WO2003018506A1 - Mixed sintered compact of silicon and silicon dioxide and method for preparation thereof - Google Patents

Mixed sintered compact of silicon and silicon dioxide and method for preparation thereof Download PDF

Info

Publication number
WO2003018506A1
WO2003018506A1 PCT/JP2002/006882 JP0206882W WO03018506A1 WO 2003018506 A1 WO2003018506 A1 WO 2003018506A1 JP 0206882 W JP0206882 W JP 0206882W WO 03018506 A1 WO03018506 A1 WO 03018506A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
powder
silicon dioxide
sintered body
mixed
Prior art date
Application number
PCT/JP2002/006882
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshitake Natsume
Tadashi Ogasawara
Toshiharu Iwase
Original Assignee
Sumitomo Titanium Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Titanium Corporation filed Critical Sumitomo Titanium Corporation
Priority to JP2003523173A priority Critical patent/JPWO2003018506A1/en
Publication of WO2003018506A1 publication Critical patent/WO2003018506A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to a mixed sintered body of silicon and silicon dioxide, and a method for producing the same.
  • the present invention relates to a mixed sintered body of silicon and silicon dioxide, which is used for producing a gas barrier film and a silicon oxide vapor-deposited film which are optimal as a packaging material for foods, medical products, pharmaceuticals, and the like. It relates to a manufacturing method. Background art
  • packaging materials for foods, medical products, pharmaceuticals, etc. are required to have a high gas barrier property against permeation of oxygen, water vapor, aromatic gas, etc., which deteriorate the quality of the contents.
  • a packaging material having such a high gas barrier property there is a vapor deposition film in which silicon oxide is vapor-deposited on a polymer film.
  • silicon monoxide vapor-deposited films having excellent gas barrier properties against oxygen, water vapor, aromatic gas and the like have been attracting attention.
  • the silicon monoxide vapor deposition material which is a raw material for forming the silicon monoxide vapor-deposited film, is obtained by mixing silicon powder and silicon dioxide powder, and reacting and producing the mixture in a high-temperature vacuum atmosphere.
  • the vapor deposition material is manufactured by condensing elementary gas on the deposition substrate. This manufacturing method is called a vacuum condensation method. Vapor deposition materials for silicon monoxide produced by the vacuum condensing method are expensive because they are produced through many steps, and have problems in that the structure in the thickness direction is not uniform.
  • silicon powder, silicon dioxide and silicon powder are dry-mixed, press-formed, and sintered.
  • Japanese Patent Application Laid-Open No. 6-57417 discloses that a raw material obtained by adding a binder to a mixed powder of silicon powder and silicon dioxide powder and sintering the mixed powder is 95% of the specific gravity of the mixed powder raw material. It has been proposed to obtain a sintered body having an apparent specific gravity (bulk density).
  • the vapor deposition material for silicon monoxide obtained by a conventional vacuum condensation method and the vapor deposition material obtained by mixing silicon powder and silicon dioxide powder in a dry manner, pressing, compacting, and then sintering are as follows: However, the generation of splash could not be sufficiently suppressed.
  • the bulk component is filled with a porosity of 0% because the binder component remains in the gap between the silicon and silicon dioxide particles even after sintering.
  • the bulk density is 95% of the bulk density obtained when the raw material is removed, but if the remaining binder is removed, the bulk density is considered to be only about 60% of the bulk density obtained when the raw material is filled with a porosity of 0%.
  • the material is machined because it is necessary to match the shape of the evaporation material to the shape of the target holding section of the evaporation apparatus used.
  • the present invention relates to a film forming method using a sintered body composed of a mixture of raw material, elementary powder and carbon dioxide, and elemental powder as a vapor deposition material for silicon monoxide. It is an object of the present invention to provide a mixed sintered body of silicon and silicon dioxide which can achieve such an object, and a method for producing the same.
  • a vapor deposition film can be formed only by sublimation by heating, so that the deposition rate is high.
  • a sintered body obtained from a mixed powder as a raw material is used as the deposition material, sublimation and film formation occur after a silicon oxide gas is generated by a heating reaction. slow.
  • the vapor deposition material for silicon monoxide formed by the vacuum condensing method has a high film forming rate during vapor deposition and is excellent in productivity, but has the disadvantage that it is expensive, raises production costs, and has a non-uniform material structure. is there.
  • the inventors of the present invention have found that, in a sintered body that can be produced at a lower cost than a vapor deposition material for silicon monoxide by a vacuum condensation method and has a high homogeneity, a film forming rate and a low brushing rate are not inferior to those by the vacuum condensation method.
  • a high film forming rate and low splash property can be obtained by specifying the bulk density and Vickers hardness of the sintered material.
  • the present invention is a sintered body using silicon powder and silicon dioxide powder as raw materials, and has a bulk density of 75% or more with respect to a bulk density when the raw materials are filled with a porosity of 0%.
  • the present invention provides a mixed material comprising silicon powder and silicon dioxide powder, and pressurizes and sinters in a vacuum atmosphere at a pressing pressure of 15 to 20 MPa, a heating temperature of 1350 to 1420 ° C, and a holding time of 1 hour or more.
  • a method for producing a mixed sintered body of silicon and silicon dioxide characterized by increasing the area of a particle contact portion between the silicon powder and the silicon dioxide powder and bonding them.
  • FIG. 1 is an explanatory diagram of a hot press apparatus used in the method for producing a mixed sintered body according to the present invention.
  • FIG. 2 is a graph showing an X-ray diffraction result of the mixed sintered body according to the present invention.
  • FIG. 2A shows a case of a mixed powder
  • FIG. 2B shows a case of a mixed sintered body.
  • FIG. 3 is an explanatory diagram of a configuration of a vacuum evaporation apparatus used in the example.
  • the raw material silicon powder and silicon dioxide powder are not particularly limited. Although the purity varies depending on the application, the purity is preferably 99.9% or more.
  • the form is not particularly limited, but may be ordinary pulverized powder. The smaller the average particle size is, the more preferable it is.
  • a known ball mill, a V-type mixer, a machine-expansion mixer, or the like can be used as a method of uniformly mixing the silicon powder and the silicon dioxide powder.
  • a known ball mill, a V-type mixer, a machine-expansion mixer, or the like can be used as a method of uniformly mixing the silicon powder and the silicon dioxide powder.
  • a known ball mill, a V-type mixer, a machine-expansion mixer, or the like can be used as a method of uniformly mixing the silicon powder and the silicon dioxide powder.
  • a known ball mill, a V-type mixer, a machine-expansion mixer, or the like can be used as a method of uniformly mixing the silicon powder and the silicon
  • the inventors found that even at a temperature exceeding 1300 ° C, which is the reaction starting temperature of the mixed powder material of silicon powder and silicon dioxide powder, the sintering was performed by applying a pressure of 15 MPa or more with a hot press. It has been found that a mixed sintered body which suppresses the generation of silicon monoxide gas and has a high bulk density and a high Vickers hardness can be obtained.
  • silicon powder is obtained by pressing and sintering a mixed material of silicon powder and silicon dioxide powder at a heating temperature of 1350 to 1420 ° C under a pressurization of 15 to 20 MPa in a vacuum atmosphere. Sintering can be performed by enlarging the area of the particle contact portion between the silicon dioxide powder and the silicon dioxide powder, and a mixed sintered body having high bulk density and hardness can be obtained.
  • the obtained mixed sintered body has a bulk density of 75% or more with respect to the bulk density when the above-mentioned raw material is filled with a porosity of 0%, and has a characteristic of a Pickers hardness of 100 or more. It is.
  • reaction of silicon (Si) and silicon dioxide (Si0 2) is initiated either et contacting portion between solids. At this time, the reaction time is shortened in inverse proportion to the increase in the area occurring reaction force (Si and Si0 2 of contact surface product).
  • the mixed sintered body according to the present invention is characterized in that the sintering is performed while maintaining the pressing pressure at a high level and in a range, thereby increasing the contact area between the elementary powder and the oxide powder and the elementary powder. And As a result, a high film forming rate can be obtained when a silicon oxide film is formed by a vapor deposition method.
  • the bulk density of a sintered body is represented by the ratio of the density of the obtained sintered body to the true density of the sintered body.
  • the true density of the alloy formed by sintering is If used, the bulk density can be calculated.
  • the bulk density of the sintered body unlike the alloy sintered body, as is clear from the X-ray diffraction of the examples, most of the raw material silicon powder and silicon dioxide powder remain in the silicon and dioxide after sintering. It is presumed that the silicon crystal exists without change and only the contact parts of the particles are bonded. Therefore, unlike the case of alloy sintering, the bulk density of the sintered body cannot be determined based on the true density of the alloy.
  • the present invention it is considered that the case where the mixed raw material of the raw material silicon powder and the silicon dioxide powder is filled with the porosity of 0% (filling rate of 100%) is equivalent to the true density.
  • the bulk density of the sintered body was represented by a comparative value based on It is hard to imagine that the porosity actually becomes 0%, but it is a calculated value to be used as a reference. It can be calculated from the number of moles or mole ratio of specific gravity 2.33 and Si0 2 specific gravity 2.60 and respective raw material powders of Si.
  • the sintered body is mainly Si and Si0 2 sintered body Make sure that Then, be added finely ground to hydrofluoric acid sintered body, Si remains all the dissolved only Si0 2.
  • the mass of the mass and grinding prior to sintering of the resulting Si so the mass ratio of the sintered body of Si and Si0 2 is known, it is possible to know the molar ratio of Si and Si0 2.
  • Si and Si0 2 molar ratio of the sintered body is in order to obtain a sufficient reaction rate, it is necessary to satisfy the equation (1) below. More preferably, it is desirable to satisfy the following two equations.
  • the mixed sintered body according to the present invention it is considered that some kind of reaction such as sintering occurs at the contact point between the element, the elementary powder and the dioxide, and the contact point between the elementary powder.
  • some kind of reaction such as sintering occurs at the contact point between the element, the elementary powder and the dioxide, and the contact point between the elementary powder.
  • Si0 2 in the height of the peak even when compared with the sintered before sintering, most because it is the same, most of the silicon and silicon dioxide raw material after sintering also it It was found that each of them did not change in a crystalline state. Accordingly, a thickness even above method after sintering, it is possible to know the molar ratio of Si and Si0 2.
  • the bulk density is at least 75% of the bulk density when the above mixed raw material is filled with a porosity of 0%, and the pick hardness is at least 100.
  • the condition was that the sintered body as a vapor deposition material was not inferior to the vapor deposition material for silicon monoxide by the vacuum condensation method. This is based on the results of experiments that determined conditions that are equivalent or higher.
  • a pressurizing and sintering condition (hereinafter referred to as a hot pressing condition) capable of obtaining a mixed sintered body of silicon, silicon dioxide and silicon having the above characteristics, and a heat temperature of 1350 °.
  • the above experiment confirmed that the press pressure had to satisfy 15 MPa or more at C or more.
  • the vacuum atmosphere is not particularly limited, but it is preferable to use an inert gas atmosphere when processing at a low vacuum.
  • heating temperature exceeds 1420 ° C, silicon will dissolve, so the heating temperature
  • 1350 to 1420 ° C is preferable. More preferably, it is 1375 ° C to 1400 ° C.
  • Pressing pressure of up to 20 MPa is sufficient, so a range of 15 to 20 MPa is preferable.
  • the holding (sintering) time of the hot press must be at least 1 hour. Preferably, it is 1 to 2 hours.
  • any known configuration can be adopted for the hot press apparatus for sintering under the above hot press conditions.
  • a heater 1 is provided in a chamber 1 so that heating can be performed.
  • a sleeve 4 is inserted and arranged in a die 3 disposed in the heater 2.
  • the mixed powder 7 of the raw material is filled in the space formed by fitting the upper and lower punches 5 and 6 into the space, and the press shaft 8 is operated to pressurize and sinter.
  • the temperature of the obtained mixed sintered body was lowered until the obtained mixed sintered body was taken out.
  • the temperature was gradually cooled in the furnace to the room temperature (furnace cooling), in order to improve the productivity.
  • an inert gas such as argon.
  • the particle size of the raw material is 1 ⁇ 15 ⁇ for silicon powder, and particle size for silicon dioxide powder.
  • the mixture was changed in the range of 3 to 20 ⁇ , weighed to a predetermined mixing ratio, and mixed with a ball mill.
  • Table 1 shows the hot press conditions.
  • Table 2 shows the results of measuring bulk density and Vickers hardness by taking samples from the obtained sintered bodies.
  • FIG. 2A shows an X-ray diffraction result in the state of the mixed powder
  • FIG. 2B shows an X-ray diffraction result of the mixed sintered body (15 MPa, held at 1400 ° C. for 1 hour) according to the present invention. It is clear that the silicon and silicon dioxide crystals still exist and remain unchanged afterwards, and only the contact portions of the particles with each other are joined.
  • the obtained mixed sintered body was used as an evaporation material 11, and a silicon monoxide film was formed on a polymer film arranged in a holder 12 by film formation.
  • the speed and the occurrence of the splash phenomenon were investigated.
  • Table 2 shows the results.
  • the bulk density (%) in the table is a comparison value with respect to the bulk density when the mixed raw material is filled with a porosity of 0%.
  • the film formation rate was compared based on the case where good quality silicon monoxide produced by the vacuum condensation method was used as the deposition material.
  • the mixed sintered bodies manufactured by satisfying the hot pressing conditions of the heating temperature of 1350 to 1420 ° C and the pressing pressure of 15 to 20 MPa according to the present invention have a bulk density of 75% or more of the true density. It has a Vickers hardness of 100 or more, the film forming speed at the time of vapor deposition is the same as that of the material deposited by the vacuum condensation method, and it can be seen that the film has excellent characteristics with little occurrence of a splash phenomenon.
  • the comparative examples which do not satisfy the hot press conditions of the present invention all have a bulk density of less than 75% of the true density and a Vickers hardness of less than 100, and have a higher deposition rate than the vapor-deposited material by the vacuum condensation method. It is clear that the production is not expected because it is slow and generates many splashes, which is economically efficient.
  • the mixed sintered body according to the present invention is manufactured using only the swarf, the elementary powder and the dioxide, and the elementary powder, and does not contain a binder component or the like.
  • the mixed sintered body has a hardness of at least 100, cracks and chips are hardly generated even when machining into a desired shape.
  • the film forming rate is equivalent to that of the elementary vapor-deposited material obtained by the conventional vacuum condensation method. And the occurrence of a splash phenomenon during film formation can be significantly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A mixed sintered compact of silicon and silicon dioxide, which is prepared from a silicon powder and a silicon dioxide powder and has a bulk density which is 75 % or more relative to that to be obtained when the raw material powders are packed at 0 % porosity and a Vickers hardness of 100 or more; and a method for preparing the mixed sintered compact of silicon and silicon dioxide which comprises mixing a silicon powder and a silicon dioxide powder, and then pressing and sintering the mixed material under vacuum, at a pressure of a press of 15 to 20 MPa, at a temperature of 1350 to 1420˚C, and for a period of one hour or more. The mixed sintered compact has an advantage of the use of a silicon powder and a silicon dioxide powder as raw materials, and also exhibits an enhanced speed in the formation of a silicon monoxide vapor deposition film, is significantly reduced in the occurrence of splashing and is almost free from cracking or chipping even when it is machined into a desired shape.

Description

明細書  Specification
けい素と二酸化けレ、素の混合焼結体及びその製造方法 技術分野  TECHNICAL FIELD The present invention relates to a mixed sintered body of silicon and silicon dioxide, and a method for producing the same.
この発明は、 食品や医療品 ·医薬品等の包装用材料として最適なガスバリァ 性のけレ、素酸化物蒸着膜を製造するために使用する、 けい素と二酸化けい素の 混合焼結体及びその製造方法に関する。 背景技術  The present invention relates to a mixed sintered body of silicon and silicon dioxide, which is used for producing a gas barrier film and a silicon oxide vapor-deposited film which are optimal as a packaging material for foods, medical products, pharmaceuticals, and the like. It relates to a manufacturing method. Background art
食品の包装の分野では、 含まれる油脂やたんぱく質の劣化防止、 すなわち包 装材料を透過する酸素や水蒸気、 芳香性ガス等に起因する酸化による品質の劣 化を抑制することが求められている。  In the field of food packaging, there is a demand for prevention of deterioration of fats and oils and proteins contained therein, that is, suppression of deterioration in quality due to oxidation caused by oxygen, water vapor, aromatic gas, and the like permeating the packaging material.
また、 医療品 ·医薬品においては、 さらに高い基準での内容物の変質や劣化 の抑制が求められている。  In addition, medical products and pharmaceuticals are required to suppress the deterioration and deterioration of the contents with higher standards.
従って、 食品や医療品、 医薬品等の包装用材料には、 内容物の品質を劣化さ せる酸素や水蒸気、 芳香性ガス等の透過に対するガスバリァ性の高い材料が要 求される。  Therefore, packaging materials for foods, medical products, pharmaceuticals, etc. are required to have a high gas barrier property against permeation of oxygen, water vapor, aromatic gas, etc., which deteriorate the quality of the contents.
このように高いガスバリァ性を有する包装材料として、 けい素酸化物を高分 子フィルム上に蒸着した蒸着フィルムがある。 特に、 酸素や水蒸気、 芳香性ガ ス等に対し優れたガスバリア性を有する一酸化けい素蒸着膜が注目されてい る。  As a packaging material having such a high gas barrier property, there is a vapor deposition film in which silicon oxide is vapor-deposited on a polymer film. In particular, silicon monoxide vapor-deposited films having excellent gas barrier properties against oxygen, water vapor, aromatic gas and the like have been attracting attention.
この一酸化けい素蒸着膜を形成するための原料である一酸化けい素用蒸着材 料は、 けい素粉末と二酸化けい素粉末を混合し、 高温の真空雰囲気下で反応生 成した一酸化けい素ガスを析出基板上に凝縮させることにより、 前記蒸着材料 を製造している。 この製造法を真空凝縮法と呼ぶ。 真空凝縮法により製造される一酸化けい素用蒸着材料は、 多大の工程を経て 製造されるため高価であるほか、 その厚み方向の組織が不均一であるという問 題がある。 詳述すると、 析出基板上に最後に析出した蒸着材料の表面付近は問 題ないが、 析出基板に最初に析出した部分は針状組織をしており、 この部分を 蒸着材料としてフィルム上に成膜すると、 スプラッシュ現象が多発するという 問題を生じる。 The silicon monoxide vapor deposition material, which is a raw material for forming the silicon monoxide vapor-deposited film, is obtained by mixing silicon powder and silicon dioxide powder, and reacting and producing the mixture in a high-temperature vacuum atmosphere. The vapor deposition material is manufactured by condensing elementary gas on the deposition substrate. This manufacturing method is called a vacuum condensation method. Vapor deposition materials for silicon monoxide produced by the vacuum condensing method are expensive because they are produced through many steps, and have problems in that the structure in the thickness direction is not uniform. In detail, there is no problem in the vicinity of the surface of the deposition material deposited last on the deposition substrate, but the portion deposited first on the deposition substrate has a needle-like structure, and this portion is formed on the film as the deposition material. When a film is formed, a problem that a splash phenomenon occurs frequently occurs.
一方、 一酸化けい素蒸着材料を安価に製造する方法として、 けい素粉末と二 酸化けレ、素粉末とを乾式で混合して加圧成形し焼結したものを、 一酸化けい素 用蒸着材料とする提案がなされている (特開昭 63-310961号公報)。 この焼結法 によれば、 比較的低コストで製造できるが、 嵩密度が低く前記スプラッシュ現 象を十分に抑制することができなかった。  On the other hand, as an inexpensive method for producing silicon monoxide vapor deposition material, silicon powder, silicon dioxide and silicon powder are dry-mixed, press-formed, and sintered. A proposal has been made as a material (JP-A-63-310961). According to this sintering method, it can be manufactured at a relatively low cost, but the bulk density is low and the splash phenomenon cannot be sufficiently suppressed.
また、 特開平 6-57417号公報には、 けい素粉末と二酸化けい素粉末との混合 粉末に、 バインダーを加えて造粒した原料を焼結して、 混合粉末原料の比重に 対し 95%の見かけ比重 (嵩密度)の焼結体を得ることが提案されている。  Also, Japanese Patent Application Laid-Open No. 6-57417 discloses that a raw material obtained by adding a binder to a mixed powder of silicon powder and silicon dioxide powder and sintering the mixed powder is 95% of the specific gravity of the mixed powder raw material. It has been proposed to obtain a sintered body having an apparent specific gravity (bulk density).
従来の真空凝縮法で得た一酸化けい素用蒸着材料、 及びけい素粉末と二酸化 けい素粉末とを乾式で混合して加圧、 成形後に焼結して得た該蒸着材料は、 い ずれもスプラッシュの発生を十分に抑制できなかった。  The vapor deposition material for silicon monoxide obtained by a conventional vacuum condensation method, and the vapor deposition material obtained by mixing silicon powder and silicon dioxide powder in a dry manner, pressing, compacting, and then sintering are as follows: However, the generation of splash could not be sufficiently suppressed.
また、 後者の焼結法の場合には、 加熱によりけい素と二酸化けい素が反応し て一酸化けい素を生成した後に、 昇華、 成膜が起こるため、 成膜速度が遅いと いう問題がある。  In the case of the latter sintering method, the sublimation and film formation occur after the reaction between silicon and silicon dioxide by heating to produce silicon monoxide. is there.
バインダーを加えて造粒する焼結法のものは、 焼結後もけい素と二酸化けい 素の粒子間のすき間にバインダ一の成分が残存するため、 嵩密度は原料を気孔 率 0%で充填した場合の嵩密度に対し 95%であるが、 この残存するバインダー を取り除けば、 嵩密度は原料を気孔率 0%で充填した場合の嵩密度に対し 60% 程度しかないものと考えられる。 一方、 使用する蒸着装置のターゲット保持部の形状に、 蒸着材料の形状を合 わせる必要から材料を機械加工する場合がある。 しかし、 従来の真空凝縮法で 得たり、 原料粉末を乾式で混合して加圧、 成形後に焼結して得た一酸化けい素 用蒸着材料では、 加工時に割れや欠けが多発するため、 希望の形状に機械加工 することが困難であった。 発明の開示 In the case of the sintering method in which a binder is added and granulated, the bulk component is filled with a porosity of 0% because the binder component remains in the gap between the silicon and silicon dioxide particles even after sintering. The bulk density is 95% of the bulk density obtained when the raw material is removed, but if the remaining binder is removed, the bulk density is considered to be only about 60% of the bulk density obtained when the raw material is filled with a porosity of 0%. On the other hand, in some cases, the material is machined because it is necessary to match the shape of the evaporation material to the shape of the target holding section of the evaporation apparatus used. However, the vapor deposition material for silicon monoxide obtained by the conventional vacuum condensing method or obtained by mixing the raw material powders in a dry manner, pressing, molding and sintering, often causes cracks and chips during processing. It was difficult to machine into the shape. Disclosure of the invention
この発明は、 けレ、素粉末と二酸化け 、素粉末との混合原料からなる焼結体を 一酸化けい素用蒸着材料として用いる成膜方法で、 成膜速度を速くかつスプ ラッシュ現象の発生を著しく低減できることを目的とし、 かかる目的を達成で きるけい素と二酸化けい素の混合焼結体及びその製造方法の提供を目的として いる。  The present invention relates to a film forming method using a sintered body composed of a mixture of raw material, elementary powder and carbon dioxide, and elemental powder as a vapor deposition material for silicon monoxide. It is an object of the present invention to provide a mixed sintered body of silicon and silicon dioxide which can achieve such an object, and a method for producing the same.
前述したように、 蒸着フィルムの製造に真空凝縮法による一酸化けい素用蒸 着材料を用いる場合は、 加熱による昇華のみで蒸着膜を形成できるから成膜速 度が速い。 これに対し、 混合粉末を原料として得た焼結体を前記蒸着材料に用 いる場合は、 加熱反応によリー酸化けい素ガスを生成した後に昇華、 成膜が起 こるため、 成膜速度が遅い。  As described above, when a vapor deposition material for silicon monoxide is used for the production of a vapor deposition film by a vacuum condensation method, a vapor deposition film can be formed only by sublimation by heating, so that the deposition rate is high. On the other hand, when a sintered body obtained from a mixed powder as a raw material is used as the deposition material, sublimation and film formation occur after a silicon oxide gas is generated by a heating reaction. slow.
しかし、 真空凝縮法による一酸化けい素用蒸着材料は、 蒸着時の成膜速度が 速く生産性に優れているが、 高価で製造コストを上昇させ、 また材料組織が不 均一であるという欠点がある。  However, the vapor deposition material for silicon monoxide formed by the vacuum condensing method has a high film forming rate during vapor deposition and is excellent in productivity, but has the disadvantage that it is expensive, raises production costs, and has a non-uniform material structure. is there.
そこで、 発明者らは、 真空凝縮法による一酸化けい素用蒸着材料より安価に 生産でき、 かつ均質性が高い焼結体において、 真空凝縮法によるものに劣らな い成膜速度と低スブラッシュ性が得られる蒸着材料の構成を目的に、 種々検討 した結果、 焼結材料の嵩密度とビッカース硬さを特定することで高い成膜速度 と低スプラッシュ性が得られることを知見し、 この発明を完成した。 すなわち、 この発明は、 けい素粉末と二酸化けい素粉末を原料とする焼結体 であり、 上記原料を気孔率 0%で充填した場合の嵩密度に対し 75%以上の嵩密 度を有し、 かつピツカ一ス硬さが 100以上からなることを特徴とするけい素と 二酸化けい素の混合焼結体である。 Therefore, the inventors of the present invention have found that, in a sintered body that can be produced at a lower cost than a vapor deposition material for silicon monoxide by a vacuum condensation method and has a high homogeneity, a film forming rate and a low brushing rate are not inferior to those by the vacuum condensation method. As a result of various investigations for the purpose of forming a vapor-deposited material capable of obtaining good properties, it was found that a high film forming rate and low splash property can be obtained by specifying the bulk density and Vickers hardness of the sintered material. Was completed. That is, the present invention is a sintered body using silicon powder and silicon dioxide powder as raw materials, and has a bulk density of 75% or more with respect to a bulk density when the raw materials are filled with a porosity of 0%. A mixed sintered body of silicon and silicon dioxide, characterized by having a hardness of at least 100.
また、 この発明は、 けい素粉末と二酸化けい素粉末を混合原料とし、 真空雰 囲気中、 プレス圧力 15~20MPa、 加熱温度 1350~1420°C、 保持時間 1時間以上 で加圧、 焼結し、 けい素粉末と二酸化けい素粉末の粒子接触部分の面積を大き くして結合させることを特徴とするけい素と二酸化け 、素の混合焼結体の製造 方法である。 図面の説明  In addition, the present invention provides a mixed material comprising silicon powder and silicon dioxide powder, and pressurizes and sinters in a vacuum atmosphere at a pressing pressure of 15 to 20 MPa, a heating temperature of 1350 to 1420 ° C, and a holding time of 1 hour or more. A method for producing a mixed sintered body of silicon and silicon dioxide, characterized by increasing the area of a particle contact portion between the silicon powder and the silicon dioxide powder and bonding them. Description of the drawings
図 1は、 この発明による混合焼結体の製造方法に用いるホットプレス装置の 説明図である。  FIG. 1 is an explanatory diagram of a hot press apparatus used in the method for producing a mixed sintered body according to the present invention.
図 2は、 この発明による混合焼結体の X線回折結果を示すグラフであり、 図 2Aは混合粉末、 図 2Bは混合焼結体の場合を示す。  FIG. 2 is a graph showing an X-ray diffraction result of the mixed sintered body according to the present invention. FIG. 2A shows a case of a mixed powder, and FIG. 2B shows a case of a mixed sintered body.
図 3は、 実施例で使用した真空蒸着装置の構成説明図である。 発明を実施するための最良の形態  FIG. 3 is an explanatory diagram of a configuration of a vacuum evaporation apparatus used in the example. BEST MODE FOR CARRYING OUT THE INVENTION
この発明において、 原料のけい素粉末と二酸化けい素粉末は、 特に限定され るものではない。 純度は、 用途に応じて限界純度は異なるが、 99.9%以上のも のが好ましい。 形態は、 特に限定されるものでないが、 通常の粉砕粉でよい。 平均粒径は、 小さいほうが好ましくレ、ずれの原料も ΙΟμπι以下が好ましい。 この発明において、 けい素粉末と二酸化けい素粉末とを均一に混合する方法 としては、. 公知のボールミル、 V型混合器、 機械拡販式混合器等を用いること ができる。 けレ、素粉末と二酸化けレ、素粉末の混合粉末原料を、 真空雰囲気下で加熱する 場合、 1300°Cを超えた付近から激しく反応し始め、 一酸化けい素ガスが生成 するため焼結は困難である。 そのため従来は、 上記混合粉末を真空雰囲気下で 加熱する場合は、 反応開始温度 1300°Cよリ低い 1250°C以下程度でなければな らないと考えられていた。 In the present invention, the raw material silicon powder and silicon dioxide powder are not particularly limited. Although the purity varies depending on the application, the purity is preferably 99.9% or more. The form is not particularly limited, but may be ordinary pulverized powder. The smaller the average particle size is, the more preferable it is. In the present invention, as a method of uniformly mixing the silicon powder and the silicon dioxide powder, a known ball mill, a V-type mixer, a machine-expansion mixer, or the like can be used. When heating mixed powders of raw powder, raw powder, raw powder, and raw powder in a vacuum atmosphere, they start to react violently from around 1300 ° C and generate silicon monoxide gas, which results in sintering. It is difficult. Therefore, conventionally, when heating the above mixed powder in a vacuum atmosphere, it has been considered that the temperature must be about 1250 ° C or lower, which is lower than the reaction starting temperature of 1300 ° C.
しかし、 発明者らは、 けい素粉末と二酸化けい素粉末の混合粉末原料の反応 開始温度である 1300°Cを超える温度でも、 ホットプレスで 15MPa以上のプレ ス圧力を加えることにより、 焼結中の一酸化けい素ガスの発生を抑制し、 かつ 高い嵩密度と高いビッカース硬さを有する混合焼結体が得られることを見い出 した。  However, the inventors found that even at a temperature exceeding 1300 ° C, which is the reaction starting temperature of the mixed powder material of silicon powder and silicon dioxide powder, the sintering was performed by applying a pressure of 15 MPa or more with a hot press. It has been found that a mixed sintered body which suppresses the generation of silicon monoxide gas and has a high bulk density and a high Vickers hardness can be obtained.
詳述すると、 けい素粉末と二酸化けい素粉末の混合原料を、 真空雰囲気中、 プレス圧力 15〜20MPaのもと、 加熱温度 1350~1420°Cで加圧、 焼結すること により、 けい素粉末と二酸化けい素粉末の粒子接触部分の面積を大きくして焼 結でき、 高い嵩密度と硬度を有する混合焼結体を得ることができる。  Specifically, silicon powder is obtained by pressing and sintering a mixed material of silicon powder and silicon dioxide powder at a heating temperature of 1350 to 1420 ° C under a pressurization of 15 to 20 MPa in a vacuum atmosphere. Sintering can be performed by enlarging the area of the particle contact portion between the silicon dioxide powder and the silicon dioxide powder, and a mixed sintered body having high bulk density and hardness can be obtained.
得られた混合焼結体は、 上記原料を気孔率 0%で充填した場合の嵩密度に対 し 75%以上の嵩密度を有し、 かつピツカ一ス硬さが 100以上の特性を有するも のである。  The obtained mixed sintered body has a bulk density of 75% or more with respect to the bulk density when the above-mentioned raw material is filled with a porosity of 0%, and has a characteristic of a Pickers hardness of 100 or more. It is.
一般に、 けい素 (Si)と二酸化けい素 (Si02)の反応は、 固体同士の接触部分か ら開始される。 このとき、 反応時間は、 反応力起こる面積 (Siと Si02の接触面 積)の増加に反比例して短くなる。 In general, the reaction of silicon (Si) and silicon dioxide (Si0 2) is initiated either et contacting portion between solids. At this time, the reaction time is shortened in inverse proportion to the increase in the area occurring reaction force (Si and Si0 2 of contact surface product).
この発明による混合焼結体は、 プレス圧力を高レ、範囲に維持して焼結するこ とにより、 け 、素粉末と二酸化けレ、素粉末の接触面積の増大を図ったことを特 徴とする。 その結果、 蒸着法によリー酸化けい素蒸着膜を形成する際に、 速い 成膜速度が得られる。  The mixed sintered body according to the present invention is characterized in that the sintering is performed while maintaining the pressing pressure at a high level and in a range, thereby increasing the contact area between the elementary powder and the oxide powder and the elementary powder. And As a result, a high film forming rate can be obtained when a silicon oxide film is formed by a vapor deposition method.
一般に、 焼結体の嵩密度は、 焼結体の真密度に対し、 得られた焼結体の密度 の比で表される。 また、 合金の場合には、 焼結にょリ生成した合金の真密度を 用いれば、 嵩密度の算出は可能である。 しかし、 本発明の場合は、 合金焼結体 と異なり、 実施例の X線回折から明らかなように、 原料のけい素粉末と二酸化 けい素粉末の大部分は、 焼結後もけい素と二酸化けい素の結晶のまま変化する ことなく存在し、 お互いの粒子の接触部分のみが接合しているものと推察され る。 従って、 合金焼結の場合のように、 合金の真密度を基準として焼結体の嵩 密度を求めることはできない。 Generally, the bulk density of a sintered body is represented by the ratio of the density of the obtained sintered body to the true density of the sintered body. In the case of alloys, the true density of the alloy formed by sintering is If used, the bulk density can be calculated. However, in the case of the present invention, unlike the alloy sintered body, as is clear from the X-ray diffraction of the examples, most of the raw material silicon powder and silicon dioxide powder remain in the silicon and dioxide after sintering. It is presumed that the silicon crystal exists without change and only the contact parts of the particles are bonded. Therefore, unlike the case of alloy sintering, the bulk density of the sintered body cannot be determined based on the true density of the alloy.
そこで、 この発明では、 原料のけい素粉末と二酸化けい素粉末の混合原料が 気孔率 0% (充填率 100%)の状態で充填された場合が真密度に匹敵するものと考 え、 この場合を基準とした比較値で焼結体の嵩密度を表した。 実際に気孔率 0%となることは考え難いが、 基準として用いるための計算値である。 Siの比 重 2.33と Si02の比重 2.60及びそれぞれの原料粉末のモル数あるいはモル比から 算出できる。 Therefore, in the present invention, it is considered that the case where the mixed raw material of the raw material silicon powder and the silicon dioxide powder is filled with the porosity of 0% (filling rate of 100%) is equivalent to the true density. The bulk density of the sintered body was represented by a comparative value based on It is hard to imagine that the porosity actually becomes 0%, but it is a calculated value to be used as a reference. It can be calculated from the number of moles or mole ratio of specific gravity 2.33 and Si0 2 specific gravity 2.60 and respective raw material powders of Si.
焼結体から原料モル比を特定するには、 先ず、 焼結体を X線回折によって Si と Si02のピークを確認することにより、 焼結体が Siと Si02を主とした焼結体 であることを確認する。 その後、 焼結体を細かく粉砕してフッ酸を加えれば、 Si02のみが溶解して Siが全て残る。 こうして得られた Siの質量と粉砕前の焼結 体の質量から、 焼結体の Siと Si02の質量比が分かるので、 Siと Si02のモル比 を知ることができる。 焼結体の Siと Si02のモル比は、 十分な反応速度を得るた めに、 下記 1式を満足する必要がある。 更に望ましくは、 下記 2式を満足するこ とが望ましい。 To identify the material molar ratios of the sintered body, first, by checking the peaks of Si and Si0 2 a sintered body by X-ray diffraction, the sintered body is mainly Si and Si0 2 sintered body Make sure that Then, be added finely ground to hydrofluoric acid sintered body, Si remains all the dissolved only Si0 2. Thus the mass of the mass and grinding prior to sintering of the resulting Si, so the mass ratio of the sintered body of Si and Si0 2 is known, it is possible to know the molar ratio of Si and Si0 2. Si and Si0 2 molar ratio of the sintered body is in order to obtain a sufficient reaction rate, it is necessary to satisfy the equation (1) below. More preferably, it is desirable to satisfy the following two equations.
0.90≤ mol(Si)/mol(Si02)≤ 1.10 1式  0.90≤ mol (Si) / mol (Si02) ≤ 1.10 1 formula
0.95≤ mol(Si)/mol(Si02)≤ 1.05 2式 0.95≤ mol (Si) / mol ( Si0 2) ≤ 1.05 2 expression
この発明による混合焼結体は、 けレ、素粉末と二酸化け 、素粉末の接触点にお いて、 焼結反応のような何らかの反応が起こっているものと考えられるが、 X 線回折の Siと Si02のピークの高さを、 焼結前と焼結後で比較しても、 ほとんど 同じであることから、 大部分の原料のけい素と二酸化けい素は、 焼結後もそれ ぞれが結晶状態のまま変化していないことがわかった。 従って、 焼結後であつ ても上記の方法で、 Siと Si02のモル比を知ることができる。 In the mixed sintered body according to the present invention, it is considered that some kind of reaction such as sintering occurs at the contact point between the element, the elementary powder and the dioxide, and the contact point between the elementary powder. When the Si0 2 in the height of the peak, even when compared with the sintered before sintering, most because it is the same, most of the silicon and silicon dioxide raw material after sintering also it It was found that each of them did not change in a crystalline state. Accordingly, a thickness even above method after sintering, it is possible to know the molar ratio of Si and Si0 2.
この発明のけい素と二酸化けい素の混合焼結体において、 嵩密度が上記混合 原料を気孔率 0%で充填した場合の嵩密度に対し 75%以上、 ピツカ一ス硬さが 100以上であることを条件としたのは、 真空凝縮法による一酸化けい素用蒸着 材料に劣らない蒸着材料としての焼結体、 すなわち高レ、成膜速度と低スプラッ シュ性が真空凝縮法による蒸着材料と同等以上となる条件を求めた実験の結果 に基づくものである。  In the mixed sintered body of silicon and silicon dioxide according to the present invention, the bulk density is at least 75% of the bulk density when the above mixed raw material is filled with a porosity of 0%, and the pick hardness is at least 100. The condition was that the sintered body as a vapor deposition material was not inferior to the vapor deposition material for silicon monoxide by the vacuum condensation method. This is based on the results of experiments that determined conditions that are equivalent or higher.
そして発明者らは、 上記特性を有するけい素と二酸化け 、素の混合焼結体を 得ることが可能な加圧、 焼結条件 (以下、 ホットプレス条件という)として、 カロ 熱温度が 1350°C以上で、 プレス圧力が 15MPa以上を満足する必要のあること を上記実験で確認した。  Then, the present inventors have developed a pressurizing and sintering condition (hereinafter referred to as a hot pressing condition) capable of obtaining a mixed sintered body of silicon, silicon dioxide and silicon having the above characteristics, and a heat temperature of 1350 °. The above experiment confirmed that the press pressure had to satisfy 15 MPa or more at C or more.
真空雰囲気は、 特に限定されないが、 低真空度で処理する場合は、 不活性ガ ス雰囲気とすることが望ましい。  The vacuum atmosphere is not particularly limited, but it is preferable to use an inert gas atmosphere when processing at a low vacuum.
加熱温度は、 1420°Cを超えるとけい素が溶解するから、 加熱温度は  If the heating temperature exceeds 1420 ° C, silicon will dissolve, so the heating temperature
1350~1420°Cが好ましい。 さらに好ましくは、 1375°C~1400°Cである。 1350 to 1420 ° C is preferable. More preferably, it is 1375 ° C to 1400 ° C.
プレス圧力は 20MPaまでの圧力で十分あるから、 15~20MPaの範囲が好ま しい。  Pressing pressure of up to 20 MPa is sufficient, so a range of 15 to 20 MPa is preferable.
又、 ホットプレスの保持 (焼結)時間は、 1時間以上は必要である。 好ましく は 1時間から 2時間である。  Also, the holding (sintering) time of the hot press must be at least 1 hour. Preferably, it is 1 to 2 hours.
この発明において、 上述のホットプレス条件で焼結するためのホットプレス 装置には、 公知のいずれの構成も採用できる。 例えば、 図 1に示すごとく、 チャンバ一 1内にヒータ一 2を具備して加熱可能な構成からなり、 ヒーター 2内 に配置されるダイス 3にスリーブ 4を挿入配置し、 このスリ一ブ 4内に上下パン チ 5,6を嵌入して形成される空間に原料の混合粉末 7を充填し、 プレス軸 8を作 動させて加圧、 焼結することができる。 前記ホットプレス条件で焼結した後、 得られた混合焼結体を取り出すまでの 降温条件としては、 室温まで炉内で徐々に冷却 (炉冷)することができ、 生産性 を向上するためには、 例えば 600°Cまで炉冷した後、 600°Cから室温までをァ ルゴンなどの不活性ガスで強制冷却することも可能である。 実施例 In the present invention, any known configuration can be adopted for the hot press apparatus for sintering under the above hot press conditions. For example, as shown in FIG. 1, a heater 1 is provided in a chamber 1 so that heating can be performed. A sleeve 4 is inserted and arranged in a die 3 disposed in the heater 2. The mixed powder 7 of the raw material is filled in the space formed by fitting the upper and lower punches 5 and 6 into the space, and the press shaft 8 is operated to pressurize and sinter. After the sintering under the hot press conditions, the temperature of the obtained mixed sintered body was lowered until the obtained mixed sintered body was taken out. The temperature was gradually cooled in the furnace to the room temperature (furnace cooling), in order to improve the productivity. For example, after cooling the furnace to 600 ° C, it is also possible to forcibly cool from 600 ° C to room temperature with an inert gas such as argon. Example
原料の粒度は、 けい素粉末は粒度 1~15μπι、 二酸化けい素粉末は粒度  The particle size of the raw material is 1 ~ 15μπι for silicon powder, and particle size for silicon dioxide powder.
3〜20μπιの範囲で変えて、 これを所定の混合比となるように秤量後、 ボールミ ルにて混合した。 The mixture was changed in the range of 3 to 20 μπι, weighed to a predetermined mixing ratio, and mixed with a ball mill.
図 1に示すホットプレス装置を用い、 プレス圧力を 15~20MPaで変化させて 加圧し、 また加熱温度を 1350〜1420°Cで変化させて、 保持時間を 1時間の条件 で加圧、 焼結し、 けい素と二酸化けい素の混合焼結体を得た (実施例 1~6)。 また、 比較のため、 プレス圧力を 10~15MPaで変化させて加圧し、 加熱温 度は 1300~1450°Cで変化させて、 保持時間 1時間の条件で加圧、 焼結して焼結 体を得た (比較例 1〜4)。  Using the hot press shown in Fig. 1, press at a pressure of 15 to 20 MPa and pressurize, and change the heating temperature at 1350 to 1420 ° C, pressurize and sinter under a holding time of 1 hour. Then, a mixed sintered body of silicon and silicon dioxide was obtained (Examples 1 to 6). For comparison, pressurization was performed by changing the press pressure at 10 to 15 MPa, and the heating temperature was changed at 1300 to 1450 ° C. (Comparative Examples 1 to 4).
上記のホットプレス条件を表 1に示す。 また、 得られた焼結体より試料を採 取して嵩密度とビッカース硬さを測定した結果を表 2に示す。  Table 1 shows the hot press conditions. Table 2 shows the results of measuring bulk density and Vickers hardness by taking samples from the obtained sintered bodies.
また、 前記混合粉末の状態における X線回折結果を図 2Aに、 この発明による 混合焼結体 (15MPa、 1400°Cで 1時間保持)の X線回折結果を図 2Bに示すごと く、 焼結後もけい素と二酸化けい素の結晶のまま変化することなく存在し、 お 互いの粒子の接触部分のみが接合していることが明らかである。  FIG. 2A shows an X-ray diffraction result in the state of the mixed powder, and FIG. 2B shows an X-ray diffraction result of the mixed sintered body (15 MPa, held at 1400 ° C. for 1 hour) according to the present invention. It is clear that the silicon and silicon dioxide crystals still exist and remain unchanged afterwards, and only the contact portions of the particles with each other are joined.
さらに、 図 3に示す真空蒸着装置 10を用い、 得られた混合焼結体を蒸着材料 11として、 ホルダ一 12に配置した高分子フィルムに一酸化けい素膜を成膜し た際の成膜速度とスプラッシュ現象の発生状況を調べた。 これらの結果を表 2 に示す。 なお、 表中の嵩密度 (%)は、 混合原料を気孔率 0%で充填した場合の嵩密度に 対する比較値である。 成膜速度は、 真空凝縮法によって製造された良品の一酸 化けい素を蒸着材料とした場合を基準として比較した。 Further, using a vacuum evaporation apparatus 10 shown in FIG. 3, the obtained mixed sintered body was used as an evaporation material 11, and a silicon monoxide film was formed on a polymer film arranged in a holder 12 by film formation. The speed and the occurrence of the splash phenomenon were investigated. Table 2 shows the results. The bulk density (%) in the table is a comparison value with respect to the bulk density when the mixed raw material is filled with a porosity of 0%. The film formation rate was compared based on the case where good quality silicon monoxide produced by the vacuum condensation method was used as the deposition material.
また、 焼結時の加熱温度を 1450°Cとした比較例 4は、 けい素が溶解したため 焼結体は得られなかった。  In Comparative Example 4 in which the heating temperature during sintering was 1450 ° C, no sintered body was obtained because silicon was dissolved.
表 2の結果より、 本発明の実施により加熱温度 1350~1420°C、 プレス圧力 15~20MPaのホットプレス条件を満たして製造した混合焼結体は、 いずれも 嵩密度は真密度の 75%以上、 ビッカース硬さ 100以上であり、 蒸着時の成膜速 度は真空凝縮法による蒸着材料と同等であリ、 スプラッシュ現象の発生も少な く優れた特性を有することが分かる。  From the results in Table 2, it can be seen that the mixed sintered bodies manufactured by satisfying the hot pressing conditions of the heating temperature of 1350 to 1420 ° C and the pressing pressure of 15 to 20 MPa according to the present invention have a bulk density of 75% or more of the true density. It has a Vickers hardness of 100 or more, the film forming speed at the time of vapor deposition is the same as that of the material deposited by the vacuum condensation method, and it can be seen that the film has excellent characteristics with little occurrence of a splash phenomenon.
一方、 本発明のホットプレス条件を満たしていない比較例は、 いずれも嵩密 度は真密度の 75%未満、 ビッカース硬さ 100未満であり、 真空凝縮法による蒸 着材料に比べ、 成膜速度が遅く、 かつスプラッシュの発生が多く、 経済的に効 率のよレ、生産は望めないことが明らかである。 On the other hand, the comparative examples which do not satisfy the hot press conditions of the present invention all have a bulk density of less than 75% of the true density and a Vickers hardness of less than 100, and have a higher deposition rate than the vapor-deposited material by the vacuum condensation method. It is clear that the production is not expected because it is slow and generates many splashes, which is economically efficient.
粒径 ホットプレス条件 Hot pressing conditions
Si Si02 加熱温度 保持時間 プレス圧力 、μιηノ ) Si Si0 2 heating temperature holding time pressing pressure, Myuiotaita Roh)
1  1
丄 1 3 1350 15  丄 1 3 1350 15
11
Real
Δ o 1 3 1380 20 施 3 1 3 1420 20 Δ o 1 3 1380 20 Al 3 1 3 1420 20
4 1 3 1350 20 例 4 1 3 1350 20 Example
5 8 9 1350 15 5 8 9 1350 15
6 15 20 1350 15 6 15 20 1350 15
1 1 3 1300 15 比 1 1 3 1 300 15 Ratio
較 2 1 3 1320 15 例 3 1 3 1350 10Comparison 2 1 3 13 20 15 Example 3 1 3 1 350 10
4 1 3 1450 15 4 1 3 1450 15
Figure imgf000013_0001
Figure imgf000013_0001
産業上の利用可能性 Industrial applicability
この発明による混合焼結体は、 けレ、素粉末と二酸化け 、素粉末のみにより製 造されており、 バインダー成分などは含有していない。 また、 この混合焼結体 は、 ピツカ一ス硬さが 100以上であるため、 希望の形状に機械加工する場合で も、 割れや欠けが発生することがほとんどな 、。  The mixed sintered body according to the present invention is manufactured using only the swarf, the elementary powder and the dioxide, and the elementary powder, and does not contain a binder component or the like. In addition, since the mixed sintered body has a hardness of at least 100, cracks and chips are hardly generated even when machining into a desired shape.
この発明による混合焼結体を一酸化け 、素用蒸着材料として用い、 高分子 フィルムなどに蒸着する際、 従来の真空凝縮法による一酸化け 、素蒸着材料と 比較して同等の成膜速度が得られ、 成膜時のスプラッシュ現象の発生は著しく 低減できる。  When the mixed sintered body according to the present invention is used as a vapor deposition material for elementary metal, and is deposited on a polymer film or the like, the film forming rate is equivalent to that of the elementary vapor-deposited material obtained by the conventional vacuum condensation method. And the occurrence of a splash phenomenon during film formation can be significantly reduced.

Claims

請求の範囲 The scope of the claims
1. けい素粉末と二酸化けい素粉末を原料とする焼結体であり、 上記原料を 気孔率 0%で充填した場合の嵩密度に対し 75%以上の嵩密度を有し、 かつビッ カース硬さ力 ^'ΙΟΟ以上である、 けい素と二酸化け 、素の混合焼結体。  1. A sintered body using silicon powder and silicon dioxide powder as raw materials, having a bulk density of 75% or more of the bulk density when the above raw materials are filled with a porosity of 0%, and a Vickers hardness A mixed sintered body of silicon, silicon dioxide, and silicon with a power of ^ 'ΙΟΟ or more.
2. けい素粉末と二酸化けい素粉末を混合原料とし、 真空雰囲気中、 プレス 圧力 15~20MPa、 加熱温度 1350~1420で、 保持時間 1時間以上で加圧、 焼結 し、 上記原料を気孔率 0%で充填した場合の嵩密度に対し 75%以上の嵩密度を 有し、 かつピツカ一ス硬さが 100以上の焼結体を得るけい素と二酸化けい素の 混合焼結体の製造方法。 2. Using a mixture of silicon powder and silicon dioxide powder as raw materials, pressurizing and sintering in a vacuum atmosphere at a press pressure of 15 to 20 MPa, a heating temperature of 1350 to 1420, and a holding time of 1 hour or more, and porosity of the above raw materials. A method for producing a mixed sintered body of silicon and silicon dioxide having a bulk density of 75% or more with respect to the bulk density when filled with 0%, and a sintered body with a Picker hardness of 100 or more. .
3. 保持時間が 1時間から 2時間である請求項 2に記載のけい素と二酸化けい 素の混合焼結体の製造方法。 3. The method for producing a mixed sintered body of silicon and silicon dioxide according to claim 2, wherein the holding time is 1 hour to 2 hours.
PCT/JP2002/006882 2001-08-22 2002-07-05 Mixed sintered compact of silicon and silicon dioxide and method for preparation thereof WO2003018506A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003523173A JPWO2003018506A1 (en) 2001-08-22 2002-07-05 Mixed sintered body of silicon and silicon dioxide and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001251813 2001-08-22
JP2001-251813 2001-08-22

Publications (1)

Publication Number Publication Date
WO2003018506A1 true WO2003018506A1 (en) 2003-03-06

Family

ID=19080397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006882 WO2003018506A1 (en) 2001-08-22 2002-07-05 Mixed sintered compact of silicon and silicon dioxide and method for preparation thereof

Country Status (2)

Country Link
JP (1) JPWO2003018506A1 (en)
WO (1) WO2003018506A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310961A (en) * 1987-06-11 1988-12-19 Canon Inc Material for vacuum deposition
JPH0657417A (en) * 1992-08-06 1994-03-01 Toyobo Co Ltd Vapor-deposition material and its production
JPH07310177A (en) * 1994-05-16 1995-11-28 Shin Etsu Chem Co Ltd Material for vapor deposition
JPH09143689A (en) * 1995-11-27 1997-06-03 Toppan Printing Co Ltd Porous vapor depositing material and its production
JPH09143690A (en) * 1995-11-27 1997-06-03 Toppan Printing Co Ltd Porous vapor depositing material and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310961A (en) * 1987-06-11 1988-12-19 Canon Inc Material for vacuum deposition
JPH0657417A (en) * 1992-08-06 1994-03-01 Toyobo Co Ltd Vapor-deposition material and its production
JPH07310177A (en) * 1994-05-16 1995-11-28 Shin Etsu Chem Co Ltd Material for vapor deposition
JPH09143689A (en) * 1995-11-27 1997-06-03 Toppan Printing Co Ltd Porous vapor depositing material and its production
JPH09143690A (en) * 1995-11-27 1997-06-03 Toppan Printing Co Ltd Porous vapor depositing material and its production

Also Published As

Publication number Publication date
JPWO2003018506A1 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
KR100721780B1 (en) Method for manufacturing high strength ultra-fine/nano-structured Al/AlN or Al alloy/AlN composite materials
JP5051168B2 (en) Nitride-dispersed Ti-Al target and method for producing the same
JP6084718B2 (en) Tungsten sintered sputtering target and tungsten film formed using the target
JP2008169464A (en) Sputtering target and method for fabricating the same
TW200948743A (en) Polycrystalline mgo sintered compact, process for producing the polycrystalline mgo sintered compact, and mgo target for sputtering
JP2009074127A (en) Sintered sputtering target material and manufacturing method therefor
JP2860064B2 (en) Method for producing Ti-Al alloy target material
JPH0925166A (en) Aluminum nitride sintered compact and its production
JP4729253B2 (en) Silicon monoxide sintered body and silicon monoxide sintered target
JP2017517627A (en) High purity refractory metal powders and their use in sputtering targets that can have disordered texture
JP4215126B2 (en) Magnesium-based composite material and method for producing the same
WO1996016916A1 (en) Aluminum nitride sinter and process for producing the same
JP2003535969A (en) Intermetallic aluminide and silicide sputtering target and method of manufacturing the same
JPH0578107A (en) Nitride powder
JP2967094B2 (en) Aluminum nitride sintered body and method for producing aluminum nitride powder
WO2003018506A1 (en) Mixed sintered compact of silicon and silicon dioxide and method for preparation thereof
JP3742661B2 (en) Aluminum nitride sintered body and method for producing the same
JPH07172921A (en) Aluminum nitride sintered material and its production
MXPA04007104A (en) Stabilized grain size refractory metal powder metallurgy mill products.
JPH0313329A (en) Sintered metal composite material excellent in corrosion resistance, dimensional accuracy and economical efficiency and preparation thereof
JP2003201179A (en) Aluminum nitride sintered compact and production method therefor
JPH08157262A (en) Aluminum nitride sintered compact and its production
JPH1017959A (en) Composite material and its production
JPH08157264A (en) Aluminum nitride sintered compact and its production
JP2002256302A (en) Spherical titanium hydride powder for sintered alloy and method for producing the sintered alloy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003523173

Country of ref document: JP

122 Ep: pct application non-entry in european phase