinträchtigung der Fusionsprote- inteile) aufweisen. Nicht-Iimitiernde Beispiele für derartige heterologe Sequenzen sind z.B. Sig- nalpeptide, Enzyme, Immunoglobuline, Oberflächenantigene, Rezeptoren oder Rezeptorliganden.“Functional equivalents” are also fusion proteins which contain one of the abovementioned polypeptide sequences or functional equivalents derived therefrom and at least one further, functionally different, heterologous sequence in functional N- or C-terminal linkage (ie without mutual substantial functional impairment of the fusion protein Non-limiting examples of such heterologous sequences are, for example, signal peptides, enzymes, immunoglobulins, surface antigens, receptors or receptor ligands.
Erfindungsgemäß mit umfasste „funktionale Äquivalente" sind Homologe zu den konkret offen- harten Proteinen. Diese besitzen wenigstens 60 %, vorzugsweise wenigstens 75% ins besondere wenigsten 85 %, wie z.B. 90%, 95% oder 99%, Homologie zu einer der konkret offenbarten Sequenzen, berechnet nach dem Algorithmus von Pearson und Lipman, Proc. Natl. Acad, Sei. (USA) 85(8), 1988, 2444-2448."Functional equivalents" encompassed according to the invention are homologs to the specifically hard proteins. These have at least 60%, preferably at least 75%, in particular at least 85%, such as 90%, 95% or 99%, homology to one of the specifically disclosed Sequences calculated according to the algorithm by Pearson and Lipman, Proc. Natl. Acad, Be. (USA) 85 (8), 1988, 2444-2448.
Im Falle einermöglichen Proteinglykosylierung umfassen erfindungsgemäße Äquivalente Prote- ine des oben bezeichneten Typs in deglykosylierter bzw. glykosylierter Form sowie durch Veränderung des Glykosylierungsmusters erhältliche abgewandelte Formen.In the case of possible protein glycosylation, equivalents according to the invention include proteins of the type described above in deglycosylated or glycosylated form and also modified forms obtainable by changing the glycosylation pattern.
Homologe der erfindungsgemäßen Proteine oder Polypeptide können durch Mutagenese erzeugt werden, z.B. durch Punktmutation oder Verkürzung des Proteins. Der Begriff "Homolog", wie er hier verwendet wird, betrifft eine Variante Form des Proteins, die als Agonist o- der Antagonist der Protein-Aktivität wirkt.Homologs of the proteins or polypeptides of the invention can be generated by mutagenesis, e.g. by point mutation or shortening of the protein. The term "homolog" as used here refers to a variant form of the protein which acts as an agonist or antagonist of protein activity.
Homologe der erfindungsgemäßen Proteine können durch Screening kombinatorischer Banken von Mutanten, wie z.B. Verkürzungsmutanten, identifiziert werden. Beispielsweise kann eine variegierte Bank von Protein-Varianten durch kombinatorische Mutagenese auf Nukleinsäure- ebene erzeugt werden, wie z.B. durch enzymatisches Ligieren eines Gemisches synthetischer Oligonukleotide. Es gibt eine Vielzahl von Verfahren, die zur Herstellung von Banken potentieller Homologer aus einer degenerierten Oligonukleotidsequenz verwendet werden können. Die chemische Synthese einer degenerierten Gensequenz kann in einem DNA-Syntheseautomaten durchgeführt werden, und das synthetische Gen kann dann in einen geeigneten Expressionsvektor ligiert werden. Die Verwendung eines degenerierten Gensatzes ermöglicht die Bereitstellung sämtlicher Sequenzen in einem Gemisch, die den gewünschten Satz an potentiellen Proteinsequenzen codieren. Verfahren zur Synthese degenerierter Oligonukleotide sind dem Fachmann bekannt (Z.B. Narang, S.A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al., (1984) Science 198:1056; Ike et al. (1983) Nucleic Acids Res. 11 :477).Homologs of the proteins of the invention can be obtained by screening combinatorial libraries of mutants, e.g. Shortening mutants can be identified. For example, a varied library of protein variants can be generated by combinatorial mutagenesis at the nucleic acid level, e.g. by enzymatically ligating a mixture of synthetic oligonucleotides. There are a variety of methods that can be used to generate banks of potential homologs from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automated DNA synthesizer, and the synthetic gene can then be ligated into an appropriate expression vector. The use of a degenerate gene set allows all sequences to be provided in a mixture which encode the desired set of potential protein sequences. Methods for the synthesis of degenerate oligonucleotides are known to the person skilled in the art (eg Narang, SA (1983) Tetrahedron 39: 3; Itakura et al. (1984) Annu. Rev. Biochem. 53: 323; Itakura et al., (1984) Science 198: 1056; Ike et al. (1983) Nucleic Acids Res. 11: 477).
Zusätzlich können Banken von Fragmenten des Protein-Codons verwendet werden, um eine variegierte Population von Protein-Fragmenten zum Screening und zur anschließenden Selekti- on von Homologen eines erfindungsgemäßen Proteins zu erzeugen. Bei einer Ausführungsform kann eine Bank von kodierenden Sequenzfragmenten durch Behandeln eines doppelsträngigen PCR-Fragmentes einer kodierenden Sequenz mit einer Nuklease unter Bedingungen, unter denen ein Nicking nur etwa einmal pro Molekül erfolgt, Denaturieren der doppelsträngigen DNA, Renaturieren der DNA unter Bildung doppelsträngiger DNA, die Sense-/Antisense-Paare von verschiedenen genickten Produkten umfassen kann, Entfernen einzelsträngiger Abschnitte aus neu gebildeten Duplices durch Behandlung mit S1-Nuclease und Ligieren der resultierenden Fragmentbank in einen Expressionsvektor erzeugt werden. Durch dieses Verfahren kann eine Expressionsbank hergeleitet werden, die N-terminale, C-terminale und interne Fragmente mit verschiedenen Größen des erfindungsgemäßen Proteins kodiert.In addition, banks of fragments of the protein codon can be used to generate a varied population of protein fragments for the screening and subsequent selection of homologues of a protein according to the invention. In one embodiment, a bank of coding sequence fragments can be obtained by treating a double-stranded PCR fragment of a coding sequence with a nuclease under conditions under which nicking occurs only about once per molecule, denaturing the double-stranded DNA, renaturing the DNA to form double-stranded DNA Sense / antisense pairs of different nodded products can be removed, single-stranded sections removed from newly formed duplexes by treatment with S1 nuclease and ligating the resulting fragment library into an expression vector. Through this procedure, a Expression bank can be derived, which encodes N-terminal, C-terminal and internal fragments with different sizes of the protein according to the invention.
Im Stand der Technik sind mehrere Techniken zum Screening von Genprodukten kombinatori- scher Banken, die durch Punktmutationen oder Verkürzung hergestellt worden sind, und zum Screening von cDNA-Banken auf Genprodukte mit einer ausgewählten Eigenschaft bekannt. Diese Techniken lassen sich an das schnelle Screening der Genbanken anpassen, die durch kombinatorische Mutagenese von erfindungsgemäßer Homologen erzeugt worden sind. Die am häufigsten verwendeten Techniken zum Screening großer Genbanken, die einer Analyse mit hohem Durchsatz unterliegen, umfassen das Klonieren der Genbank in replizierbare Expressionsvektoren, Transformieren der geeigneten Zellen mit der resultierenden Vektorenbank und Exprimieren der kombinatorischen Gene unter Bedingungen, unter denen der Nachweis der gewünschten Aktivität die Isolation des Vektors, der das Gen codiert, dessen Produkt nachgewiesen wurde, erleichtert. Recursive-Ensemble-Mutagenese (REM), eine Technik, die die Häufigkeit funktioneller Mutanten in den Banken vergrößert, kann in Kombination mit den Screeningtests verwendet werden, um Homologe zu identifizieren (Arkin und Yourvan (1992) PNAS 89:7811- 7815; Delgrave et al. (1993) Protein Engineering 6(3):327-331 ).Several techniques are known in the prior art for screening gene products of combinatorial banks which have been produced by point mutations or truncation, and for screening cDNA banks for gene products with a selected property. These techniques can be adapted to the rapid screening of the gene banks which have been generated by combinatorial mutagenesis of homologues according to the invention. The most commonly used techniques for screening large libraries that are subject to high throughput analysis include cloning the library into replicable expression vectors, transforming the appropriate cells with the resulting vector library, and expressing the combinatorial genes under conditions under which the detection of the desired activity isolation of the vector encoding the gene whose product has been detected is facilitated. Recursive ensemble mutagenesis (REM), a technique that increases the frequency of functional mutants in banks, can be used in combination with the screening tests to identify homologues (Arkin and Yourvan (1992) PNAS 89: 7811-7815; Delgrave et al. (1993) Protein Engineering 6 (3): 327-331).
Die erfindungsgemäßen Polypeptide können rekombinant hergestellt werden (vgl. folgende Ab- schnitte) oder können in nativer Form unter Anwendung klassischer biochemischer Arbeitsweisen (vgl. Cooper, T. G., Biochemische Arbeitsmethoden, Verlag Walter de Gruyter, Berlin, New York oder in Scopes, R., Protein Purification, Springer Verlag, New York, Heidelberg, Berlin) aus Mikroorganismen, insbesondere solchen der Gattung Ashbya, isoliert werden.The polypeptides according to the invention can be produced recombinantly (cf. the following sections) or can be in native form using conventional biochemical procedures (cf. Cooper, TG, Biochemical Working Methods, Verlag Walter de Gruyter, Berlin, New York or in Scopes, R. , Protein Purification, Springer Verlag, New York, Heidelberg, Berlin) from microorganisms, in particular those of the genus Ashbya, can be isolated.
Nukleinsäureseguenzen:Nukleinsäureseguenzen:
Gegenstand der Erfindung sind auch Nukleinsäuresequenzen (einzel- und doppelsträngige DNA- und RNA-Sequenzen, wie z.B. cDNA und mRNA), kodierend für eines der obigen Polypeptide und deren funktionalen Äquivalenten, welche z.B. unter Verwendung künstlicher Nukleotidanaloga zugänglich sind.The invention also relates to nucleic acid sequences (single and double stranded DNA and RNA sequences, such as cDNA and mRNA) coding for one of the above polypeptides and their functional equivalents, which e.g. are accessible using artificial nucleotide analogs.
Die Erfindung betrifft sowohl isolierte Nukleinsäuremoleküle, welche für erfindungsgemäße Polypeptide bzw. Proteine oder biologisch aktive Abschnitte davon kodieren, sowie Nukleinsäure- fragmente, die z.B. zur Verwendung als Hybridisierungssonden oder Primer zur Identifizierung oder Amplifizierung von erfindungsgemäßen kodierenden Nukleinsäuren verwendet werden können. Die erfindungsgemäßen Nukleinsäuremoleküle können zudem untranslatierte Sequenzen vom 3'- und/oder 5'-Ende des kodierenden Genbereichs enthalten.The invention relates both to isolated nucleic acid molecules which code for polypeptides or proteins or biologically active sections thereof, and to nucleic acid fragments which can be used, for example, for use as hybridization probes or primers for identifying or amplifying coding nucleic acids according to the invention. The nucleic acid molecules according to the invention can also contain untranslated sequences from the 3 'and / or 5' end of the coding gene region.
Ein "isoliertes" Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure zugegen sind und kann überdies im wesentlichen frei von anderem zellulären Material oder Kulturmedium sein, wenn es durch rekombinante Techniken hergestellt wird, oder frei von chemischen Vorstufen oder anderen Chemikalien sein, wenn es chemisch synthetisiert wird.An "isolated" nucleic acid molecule is separated from other nucleic acid molecules that are present in the natural source of the nucleic acid and, moreover, can be substantially free of other cellular material or culture medium when produced by recombinant techniques, or free of chemical precursors or other chemicals be when it's chemically synthesized.
Ein erfindungsgemäßes Nukleinsäuremolekül kann mittels molekularbiologischer Standard- Techniken und der erfindungsgemäß bereitgestellten Sequenzinformation isoliert werden. Beispielsweise kann cDNA aus einer geeigneten cDNA-Bank isoliert werden, indem eine der konkret offenbarten vollständigen Sequenzen oder ein Abschnitt davon als Hybridisierungssonde und Standard-Hybridisierungstechniken (wie z.B. beschrieben in Sambrook, J., Fritsch, E.F. und Maniatis, T. Molecular Cloning: A Laboratory Manual. 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) verwendet werden. Überdies läßt sich ein Nukleinsäuremolekül, umfassend eine der offenbarten Sequenzen oder einen Abschnitt davon, durch Polymerasekettenreaktion isolieren, wobei die Oligonukleotidprimer, die auf der Basis dieser Sequenz erstellt wurden, verwendet werden. Die so amplifizierte Nuklein- säure kann in einen geeigneten Vektor kloniert werden und durch DNA-Sequenzanalyse charakterisiert werden. Die erfindungsgemäßen Oligonukleotide, die einer SA-Nukleotidsequenz entsprechen, können ferner durch Standard-Syntheseverfahren, z.B. mit einem automatischen DNA-Synthesegerät, hergestellt werden.A nucleic acid molecule according to the invention can be isolated using standard molecular biological techniques and the sequence information provided according to the invention. For example, cDNA can be isolated from a suitable cDNA library by using one of the specifically disclosed complete sequences or a section thereof as a hybridization probe and standard hybridization techniques (as described, for example, in Sambrook, J., Fritsch, EF and Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989). In addition, a nucleic acid molecule comprising one of the disclosed sequences or a portion thereof can be isolated by polymerase chain reaction using the oligonucleotide primers created based on this sequence. The nucleic acid amplified in this way can be cloned into a suitable vector and characterized by DNA sequence analysis. The oligonucleotides according to the invention which correspond to an SA nucleotide sequence can also be obtained by standard synthesis methods, e.g. with an automatic DNA synthesizer.
Die Erfindung umfasst weiterhin die zu den konkret beschriebenen Nukleotidsequenzen komplementären Nukleinsäuremoleküle oder einen Abschnitt davon.The invention further comprises the nucleic acid molecules complementary to the specifically described nucleotide sequences or a section thereof.
Die erfindungsgemäßen Nukleotidsequenzen ermöglichen die Erzeugung von Sonden und Primern, die zur Identifizierung und/oder Klonierung homologer Sequenzen in anderen Zelltypen und Organismen verwendbar sind. Solche Sonden bzw. Primer umfassen gewöhnlich einen Nukleotidsequenzbereich, der unter stringenten Bedingungen an mindestens etwa 12, vorzugsweise mindestens etwa 25, wie z.B. etwa 40, 50 oder 75 aufeinanderfolgende Nukleotide eines Sense-Stranges einer erfindungsgemäßen Nukleinsäuresequenz oder eines entsprechenden Antisense-Stranges hybridisiert.The nucleotide sequences according to the invention enable the generation of probes and primers which can be used for the identification and / or cloning of homologous sequences in other cell types and organisms. Such probes or primers usually comprise a nucleotide sequence region which, under stringent conditions, can be attached to at least about 12, preferably at least about 25, e.g. about 40, 50 or 75 successive nucleotides of a sense strand of a nucleic acid sequence according to the invention or a corresponding antisense strand are hybridized.
Weitere erfindungsgemäße Nukleinsäuresequenzen sind abgeleitet von SEQ ID NO: 1 , 4, 8, 10, 12, 15, 17, 19, 21 , 23, 26, 28, 30, 34, 36 oder SEQ ID NO: 38 und unterscheiden sich davon durch Addition, Substitution, Insertion oderDeletion einzelner oder mehrerer Nukleotide, kodieren aber weiterhin für Polypeptide mit dem gewünschten Eigenschaftsprofil.Further nucleic acid sequences according to the invention are derived from SEQ ID NO: 1, 4, 8, 10, 12, 15, 17, 19, 21, 23, 26, 28, 30, 34, 36 or SEQ ID NO: 38 and differ from them by addition, substitution, insertion or deletion of one or more nucleotides, but continue to code for polypeptides with the desired property profile.
Erfindungsgemäß umfasst sind auch solche Nukleinsäuresequenzen, die sogenannte stumme Mutationen umfassen oder entsprechend der Codon-Nutzung eines speziellen Ursprungs- oder Wirtsorganismus, im Vergleich zu einer konkret genannten Sequenz verändert sind, ebenso wie natürlich vorkommende Varianten, wie z.B. Spleißvarianten oder Allelvarianten, davon. Gegenstand sind ebenso durch konservative Nukleotidsubstutionen (d.h. die betreffende Aminosäure wird durch eine Aminosäure gleicher Ladung, Größe, Polarität und/oder Löslichkeit ersetzt) er- hältliche Sequenzen.Also included according to the invention are those nucleic acid sequences which comprise so-called silent mutations or which have been modified in accordance with the codon usage of a specific source or host organism, in comparison to a specifically named sequence, as well as naturally occurring variants, such as e.g. Splice variants or allele variants, thereof. Sequences obtainable by conservative nucleotide substitutions (i.e. the amino acid in question is replaced by an amino acid of the same charge, size, polarity and / or solubility) are also a subject of the invention.
Gegenstand der Erfindung sind auch die durch Sequenzpolymorphismen von den konkret offenbarten Nukleinsäuren abgeleiteten Moleküle. Diese genetischen Polymorphismen können zwischen Individuen innerhalb einer Population aufgrund der natürlichen Variation existieren. Diese natürlichen Variationen bewirken üblicherweise eine Varianz von 1 bis 5 % in der Nukleotidse- quenz eines Gens.The invention also relates to the molecules derived from the specifically disclosed nucleic acids by sequence polymorphisms. These genetic polymorphisms can exist between individuals within a population due to natural variation. These natural variations usually cause a variance of 1 to 5% in the nucleotide sequence of a gene.
Weiterhin umfasst die Erfindung auch Nukleinsäuresequenzen, welchen mit oben genannten kodierenden Sequenzen hybridisieren oder dazu komplementär sind. Diese Polynukleotide las- sen sich bei Durchmusterung von genomischen oder cDNA-Banken auffinden und gegebenenfalls daraus mit geeigneten Primern mittels PCR vermehren und anschließend beispielsweise mit geeigneten Sonden isolieren. Eine weitere Möglichkeit bietet die Transformation geeigneter Mikroorganismen mit erfindungsgemäßen Polynukleotiden oder Vektoren, die Vermehrung der Mikroorganismen und damit der Polynukleotide und deren anschließende Isolierung. Darüber hinaus können erfindungsgemäße Polynukleotide auch auf chemischem Wege synthetisiert werden.Furthermore, the invention also encompasses nucleic acid sequences which hybridize with the above-mentioned coding sequences or are complementary thereto. These polynucleotides can be found when screening genomic or cDNA libraries and, if appropriate, can be multiplied therefrom using suitable primers by means of PCR and then isolated, for example, using suitable probes. Another possibility is the transformation of suitable microorganisms with polynucleotides or vectors according to the invention, the multiplication of the microorganisms and thus the polynucleotides and their subsequent isolation. In addition, polynucleotides according to the invention can also be synthesized chemically.
Unter der Eigenschaft, an Polynukleotide „hybridisieren" zu können, versteht man die Fähigkeit eines Poly- oderOligonukleotids unter stringenten Bedingungen an eine nahezu komplementäre Sequenz zu binden, während unter diesen Bedingungen unspezifische Bindungen zwischen nicht-komplementären Partnern unterbleiben. Dazu sollten die Sequenzen zu 70-100%, vorzugsweise zu 90-100%, komplementär sein. Die Eigenschaft komplementärer Sequenzen, spezifisch aneinander binden zu können, macht man sich beispielsweise in der Northern- oder Sou- thern-Blot-Technik oder bei der Primerbindung in PCR oder RT-PCR zunutze. Üblicherweise werden dazu Oligonukleotide ab einer Länge von 30 Basenpaaren eingesetzt. Unter stringenten Bedingungen versteht man beispielsweise in der Northem-Blot-Technik die Verwendung einer 50 - 70 °C, vorzugsweise 60 - 65 °C warmen Waschlösung, beispielsweise 0,1x SSC-Puffer mit 0,1% SDS (20x SSC: 3M NaCI, 0,3M Na-Citrat, pH 7,0) zur Elution unspezifisch hybridisierter cDNA-Sonden oder Oligonukleotide. Dabei bleiben, wie oben erwähnt, nur in hohem Maße komplementäre Nukleinsäuren aneinander gebunden. Die Einstellung stringenter Bedingungen ist dem Fachmann bekannt und ist z.B. in Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. beschrieben.The property of being able to “hybridize” to polynucleotides means the ability of a poly- or oligonucleotide to bind to an almost complementary sequence under stringent conditions, while under these conditions there are no unspecific bindings between non-complementary partners -100%, preferably 90-100%, complementary The property of complementary sequences to be able to specifically bind to one another is made for example in the Northern or Southern blot technique or in the primer binding in PCR or RT PCR is usually used for this purpose, oligonucleotides with a length of 30 base pairs or more, stringent conditions mean, for example in the Northem blot technique, the use of a washing solution which is 50-70 ° C., preferably 60-65 ° C., for example 0.1x SSC buffer with 0.1% SDS (20x SSC: 3M NaCl, 0.3M Na citrate, pH 7.0) for the elution of non-specifically hybridized cDNA probes or oligonucleotides. As mentioned above, only highly complementary nucleic acids remain bound to one another. The setting of stringent conditions is known to the person skilled in the art and is described, for example, in Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, NY (1989), 6.3.1-6.3.6. described.
Ein weiterer Aspekt der Erfindung betrifft "Antisense-'Nukleinsäuren. Diese umfaßt eine Nukleo- tidsequenz, die zu einer kodierenden "Sense-"Nukleinsäure, komplementär ist. Die Antisense- Nukleinsäure kann zum gesamten kodierenden Strang oder nur zu einem Abschnitt davon kom- plementär sein. Bei einerweiteren Ausführungsform ist das Antisense-Nukleinsäuremolekül an- tisense zu einem nicht-kodierenden Bereich des kodierenden Stranges einer Nukleotidsequenz. Der Begriff "nicht-kodierender Bereich" betrifft die als 5'- und 3'-untranslatierte Bereiche bezeichneten Sequenzabschnitte.Another aspect of the invention relates to "antisense" nucleic acids. This comprises a nucleotide sequence that is complementary to a coding "sense" nucleic acid. The antisense nucleic acid can be complementary to the entire coding strand or only to a portion thereof In a further embodiment, the antisense nucleic acid molecule is antisense to a non-coding region of the coding strand of a nucleotide sequence. The term "non-coding region" relates to the sequence segments referred to as 5'- and 3'-untranslated regions.
Ein Antisense-Oligonukleotid kann bspw. etwa 5, 10, 15, 20, 25, 30, 35, 40, 45 oder 50 Nukleoti- de lang sein. Eine erfindungsgemäße Antisense-Nukleinsäure kann durch chemische Synthese und enzymatische Ligationsreaktionen mittels im Fachgebiet bekannter Verfahren konstruiert werden. Eine Antisense-Nukleinsäure kann chemisch synthetisiert werden, wobei natürlich vorkommende Nukleotide oder verschieden modifizierte Nukleotide verwendet werden, die so ges- taltet sind, daß sie die biologische Stabilität der Moleküle erhöhen, oder die physikalische Stabilität des Duplexes erhöhen, der zwischen der Antisense- und Sense-Nukleinsäure entstanden ist. Beispielsweise können Phosphorthioat-Derivate und acridinsubstituierte Nukleotide verwendet werden. Beispiele modifizierter Nukleoside, die zur Erzeugung der Antisense-Nukleinsäure verwendet werden können, sind u.a. 5-Fluoruracil, 5-Bromuracil, 5-Chloruracil, 5-loduracil, Hypo- xanthin, Xanthin, 4-Acetylcytosin, 5-(Carboxyhydroxymethyl)uracil, 5-An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides long. An antisense nucleic acid of the invention can be constructed by chemical synthesis and enzymatic ligation reactions using methods known in the art. An antisense nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides which are designed to increase the biological stability of the molecules or to increase the physical stability of the duplex which is between the antisense and Sense nucleic acid has arisen. For example, phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleosides that can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-ioduracil, hypoxanthine, xanthine, 4-acetylcytosine, 5- (carboxyhydroxymethyl) uracil, 5-
Carboxymethylaminomethyl-2-thiouridin, 5-Carboxymethylaminomethyluracil, Dihydrouracil, Be- ta-D-Galactosylqueosin, Inosin, N6-lsopentenyladenin, 1-Methylguanin, 1-Methylinosin, 2,2- Dimethylguanin, 2-Methyladenin, 2-Methylguanin, 3-Methylcytosin, 5-Methylcytosin, N6-Adenin, 7-Methylguanin, 5-Methylaminomethyluracil, 5-Methoxyaminomethyl-2-thiouracil, Beta-D- Mannosylqueosin, δ'-Methoxycarboxymethyluracil, 5-Methoxyuracil, 2-Methylthio-N6- isopentenyladenin, Uracil-5-oxyessigsäure (v), Wybutoxosin, Pseudouracil, Queosin, 2- Thiocytosin, 5-Methyl-2-thiouracil, 2-Thiouracil, 4-Thiouracil, 5-Methyluracil, Uracil-5- oxyessigsäuremethylester, Uracil-5-oxyessigsäure (v), 5-Methyl-2-thiouracil, 3-(3-Amino-3-N-2- carboxypropyl)uracil, (acp3)w und 2,6-Diaminopurin. Die Antisense-Nukleinsäure kann auch biologisch hergestellt werden, indem ein Expressionsvektor verwendet wird, in den eine Nukleinsäure in Antisense-Richtung subkloniert worden ist. Die erfindungsgemäßen Antisense-Nukleinsäuremoleküle werden üblicherweise an eine Zelle verabreicht oder in situ erzeugt, so daß sie mit der zellulären mRNA und/oder einer kodierenden DNA hybridisieren oder daran binden, so daß die Expression des Proteins, z.B. durch Hemmung der Transkription und/oder Translation, gehemmt wird.Carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 3-methylguanine Methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, δ'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-nadenine, N6-is6 -5-oxyacetic acid (v), wybutoxosin, pseudouracil, queosin, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methyl ester, uracil-5-oxyacetic acid ( v), 5-Methyl-2-thiouracil, 3- (3-amino-3-N-2-carboxypropyl) uracil, (acp3) w and 2,6-diaminopurine. The antisense nucleic acid can also be produced biologically using an expression vector in which a nucleic acid has been subcloned in the antisense direction. The antisense nucleic acid molecules according to the invention are usually administered to a cell or generated in situ so that they hybridize with or bind to the cellular mRNA and / or a coding DNA, so that the expression of the protein, for example by inhibiting transcription and / or translation , is inhibited.
Das Antisense-Molekül kann so modifiziert werden, daß es spezifisch an einen Rezeptor oder an ein Antigen bindet, das auf einer ausgewählten Zelloberfläche exprimiert wird, z.B. durch Verknüpfen des Antisense-Nukleinsäuremoleküls mit einem Peptid oder einem Antikörper, das/der an einen Zelloberflächenrezeptor oder Antigen bindet. Das Antisense-Nukleinsäuremolekül kann auch unter Verwendung der hier beschriebenen Vektoren an Zellen verabreicht werden. Zur Erzielung hinreichender intrazellulärer Konzentrationen der Antisense-Moleküle sind Vektorkon- strukte, in denen sich das Antisense-Nukleinsäuremolekül unter der Kontrolle eines starken bakteriellen, viralen oder eukaryotischen Promotors befindet, bevorzugt.The antisense molecule can be modified to specifically bind to a receptor or to an antigen that is expressed on a selected cell surface, e.g. by linking the antisense nucleic acid molecule to a peptide or an antibody that binds to a cell surface receptor or antigen. The antisense nucleic acid molecule can also be administered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is under the control of a strong bacterial, viral or eukaryotic promoter are preferred.
In einer weiteren Ausführungsform ist das erfindungsgemäße Antisense-Nukleinsäuremolekül ein alpha-anomeres Nukleinsäuremolekül. Ein alpha-anomeres Nukleinsäuremolekül bildet spezifische doppelsträngige Hybride mit komplementärer RNA, wobei die Stränge im Gegensatz zu gewöhnlichen alpha-Einheiten parallel zueinander verlaufen. (Gaultier et al., (1987) Nucleic Acids Res. 15:6625-6641). Das Antisense-Nukleinsäuremolekül kann zudem ein 2'-0- Methylribonukleotid (Inoue et al., (1987) Nucleic Acids Res. 15:6131-6148) oder ein chimäres RNA-DNA-Analogon (Inoue et al. (1987) FEBS Lett. 215:327-330) umfassen.In a further embodiment, the antisense nucleic acid molecule according to the invention is an alpha-anomeric nucleic acid molecule. An alpha-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA, the strands running parallel to one another in contrast to conventional alpha units. (Gaultier et al., (1987) Nucleic Acids Res. 15: 6625-6641). The antisense nucleic acid molecule can also be a 2'-0-methyl ribonucleotide (Inoue et al., (1987) Nucleic Acids Res. 15: 6131-6148) or a chimeric RNA-DNA analog (Inoue et al. (1987) FEBS Lett 215: 327-330).
Gegenstand der Erfindung sind auch Ribozyme. Dies sind katalytische RNA-Moleküle mit Ribo- nukleaseaktivität, die eine einzelsträngige Nukleinsäure, wie eine mRNA, zu der sie einen kom- plementären Bereich haben, spalten können. Somit können Ribozyme (z.B. Hammerhead- Ribozyme (beschrieben in Haselhoff und Gerlach (1988) Nature 334:585-591 )) zur katalytischen Spaltung von erfindungsgemäßen Transkripten verwendet werden, um dadurch die Translation der entsprechenden Nukleinsäure zu hemmen. Ein Ribozym mit Spezifität für eine erfindungsgemäße kodierende Nukleinsäure kann z.B. auf der Basis einer hierin konkret offenbarten cDNA gebildet werden. Beispielsweise kann ein Derivat einer Tetrahymena-L-19-IVS-RNA konstruiert werden, wobei die Nukleotidsequenz der aktiven Stelle komplementärzurNukleotidsequenzist, die in einer erfindungsgemäßen kodierenden mRNA gespalten werden soll. (vgl. z.B. US-A-4 987 071 und US-A-5 116742). Alternativ kann mRNA zur Selektion einer katalytischen RNA mit spezifischer Ribonukleaseaktivität aus einem Pool von RNA-Molekülen verwendet werden (siehe z.B. Bartel, D., und Szostak, J.W. (1993) Science 261 :1411-1418). Die Genexpression erfindungsgemäßer Sequenzen läßt sich alternativ hemmen, indem Nukleotidsequenzen, die komplementär zum regulatorischen Bereich einer erfindungsgemäßen Nukleo- tidsequenz sind (z.B. zu einem Promotor und/oder Enhancer einer kodierenden Sequenz) so dirigiert werden, daß Triple-Helixstrukturen gebildet werden, die die Transkription des entsprechenden Gens in Ziel-Zellen verhindern (Helene, C. (1991 ) Anticancer Drug Res. 6(6) 569-584; Helene, C. et al., (1992) Ann. N. Y. Acad. Sei. 660:27-36; und Mäher. L.J. (1992) Bioassays 14(12):807-815).The invention also relates to ribozymes. These are catalytic RNA molecules with ribonuclease activity that can cleave a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Ribozymes (for example Hammerhead-Ribozymes (described in Haselhoff and Gerlach (1988) Nature 334: 585-591)) can thus be used for the catalytic cleavage of transcripts according to the invention, in order to thereby inhibit the translation of the corresponding nucleic acid. A ribozyme with specificity for a coding nucleic acid according to the invention can be formed, for example, on the basis of a cDNA specifically disclosed herein. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed where the nucleotide sequence of the active site is complementary to the nucleotide sequence that is to be cleaved in a coding mRNA according to the invention. (See, for example, US-A-4 987 071 and US-A-5 116742). Alternatively, mRNA can be used to select a catalytic RNA with specific ribonuclease activity from a pool of RNA molecules (see, for example, Bartel, D., and Szostak, JW (1993) Science 261: 1411-1418). The gene expression of sequences according to the invention can alternatively be inhibited by directing nucleotide sequences which are complementary to the regulatory region of a nucleotide sequence according to the invention (for example to a promoter and / or enhancer of a coding sequence) in such a way that triple helix structures are formed which transcribe of the corresponding gene in target cells (Helene, C. (1991) Anticancer Drug Res. 6 (6) 569-584; Helene, C. et al., (1992) Ann. NY Acad. Sci. 660: 27- 36; and Mower. LJ (1992) Bioassays 14 (12): 807-815).
Expressionskonstrukte und Vektoren:Expression constructs and vectors:
Gegenstand der Erfindung sind außerdem Expressionskonstrukte, enthaltend unter der genetischen Kontrolle regulativer Nukleinsäuresequenzen eine für ein erfindungsgemäßes Polypeptid kodierende Nukleinsäuresequenz; sowie Vektoren, umfassend wenigstens eines dieser Expressionskonstrukte. Vorzugsweise umfassen solche erfindungsgemäßen Konstrukte 5'-strom- aufwärts von der jeweiligen kodierenden Sequenz einen Promotor und 3'-stromabwärts eine Terminatorsequenz sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils operativ verknüpft mit der kodierenden Sequenz. Unter einer „operativen Verknüpfung" versteht man die sequentielle Anordnung von Promotor, kodierender Sequenz, Terminator und gegebenenfalls weiterer regulativer Elemente derart, dass jedes der regulativen Elemente seine Funkti- on bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann. Beispiele für operativ verknüpfbare Sequenzen sind Targeting-Sequenzen sowie Enhancer, Polyadenylie- rungssignale und dergleichen. Weitere regulative Elemente umfassen selektierbare Marker, Amplifikationssignale, Replikationsursprünge und dergleichen. Geeignete regulatorische Sequenzen sind z.B. beschrieben in Goeddel, Gene Expression Technology: Methods in Enzymo- logy 185, Academic Press, San Diego, CA (1990).The invention also relates to expression constructs containing, under the genetic control of regulatory nucleic acid sequences, a nucleic acid sequence coding for a polypeptide according to the invention; and vectors comprising at least one of these expression constructs. Such constructs according to the invention preferably comprise a promoter 5'-upstream of the respective coding sequence and 3'-downstream a terminator sequence and, if appropriate, further customary regulatory elements, in each case operatively linked to the coding sequence. An “operative linkage” is understood to mean the sequential arrangement of promoter, coding sequence, terminator and optionally further regulatory elements in such a way that each of the regulatory elements can fulfill its function in the expression of the coding sequence as intended. Examples of sequences which can be linked operatively are Targeting sequences and enhancers, polyadenylation signals and the like. Further regulatory elements include selectable markers, amplification signals, origins of replication and the like. Suitable regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego , CA (1990).
Zusätzlich zu den artifiziellen Regulationssequenzen kann die natürliche Regulationssequenz vor dem eigentlichen Strukturgen noch vorhanden sein. Durch genetische Veränderung kann diese natürliche Regulation gegebenenfalls ausgeschaltet und die Expression der Gene erhöht oder erniedrigt werden. Das Genkonstrukt kann aber auch einfacher aufgebaut sein, das heißt es werden keine zusätzlichen Regulationssignale vor das Strukturgen insertiert und der natürliche Promotor mit seiner Regulation wird nicht entfernt. Statt dessen wird die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und die Genexpression gesteigert oder verringert wird. Die Nukleinsäuresequenzen können in einer oder mehreren Kopien im Genkonstrukt enthalten sein. Beispiele für brauchbare Promotoren sind: cos-, tac-, trp-, tet-, trp-tet-, Ipp-, lac-, Ipp-lac-, laclq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, λ-PR- oder im λ-PL-Promotor, die vorteilhafterweise in gramnegativen Bakterien Anwendung finden; sowie die gram-positiven Promotoren amy und SP02, die Hefepromotoren ADC1, MFα , AC, P-60, CYC1 , GAPDH oder die Pflanzenpromotoren CaMV/35S, SSU, OCS, Iib4, usp, STLS1 , B33, not oder der Ubiquitin- oder Phaseolin-Promotor. Besonders bevorzugt ist die Verwendung induzierbarer Promotoren, wie z.B. licht- und insbesondere temperaturinduzierbarer Promotoren, wie der PrPrPromotor. Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen verwendet werden. Darüber hinaus können auch synthetische Promotoren vorteilhaft verwendet werden.In addition to the artificial regulatory sequences, the natural regulatory sequence can still be present before the actual structural gene. This natural regulation can possibly be switched off by genetic modification and the expression of the genes increased or decreased. However, the gene construct can also have a simpler structure, ie no additional regulation signals are inserted in front of the structural gene and the natural promoter with its regulation is not removed. Instead, the natural regulatory sequence is mutated so that regulation no longer takes place and gene expression is increased or decreased. The nucleic acid sequences can be contained in one or more copies in the gene construct. Examples of useful promoters are: cos, tac, trp, tet, trp-tet, Ipp, lac, Ipp-lac, laclq, T7, T5, T3, gal, trc -, ara, SP6, λ-PR or in the λ-PL promoter, which are advantageously used in gram-negative bacteria; as well as the gram-positive promoters amy and SP02, the yeast promoters ADC1, MFα, AC, P-60, CYC1, GAPDH or the plant promoters CaMV / 35S, SSU, OCS, Iib4, usp, STLS1, B33, not or the ubiquitin or phaseolin promoter. The use of inducible promoters, such as, for example, light-inducible and in particular temperature-inducible promoters, such as the P r P r promoter, is particularly preferred. In principle, all natural promoters with their regulatory sequences can be used. In addition, synthetic promoters can also be used advantageously.
Die genannten regulatorischen Sequenzen sollen die gezielte Expression der Nukleinsäuresequenzen ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird.The regulatory sequences mentioned are intended to enable the targeted expression of the nucleic acid sequences. Depending on the host organism, this can mean, for example, that the gene is only expressed or overexpressed after induction, or that it is expressed and / or overexpressed immediately.
Die regulatorischen Sequenzen bzw. Faktoren können dabei vorzugsweise die Expression positiv beeinflussen und dadurch erhöhen oder erniedrigen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.The regulatory sequences or factors can preferably have a positive influence on the expression and thereby increase or decrease it. Thus, the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers". In addition, an increase in translation is also possible, for example, by improving the stability of the mRNA.
Die Herstellung einer Expressionskassette erfolgt durch Fusion eines geeigneten Promotors mit einer geeigneten erfindungsgemäßen Nukleotidsequenz sowie einem Terminator- oder Polya- denylierungssignal. Dazu verwendet man gängige Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Sil- havy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Mole- cular Biology, Greene Publishing Assoc. and Wiley Interscience (1987) beschrieben sind.An expression cassette is produced by fusing a suitable promoter with a suitable nucleotide sequence according to the invention and a terminator or polyadenylation signal. Common recombination and cloning techniques, such as those described in T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) and in T.J. Silhavy, M.L. Berman and L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) and in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987).
Das rekombinante Nukleinsäurekonstrukt bzw. Genkonstrukt wird zur Expression in einem geeigneten Wirtsorganismus vorteilhafterweise in einen wirtsspezifischen Vektor insertiert, dereine optimale Expression der Gene im Wirt ermöglicht. Vektoren sind dem Fachmann wohl bekannt und können beispielsweise aus "Cloning Vectors" (Pouwels P. H. et al., Hrsg, Elsevier, Amster- dam-New York-Oxford, 1985) entnommen werden. Unter Vektoren sind außer Plasmiden auch alle anderen dem Fachmann bekannten Vektoren, wie beispielsweise Phagen, Viren, wie SV40, CMV, Baculovirus und Adenovirus, Transposons, IS-Elemente, Phasmide, Cosmide, und lineare oder zirkuläre DNA zu verstehen. Diese Vektoren können autonom im Wirtsorganismus repliziert oder chromosomal repliziert werden.For expression in a suitable host organism, the recombinant nucleic acid construct or gene construct is advantageously inserted into a host-specific vector which enables optimal expression of the genes in the host. Vectors are well known to those skilled in the art and can be found, for example, in "Cloning Vectors" (Pouwels PH et al., Ed., Elsevier, Amsterdam-New York-Oxford, 1985). In addition to plasmids, vectors also include all other vectors known to the person skilled in the art, such as phages, viruses, such as SV40, CMV, baculovirus and adenovirus, transposons, IS elements, phasmids, cosmids, and linear or circular DNA to understand. These vectors can be replicated autonomously in the host organism or can be replicated chromosomally.
Als Beispiele für geeignete Expressionsvektoren können genannt werden:The following can be mentioned as examples of suitable expression vectors:
Übliche Fusionsexpressionsvektoren, wie pGEX (Pharmacia Biotech Ine; Smith, D.B. und Johnson, K.S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) und pRIT 5 (Pharmacia, Piscataway, NJ), bei denen Glutathion-S-Transferase (GST), Maltose E-bindendes Prote- in bzw. Protein A an das rekombinante Zielprotein fusioniert wird.Common fusion expression vectors such as pGEX (Pharmacia Biotech Ine; Smith, DB and Johnson, KS (1988) Gene 67: 31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT 5 (Pharmacia, Piscataway, NJ) which glutathione-S-transferase (GST), maltose E-binding protein or protein A is fused to the recombinant target protein.
Nicht-Fusionsprotein-Expressionsvektoren wie pTrc (Amann et al., (1988) Gene 69:301-315) und pET 11d (Studier et al. Gene Expression Technology: Methods in Enzymology 185, Aca- demic Press, San Diego, Kalifornien (1990) 60-89).Non-fusion protein expression vectors such as pTrc (Amann et al., (1988) Gene 69: 301-315) and pET 11d (Studier et al. Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California ( 1990) 60-89).
Hefe-Expressionsvektor zur Expression in der Hefe S. cerevisiae , wie pYepSed (Baldari et al., (1987) Embo J. 6:229-234), pMFa (Kurjan und Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) sowie pYES2 (Invitrogen Corporation, San Diego, CA). Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer Systems and vector develop- mentforfilamentous fungi, in: Applied Molecular Genetics of Fungi, J. F. Peberdy et al., Hrsg., S. 1-28, Cambridge University Press: Cambridge.Yeast expression vector for expression in the yeast S. cerevisiae, such as pYepSed (Baldari et al., (1987) Embo J. 6: 229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30: 933-943), pJRY88 (Schultz et al. (1987) Gene 54: 113-123) and pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and methods of constructing vectors suitable for use in other fungi, such as filamentous fungi, include those described in detail in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer Systems and vector developmentforfilamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy et al., Eds., Pp. 1-28, Cambridge University Press: Cambridge.
Baeulovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insektenzellen (bspw. Sf9-Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al., (1983) Mol. Cell BioL 3:2156- 2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170:31-39).Baulovirus vectors available for expression of proteins in cultured insect cells (e.g. Sf9 cells) include the pAc series (Smith et al., (1983) Mol. Cell BioL 3: 2156-2165) and the pVL- Series (Lucklow and Summers (1989) Virology 170: 31-39).
Pflanzen-Expressionsvektoren, wie solche, die eingehend beschrieben sind in: Becker, D., Kemper, E., Schell, J. und Masterson, R. (1992) "New plant binary vectors with seleetable markers located proximal to the left border", Plant Mol. Biol. 20:1195-1197; und Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12:8711-8721.Plant expression vectors, such as those described in detail in: Becker, D., Kemper, E., Schell, J. and Masterson, R. (1992) "New plant binary vectors with seleetable markers located proximal to the left border" , Plant Mol. Biol. 20: 1195-1197; and Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12: 8711-8721.
Säugetier-Expressionsvektoren, wie pCDM8 (Seed, B. (1987) Nature 329:840) und pMT2PC (Kaufman et al. (1987) EMBO J. 6:187-195). Weitere geeignete Expressionssysteme für prokaryontische und eukaryotische Zellen sind in Kapitel 16 und 17 von Sambrook, J., Fritsch, E.F. und Maniatis, T., Molecular cloning: A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989 beschrieben.Mammalian expression vectors such as pCDM8 (Seed, B. (1987) Nature 329: 840) and pMT2PC (Kaufman et al. (1987) EMBO J. 6: 187-195). Further suitable expression systems for prokaryotic and eukaryotic cells are in chapters 16 and 17 of Sambrook, J., Fritsch, EF and Maniatis, T., Molecular cloning: A Laboratory Manual, 2nd edition, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press , Cold Spring Harbor, NY, 1989.
Rekombinante Mikroorganismen:Recombinant microorganisms:
Mit Hilfe der erfindungsgemäßen Vektoren sind rekombinante Mikroorganismen herstellbar, welche beispielsweise mit wenigstens einem erfindungsgemäßen Vektor transformiert sind und zur Produktion der erfindungsgemäßen Polypeptide eingesetzt werden können. Vorteilhafterweise werden die oben beschriebenen erfindungsgemäßen rekombinanten Konstrukte in ein geeignetes Wirtssystem eingebracht und exprimiert. Dabei werden vorzugsweise dem Fachmann bekannte geläufige Klonierungs- und Transfektionsmethoden, wie beispielsweise Co-Präzipitation, Protoplastenfusion, Elektroporation, retrovirale Transfektion und dergleichen, verwendet, um die genannten Nukleinsäuren im jeweiligen Expressionssystem zur Expression zu bringen. Geeignete Systeme werden beispielsweise in Current Protocols in Molecular Biology, F. Ausubel et al., Hrsg., Wiley Interscience, New York 1997, oder Sambrook et al. Molecular Cloning: A Laboratory Manual. 2. Aufl., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989 beschrieben.With the aid of the vectors according to the invention, recombinant microorganisms can be produced which, for example, have been transformed with at least one vector according to the invention and can be used to produce the polypeptides according to the invention. The recombinant constructs according to the invention described above are advantageously introduced and expressed in a suitable host system. Common cloning and transfection methods known to the person skilled in the art, such as, for example, co-precipitation, protoplast fusion, electroporation, retroviral transfection and the like, are preferably used to bring the nucleic acids mentioned into expression in the respective expression system. Suitable systems are described, for example, in Current Protocols in Molecular Biology, F. Ausubel et al., Ed., Wiley Interscience, New York 1997, or Sambrook et al. Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
Erfindungsgemäß sind auch homolog rekombinierten Mikroorganismen herstellbar. Dazu wird ein Vektor hergestellt, der zumindest einen Abschnitt eines erfindungsgemäßen Gens oder einer kodierenden Sequenz enthält, worin gegebenenfalls wenigstens eine Aminosäure-Deletion, - Addition oder -Substitution eingebracht worden ist, um die erfindungsgemäße Sequenz zu ver- ändern, z.B. funktioneil zu disrumpieren ("Knockouf'-Vektor). Die eingebrachte Sequenz kann z.B. auch ein Homologes aus einem verwandten Mikroorganismus sein oder aus einer Säugetier-, Hefe- oder Insektenquelle abgeleitet sein. Der zur homologen Rekombination verwendete Vektor kann alternativ derart ausgestaltet sein, daß das endogene Gen bei homologer Rekombination mutiert oder anderweitig verändert ist, jedoch noch das funktionelle Protein codiert (z.B. kann der stromaufwärts gelegene regulatorische Bereich derart verändert sein, daß dadurch die Expression des endogenen Proteins verändert wird). Der veränderte Abschnitt des ZC-Gens ist im homologen Rekombinationsvektor. Die Konstruktion geeigneter Vektoren zur homologen Rekombination ist z.B. beschrieben in Thomas, K.R. und Capecchi, M.R. (1987) Cell 51 :503.According to the invention, homologously recombined microorganisms can also be produced. For this purpose, a vector is produced which contains at least a section of a gene or a coding sequence according to the invention, in which at least one amino acid deletion, addition or substitution has optionally been introduced in order to change the sequence according to the invention, e.g. functionally disrupt ("Knockouf 'vector). The introduced sequence can also be, for example, a homolog from a related microorganism or derived from a mammalian, yeast or insect source. The vector used for homologous recombination can alternatively be designed such that the endogenous gene is mutated or otherwise altered in homologous recombination, but still encodes the functional protein (for example, the upstream regulatory region can be altered in such a way that the expression of the endogenous protein is thereby altered). The altered section of the ZC gene is in the homologous recombination vector The construction of suitable vectors for homologous recombination is described, for example, in Thomas, KR and Capecchi, MR (1987) Cell 51: 503.
Als Wirtsorganismen sind prinzipiell alle Organismen geeignet, die eine Expression der erfindungsgemäßen Nukleinsäuren, ihrer Allelvarianten, ihrer funktioneilen Äquivalente oder Derivate ermöglichen. Unter Wirtsorganismen sind beispielsweise Bakterien, Pilze, Hefen, pflanzliche oder tierische Zellen zu verstehen. Bevorzugte Organismen sind Bakterien, wie solche der Gattungen Escherichia, wie z. B. Escherichia coli, Streptomyces, Bacillus oder Pseudomonas, eukaryotische Mikroorganismen, wie Saccharomyces cerevisiae, Aspergillus, höhere eukaryotische Zellen aus Tieren oder Pflanzen, beispielsweise Sf9 oder CHO-Zellen. Bevorzugte Organismen sind aus der Gattung Ashbya, insbesondere aus A. gossyp//'-Stämmen ausgewählt.In principle, all organisms which allow expression of the nucleic acids according to the invention, their allele variants, their functional equivalents or derivatives are suitable as host organisms. Among host organisms are, for example, bacteria, fungi, yeasts, vegetable or to understand animal cells. Preferred organisms are bacteria, such as those of the genera Escherichia, such as. B. Escherichia coli, Streptomyces, Bacillus or Pseudomonas, eukaryotic microorganisms such as Saccharomyces cerevisiae, Aspergillus, higher eukaryotic cells from animals or plants, for example Sf9 or CHO cells. Preferred organisms are selected from the genus Ashbya, in particular from A. gossyp // ' strains.
Die Selektion erfolgreich transformierter Organismen kann durch Markergene erfolgen, die ebenfalls im Vektor oder in der Expressionskassette enthalten sind. Beispiele für solche Markergene sind Gene für Antibiotikaresistenz und für Enzyme, die eine farbgebende Reaktion katalysieren, die ein Anfärben der transformierten Zelle bewirkt. Diese können dann mittels automatischer Zellsortierung selektiert werden. Erfolgreich mit einem Vektor transformierte Mikroorganismen, die ein entsprechendes Antibiotikaresistenzgen (z.B. G418 oder Hygromycin) tragen, lassen sich durch entsprechende Antibiotika-enthaltende Medien oder Nährböden selektieren. Markerproteine, die an der Zelloberfläche präsentiert werden, können zur Selektion mittels Affinitäts- Chromatographie genutzt werden.Successfully transformed organisms can be selected using marker genes which are also contained in the vector or in the expression cassette. Examples of such marker genes are genes for antibiotic resistance and for enzymes which catalyze a coloring reaction which stains the transformed cell. These can then be selected using automatic cell sorting. Microorganisms successfully transformed with a vector and carrying an appropriate antibiotic resistance gene (e.g. G418 or hygromycin) can be selected using appropriate antibiotic-containing media or nutrient media. Marker proteins that are presented on the cell surface can be used for selection by means of affinity chromatography.
Die Kombination aus den Wirtsorganismen und den zu den Organismen passenden Vektoren, wie Plasmide, Viren oder Phagen, wie beispielsweise Plasmide mit dem RNA- Polymerase/Promoter-System, die Phagen λ oder μ oder andere temperente Phagen oder Transposons und/oder weiteren vorteilhaften regulatorischen Sequenzen bildet ein Expressionssystem. Beispielsweise ist unter dem Begriff "Expressionssystem" die Kombination aus Säugetierzellen, wie CHO-Zellen, und Vektoren, wie pcDNA3neo-Vektor, die für Säugetierzellen geeignet sind, zu verstehen.The combination of the host organisms and the vectors which match the organisms, such as plasmids, viruses or phages, such as, for example, plasmids with the RNA polymerase / promoter system, the phages λ or μ or other temperate phages or transposons and / or further advantageous regulatory ones Sequences form an expression system. For example, the term “expression system” means the combination of mammalian cells, such as CHO cells, and vectors, such as pcDNA3neo vector, which are suitable for mammalian cells.
Gewünsehtenfalls kann das Genprodukt auch in transgenen Organismen wie transgenen Tieren, wie insbesondere Mäusen, Schafen oder transgenen Pflanzen zur Expression gebracht werden.If desired, the gene product can also be expressed in transgenic organisms such as transgenic animals, such as in particular mice, sheep or transgenic plants.
Rekombinante Herstellung der Polypeptide:Recombinant production of the polypeptides:
Gegenstand der Erfindung sind weiterhin Verfahren zur rekombinanten Herstellung einer erfindungsgemäßen Polypeptide oder funktioneller, biologisch aktiver Fragmente davon, wobei man einen Polypeptide-produzierenden Mikroorganismus kultiviert, gegebenenfalls die Expression der Polypeptide induziert und diese aus der Kultur isoliert. Die Polypeptide können so auch in großtechnischem Maßstab produziert werden, falls dies erwünscht ist.The invention furthermore relates to processes for the recombinant production of a polypeptide according to the invention or functional, biologically active fragments thereof, wherein a polypeptide-producing microorganism is cultivated, where appropriate the expression of the polypeptides is induced and these are isolated from the culture. The polypeptides can thus also be produced on an industrial scale, if this is desired.
Der rekombinante Mikroorganismus kann nach bekannten Verfahren kultiviert und fermentiert werden. Bakterien können beispielsweise in TB- oder LB-Medium und bei einer Temperatur von 20 bis 40°C und einem pH-Wert von 6 bis 9 vermehrt werden. Im Einzelnen werden geeignete Kultivierungsbedingungen beispielsweise in T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982) beschrieben.The recombinant microorganism can be cultivated and fermented by known methods. Bacteria can, for example, in TB or LB medium and at a temperature of 20 to 40 ° C and a pH of 6 to 9 can be increased. Suitable cultivation conditions are described in detail, for example, in T. Maniatis, EF Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1982).
Die Zellen werden dann, falls die Polypeptide nicht in das Kulturmedium sezerniert werden, aufgeschlossen und das Produkt nach bekannten Proteinisolierungsverfahren aus dem Lysat gewonnen. Die Zellen können wahlweise durch hochfrequenten Ultraschall, durch hohen Druck, wie z.B. in einer French-Druckzelle, durch Osmolyse, durch Einwirkung von Detergenzien, lyti- sehen Enzymen oder organischen Lösungsmitteln, durch Homogenisatoren oder durch Kombination mehrerer der aufgeführten Verfahren aufgeschlossen werden.If the polypeptides are not secreted into the culture medium, the cells are then disrupted and the product is obtained from the lysate by known protein isolation methods. The cells can optionally be operated by high-frequency ultrasound, by high pressure, e.g. in a French pressure cell, by osmolysis, by the action of detergents, lytic enzymes or organic solvents, by homogenizers or by a combination of several of the processes listed.
Eine Aufreinigung der Polypeptide kann mit bekannten, chromatographischen Verfahren erzielt werden, wie Molekularsieb-Chromatographie (Gelfiltration), wie Q-Sepharose-Chromatographie, lonenaustausch-Chromatographie und hydrophobe Chromatographie, sowie mit anderen üblichen Verfahren wie Ultrafiltration, Kristallisation, Aussalzen, Dialyse und nativer Gelelektrophorese. Geeignete Verfahren werden beispielsweise in Cooper, T. G., Biochemische Arbeitsmethoden, Verlag Walter de Gruyter, Berlin, New York oder in Scopes, R., Protein Purification, Springer Verlag, New York, Heidelberg, Berlin beschrieben.Purification of the polypeptides can be achieved with known chromatographic methods, such as molecular sieve chromatography (gel filtration), such as Q-Sepharose chromatography, ion exchange chromatography and hydrophobic chromatography, and with other conventional methods such as ultrafiltration, crystallization, salting out, dialysis and native gel electrophoresis. Suitable methods are described, for example, in Cooper, T.G., Biochemical Working Methods, Walter de Gruyter Verlag, Berlin, New York or in Scopes, R., Protein Purification, Springer Verlag, New York, Heidelberg, Berlin.
Besonders vorteilhaft ist es, zur Isolierung des rekombinanten Proteins Vektorsysteme oder Oligonukleotide zu verwenden, die die cDNA um bestimmte Nucleotidsequenzen verlängern und damit für veränderte Polypeptide oder Fusionsproteine kodieren, die z.B. einer einfacheren Reinigung dienen. Derartige geeignete Modifikationen sind beispielsweise als Anker fungierende sogenannte "Tags", wie z.B. die als Hexa-Histidin-Anker bekannte Modifikation oder Epitope, die als Antigene von Antikörpern erkannt werden können (beschrieben zum Beispiel in Harlow, E. and Lane, D., 1988, Antibodies: A Laboratory Manual. Cold Spring Harbor (N.Y.) Press). Diese Anker können zur Anheftung der Proteine an einen festen Träger, wie z.B. einer Polymermatrix, dienen, die beispielsweise in einer Chromatographiesäule eingefüllt sein kann, oder an einer Mikrotiterplatte oder an einem sonstigen Träger verwendet werden kann.To isolate the recombinant protein, it is particularly advantageous to use vector systems or oligonucleotides which extend the cDNA by certain nucleotide sequences and thus code for modified polypeptides or fusion proteins which e.g. serve easier cleaning. Such suitable modifications are, for example, so-called "tags" functioning as anchors, such as the modification known as hexa-histidine anchors, or epitopes that can be recognized as antigens of antibodies (described, for example, in Harlow, E. and Lane, D., 1988, Antibodies: A Laboratory Manual. Cold Spring Harbor (NY) Press ). These anchors can be used to attach the proteins to a solid support, e.g. a polymer matrix, which can be filled, for example, in a chromatography column, or can be used on a microtiter plate or on another support.
Gleichzeitig können diese Anker auch zur Erkennung der Proteine verwendet werden. Zur Erkennung der Proteine können außerdem übliche Marker, wie Fluoreszenzfarbstoffe, Enzymmar- ker, die nach Reaktion mit einem Substrat ein detektierbares Reaktionsprodukt bilden, oderra- dioaktive Marker, allein oder in Kombination mit den Ankern zur Derivatisierung der Proteine verwendet werden. Die Erfindung betrifft außerdem ein Verfahren zur mikrobiologischen Produktion von Vitamin B2 und/oder Präkursoren und/oder Derivaten davon.At the same time, these anchors can also be used to recognize the proteins. To recognize the proteins, customary markers, such as fluorescent dyes, enzyme markers which form a detectable reaction product after reaction with a substrate, or radioactive markers, alone or in combination with the anchors, can be used to derivatize the proteins. The invention also relates to a method for the microbiological production of vitamin B2 and / or precursors and / or derivatives thereof.
Wird die Umsetzung mit einem rekombinanten Mikroorganismus durchgeführt, so erfolgt vor- zugsweise zunächst die Kultivierung der Mikroorganismen in Gegenwart von Sauerstoff und in einem Komplexmedium, wie z.B. bei einer Kultivierungstemperatur von etwa 20 °C oder mehr, und einem pH-Wert von etwa 6 bis 9, bis eine ausreichende Zelldichte erreicht ist. Um die Reaktion besser steuern zu können, bevorzugt man die Verwendung eines induzierbaren Promotors. Die Kultivierung wird nach Induktion der Vitamin B2-Produktion in Gegenwart von Sauerstoff 12 Stunden bis 3 Tage fortgesetzt.If the reaction is carried out with a recombinant microorganism, the microorganisms are preferably first cultivated in the presence of oxygen and in a complex medium, such as e.g. at a cultivation temperature of about 20 ° C or more, and a pH of about 6 to 9 until a sufficient cell density is reached. To better control the reaction, the use of an inducible promoter is preferred. The cultivation is continued for 12 hours to 3 days after the induction of vitamin B2 production in the presence of oxygen.
Folgende nichtlimitierende Beispiele beschreiben spezielle Ausführungsformen der Erfindung.The following non-limiting examples describe specific embodiments of the invention.
Allgemeine experimentelle AngabenGeneral experimental information
a) Allgemeine Klonierungsverfahrena) General cloning procedures
Die im Rahmen der vorliegenden Erfindung durchgeführten Klonierungsschrittewie z.B. Restriktionsspaltungen, Agarose Gelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylonmembranen, Verknüpfen von DNA-Fragmenten, Transformation von E. coli Zellen, Anzucht von Bakterien, Vermehrung von Phagen und Sequenzanalyse rekombinanter DNA wurden wie bei Sambrook et al. (1989) a.a.O. beschrieben durchgeführt.The cloning steps performed in the present invention, such as e.g. Restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linking of DNA fragments, transformation of E. coli cells, cultivation of bacteria, multiplication of phages and sequence analysis of recombinant DNA were carried out as in Sambrook et al. (1989) op. described.
b) Polymerasekettenreaktion (PCR)b) Polymerase chain reaction (PCR)
PCR wurde nach Standardprotokoll mit folgendem Standardansatz durchgeführt:PCR was carried out according to the standard protocol with the following standard approach:
8 μl dNTP-Mix (200μM), 10 μl Taq-Polymerase-Puffer (10 x) ohne MgCI2, 8μl MgCI2 (25mM), je 1 μl Primer (0,1 μM), Iμl zu amplifizierende DNA, 2,5 U Taq-Polymerase (MBI Fermentas, Vilnius, Litauen), ad 100 μl demineralisiertes Wasser.8 μl dNTP mix (200μM), 10 μl Taq polymerase buffer (10 ×) without MgCI 2 , 8 μl MgCI 2 (25mM), 1 μl primer (0.1 μM) each, Iμl DNA to be amplified, 2.5 U Taq polymerase (MBI Fermentas, Vilnius, Lithuania), ad 100 μl demineralized water.
c) Kultivierung von E.colic) Cultivation of E. coli
Die Kultivierung von rekombinanten E. coli-Stämme DH5α wurde in LB-Amp Medium (Trypton 10,0g, NaCI 5,0 g, Hefeextrakt 5,0 g, Ampicillin 100 g/ml H20 ad 1000 ml) bei 37 °C kultiviert. Dazu wurde jeweils eine Kolonie mittels Impföse von einer Agarplatte in 5 ml LB-Amp überführt. Nach ca. 18 h Stunden Kultivierung bei einer Schüttelfrequenz von 220 Upm wurden 400 ml Medium in einem 2-l-Kolben mit 4 ml Kultur inokuliert. Die Induktion der P450-Expression in E. coli erfolgte nach Erreichen eines OD578-Wertes zwischen 0,8 und 1 ,0 durch eine drei- bis vierstündige Hitzeschockinduktion bei 42 °C.The cultivation of recombinant E. coli strains DH5α was carried out in LB-Amp medium (trypton 10.0 g, NaCl 5.0 g, yeast extract 5.0 g, ampicillin 100 g / ml H 2 O ad 1000 ml) at 37 ° C cultured. For this purpose, one colony was transferred from an agar plate into 5 ml LB-Amp using an inoculation loop. After culturing for about 18 hours at a shaking frequency of 220 rpm, 400 ml of medium were inoculated with 4 ml of culture in a 2 l flask. P450 expression was induced in E. coli after an OD578 value between 0.8 and 1.0 was reached by inducing heat shock at 42 ° C. for three to four hours.
d) Reinigung des gewünschten Produktes aus der Kulturd) purification of the desired product from the culture
Die Gewinnung des gewünschten Produktes aus dem Mikroorganismus oder aus dem Kulturüberstand kann durch verschiedene, im Fachgebiet bekannte Verfahren erfolgen. Wird das ge- wünschte Produkt von den Zellen nicht sezerniert, können die Zellen aus der Kultur durch langsame Zentrifugation geerntet werden, die Zellen können durch Standard-Techniken, wie mechanische Kraft oder Ultraschallbehandlung, lysiert werden.The desired product can be obtained from the microorganism or from the culture supernatant by various methods known in the art. If the desired product is not secreted by the cells, the cells can be harvested from the culture by slow centrifugation, the cells can be lysed by standard techniques such as mechanical force or ultrasound treatment.
Die Zelltrümmer werden durch Zentrifugation entfernt, und die Überstandsfraktion, die die lösli- chen Proteine enthält, wird zur weiteren Reinigung der gewünschten Verbindung erhalten. Wird das Produkt von den Zellen sezerniert, werden die Zellen durch langsame Zentrifugation aus der Kultur entfernt, und die Überstandsfraktion wird zur weiteren Reinigung behalten.The cell debris is removed by centrifugation and the supernatant fraction containing the soluble proteins is obtained for further purification of the desired compound. If the product is secreted from the cells, the cells are removed from the culture by slow centrifugation and the supernatant fraction is retained for further purification.
Die Überstandsfraktion aus beiden Reinigungsverfahren wird einer Chromatographie mit einem geeigneten Harz unterworfen, wobei das gewünschte Molekül mit höherer Selektivität als die Verunreinigungen entweder auf dem Chromatographieharz zurückgehalten wird oder dieses passiert. Diese Chromatographieschritte können nötigenfalls wiederholt werden, wobei die gleichen oder andere Chromatographieharze verwendet werden. Der Fachmann ist in der Auswahl der geeigneten Chromatographieharze und ihrer wirksamsten Anwendung für ein bestimmtes zu reinigendes Molekül bewandert. Das gereinigte Produkt kann durch Filtration oder Ultrafiltration konzentriert und bei einer Temperatur aufbewahrt werden, bei der die Stabilität des Produktes maximal ist.The supernatant fraction from both purification processes is subjected to chromatography with a suitable resin, the desired molecule either being retained on the chromatography resin or passing through it with higher selectivity than the impurities. These chromatography steps can be repeated if necessary using the same or different chromatography resins. The person skilled in the art is skilled in the selection of the suitable chromatography resins and their most effective application for a particular molecule to be purified. The purified product can be concentrated by filtration or ultrafiltration and kept at a temperature at which the stability of the product is maximum.
Im Stand der Technik sind viele Reinigungsverfahren bekannt. Diese Reinigungstechniken sind z.B. beschrieben in Bailey, J.E. & Ollis, D.F. Biochemical Engineering Fundamentals, McGraw- Hill: New York (1986).Many cleaning methods are known in the prior art. These cleaning techniques are e.g. described in Bailey, J.E. & Ollis, D.F. Biochemical Engineering Fundamentals, McGraw-Hill: New York (1986).
Die Identität und Reinheit der isolierten Verbindungen kann durch Techniken des Standes der Technik bestimmt werden. Diese umfassen Hochleistungs-Flüssigkeitschromatographie (HPLC), spektroskopische Verfahren, Färbeverfahren, Dünnschiehtchromatographie, NIRS, Enzymtest oder mikrobiologische Tests. Diese Analyseverfahren sind zusammengefaßt in: Patek et al. (1994) Appl. Environ. Microbiol. 60:133-140; Malakhova etal. (1996) Biotekhnologiya 11 27-32; und Schmidt et al. (1998) Bioprocess Engineer. 19:67-70. Ullmann's Encyclopedia of Industrial Chemistry (1996) Bd. A27, VCH: Weinheim, S. 89-90, S. 521-540, S. 540-547, S.559-566, 575- 581 und S. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistryand Molecular Biology, John Wiley and Sons; Fallon, A. et al. (1987) Applications of HPLC in Biochem- istry in: Laboratory Techniques in Biochemistry and Molecular Biology, Bd. 17.The identity and purity of the isolated compounds can be determined by prior art techniques. These include high performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin-layer chromatography, NIRS, enzyme test or microbiological tests. These analysis methods are summarized in: Patek et al. (1994) Appl. Environ. Microbiol. 60: 133-140; Malakhova et al. (1996) Biotekhnologiya 11 27-32; and Schmidt et al. (1998) Bioprocess Engineer. 19: 67-70. Ullmann's Encyclopedia of Industrial Chemistry (1996) Vol. A27, VCH: Weinheim, pp. 89-90, pp. 521-540, pp. 540-547, pp. 559-566, 575-581 and pp. 581-587; Michal, G (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 17.
e) Allgemeine Beschreibung der MPSS-Methode, Klonidentifizierung und Homologiesuchee) General description of the MPSS method, clone identification and homology search
Die MPSS Technologie (Massive Parallele Signatur Sequenzierung, wie von Brenner et al, Nat. Biotechnol.(2000) 18, 630-634 beschrieben; worauf hiermit ausdrücklich Bezug genommen wird) wurde an dem filamentösen, Vitamin B2 produzierenden Pilz Ashbya gossypii angewendet. Mit Hilfe dieser Technologie ist es möglich, mit hoher Genauigkeit quantitative Aussagen über die Expressionsstärke einer Vielzahl von Genen in einem eukaryotischen Organismus zu erhalten. Dabei wird die mRNA des Organismus zu einem bestimmten Zeitpunkt X isoliert, mit Hilfe des Enzyms Reverse Transkriptase in cDNA umgeschrieben und anschließend in spezielle Vektoren kloniert, die eine spezifische Tag-Sequenz besitzen. Die Anzahl von Vektoren mit unterschiedlicher Tagsequenz wird dabei so hoch gewählt (etwa 1000-fach höher), dass statistisch gesehen, jedes DNA-Molekül in einen, durch seine Tag-Sequenz einzigartigen, Vektor kloniert wird.MPSS technology (massive parallel signature sequencing, as described by Brenner et al, Nat. Biotechnol. (2000) 18, 630-634; to which express reference is made) was applied to the filamentous mushroom Ashbya gossypii that produces vitamin B2. With the help of this technology it is possible to obtain quantitative statements about the expression strength of a large number of genes in a eukaryotic organism with high accuracy. The mRNA of the organism is isolated at a specific point in time X, transcribed into cDNA using the enzyme reverse transcriptase and then cloned into special vectors which have a specific tag sequence. The number of vectors with different tag sequences is chosen so high (about 1000 times higher) that, statistically speaking, each DNA molecule is cloned into a vector that is unique due to its tag sequence.
Anschließend werden die Vektorinserts zusammen mit dem Tag herausgeschnitten. Die so erhaltenen DNA-Moleküle werden dann mit Mikrokügelchen inkubiert, die die molekularen Gegenstücke zu den erwähnten Tags besitzen. Nach Inkubation kann davon ausgegangen werden, daß jedes Mikrokügelchen über die spezifischen Tags bzw. Gegenstücke mit nur einer Sorte von DNA Molekülen beladen ist. Die Kügelchen werden in eine spezielle Flußzelle überführt und dort fixiert, so dass es möglich ist, mit Hilfe eines adaptierten Sequenzierverfahrens, auf Basis von Fluoreszensfarbstoffen und mit Hilfe einer digitalen Farbkamera, eine Massensequenzierung aller Kügelchen vorzunehmen. Mit dieser Methode ist zwar eine zahlenmäßig hohe Auswertung möglich, die allerdings durch eine Leseweite von etwa 16 bis 20 Basenpaaren limitiert ist. Die Sequenzlänge reicht dennoch aus, um bei den meisten Organismen eine eindeutige Zuordnung zwischen Sequenz und Gen zu ermöglichen (20bp besitzen eine Sequenzhäufigkeit von -1x1012, das menschliche Genom besitzt im Vergleich dazu "nur" eine Größe von -3x109 bp).Then the vector inserts are cut out together with the tag. The DNA molecules thus obtained are then incubated with microspheres that have the molecular counterparts of the tags mentioned. After incubation, it can be assumed that each microsphere is loaded with only one type of DNA molecule via the specific tags or counterparts. The beads are transferred to a special flow cell and fixed there, so that it is possible to carry out a mass sequencing of all beads using an adapted sequencing method based on fluorescent dyes and using a digital color camera. With this method, a numerically high evaluation is possible, but is limited by a reading range of approximately 16 to 20 base pairs. However, the sequence length is sufficient to allow a clear assignment between sequence and gene in most organisms (20 bp have a sequence frequency of -1x10 12 , the human genome has "only" a size of -3x10 9 bp in comparison).
Die auf diese Weise erhaltenen Daten werden ausgewertet, indem die Anzahl dergleichen Sequenzen gezählt und ihre Häufigkeiten miteinander verglichen werden. Häufig auftretende Se- quenzen spiegeln eine hohe Expressionsstärke, vereinzelt auftretende Sequenzen eine niedrige Expressionsstärke wider. Erfolgte die mRNA-lsolation zu zwei Unterschiedlichen Zeitpunkten (X und Y), so ist es möglich ein zeitliches Expressionsmuster einzelner Gene aufzustellen. Beispiel 1:The data obtained in this way are evaluated by counting the number of such sequences and comparing their frequencies with one another. Frequently occurring sequences reflect a high level of expression, occasionally occurring sequences reflect a low level of expression. If the mRNA isolation took place at two different times (X and Y), it is possible to set up a temporal expression pattern of individual genes. Example 1:
Isolation von mRNA aus Ashbya gossypiiIsolation of Ashbya gossypii mRNA
Ashbya gossypii wurde in an sich bekannter Weise kultiviert (Nährmedium: 27,5 g/l Hefeextrakt; 0,5 g/l Magnesiumsulfat; 50ml/l Sojaöl; pH 7). Myzelproben von Ashbya gossypii werden zu unterschiedlichen Zeitpunkten der Fermentation (24h, 48h und 72h) entnommen und die entsprechende RNA bzw. mRNA wird nach dem Protokoll von Sambrook et al. (1989) daraus isoliert.Ashbya gossypii was cultivated in a manner known per se (nutrient medium: 27.5 g / l yeast extract; 0.5 g / l magnesium sulfate; 50 ml / l soybean oil; pH 7). Ashbya gossypii mycelium samples are taken at different times during the fermentation (24h, 48h and 72h) and the corresponding RNA or mRNA is prepared according to the protocol of Sambrook et al. (1989) isolated from it.
Beispiel 2:Example 2:
Anwendung der MPSSApplication of the MPSS
Isolierte mRNA von A. gossypii wird dann einer MPSS-Analyse, wie oben erläutert, unterzogen.A. gossypii mRNA isolated is then subjected to MPSS analysis as explained above.
Die ermittelten Datensätze werden einer statistischen Auswertung unterzogen und nach Signifikanz der Expressionsunterschiede gegliedert. Dabei wurde sowohl hinsichtlich Erhöhung bzw. Erniedrigung der Expressionsstärke untersucht. Eine Einteilung erfolgt über eine Einstufung der Expressionsveränderung in a) monotone Veränderung, b) Veränderung nach 24h, und c) Veränderung nach 48h.The determined data sets are subjected to a statistical evaluation and classified according to the significance of the expression differences. Both the increase and decrease in the level of expression were examined. The expression change is classified into a) monotonous change, b) change after 24h, and c) change after 48h.
Die eine Expressionsveränderung repräsentierenden durch MPSS-Analyse ermittelten 20bp- Sequenzen werden dann als Sonden verwendet und gegen eine Genbank von Ashbya gossypii, mit einer durchschnittlichen Insertgröße von etwa 1kb, hybridisiert. Die Hydridisierungstempera- tur lag dabei im Bereich von etwa 30 bis 57°C.The 20bp sequences, which represent an expression change and are determined by MPSS analysis, are then used as probes and hybridized against an Ashbya gossypii gene library with an average insert size of approximately 1 kb. The hydriding temperature was in the range from about 30 to 57 ° C.
Beispiel 3:Example 3:
Erstellung einer genomischen Genbank aus Ashbya gossypiiCreation of a genomic gene bank from Ashbya gossypii
Zur Erstellung einer genomischen DNA-Bank wird zunächst chromosomale DNA nach der Me- thode von Wright und Philippsen (Gene (1991 ) 109: 99-105) und Mohr (1995, PhD Thesis, Biozentrum Universität Basel, Schweiz) isoliert.To create a genomic DNA bank, chromosomal DNA is first isolated using the method of Wright and Philippsen (Gene (1991) 109: 99-105) and Mohr (1995, PhD thesis, Biozentrum University Basel, Switzerland).
Die DNA wird partiell mit Sau3A verdaut. Dazu werden 6μg genomische DNA einem Sau3A Verdau mit unterschiedlichen Enzymmengen (0,1 bis 1 U) unterzogen. Die Fragmente werden in einem Saccharose-Dichtegradienten fraktioniert. Die 1 kb Region wird isoliert und einer QiaEx- Extraktion unterzogen. Die größten Fragmente werden mit dem Ba HI geschnittenen Vektor pRS416 (Sikorski und Hieter, Genetics (1988) 122; 19-27) ligiert (90 ng BamHI geschnittener, dephosphorylierter Vektor; 198 ng Insert DNA; 5ml Wasser; 2 μl 10xLigationspuffer; 1 U Ligase). Mit diesem Ligationsansatzwird £ co// Laborstamm XL-1 blue transformiert und die resultierenden Klone werden zur Identifizierung des Inserts eingesetzt.The DNA is partially digested with Sau3A. For this purpose, 6μg genomic DNA is subjected to Sau3A digestion with different amounts of enzyme (0.1 to 1 U). The fragments are fractionated in a sucrose density gradient. The 1 kb region is isolated and subjected to QiaEx extraction. The largest fragments are ligated with the Ba HI cut vector pRS416 (Sikorski and Hieter, Genetics (1988) 122; 19-27) (90 ng BamHI cut, dephosphorylated vector; 198ng insert DNA; 5ml water; 2 ul 10x ligation buffer; 1 U ligase). With this ligation approach £ co // laboratory strain XL-1 blue is transformed and the resulting clones are used to identify the insert.
Beispiel 4:Example 4:
Herstellung einer geordneten Genbank (CHIP-Technologie)Creation of an orderly gene bank (CHIP technology)
Etwa 25,000 Kolonien der Ashbya gossypii Genbank (dies entspricht einer etwa 3-fachen Genomabdeckung) wurden geordnet auf eine Nylonmembran transferiert und anschließend nach der Methode der Koloniehybridisierung wie in Sambrook et al. (1989) beschrieben, behandelt. Von den durch MPSS-Analyse ermittelten 20bp-Sequenzen wurden Oligonukleotide synthetisiert und mit Hilfe von 32P radioaktiv markiert. Jeweils 10 markierte Oligonukleotide mit ähnlichem Schmelzpunkt werden vereinigt und gemeinsam gegen die Nylonmembranen hybridisiert. Nach Hybridisierungs- und Waschschritten werden positive Klone durch Autoradiographie identifiziert, und mit Hilfe von PCR-Sequenzierung direkt analysiert.About 25,000 colonies from the Ashbya gossypii gene bank (this corresponds to approximately 3 times the genome coverage) were transferred to a nylon membrane in an orderly manner and then transferred using the colony hybridization method as described in Sambrook et al. (1989). Oligonucleotides were synthesized from the 20 bp sequences determined by MPSS analysis and radioactively labeled using 32 P. 10 labeled oligonucleotides with a similar melting point are combined and hybridized together against the nylon membranes. After hybridization and washing steps, positive clones are identified by autoradiography and analyzed directly using PCR sequencing.
Auf diese Weise wurde ein Klon identifiziert, der ein Insert mit der internen Bezeichnung „Oligo 8" trägt und mit dem MIPS Tag „Cwp1" aus S. cerevisiae signifikante Homologien besitzt. Das Insert besitzt eine Nukleinsäuresequenz gemäß SEQ ID NO: 1.In this way, a clone was identified which bears an insert with the internal name "Oligo 8" and which has significant homologies with the MIPS tag "Cwp1" from S. cerevisiae. The insert has a nucleic acid sequence as shown in SEQ ID NO: 1.
Auf diese Weise wurde weiterhin ein Klon identifiziert, der ein Insert mit der internen Bezeichnung „Oligo 25/39" trägt und mit dem MIPS Tag „ARK1" aus S. cerevisiae signifikante Homologien besitzt. Das Insert besitzt eine Nukleinsäuresequenz gemäß SEQ ID NO: 8.In this way, a clone was identified which bears an insert with the internal name "Oligo 25/39" and which has significant homologies with the MIPS tag "ARK1" from S. cerevisiae. The insert has a nucleic acid sequence as shown in SEQ ID NO: 8.
Auf diese Weise wurde weiterhin ein Klon identifiziert, der ein Insert mit der internen Bezeichnung „Oligo 46" trägt und mit dem MIPS Tag „BUD2/CLA2" aus S. cerevisiae signifikante Homologien besitzt. Das Insert besitzt eine Nukleinsäuresequenz gemäß SEQ ID NO: 12.In this way, a clone was identified which bears an insert with the internal name "Oligo 46" and which has significant homologies with the MIPS tag "BUD2 / CLA2" from S. cerevisiae. The insert has a nucleic acid sequence as shown in SEQ ID NO: 12.
Auf diese Weise wurde weiterhin ein Klon identifiziert, der ein Insert mit der internen Bezeich- nung „Oligo 103" trägt und mit dem MIPS Tag „Aor1" aus S. cerevisiae signifikante Homologien besitzt. Das Insert besitzt eine Nukleinsäuresequenz gemäß SEQ ID NO: 17.In this way, a clone was identified which bears an insert with the internal name “Oligo 103” and has significant homologies with the MIPS tag “Aor1” from S. cerevisiae. The insert has a nucleic acid sequence as shown in SEQ ID NO: 17.
Auf diese Weise wurde weiterhin ein Klon identifiziert, der ein Insert mit der internen Bezeichnung „Oligo 128" trägt und mit dem MIPS Tag „Ykl179c" aus S. cerevisiae signifikante Homolo- gien besitzt. Das Insert besitzt eine Nukleinsäuresequenz gemäß SEQ ID NO: 21. Auf diese Weise wurde weiterhin ein Klon identifiziert, der ein Insert mit der internen Bezeichnung „Oligo 150" trägt und mit dem MIPS Tag „Scp1" aus S. cerevisiae signifikante Homologien besitzt. Das Insert besitzt eine Nukleinsäuresequenz gemäß SEQ ID NO: 26.In this way, a clone was also identified which bears an insert with the internal name "Oligo 128" and which has significant homologies with the MIPS tag "Ykl179c" from S. cerevisiae. The insert has a nucleic acid sequence as shown in SEQ ID NO: 21. In this way, a clone was identified which bears an insert with the internal name "Oligo 150" and which has significant homologies with the MIPS tag "Scp1" from S. cerevisiae. The insert has a nucleic acid sequence as shown in SEQ ID NO: 26.
Auf diese Weise wurde ein Klon identifiziert, der ein Insert mit der internen Bezeichnung „Oligo 177" trägt und mit dem MIPS Tag „EPD1" aus C. maltosa signifikante Homologien besitzt. Das Insert besitzt eine Nukleinsäuresequenz gemäß SEQ ID NO: 30.In this way, a clone was identified which bears an insert with the internal name “Oligo 177” and has significant homologies with the MIPS tag “EPD1” from C. maltosa. The insert has a nucleic acid sequence as shown in SEQ ID NO: 30.
Auf diese Weise wurde ein Klon identifiziert, der ein Insert mit der internen Bezeichnung „Oligo 145" trägt und mit dem MIPS Tag „Aip2" aus S. cerevisiae signifikante Homologien besitzt. Das Insert besitzt eine Nukleinsäuresequenz gemäß SEQ ID NO: 36.In this way, a clone was identified which bears an insert with the internal name "Oligo 145" and which has significant homologies with the MIPS tag "Aip2" from S. cerevisiae. The insert has a nucleic acid sequence as shown in SEQ ID NO: 36.
Beispiel 5:Example 5:
Auswertung der Sequenzdaten mit Hilfe einer BLASTX SucheEvaluation of the sequence data using a BLASTX search
Eine Auswertung der erhaltenen Nukleinsäure-Sequenzen, d.h. deren funktionale Zuordnung zu einer funktionalen Aminosäuresequenz, erfolgte mittels einer BLASTX-Suche in Sequenz- Datenbanken. Fast alle der aufgefundenen Aminosäuresequenz-Homologien betrafen Saccha- romyces cerevisiae (Bäckerhefe). Da dieser Organismus bereits vollständig sequenziert worden ist, konnten genauere Informationen bezüglich dieser Gene unter: http://www.mips.gsf.de/proi/yeast/search/code search.htm nachgeschlagen werden.An evaluation of the nucleic acid sequences obtained, i.e. their functional assignment to a functional amino acid sequence was carried out using a BLASTX search in sequence databases. Almost all of the amino acid sequence homologies found concerned Saccharomyces cerevisiae (baker's yeast). Since this organism has already been completely sequenced, more detailed information regarding these genes can be found at: http://www.mips.gsf.de/proi/yeast/search/code search.htm.
So wurde folgende Homologien mit einem Aminosäurefragment aus S. cerevisiae ermittelt. Die entsprechenden Alignments sind in den beiliegenden Figuren 1 bis 8 gezeigt.The following homologies with an amino acid fragment from S. cerevisiae were determined. The corresponding alignments are shown in the attached FIGS. 1 to 8.
a) Die vom kodierenden Strang zu SEQ ID NO:1 abgeleitete Aminosäuresequenz besitzt signifikante Sequenzhomologie mit einem Zellwand-Vorläufer-Protein aus S. cerevisiae. Eine davon abgeleiteten Aminosäure-Teilsequenz (entsprechend den Nucleotiden 1092 bis 595 aus SEQ ID NO:1 ) mit einer Teilsequenz des S. cerevisiae Proteins ist in Figur 1 dargestellt. SEQ ID NO: 2 und SEQ ID NO: 3 zeigen jeweils eine N-terminal verlängerte Aminosäure-Teilsequenz .a) The amino acid sequence derived from the coding strand to SEQ ID NO: 1 has significant sequence homology with a cell wall precursor protein from S. cerevisiae. A partial amino acid sequence derived therefrom (corresponding to nucleotides 1092 to 595 from SEQ ID NO: 1) with a partial sequence of the S. cerevisiae protein is shown in FIG. 1. SEQ ID NO: 2 and SEQ ID NO: 3 each show an N-terminally extended amino acid partial sequence.
Die ermittelte A. gossypii Nukleinsäuresequenz konnte damit der Funktion eines Zellwand- Vorläufer-Proteins zugeordnet werden.The A. gossypii nucleic acid sequence determined could thus be assigned the function of a cell wall precursor protein.
b) Die vom korrespondierenden Gegenstrang zu SEQ ID NO:8 abgeleitete Aminosäuresequenz besitzt signifikante Sequenzhomologie mit einer Serin-Threonin-Kinase aus S. cerevisiae. Eine davon abgeleiteten Aminosäure-Teilsequenz (entsprechend den Nucleotiden 1067 bis 84 aus SEQ ID NO:8 ) mit einer Teilsequenz des S. cerevisiae Enzyms ist in Figur 2 dargestellt. SEQ ID NO: 9 zeigt eine N-terminal verlängerte Aminosäure-Teilsequenz .b) The amino acid sequence derived from the corresponding counter-strand to SEQ ID NO: 8 has significant sequence homology with a serine-threonine kinase from S. cerevisiae. A partial amino acid sequence derived from it (corresponding to the nucleotides 1067 to 84 from SEQ ID NO: 8) with a partial sequence of the S. cerevisiae enzyme is shown in FIG. 2. SEQ ID NO: 9 shows an N-terminally extended amino acid partial sequence.
Die ermittelte A. gossypii Nukleinsäuresequenz konnte damit der Funktion einer Serin-Threonin- Kinase zugeordnet werden.The A. gossypii nucleic acid sequence determined could thus be assigned the function of a serine threonine kinase.
c) Die vom Gegenstrang zu SEQ ID NO:12 abgeleitete Aminosäuresequenz besitzt signifikante Sequenzhomologie mit einem GTPase-aktivierenden Protein aus S. cerevisiae. Eine davon abgeleiteten Aminosäure-Teilsequenz (entsprechend den Nucleotiden 475 bis 353 aus SEQ ID NO: 12 ) mit einer Teilsequenz des S. cerevisiae Proteins ist in Figur 3A dargestellt. Eine weitere davon abgeleiteten Aminosäure-Teilsequenz (entsprechend den Nucleotiden 351 bis 1 aus SEQ ID NO:12) mit einer Teilsequenz des S. cerevisiae Proteins ist in Figur 3B dargestellt. SEQ ID NO: 13 und SEQ ID NO: 14 zeigen jeweils eine N-terminal verlängerte Aminosäure- Teilsequenz .c) The amino acid sequence derived from the counter strand to SEQ ID NO: 12 has significant sequence homology with a GTPase-activating protein from S. cerevisiae. A partial amino acid sequence derived therefrom (corresponding to nucleotides 475 to 353 from SEQ ID NO: 12) with a partial sequence of the S. cerevisiae protein is shown in FIG. 3A. Another amino acid part-sequence derived therefrom (corresponding to nucleotides 351 to 1 from SEQ ID NO: 12) with a part-sequence of the S. cerevisiae protein is shown in FIG. 3B. SEQ ID NO: 13 and SEQ ID NO: 14 each show an N-terminally extended amino acid part-sequence.
Die ermittelte A. gossypii Nukleinsäuresequenz konnte damit der Funktion eines GTPase- aktivierenden Proteins zugeordnet werden.The A. gossypii nucleic acid sequence determined could thus be assigned the function of a GTPase-activating protein.
d) Die vom korrespondierenden Gegenstrang zu SEQ ID NO: 17 abgeleitete Aminosäure- sequenz besitzt signifikante Sequenzhomologie mit einem Protein aus S. cerevisiae, welches mit eineδr Resistenz gegen eine Aktin-Überexpression assoziiert ist. Eine davon abgeleiteten Aminosäure-Teilsequenz (entsprechend den Nucleotiden 933 bis 157 aus SEQ ID NO:17 ) mit einer Teilsequenz des S. cerevisiae Proteins ist in Figur 4 dargestellt. SEQ ID NO: 18 zeigt eine N- terminal verlängerte Aminosäure-Teilsequenz .d) The amino acid sequence derived from the corresponding counter strand to SEQ ID NO: 17 has significant sequence homology with a protein from S. cerevisiae, which is associated with resistance to actin overexpression. An amino acid partial sequence derived therefrom (corresponding to nucleotides 933 to 157 from SEQ ID NO: 17) with a partial sequence of the S. cerevisiae protein is shown in FIG. 4. SEQ ID NO: 18 shows an N-terminally extended amino acid partial sequence.
Die ermittelte A. gossypii Nukleinsäuresequenz konnte damit der Funktion eines Proteins, welches eine Resistenz gegen eine Aktin-Überexpression besitzt, zugeordnet werden.The A. gossypii nucleic acid sequence determined could thus be assigned to the function of a protein which is resistant to actin overexpression.
e) Die vom kodierenden Strang zu SEQ ID NO:21 abgeleitete Aminosäuresequenz besitzt signifikante Sequenzhomplogie mit einem zu Nuflp ähnlichen Protein aus S. cerevisiae. Eine davon abgeleiteten Aminosäure-Teilsequenz (entsprechend den Nucleotiden 117 bis 794 aus SEQ ID NO:21 ) mit einer Teilsequenz des S. cerevisiae Proteins ist in Figur 5 dargestellt. SEQ ID NO: 22 zeigt eine N-terminal verlängerte Aminosäure-Teilsequenz .e) The amino acid sequence derived from the coding strand to SEQ ID NO: 21 has significant sequence complicity with a protein from S. cerevisiae similar to Nuflp. An amino acid partial sequence derived therefrom (corresponding to nucleotides 117 to 794 from SEQ ID NO: 21) with a partial sequence of the S. cerevisiae protein is shown in FIG. 5. SEQ ID NO: 22 shows an N-terminally extended amino acid partial sequence.
Die ermittelte A. gossypii Nukleinsäuresequenz konnte damit der Funktion eines zu Nuf 1 p ähnlichen Proteins zugeordnet werden. f) Die vom kodierenden Strang zu SEQ ID NO:26 abgeleitete Aminosäuresequenz besitzt signifikante Sequenzhomologie mit einem zu Calponin homologen Proteins aus S. cerevisiae. Eine davon abgeleiteten Aminosäure-Teilsequenz (entsprechend den Nucleotiden 438 bis 767 aus SEQ ID NO:26 ) mit einer Teilsequenz des S. cerevisiae Proteins ist in Figur 6 dargestellt. SEQ ID NO: 27 zeigt eine N-terminal verlängerte Aminosäure-Teilsequenz .The A. gossypii nucleic acid sequence determined could thus be assigned the function of a protein similar to Nuf 1 p. f) The amino acid sequence derived from the coding strand to SEQ ID NO: 26 has significant sequence homology with a protein from S. cerevisiae homologous to calponin. An amino acid partial sequence derived therefrom (corresponding to nucleotides 438 to 767 from SEQ ID NO: 26) with a partial sequence of the S. cerevisiae protein is shown in FIG. 6. SEQ ID NO: 27 shows an N-terminally extended amino acid partial sequence.
Die ermittelte A. gossypii Nukleinsäuresequenz konnte damit der Funktion eines zu Calponin homologen Proteins zugeordnet werden.The A. gossypii nucleic acid sequence determined could thus be assigned the function of a protein homologous to calponin.
g) Die vom korrespondierenden Gegenstrang zu SEQ ID NO:30 abgeleitete Aminosäuresequenz besitzt signifikante Sequenzhomologie mit einem Protein aus C. maltosa, welches für die Pseudohyphen-Entwicklung in maltosa essentiell ist. Eine davon abgeleiteten Aminosäure- Teilsequenz (entsprechend den Nucleotiden 983 bis 651 aus SEQ ID NO:30 ) mit einer Teilsequenz des C. maltosa Proteins ist in Figur 7A dargestellt. Eine weitere davon abgeleiteten Ami- nosäure-Teilsequenz (entsprechend den Nucleotiden 661 bis 596 aus SEQ ID NO:30 ) mit einer Teilsequenz des C. maltosa Proteins ist in Figur 7B dargestellt. Eine dritte davon abgeleiteten Aminosäure-Teilsequenz (entsprechend den Nucleotiden 591 bis 1 aus SEQ ID NO:30 ) mit einer Teilsequenz des C. maltosa Proteins ist in Figur 7C dargestellt. SEQ ID NO: 31, SEQ ID NO: 32 und SEQ ID NO: 33 zeigen jeweils eine N-terminal verlängerte Aminosäure-Teilsequenzg) The amino acid sequence derived from the corresponding counter-strand to SEQ ID NO: 30 has significant sequence homology with a protein from C. maltosa, which is essential for pseudohyphene development in maltosa. An amino acid partial sequence derived therefrom (corresponding to nucleotides 983 to 651 from SEQ ID NO: 30) with a partial sequence of the C. maltosa protein is shown in FIG. 7A. A further partial amino acid sequence derived therefrom (corresponding to nucleotides 661 to 596 from SEQ ID NO: 30) with a partial sequence of the C. maltosa protein is shown in FIG. 7B. A third amino acid partial sequence derived therefrom (corresponding to nucleotides 591 to 1 from SEQ ID NO: 30) with a partial sequence of the C. maltosa protein is shown in FIG. 7C. SEQ ID NO: 31, SEQ ID NO: 32 and SEQ ID NO: 33 each show an N-terminally extended amino acid partial sequence
Die ermittelte A. gossypii Nukleinsäuresequenz konnte damit der Funktion eines Proteins, welches für die Pseudohyphen-Entwicklung in C. maltosa essentiell ist, zugeordnet werden.The A. gossypii nucleic acid sequence determined could thus be assigned to the function of a protein which is essential for the development of pseudohyphae in C. maltosa.
h) Die vom kodierenden Strang zu SEQ ID NO:36 abgeleitete Aminosäuresequenz besitzt signifikante Sequenzhomologie mit einem Protein aus S. cerevisiae, welches mit Aktin wechselwirkt. Eine davon abgeleiteten Aminosäure-Teilsequenz (entsprechend den Nucleotiden 2 bis 148 aus SEQ ID NO:36 ) mit einer Teilsequenz des S. cerevisiae Proteins ist in Figur 8 dargestellt. SEQ ID NO: 37 zeigt eine N-terminal verlängerte Aminosäure-Teilsequenz .h) The amino acid sequence derived from the coding strand to SEQ ID NO: 36 has significant sequence homology with a protein from S. cerevisiae, which interacts with actin. An amino acid partial sequence derived therefrom (corresponding to nucleotides 2 to 148 from SEQ ID NO: 36) with a partial sequence of the S. cerevisiae protein is shown in FIG. 8. SEQ ID NO: 37 shows an N-terminally extended amino acid partial sequence.
Die ermittelte A. gossypii Nukleinsäuresequenz konnte damit der Funktion eines Proteins, welches mit Aktin wechselwirkt, zugeordnet werden.The A. gossypii nucleic acid sequence determined could thus be assigned to the function of a protein which interacts with actin.
Beispiel 6: Isolierung der Full-Length-DNAExample 6: Isolation of full-length DNA
a) Konstruktion einer A. gossyp/7-Genbank Hochmolekulare zelluläre Gesamt-DNA von A. gossypii wurde aus einer 2 Tage alten, in einem flüssigen MA2-Medium (10g Glucose, 10g Pepton, 1g Hefeextrakt, 0,3g Myo-Inositad 1000 ml) gewachsenen 100 ml Kultur hergestellt. Das Myzel wurde abfiltriert, zweimal mit H20 dest. ge- waschen, in 10 ml 1M Sorbitol, 20 mM EDTA, enthaltend 20 mg Zymolyase-20T, suspendiert und 30 bis 60 min unter leichtem Schütteln bei 27 °C inkubiert. Die Protoplasten-Suspension wurde auf 50 mM Tris-HCI, pH 7,5, 150 mM NaCI, 100 mM EDTA und 0,5-%igem Natriumdode- cylsulfat (SDS) eingestellt und 20 min bei 65 °C inkubiert. Nach zwei Extraktionen mit Phenol- Chloroform (1 :1 vol/vol) wurde die DNA mit Isopropanol gefällt, in TE-Puffer suspendiert, mit RNase behandelt, erneut mit Isopropanol gefällt und in TE resuspendiert.a) Construction of an A. gossyp / 7 gene bank A. gossypii high molecular weight cellular DNA was prepared from a 2 day old 100 ml culture grown in a liquid MA2 medium (10 g glucose, 10 g peptone, 1 g yeast extract, 0.3 g Myo-Inositad 1000 ml). The mycelium was filtered off, twice with H 2 0 dest. washed, suspended in 10 ml of 1M sorbitol, 20 mM EDTA, containing 20 mg of zymolyase-20T, and incubated at 27 ° C. for 30 to 60 min with gentle shaking. The protoplast suspension was adjusted to 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 100 mM EDTA and 0.5% sodium dodecyl sulfate (SDS) and incubated at 65 ° C. for 20 min. After two extractions with phenol-chloroform (1: 1 vol / vol), the DNA was precipitated with isopropanol, suspended in TE buffer, treated with RNase, precipitated again with isopropanol and resuspended in TE.
Eine A. gossyp//-Kosmid-Genbank wurde hergestellt, indem man nach der Größe ausgewählte, mit Sau3A teilverdaute genomische DNA an die dephosphorylierten Arme des Cosmidvektors Super-Cos1 (Stratagene) band. Der Super-Cos1 -Vektor wurde zwischen den beiden cos-Stellen durch Verdau mit Xbal und Dephosphorylierung mit alkalischer Kalbsdarm-Phosphatase (Boeh- ringer) geöffnet, gefolgt von einem öffnen der Klonierungsstelle mit BamHI. Die Ligationen wurden über Nacht bei 15 °C in 20 μl, enthaltend 2,5 μg teilverdauter chromosomaler DNA, 1 μg Super-Cos1 -Vektorenarme, 40 mM Tris-HCI, pH 7,5, 10 mM MgCI2, 1mM Dithiothreitol, 0,5 mM ATP und 2 Weiss-Einheiten T4-DNA-Ligase (Boehringer) durchgeführt. Die Ligationsprodukte wurden unter Verwendung der Extrakte und des Protokolls von Stratagene (Gigapack II Packa- ging Extract) in vitro verpackt. Das verpackte Material wurde zur Infizierung von E. coli NM554 {recA13, araD139, Δ(ara,leu)7696, Δ(lac)17A, galil, galK, hsrR, rps(sttr), mcrA, mcrB) verwendet und auf Ampicillin (50 μg/ml) enthaltende LB-Platten verteilt. Man erhielt Transformanten, welche ein A. gossyρ/7-lnsert einer durchschnittlichen Länge von 30-45 kb enthielten.An A. gossyp // cosmid library was made by binding genomic DNA selected in size, partially digested with Sau3A, to the dephosphorylated arms of the cosmid vector Super-Cos1 (Stratagene). The Super Cos1 vector was opened between the two cos sites by digestion with Xbal and dephosphorylation with alkaline calf intestinal phosphatase (Boehringer), followed by opening the cloning site with BamHI. The ligations were carried out overnight at 15 ° C. in 20 μl, containing 2.5 μg partially digested chromosomal DNA, 1 μg Super-Cos1 vector arms, 40 mM Tris-HCl, pH 7.5, 10 mM MgCl 2 , 1mM dithiothreitol, 0 , 5 mM ATP and 2 Weiss units T4 DNA ligase (Boehringer). The ligation products were packaged in vitro using the extracts and protocol from Stratagene (Gigapack II Packing Extract). The packaged material was used to infect E. coli NM554 {recA13, araD139, Δ (ara, leu) 7696, Δ (lac) 17A, galil, galK, hsrR, rps (stt r ), mcrA, mcrB) and on ampicillin (50 μg / ml) containing LB plates distributed. Transformants were obtained which contained an A. gossyρ / 7 insert with an average length of 30-45 kb.
b) Lagerung und Screening der Cosmid-Genbankb) Storage and screening of the Cosmid gene bank
Insgesamt 4 x 104 frische Einzelkolonien wurden einzeln in Vertiefungen von 96-er Microtiterplatten (Falcon, Nr. 3072) in 100 μl LB-Medium, ergänzt mit dem Gefriermedium (36 mM K2HPθ4/13,2 mM KH2P04, 1 ,7 mM Natriumeitrat, 0,4 mM MgS04, 6,8 mM (NH4)2S04, 4,4% (wt/vol) Glycerin) und Ampicillin (50 μg/ml), inokuliert, über Nacht bei 37 °C unter Schütteln wachsen gelassen und bei -70 °C eingefroren. Die Platten wurden rasch aufgetaut und danach unter Verwendung eines 96-er-Replikators, der in einem Ethanolbad unter anschließender Verdunstung des Ethanols auf einer heißen Platte sterilisiert worden war, in frisches Medium dupli- ziert. Vor dem Einfrieren und nach dem Auftauen (vor irgendwelchen anderen Maßnahmen) wurden die Platten kurz in einem Mikrotiterschüttler (Infors) geschüttelt, um eine homogene Zellsuspension zu gewährleisten. Mittels eines Robotersystems (Bio-Robotics), mit dem geringe Mengen an Flüssigkeit aus 96 Vertiefungen einer Mikrotiterplatte auf Nylonmembran (GeneSc- reen Plus, New England Nuclear) transferiert werden können, wurden einzelne Klone auf Nylonmembranen platziert. Nach dem Transfer der Kultur aus den 96-er Mikrotiterplatten (1920 Klone) wurden die Membranen auf die Oberfläche von LB-Agar mit Ampicillin (50 μg/ml) in 22 x 22 cm Kulturschalen (Nunc) platziert und über Nacht bei 37 °C inkubiert. Vor Erreichen derZell- konfluenz wurden die Membranen, wie von Herrmann, B. G., Barlow, D. P. und Lehrach, H. (1987) in Cell 48, S. 813-825 beschrieben, prozessiert, wobei als zusätzliche Behandlung nach dem ersten Denaturierungsschritt ein 5-minütiges Bedampfen der Filter auf einem in Denaturie- rungslösung getränkten Pad über einem kochenden Wasserbad hinzukommt.A total of 4 × 10 4 fresh individual colonies were individually in wells of 96-well microtiter plates (Falcon, No. 3072) in 100 μl LB medium, supplemented with the freezing medium (36 mM K 2 HPO 4 / 13.2 mM KH 2 PO 4 , 1.7 mM sodium citrate, 0.4 mM MgSO 4 , 6.8 mM (NH 4 ) 2 SO 4 , 4.4% (wt / vol) glycerol) and ampicillin (50 μg / ml), inoculated, overnight Let grow at 37 ° C with shaking and freeze at -70 ° C. The plates were quickly thawed and then duplicated in fresh medium using a 96 series replicator which had been sterilized in an ethanol bath followed by evaporation of the ethanol on a hot plate. Before freezing and after thawing (before any other measures), the plates were briefly shaken in a microtiter shaker (Infors) to ensure a homogeneous cell suspension. By means of a robot system (bio-robotics), with the low Amounts of liquid from 96 wells of a microtiter plate can be transferred to nylon membrane (GeneScreen Plus, New England Nuclear), individual clones were placed on nylon membranes. After the transfer of the culture from the 96-well microtiter plates (1920 clones), the membranes were placed on the surface of LB agar with ampicillin (50 μg / ml) in 22 × 22 cm culture dishes (Nunc) and overnight at 37 ° C. incubated. Before cell confluence was reached, the membranes were processed as described by Herrmann, BG, Barlow, DP and Lehrach, H. (1987) in Cell 48, pp. 813-825, with an additional treatment after the first denaturation step being a 5- minutes of steaming the filters on a pad soaked in denaturing solution is added over a boiling water bath.
Hit Hilfe des Random-Hexamer-Primer-Verfahrens (Feinberg, A. P. und Vogelstein, B. (1983), Anal. Biochem. 132, S. 6-13) wurden doppelsträngige Sonden durch Aufnahme von [alpha- 32P]dCTP mit hoher spezifischer Aktivität markiert. Die Membranen wurden prähybridisiert und 6 bis 12 h bei 42 °C in 50% (vol/vol) Formamid, 600 mM Natriumphosphat, pH 7,2, 1 mM EDTA, 10% Dextransulfat, 1% SDS, und 10x Denhardt-Lösung, enthaltend Lachssperma-DNA (50 μg/ml) mit 32P-markierten Sonden (0,5-1 x 106cpm/ml) hybridisiert. Typischerweise wurden Waschschritte etwa 1 h bei 55 bis 65 °C in 13 bis 30 mM NaCI, 1,5 bis 3 mM Natriumeitrat, pH 6,3, 0,1 % SDS durchgeführt und die Filter wurden 12 bis 24 h bei -70 °C mit Kodak- Verstärkerplatten autoradiographiert. Bislang wurden einzelne Membrane mehr als 20 mal er- folgreich wiederverwendet. Zwischen den Autoradiographien wurden die Filter durch Inkubation bei 95 °C für 2 x 20 min in 2 mM Tris-HCI, pH 8,0, 0,2 mM EDTA, 0,1 % SDS gestrippt.With the help of the random hexamer primer method (Feinberg, AP and Vogelstein, B. (1983), Anal. Biochem. 132, pp. 6-13) double-stranded probes were obtained by taking up [alpha- 32 P] dCTP with high specific activity. The membranes were prehybridized and 6 to 12 h at 42 ° C in 50% (vol / vol) formamide, 600 mM sodium phosphate, pH 7.2, 1 mM EDTA, 10% dextran sulfate, 1% SDS, and 10x Denhardt's solution, containing salmon sperm DNA (50 ug / ml) hybridized with 32 P-labeled probes (0.5-1 x 10 6 cpm / ml). Typically, washing steps were carried out for about 1 hour at 55 to 65 ° C. in 13 to 30 mM NaCl, 1.5 to 3 mM sodium citrate, pH 6.3, 0.1% SDS and the filters were 12 to 24 hours at -70 ° C autoradiographed with Kodak amplifier plates. So far, individual membranes have been successfully reused more than 20 times. Between the autoradiographs, the filters were stripped by incubation at 95 ° C for 2 x 20 min in 2 mM Tris-HCl, pH 8.0, 0.2 mM EDTA, 0.1% SDS.
c) Zurückgewinnung positiver Kolonien aus der aufbewahrten Genbankc) recovery of positive colonies from the stored gene bank
Gefrorene Bakterienkulturen in Microtiter-Wells wurden unter Verwendung steriler Einweg- Lanzetten abgekratzt und das Material wurde auf LB-Agar-Petrischalen enthaltend Ampicillin (50 μg/ml) ausgestrichen. Einzelne Kolonien wurden danach zur Inokulierung von Flüssigkulturen für Herstellung von DNA mittels Alkali-Lyse-Verfahren (Bimboim, H. C. und Doly, J. (1979), Nucleic Acids Res. 7, S. 1513-1523) verwendet.Frozen bacterial cultures in microtiter wells were scraped using sterile disposable lancets and the material was spread on LB agar petri dishes containing ampicillin (50 μg / ml). Individual colonies were then used to inoculate liquid cultures for the preparation of DNA using an alkali lysis method (Bimboim, H.C. and Doly, J. (1979), Nucleic Acids Res. 7, pp. 1513-1523).
d) Full-Length DNAd) Full-length DNA
Auf die oben beschriebenen Weise konnten Klone identifiziert werden, derein Insert mit der entsprechenden Vollsequenz trägt. Diese Klone tragen die internen Bezeichnungen:In the manner described above, clones could be identified which carried an insert with the corresponding full sequence. These clones have the internal names:
„Oligo 8v". Das die Vollsequenz umfassende Insert besitzt eine Nukleinsäuresequenz gemäß SEQ ID NO: 4. Das davon kodierte Protein umfasst vorzugsweise wenigstens eine der Amino- Säuresequenzen gemäß SEQ ID NO: 5, 6 und 7."Oligo 8v". The insert comprising the full sequence has a nucleic acid sequence as shown in SEQ ID NO: 4. The protein encoded thereby preferably comprises at least one of the amino Acid sequences according to SEQ ID NO: 5, 6 and 7.
„Oligo 25/39v". Das die Vollsequenz umfassende Insert besitzt eine Nukleinsäuresequenz gemäß SEQ ID NO: 10."Oligo 25 / 39v". The insert comprising the full sequence has a nucleic acid sequence as shown in SEQ ID NO: 10.
„Oligo 46v". Das die Vollsequenz umfassende Insert besitzt eine Nukleinsäuresequenz gemäß SEQ ID NO: 15."Oligo 46v". The insert comprising the full sequence has a nucleic acid sequence as shown in SEQ ID NO: 15.
„Oligo 103v". Das die Vollsequenz umfassende Insert besitzt eine Nukleinsäuresequenz gemäß SEQ ID NO: 19."Oligo 103v". The insert comprising the full sequence has a nucleic acid sequence as shown in SEQ ID NO: 19.
„Oligo 128v". Das die Vollsequenz umfassende Insert besitzt eine Nukleinsäuresequenz gemäß SEQ ID NO: 23. Das davon kodierte Protein umfasst vorzugsweise wenigstens eine der Aminosäuresequenzen gemäß SEQ ID NO: 24 und 25."Oligo 128v". The insert comprising the full sequence has a nucleic acid sequence as shown in SEQ ID NO: 23. The protein encoded therein preferably comprises at least one of the amino acid sequences as shown in SEQ ID NO: 24 and 25.
„Oligo 150v". Das die Vollsequenz umfassende Insert besitzt eine Nukleinsäuresequenz gemäß SEQ ID NO: 28."Oligo 150v". The insert comprising the full sequence has a nucleic acid sequence as shown in SEQ ID NO: 28.
„Oligo 177v". Das die Vollsequenz umfassende Insert besitzt eine Nukleinsäuresequenz gemäß SEQ ID NO: 34."Oligo 177v". The insert comprising the full sequence has a nucleic acid sequence as shown in SEQ ID NO: 34.
„Oligo 145v". Das die Vollsequenz umfassende Insert besitzt eine Nukleinsäuresequenz gemäß SEQ ID NO: 38. "Oligo 145v". The insert comprising the full sequence has a nucleic acid sequence as shown in SEQ ID NO: 38.
Tabelle 1: SequenzübersichtTable 1: Sequence overview
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000044_0001
Figure imgf000042_0001
Figure imgf000043_0001
Figure imgf000044_0001

Claims

Patentansprüche claims
1. Polynukleotid, welches aus Ashbya gossypii isolierbar ist und für ein Protein kodiert, das mit dem Zellwand- und/oder Cytoskelettaufbau assoziiert ist.1. Polynucleotide which can be isolated from Ashbya gossypii and which codes for a protein which is associated with the cell wall and / or cytoskeleton structure.
2. Polynukleotid, nach Anspruch 1 , das mit dem Zellwand- und/oder Cytoskelettaufbau assoziiert ist und eine in Tabelle 1 angegebene strukturelle und/oder funktionale Eigenschaft besitzt.2. Polynucleotide according to claim 1, which is associated with the cell wall and / or cytoskeleton structure and has a structural and / or functional property given in Table 1.
3. Polynukleotid nach Anspruch 1 oder 2, umfassend eine Nukleinsäuresequenz gemäß3. Polynucleotide according to claim 1 or 2, comprising a nucleic acid sequence according to
SEQ ID NO: 1 , 8, 12, 17, 21 , 26, 30 oder 36, welche vorzugsweise aus Ashbya gossypii isolierbar ist; das dazu komplementäre Polynukleotid; und die von diesen Polynukleotiden durch Entartung des genetischen Codes abgeleiteten Sequenzen.SEQ ID NO: 1, 8, 12, 17, 21, 26, 30 or 36, which can preferably be isolated from Ashbya gossypii; the complementary polynucleotide; and the sequences derived from these polynucleotides by degenerating the genetic code.
4. Polynukleotid nach Anspruch 3, welches eine Nukleinsäuresequenz gemäß SEQ ID4. Polynucleotide according to claim 3, which has a nucleic acid sequence according to SEQ ID
NO: 4, 10, 15, 19, 23, 28, 34 oder 38 oder ein Fragment davon umfasst.NO: 4, 10, 15, 19, 23, 28, 34 or 38 or a fragment thereof.
5. Oligonukleotid, welches mit einem Polynukleotid nach einem der vorhergehenden Ansprüche, insbesondere unter stringenten Bedingungen, hybridisiert.5. oligonucleotide which hybridizes with a polynucleotide according to one of the preceding claims, in particular under stringent conditions.
Polynukleotid, welches mit einem Oligonukleotid nach Anspruch 5, insbesondere unter stringenten Bedingungen, hybridisiert und für ein Genprodukt aus Mikroorganismen der Gattung Ashbya oder ein funktionales Äquivalent dieses Genproduktes kodiert.Polynucleotide which hybridizes with an oligonucleotide according to claim 5, in particular under stringent conditions, and codes for a gene product from microorganisms of the genus Ashbya or a functional equivalent of this gene product.
7. Polypeptid, welches von einem Polynukleotid kodiert wird, das eine Nukleinsäuresequenz gemäß einem der Ansprüche 1 bis 4 oder ein Fragment davon umfasst, oder von einem Polynukleotid nach Anspruch 6 kodiert wird; oder welches eine Aminosäuresequenz aufweist, die wenigstens 10 zusammenhängende Aminosäurereste gemäß SEQ ID NO: 2, 3, 5, 6, 7, 9, 11 , 13, 14, 16, 18, 20, 22, 24,7. A polypeptide encoded by a polynucleotide comprising a nucleic acid sequence according to any one of claims 1 to 4 or a fragment thereof, or encoded by a polynucleotide according to claim 6; or which has an amino acid sequence which has at least 10 contiguous amino acid residues according to SEQ ID NO: 2, 3, 5, 6, 7, 9, 11, 13, 14, 16, 18, 20, 22, 24,
25, 27, 29, 31 , 32, 33, 35, 37, oder SEQ ID NO: 39 umfasst; sowie funktionale Äquivalente davon, insbesondere solche , welche eine der in Anspruch 2 definierten Eigenschaften besitzen.25, 27, 29, 31, 32, 33, 35, 37, or SEQ ID NO: 39; as well as functional equivalents thereof, in particular those which have one of the properties defined in claim 2.
8. Expressionskassette, umfassend in operativer Verknüpfung mit wenigstens einer regulativen Nukleinsäuresequenz eine Nukleinsäuresequenz nach einem der Ansprüche 1 bis 6. 8. Expression cassette comprising, in operative linkage with at least one regulatory nucleic acid sequence, a nucleic acid sequence according to one of claims 1 to 6.
9. Rekombinanter Vektor, umfassend wenigstens eine Expressionskassette nach Anspruch 8.9. A recombinant vector comprising at least one expression cassette according to claim 8.
10. Prokaryotischer oder eukaryotischer Wirt, transformiert mit wenigstens einem Vektor nach Anspruch 9.10. Prokaryotic or eukaryotic host transformed with at least one vector according to claim 9.
11. Prokaryotischer oder eukaryotischer Wirt, in welchem die funktionale Expression wenigstens eines Gens moduliert ist, das für ein Polypeptid nach Anspruch 7 kodiert; oder in welchem die biologische Aktivität eines Polypeptids nach Anspruch 7 erniedrigt oder erhöht ist.11. Prokaryotic or eukaryotic host in which the functional expression of at least one gene is modulated which codes for a polypeptide according to claim 7; or in which the biological activity of a polypeptide according to claim 7 is decreased or increased.
12. Wirt nach Anspruch 10 oder 11 aus der Gattung Ashbya.12. The host of claim 10 or 11 from the genus Ashbya.
13. Verwendung einer Expressionskassette nach Anspruch 8, eines Vektors nach Anspruch 9 oder eines Wirts nach einem der Ansprüche 10 bis 12 zur mikrobiologischen Produktion von Vitamin B2 und/oder Präkursoren und/oder Derivaten davon.13. Use of an expression cassette according to claim 8, a vector according to claim 9 or a host according to one of claims 10 to 12 for the microbiological production of vitamin B2 and / or precursors and / or derivatives thereof.
14. Verwendung einer Expressionskassette nach Anspruch 8, eines Vektors nach Anspruch 9 oder eines Wirts nach einem der Ansprüche 10 bis 12 zur rekombinanten14. Use of an expression cassette according to claim 8, a vector according to claim 9 or a host according to one of claims 10 to 12 for the recombinant
Herstellung eines Polypeptids nach Anspruch 7.Preparation of a polypeptide according to claim 7.
15. Verfahren zum Nachweis eines Effektortargets für die Modulation der mikrobiologischen Produktion von Vitamin B2 und/oder Präkursoren und/oder Derivaten davon, wobei man einen Mikroorganismus, der zur mikrobiologischen Produktion von15. A method for detecting an effector target for the modulation of the microbiological production of vitamin B2 and / or precursors and / or derivatives thereof, using a microorganism which is responsible for the microbiological production of
Vitamin B2 und/oder Präkursoren und/oder Derivaten davon befähigt ist, mit einem Effektor behandelt, welcher mit einem Target, ausgewählt unter einem Polypeptid nach Anspruch 7 oder einer dafür kodierenden Nukleinsäuresequenz, wechselwirkt, insbesondere bindet, den Einfluß des Effektors auf die Menge des mikrobiologisch produzierten Vitamins B2, und/oder des Präkursors und/oder eines Derivats davon validiert; und das Target gegebenenfalls isoliert.Vitamin B2 and / or precursors and / or derivatives thereof is capable of being treated with an effector which interacts, in particular binds, with a target selected from a polypeptide according to claim 7 or a nucleic acid sequence coding therefor, the influence of the effector on the amount of validated microbiologically produced vitamin B2, and / or the precursor and / or a derivative thereof; and optionally isolating the target.
16. Verfahren zur Modulation der mikrobiologischen Produktion von Vitamin B2 und/oder Präkursoren und/oder Derivaten davon, wobei man einen Mikroorganismus, der zur mikrobiologischen Produktion von Vitamin B2 und/oder Präkursoren und/oder16. A method for modulating the microbiological production of vitamin B2 and / or precursors and / or derivatives thereof, using a microorganism which is responsible for the microbiological production of vitamin B2 and / or precursors and / or
Derivaten davon befähigt ist, mit einem Effektor behandelt, welcher mit einem Target, ausgewählt unter einem Polypeptid nach Anspruch 7 oder einer dafür kodierenden Nukleinsäuresequenz, wechselwirkt. Derivatives thereof is capable of being treated with an effector which interacts with a target selected from a polypeptide according to claim 7 or a nucleic acid sequence coding therefor.
17. Effektor für ein Target, ausgewählt unter einem Polypeptid nach Anspruch 7 oder einer dafür kodierenden Nukleinsäuresequenz, wobei der Effektor ausgewählt ist unter: a) Antikörpern oder antigenbindenen Fragmenten davon; b) von a) verschiedenen Polypeptid-Liganden, welche mit dem Polypeptid gemäß Anspruch 7 wechselwirken; c) niedermolekularen Effektoren, welche die biologische Aktivität eines Polypeptids nach Anspruch 7 modulieren; d) Antisense-Nukleinsäuresequenzen.17. Effector for a target, selected from a polypeptide according to claim 7 or a nucleic acid sequence coding therefor, the effector being selected from: a) antibodies or antigen-binding fragments thereof; b) polypeptide ligands which differ from a) and which interact with the polypeptide according to claim 7; c) low molecular weight effectors which modulate the biological activity of a polypeptide according to claim 7; d) antisense nucleic acid sequences.
18. Verfahren zur mikrobiologischen Produktion von Vitamin B2 und/oder Präkursoren und/oder Derivaten davon, wobei man einen Wirt nach einem der Ansprüche 10 bis 12 unter die Produktion von Vitamin B2 und/oder Präkursoren und/oder Derivaten davon begünstigenden Bedingungen kultiviert und das(die) gewünschte(n) Produkt(e) aus dem Kulturansatz isoliert.18. A method for the microbiological production of vitamin B2 and / or precursors and / or derivatives thereof, wherein a host is cultivated according to one of claims 10 to 12 under the conditions favorable to the production of vitamin B2 and / or precursors and / or derivatives thereof and that The desired product (s) isolated from the culture batch.
19. Verfahren nach Anspruch 18, wobei man vor und/oder während der Kultivierung des Wirts diesen mit einem Effektor nach Anspruch 17 behandelt.19. The method according to claim 18, wherein before and / or during the cultivation of the host, the latter is treated with an effector according to claim 17.
20. Verfahren nach Anspruch 18 oder 19, wobei der Wirt ausgewählt ist unter Mikroorganismen der Gattung Ashbya.20. The method according to claim 18 or 19, wherein the host is selected from microorganisms of the genus Ashbya.
21. Verfahren nach einem der Ansprüche 18 bis 20, wobei der Mikroorganismus ein Wirt nach einem der Ansprüche 10 bis 12 ist.21. The method according to any one of claims 18 to 20, wherein the microorganism is a host according to one of claims 10 to 12.
22. Verwendung eines Polynukleotids nach einem der Ansprüche 1 bis 4 und 6 oder eines Polypeptids nach Anspruch 7 als Target zur Modulation der Produktion von Vitamin B2 und/oder Präkursoren und/oder Derivaten davon in einem Mikroorganismus der Gattung Ashbya.22. Use of a polynucleotide according to one of claims 1 to 4 and 6 or a polypeptide according to claim 7 as a target for modulating the production of vitamin B2 and / or precursors and / or derivatives thereof in a microorganism of the genus Ashbya.
23. Verwendung eines Polynukleotids nach einem der Ansprüche 1 bis 4 und 6 oder eines Polypeptids nach Anspruch 7 als Target zur Modulation des Zellwand- und/oder Cytoskelettaufbaus in einem Mikroorganismus der Gattung Ashbya während der Kultivierung zur mikrobiologischen Produktion von Vitamin B2 und/oder Präkursoren und/oder Derivaten davon.23. Use of a polynucleotide according to one of claims 1 to 4 and 6 or a polypeptide according to claim 7 as a target for modulating the cell wall and / or cytoskeleton structure in a microorganism of the genus Ashbya during cultivation for the microbiological production of vitamin B2 and / or precursors and / or derivatives thereof.
24. Wirt nach Anspruch 12 mit modifiziertem Zellwand -und Oder Cytoskelett aufbau. 24. Host according to claim 12 with a modified cell wall and or cytoskeleton.
PCT/EP2002/009355 2001-08-22 2002-08-21 Novel genetic products from ashbya gossypii, associated with the structure of the cell wall or the cytoskeleton WO2003018626A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003523485A JP2005522984A (en) 2001-08-22 2002-08-21 Novel gene products from Ashbya gossippi related to the structure of the cell wall or cytoskeleton
AU2002327839A AU2002327839A1 (en) 2001-08-22 2002-08-21 Novel genetic products from ashbya gossypii, associated with the structure of the cell wall or the cytoskeleton
US10/487,475 US20050221460A1 (en) 2001-08-22 2002-08-21 Novel genetic products from ashbya gossypii, associated with the structure of the cell wall or the cytoskeleton
EP02762453A EP1421110A2 (en) 2001-08-22 2002-08-21 Novel genetic products from ashbya gossypii, associated with the structure of the cell wall or the cytoskeleton
CA002456828A CA2456828A1 (en) 2001-08-22 2002-08-21 Novel genetic products from ashbya gossypii, associated with the structure of the cell wall or the cytoskeleton
KR10-2004-7002636A KR20040029000A (en) 2001-08-22 2002-08-21 Novel Genetic Products from Ashbya gossypii, Associated with the Structure of the Cell Wall or the Cytoskeleton

Applications Claiming Priority (32)

Application Number Priority Date Filing Date Title
DE10141066.2 2001-08-22
DE10141060 2001-08-22
DE10141058.1 2001-08-22
DE10141057 2001-08-22
DE10141058 2001-08-22
DE10141063.8 2001-08-22
DE10141064.6 2001-08-22
DE10141061.1 2001-08-22
DE10141057.3 2001-08-22
DE10141064 2001-08-22
DE10141061 2001-08-22
DE10141065.4 2001-08-22
DE10141060.3 2001-08-22
DE10141066 2001-08-22
DE10141063 2001-08-22
DE10141065 2001-08-22
DE10209827.1 2002-03-06
DE10209827 2002-03-06
DE10216034 2002-04-11
DE10216028.7 2002-04-11
DE10216028 2002-04-11
DE10216034.1 2002-04-11
DE10221921.4 2002-05-16
DE10221918.4 2002-05-16
DE10221919.2 2002-05-16
DE10221921 2002-05-16
DE10221918 2002-05-16
DE10221906.0 2002-05-16
DE10221906 2002-05-16
DE10221919 2002-05-16
DE10225411 2002-06-07
DE10225411.7 2002-06-07

Publications (2)

Publication Number Publication Date
WO2003018626A2 true WO2003018626A2 (en) 2003-03-06
WO2003018626A3 WO2003018626A3 (en) 2003-12-24

Family

ID=27585603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/009355 WO2003018626A2 (en) 2001-08-22 2002-08-21 Novel genetic products from ashbya gossypii, associated with the structure of the cell wall or the cytoskeleton

Country Status (8)

Country Link
US (1) US20050221460A1 (en)
EP (1) EP1421110A2 (en)
JP (1) JP2005522984A (en)
KR (1) KR20040029000A (en)
CN (1) CN1543475A (en)
AU (1) AU2002327839A1 (en)
CA (1) CA2456828A1 (en)
WO (1) WO2003018626A2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026406A2 (en) * 1994-03-25 1995-10-05 Basf Aktiengesellschaft Riboflavin synthesis in fungi

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026406A2 (en) * 1994-03-25 1995-10-05 Basf Aktiengesellschaft Riboflavin synthesis in fungi

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FOERSTER C ET AL: "PHYSIOLOGICAL CONSEQUENCE OF DISRUPTION OF THE VMA1 GENE IN THE RIBOFLAVIN OVERPRODUCER ASHBYA GOSSYPII" JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, US, Bd. 274, Nr. 14, 2. April 1999 (1999-04-02), Seiten 9442-9448, XP000866044 ISSN: 0021-9258 *
SHIMOI HITOSHI ET AL: "Molecular cloning of CWP1: A gene encoding a Saccharomyces cerevisiae cell wall protein solubilized with Rarobacter faecitabidus protease I." JOURNAL OF BIOCHEMISTRY (TOKYO), Bd. 118, Nr. 2, 1995, Seiten 302-311, XP009015643 ISSN: 0021-924X in der Anmeldung erw{hnt *
WENDLAND J ET AL: "Cell polarity and hyphal morphogenesis are controlled by multiple Rho-protein modules in the filamentous ascomycete Ashbya gossypii" GENETICS, GENETICS SOCIETY OF AMERICA, AUSTIN, TX, US, Bd. 157, Nr. 2, Februar 2001 (2001-02), Seiten 601-610, XP002247957 ISSN: 0016-6731 *

Also Published As

Publication number Publication date
CA2456828A1 (en) 2003-03-06
CN1543475A (en) 2004-11-03
JP2005522984A (en) 2005-08-04
US20050221460A1 (en) 2005-10-06
KR20040029000A (en) 2004-04-03
EP1421110A2 (en) 2004-05-26
WO2003018626A3 (en) 2003-12-24
AU2002327839A1 (en) 2003-03-10

Similar Documents

Publication Publication Date Title
Takeda et al. Analysis and in vivo disruption of the gene coding for calmodulin in Schizosaccharomyces pombe.
DE60118200T2 (en) PREPARATION OF ASCORBIC ACID IN YEAST
CN101098968B (en) Microbial strains producing sphingoid bases or derivatives thereof
EP2358893A2 (en) Method for producing riboflavin
WO2003018626A2 (en) Novel genetic products from ashbya gossypii, associated with the structure of the cell wall or the cytoskeleton
EP1419254A2 (en) Genetic products of ashbya gossypii, associated with transmembrane transport
WO2003012101A1 (en) Novel genetic products of ashbya gossypii, associated with the mechanisms of signal transduction and especially with the improvement of vitamin b2 production
WO2003018813A2 (en) Ashbya gossypii enzymes
WO2003020757A2 (en) Novel genetic products obtained from ashbya gossypii, which are associated with transcription mechanisms, rna processing and/or translation
WO2003014351A2 (en) Stress-associated genetic products from ashbya gossypii
EP0716707A1 (en) Promoters
DE10139455A1 (en) New polynucleotide sequences from Ashbya gossypii, useful for improving response of A. gossypii to external factors and particularly for improving production of vitamin B2
DE10133372A1 (en) New polynucleotide sequences from Ashbya gossypii, useful for increasing resistance to stress in A. gossypii, particularly for improving production of Vitamin B2
DE60130394T2 (en) Genes related to the biosynthesis of ML-236B
DE60126767T2 (en) NOVEL (R) -2-HYDROXY-3-PHENYLPROPIONATE (D-PHENYL LACTATE) DEHYDROGENASE AND FOR THAT ENCODING GENE
US20050069882A1 (en) Novel genetic products obtained from ashbya gossypii, which are associated with transcription mechanisms, rna processing and/or translation
EP0569806A2 (en) DNA-compounds and recombinant DNA expression vectors coding for S. cerevisiae riboflavine synthetase activity
WO2002022823A2 (en) Proteins involved in the stress response and genes from ashbya gossypii coding for the same
WO2002022824A2 (en) Ashbya gossypii genes coding for proteins involved in membrane transport

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2456828

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 20028162196

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003523485

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10487475

Country of ref document: US

Ref document number: 2002762453

Country of ref document: EP

Ref document number: 1020047002636

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002762453

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2002762453

Country of ref document: EP