WO2003015082A1 - Sound intelligibilty enchancement using a psychoacoustic model and an oversampled fiolterbank - Google Patents

Sound intelligibilty enchancement using a psychoacoustic model and an oversampled fiolterbank Download PDF

Info

Publication number
WO2003015082A1
WO2003015082A1 PCT/CA2002/001221 CA0201221W WO03015082A1 WO 2003015082 A1 WO2003015082 A1 WO 2003015082A1 CA 0201221 W CA0201221 W CA 0201221W WO 03015082 A1 WO03015082 A1 WO 03015082A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
noise
level
processor
dynamic range
Prior art date
Application number
PCT/CA2002/001221
Other languages
French (fr)
Inventor
Todd Schneider
David Coode
Robert L. Brennan
Peter Olijnyk
Original Assignee
Dspfactory Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dspfactory Ltd. filed Critical Dspfactory Ltd.
Priority to AU2002322866A priority Critical patent/AU2002322866B2/en
Priority to DK02754004.6T priority patent/DK1417679T3/en
Priority to JP2003519932A priority patent/JP4731115B2/en
Priority to EP02754004A priority patent/EP1417679B1/en
Priority to DE60238619T priority patent/DE60238619D1/en
Priority to AT02754004T priority patent/ATE492015T1/en
Publication of WO2003015082A1 publication Critical patent/WO2003015082A1/en

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0316Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude
    • G10L21/0364Speech enhancement, e.g. noise reduction or echo cancellation by changing the amplitude for improving intelligibility
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0204Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using subband decomposition
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/0212Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders using orthogonal transformation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02168Noise filtering characterised by the method used for estimating noise the estimation exclusively taking place during speech pauses
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0264Noise filtering characterised by the type of parameter measurement, e.g. correlation techniques, zero crossing techniques or predictive techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/13Acoustic transducers and sound field adaptation in vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/35Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using translation techniques
    • H04R25/356Amplitude, e.g. amplitude shift or compression

Definitions

  • the present invention relates to audio reproduction applications where a desired audio signal is received in an uncontaminated form and interference (e.g., environmental noise) is present as an acoustic signal.
  • interference e.g., environmental noise
  • AGC Automatic Gain Control
  • ANC Active noise cancellation
  • ANC requires an accurate noise reference, which may not be available and works only at lower frequencies.
  • Passive noise reduction works well only if sufficient room is available for the sound insulation. Filtering distorts the signal frequency content.
  • AGC systems do not consider the human auditory system and yield sub-optimal results. Also, even when these solutions can be applied, applications exist where the power drain of these solutions is prohibitive and a miniature, low power technique is required.
  • a system for improving a signal intelligibility over an interference signal which includes: an analysis filterbank for transforming an information signal in time domain into a plurality of channel information signals in transform domain; a signal processor for processing the outputs of the analysis filterbank, the signal processor including a psychoacoustic processor for computing a dynamic range using a psycoacoustic model to render the information signal audible over the interference signal; and a synthesis filterbank for combining the outputs of the signal processor to generate an output signal.
  • the Signal Intelligibility Enhancement (SIE) of the invention is designed to alleviate the disadvantages and shortcomings of the prior art implementations. It can be used in environments where there are very high levels of noise relative to the level of the signal-of-interest. Such environments can result in a very restricted available dynamic range. While it is possible to use simple dynamic range compression methods of earlier systems to map the signal-of-interest into this small dynamic range, the resulting signal fidelity and quality may suffer. In this situation, applying the minimum gain required to make the signal-of-interest audible over the desired noise (and therefore more intelligible) results in improved signal quality. The present invention is therefore directed at determining and applying this minimum gain.
  • the SIE processing incorporates a psychoacoustic model that calculates, on an on-going basis, the minimum amplification that must be applied to make the signal-of-interest audible over the undesired signal. This results in better fidelity and signal quality.
  • Signal Intelligibility Enhancement (SIE) algorithm utilizes a measurement of either (1) the level of the outside interference (undesired signal, noise) or (2) the level of the interference (undesired signal, noise) in the headset ear cup or in the ear canal to adaptively adjust the gain and equalization of the signal-of-interest (electrical) so that the intelligibility and audibility of the signal- of-interest is improved.
  • SIE Signal Intelligibility Enhancement
  • the user can receive a signal with improved SNR (signal-to-noise ratio) that continuously adapts to the user's environment, rendering the signal-of-interest at a comfortable level.
  • SNR signal-to-noise ratio
  • the SIE algorithm is preferably implemented using an oversampled filterbank to separate both the signal-of-interest and the undesired signal into a number of overlapping, abutting or non-overlapping bands.
  • a suitable oversampled filterbank is described in United States Patent 6,236,731: Schneider & Brennan, Filterbank structure and method for filtering and separating an information signal into different bands, particularly for audio signal in hearing aids.
  • the design is advantageously implemented in an architecture that combines a weighted overlap add (WOLA) filterbank, a software programmable DSP core, an input-output processor and non-volatile memory.
  • WOLA weighted overlap add
  • Such an architecture is described in United States Patent 6,240,192, Schneider & Brennan, Apparatus for and method of filtering in a digital hearing aid, including an application specific integrated circuit and a progiammable digital signal processor.
  • This invention can be used in any application where it is necessary to improve the intelligibility of a received audio signal containing significant noise while maintaining high fidelity and good signal quality.
  • Typical applications of the invention include headsets used in call centres, mobile phones, and other miniature/portable audio devices when used in noisy environments (e.g., aircraft, concerts, factories, etc.).
  • Figure 1 illustrates a typical situation for a receive algorithm
  • Figure 2 is a schematic representation of a dynamic range mapping of signal- of-interest into available dynamic range
  • Figure 3 shows a basic operation of the signal intelligibility enhancement according to the present invention
  • FIG. 4 shows a high-level block diagram of SIE processing according to the invention, incorporating a Desired Signal Activity Detector (DSAD) (or Voice Activity Detector (VAD));
  • DSAD Desired Signal Activity Detector
  • VAD Voice Activity Detector
  • Figure 5 shows a block diagram of SIE using adaptive noise estimation
  • Figure 6 shows a block diagram of SIE using spectral differencing noise estimation
  • Figure 7 shows the input/gain function for straight-line compression
  • Figure 8 shows one embodiment of the invention with SIE and ANC combined
  • Figure 9 is a diagram illustrating combining left and right noise floors
  • Figure 10 shows a binaural combination system with transmit algorithm capability
  • FIG. 11 is a block diagram showing an open-loop SIE with shared transmitting (Tx) microphone.
  • Figure 12 is a block diagram showing an open-loop SIE with shared Tx microphones and directional processing.
  • Signal processing algorithms for audio listening applications are commonly called “receive algorithms” (Rx) because the listener wants to hear the received audio signal.
  • Rx Receiveive algorithms
  • a typical application for the Signal Intelligibility Enhancement (SIE) processing of the invention is a headset being used in a noisy environment
  • Figure 1 shows diagrammatically the components and signals of interest.
  • the listener 101 hears a combination of the desired sound 105, derived typically from an electrical signal 107, and the environmental (or ambient) noise 110 that is an undesired signal that may reduce the intelligibility of the signal-of-interest.
  • the passive attenuation provided by the headset 115 reduces the audible level of the environmental noise.
  • LDL may be a simple frequency-based measurement of a discomfort level (as is well know in the art for audiological hearing assessmait and fitting) or it may be a complex measure of psychoacoustic loudness that accounts for signal level within critical bandwidth, frequency content, signal duration or other relevant psychoacoustic parameters.
  • the difference in level between the level of the noise signal and the LDL, which are both functions of frequency, is the effective dynamic range, which also a function of frequency.
  • the listener Because of the level of the undesired signal (i.e. noise), the listener experiences reduced dynamic range. Remapping the dynamic range of the signal-of-interest in a frequency dependent manner raises its level above the ambient noise making the signal-of-interest audible. However, the amplification must not allow the level of the signal to exceed the maximum signal level that is comfortable for the listener (LDL).
  • LDL maximum signal level that is comfortable for the listener
  • FIG. 3 shows the spectra of the desired signal-of-interest 310 and the undesired (environmental) noise 315 in a graph having scales of frequency 300 versus arbitrary level 305. Note that above a certain frequency 320 the level of the signal of interest 310 falls close to and below the undesired noise 315.
  • the signal-ofinterest 310 is selectively, that is, depending on frequency and input level, amplified 330 as a function of the input level so that it is audible above the noise floor.
  • This operation is advantageously implemented in a plurality of overlapping or non-overlapping frequency bands where the bands can be processed independently or grouped into channels and processed together.
  • the Figure 3 also shows the aforementioned Loudness Discomfort Level (LDL) 340.
  • LDL Loudness Discomfort Level
  • all of the paths between the one or more analysis filterbanks and the synthesis filterbank should be considered to have N dimensions (parallel paths), since there are N sub-bands derived by the analysis filterbanks, and each requires a separate path. This consideration also applies to any function blocks interposed between the filterbanks, since each sub-band is to be considered and operated on separately.
  • these N sub-bands are grouped into K channels, where each channel comprises one or more adjacent sub-bands, and each channel is then processed so that all of the sub-bands within that channel get the same gain.
  • a first acoustic input device (Signal Microphone) 401 receives the signal of interest (typically speech), and passes it to a first WOLA analysis filterbank 405.
  • a second acoustic input device (Noise Microphone) 402 receives the environmental noise, possibly contaminated with the signal-of-interest and passes it to a second WOLA analysis filterbank 406.
  • the second acoustic input device 402 is typically located either inside the ear canal (a so-called closed-loop implementation) or outside the ear canal (a so-called open-loop implementation).
  • Each filterbank breaks the input signal into N sub-bands.
  • equalization is included to account for the acoustics of the signal path (e.g., an acoustic tube that supplies audio to a microphone molded into the ear cup).
  • a model of the transfer function from the microphone to the inside of the ear canal is incorporated to account for the attenuation and frequency response of the headset ear cup and acoustic signal path.
  • a model of the output stage can also be included so that the level of the signal-of-interest that may appear in the ear canal, prior to any adaptive equalization, can be approximated.
  • a separate or shared environmental noise microphone can be used.
  • the same microphone can be used for transmitting a signal (e.g., transmitted speech in a headset application). This reduces costs and simplifies mechanical construction.
  • a signal or voice activity detector is required to ensure that the noise spectral estimate does not contain any of the transmitted signal.
  • the psychoacoustic model incorporated in the psychoacoustic processing block 430 receives the level of the signal-of-interest in frequency sub- bands or combinations of frequency sub-bands (channels) covering the desired signal spectrum as produced by the first (signal-of-interest) WOLA analysis filterbank 405.
  • the psychoacoustic processing block 430 using the level of environmental noise in those same frequency bands or combinations frequency bands (channels) but applied to the environmental noise spectrum as produced by the second (environmental noise) WOLA analysis filterbank 406, then computes dynamic range parameters. These computed parameters are passed to the multi-band compressor 420 that, in turn, applies them to the sub-bands derived by the first (signal-of-interest) WOLA analysis filterbank 405.
  • the multi-band compressor 420 uses the dynamic range parameters supplied by the psychoacoustic processing block 430 to equalize the signal as a function of frequency thereby improving its audibility or intelligibility.
  • the use of a psychoacoustic model, combined with well-known dynamic range compression techniques, ensures that the output audio is made audible and intelligible over the environmental noise while minimizing perceived distortion and maintaining the quality of the desired signal.
  • the Desired Signal Activity Detector (DSAD) block 410 receives outputs from both WOLA analysis filterbanks 405, 406 and controls the updates to the estimate of the noise spectrum by the spectral estimation block 435. This spectral estimation block 435, described next, provides further information to the psychoacoustic processing block 430.
  • the outputs of the Multi-band compressor 420 are supplied to a synthesis filterbank 450 .
  • the synthesis filterbank 450 transforms the outputs the Multi-band compressor 420 to output a time-domain audio signal.
  • the Spectral Estimation block 435 of SIE processing of the invention includes an adaptive estimation technique or a spectral differencing technique. These, together with a desired signal activity detector (DSAD) 410, permit an accurate, uncontaminated estimate of the environmental noise spectrum to be determined.
  • the environmental noise is obtained by using a shared-input microphone (see below).
  • noise estimation is done using shared or separate microphones.
  • a DSAD or VAD on the shared or separate microphone controls updates to the spectral estimate of the noise that is derived via spectral analysis from the shared or separate microphone. If speech (or some other signal of interest) is detected on the shared or separate microphone, the spectral estimate of the noise is not updated. (Note that spectral differencing and adaptive estimate are not used in the open-loop case.)
  • a mixed version of the signal plus noise is received by a microphone located inside the ear cup.
  • we need to remove the signal (which is known since we have an electrical version of it). This is done using spectral differencing or adaptive estimation techniques.
  • the DSAD 410 employs techniques well-known in the art to sample the spectrum of the signal when the desired signal is not present (i.e., during pauses or breaks in the desired signal). This ensures that the algorithm does not consider the desired signal (or in the case of a headset application with a shared microphone, the transmitted speech) to be part of the environmental noise.
  • the DSAD 410 when the DSAD 410 indicates that there is no desired signal-of-interest present, the noise spectral image is updated, thereby minimizing contamination of the resultant spectrum by the signal-of- interest.
  • the DSAD 410 may optionally monitor the environmental noise signal to ensure that transmitted speech or other signals-of-interest do not contaminate the noise spectrum that is supplied as an input to the psychoacoustic model.
  • the output audio may optionally mute for a brief period of time so that the noise spectrum can be updated without the desired signal being present.
  • adaptive noise estimation is used that employs techniques that are well-known in the art to estimate the environmental noise, but in the context of an oversampled WOLA sub-band filterbank a technology described in the co-pending patent application, which is filed on the same day by the present applicant entitled "Subband Adaptive Processing in an Oversampled Filterbank" Canadian Patent Application, serial 2,354,808, US application , Serial , the disclosure of which is incorporated herein by reference, may also be used.
  • Figure 5 shows a block diagram of SIE with Adaptive Noise Estimation. Although a time domain technique is described, it would be understood by one skilled in the art that transform (eg frequency) domain techniques are also possible and may be advantageous.
  • the desired signal 501 already in electronic form is passed to a first analysis filterbank 503, which produces a number of sub-bands as in the previous embodiments. Each sub-band is then multiplied by the multiplier 505 with a function G derived from a Psychoacoustic Model block 507.
  • the results of the gain application are passed in turn to a synthesis filterbank 509 which transforms the modified signal from the sub-bands and passes the output to power amplifier 511 which drives a receiver 513.
  • a microphone 520 located physically close to receiver 513 delivers its output, being the desired signal contaminated with various noise components including environmental noise, to an adaptive correlator 525.
  • the output of the adaptive correlator 525 which is an estimate of the noise signal, is broken into sub- bands by a second analysis filterbank 530.
  • the sub-bands from the second analysis filterbank 530 are also passed to the Psychoacoustic model block 507.
  • the adaptive estimate can also be done in the transform domain.
  • Adaptive noise estimation requires no breaks in the desired signalrof-interest to estimate the noise.
  • the noise is continuously estimated using the correlation between the contaminated signal derived from the microphone 520 and the desired electrical input signal 501 (the signal-of-interest).
  • the output of the adaptive correlator 525 contains primarily the signal components that are uncorrelated between the desired signal 501 and the desired signal plus noise 520.
  • Spectral differencing takes the difference between a filtered or unfiltered version of the transform domain representation of the signal-of-interest and the transform domain representation of the environmental noise signal. This subtraction can be done in bands or groups of bands. This estimation method is especially advantageous in closed-loop implementations (see below) where the environmental noise signal also contains the signal-of-interest because of the acoustic summation of the environmental noise and SIE processed signal-of-interest.
  • Filtering the signal-of-interest can be employed to derive a more accurate estimate.
  • the filter has a frequency response equivalent or approximately equivalent to the frequency response of the output stage (SIE equalization, amplifier, loudspeaker and acoustics) and microphone, then the subtraction in the transform domain provides an excellent approximation to the uncontaminated (with the signal- of-interest) environmental noise.
  • This filtering may optionally include calibration to null-out transducer or other differences and may be done using one of off-line or on- line line techniques .
  • FIG. 6 illustrates such a system in which a new function F' 605 is introduced that approximates the overall transfer function F 610 of the signal path between the analysis filterbank 601 and the receiver 614.
  • the signal path comprises a multiplier 611, a synthesizing filterbank 612, a power amplifier 613 and the receiver itself 614.
  • a sampling microphone 620 feeds a signal representing the desired signal plus any introduced noise to a second filterbank 625, whose output is combined with the result of the function F' 605 acting on the appropriate sub-band of the desired signal to produce a noise estimate 630 which is fed into the psychoacoustic model 635.
  • the gains output from the psychoacoustic model 635 are then multiplied with each sub-band at a multiplier 611.
  • Figure 6a shows a further embodiment in which N sub-bands are combined into K channels, and a further function, related to an estimation of the headset performance characteristics is introduced. Those components duplicating the functions in Figure 6 are not described.
  • the N output sub-bands of the analysis filterbanks 601, 625 are passed to band grouping blocks 603, 627 which combine several bands into a single channel, so that only K channels are further processed (where K ⁇ N).
  • the outputs of the band grouping blocks pass to level measuring blocks 603, 627 respectively where the levels of each channel are measured the results passed in turn to the appropriate level registers 606, 629.
  • the psychoacoustic model 635 uses the signal of interest and 'signal + noise' levels for the channels stored in the registers 606, 629 to compute the gains to be applied to each band. In addition, these gains are used in a feedback manner to adjust the function H(z) 615 which approximates the transfer function of the headset using a model 640. The output of the function H(z) adjusts the levels of noise as presented to the psychoacoustic model 635, using a subtractor 630.
  • the lower limit of the dynamic range is set by the energy of the environmental noise within a frequency band or combination of bands.
  • the lower limit of the dynamic range is set by the level of the environmental noise within a frequency band or combination of bands, multiplied by a factor (X) between 0 and 1, which is adjustable. This factor controls the amount to which the apparatus amplifies low-level signals-of-interest.
  • X a factor between 0 and 1
  • This factor controls the amount to which the apparatus amplifies low-level signals-of-interest.
  • a lower X results in more dynamic range being available for the signal-of-interest and improves signal quality. Too low an X will mean that at low-levels, the signal-of-interest is masked by the environmental noise.
  • the lower limit of the dynamic range is determined by a complex psychoacoustic model which considers the level, spectral content and spectral nature of both the signal-of-interest and environmental noise to calculate the minimum audible and intelligible level within the noise, as is well known in the art.
  • the lower limit of the dynamic range is set by subtracting the SNR of the signal-of-interest from the energy of the noise within a channel.
  • the LDL is calculated using an on-line estimate of , the perceived signal loudness based on signal level with critical bands, frequency content, signal duration or other relevant psychoacoustic parameters.
  • a component of the psychoacoustic model is a multi-band dynamic range compressor.
  • Dynamic range compression to a smaller effective dynamic range is accomplished by the use of one of several well-known level mapping algorithms. These can be employed with the support of look-up tables or other well-known means to supply the shape of the compression Input vs. Gain Function, otherwise the gains can be directly calculated based on a mathematical formula. Examples of possible level-mapping algorithms are:
  • Curvilinear compression - the Input/Gain Function is not straight, but curved to better fit growth-of-loudness perception in the human auditory system. This method yields improved perceptual fidelity but must either rely on a more complex formula or draw information from a look-up table.
  • the psychoacoustic model is incorporated or integrated with the compressor to make the desired signal audible. The time variation of the gains is controlled in such a way that perceptual distortion is minimized and the signal-of-interest is made as audible as possible.
  • a psychoacoustic model calculates a level to minimize the distortion in a given (sub-band or) channel, by determining what sounds are audible within noise. This information leads to an objective estimation of the quality of the desired signal, enabling the calculation of near-optimal compression parameters.
  • Other level mapping schemes are also possible.
  • the incoming signal-of-interest is not entirely noise- free. Instead of using compression on the entire dynamic range in this case, it is advantageous to expand (increase dynamic range) for the low-levels of the signal where the noise exists. This is perceived as making the noise quieter in the signal-of- interest and tends to render it inaudible.
  • the dynamic range re-mapping previously described with reference to
  • spectral tilt constraints can be implemented. These constraints prevent the invention from over- processing the sound to the point where the output audio is equalized in such a way that it is objectionable or quality is reduced in spectrally shaped noise environments.
  • the constraints are implemented by enforcing a maximum gain difference between the various channels in the compressor. When processing used in the invention attempts to exceed the maximum gain difference thresholds, a compromise is made in the channels tending to require more extreme adjustment or adaptation, and more or less gain is applied to satisfy the constraints.
  • Other constraints that use more complex means, such as objective measures of speech quality are also possible.
  • Each individual is unique, and therefore each individual can determine and set his or her own LDL, desired listening level, and growth of loudness.
  • SIE may want to adjust the sensitivity of the signal-processing algorithm. Users adjusting this control, which can be thought of as an advanced volume control, are typically adjusting the level because low-level sounds are inaudible (not because high-level sounds are in audible).
  • the parameter "X" described above may be made user adjustable to control the sensitivity of the SIE algorithm.
  • Other, more advanced embodiments, where the level adjustment provides a parametric input to the psychoacoustic processing block are possible and are dependent on the specific type of psychoacoustic processing that is employed.
  • ANC Active Noise Cancellation
  • the signal-of-interest 801 enters an analysis filterbank 805, the sub-bands from which pass multipliers 807 and thence to a synthesis filterbank 809 where they are transformed and passed in turn to a summer 812, the output of which passes through an inverter 814, an output stage (amplifier) 826 a second summer 818 where it is combined with the noise signal 17, and thence to the receiver 820.
  • the signal-of-interest is also input by the psychoacoustic model block 840 which controls the sub-bands thorough the multipliers 807.
  • a further input to the psychoacoustic model block 840 is derived from a feedback loop comprising an acoustic delay 825 which feeds the signal used to drive the receiver 820 to a microphone 830, whose output is first amplified 832 then passed to both the first summer 812 through a low pass filter 834, and to the psychoacoustic model block 840.
  • an associated ANC system has a microphone already in place to sample the noise, and this microphone can be simultaneously used for Signal Intelligibility Enhancement to sample the environmental noise in the ear canal. The combination of these two technologies makes it possible to make each one of them subtler, and therefore less disorienting, while delivering improved quality and perceptibility.
  • a combination of SIE and ANC processing is implemented using an oversampled WOLA filterbank as a pre-equalizer to an ANC system.
  • the ANC system may be implemented using analog or digital signal processing of a combination of these two. This ANC processing is well-known in the art and is therefore not described.
  • the WOLA measures the pre-equalized residual noise in the ear canal (closed loop ANC) or the outside environmental noise (open loop ANC) and uses the resultant spectral information as input to a psychoacoustic model that provides dynamic range parameters for the pre-equalizer.
  • the noise floor for the right channel 910 and left channel 900 is combined by some means (e.g., taking the maximum level or average of the left and right sides in each channel, or in each sub-band of each channel) to provide a combined noise floor 920.
  • Having only one noise measurement for the SIE algorithm is important since a stereo compressor scheme (possibly with independent noise measurements) may lead to undesired independent channel adjustment and a consequent reduction in perceived audio quality.
  • both right and left sides of the SIE processing scheme use the same information.
  • two SIE processing apparatus use the same environmental noise level to control the subsequent processing of each audio stream.
  • a binaural headset 1020, 1052 is used with a monaural signal 1000.
  • a typical application is a cell phone headset with monaural speech.
  • a single SIE processing apparatus composed of a combiner 1072, a psychoacoustic model block 1075 and feeding a multiplier 1007 is implemented. Following amplification by amplifier 1001, and digital to analog conversion 1003, the input (desired) signal 1999 is split into sub-bands by a first analysis filterbank 1005, each sub-band is multiplier 1007 with the appropriate output from the psychoacoustic model block 1075 and then transformed into a single band by the synthesis filterbank 1013.
  • This 'single band' electrical signal is sent to both output transducers 1020, 1052 via their respective low pass filters 1030, 1060, inverters 1035, 1062, summers 1015, 1050 and amplifiers 1017, 1051, these signals being further individually modified based on the input from noise sensing microphones 1022, 1055 located close to their respective receivers 1020, 1052.
  • the psychoacoustic model block 1075 also uses signals from the noise sensing microphones 1022, 1055 whose outputs are passed through their respective analog-to-digital converters 1027, 1065 to second and third analysis filterbanks 1040, 1070 whose output sub-bands are combined at a combiner 1072 to form a joint spectral image to be processed by the psychoacoustic model block 1075 to produce the appropriate gain control signals for each of the sub-bands in the multipliers 1007.
  • This scheme has the advantage of using only one D/A converter 1013 to deliver the processed signal out to the two output transducers 1020, 1052.
  • the feedback path comprising 1025, 1030, 1035 and 1015 (or 1056, 1060, 1062 and 1050) implements the combination an ANC system combined with SIE as described previously.
  • a further embodiment of the SIE invention is used in an open-loop configuration (typically used in telecommunications headset), shown in Figure 11 in which the microphone 1120 used for the reception of transmitted (Tx) speech is also used to sample the environmental noise- the so-called shared microphone technique.
  • the signal-of-interest 1101 is split into N sub-bands by a first analysis filterbank 1103, and the sub-bands grouped into K channels by the band grouping block 1150.
  • the level of each of these 'signal of interest' channels is measured by a Level Measuring block 1153 and the level stored in the appropriate register 1155.
  • Each sub- band is also modified by a multiplier 1107 and the sub-bands reassembled into a single band by a synthesis filterbank 1110 and passed to the audio output 1115.
  • the sample of environmental noise from the microphone 1120 is similarly split into N sub-bands by a second analysis filterbank 1123, and the resultant sub-bands grouped into K channels by a further band grouping block 1160.
  • the level of each of these 'noise' channels is measured by a Level Measuring block 1163 and the level stored in the appropriate register 1165.
  • the psychoacoustic model block 1140 uses the values of the levels stored in the signal-of-interest level register, and in the noise level register to determine the gains to be applied by the multiplier 1107 to each band of the incoming signal of interest 1101.
  • the voice activity detector 1125 monitors the output of the noise analysis filterbank 1123 and detects gaps in the transmit signal (voice). It is only when such gaps occur that the level measured can be considered correct. /015082
  • algorithms to restore the transmitted signal can also be incorporated with open-loop microphone-sharing SIE system of Figure 11.
  • a well-known in the art or co-pending directional processing algorithm is used to noise-reduce the transmitted signal, but the same microphones that are used for the signal can be used to estimate the environmental noise employing the techniques described for Figure 11.
  • the path for the signal-of-interest 1210 is similar to that of the previous embodiment in that the signal-of-interest 1210 is split into sub-bands by a first analysis filterbank 1213, each sub-band is modified by a multiplier 1215 and the sub-bands transformed into a single band by a synthesis filterbank 1217 to be amplified 1219 for the receiver 1220.
  • the noise signal is derived from two microphones 1201, 1207, the so-called front and back microphones, whose outputs are split into sub-bands by respective second and third analysis filterbanks 1203, 1209. Both sets of sub-bands are used by a directional processing block 1230, and are not discussed or otherwise relevant here.
  • the same sets of sub-band signals are passed to a Desired Signal Activity Detector(DSAD) block 1240, and the output of that block 1249 passed to the psychoacoustic model block 1260 controlling the multipliers 1215.
  • the output of the third analysis filterbanks 1209, corresponding to a microphone situated furthest from the transmitted signal passes through a transfer function block 1250 to the psychoacoustic model block 1260, . It is desirable to determine the transfer function 1250 from the Tx microphone to the output transducer to provide an accurate estimate of the noise level in the ear canal, thereby approximating the closed-loop condition.
  • the directional processing block provides an output noise estimate that is generated by aiming a beam away from the transmitted signal source to obtain a noise estimate that contains less transmitted speech.
  • the directional output can be subtracted from one of the microphones to obtain an improved estimate of the noise.
  • front end processing techniques such as DSAD, adaptive noise estimation or spectral differencing noise estimation can be used in any open oop configuration.
  • Other front-end processing like directional processing allows some separation of the speech from noise thereby improving performance.
  • the design can be implemented using ultra low-power, sub-miniature technology that is suitable for incorporation directly into a headset or other low- power, portable audio applications (see United States Patent 6,240,192 Schneider & Brennan, Apparatus for and method of filtering in a digital hearing aid, including an application specific integrated circuit and a programmable digital signal proces o ⁇ .
  • Implementations using oversampled filterbanks (see United States Patent 6,236,731 Schneider & Brennan, Filterbank structure and method for filtering and separating an information signal into different bands, particularly for audio signal in hearing aids) provide a high-fidelity, ultra low-power solution that are ideal for portable, lowpower audio applications.
  • the signal-of-interest can be processed, using a psychoacoustic model and/or low-level expansion, such that the level of the noise is effectively below the acoustic signal level (or the residual signal level if ANC is being applied). When this is properly implemented, the listener perceives less noise.
  • Single-microphone noise reduction techniques can be incorporated into the signal-of-interest channel, as described in the PCT/Canadian Patent Application PCT/CA98/00331 Brennan, Robert. Method and Apparatus for Noise Reduction, Particularly in Hearing Aids. This provides a signal for the listener that is more audible (relative to the environmental noise) and less tiring to listen to for extended periods of time because the processed signal-of-interest contains less noise.
  • an implementation When used with a Desired Signal Activity Detector (DSAD), an implementation is able to differentiate between a signal-of-interest and the environmental noise (interference). This ensures that the estimate of the noise signal does not become contaminated with the signal-of-interest, allowing voice communications to be clearer with higher intelligibility.
  • an adaptive filter is used to correlate the contaminated signal (signal + noise) with the uncontaminated electrical signal so that an estimate of the noise can be derived. This provides a more reliable estimate of the noise signal that is contaminating the signal-of-interest. Employing this technique provides improved signal fidelity.
  • a spectral differencing technique is used to estimate the spectral content of the environmental noise. This provides a more reliable estimate of the noise signal that is contaminating the signal- of-interesting. This processing also improves signal fidelity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Toys (AREA)
  • Auxiliary Devices For Music (AREA)
  • Ceramic Products (AREA)

Abstract

A sound intelligibility enhancement (SIE) system is disclosed. The SIE system uses a psychoacoustic model and preferably an oversampled filterbank wherein the level of a signal-of-interest that falls below the environmental noise is selectively amplified as a function of the input level and frequency so that it is audible above the noise but never exceeds a predetermined maximum output level as a function of frequency. The SIE system can be combined with active noise cancellation.

Description

SOUND INTELLIGIBILITY ENHANCEMENT USING A PSYCHOACOUSTIC MODEL AND AN OVERSAMPLED FILTERBANK
Field of the Invention
The present invention relates to audio reproduction applications where a desired audio signal is received in an uncontaminated form and interference (e.g., environmental noise) is present as an acoustic signal.
Background of the Invention
In acoustically noisy environments, listeners often have difficulty hearing a desired audio signal or "signal-of-interest". For example, a cellular phone user in an automobile may have difficulty understanding the received speech signal through their headset because the noise of the automobile masks the signal-of-interest (i.e., the speech signal received by the cell phone). Many attempts have been made in the past to solve this problem. Some of them are described briefly as follows:
(a) Passive noise attenuating headsets: For the specific application in headset applications, passive noise attenuation is provided by a large and bulky ear cup that physically isolates the environmental (acoustic) noise from the users ear.
(b) Amplification: The incoming electrical signal-of-interest is amplified to overcome the background noise level. If not properly controlled, this can result in dangerously loud output levels. Also, unless the amplification well-controlled, it may not provide the desired benefit.
(c) Filtering: The signal is statically filtered to make it more intelligible
(d) Simple Automatic Gain Control (AGC): The signal-of-interest is passed through an automatic gain control (AGC) system in which gain is adjusted based on a level measurement of the noise inside or outside the ear cup. The gain of the AGC is typically controlled by a simple measurement of the overall noise level. (e) Active noise cancellation (ANC): Anti-noise (generated using either an open- or closed-loop servo system) is generated and added acoustically to the noise signal. For headset applications, see Bose, Amar, et. dλ.Headphoning. United States Patent 4,455,675. Jun 19, 1984, and Moy, C u.Active Noise Reduction in Headphone Systems, Headwize Technical Paper Library, 1999.
(f) Sometimes, these methods are combined: a common scheme for a headset application is to combine a passive noise-attenuating headset with an ANC system (see Bose, Amar, et. al. Headphoning. United States Patent 4,455,675. Jun 19, 1984).
Although these methods are highly effective and reduce the noise for a wide range of applications, they are not always suitable. For example, ANC requires an accurate noise reference, which may not be available and works only at lower frequencies. Passive noise reduction works well only if sufficient room is available for the sound insulation. Filtering distorts the signal frequency content. AGC systems do not consider the human auditory system and yield sub-optimal results. Also, even when these solutions can be applied, applications exist where the power drain of these solutions is prohibitive and a miniature, low power technique is required.
Accordingly, there is a need to solve the problems noted above and also a need for an innovative approach to enhance and/or replace the current technologies.
Summary of the Invention
It is an object of the present invention to provide a novel method and system for improving a signal quality and a signal intelligibility.
In accordance with an aspect of the present invention, there is provided a system for improving a signal intelligibility over an interference signal, which includes: an analysis filterbank for transforming an information signal in time domain into a plurality of channel information signals in transform domain; a signal processor for processing the outputs of the analysis filterbank, the signal processor including a psychoacoustic processor for computing a dynamic range using a psycoacoustic model to render the information signal audible over the interference signal; and a synthesis filterbank for combining the outputs of the signal processor to generate an output signal.
The Signal Intelligibility Enhancement (SIE) of the invention is designed to alleviate the disadvantages and shortcomings of the prior art implementations. It can be used in environments where there are very high levels of noise relative to the level of the signal-of-interest. Such environments can result in a very restricted available dynamic range. While it is possible to use simple dynamic range compression methods of earlier systems to map the signal-of-interest into this small dynamic range, the resulting signal fidelity and quality may suffer. In this situation, applying the minimum gain required to make the signal-of-interest audible over the desired noise (and therefore more intelligible) results in improved signal quality. The present invention is therefore directed at determining and applying this minimum gain.
According to the present invention, the SIE processing incorporates a psychoacoustic model that calculates, on an on-going basis, the minimum amplification that must be applied to make the signal-of-interest audible over the undesired signal. This results in better fidelity and signal quality.
According to the present invention, Signal Intelligibility Enhancement (SIE) algorithm utilizes a measurement of either (1) the level of the outside interference (undesired signal, noise) or (2) the level of the interference (undesired signal, noise) in the headset ear cup or in the ear canal to adaptively adjust the gain and equalization of the signal-of-interest (electrical) so that the intelligibility and audibility of the signal- of-interest is improved. These level measurements are made using frequency band levels alone on in combination using techniques that are well-known in the art and are described in Schneider, Todd A. An Adaptive Dynamic Range Controller, MASc Thesis, University of Waterloo, Waterloo, Ontario, Canada. 1991, Schneider & Brennan. A Compression Strategy for a Digital Hearing Aid, Proc. ICASSP 1997, Munich, Germany, and Schmidt, John. Apparatus for Dynamic Range Compression of an Audio Signal, US Patent 5,832,444.
In summary, by using the invention, the user can receive a signal with improved SNR (signal-to-noise ratio) that continuously adapts to the user's environment, rendering the signal-of-interest at a comfortable level. This results in improved signal intelligibility, improved perceived signal quality and less user fatigue.
To provide the best possible fidelity, ultra miniaturized size and the lowest possible power consumption, the SIE algorithm is preferably implemented using an oversampled filterbank to separate both the signal-of-interest and the undesired signal into a number of overlapping, abutting or non-overlapping bands. A suitable oversampled filterbank is described in United States Patent 6,236,731: Schneider & Brennan, Filterbank structure and method for filtering and separating an information signal into different bands, particularly for audio signal in hearing aids. The design is advantageously implemented in an architecture that combines a weighted overlap add (WOLA) filterbank, a software programmable DSP core, an input-output processor and non-volatile memory. Such an architecture is described in United States Patent 6,240,192, Schneider & Brennan, Apparatus for and method of filtering in a digital hearing aid, including an application specific integrated circuit and a progiammable digital signal processor.
This invention can be used in any application where it is necessary to improve the intelligibility of a received audio signal containing significant noise while maintaining high fidelity and good signal quality. Typical applications of the invention include headsets used in call centres, mobile phones, and other miniature/portable audio devices when used in noisy environments (e.g., aircraft, concerts, factories, etc.). A further understanding of the other features, aspects, and advantages of the present invention will be realized by reference to the following description, appended claims, and accompanying drawings.
Brief Description of the Drawings
Embodiments of the invention will now be described with reference to the accompanying drawings, in which:
Figure 1 illustrates a typical situation for a receive algorithm;
Figure 2 is a schematic representation of a dynamic range mapping of signal- of-interest into available dynamic range;
Figure 3 shows a basic operation of the signal intelligibility enhancement according to the present invention;
Figure 4 shows a high-level block diagram of SIE processing according to the invention, incorporating a Desired Signal Activity Detector (DSAD) (or Voice Activity Detector (VAD));
Figure 5 shows a block diagram of SIE using adaptive noise estimation;
Figure 6 shows a block diagram of SIE using spectral differencing noise estimation;
Figure 7 shows the input/gain function for straight-line compression;
Figure 8 shows one embodiment of the invention with SIE and ANC combined; Figure 9 is a diagram illustrating combining left and right noise floors;
Figure 10 shows a binaural combination system with transmit algorithm capability;
Figure 11 is a block diagram showing an open-loop SIE with shared transmitting (Tx) microphone; and
Figure 12 is a block diagram showing an open-loop SIE with shared Tx microphones and directional processing.
Detailed Description of the Preferred Embodiment(s) The preferred embodiments will be described with particular reference to the use of a headset by a listener, to which the present invention is principally applied, but not exclusively.
Signal processing algorithms for audio listening applications are commonly called "receive algorithms" (Rx) because the listener wants to hear the received audio signal. A typical application for the Signal Intelligibility Enhancement (SIE) processing of the invention is a headset being used in a noisy environment Figure 1 shows diagrammatically the components and signals of interest. The listener 101 hears a combination of the desired sound 105, derived typically from an electrical signal 107, and the environmental (or ambient) noise 110 that is an undesired signal that may reduce the intelligibility of the signal-of-interest. The passive attenuation provided by the headset 115 reduces the audible level of the environmental noise.
If the level of signal-of-interest falls significantly below the level of the noise signal in the ear canal, the signal-of-interest is masked and canbe inaudible. The listener also has a maximum signal level that is considered comfortable (Loudness Discomfort Level - LDL). LDL may be a simple frequency-based measurement of a discomfort level (as is well know in the art for audiological hearing assessmait and fitting) or it may be a complex measure of psychoacoustic loudness that accounts for signal level within critical bandwidth, frequency content, signal duration or other relevant psychoacoustic parameters. The difference in level between the level of the noise signal and the LDL, which are both functions of frequency, is the effective dynamic range, which also a function of frequency. Because of the level of the undesired signal (i.e. noise), the listener experiences reduced dynamic range. Remapping the dynamic range of the signal-of-interest in a frequency dependent manner raises its level above the ambient noise making the signal-of-interest audible. However, the amplification must not allow the level of the signal to exceed the maximum signal level that is comfortable for the listener (LDL). The solution is to map the dynamic range of the original signal-of-interest into the available dynamic range of the signal in the presence of environmental noise. This type of signal processing is called dynamic range compression. This mapping is shown for a single frequency band in Figure 2, in which the desired (or original) dynamic range 210, with its noise floor 215, is compared with the corrupted dynamic range 220, with its noise floor 225 raised by the environmental noise. The goal of dynamic range compression is therefore to purposely distort the dynamic range of the signalof- interest while minimizing the perceived distortion.
A version of this dynamic range compression operation acting as a function of frequency is now described with reference to Figure 3. The figure shows the spectra of the desired signal-of-interest 310 and the undesired (environmental) noise 315 in a graph having scales of frequency 300 versus arbitrary level 305. Note that above a certain frequency 320 the level of the signal of interest 310 falls close to and below the undesired noise 315. In the system, the signal-ofinterest 310 is selectively, that is, depending on frequency and input level, amplified 330 as a function of the input level so that it is audible above the noise floor. This operation is advantageously implemented in a plurality of overlapping or non-overlapping frequency bands where the bands can be processed independently or grouped into channels and processed together. For completeness, the Figure 3 also shows the aforementioned Loudness Discomfort Level (LDL) 340.
In the following descriptions of preferred embodiments all of the paths between the one or more analysis filterbanks and the synthesis filterbank should be considered to have N dimensions (parallel paths), since there are N sub-bands derived by the analysis filterbanks, and each requires a separate path. This consideration also applies to any function blocks interposed between the filterbanks, since each sub-band is to be considered and operated on separately. The present invention is particularly applicable where the N > 1, although typically N > =16. In some embodiments, these N sub-bands are grouped into K channels, where each channel comprises one or more adjacent sub-bands, and each channel is then processed so that all of the sub-bands within that channel get the same gain.
Referring to Figure 4 that shows a block diagram of an embodiment of the invention, a first acoustic input device (Signal Microphone) 401 receives the signal of interest (typically speech), and passes it to a first WOLA analysis filterbank 405. A second acoustic input device (Noise Microphone) 402 receives the environmental noise, possibly contaminated with the signal-of-interest and passes it to a second WOLA analysis filterbank 406. The second acoustic input device 402 is typically located either inside the ear canal (a so-called closed-loop implementation) or outside the ear canal (a so-called open-loop implementation). Each filterbank breaks the input signal into N sub-bands.
Any differences between these implementations are pointed out in the following description. In a closed loop implementation, equalization is included to account for the acoustics of the signal path (e.g., an acoustic tube that supplies audio to a microphone molded into the ear cup). By contrast, in an open loop implementation, a model of the transfer function from the microphone to the inside of the ear canal is incorporated to account for the attenuation and frequency response of the headset ear cup and acoustic signal path. A model of the output stage can also be included so that the level of the signal-of-interest that may appear in the ear canal, prior to any adaptive equalization, can be approximated.
In an open-loop implementation, a separate or shared environmental noise microphone can be used. In the shared microphone case, the same microphone can be used for transmitting a signal (e.g., transmitted speech in a headset application). This reduces costs and simplifies mechanical construction. In this case, a signal or voice activity detector is required to ensure that the noise spectral estimate does not contain any of the transmitted signal.
In operation, the psychoacoustic model incorporated in the psychoacoustic processing block 430 receives the level of the signal-of-interest in frequency sub- bands or combinations of frequency sub-bands (channels) covering the desired signal spectrum as produced by the first (signal-of-interest) WOLA analysis filterbank 405. The psychoacoustic processing block 430, using the level of environmental noise in those same frequency bands or combinations frequency bands (channels) but applied to the environmental noise spectrum as produced by the second (environmental noise) WOLA analysis filterbank 406, then computes dynamic range parameters. These computed parameters are passed to the multi-band compressor 420 that, in turn, applies them to the sub-bands derived by the first (signal-of-interest) WOLA analysis filterbank 405. The multi-band compressor 420 then uses the dynamic range parameters supplied by the psychoacoustic processing block 430 to equalize the signal as a function of frequency thereby improving its audibility or intelligibility. The use of a psychoacoustic model, combined with well-known dynamic range compression techniques, ensures that the output audio is made audible and intelligible over the environmental noise while minimizing perceived distortion and maintaining the quality of the desired signal. The Desired Signal Activity Detector (DSAD) block 410 receives outputs from both WOLA analysis filterbanks 405, 406 and controls the updates to the estimate of the noise spectrum by the spectral estimation block 435. This spectral estimation block 435, described next, provides further information to the psychoacoustic processing block 430. The outputs of the Multi-band compressor 420 are supplied to a synthesis filterbank 450 . The synthesis filterbank 450transforms the outputs the Multi-band compressor 420 to output a time-domain audio signal.
Noise Estimation
An important input to the SIE signal processing carried out in the psychoacoustic processing block 430 is the spectrum of the environmental noise supplied by the second input device 402. The Spectral Estimation block 435 of SIE processing of the invention includes an adaptive estimation technique or a spectral differencing technique. These, together with a desired signal activity detector (DSAD) 410, permit an accurate, uncontaminated estimate of the environmental noise spectrum to be determined. In a further preferred embodiment, the environmental noise is obtained by using a shared-input microphone (see below).
In the open-loop case, noise estimation is done using shared or separate microphones. A DSAD or VAD on the shared or separate microphone controls updates to the spectral estimate of the noise that is derived via spectral analysis from the shared or separate microphone. If speech (or some other signal of interest) is detected on the shared or separate microphone, the spectral estimate of the noise is not updated. (Note that spectral differencing and adaptive estimate are not used in the open-loop case.)
In the closed-loop case, a mixed version of the signal plus noise is received by a microphone located inside the ear cup. In this case, we need to remove the signal , (which is known since we have an electrical version of it). This is done using spectral differencing or adaptive estimation techniques.
Desired Signal Activity Detector (DSAD)
The DSAD 410 employs techniques well-known in the art to sample the spectrum of the signal when the desired signal is not present (i.e., during pauses or breaks in the desired signal). This ensures that the algorithm does not consider the desired signal (or in the case of a headset application with a shared microphone, the transmitted speech) to be part of the environmental noise.
In embodiments using a closed-loop implementation, when the DSAD 410 indicates that there is no desired signal-of-interest present, the noise spectral image is updated, thereby minimizing contamination of the resultant spectrum by the signal-of- interest. In other embodiments using an open-loop implementation, the DSAD 410 may optionally monitor the environmental noise signal to ensure that transmitted speech or other signals-of-interest do not contaminate the noise spectrum that is supplied as an input to the psychoacoustic model.
In a closed-loop implementation, if the noise spectrum has not been updated for some predetermined time period, the output audio may optionally mute for a brief period of time so that the noise spectrum can be updated without the desired signal being present. Using the DSAD in combination with timed updates (when necessary) ensures that noise spectrum is always current and that it is never contaminated with the desired signal spectrum.
Adaptive Noise Estimation
In a preferred embodiment of the invention, adaptive noise estimation is used that employs techniques that are well-known in the art to estimate the environmental noise, but in the context of an oversampled WOLA sub-band filterbank a technology described in the co-pending patent application, which is filed on the same day by the present applicant entitled "Subband Adaptive Processing in an Oversampled Filterbank" Canadian Patent Application, serial 2,354,808, US application , Serial , the disclosure of which is incorporated herein by reference, may also be used. Figure 5 shows a block diagram of SIE with Adaptive Noise Estimation. Although a time domain technique is described, it would be understood by one skilled in the art that transform (eg frequency) domain techniques are also possible and may be advantageous. The desired signal 501, already in electronic form is passed to a first analysis filterbank 503, which produces a number of sub-bands as in the previous embodiments. Each sub-band is then multiplied by the multiplier 505 with a function G derived from a Psychoacoustic Model block 507. The results of the gain application are passed in turn to a synthesis filterbank 509 which transforms the modified signal from the sub-bands and passes the output to power amplifier 511 which drives a receiver 513. A microphone 520, located physically close to receiver 513 delivers its output, being the desired signal contaminated with various noise components including environmental noise, to an adaptive correlator 525. The output of the adaptive correlator 525, which is an estimate of the noise signal, is broken into sub- bands by a second analysis filterbank 530. The sub-bands from the second analysis filterbank 530 are also passed to the Psychoacoustic model block 507. As described above the adaptive estimate can also be done in the transform domain.
Adaptive noise estimation requires no breaks in the desired signalrof-interest to estimate the noise. The noise is continuously estimated using the correlation between the contaminated signal derived from the microphone 520 and the desired electrical input signal 501 (the signal-of-interest). The output of the adaptive correlator 525 contains primarily the signal components that are uncorrelated between the desired signal 501 and the desired signal plus noise 520.
Noise Estimation by Spectral Differencing
Spectral differencing takes the difference between a filtered or unfiltered version of the transform domain representation of the signal-of-interest and the transform domain representation of the environmental noise signal. This subtraction can be done in bands or groups of bands. This estimation method is especially advantageous in closed-loop implementations (see below) where the environmental noise signal also contains the signal-of-interest because of the acoustic summation of the environmental noise and SIE processed signal-of-interest.
Filtering the signal-of-interest can be employed to derive a more accurate estimate. Where the filter has a frequency response equivalent or approximately equivalent to the frequency response of the output stage (SIE equalization, amplifier, loudspeaker and acoustics) and microphone, then the subtraction in the transform domain provides an excellent approximation to the uncontaminated (with the signal- of-interest) environmental noise. This filtering may optionally include calibration to null-out transducer or other differences and may be done using one of off-line or on- line line techniques .
Like adaptive estimation, spectral differencing requires no breaks in the desired signal to estimate the noise - the noise is continuously estimated using the spectral difference between the two signals. Figure 6 illustrates such a system in which a new function F' 605 is introduced that approximates the overall transfer function F 610 of the signal path between the analysis filterbank 601 and the receiver 614. The signal path comprises a multiplier 611, a synthesizing filterbank 612, a power amplifier 613 and the receiver itself 614. A sampling microphone 620 feeds a signal representing the desired signal plus any introduced noise to a second filterbank 625, whose output is combined with the result of the function F' 605 acting on the appropriate sub-band of the desired signal to produce a noise estimate 630 which is fed into the psychoacoustic model 635. The gains output from the psychoacoustic model 635 are then multiplied with each sub-band at a multiplier 611.
Figure 6a shows a further embodiment in which N sub-bands are combined into K channels, and a further function, related to an estimation of the headset performance characteristics is introduced. Those components duplicating the functions in Figure 6 are not described. The N output sub-bands of the analysis filterbanks 601, 625 are passed to band grouping blocks 603, 627 which combine several bands into a single channel, so that only K channels are further processed (where K < N). The outputs of the band grouping blocks pass to level measuring blocks 603, 627 respectively where the levels of each channel are measured the results passed in turn to the appropriate level registers 606, 629. The psychoacoustic model 635 uses the signal of interest and 'signal + noise' levels for the channels stored in the registers 606, 629 to compute the gains to be applied to each band. In addition, these gains are used in a feedback manner to adjust the function H(z) 615 which approximates the transfer function of the headset using a model 640. The output of the function H(z) adjusts the levels of noise as presented to the psychoacoustic model 635, using a subtractor 630.
Psychoacoustic Processing
Four different strategies for the psychoacoustic model 635, and combinations thereof, can be employed to calculate the gains that are applied to the transformed signal domain. The gains are computed to ensure that the processed version of the desired signal is always audible over the environmental noise and that it is always comfortable for the listener. In all cases the LDL gives the upper limit of the dynamic range. ,
1) The lower limit of the dynamic range is set by the energy of the environmental noise within a frequency band or combination of bands.
2) The lower limit of the dynamic range is set by the level of the environmental noise within a frequency band or combination of bands, multiplied by a factor (X) between 0 and 1, which is adjustable. This factor controls the amount to which the apparatus amplifies low-level signals-of-interest. A lower X results in more dynamic range being available for the signal-of-interest and improves signal quality. Too low an X will mean that at low-levels, the signal-of-interest is masked by the environmental noise.
3) The lower limit of the dynamic range is determined by a complex psychoacoustic model which considers the level, spectral content and spectral nature of both the signal-of-interest and environmental noise to calculate the minimum audible and intelligible level within the noise, as is well known in the art.
4) The lower limit of the dynamic range is set by subtracting the SNR of the signal-of-interest from the energy of the noise within a channel.
In a preferred embodiment, the LDL is calculated using an on-line estimate of , the perceived signal loudness based on signal level with critical bands, frequency content, signal duration or other relevant psychoacoustic parameters.
Multi-band Compressor
In a preferred embodiment, a component of the psychoacoustic model is a multi-band dynamic range compressor. Dynamic range compression to a smaller effective dynamic range is accomplished by the use of one of several well-known level mapping algorithms. These can be employed with the support of look-up tables or other well-known means to supply the shape of the compression Input vs. Gain Function, otherwise the gains can be directly calculated based on a mathematical formula. Examples of possible level-mapping algorithms are:
1) Straight-Line Compression - where the Input/Gain Function is a straight line as illustrated in Figure 7. Here the level-mapping algorithm consists of a mathematical formula for the region of compression as expressed in decibels:
Gain = ENoise * (l - LDL -
2) Curvilinear compression - the Input/Gain Function is not straight, but curved to better fit growth-of-loudness perception in the human auditory system. This method yields improved perceptual fidelity but must either rely on a more complex formula or draw information from a look-up table. 3) The psychoacoustic model is incorporated or integrated with the compressor to make the desired signal audible. The time variation of the gains is controlled in such a way that perceptual distortion is minimized and the signal-of-interest is made as audible as possible.
For all level-mapping algorithms, a psychoacoustic model calculates a level to minimize the distortion in a given (sub-band or) channel, by determining what sounds are audible within noise. This information leads to an objective estimation of the quality of the desired signal, enabling the calculation of near-optimal compression parameters. Other level mapping schemes are also possible.
It is often the case that the incoming signal-of-interest is not entirely noise- free. Instead of using compression on the entire dynamic range in this case, it is advantageous to expand (increase dynamic range) for the low-levels of the signal where the noise exists. This is perceived as making the noise quieter in the signal-of- interest and tends to render it inaudible. Where the noise floor of the signal-of-interest is known, the dynamic range re-mapping, previously described with reference to
Figure 2, further reduces the audibility of this noise floor because it is masked by the environmental noise.
In order to deliver high perceptual fidelity in all environments, spectral tilt constraints can be implemented. These constraints prevent the invention from over- processing the sound to the point where the output audio is equalized in such a way that it is objectionable or quality is reduced in spectrally shaped noise environments. In a preferred embodiment, the constraints are implemented by enforcing a maximum gain difference between the various channels in the compressor. When processing used in the invention attempts to exceed the maximum gain difference thresholds, a compromise is made in the channels tending to require more extreme adjustment or adaptation, and more or less gain is applied to satisfy the constraints. Other constraints that use more complex means, such as objective measures of speech quality are also possible. Each individual is unique, and therefore each individual can determine and set his or her own LDL, desired listening level, and growth of loudness. By a process of personalization, key characteristics of the psychoacoustical operation are adjusted for the individual user (in a manner not unlike adjustments to a hearing aid). In a preferred embodiment, these parameters are stored using non-volatile memory as part of the psychoacoustic model.
User SIE Level Adjustment
Users of SIE may want to adjust the sensitivity of the signal-processing algorithm. Users adjusting this control, which can be thought of as an advanced volume control, are typically adjusting the level because low-level sounds are inaudible (not because high-level sounds are in audible). In a preferred embodiment, the parameter "X" described above (in Psychoacoustic Processing) may be made user adjustable to control the sensitivity of the SIE algorithm. Other, more advanced embodiments, where the level adjustment provides a parametric input to the psychoacoustic processing block are possible and are dependent on the specific type of psychoacoustic processing that is employed.
Combination with Active Noise Cancellation
Many headsets today incorporate Active Noise Cancellation (ANC). ANC technology is used to improve signal intelligibility in noisy environments by generating anti-noise that actively cancels the environmental noise. However, ANC is typically only effective for low frequencies because of well-known constraints of feedback systems. By combining the SIE invention with ANC the audio quality and perceptibility is enhanced to a level that cannot be achieved by either method alone. Figure 8 illustrates such a combination. The signal-of-interest 801 enters an analysis filterbank 805, the sub-bands from which pass multipliers 807 and thence to a synthesis filterbank 809 where they are transformed and passed in turn to a summer 812, the output of which passes through an inverter 814, an output stage (amplifier) 826 a second summer 818 where it is combined with the noise signal 17, and thence to the receiver 820. The signal-of-interest is also input by the psychoacoustic model block 840 which controls the sub-bands thorough the multipliers 807. A further input to the psychoacoustic model block 840 is derived from a feedback loop comprising an acoustic delay 825 which feeds the signal used to drive the receiver 820 to a microphone 830, whose output is first amplified 832 then passed to both the first summer 812 through a low pass filter 834, and to the psychoacoustic model block 840. In some embodiments an associated ANC system has a microphone already in place to sample the noise, and this microphone can be simultaneously used for Signal Intelligibility Enhancement to sample the environmental noise in the ear canal. The combination of these two technologies makes it possible to make each one of them subtler, and therefore less disorienting, while delivering improved quality and perceptibility.
In a further embodiment a combination of SIE and ANC processing is implemented using an oversampled WOLA filterbank as a pre-equalizer to an ANC system. The ANC system may be implemented using analog or digital signal processing of a combination of these two. This ANC processing is well-known in the art and is therefore not described. The WOLA measures the pre-equalized residual noise in the ear canal (closed loop ANC) or the outside environmental noise (open loop ANC) and uses the resultant spectral information as input to a psychoacoustic model that provides dynamic range parameters for the pre-equalizer.
Binaural Operation
When used in a stereo audio system (e.g., binaural headset or in headphones), joint-channel processing extensions for SIE can be incorporated. Two cases are considered:
1) There is a microphone for each ear outside (open loop) or inside (closed loop) the ear cup. In this case, as graphically shown in Figure 9, which has axes of Noise level 950 versus frequency 960, the noise floor for the right channel 910 and left channel 900 is combined by some means (e.g., taking the maximum level or average of the left and right sides in each channel, or in each sub-band of each channel) to provide a combined noise floor 920.
2) There is only one microphone on one of the ear cups or elsewhere on the apparatus. In this case, only one noise measurement is available.
Having only one noise measurement for the SIE algorithm is important since a stereo compressor scheme (possibly with independent noise measurements) may lead to undesired independent channel adjustment and a consequent reduction in perceived audio quality. When there is only one measure of the environmental noise for the user, both right and left sides of the SIE processing scheme use the same information. In the case of a stereo signal-of-interest, two SIE processing apparatus use the same environmental noise level to control the subsequent processing of each audio stream.
In one embodiment shown in Figure 10 a binaural headset 1020, 1052 is used with a monaural signal 1000. A typical application is a cell phone headset with monaural speech. A single SIE processing apparatus composed of a combiner 1072, a psychoacoustic model block 1075 and feeding a multiplier 1007 is implemented. Following amplification by amplifier 1001, and digital to analog conversion 1003, the input (desired) signal 1999 is split into sub-bands by a first analysis filterbank 1005, each sub-band is multiplier 1007 with the appropriate output from the psychoacoustic model block 1075 and then transformed into a single band by the synthesis filterbank 1013. This 'single band' electrical signal is sent to both output transducers 1020, 1052 via their respective low pass filters 1030, 1060, inverters 1035, 1062, summers 1015, 1050 and amplifiers 1017, 1051, these signals being further individually modified based on the input from noise sensing microphones 1022, 1055 located close to their respective receivers 1020, 1052. The psychoacoustic model block 1075 also uses signals from the noise sensing microphones 1022, 1055 whose outputs are passed through their respective analog-to-digital converters 1027, 1065 to second and third analysis filterbanks 1040, 1070 whose output sub-bands are combined at a combiner 1072 to form a joint spectral image to be processed by the psychoacoustic model block 1075 to produce the appropriate gain control signals for each of the sub-bands in the multipliers 1007. This scheme has the advantage of using only one D/A converter 1013 to deliver the processed signal out to the two output transducers 1020, 1052.
The feedback path comprising 1025, 1030, 1035 and 1015 (or 1056, 1060, 1062 and 1050) implements the combination an ANC system combined with SIE as described previously.
Shared Noise Microphone
A further embodiment of the SIE invention is used in an open-loop configuration (typically used in telecommunications headset), shown in Figure 11 in which the microphone 1120 used for the reception of transmitted (Tx) speech is also used to sample the environmental noise- the so-called shared microphone technique. The signal-of-interest 1101 is split into N sub-bands by a first analysis filterbank 1103, and the sub-bands grouped into K channels by the band grouping block 1150. The level of each of these 'signal of interest' channels is measured by a Level Measuring block 1153 and the level stored in the appropriate register 1155. Each sub- band is also modified by a multiplier 1107 and the sub-bands reassembled into a single band by a synthesis filterbank 1110 and passed to the audio output 1115. The sample of environmental noise from the microphone 1120 is similarly split into N sub-bands by a second analysis filterbank 1123, and the resultant sub-bands grouped into K channels by a further band grouping block 1160. The level of each of these 'noise' channels is measured by a Level Measuring block 1163 and the level stored in the appropriate register 1165. The psychoacoustic model block 1140 uses the values of the levels stored in the signal-of-interest level register, and in the noise level register to determine the gains to be applied by the multiplier 1107 to each band of the incoming signal of interest 1101. The voice activity detector 1125 monitors the output of the noise analysis filterbank 1123 and detects gaps in the transmit signal (voice). It is only when such gaps occur that the level measured can be considered correct. /015082
21 Therefore a signal is passed from the voice activity detector 1125 to the level register 1165 indicating when there is no voice activity. This strategy reduces cost and decreases hardware complexity.
In other embodiments, algorithms to restore the transmitted signal can also be incorporated with open-loop microphone-sharing SIE system of Figure 11. For example, in Figure 12, a well-known in the art or co-pending directional processing algorithm is used to noise-reduce the transmitted signal, but the same microphones that are used for the signal can be used to estimate the environmental noise employing the techniques described for Figure 11. In Figure 12 the path for the signal-of-interest 1210 is similar to that of the previous embodiment in that the signal-of-interest 1210 is split into sub-bands by a first analysis filterbank 1213, each sub-band is modified by a multiplier 1215 and the sub-bands transformed into a single band by a synthesis filterbank 1217 to be amplified 1219 for the receiver 1220. However, in contrast, the noise signal is derived from two microphones 1201, 1207, the so-called front and back microphones, whose outputs are split into sub-bands by respective second and third analysis filterbanks 1203, 1209. Both sets of sub-bands are used by a directional processing block 1230, and are not discussed or otherwise relevant here. The same sets of sub-band signals are passed to a Desired Signal Activity Detector(DSAD) block 1240, and the output of that block 1249 passed to the psychoacoustic model block 1260 controlling the multipliers 1215. At the same time the output of the third analysis filterbanks 1209, corresponding to a microphone situated furthest from the transmitted signal, passes through a transfer function block 1250 to the psychoacoustic model block 1260, . It is desirable to determine the transfer function 1250 from the Tx microphone to the output transducer to provide an accurate estimate of the noise level in the ear canal, thereby approximating the closed-loop condition.
In an alternative embodiment (not shown in Figure 12), the directional processing block provides an output noise estimate that is generated by aiming a beam away from the transmitted signal source to obtain a noise estimate that contains less transmitted speech. In an additional embodiment, the directional output can be subtracted from one of the microphones to obtain an improved estimate of the noise.
Note that front end processing techniques such as DSAD, adaptive noise estimation or spectral differencing noise estimation can be used in any open oop configuration. Other front-end processing (like directional processing) allows some separation of the speech from noise thereby improving performance.
Other features and aspects of the present invention, and the advantages associated therewith are described below:
1) Signal intelligibility is improved. At the same time, signal fidelity and quality are maintained, and perceived quality can improve in noisy environments.
2) The use of psychoacoustic models and high-fidelity, constrained dynamic range adaptation means that the utility of the dynamic range is maximized (where dynamic range is the level difference between the minimum signal level that is audible above the noise and the maximum allowable signal level). This results in excellent signal quality and fidelity.
3) The design can be implemented using ultra low-power, sub-miniature technology that is suitable for incorporation directly into a headset or other low- power, portable audio applications (see United States Patent 6,240,192 Schneider & Brennan, Apparatus for and method of filtering in a digital hearing aid, including an application specific integrated circuit and a programmable digital signal proces oή. Implementations using oversampled filterbanks (see United States Patent 6,236,731 Schneider & Brennan, Filterbank structure and method for filtering and separating an information signal into different bands, particularly for audio signal in hearing aids) provide a high-fidelity, ultra low-power solution that are ideal for portable, lowpower audio applications.
4) When combined with a closed-loop, active noise cancellation (ANC) system, advantage can be taken of the fact that they both require means to measure the undesired noise at a point close to the output transducer. As a result the same microphone (located near the output transducer) can be used for both the measurement of the signal to generate the "anti-noise" and to provide the residual level measurement from which to compute the input level estimate required for the signal intelligibility enhancement (SIE) processing. This combined approach works better than either method alone because ANC is limited to providing benefit at low frequencies (because of design considerations) and the signal intelligibility enhancement provides benefit at higher frequencies. Using the same microphone reduces costs and simplifies the system. In many listening situations, low-frequency noise dominates. Here, the use of ANC at low frequencies to reduce the noise increases the available dynamic range, which results in improved fidelity relative to either method (ANC or SIE) being used alone.
5) In cases where the signal-of-interest contains noise, the signal-of-interest can be processed, using a psychoacoustic model and/or low-level expansion, such that the level of the noise is effectively below the acoustic signal level (or the residual signal level if ANC is being applied). When this is properly implemented, the listener perceives less noise.
6) Single-microphone noise reduction techniques can be incorporated into the signal-of-interest channel, as described in the PCT/Canadian Patent Application PCT/CA98/00331 Brennan, Robert. Method and Apparatus for Noise Reduction, Particularly in Hearing Aids. This provides a signal for the listener that is more audible (relative to the environmental noise) and less tiring to listen to for extended periods of time because the processed signal-of-interest contains less noise.
7) When used with a Desired Signal Activity Detector (DSAD), an implementation is able to differentiate between a signal-of-interest and the environmental noise (interference). This ensures that the estimate of the noise signal does not become contaminated with the signal-of-interest, allowing voice communications to be clearer with higher intelligibility. 8) In an alternative embodiment of the invention, an adaptive filter is used to correlate the contaminated signal (signal + noise) with the uncontaminated electrical signal so that an estimate of the noise can be derived. This provides a more reliable estimate of the noise signal that is contaminating the signal-of-interest. Employing this technique provides improved signal fidelity.
9) In an alternative embodiment of the invention, a spectral differencing technique is used to estimate the spectral content of the environmental noise. This provides a more reliable estimate of the noise signal that is contaminating the signal- of-interesting. This processing also improves signal fidelity.
10) With a multi-band implementation of the compressor component (ranges of frequency are treated independently as opposed to compressing the entire spectrum uniformly) more accurate mapping in the residual dynamic range can be made and the overall perceived audio quality is improved as described in Schneider & Brennan.γ4 Compression Strategy for a Digital Hearing Aid, Proc. ICASSP 1997, Munich, Germany. Treating frequency bands independently of one another allows for greater freedom to produce high-fidelity compression. Furthermore, constraining the relative compression levels of the frequency ranges so a pre-determined maximum amount of frequency shaping may occur, maintains the signal quality across a wide range of noise environments. This ensures that frequency localized noise sources are better handled.
11) Using a multi-band and/or adaptive level measurement of the noise allows an implementation to smoothly handle any changes of noise environment. It also protects against undesirable distortion, which would otherwise be caused by drastic changes in the environmental noise. See Schneider, Todd A. An Adaptive Dynamic Range Controller, MASc Thesis, University of Waterloo, Waterloo, Ontario, Canada. 1991, and Schneider & Brennan. A Compression Strategy for a Digital Hearing Aid, Proc. ICASSP 1997, Munich, Germany . 12) A safety system is implicitly incorporated into the invention. The signal processing does not amplify desired sounds above the user's Loudness Discomfort Level (LDL). This is a safety feature designed to help protect the user's hearing in very high noise environments. It, along with the other adjustments provided by the invention, provide the opportunity to personalize an implementation to a specific user.
While the present invention has been described with reference to specific embodiments, the description is illustrative of the invention and is not to be construed as limiting the invention. Various modifications may occur to those skilled ii the art without departing from the true spirit and scope of the invention as defined by the appended claims.

Claims

What is claimed is:
1. A system for improving a signal intelligibility over an interference signal, the system comprising:
an analysis filterbank for transforming an information signal in time domain into a plurality of channel information signals in transform domain;
a signal processor for processing the outputs of the analysis filterbank, the signal processor including a psychoacoustic processor for computing a dynamic range using a psycoacoustic model to render the information signal audible over the interference signal; and
a synthesis filterbank for combining the outputs of the signal processor to generate an output signal.
2. The system as claimed in claim 1 further comprising an analysis filterbank
for transforming the interference signal in the time domain into a plurality of channel interference signals in the transform domain.
3. The system as claimed in claim 2, wherein the signal processor further comprises a compressor for equalizing the channel information signals based on the dynamic range.
4. The system as claimed in claim 3, wherein the signal processor further comprises a circuit for expanding the dynamic range for a specific level of a signal to render a noise inaudible.
5. The system as claimed in claim 3, wherein the psychoacoustic processor processes the signals to perform a low-level expansion such that a user who receives the output signal perceives less noise.
6. The system as claimed in claim 3, wherein the psychoacoustic processor computes the dynamic range based on a Loudness Discomfort Level (LDL) so as to render the output signal at a loudness comfort level.
7. The system as claimed in claim 6, wherein the LDL is stored in a non-volatile memory for each user who receives the output signal.
8. The system as claimed in claim 3, wherein the psychoacoustic processor computes the dynamic range so as to protect a user who receives the output signal.
9. The system as claimed in claim 1, wherein a sensitivity of the signal processing in the signal processor is adjustable.
10. The system as claimed in claim 9, wherein a parameter for controlling the sensitivity of the signal processing is stored in a non-volatile memory for each user who receives the output signal.
11. The system as claimed in claim 1, wherein the signal processor further comprises a circuit to adjust a volume of the output signal.
12. The system as claimed in claim 3, wherein the signal processor further comprises a noise estimation circuit for estimating a spectrum of the interference signal.
13. The system as claimed in claim 12, wherein the noise estimation circuit performs an adaptive noise estimation to the interference signals.
14. The system as claimed in claim 12, wherein the noise estimation circuit performs a noise estimation by spectral differencing technique.
15. The system as claimed in claim 3, wherein the signal processor further comprises a noise estimation circuit for estimating a noise spectrum, and a desired digital signal activity detector (DSAD) for controlling the noise estimation.
16. The system as claimed in claim 15 further comprising a front-end processor for improving the intelligibility of the output signal
17. The system as claimed in claim 16, wherein the front-end processor includes a circuit for performing a directional processing algorithm to provide a noise estimation.
18. The system as claimed in claim 16, wherein the front-end processor includesa circuit for reducing a noise.
19. The system as claimed in claim 1 further comprising an Active Nose
Cancellation (ANC) circuit to actively cancel a noise by feed-backing a result of the signal processing to the signal processor.
20. The system as claimed in claim 1, wherein the interference signal comprises a noise and the information signal.
21. The system as claimed in claim 20 further comprising an adaptive correlator for outputting a noise estimation based on the information signal and the interference signal, the analysis filterbank for the interference signal transforming the output of the adaptive correlator.
22. The system as claimed in claim 20, wherein the signal processor further comprises a noise estimation and a desired digital signal active detector (DSAD) for controlling the noise estimation.
23. The system as claimed in claim 2, wherein the interference signal comprises a noise and the information signal, and the signal processor comprises a noise estimation circuit for subtracting the channel information signals from the channel interference signals to estimate a noise.
24. The system as claimed in claim 1, wherein the analysis filterbank and the synthesis filterbank are oversampled filterbanks.
25. The system as claimed in claim 2, wherein the analysis filterbank for the intereference signal is an oversampled filterbank.
PCT/CA2002/001221 2001-08-07 2002-08-07 Sound intelligibilty enchancement using a psychoacoustic model and an oversampled fiolterbank WO2003015082A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2002322866A AU2002322866B2 (en) 2001-08-07 2002-08-07 Sound intelligibility enhancement using a psychoacoustic model and an oversampled filterbank
DK02754004.6T DK1417679T3 (en) 2001-08-07 2002-08-07 Improving sound clarity using a psychoacoustic model and an oversampled filter bank
JP2003519932A JP4731115B2 (en) 2001-08-07 2002-08-07 Improvement of speech intelligibility using psychoacoustic model and oversampled filter bank
EP02754004A EP1417679B1 (en) 2001-08-07 2002-08-07 Sound intelligibility enhancement using a psychoacoustic model and an oversampled filterbank
DE60238619T DE60238619D1 (en) 2001-08-07 2002-08-07 IMPROVEMENT OF LANGUAGE COMPATIBILITY WITH A PSYCHOA ACOUSTIC MODEL AND A FILTER BANK CHANGED
AT02754004T ATE492015T1 (en) 2001-08-07 2002-08-07 IMPROVING SPEECH UNDERSTANDABILITY USING A PSYCHOACOUSTIC MODEL AND AN OVERSAMPLED FILTER BANK

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA2,354,755 2001-08-07
CA002354755A CA2354755A1 (en) 2001-08-07 2001-08-07 Sound intelligibilty enhancement using a psychoacoustic model and an oversampled filterbank

Publications (1)

Publication Number Publication Date
WO2003015082A1 true WO2003015082A1 (en) 2003-02-20

Family

ID=4169675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2002/001221 WO2003015082A1 (en) 2001-08-07 2002-08-07 Sound intelligibilty enchancement using a psychoacoustic model and an oversampled fiolterbank

Country Status (10)

Country Link
US (1) US7050966B2 (en)
EP (1) EP1417679B1 (en)
JP (2) JP4731115B2 (en)
CN (2) CN101105941B (en)
AT (1) ATE492015T1 (en)
AU (1) AU2002322866B2 (en)
CA (1) CA2354755A1 (en)
DE (1) DE60238619D1 (en)
DK (1) DK1417679T3 (en)
WO (1) WO2003015082A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10357065A1 (en) * 2003-12-04 2005-06-30 Sennheiser Electronic Gmbh & Co Kg Headset used by person in vehicle, has adder combines air-borne noise and audio signals picked up by microphones
JP2007503796A (en) * 2003-05-28 2007-02-22 ドルビー・ラボラトリーズ・ライセンシング・コーポレーション Method, apparatus and computer program for calculating and adjusting the perceived volume of an audio signal
EP1841284A1 (en) * 2006-03-29 2007-10-03 Phonak AG Hearing instrument for storing encoded audio data, method of operating and manufacturing thereof
WO2008116264A1 (en) * 2007-03-26 2008-10-02 Cochlear Limited Noise reduction in auditory prostheses
US7840012B2 (en) 2003-07-28 2010-11-23 Koninklijke Philips Electronics N.V. Audio conditioning apparatus, method and computer program product
WO2010094966A3 (en) * 2009-02-20 2011-04-21 Wolfson Microelectronics Plc A method and system for noise cancellation
WO2012138435A1 (en) * 2011-04-08 2012-10-11 Qualcomm Incorporated Integrated psychoacoustic bass enhancement (pbe) for improved audio
CN102903367A (en) * 2012-10-15 2013-01-30 苏州上声电子有限公司 Method and device for balancing frequency response of off-line iterative sound playback system
US8538763B2 (en) 2007-09-12 2013-09-17 Dolby Laboratories Licensing Corporation Speech enhancement with noise level estimation adjustment
EP2645362A1 (en) * 2012-03-26 2013-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for improving the perceived quality of sound reproduction by combining active noise cancellation and perceptual noise compensation
US8583426B2 (en) 2007-09-12 2013-11-12 Dolby Laboratories Licensing Corporation Speech enhancement with voice clarity
US8891778B2 (en) 2007-09-12 2014-11-18 Dolby Laboratories Licensing Corporation Speech enhancement
CN105278547A (en) * 2015-06-28 2016-01-27 洛阳德威机电科技有限公司 Mobile device controlled by biological body sense
US9350311B2 (en) 2004-10-26 2016-05-24 Dolby Laboratories Licensing Corporation Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0202159D0 (en) 2001-07-10 2002-07-09 Coding Technologies Sweden Ab Efficientand scalable parametric stereo coding for low bitrate applications
CA2354858A1 (en) 2001-08-08 2003-02-08 Dspfactory Ltd. Subband directional audio signal processing using an oversampled filterbank
EP1423847B1 (en) 2001-11-29 2005-02-02 Coding Technologies AB Reconstruction of high frequency components
SE0202770D0 (en) * 2002-09-18 2002-09-18 Coding Technologies Sweden Ab Method of reduction of aliasing is introduced by spectral envelope adjustment in real-valued filterbanks
US7398207B2 (en) 2003-08-25 2008-07-08 Time Warner Interactive Video Group, Inc. Methods and systems for determining audio loudness levels in programming
US20050071166A1 (en) * 2003-09-29 2005-03-31 International Business Machines Corporation Apparatus for the collection of data for performing automatic speech recognition
KR100723400B1 (en) * 2004-05-12 2007-05-30 삼성전자주식회사 Apparatus and method for encoding digital signal using plural look up table
CA2481629A1 (en) * 2004-09-15 2006-03-15 Dspfactory Ltd. Method and system for active noise cancellation
US20060126865A1 (en) * 2004-12-13 2006-06-15 Blamey Peter J Method and apparatus for adaptive sound processing parameters
US8964997B2 (en) * 2005-05-18 2015-02-24 Bose Corporation Adapted audio masking
FR2889377B1 (en) * 2005-07-29 2007-10-12 Thales Sa METHOD AND DEVICE FOR NOISE
RU2411595C2 (en) * 2005-08-02 2011-02-10 Конинклейке Филипс Электроникс Н.В. Improved intelligibility of speech in mobile communication device by control of vibrator operation depending on background noise
US20070112563A1 (en) * 2005-11-17 2007-05-17 Microsoft Corporation Determination of audio device quality
DK1802168T3 (en) * 2005-12-21 2022-10-31 Oticon As System for controlling a transfer function in a hearing aid
KR100667852B1 (en) * 2006-01-13 2007-01-11 삼성전자주식회사 Apparatus and method for eliminating noise in portable recorder
US20070177741A1 (en) * 2006-01-31 2007-08-02 Williamson Matthew R Batteryless noise canceling headphones, audio device and methods for use therewith
FR2898725A1 (en) * 2006-03-15 2007-09-21 France Telecom DEVICE AND METHOD FOR GRADUALLY ENCODING A MULTI-CHANNEL AUDIO SIGNAL ACCORDING TO MAIN COMPONENT ANALYSIS
WO2007104882A1 (en) * 2006-03-15 2007-09-20 France Telecom Device and method for encoding by principal component analysis a multichannel audio signal
CN101162894A (en) * 2006-10-13 2008-04-16 鸿富锦精密工业(深圳)有限公司 Sound-effect processing equipment and method
JP2008122729A (en) 2006-11-14 2008-05-29 Sony Corp Noise reducing device, noise reducing method, noise reducing program, and noise reducing audio outputting device
EP1947642B1 (en) * 2007-01-16 2018-06-13 Apple Inc. Active noise control system
BRPI0807703B1 (en) * 2007-02-26 2020-09-24 Dolby Laboratories Licensing Corporation METHOD FOR IMPROVING SPEECH IN ENTERTAINMENT AUDIO AND COMPUTER-READABLE NON-TRANSITIONAL MEDIA
DE102007035174B4 (en) 2007-07-27 2014-12-04 Siemens Medical Instruments Pte. Ltd. Hearing device controlled by a perceptive model and corresponding method
DE102007035173A1 (en) * 2007-07-27 2009-02-05 Siemens Medical Instruments Pte. Ltd. Method for adjusting a hearing system with a perceptive model for binaural hearing and hearing aid
WO2009054930A1 (en) * 2007-10-22 2009-04-30 Wms Gaming Inc. Wagering game table audio system
JP4940158B2 (en) * 2008-01-24 2012-05-30 株式会社東芝 Sound correction device
JP5191750B2 (en) * 2008-01-25 2013-05-08 川崎重工業株式会社 Sound equipment
KR101227876B1 (en) * 2008-04-18 2013-01-31 돌비 레버러토리즈 라이쎈싱 코오포레이션 Method and apparatus for maintaining speech audibility in multi-channel audio with minimal impact on surround experience
US8831936B2 (en) 2008-05-29 2014-09-09 Qualcomm Incorporated Systems, methods, apparatus, and computer program products for speech signal processing using spectral contrast enhancement
JP4591557B2 (en) * 2008-06-16 2010-12-01 ソニー株式会社 Audio signal processing apparatus, audio signal processing method, and audio signal processing program
US8538749B2 (en) 2008-07-18 2013-09-17 Qualcomm Incorporated Systems, methods, apparatus, and computer program products for enhanced intelligibility
CN102113346B (en) * 2008-07-29 2013-10-30 杜比实验室特许公司 Method for adaptive control and equalization of electroacoustic channels
ES2385293T3 (en) * 2008-09-19 2012-07-20 Dolby Laboratories Licensing Corporation Upstream signal processing for client devices in a small cell wireless network
US9202455B2 (en) * 2008-11-24 2015-12-01 Qualcomm Incorporated Systems, methods, apparatus, and computer program products for enhanced active noise cancellation
US8218783B2 (en) * 2008-12-23 2012-07-10 Bose Corporation Masking based gain control
US8229125B2 (en) * 2009-02-06 2012-07-24 Bose Corporation Adjusting dynamic range of an audio system
TWI788752B (en) * 2009-02-18 2023-01-01 瑞典商杜比國際公司 Complex exponential modulated filter bank for high frequency reconstruction or parametric stereo
US9202456B2 (en) 2009-04-23 2015-12-01 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for automatic control of active noise cancellation
CN102460567B (en) * 2009-04-28 2014-06-04 伯斯有限公司 Sound-dependent anr signal processing adjustment
US8532310B2 (en) 2010-03-30 2013-09-10 Bose Corporation Frequency-dependent ANR reference sound compression
DE202009009804U1 (en) * 2009-07-17 2009-10-29 Sennheiser Electronic Gmbh & Co. Kg Headset and handset
US8416959B2 (en) * 2009-08-17 2013-04-09 SPEAR Labs, LLC. Hearing enhancement system and components thereof
US20110125497A1 (en) * 2009-11-20 2011-05-26 Takahiro Unno Method and System for Voice Activity Detection
KR101613684B1 (en) * 2009-12-09 2016-04-19 삼성전자주식회사 Apparatus for enhancing bass band signal and method thereof
EP2518723A4 (en) * 2009-12-21 2012-11-28 Fujitsu Ltd Voice control device and voice control method
US8630437B2 (en) * 2010-02-23 2014-01-14 University Of Utah Research Foundation Offending frequency suppression in hearing aids
KR20130038857A (en) * 2010-04-09 2013-04-18 디티에스, 인코포레이티드 Adaptive environmental noise compensation for audio playback
US9053697B2 (en) * 2010-06-01 2015-06-09 Qualcomm Incorporated Systems, methods, devices, apparatus, and computer program products for audio equalization
US9135907B2 (en) 2010-06-17 2015-09-15 Dolby Laboratories Licensing Corporation Method and apparatus for reducing the effect of environmental noise on listeners
KR20120016709A (en) * 2010-08-17 2012-02-27 삼성전자주식회사 Apparatus and method for improving the voice quality in portable communication system
KR20120034863A (en) * 2010-10-04 2012-04-13 삼성전자주식회사 Method and apparatus processing audio signal in a mobile communication terminal
US8577057B2 (en) 2010-11-02 2013-11-05 Robert Bosch Gmbh Digital dual microphone module with intelligent cross fading
US9377941B2 (en) * 2010-11-09 2016-06-28 Sony Corporation Audio speaker selection for optimization of sound origin
US8744091B2 (en) * 2010-11-12 2014-06-03 Apple Inc. Intelligibility control using ambient noise detection
US9037458B2 (en) * 2011-02-23 2015-05-19 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for spatially selective audio augmentation
KR101757461B1 (en) 2011-03-25 2017-07-26 삼성전자주식회사 Method for estimating spectrum density of diffuse noise and processor perfomring the same
US8965774B2 (en) * 2011-08-23 2015-02-24 Apple Inc. Automatic detection of audio compression parameters
US20130094657A1 (en) * 2011-10-12 2013-04-18 University Of Connecticut Method and device for improving the audibility, localization and intelligibility of sounds, and comfort of communication devices worn on or in the ear
JP6100801B2 (en) * 2012-02-14 2017-03-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Audio signal processing in communication systems
KR101248125B1 (en) 2012-10-15 2013-03-27 (주)알고코리아 Hearing aids with environmental noise reduction and frequenvy channel compression features
CN105164918B (en) * 2013-04-29 2018-03-30 杜比实验室特许公司 Band compression with dynamic threshold
RU2568281C2 (en) * 2013-05-31 2015-11-20 Александр Юрьевич Бредихин Method for compensating for hearing loss in telephone system and in mobile telephone apparatus
US10319389B2 (en) 2013-07-22 2019-06-11 Harman Becker Automotive Systems Gmbh Automatic timbre control
EP3025517B1 (en) * 2013-07-22 2018-09-05 Harman Becker Automotive Systems GmbH Automatic timbre control
US9402132B2 (en) * 2013-10-14 2016-07-26 Qualcomm Incorporated Limiting active noise cancellation output
EP2922058A1 (en) * 2014-03-20 2015-09-23 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Method of and apparatus for evaluating quality of a degraded speech signal
CN105530569A (en) 2014-09-30 2016-04-27 杜比实验室特许公司 Combined active noise cancellation and noise compensation in headphone
JP6369317B2 (en) * 2014-12-15 2018-08-08 ソニー株式会社 Information processing apparatus, communication system, information processing method, and program
EP3107097B1 (en) 2015-06-17 2017-11-15 Nxp B.V. Improved speech intelligilibility
US9812149B2 (en) * 2016-01-28 2017-11-07 Knowles Electronics, Llc Methods and systems for providing consistency in noise reduction during speech and non-speech periods
US10244333B2 (en) * 2016-06-06 2019-03-26 Starkey Laboratories, Inc. Method and apparatus for improving speech intelligibility in hearing devices using remote microphone
EP3457402B1 (en) 2016-06-24 2021-09-15 Samsung Electronics Co., Ltd. Noise-adaptive voice signal processing method and terminal device employing said method
US10972847B2 (en) 2016-11-10 2021-04-06 Honeywell International Inc. Calibration method for hearing protection devices
CN106534462A (en) * 2016-11-18 2017-03-22 努比亚技术有限公司 Method and device for improving effect for user to receive sound of opposite side
US10951994B2 (en) * 2018-04-04 2021-03-16 Staton Techiya, Llc Method to acquire preferred dynamic range function for speech enhancement
CN110351644A (en) * 2018-04-08 2019-10-18 苏州至听听力科技有限公司 A kind of adaptive sound processing method and device
CN110493695A (en) * 2018-05-15 2019-11-22 群腾整合科技股份有限公司 A kind of audio compensation systems
US10991375B2 (en) 2018-06-20 2021-04-27 Mimi Hearing Technologies GmbH Systems and methods for processing an audio signal for replay on an audio device
US11062717B2 (en) 2018-06-20 2021-07-13 Mimi Hearing Technologies GmbH Systems and methods for processing an audio signal for replay on an audio device
EP3584927B1 (en) * 2018-06-20 2021-03-10 Mimi Hearing Technologies GmbH Systems and methods for processing an audio signal for replay on an audio device
EP3588983B1 (en) * 2018-06-25 2023-02-22 Oticon A/s A hearing device adapted for matching input transducers using the voice of a wearer of the hearing device
WO2020014151A1 (en) * 2018-07-09 2020-01-16 Avnera Corporation Headphone off-ear detection
US10755722B2 (en) * 2018-08-29 2020-08-25 Guoguang Electric Company Limited Multiband audio signal dynamic range compression with overshoot suppression
CN110931027B (en) * 2018-09-18 2024-09-27 北京三星通信技术研究有限公司 Audio processing method, device, electronic equipment and computer readable storage medium
CN109658949A (en) * 2018-12-29 2019-04-19 重庆邮电大学 A kind of sound enhancement method based on deep neural network
CN110728970B (en) * 2019-09-29 2022-02-25 东莞市中光通信科技有限公司 Method and device for digital auxiliary sound insulation treatment
CN111417062A (en) * 2020-04-27 2020-07-14 陈一波 Prescription for testing and matching hearing aid
CN111261182B (en) * 2020-05-07 2020-10-23 上海力声特医学科技有限公司 Wind noise suppression method and system suitable for cochlear implant
EP3944237B1 (en) * 2020-07-21 2024-10-02 EPOS Group A/S A loudspeaker system provided with dynamic speech equalization
CN112822592B (en) * 2020-12-31 2022-07-12 青岛理工大学 Active noise reduction earphone capable of directionally listening and control method
SE545513C2 (en) * 2021-05-12 2023-10-03 Audiodo Ab Publ Voice optimization in noisy environments
CN113488032A (en) * 2021-07-05 2021-10-08 湖北亿咖通科技有限公司 Vehicle and voice recognition system and method for vehicle
CN114040284B (en) * 2021-09-26 2024-02-06 北京小米移动软件有限公司 Noise processing method, noise processing device, terminal and storage medium
EP4207194A1 (en) * 2021-12-29 2023-07-05 GN Audio A/S Audio device with audio quality detection and related methods
CN116546126B (en) * 2023-07-07 2023-10-24 荣耀终端有限公司 Noise suppression method and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388185A (en) * 1991-09-30 1995-02-07 U S West Advanced Technologies, Inc. System for adaptive processing of telephone voice signals
WO1998047315A1 (en) * 1997-04-16 1998-10-22 Dspfactory Ltd. Method and apparatus for noise reduction, particularly in hearing aids
WO2000065872A1 (en) * 1999-04-26 2000-11-02 Dspfactory Ltd. Loudness normalization control for a digital hearing aid

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02224500A (en) * 1989-02-25 1990-09-06 Calsonic Corp Active noise canceler
GB2234078B (en) * 1989-05-18 1993-06-30 Medical Res Council Analysis of waveforms
JP3489589B2 (en) * 1992-06-16 2004-01-19 ソニー株式会社 Noise reduction device
JP3287747B2 (en) * 1995-12-28 2002-06-04 富士通テン株式会社 Noise sensitive automatic volume control
JP3069535B2 (en) * 1996-10-18 2000-07-24 松下電器産業株式会社 Sound reproduction device
US6236731B1 (en) * 1997-04-16 2001-05-22 Dspfactory Ltd. Filterbank structure and method for filtering and separating an information signal into different bands, particularly for audio signal in hearing aids
US6240192B1 (en) * 1997-04-16 2001-05-29 Dspfactory Ltd. Apparatus for and method of filtering in an digital hearing aid, including an application specific integrated circuit and a programmable digital signal processor
US6070137A (en) * 1998-01-07 2000-05-30 Ericsson Inc. Integrated frequency-domain voice coding using an adaptive spectral enhancement filter
CN1116737C (en) * 1998-04-14 2003-07-30 听觉增强有限公司 User adjustable volume control that accommodates hearing
JP3505085B2 (en) * 1998-04-14 2004-03-08 アルパイン株式会社 Audio equipment
JP2000349893A (en) * 1999-06-08 2000-12-15 Matsushita Electric Ind Co Ltd Voice reproduction method and voice reproduction device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388185A (en) * 1991-09-30 1995-02-07 U S West Advanced Technologies, Inc. System for adaptive processing of telephone voice signals
WO1998047315A1 (en) * 1997-04-16 1998-10-22 Dspfactory Ltd. Method and apparatus for noise reduction, particularly in hearing aids
WO2000065872A1 (en) * 1999-04-26 2000-11-02 Dspfactory Ltd. Loudness normalization control for a digital hearing aid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SCHNEIDER T ET AL: "A multichannel compression strategy for a digital hearing aid", 1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, ICASSP-97,, 21 April 1997 (1997-04-21) - 24 April 1997 (1997-04-24), MUNICH, GERMANY , LOS ALAMITOS, CA, USA,IEEE COMPUT. SOC, US, pages 411 - 414, XP010226222, ISBN: 0-8186-7919-0 *
YOUNG-CHEOL PARK ET AL: "High Performance Digital Hearing Aid Processor With Psychoacoustic Loudness Correction", ICCE, INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, 1997, pages 312 - 313, XP010249998 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503796A (en) * 2003-05-28 2007-02-22 ドルビー・ラボラトリーズ・ライセンシング・コーポレーション Method, apparatus and computer program for calculating and adjusting the perceived volume of an audio signal
US8437482B2 (en) 2003-05-28 2013-05-07 Dolby Laboratories Licensing Corporation Method, apparatus and computer program for calculating and adjusting the perceived loudness of an audio signal
US7840012B2 (en) 2003-07-28 2010-11-23 Koninklijke Philips Electronics N.V. Audio conditioning apparatus, method and computer program product
DE10357065A1 (en) * 2003-12-04 2005-06-30 Sennheiser Electronic Gmbh & Co Kg Headset used by person in vehicle, has adder combines air-borne noise and audio signals picked up by microphones
US9954506B2 (en) 2004-10-26 2018-04-24 Dolby Laboratories Licensing Corporation Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal
US9705461B1 (en) 2004-10-26 2017-07-11 Dolby Laboratories Licensing Corporation Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal
US10720898B2 (en) 2004-10-26 2020-07-21 Dolby Laboratories Licensing Corporation Methods and apparatus for adjusting a level of an audio signal
US10476459B2 (en) 2004-10-26 2019-11-12 Dolby Laboratories Licensing Corporation Methods and apparatus for adjusting a level of an audio signal
US10389319B2 (en) 2004-10-26 2019-08-20 Dolby Laboratories Licensing Corporation Methods and apparatus for adjusting a level of an audio signal
US10374565B2 (en) 2004-10-26 2019-08-06 Dolby Laboratories Licensing Corporation Methods and apparatus for adjusting a level of an audio signal
US10361671B2 (en) 2004-10-26 2019-07-23 Dolby Laboratories Licensing Corporation Methods and apparatus for adjusting a level of an audio signal
US10454439B2 (en) 2004-10-26 2019-10-22 Dolby Laboratories Licensing Corporation Methods and apparatus for adjusting a level of an audio signal
US10411668B2 (en) 2004-10-26 2019-09-10 Dolby Laboratories Licensing Corporation Methods and apparatus for adjusting a level of an audio signal
US9979366B2 (en) 2004-10-26 2018-05-22 Dolby Laboratories Licensing Corporation Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal
US9966916B2 (en) 2004-10-26 2018-05-08 Dolby Laboratories Licensing Corporation Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal
US10396738B2 (en) 2004-10-26 2019-08-27 Dolby Laboratories Licensing Corporation Methods and apparatus for adjusting a level of an audio signal
US9960743B2 (en) 2004-10-26 2018-05-01 Dolby Laboratories Licensing Corporation Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal
US10396739B2 (en) 2004-10-26 2019-08-27 Dolby Laboratories Licensing Corporation Methods and apparatus for adjusting a level of an audio signal
US10389320B2 (en) 2004-10-26 2019-08-20 Dolby Laboratories Licensing Corporation Methods and apparatus for adjusting a level of an audio signal
US9350311B2 (en) 2004-10-26 2016-05-24 Dolby Laboratories Licensing Corporation Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal
US11296668B2 (en) 2004-10-26 2022-04-05 Dolby Laboratories Licensing Corporation Methods and apparatus for adjusting a level of an audio signal
US10389321B2 (en) 2004-10-26 2019-08-20 Dolby Laboratories Licensing Corporation Methods and apparatus for adjusting a level of an audio signal
EP1841284A1 (en) * 2006-03-29 2007-10-03 Phonak AG Hearing instrument for storing encoded audio data, method of operating and manufacturing thereof
US9049524B2 (en) 2007-03-26 2015-06-02 Cochlear Limited Noise reduction in auditory prostheses
WO2008116264A1 (en) * 2007-03-26 2008-10-02 Cochlear Limited Noise reduction in auditory prostheses
US8891778B2 (en) 2007-09-12 2014-11-18 Dolby Laboratories Licensing Corporation Speech enhancement
US8583426B2 (en) 2007-09-12 2013-11-12 Dolby Laboratories Licensing Corporation Speech enhancement with voice clarity
US8538763B2 (en) 2007-09-12 2013-09-17 Dolby Laboratories Licensing Corporation Speech enhancement with noise level estimation adjustment
GB2467984B (en) * 2009-02-20 2013-05-15 Wolfson Ltd A method and system for noise cancellation
WO2010094966A3 (en) * 2009-02-20 2011-04-21 Wolfson Microelectronics Plc A method and system for noise cancellation
US9055367B2 (en) 2011-04-08 2015-06-09 Qualcomm Incorporated Integrated psychoacoustic bass enhancement (PBE) for improved audio
KR101482488B1 (en) 2011-04-08 2015-01-13 퀄컴 인코포레이티드 Integrated psychoacoustic bass enhancement (pbe) for improved audio
WO2012138435A1 (en) * 2011-04-08 2012-10-11 Qualcomm Incorporated Integrated psychoacoustic bass enhancement (pbe) for improved audio
WO2013144099A1 (en) * 2012-03-26 2013-10-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for improving the perceived quality of sound reproduction by combining active noise cancellation and perceptual noise compensation
EP2645362A1 (en) * 2012-03-26 2013-10-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for improving the perceived quality of sound reproduction by combining active noise cancellation and perceptual noise compensation
CN102903367A (en) * 2012-10-15 2013-01-30 苏州上声电子有限公司 Method and device for balancing frequency response of off-line iterative sound playback system
CN105278547A (en) * 2015-06-28 2016-01-27 洛阳德威机电科技有限公司 Mobile device controlled by biological body sense

Also Published As

Publication number Publication date
CN101105941A (en) 2008-01-16
US7050966B2 (en) 2006-05-23
DK1417679T3 (en) 2011-03-28
ATE492015T1 (en) 2011-01-15
JP4731115B2 (en) 2011-07-20
DE60238619D1 (en) 2011-01-27
JP2010200350A (en) 2010-09-09
JP2004537940A (en) 2004-12-16
CA2354755A1 (en) 2003-02-07
CN101105941B (en) 2010-09-22
CN1568502A (en) 2005-01-19
AU2002322866B2 (en) 2007-10-11
EP1417679B1 (en) 2010-12-15
EP1417679A1 (en) 2004-05-12
US20030198357A1 (en) 2003-10-23
CN1308915C (en) 2007-04-04

Similar Documents

Publication Publication Date Title
US7050966B2 (en) Sound intelligibility enhancement using a psychoacoustic model and an oversampled filterbank
AU2002322866A1 (en) Sound intelligibility enhancement using a psychoacoustic model and an oversampled filterbank
US10957301B2 (en) Headset with active noise cancellation
CN110662152B (en) Binaural hearing device system with binaural active occlusion cancellation
US8964997B2 (en) Adapted audio masking
JP4282317B2 (en) Voice communication device
JP5496271B2 (en) Wireless binaural compressor
US9432778B2 (en) Hearing aid with improved localization of a monaural signal source
US20050256594A1 (en) Digital noise filter system and related apparatus and methods
US9532149B2 (en) Method of signal processing in a hearing aid system and a hearing aid system
US10117029B2 (en) Method of operating a hearing aid system and a hearing aid system
US9875754B2 (en) Method and apparatus for pre-processing speech to maintain speech intelligibility
DK2928213T3 (en) A hearing aid with improved localization of monaural signal sources
US10111016B2 (en) Method of operating a hearing aid system and a hearing aid system
WO2020044377A1 (en) Personal communication device as a hearing aid with real-time interactive user interface
CA2397084C (en) Sound intelligibilty enhancement using a psychoacoustic model and an oversampled filterbank

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003519932

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002322866

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 294/DELNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2002754004

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20028177452

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002754004

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642