WO2003015460A2 - Systeme de traitement sonore comprenant un generateur d'ondes a reponses de directivite et de gradient arbitraires - Google Patents

Systeme de traitement sonore comprenant un generateur d'ondes a reponses de directivite et de gradient arbitraires Download PDF

Info

Publication number
WO2003015460A2
WO2003015460A2 PCT/EP2002/009031 EP0209031W WO03015460A2 WO 2003015460 A2 WO2003015460 A2 WO 2003015460A2 EP 0209031 W EP0209031 W EP 0209031W WO 03015460 A2 WO03015460 A2 WO 03015460A2
Authority
WO
WIPO (PCT)
Prior art keywords
wave
gain
signal
audio processor
output
Prior art date
Application number
PCT/EP2002/009031
Other languages
English (en)
Other versions
WO2003015460A3 (fr
Inventor
Erik W. Rasmussen
Original Assignee
Rasmussen Digital Aps
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rasmussen Digital Aps filed Critical Rasmussen Digital Aps
Priority to EP02767372A priority Critical patent/EP1415503A2/fr
Publication of WO2003015460A2 publication Critical patent/WO2003015460A2/fr
Publication of WO2003015460A3 publication Critical patent/WO2003015460A3/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/004Monitoring arrangements; Testing arrangements for microphones
    • H04R29/005Microphone arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/407Circuits for combining signals of a plurality of transducers

Definitions

  • FIG. 14 is a pair of polar plots of a set of gain versus direction functions;
  • FIG. 15 is a block diagram of the gain mapper of FIG. 11;
  • FIG. 16 is a block diagram of the signal generator of FIG. 11;
  • FIG. 18 is a block diagram of the forward filter of FIG. 17;
  • FIG. 19 is a block diagram of the forward beamformer of FIG. 18;
  • FIG. 20 is a block diagram of the adaptor of FIG. 19;
  • the signal inband detector 50 outputs a logic one if the power in the current frequency band is contributed mainly by input contents of frequencies falling within the band. Conversely, the signal inband detector 50 outputs a logic zero if the contents are due mainly to input at frequencies outside of the band. It is widely known that most time-to-frequency transforms "spill" energy from the source band to neighboring bands due to windowing effects or similar mechanisms. However, only signals within the frequency band should be allowed to influence the equalizing value for a band. This differentiation is possible through the use of the Inband signal.
  • the wave parameter estimator 54 includes a plurality of analysis filters 62, a plurality of forward transformers 64, a normalizer 66, and an equation solver 68.
  • the analysis filters 62 are optional and when implemented serve to create additional input signals to the equation solver 68 such that the individual components carry different weights. If the input consists of two or more sinusoidal waves of the same frequency, then it will not be possible to distinguish between the waves. However, if the waves carry different frequency content, then it will be possible to distinguish between the waves. Processing the input with filters of different magnitude responses, phase responses, or both creates additional information for the equation solver 68.
  • the equation solver 68 is most efficiently implemented in the frequency domain. Therefore, if it has not been previously performed, the inputs are converted to the frequency domain in the forward transformers 64.
  • ⁇ m is the angular frequency of the wave m. in is the wave index.
  • x(i) is a vector and is
  • the sound field be described primarily in the frequency domain.
  • the frequency domain is generally the most advantageous domain in terms of complexity and computing costs. Nevertheless in some cases the processing of the present invention is most feasible performed together with other audio processing applications. If such audio processing runs in the time domain it may prove efficient to implement the apparent incidence audio processing in the time domain as well. In the following, the sound field equations will therefore be stated in the time domain.
  • (17) states the sound field equations in the time domain under the assumptions as used in the formulation of (14) above. In (17), p is used to describe the time domain version of P and n is the sample index. (17)
  • f c is the center frequency of the individual bands of the frequency transform.
  • the chosen solution may not be the co ⁇ ect one, but even if the co ⁇ ect solution is not chosen the strategy results in a system gain for noise components equal to or lower than the noise gain that would have been the result if the co ⁇ ect solution was to be used.
  • NarrowBandPowers signal is provided.
  • the two NarrowBandPowers are generated with two different update rates.
  • FIG. 19 a block diagram of the forward beamformer 138 of FIG. 18 is shown.
  • one or more of the fbeam signals may be generated with adaptive beamforming.
  • the adaptive beamforming is achieved by first generating, through a plurality of beamformers 146, a number of fixed beam signals. The first being the target beam, pbeam, and the rest being one or more rear beams, rbeam(q).
  • two microphones are positioned along the target axis.
  • the forward beams include an adaptive bea fbeam(il).
  • pbeamftl is implemented with a beamformer 146 of FIG. 19 generating a supercardioid for the target direction as implemented by the beamformer filters defined in (29) below.
  • a single rear beam is used at the adaptive beamforming, rbeam(l,il). It is a cardioid in the reverse direction of the target direction as described by the component filters of (30) below.
  • (29) and (30) describe two beamformers 146 in the frequency domain.
  • a prefe ⁇ ed near field embodiment of the present invention enables signal processing methods with which it is possible to produce sound pick-up with near field characteristics. It is possible to obtain noise reduction better than that possible with noise-canceling microphones. Furthermore, it is possible to maintain the near field characteristic with its noise reducing virtues at a distance further away from the speech source than is possible with conventional noise- canceling microphones.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

L'invention concerne un système de traitement sonore comprenant au moins un microphone, un processeur audio et au moins un dispositif de sortie. Le processeur audio comprend un formeur de faisceaux analogue, un égalisateur de microphone et un processeur d'incidence apparente. L'invention comprend deux modes de réalisation distincts de processeur d'incidence apparente, soit un procédé de génération d'ondes et un procédé de filtrage avant. Dans ces deux modes de réalisation, les même principes sont mis en oeuvre pour estimer les propriétés des ondes individuelles du champ sonore. Le système selon l'invention permet de mettre en oeuvre des réponses de directivité arbitraire avec uniquement un petit nombre de microphones, c'est-à-dire deux ou trois microphones. Le système selon l'invention permet d'obtenir une réduction du bruit améliorée, notamment pour des milieux comprenant plusieurs sources de bruit indépendantes et peut être mis en oeuvre pour des signaux et des bruits à statistiques arbitraires.
PCT/EP2002/009031 2001-08-10 2002-08-12 Systeme de traitement sonore comprenant un generateur d'ondes a reponses de directivite et de gradient arbitraires WO2003015460A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02767372A EP1415503A2 (fr) 2001-08-10 2002-08-12 Systeme de traitement sonore comprenant un generateur d'ondes a reponses de directivite et de gradient arbitraires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US92778301A 2001-08-10 2001-08-10
US09/927,783 2001-08-10

Publications (2)

Publication Number Publication Date
WO2003015460A2 true WO2003015460A2 (fr) 2003-02-20
WO2003015460A3 WO2003015460A3 (fr) 2003-11-20

Family

ID=25455249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/009031 WO2003015460A2 (fr) 2001-08-10 2002-08-12 Systeme de traitement sonore comprenant un generateur d'ondes a reponses de directivite et de gradient arbitraires

Country Status (2)

Country Link
EP (1) EP1415503A2 (fr)
WO (1) WO2003015460A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1489883A2 (fr) * 2004-04-30 2004-12-22 Phonak Ag Adaption automatique des microphones
EP1339256A3 (fr) * 2003-03-03 2005-06-22 Phonak Ag Procédé pour la fabrication des dispositifs acoustiques et pour la réduction des perturbations dues au vent
US7127076B2 (en) 2003-03-03 2006-10-24 Phonak Ag Method for manufacturing acoustical devices and for reducing especially wind disturbances
US7274794B1 (en) 2001-08-10 2007-09-25 Sonic Innovations, Inc. Sound processing system including forward filter that exhibits arbitrary directivity and gradient response in single wave sound environment
US7688985B2 (en) 2004-04-30 2010-03-30 Phonak Ag Automatic microphone matching
US9357307B2 (en) 2011-02-10 2016-05-31 Dolby Laboratories Licensing Corporation Multi-channel wind noise suppression system and method
CN112259068A (zh) * 2020-10-21 2021-01-22 上海协格空调工程有限公司 一种主动降噪空调系统及其降噪控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831458A2 (fr) * 1996-09-18 1998-03-25 Nippon Telegraph And Telephone Corporation Procédé et dispositif pour la séparation d'une source de son, médium avec un logiciel enregistré pour la mise en oeuvre, procédé et dispositif pour la détection d'une zone d'une source de son et logiciel enregistré pour la mise en oeuvre
US5978490A (en) * 1996-12-27 1999-11-02 Lg Electronics Inc. Directivity controlling apparatus
US6023514A (en) * 1997-12-22 2000-02-08 Strandberg; Malcolm W. P. System and method for factoring a merged wave field into independent components
US6317703B1 (en) * 1996-11-12 2001-11-13 International Business Machines Corporation Separation of a mixture of acoustic sources into its components

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831458A2 (fr) * 1996-09-18 1998-03-25 Nippon Telegraph And Telephone Corporation Procédé et dispositif pour la séparation d'une source de son, médium avec un logiciel enregistré pour la mise en oeuvre, procédé et dispositif pour la détection d'une zone d'une source de son et logiciel enregistré pour la mise en oeuvre
US6317703B1 (en) * 1996-11-12 2001-11-13 International Business Machines Corporation Separation of a mixture of acoustic sources into its components
US5978490A (en) * 1996-12-27 1999-11-02 Lg Electronics Inc. Directivity controlling apparatus
US6023514A (en) * 1997-12-22 2000-02-08 Strandberg; Malcolm W. P. System and method for factoring a merged wave field into independent components

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7274794B1 (en) 2001-08-10 2007-09-25 Sonic Innovations, Inc. Sound processing system including forward filter that exhibits arbitrary directivity and gradient response in single wave sound environment
EP1339256A3 (fr) * 2003-03-03 2005-06-22 Phonak Ag Procédé pour la fabrication des dispositifs acoustiques et pour la réduction des perturbations dues au vent
US7127076B2 (en) 2003-03-03 2006-10-24 Phonak Ag Method for manufacturing acoustical devices and for reducing especially wind disturbances
US7492916B2 (en) 2003-03-03 2009-02-17 Phonak Ag Method for manufacturing acoustical devices and for reducing especially wind disturbances
US8094847B2 (en) 2003-03-03 2012-01-10 Phonak Ag Method for manufacturing acoustical devices and for reducing especially wind disturbances
EP1489883A2 (fr) * 2004-04-30 2004-12-22 Phonak Ag Adaption automatique des microphones
EP1489883A3 (fr) * 2004-04-30 2005-06-15 Phonak Ag Adaption automatique des microphones
US7688985B2 (en) 2004-04-30 2010-03-30 Phonak Ag Automatic microphone matching
US9357307B2 (en) 2011-02-10 2016-05-31 Dolby Laboratories Licensing Corporation Multi-channel wind noise suppression system and method
CN112259068A (zh) * 2020-10-21 2021-01-22 上海协格空调工程有限公司 一种主动降噪空调系统及其降噪控制方法
CN112259068B (zh) * 2020-10-21 2023-04-11 上海协格空调工程有限公司 一种主动降噪空调系统及其降噪控制方法

Also Published As

Publication number Publication date
WO2003015460A3 (fr) 2003-11-20
EP1415503A2 (fr) 2004-05-06

Similar Documents

Publication Publication Date Title
US7274794B1 (en) Sound processing system including forward filter that exhibits arbitrary directivity and gradient response in single wave sound environment
AU2002331235A1 (en) Sound processing system including forward filter that exhibits arbitrary directivity and gradient response in single wave sound environment
US10225674B2 (en) Robust noise cancellation using uncalibrated microphones
US8942387B2 (en) Noise-reducing directional microphone array
US10657981B1 (en) Acoustic echo cancellation with loudspeaker canceling beamformer
EP0720811B1 (fr) Systeme de reduction du bruit dans une prothese auditive stereophonique
RU2434262C2 (ru) Улучшение сигнала вектора ближнего поля
US8098844B2 (en) Dual-microphone spatial noise suppression
US6178248B1 (en) Dual-processing interference cancelling system and method
JP4973655B2 (ja) 適応アレイ制御装置、方法、プログラム、及びこれを利用した適応アレイ処理装置、方法、プログラム
JP2004537944A (ja) オーバーサンプルされたフィルタバンクを用いる指向性オーディオ信号処理
EP2848007A1 (fr) Réseau de microphones directionnels à réduction de bruit
JP2001510001A (ja) 複数ソースを伴うオーディオ処理装置
US10269370B2 (en) Adaptive filter control
WO2009042385A1 (fr) Procédé et appareil pour générer un signal audio à partir de multiples microphones
WO2003015460A2 (fr) Systeme de traitement sonore comprenant un generateur d'ondes a reponses de directivite et de gradient arbitraires
EP1415506A2 (fr) Systeme de traitement du son presentant une reponse du gradient arbitraire
EP1415502A2 (fr) Systeme de traitement de son comprenant un filtre de retroaction faisant preuve d'une directivite arbitraire et d'une reponse aux gradients dans un environnement sonore a ondes multiples
AU2002331238A1 (en) Sound processing system including wave generator that exhibits arbitrary directivity and gradient response
AU2002331236A1 (en) Sound processing system including forward filter that exhibits arbitrary directivity and gradient response in multiple wave sound environment
AU2002331237A1 (en) Sound processing system that exhibits arbitrary gradient response
Samtani et al. FPGA implementation of adaptive beamforming in hearing aids
Chintakuntla Keystroke Resilience in Laptop Acoustics Using Wiener Beamformer and Spectral Subtraction

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002331238

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2002767372

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002767372

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase in:

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2002767372

Country of ref document: EP