WO2003016111A1 - Transmissionsdetektor für einen fensterkörper, sowie reinigungsvorrichtung für einen sichtbereich eines fensterkörpers - Google Patents

Transmissionsdetektor für einen fensterkörper, sowie reinigungsvorrichtung für einen sichtbereich eines fensterkörpers Download PDF

Info

Publication number
WO2003016111A1
WO2003016111A1 PCT/DE2002/002095 DE0202095W WO03016111A1 WO 2003016111 A1 WO2003016111 A1 WO 2003016111A1 DE 0202095 W DE0202095 W DE 0202095W WO 03016111 A1 WO03016111 A1 WO 03016111A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission detector
cleaning device
transmission
window body
detector according
Prior art date
Application number
PCT/DE2002/002095
Other languages
English (en)
French (fr)
Other versions
WO2003016111A8 (de
Inventor
Achim Neubauer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP02747202A priority Critical patent/EP1427614A1/de
Priority to JP2003520638A priority patent/JP4131700B2/ja
Priority to KR1020047002039A priority patent/KR100907625B1/ko
Priority to US10/398,843 priority patent/US6954047B2/en
Publication of WO2003016111A1 publication Critical patent/WO2003016111A1/de
Publication of WO2003016111A8 publication Critical patent/WO2003016111A8/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • B60S1/0822Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
    • B60S1/0833Optical rain sensor
    • B60S1/0844Optical rain sensor including a camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • B60S1/0822Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • B60S1/0822Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
    • B60S1/0833Optical rain sensor
    • B60S1/0837Optical rain sensor with a particular arrangement of the optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • G01N2021/155Monitoring cleanness of window, lens, or other parts
    • G01N2021/157Monitoring by optical means

Definitions

  • the invention relates to a transmission detector for a window body, in particular the windshield of a motor vehicle, according to the preamble of claim 1, and to a cleaning device for a viewing area of a window body according to the preamble of claim 17.
  • Cleaning devices are known from DE 197 49 331 AI. There serves as a position sensitive optical detector for the detection of objects, e.g. Raindrops on the outside of the windshield, one
  • sensor line which is arranged at the foot of a rear view mirror of a motor vehicle parallel to the outer surface of its windshield.
  • the sensor line only detects a small section of the windshield. Influencing factors on the transmission of the windshield, which are not uniform over the entire area of the
  • Ho / i - Bosch R 41224 can, by what kind of influence, for example by what type of object on the windshield, a transmission change of the window body was called hot.
  • the transmission detector according to the invention can be used to decide whether or not there is a transmission influence acting uniformly on the window body. If there is a uniform transmission influence, e.g. B. by raindrops or a uniform layer of dust or pollen on the window body, the spaced sections are affected in the same way. This is usually not the case if there is an uneven transmission influence, for example an uneven soiling of the window body.
  • the transmission detector can be part of an optical detection device, e.g. B. for lane detection, whereby an increased cost efficiency is achieved due to the shared use of components. - J
  • a sensor array according to claim 2 has a high position resolution. This increases the precision of the transmission detector when determining the type of transmission influence on the window body.
  • a CCD array according to Anspmch 3 is very light-sensitive and also available in a compact version.
  • an imaging lens with a plurality of optical components can alternatively be used.
  • the area of the window body detected by the transmission detector can be adapted so that, for. B. can be run through a predetermined transmission measurement program to determine the transmission influence.
  • a standard transmission measurement program to determine the transmission influence.
  • Adapt the transmission detector to a plurality of differently dimensioned window bodies Adapt the transmission detector to a plurality of differently dimensioned window bodies.
  • exposure control of the optical sensor device can also be carried out with a diaphragm.
  • a controllable aperture opening ensures an automated selection of the sections of the surface of the window body to be imaged.
  • an area of the surface of the window body to be imaged can be selected depending on an evaluation result of the transmission detector.
  • more complicated transmission measurement programs can also be carried out automatically, in which, depending on the result of the evaluation of the transmission measurement of a specific area, a further area or a plurality of further areas are selected and measured. This can e.g. This can occur, for example, if, based on the initially measured area, a precise statement about the type and distribution of objects influencing the transmission on the window body is only inaccurate or not yet possible.
  • a radiation source in accordance with Claim 9 enables transmission detection even when no daylight or other extraneous light is available.
  • IR radiation according to spoke 10 is not perceived by the user as disturbing.
  • common optical detectors in certain IR wavelength ranges are particularly sensitive.
  • Sections of the surface of the window body that are not sharply depicted can also be evaluated by means of the evaluation devices according to claims 11 to 13.
  • the dependence of the Koivtrastes, the Fourier components or the auto-correlation function on defined further parameters accessible to the measurement offers a measured variable by means of which a a sufficiently precise conclusion about the age of the transmission influence is possible.
  • a comparison analysis according to claim 14 enables a relatively uncomplicated expansion of the optical image data.
  • a refinement in determining the influence on transmission can be achieved by a comparison device according to Claim 15.
  • a neural network according to Anspmch 16 has proven to be particularly suitable for implementing a comparison device with dynamic adaptation of the reference width.
  • a further object of the invention is to specify a cleaning device of the type mentioned at the outset, in which the improved detection options for influencing the transmission by the transmission detector come into play.
  • this object is achieved by a cleaning rank with the features according to claim 17.
  • the cleaning device only has to be activated if this is actually necessary due to transmission influences on the window body which can be eliminated by cleaning. This increases the efficiency of the cleaning device.
  • a window wiper body according to claim 18 is a little complex and sufficient in its cleaning effect.
  • a window washer rubbing g according to claim 19 fills an increased
  • the transmission detection takes place where the elimination of disruptive transmission influences is most important for the user.
  • Disturbing transmission fluxes that are not recorded are essentially excluded by a cleaning device according to Claim 21.
  • Fig. 1 shows a vertical section through a car in the area
  • Windshield carried out parallel to the longitudinal axis of the car
  • FIG. 2 shows an enlarged detail from FIG. 1;
  • Fig. 3 and 4 front views of the windshields of two cars with R Reeiinniigguunnggssvvooimricchhttuunnggeenn ,, ddiiee aalltteenrnative cleaning devices for the windshield; and Fig. 5 is a schematic block diagram of the cleaning device.
  • a transmission detector designated by 1 in the drawing serves for the detection of foreign bodies, e.g. B. rain drops, dust grains, pollen bodies or local pollution, e.g. due to insect residues, on a windshield 2 of a car.
  • the transmission detector 1 is part of a cleaning device for the windshield 2.
  • the windshield 2 is shown in vertical section along the longitudinal axis of the car between the car roof 3 and a body area 35 adjoining the lower area of the windshield 2.
  • the transmission detector 1 is housed in a housing and arranged on the headlining of the car in the transition area between the upper end area of the windshield 2 and the roof 3 of the car.
  • the transmission detector 1 detects the outer surface of the windshield 2.
  • the windshield 2 is inclined to the optical axis of the Weil angle lens 4, not the entire outer surface of the windshield 2 but an image section 5 in Shape of a part-circular strip sharply imaged on the photosensitive surface of a video array 6.
  • a CCD array can be used as video analyzer 6.
  • the image section 5 is highlighted in FIG. 3, which shows a view of the car in the area of the windshield 2 from the front, by means of a diamond hatching.
  • Reference sections 8 of the outer surface of the windshield 2, which can also be detected by the transmission detector 1, outside the image section 5 are shown in FIG. 3 by a hatching.
  • an imaging objective can also be used in order to meet increased imaging requirements.
  • an aperture 7 is arranged in the imaging beam path (imaging rays 9, see FIGS. 1 and 2), by means of which the section of the windshield 2 to be captured by the videoairay 6 can be selected.
  • the opening of the diaphragm 7 can be preset at the factory or can be adjusted with the aid of an actuator (not shown, cf. FIG. 5) when the transmission detector 1 is operated.
  • a device for coupling out the imaging beams 9 from the windshield 2 is inserted between the wide-angle lens 4 and the imaging lens.
  • the videoairay 6 is in signal connection with an evaluation device 10 which has an integrated control unit 11 which controls cleaning components for the windshield 2 which are still to be described.
  • the internal structure of the evaluation device 10 is illustrated in the block diagram in FIG. 5, in which the optical components of the transmission detector 1 are shown schematically:
  • the videoairay 6 is connected via a data line 12 to an exposure control 13 of the evaluation device 10. This is connected via a control line 14 to an actuator 15 which is coupled to the diaphragm 7.
  • the exposure control 13 is connected to an IR radiator 17 via a control line 16.
  • the videoairay 6 is connected to an analysis device 19 of the evaluation device 10 via a further data line 18. This is connected via a data line 20 to a comparison device 21, which in turn is connected via a signal line 22 to the control unit 11 of the extension device 10.
  • the control unit 11 is connected via a control line 23 to two windshield wiper motors 24, 25 (cf. FIG. 3), which are coupled to windshield wiper arms 28, 29 either via linkage 26, 27 or directly via the cutoffs of the windshield wiper motors.
  • control unit 11 of the evaluation device 10 is connected to two windshield washer units 31, 32 (see FIG. 3) for the windshield 2.
  • Spray areas 33, 34 of the windshield washer units 31, 32 are indicated by dashed lines in FIG. 3.
  • FIG. 3 and 4 show two alternative exemplary embodiments of cleaning devices for the windshield 2, which differ in the regions of the outer surface of the windshield 2 which are covered by the wiper arms 28, 29.
  • FIG. 4 those components which have already been explained with reference to FIG. 3 are provided with the same reference symbols and will not be discussed again in detail.
  • the cleaning device works as follows:
  • the video array 6 receives the image section 5 and the reference sections 8 depending on the opening of the aperture 7.
  • Objects are sharply imaged on the windshield 2 within the image section 5.
  • Objects lying in the reference sections 8, on the other hand, are detected by the video analyzer 6 out of focus.
  • the sharply imaged objects are detected with the help of an analysis of the detected intensity distribution to be described.
  • the objects lying outside the depth of field area of the image section 5, that is to say in the reference sections 8, are also detected by measuring the blurring of imaged contours on the basis of the detected intensity distribution. This blurring depends on whether the windshield 2, for. B. is influenced by raindrops (defocusing) or by ice or dust (scatter) in their transmission
  • image section 5 The presence of such interfering objects is shown in image section 5 by sharp details in the image, ie in an intensity variation over relatively small image areas.
  • the type of intensity variation is len cases specific to the age of pollution. It is therefore possible to draw conclusions about the age of the pollution from a comparison with reference distributions which is still to be described.
  • the image data recorded by the video arcay 6 are first forwarded to the exposure control 13 via the data line 12. There, a comparison with an exposure setpoint determines whether the illumination of the windshield 2 is sufficient for transmission detection and whether a section specification for the section of the windshield 2 to be detected is fulfilled.
  • the IR radiator 17 is switched on via the control line 16 and illuminates the windshield 2 for transmission detection. If the section specification for the section of the windshield 2 to be detected is not met, the actuator 15 is actuated via the control line 14 and the section specifications for the section of the windshield 2 to be recorded are set via the opening of the diaphragm 7.
  • the image data captured by the video analyzer 6 are forwarded to the analysis device 19 via the data line 18. In conjunction with the comparison device 21, this then carries out the expansion of the detected intensity distribution.
  • a number of methods from digital image processing are available for carrying out this expansion, of which one which is based on the expansion of a contrast spectrum is described here as an example:
  • To obtain the contrast spectrum a multiscale analysis is first carried out, in which the recorded image is broken down into several images with decreasing resolution by repeatedly using a smoothing operation. A global constant measure, for example the standard deviation of the recorded intensity values, is calculated in each resolution level. The measure of contrast, plotted against the resolution, forms the contrast spectrum of the image captured by the Videoairay 6.
  • the contrast spectra therefore only show contrasts at low resolutions.
  • the contract spectrum also contains contrasts at higher resolutions.
  • the contrast in blurred images in contrast to sharp images, decreases more with increasing resolution than in sharp images, since distant details are more impaired by the blurred image than rough image features. The drop in the contrast spectrum over the resolution is therefore a measure of the blurring of the image.
  • the contrast spectrum determined in the analysis device 19 is transmitted via line 20 to the comparison device 21 and compared there with stored comparison contrast spectra. Different ages of the obstructed view are differentiated based on their similarity to certain reference distributions. A uniform layer of dust with typically the same grain size, for example, leads to an isolated tip in the contrast spectrum, while raindrops that differ in size show a wider contrast distribution.
  • the latter controls the windshield wiper motors 24, 25 via the control line 23 and the windshield washer units 31, 32 via the control line 30 when there are corresponding objects which impair vision.
  • z. B only the wiper motors 24, 25 driven. If the presence of a dust or pollen layer on the windshield 2 is recognized, both the windshield washer units 31, 32 and the windshield wiper motors 24, 25 are activated. If there is local contamination, it may also be sufficient to activate only one windshield wiper motor 24 or 25 and / or one windshield washer unit 31 or 32. Depending on the age of a visual obstruction on the windshield - that is, the type, distribution and intensity of soiling, rain intensity , Frequency of rain, etc. - one or both wiper motors can be operated at different wiping speeds or controlled accordingly.
  • the wiper motors can then be activated. This control mode helps to protect the wiper blades.
  • the comparison contrast spectra or reference distributions can be obtained from images of the video array 6, which were recorded immediately after a wiping or washing process. With the help of these reference distributions, a decision can be made about the initiation of a next wiping or washing process.
  • a measure of the variation in the intensity of the image captured by the videoairay 6 can also be determined by other reference variables.
  • An example of such a reference variable is an auto-correlation function via the pixel spacing of the video array 6.
  • a reference quantity is an at least two-dimensional Foui ⁇ er transformation.
  • the Fourier spectrum (amplitude over the spatial frequency) shows a blurred image in that the amplitude of the high spatial frequencies, which represent the finer image details, are greatly weakened compared to a sharp image.
  • a polynomial classifier or a neural network can be generated by presenting a large number of sample images or a plurality of sets of expanded image data, the analysis device being trained on images with sharply imaged objects from those with unsharp objects by expanding the classification results to distinguish.
  • a number of apertures was also used, with which a fine adjustment of the area of the windshield 2 to be detected by the videoairay 6 is possible.
  • the control unit 11 can be designed in such a way that the windshield wiper motors 24, 25 or the windshield washer units 31, 32 can only be triggered by the comparative device 21 if the windshield wiper motors 24, 25 or the windshield washer units 31 have already been manually controlled for the first time , 32 has been carried out by the user. This precludes an original operation in the event of an incorrect detection.
  • the windshield wiper motors 24, 25 or the windshield washer units 31, 32 can also be controlled as a function of the occupancy of the driver's seat or the activity state of the vehicle (vehicle is stationary / engine in the course / vehicle falls).

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Window Of Vehicle (AREA)

Abstract

Ein Transmissionsdetektor (1) für einen Fensterkörper (2), insbesondere die Windschutzscheibe eines Kraftfahrzeugs, weist eine optische Sensorvorrichtung (4, 6, 7, 17) auf. Diese umfasst eine Abbildungsoptik (4, 7) und einen positionsempfindlichen optischen Detektor (6). Ferner weist der Transmissionsdetektor (1) eine Auswertevorrichtung (10) für die vom optischen Detektor (6) aufgenommenen Bilddaten auf. Die Abbildungsoptik (4, 7) ist so ausgeführt, dass auf den optischen Detektor (6) Abschnitte einer Oberfläche des Fensterkörpers (2) abgebildet werden, deren Abstand zueinander mit der Grösse der freien Apertur des Fensterkörpers (2) vergleichbar ist. Dies ermöglicht eine präzise Zuordnung von die Transmission des Fensterkörpers (2) beeinflussenden Grössen. Eine mit diesem Transmissionsdetektor (1) ausgerüstete Reinigungsvorrichtung für einen Sichtbereich eines Fensterkörpers (2) weist zudem eine von der Auswertevorrichtung (10) angesteuerte Reinigungseinrichtung (28, 29, 31, 32) auf. Eine derartige Reinigungsvorrichtung lässt sich bedarfsgerecht ansteuern.

Description

TRANSMISSIONSDETEKTOR FÜR EINEN FENSTERKORPER , SOWIE REINIGUNGSVORRICHTUNG FÜR EINEN SICHTBEREICH EINES FENSTERKÖRPERS
INTERNATIONALER RECHERCHENBERICHT
Die Erfindung betrifft einen Transmissionsdetektor für einen Fensterkörper, insbesondere die Windschutzscheibe eines Kraftfahrzeugs, gemäß dem Oberbegriff des Anspruches 1, sowie eine Reimgungsvomchtung für einen Sichtbereich eines Fensterkörpers gemäß dem Oberbegriff des Anspruches 17.
10
Ein derartiger Transmissionsdetektor und eine derartige
Reinigungsvomchtung sind aus der DE 197 49 331 AI bekannt. Dort dient als positionsempfindlicher optischer Detektor zur Erfassung von Objekten, z.B. Regentropfen auf der Außenseite der Windschutzscheibe, eine
15 Sensorzeile, die am Fuß eines Iimenrückspiegels eines Kraftfahrzeuges parallel zur äußeren Oberfläche von dessen Windschutzscheibe angeordnet ist. Die Sensorzeile erfaßt nur einen kleinen Ausschnitt der Windschutzscheibe. Einflußfaktoren auf die Transmission der Windschutzscheibe, die sich nicht gleichmäßig über die gesamte Fläche der
20 Windschutzscheibe auswirken, kömien daher nicht oder nur mit einer relativ großen Unsicherheit erfaßt werden.
Ein weiterer Transmissionsdetektor und eine mit diesem ausgerüstete Reinigungsvomchtung sind aus der DE 199 43 887 AI bekannt. Hier wird die von einem relativ kleinen Ausschnitt einer Windschutzscheibe eines Rraft-
25 fahrzeugs ausgehende Sfralilung zur Transmissionsdetektion mit Hilfe eines nicht positionsempfindlichen Detektor eingesetzt. Neben den erwähnten Nachteilen, die auf der Erfassung nur eines kleinen Ausschnitts des Fensterkorpers beruhen, ergeben sich hier zusätzliche Limitierungen dadurch, daß mit einem solchen Transmissionsdetektor nicht ermittelt werden
Ho/ i - Bosch R 41224 kann, durch welche Art von Einfluß, also z.B. durch welchen Objekttyp auf der Windschutzscheibe, eine Transmissionsänderung des Fensterkörpers heiΛ'orgerufen wurde.
Es ist daher eine erste Aufgabe der vorliegenden Erfindung, einen Transmissionsdetektor gemäß dem Oberbegriff des Anspruchs 1 derart weiterzubilden, daß auch ungleichmäßig über den Fensterkörper verteilte Transmissionseinflüsse sicher erfaßt werden können.
Diese Aufgabe ist erfindungsgemäß gelöst durch einen Transmissionsdetektor mit den im Anspruch 1 angegebenen Merkmalen.
Durch die Erfassung von in der Größenordnung der freien Apertur voneinander beabstandeten Abschnitten der Oberfläche des Fensterkörpers kann mit dem erfmdungsgemäßen Transmissionsdetektor entschieden werden, ob eine gleichmäßig auf den Fensterkörper wirkende Transmissionsbeeinflussung vorliegt oder nicht. Beim Vorliegen einer gleichmäßigen Transmissionsbeeinflussung, z. B. durch Regentropfen oder eine gleichmäßige Staub- oder Pollenschicht auf dem Fensterkörper, werden die voneinander beabstandeten Abschnitte in gleicher Weise beeinflußt. Dies ist in der Regel nicht der Fall, wenn eine ungleichmäßige Transmissionsbeeinflussung, z.B. eine ungleichmäßige Verschmutzung des Fensterkörpers, vorliegt. Gegebenenfalls kann der Transmissionsdetektor Teil einer optischen Detekti- onsvoirichtung z. B. zur Fahrspurerkennung sein, wodurch aufgrund der gemeinsamen Komponentennutzung eine erhöhte Kosteneffizienz erzielt wird. - J
Ein Sensorarray gemäß Anspmch 2 weist eine hohe Positionsauflösung auf. Dies erhöht die Präzision des Transmissionsdetektors bei der Bestimmung der Art der Transmissionsbeeinflussung des Fensterkorpers.
Ein CCD-Array gemäß Anspmch 3 ist sehr lichtempfindlich und zudem in kompakter Ausführung erhältlich.
Mit einer Weitwinkellinse gemäß Anspmch 4 lassen sich auch weiter voneinander beabstandete Abschnitte der Oberfläche des Fensterkörpers mit geringem optischen Aufwand abbilden. Wenn erhöhten optischen Anforderungen, beispielsweise durch die Formgebung des Fensterkorpers oder durch die Randbedingung, möglichst die gesamte Oberfläche des Fensterkörpers abzubilden, Rechnung genagen werden muß, kann alternativ auch ein Abbildungsobjektiv mit einer Mehrzahl optischer Komponenten einge- setzt sein.
Mit Hilfe einer Blende gemäß Anspmch 5 läßt sich der mit dem Transmis- sionsdetektor erfaßte Bereich des Fensterkörpers anpassen, so daß z. B. ein vorgegebenes Transmissions-Meßprogramm zur Transmissionseinflußbe- Stimmung durchlaufen werden kann. Zudem läßt sich ein Standard-
Transmissionsdetektor an eine Mehrzahl verschieden dimensionierter Fensterkörper anpassen. Zudem kann mit einer Blende auch eine Belichtungssteuerung der optischen Sensorvorrichtung durchgeführt werden.
Eine steuerbare Blendenöffnung gemäß Anspruch 6 gewährleistet ein automatisiertes Auswählen der abzubildenden Abschnitte der Oberfläche des Fensterkörpers. Mittels eines Aktuators gemäß Anspmch 7 läßt sich abhängig von einem Auswerteergebnis des Transmissionsdetektors ein abzubildender Bereich der Oberfläche des Fensterkörpers auswählen. Auf diese Weise lassen sich auch kompliziertere Transmissions-Meßprogramrne automatisiert durch- fülπen, bei denen abhängig vom Ergebnis der Auswertung der Transmissionsvermessung eines bestimmten Bereichs ein weiterer Bereich oder mehrere weitere Bereiche ausgewählt und vermessen werden. Dies kann z. B. dann erfolgen, wenn anhand des zunächst vermessenen Bereichs eine präzise Aussage über die Art und Verteilung von die Transmission beeinflus- senden Objekten auf dem Fensterköiper nur ungenau oder noch gar nicht möglich ist.
Mehrere Blenden gemäß Anspmch 8 ermöglichen die Auswahl auch kompliziert bzw. unregelmäßig geformter abzubildender Abschnitte der Ober- fläche des Fensterkörpers.
Eine Sfrahlungs quelle gemäß Anspmch 9 erlaubt die Transmissionsdetektion auch dann, wenn kein Tageslicht oder sonstiges Fremdlicht zur Verfü- gung steht.
IR-Strahlung gemäß Ansprach 10 wird vom Benutzer nicht als störend empfunden. Zudem sind gängige optische Detektoren in bestimmten IR- Wellenlängenbereich besonders empfindlich.
Mittels der Auswertevoirichtungen gemäß den Anspiüchen 1 1 bis 13 lassen sich auch nicht scharf abgebildete Abschnitte der Oberfläche des Fensterkörpers auswerten. Die Abhängigkeit des Koivtrastes, der Fourierkom- ponenten bzw. der Autokonelationsfunktion von definierten weiteren, der Messung zugänglichen Parametern bietet eine Meßgröße, mittels der ein ausreichend präziser Rückschluß auf die Alt der Transmissionsbeeinflussung möglich ist.
Eine Vergleichseimϊchtung gemäß Anspruch 14 ermöglicht eine relativ unaufwendige Ausweitung der optischen Bilddaten.
Durch eine Vergleichseinrichtung gemäß Anspmch 15 läßt sich eine Verfeinerung bei der Bestimmung der Transmissionsbeeinflussung eneichen.
Ein neuronales Netzwerk gemäß Anspmch 16 hat sich als besonders geeignet zur Realisierung einer Vergleichseinrichtung mit dynamischer Anpassung der Referenzweite herausgestellt.
Eine weitere Aufgabe der Erfindung ist es, eine Reinigungsvoπichtung der eingangs genannten Art anzugeben, bei der die verbesserten Erfassungsmöglichkeiten einer Transmissionsbeeinflussung durch den Transmissionsdetektor zum Tragen kommen.
Diese Aufgabe ist erfmdungsgemäß gelöst durch eine Reinigungsvo rich- rang mit den Merkmalen gemäß Anspmch 17.
Bei einer derartigen Reinigungsvorrichtung muß die Reinigungseinri chtung nur dami aktiviert werden, wenn dies auch tatsächlich aufgrund von Transmissionseinflüssen auf den Fensterköiper, die durch Reinigung besei- tigbar sind, erforderlich ist. Dies erhöht die Effizienz der Reinigungs Vorrichtung.
Ein Fensterwischerkörper gemäß Anspruch 18 ist ein wenig aufwendiges und in seiner Reinigungswirkung ausreichendes Reiπigungsinstrumeiit. Eine Fenstenvasch einrieb tun g gemäß Anspmch 19 fülut zu einer erhöhten
Reinigungswirkung.
Bei einer Reinigungsvomchtung gemäß Anspruch 20 erfolgt die Transmissionsdetektion dort, wo eine Beseitigung störender Transmissionseinflüsse für den Benutzer am wichtigsten ist.
Störende Transmissionsehrflüsse, die nicht erfaßt werden, werden durch eine Reinigungsvomchtung gemäß Anspmch 21 im wesentlichen ausgeschlossen.
Durch eine Ansteuerung der Reinigungsemrichtung gemäß Anspmch 22 wird die Gefahr einer Fehlaktivierung der Reinigungseimichtung mini- miert.
Ausfuhrungsbeispiele der Erfindung werden nachstehend anhand der Zeichnung näher erläutert; es zeigen:
Fig. 1 einen vertikalen Schnitt durch einen PKW im Bereich einer
Windschutzscheibe, durchgeführt parallel zur PKW-Längsachse;
Fig. 2 einen vergrößerten Ausschnitt aus Fig. 1;
Fig. 3 und 4 Vorderansichten der Windschutzscheiben zweier PKW mit R Reeiinniigguunnggssvvooimricchhttuunnggeenn,, ddiiee aalltteenrnative Reinigungseinrichtungen für die Windschutzscheibe aufweisen; und Fig. 5 eine schematische Blockdarstellung der Reinigungsvomchtung.
Ein in der Zeichnung insgesamt mit 1 bezeichneter Transmissionsdetektor dient zur Erfassung von Fremdkörpern, z. B. von Regenfropfen, Staubkörnern, Pollenkörpem oder lokalen Verschmutzungen, z.B. durch Insektenrückstände, auf einer Windschutzscheibe 2 eines PKW. Der Transmissionsdetektor 1 ist Teil einer Reinigungsvomchtung für die Windschutzscheibe 2. In Fig. 1 ist die Windschutzscheibe 2 im vertikalen Schnitt längs der PKW-Längsachse zwischen dem PKW-Dach 3 und einem an den unteren Bereich der Windschutzscheibe 2 anschließenden Karosseriebereich 35 dargestellt.
Der Transmissionsdetektor 1 ist in einem Gehäuse untergebracht und am Dachhimmel des PKW im Übergangsbereich zwischen dem oberen Endbereich der Windschutzscheibe 2 und dem Dach 3 des PKW angeordnet.
Mit Hilfe einer Weitwinkellinse 4 erfaßt der Transmissionsdetektor 1 die Außenfläche der Windschutzscheibe 2. Abhängig von der Schärfentiefe der Weitwinkellinse 4 wird, da die Windschutzscheibe 2 zur optischen Achse der Weilwinkellinse 4 geneigt ist, nicht die gesamte Außenfläche der Windschutzscheibe 2, sondern ein Bildabschnitt 5 in Gestalt eines teilkreisförmigen Streifens scharf auf die fotosensitive Fläche eines Videoairays 6 abgebildet. Als Videoanay 6 kann ein CCD-Array eingesetzt sein. Der Bildabschnitt 5 ist in Fig. 3, die eine Ansicht des PKW im Bereich der Windschutzscheibe 2 von vorne zeigt, durch eine Rautenschraffur hervorgehoben. Ebenfalls vom Transmissionsdetektor 1 erfaßbare Referenzabschnitte 8 der Außenfläche der Windschutzscheibe 2 außerhalb des Bildabschnitts 5 sind in Fig. 3 durch eine Quadrats chraffur dargestellt. Der insge- samt vom Videoairay 6 erfaßbare Bereich der Windschutzscheibe 2, der sich aus dem Bildabschnitt 5 und den Referenzabs chnitten 8 zusammensetzt, überdeckt eine Fläche der Windschutzscheibe 2, die mit dem gesamten freien Sichtbereich, also der freien Apertur, der Windschutzscheibe 2 vergleichbar ist.
Alternativ zu einer Weitwinkellinse 4 kann, um erhöhte Anforderungen an die Abbildung zu erfüllen, auch ein Abbildungsobjektiv eingesetzt sein.
Zwischen der Weitwinkellinse 4 und dem Videoairay 6 ist im Abbildungsstrahlengang (Abbildungsstrahlen 9, vgl. Fig. 1 und 2) eine Blende 7 angeordnet, mittels der sich der vom Videoairay 6 zu erfassende Ausschnitt der Windschutzscheibe 2 auswählen läßt. Die Öffnung der Blende 7 kann werkseitig voreingestellt sein oder mit Hilfe eine Aktuators (nicht darge- stellt, vgl. hierzu Fig. 5) beim Betiϊeb des Transmissionsdetektors 1 nachgestellt werden.
Gegebenenfalls ist zwischen der Weitwinkellinse 4 bzw. dem Abbildungsobjektiv eine Vomchtung zur Auskopplung der Abbildungsstrahlen 9 aus der Windschutzscheibe 2 eingesetzt.
Das Videoairay 6 steht in Signal Verbindung mit einer Auswertevomchtung 10, welche eine integrierte Steuereinheit 11 aufweist, die noch zu beschreibende Reinigungskomponenten für die Windschutzscheibe 2 ansteuert.
Den internen Aufbau der Auswertevoirichtung 10 verdeutlicht die Blockdarstellung der Fig. 5, in der die optischen Komponenten des Transmissionsdetektors 1 schematisch dargestellt sind: Das Videoairay 6 steht über eine Datenleitung 12 mit einer Belichtungs- steuerang 13 der Auswertevoπϊchtung 10 in Verbindung. Diese ist über eine Steuerleitung 14 mit einem Aktuator 15 verbunden, der an die Blende 7 gekoppelt ist. Weiterhin steht die Belichtungssteuerung 13 über eine Steuerleitung 16 mit einem IR- Strahler 17 in Verbindung.
Über eine weitere Datenleitung 18 ist das Videoairay 6 mit einer Analyseeinrichtung 19 der Auswertevoπϊchtung 10 verbunden. Diese steht über eine Datenleitung 20 mit einer Vergleichseinrichtung 21 in Verbindung, welche ilπerseits über eine Signalleitung 22 mit der Steuereiiilieit 11 der Ausweite voirichtung 10 in Verbindung steht.
Über eine Steuerleitung 23 ist die Steuereinheit 11 mit zwei Scheibenwi- schennotoren 24, 25 (vgl. Fig. 3) verbunden, die entweder über Gestänge 26, 27 oder direkt über die Abhiebe der Scheibenwischermotoren mit Scheibenwischerarmen 28, 29 gekoppelt sind.
Über eine Steuerleitung 30 steht die Steuereiiilieit 11 der Aus werte voirichtung 10 mit zwei Scheibenwascheinheiten 31, 32 (vgl. Fig. 3) für die Windschutzscheibe 2 in Verbindung. Sprühbereiche 33, 34 der Scheibenwascheinheiten 31, 32 sind in Fig. 3 gestrichelt angedeutet.
Die Fig. 3 und 4 zeigen zwei alternative Ausführungsbeispiele von Reini- gungseinrichmngen für die Windschutzscheibe 2, die sich in den von den Scheibenwischerarmen 28, 29 überstrichenen Bereichen der Außenfläche der Windschutzscheibe 2 unterscheiden. In Fig. 4 sind diejenigen Komponenten, die schon unter Bezugnahme auf Fig. 3 erläutert wurden, mit den gleichen Bezugszeichen versehen und werden nicht nochmals im einzelnen diskutiert.
Bei der Wischerkonfiguration gemäß Fig. 4 wird von den Scheibenwi- scheraπnen 28, 29 ein größerer Bereich der Windschutzscheibe 2 überstrichen, als dies bei der Wischerkorrfϊguration gemäß Fig. 3 der Fall ist. Entsprechend vergrößert sind auch die vom Transmissionsdetektor 1 erfaßten Referenzabschnitte 8.
Die Reinigungsvomchtung funktioniert folgendermaßen:
Über die Blende 7 und die Weitwinkellinse 4 nimmt das Videoairay 6 abhängig von der Öffnung der Blende 7 den Bildabschnitt 5 sowie die Refe- renzab schnitte 8 auf. Innerhalb des Bildabschnitts 5 werden Objekte auf der Windschutzscheibe 2 scharf abgebildet. In den Referenzabschnitten 8 liegende Objekte werden vom Videoanay 6 dagegen unscharf erfaßt. Die scharf abgebildeten Objekte werden mit Hilfe einer noch zu beschreibenden Analyse der erfaßten Intensitätsveiteilung detektieit. Die außerhalb des Schärfentiefenbereichs des Bildabschni ts 5, also in den Referenzabschnitten 8 liegenden Objekte werden über die Messung der Unscharfe abgebildeter Konturen ebenfalls auf Basis der erfassten Intensitätsveiteilung detektieit. Diese Unscharfe hängt davon ab, ob die Windschutzscheibe 2,z. B. durch Regentropfen (Defokussiemng) oder durch Eis bzw. Staub (Streu- ung) in ihrer Transmission beeinflusst wird
Das Vorhandensein derartiger Störobjekte zeigt sich im Bildabschnitt 5 durch scharf abgebildete Details im Bild, d. h. in einer Intensitätsvariation über relativ kleine Bildbereiche. Die Art der Intensitätsvariation ist in vie- len Fällen spezifisch für die Alt der Verschmutzung. Daher kann durch einen noch zu besclπeibenden Vergleich mit Referenzverteilungen auf die Alt der Verschmutzung zurückgeschlossen werden.
Die vom Videoarcay 6 aufgenommenen Bilddaten werden zunächst über die Datenleitung 12 an die Belichtungssteuerung 13 weitergeleitet. Dort wird anhand eines Vergleichs mit einem Belichtungs-Sollwert festgestellt, ob die Ausleuchtung der Windschutzscheibe 2 zur Transmissionsdetektion ausreicht und ob eine Abschnittsvorgabe für den zu detektierenden Ab- schnitt der Windschutzscheibe 2 erfüllt ist.
Wύd der Belichtungs-Sollwert nicht eireicht, wird über die Steuerleitung 16 der IR-Strahler 17 zugeschaltet, der die Windschutzscheibe 2 zur Transmissionsdetektion ausleuchtet. Wenn die Abschnittsvorgabe für den zu erfassenden Absclmitt der Windschutzscheibe 2 nicht erfüllt ist, wird über die Steuerleitung 14 der Aktuator 15 angesteuert und über die Öffnung der Blende 7 die Ab Schnitts vorgäbe für den zu erfassenden Absclmitt der Windschutzscheibe 2 eingestellt.
Wenn sichergestellt ist, daß die diskutierten Soll-Vorgaben eireicht sind, werden die vom Videoanay 6 erfaßten Bilddaten über die Datenleitung 18 an die Analyse-Einrichtung 19 weitergeleitet. Diese führt dann im Zusammenspiel mit der Vergleichseiiπichtung 21 die Ausweitung der erfaßten Intensitätsveiteilung durch. Zur Durchführung dieser Ausweitung liegen eine Reihe von Verfahren aus der digitalen Bildverarbeitung vor, von denen hier eines, welches auf der Ausweitung eines Kontrastspektrums beruht, exemplarisch besclπieben wird: Zur Gewinnung des Kontrastspektrums wird zunächst eine Multiskalen- Analyse durchgefülut, bei der das aufgenommene Bild über die wiederholte Anwendung einer Glättungsoperation in mehrere Bilder mit abnehmender Auflösung zerlegt wird. In jeder Auflösungsstufe wird ein globales Konti'astmaß bereclmet, beispielsweise die Standardabweichung der erfaßten Intensitätswerte. Das Kontrastmaß, aufgetragen über die Auflösung, bildet das Kontrastspektrum des vom Videoairay 6 erfaßten Bildes. Wenn die Windschutzscheibe 2 kratzerfrei und frei von Objekten ist, weiden nur unscharfe Objekte aus größeren Entfernungen abgebildet. Im Konfrastspek- tπim zeigen sich daher nur Kontraste bei niedrigen Auflösungen. Befinden sich dagegen Objekte im Bildabschnitt 5 der Windschutzscheibe 2, werden auch ferne Details abgebildet. Im Kontraktspektrum findet man in diesem Fall auch Konfraste bei höheren Auflösungen. Für die unscharf abgebildeten Referenzabschnitte 8 wird der Umstand genutzt, daß der Kontrast in unscharfen Bildern im Gegensatz zu scharfen Bildern mit zunehmender Auflösung stärker abfällt als in scharfen Bildern, da ferne Details durch die unscharfe Abbildung stärker beeinfrächtigt werden als grobe Bildmerkmale. Der Abfall des Konfrastspektrams über die Auflösung ist also ein Maß für die Unscharfe des Bildes.
Das in der Analyseeimichtung 19 ermittelte Kontrastspektrum wird über die Leitung 20 an die Vergleichseimichtung 21 übermittelt und dort mit gespeicherten Vergleichs-Konfrastspektren verglichen. Hierbei werden verschiedene Alten der Sichtbehinderang anhand ihrer Ähnlichkeit zu be- stimmten Referenzverteilungen unterschieden. Eine gleichmäßige Staubschicht mit typisch gleicher Korngröße führt beispielsweise zu einer isolierten Spitze im Kontrastspektrum, während Regentropfen, die sich in ihrer Größe unterscheiden, eine breitere Kontrastverteilung zeigen. Aufgrund des Ergebnisses des Vergleichs in der Vergleichseiiπichtung 21 steuert diese über die Steuerleitung 23 die Scheibenwischermotoren 24, 25 bzw. über die Steuerleitung 30 die Scheibenwascheinheiten 31, 32 dann an, wenn entsprechende sichtstörende Objekte vorliegen.
Werden durch den Vergleich in der Vergleichseimichtung 21 Regentropfen erkannt, werden z. B. nur die Scheibenwischermotoren 24, 25 angesteuert. Wird das Vorliegen einer Staub- oder Pollenschicht auf der Windschutzscheibe 2 erkannt, werden sowohl die Scheibenwascheinheiten 31, 32 als auch die Scheibenwischermotoren 24, 25 aktiviert. Beim Vorliegen einer lokalen Verschmutzung genügt unter Umständen auch das Aktivieren nur eines Scheibenwischermotors 24 oder 25 und/oder einer Scheibenwasch- einheit 31 oder 32. Abhängig von der Alt einer Sichtbehindemng auf der Scheibe - also Art, Verteilung und Intensität einer Verschmutzung, Regen- intensität, RegentiOpfenliäufigkeit usw. - kömien ein oder beide Scheibenwischermotoren mit unterschiedlicher Wischgeschwindigkeit betrieben bzw. entsprechend angesteuert werden. Bei Feststellung einer Vereisung der Wmdschutzscheibe kann es - insbesondere bei stehendem Falπzeug - angezeigt sein, zunächst nur die Scheibenwascheinheit zu aktivieren, um die Vereisung durch das Frostschutzmittel im Scheibenwaschwasser zu beseitigen. Durch das Auftauen der Eisschicht und die entsprechende Transmissionsänderung kömien dann die Wischennotoren aktiviert werden. Diese Steuerungsweise trägt zu einer Schonung der Wischblätter bei.
Die Vergleichs-Kontrastspektren bzw. Referenzverteilungen können aus Bildern des Videoairays 6 gewonnen weiden, die unmittelbar nach einem Wisch- oder Waschvorgang aufgenommen wurden. Mit Hilfe dieser Referenzverteilungen kann über die Einleitung eines nächsten Wisch- bzw. Waschvorgangs entschieden werden. Ein Maß für die Variation der Intensität des vom Videoairay 6 erfaßten Bildes kann alternativ zu einer Kontrastmessung auch durch andere Referenzgrößen eπnittelt werden.
Ein Beispiel einer derartigen Referenzgröße ist eine Autokoirelationsfunk- tion über den Pixelabstand des Videoairays 6. Bei freier Sicht erscheinen, da nur Hintergrandobjekte abgebildet werden, alle abgebildeten Objekte stark verschwommen, d. h. die Autokoirelationsfunktion des Bildes fällt nur langsam über die Entfemung ab. Sind dagegen Objekte auf der Scheibe, variiert das Bild auf sehr viel kleineren Entfernungen, so daß seine . Autokoirelationsfunktion schneller abfällt.
Als weitere Möglichkeit für eine Referenzgröße bietet sich eine mindestens 2-dimensionale Fouiϊertransformation an. Beim Fourierspektrum (Amplitude über die Raumfrequenz) zeigt sich ein unscharfes Bild dadurch, daß die Amplitude der hohen Raumfrequenzen, welche die feineren Bilddetails repräsentieren, im Vergleich zu einem scharfen Bild stark abgeschwächt sind.
Schließlich ist es auch möglich, einen indirekten Klassifikationsansatz bereitzustellen, bei de Referenzweite durch eine entsprechende Analyseeinrichtung, z. B. einen Polynomklassifikator oder ein neuronales Netz, durch Präsentation einer großen Menge von Beispielbildern bzw. einer Mehrzahl von Sätzen ausgeweiteter Bilddaten erzeugt werden, wobei die Analyseein- richrung darauf frainiert wird, Bilder mit scharf abgebildeten Objekten von solchen mit unscharfen Objekten durch Ausweitung der Klassifikationsergebnisse zu unterscheiden. Statt einer Blende 7 kam auch eine Melπzahl von Blenden eingesetzt sein, mit denen eine Feineinstellung des durch das Videoairay 6 zu erfassenden Bereichs der Windschutzscheibe 2 möglich ist.
Die Steuereinheit 11 kann so ausgeführt sein, daß eine Ansteuerang der Scheibenwischermotoren 24, 25 bzw. der Scheibenwascheinheiten 3 1, 32 nur dann ausgelöst durch die Vergleichseimrchtung 21 erfolgen kann, wenn bereits eine erstmalige manuelle Ansteuerang der Scheibenwischermotoren 24, 25 bzw. der Scheibenwascheinheiten 31, 32 durch den Benut- zer erfolgt ist. Dies schließt eine urtümliche Inbetiiebnahrae bei einer Fehldetektion aus. Eine Ansteuerang der Scheibenwischermotoren 24, 25 bzw. der Scheibenwascheinheiten 31, 32 kami auch in Abhängigkeit von der Fahrersitzbelegung oder dem Aktivitätszustand des Fahrzeuges (Fahrzeug steht/Motor im Lehrlauf/Fahrzeug fälπt) vorgenommen werden.

Claims

Patentansprüche
1. Transmissionsdetektor für einen Fensterkörper, insbesondere die Windschutzscheibe eines Kraftfahrzeugs, a) mit einer optischen Sensorvoirichtung, die eine Abbildungsoptik und einen positionsempfindlichen optischen Detektor umfaßt, und b) mit einer Auswertevoirichtung für die vom optischen Detektor aufgenommenen Bilddaten, dadurch gekennzeichnet, daß c) die Abbildungsoptik (4, 7) so ausgeführt ist, daß auf den optischen Detektor (6) Abscmiitte (5, 8) einer Oberfläche des Fensterkorpers (2) abgebildet werden, deren maximaler Abstand zueinander mit der Größe der freien Apertur des Fensterkörpers (2) vergleichbar ist.
2. Transmissionsdetektor nach Anspmch 1, dadurch gekennzeichnet, daß der positionsempfindliche optische Detektor ein Sensorairay (6) umfaßt.
3. Transmissionsdetektor nach Anspmch 2, dadurch gekennzeichnet, daß das Sensorairay (6) ein CCD-Airay ist.
4. Transmissionsdetektor nach einem der vorhergehenden Ansprache, dadurch gekennzeichnet, daß die Abbildungsoptik (4, 7) eine Weitwinkellinse umfaßt.
5. Transmissionsdetektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die optische Sensorvoirichtung (4, 6, 7, 17) mindestens eine Blende (7) aufweist, mittels der eine Auswahl der abzubildenden Abschnitte (5, 8) erfolgt.
6. Transmissionsdetektor nach Ansprach 5, dadurch gekennzeichnet, daß mindestens ein Aktuator (15) zur Steuerung der Blendenöffnung vorgesehen ist.
7. Transmissionsdetektor nach Ansprach 6, dadurch gekennzeichnet, daß der Aktuator (15) mit der Auswertevoirichtung (10) in Signalverbindung (14) steht.
8. Transmissionsdetektor nach einem der Anspräche 1 bis 7, dadurch ge- kennzeichnet, daß die optische Sensorvoirichtung (4, 6, 7, 17) eine Mehrzahl von Blenden aufweist.
9. Transmissionsdetektor nach einem der vorhergehenden Anspräche, dadurch gekennzeichnet, daß die optische Sensoivomchtung (4, 6, 7, 17) eine Strahlungs quelle (17) zur Besttahlung der abzubildenden Abschnitte (5, 8) umfaßt.
10. Transmissionsdetektor nach Ansprach 9, dadurch gekennzeichnet, daß die Sfrahlungsquelle (17) IR-Strahlung emittiert.
11. Transmissionsdetektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Auswertevoirichtung (10) derart ausgeführt ist, daß aus den vom optischen Detektor (6) aufgenommenen Bilddaten eine Kontrastanalyse der Intensitätsveiteilung der abgebildeten Ab- schnitte (5, 8) durchgeführt wird.
12. Transmissionsdetektor nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Auswertevoirichtung (10) derart ausgeführt ist, daß aus den vom optischen Detektor (6) aufgenommenen Bilddaten eine Fourieranalyse der Intensitätsveiteilung der abgebildeten Abschnitte (5, 8) durchgeführt wird.
13. Transmissionsdetektor nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Auswertevoirichtung (10) derart ausgefüln-t ist, daß aus den vom optischen Detektor (6) aufgenommenen Bilddaten eine Autokorrelationsanalyse der Intensitätsverteilung der abgebildeten Abschnitte (5, 8) dm'chgefülut wird.
14. Transmissionsdetektor nach einem der vorhergehenden Anspräche, dadurch gekennzeichnet, daß eine Vergleichsemiichtung (21) zum Vergleich der ausgeweiteten Bilddaten mit Referenzweiten vorgesehen ist.
15. Transmissionsdetektor nach Ansprach 14, dadurch gekennzeichnet, daß die Vergleichsehπichtung (21) derart ausgeführt ist, daß die Referenzweite dynamisch an die Ergebnisse einer Mehrzahl von Sätzen ausgewerteter Bilddaten angepaßt werden.
16. Transmissionsdetektor nach Ansprach 15, dadurch gekennzeichnet, daß die Vergleichseimichtung (21) ein neuronales Netzwerk umfaßt.
17. Reinigungsvomchtung für einen Sichtbereich eines Fensterkörpers mit einer von der Auswertevoirichtung angesteuerten Reinigungseiiuichtung, gekennzeichnet durch einen Transmissionsdetektor (1 ) nach einem der Anspräche 1 bis 16.
18. Reinigungsvomchtung nach Ansprach 17, dadurch gekennzeichnet, daß die Reinigungseiiuichtung (28, 29, 31, 32) einen Fensterwischkörper (28, 29) umfaßt.
19. Reinigungsvomchtung nach Anspruch 17 oder 18, dadurch gekennzeichnet, daß die Reinigungseinrichtung (28, 29, 31, 32) eine Fenster- wascheiiπichtung (31, 32) umfaßt.
20. Reinigungsvomchtung nach einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, daß die abgebildeten Abschnitte (5, 8) im Sichtbereich eines Benutzers durch den Fensterköiper liegen.
21. Reinigungsvomchtung nach Anspruch 20, dadurch gekennzeichnet, daß die abgebildeten Abschnitte (5, 8) den Sichtbereich im wesentlichen überdecken.
22. Reinigungsvomchtung nach einem der Ansprüche 17 bis 21, dadurch gekennzeichnet, daß die Ansteuerang der Reinigungseiiπichtung (28, 29, 31, 32) durch die Auswertevoirichtung (10) derart ausgeführt ist, daß die Reinigungseüπichtung (28, 29, 31, 32) nur nach erfolgter erstmaliger Aktivierung durch den Benutzer angesteuert wird.
PCT/DE2002/002095 2001-08-10 2002-06-08 Transmissionsdetektor für einen fensterkörper, sowie reinigungsvorrichtung für einen sichtbereich eines fensterkörpers WO2003016111A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02747202A EP1427614A1 (de) 2001-08-10 2002-06-08 Transmissionsdetektor für einen fensterkörper sowie reinigungsvorrichtung für den sichtbereich eines fensterkörpers
JP2003520638A JP4131700B2 (ja) 2001-08-10 2002-06-08 ウィンドウ部分用の透過検出器、並びに、ウィンドウ部分の視界領域用のクリーニング装置
KR1020047002039A KR100907625B1 (ko) 2001-08-10 2002-06-08 윈도우 바디용 투과 검출기 및 상기 윈도우 바디의 시야 영역용 세정 시스템
US10/398,843 US6954047B2 (en) 2001-08-10 2002-06-08 Transmission detector for a window body, in particular the windshield of a motor vehicle, and a cleaning device for a viewing area of a window body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10139514A DE10139514A1 (de) 2001-08-10 2001-08-10 Transmissionsdetektor für einen Fensterkörper, insbesondere die Windschutzscheibe eines Kraftfahrzeuges, sowie Reinigungsvorrichtung für einen Sichtbereich eines Fensterkörpers
DE10139514.0 2001-08-10

Publications (2)

Publication Number Publication Date
WO2003016111A1 true WO2003016111A1 (de) 2003-02-27
WO2003016111A8 WO2003016111A8 (de) 2004-04-29

Family

ID=7695144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/002095 WO2003016111A1 (de) 2001-08-10 2002-06-08 Transmissionsdetektor für einen fensterkörper, sowie reinigungsvorrichtung für einen sichtbereich eines fensterkörpers

Country Status (6)

Country Link
US (1) US6954047B2 (de)
EP (1) EP1427614A1 (de)
JP (1) JP4131700B2 (de)
KR (1) KR100907625B1 (de)
DE (1) DE10139514A1 (de)
WO (1) WO2003016111A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1440856A3 (de) * 2003-01-24 2005-07-13 DaimlerChrysler AG Verfahren und Vorrichtung zur Sichtverbesserung und zur Bestimmung der Wettersituation
EP1468401B1 (de) * 2002-01-17 2020-02-19 Robert Bosch Gmbh Verfahren und vorrichtung zur erkennung von sichtbehinderungen bei bildsensorsystemen

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10201520A1 (de) * 2002-01-17 2003-07-31 Bosch Gmbh Robert Verfahren und Vorrichtung zur Bildfehlererkennung b zw. -anzeige bei Bildaufnahmesystemen
JP4683968B2 (ja) 2005-03-11 2011-05-18 ボイス ペ−パ− パテント ゲ−エムベ−ハ− カーテン式コータ
US7561055B2 (en) 2006-01-10 2009-07-14 Guardian Industries Corp. Rain sensor with capacitive-inclusive circuit
US8634988B2 (en) 2006-01-10 2014-01-21 Guardian Industries Corp. Time, space, and/or wavelength multiplexed capacitive light sensor, and related methods
EP2218616B1 (de) * 2006-01-10 2012-08-22 Guardian Industries Corp. Regensensor mit fraktalem(n) Kondensator(en)
US9371032B2 (en) 2006-01-10 2016-06-21 Guardian Industries Corp. Moisture sensor and/or defogger with Bayesian improvements, and related methods
US10173579B2 (en) 2006-01-10 2019-01-08 Guardian Glass, LLC Multi-mode moisture sensor and/or defogger, and related methods
ATE453114T1 (de) * 2007-04-20 2010-01-15 Sick Ag Verfahren und vorrichtung zur optischen erfassung von verschmutzungen
USD647084S1 (en) 2010-03-03 2011-10-18 Incipio Technologies, Inc. Case
USD678870S1 (en) 2010-03-10 2013-03-26 Incipio Technologies, Inc. Case
USD651202S1 (en) 2010-04-05 2011-12-27 Incipio Technologies, Inc. Case
WO2011139288A1 (en) * 2010-05-06 2011-11-10 Nikon Corporation Image sharpness classification system
USD649144S1 (en) 2010-09-01 2011-11-22 Incipio Technologies, Inc. Case
USD681615S1 (en) 2011-02-14 2013-05-07 Incipio Technologies, Inc. Case
USD724067S1 (en) 2012-02-08 2015-03-10 Incipio Technologies, Inc. Case
USD724065S1 (en) 2012-02-08 2015-03-10 Incipio Technologies, Inc. Case
USD720733S1 (en) 2012-02-08 2015-01-06 Incipio Technologies, Inc. Case
USD713832S1 (en) 2012-02-08 2014-09-23 Incipio Technologies, Inc. Case
USD720734S1 (en) 2012-03-16 2015-01-06 Incipio Technologies, Inc. Case
JP5770661B2 (ja) * 2012-03-19 2015-08-26 アスモ株式会社 視界情報取得方法、及び視界情報取得装置
CN105235647B (zh) * 2014-07-10 2017-10-31 信义汽车玻璃(深圳)有限公司 雨感器的光学元件的检测设备及检测方法
USD744995S1 (en) 2014-11-18 2015-12-08 Uniluv Marketing, Inc. Case
USD744472S1 (en) 2014-11-18 2015-12-01 Uniluv Marketing, Inc. Case
DE102016213059A1 (de) * 2016-07-18 2018-01-18 Robert Bosch Gmbh Verfahren und Steuergerät zum Verarbeiten eines zumindest einen Lichthof repräsentierenden Bildes sowie Bildaufnahmesystem
CN109444089B (zh) * 2018-12-19 2021-05-11 航天新气象科技有限公司 一种用于总辐射传感器球罩的透过率计算装置
US11285961B2 (en) * 2019-09-10 2022-03-29 International Business Machines Corporation Predictive car wash services for a vehicle based on anticipated routes of travel
US11187688B2 (en) * 2019-11-18 2021-11-30 Gm Cruise Holdings Llc Systems and methods to track cleanliness of vehicle exterior and reduce operating expenses
US11724669B2 (en) * 2019-12-16 2023-08-15 Plusai, Inc. System and method for a sensor protection system
US11738694B2 (en) 2019-12-16 2023-08-29 Plusai, Inc. System and method for anti-tampering sensor assembly
US11313704B2 (en) 2019-12-16 2022-04-26 Plusai, Inc. System and method for a sensor protection assembly
US11470265B2 (en) 2019-12-16 2022-10-11 Plusai, Inc. System and method for sensor system against glare and control thereof
US11077825B2 (en) 2019-12-16 2021-08-03 Plusai Limited System and method for anti-tampering mechanism
US11754689B2 (en) 2019-12-16 2023-09-12 Plusai, Inc. System and method for detecting sensor adjustment need
US11650415B2 (en) 2019-12-16 2023-05-16 Plusai, Inc. System and method for a sensor protection mechanism
DE102022103101A1 (de) * 2021-04-14 2022-10-20 HELLA GmbH & Co. KGaA Sensorvorrichtung zur Erfassung der Benetzung einer Scheibe, insbesondere der Scheibe eines Fahrzeuges
DE102022200154A1 (de) * 2022-01-10 2023-07-13 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Erfassen von Informationen zu einer Windschutzscheibe
US11772667B1 (en) 2022-06-08 2023-10-03 Plusai, Inc. Operating a vehicle in response to detecting a faulty sensor using calibration parameters of the sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4417385A1 (de) 1994-05-18 1995-11-23 Vdo Schindling Anordnung zur Steuerung eines Scheibenwischers, insbesondere für Kraftfahrzeuge
DE19803694C1 (de) 1998-01-30 1999-04-22 Kostal Leopold Gmbh & Co Kg Verfahren zum Detektieren von auf einer lichtdurchlässigen Scheibe befindlichen Objekten sowie Vorrichtung
DE19749331A1 (de) 1997-11-07 1999-05-20 Kostal Leopold Gmbh & Co Kg Verfahren zum Detektieren von auf einer Windschutzscheibe befindlichen Objekten sowie Vorrichtung
DE19943887A1 (de) 1998-09-15 2000-03-23 Bosch Gmbh Robert Optischer Sensor
DE19909987A1 (de) 1999-03-06 2000-09-28 Kostal Leopold Gmbh & Co Kg Anordnung zum Detektieren von auf einer Windschutzscheibe eines Kraftfahrzeuges befindlichen Objekten

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT212441Z2 (it) * 1987-07-31 1989-07-04 Veglia Borletti Srl Dispositivo sensore della presenza di gocce di acqua su un cristallo di un veicolo e apparecchiatura dicomando di un tergicristallo provvista del detto dispositivo
US5796094A (en) * 1993-02-26 1998-08-18 Donnelly Corporation Vehicle headlight control using imaging sensor
US6498620B2 (en) * 1993-02-26 2002-12-24 Donnelly Corporation Vision system for a vehicle including an image capture device and a display system having a long focal length
US5453676A (en) * 1994-09-30 1995-09-26 Itt Automotive Electrical Systems, Inc. Trainable drive system for a windshield wiper
US5525793A (en) * 1994-10-07 1996-06-11 Santa Barbara Instrument Group Optical head having an imaging sensor for imaging an object in a field of view and a tracking sensor for tracking a star off axis to the field of view of the imaging sensor
US6891563B2 (en) * 1996-05-22 2005-05-10 Donnelly Corporation Vehicular vision system
JPH09126998A (ja) * 1995-11-02 1997-05-16 Tokai Rika Co Ltd 雨滴センサ及び雨滴感応ワイパ
EP0879158B1 (de) * 1996-02-13 1999-07-28 Marquardt GmbH Optischer sensor
US6681163B2 (en) * 2001-10-04 2004-01-20 Gentex Corporation Moisture sensor and windshield fog detector
US5923027A (en) * 1997-09-16 1999-07-13 Gentex Corporation Moisture sensor and windshield fog detector using an image sensor
DE29811086U1 (de) * 1997-08-22 1998-09-17 Leopold Kostal GmbH & Co KG, 58507 Lüdenscheid Einrichtung zum Erfassen von sich auf die Sichtqualität zum Führen eines Kraftfahrzeuges auswirkenden Einflüssen
US6313454B1 (en) * 1999-07-02 2001-11-06 Donnelly Corporation Rain sensor
DE69836344T2 (de) * 1997-10-30 2007-05-31 Donnelly Corp., Holland Regensensor mit nebelerkennung
US6020704A (en) * 1997-12-02 2000-02-01 Valeo Electrical Systems, Inc. Windscreen sensing and wiper control system
DE19801745A1 (de) * 1998-01-20 1999-07-22 Itt Mfg Enterprises Inc Vorrichtung zur Überwachung des Zustands einer Fensterscheibe
DE19813216A1 (de) * 1998-03-26 1999-09-30 Laser Sorter Gmbh Verfahren zur Detektierung von Fehlern im Glas-Steigerung der Empfindlichtkeit von Scannern
DE19936918A1 (de) 1998-09-30 2000-04-06 Philips Corp Intellectual Pty Verschlüsselungsverfahren zum Ausführen von kryptographischen Operationen
DE19845092A1 (de) * 1998-09-30 2000-04-06 Volkswagen Ag Verfahren und Einrichtung zur Helligkeitssteuerung von Displays in einem Kraftfahrzeug
WO2000019656A1 (de) 1998-09-30 2000-04-06 Koninklijke Philips Electronics N.V. Verschlüsselungsverfahren zum ausführen von kryptographischen operationen
US6066933A (en) * 1998-10-02 2000-05-23 Ponziana; Richard L. Rain sensing system and method having automatically registered and oriented rain sensor
DE19848140C5 (de) 1998-10-20 2008-10-02 Klaus Wilhelm Trocknungsvorrichtung zum Trocknen von schüttfähigem Material
DE19858316C2 (de) * 1998-12-17 2000-11-30 Kostal Leopold Gmbh & Co Kg Verfahren zum Detektieren und Lokalisieren von auf einer lichtdurchlässigen Scheibe befindlichen, diffusreflektierenden Belägen sowie Vorrichtung
US6207967B1 (en) * 1999-03-04 2001-03-27 Valeo Electrical Systems, Inc. Off the glass imaging rain sensor
US6429933B1 (en) * 1999-03-12 2002-08-06 Valeo Electrical Systems, Inc. Method of image processing for off the glass rain sensing
US6144022A (en) * 1999-03-15 2000-11-07 Valeo Electrical Systems, Inc. Rain sensor using statistical analysis
US6426492B1 (en) * 1999-05-24 2002-07-30 Donnelly Corporation Electro-optic aperture for vehicular imaging system
JP2003501635A (ja) * 1999-05-26 2003-01-14 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 対象検出システム
DE19948140A1 (de) * 1999-09-29 2001-04-05 Friedrich Schiller Uni Jena Bu Verfahren und Vorrichtung zur Erkennung von Defekten in und an transparenten Objekten
US6160369A (en) * 1999-10-12 2000-12-12 E-Lead Electronic Co., Ltd. Optically operated automatic control system for windshield wipers
US6614579B2 (en) * 1999-10-22 2003-09-02 Gentex Corporation Proximity switch and vehicle rearview mirror assembly incorporating the same and having a transparent housing
JP4211043B2 (ja) * 1999-11-17 2009-01-21 日本精機株式会社 雨滴検出装置
JP4257627B2 (ja) * 1999-11-19 2009-04-22 日本精機株式会社 雨滴検出装置
JP4277308B2 (ja) * 1999-11-25 2009-06-10 日本精機株式会社 雨滴検出装置
US6617564B2 (en) * 2001-10-04 2003-09-09 Gentex Corporation Moisture sensor utilizing stereo imaging with an image sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4417385A1 (de) 1994-05-18 1995-11-23 Vdo Schindling Anordnung zur Steuerung eines Scheibenwischers, insbesondere für Kraftfahrzeuge
DE19749331A1 (de) 1997-11-07 1999-05-20 Kostal Leopold Gmbh & Co Kg Verfahren zum Detektieren von auf einer Windschutzscheibe befindlichen Objekten sowie Vorrichtung
DE19803694C1 (de) 1998-01-30 1999-04-22 Kostal Leopold Gmbh & Co Kg Verfahren zum Detektieren von auf einer lichtdurchlässigen Scheibe befindlichen Objekten sowie Vorrichtung
DE19943887A1 (de) 1998-09-15 2000-03-23 Bosch Gmbh Robert Optischer Sensor
DE19909987A1 (de) 1999-03-06 2000-09-28 Kostal Leopold Gmbh & Co Kg Anordnung zum Detektieren von auf einer Windschutzscheibe eines Kraftfahrzeuges befindlichen Objekten

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1427614A1

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1468401B1 (de) * 2002-01-17 2020-02-19 Robert Bosch Gmbh Verfahren und vorrichtung zur erkennung von sichtbehinderungen bei bildsensorsystemen
EP1440856A3 (de) * 2003-01-24 2005-07-13 DaimlerChrysler AG Verfahren und Vorrichtung zur Sichtverbesserung und zur Bestimmung der Wettersituation

Also Published As

Publication number Publication date
JP2004538481A (ja) 2004-12-24
KR20040060918A (ko) 2004-07-06
KR100907625B1 (ko) 2009-07-15
DE10139514A1 (de) 2003-02-20
US6954047B2 (en) 2005-10-11
WO2003016111A8 (de) 2004-04-29
US20040100217A1 (en) 2004-05-27
JP4131700B2 (ja) 2008-08-13
EP1427614A1 (de) 2004-06-16

Similar Documents

Publication Publication Date Title
WO2003016111A1 (de) Transmissionsdetektor für einen fensterkörper, sowie reinigungsvorrichtung für einen sichtbereich eines fensterkörpers
EP1468401B1 (de) Verfahren und vorrichtung zur erkennung von sichtbehinderungen bei bildsensorsystemen
DE69817197T2 (de) Feuchtigkeitssensor und windschutzscheiben-beschlagdetektor
DE60214593T2 (de) Stereoabbildung mit einem bildsensor verwendender feuchtigkeitssensor
EP2558336B1 (de) Verfahren und vorrichtung zur fahrerunterstützung beim fahren eines fahrzeugs durch detektion von wetterbedingten sichteinschränkungen
EP2062777B1 (de) Optisches Modul
EP1027235B1 (de) Verfahren zum detektieren von auf einer windschutzscheibe befindlichen objekten sowie vorrichtung
DE19700665C2 (de) Sensor zum Detektieren von Fremdmaterial und Scheibenwischsystem mit Sensor zum Detektieren von Fremdmaterial, insbesondere Regentropfen
EP1506108B1 (de) Regensensor
DE102006016774B4 (de) Regensensor
DE69836344T2 (de) Regensensor mit nebelerkennung
EP1159170B1 (de) Anordnung zum detektieren von auf einer windschutzscheibe eines kraftfahrzeuges befindlichen objekten
EP2384295B2 (de) Kameraanordnung und verfahren zur erfassung einer fahrzeugumgebung
EP2720912A1 (de) Verfahren und vorrichtung zur erkennung von gerichteten strukturen auf einer scheibe eines fahrzeugs
DE10303046A1 (de) Verfahren und Vorrichtung zur quantitativen Abschätzung der Sichtweite in Fahrzeugen
WO2006024247A1 (de) Verfahren zur detektion von niederschlag auf einer scheibe
DE102014209197A1 (de) Vorrichtung und Verfahren zum Erkennen von Niederschlag für ein Kraftfahrzeug
WO2013163991A1 (de) Detektion von regentropfen auf einer scheibe mittels einer kamera und beleuchtung
DE2932461A1 (de) Verfahren zur beurteilung der qualitaet des systems wischblatt/scheibenoberflaeche
EP2217472A1 (de) Steuerungsverfahren und steuerungsvorrichtung für eine scheibenwischvorrichtung
EP1440856A2 (de) Verfahren und Vorrichtung zur Sichtverbesserung und zur Bestimmung der Wettersituation
DE29811086U1 (de) Einrichtung zum Erfassen von sich auf die Sichtqualität zum Führen eines Kraftfahrzeuges auswirkenden Einflüssen
DE19519891C2 (de) Vorrichtung zum Betreiben eines Scheibenwischers
DE10230200A1 (de) Verfahren und Vorrichtung zur Detektion von auf einer Oberfläche eines transparenten Elements sich befindenden Objekten
DE10136138B4 (de) Scheibenwischvorrichtung und Verfahren zu deren Betrieb

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2002747202

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

Kind code of ref document: A1

Designated state(s): JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2003520638

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10398843

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047002039

Country of ref document: KR

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 09/2003 UNDER (30) REPLACE "US" BY "DE"

WWP Wipo information: published in national office

Ref document number: 2002747202

Country of ref document: EP