WO2003014037A1 - Method and device for detecting imminent surface adhesion between a glass body to be formed and a form tool - Google Patents

Method and device for detecting imminent surface adhesion between a glass body to be formed and a form tool Download PDF

Info

Publication number
WO2003014037A1
WO2003014037A1 PCT/EP2002/008618 EP0208618W WO03014037A1 WO 2003014037 A1 WO2003014037 A1 WO 2003014037A1 EP 0208618 W EP0208618 W EP 0208618W WO 03014037 A1 WO03014037 A1 WO 03014037A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass body
emf
tools
shaping
shaping process
Prior art date
Application number
PCT/EP2002/008618
Other languages
German (de)
French (fr)
Inventor
Ulrike Stöhr
Olaf Claussen
Daniela Seiler
Sylvia Biedenbender
Gernot Röth
Original Assignee
Schott Glas
Carl-Zeiss-Stiftung
Carl-Zeiss-Stiftung Trading As Schott Glas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott Glas, Carl-Zeiss-Stiftung, Carl-Zeiss-Stiftung Trading As Schott Glas filed Critical Schott Glas
Publication of WO2003014037A1 publication Critical patent/WO2003014037A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/386Glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/16Gearing or controlling mechanisms specially adapted for glass presses

Definitions

  • the invention relates to a method for detecting impending boundary surface adhesion during a shaping process between a glass body to be molded and at least two electrically conductive tools arranged on both sides of the glass body in a temperature range in which the glass body is deformable. Furthermore, an apparatus for performing the method is described.
  • Another subtask is to provide an apparatus for performing the method.
  • the object is achieved with a method in which at least one EMF value is measured between the tools and an impending boundary surface liability is inferred from the course of the EMF value during the shaping process.
  • the EMF values have a characteristic course depending on the contact time of the tools with the glass body. At the beginning of the contact time, the EMF initially rises and remains approximately at the same level in conditions below the boundary surface liability. If, on the other hand, there is an interface liability, the EMF values decrease in the course of the contact time, and the steeper the closer the process conditions to the interface adhesion of the glass body to the tools.
  • An important criterion here is that the drop in the EMF starts before the border area liability is reached.
  • the new method enables continuous monitoring of the tools involved in the shaping process during operation and enables the worn tool to be recognized even before defective glass bodies are produced. Another advantage is that when the method is used the affected tool is recognized immediately and it is therefore no longer necessary to preventively replace all tools on parallel production lines. In an advantageous embodiment, exceeding a predefinable setpoint of the EMF is detected before the boundary surface liability occurs.
  • a previously determined calibration curve can preferably be used as the setpoint. This has the advantage that different calibration curves are first determined for a large number of variable process parameters and the closest calibration curve is used in accordance with the respective actual process parameters, so that the setpoint value is changed periodically and adapted to the actual conditions.
  • the previously determined calibration curve is created by plotting an EMF difference over the respective different shaping temperatures.
  • the shaping temperatures represent an important influencing parameter with regard to the interface adhesion of the glass body and can be measured using comparatively little effort.
  • the EMF values are determined at two points in time and the difference between the two is calculated.
  • the EMF difference is advantageously calculated by subtracting the EMF value shortly before the end of the shaping process from the EMF value at the beginning of the shaping process. With this procedure, the conditions at the beginning and at the end of the process are taken into account.
  • the previously determined calibration curve is created for different manufacturing conditions.
  • further process-relevant influencing parameters in the form of a further calibration curve can be used Take into account and the target value with regard to the actually prevailing process conditions are further specified.
  • the EMF value is advantageously measured at a time interval of 10 to 250 msec during the shaping process.
  • the EMF value is determined from values that are measured at the beginning and at the end of the shaping process, the shaping process taking from less than 1 second to over a minute.
  • the individual EMF values can therefore be recorded at intervals of 10 to 250 msec.
  • the subtask is solved with a device with a glass body to be formed on both sides and attached to it, electrically conductive tools, the tools being connected to a voltmeter via a connecting cable and the voltmeter being connected to a computer.
  • the voltmeter continuously measures the electromotive force during the production process and provides the measured value at its output in digitized form to a computer connected to the voltmeter.
  • the computer stores the EMF measured values recorded during the respective shaping process in a file and compares whether the specified target value is left.
  • the computer is advantageously connected to a display device. This can be implemented, for example, with a monitor connected to the computer for visualization in a control center of the system or with an acoustic warning device.
  • the electrical connection to the rotating tool is made by means of sliding contacts. This enables an unaffected, low-wear electrical connection, for example between a rotating roller and the stationary part of the tool.
  • Figure 1 is a diagram with EMF values at different
  • FIG. 2 shows a curve of the EMF differences over temperature
  • Figure 3 is a schematic representation of the device for
  • FIG. 1 shows a family of curves of EMF values of different shaping temperatures over time.
  • the solid lines in the temperature range from 586 ° C to 640 ° C do not pose any risk of interfacial adhesion.
  • the EMF initially rises and remains at an approximately constant level after approx. 5 seconds.
  • the curves shown in the diagram as a dotted line in a temperature range from 670 ° C to 720 ° C show the state of the interface adhesion between the tool and the glass body to be processed. Characteristic of this is the initially steep increase in the EMF at the beginning of the shaping process, which reaches its maximum after approx. 2 seconds, and the subsequent, initially steep decrease in the EMF over the remaining process time.
  • a border area with dashed lines at a shaping temperature of 650 ° C. or 660 ° C. is shown as an example in FIG. 1.
  • the course of the curve shows an increase in the EMF, comparable to the curves without boundary surface adhesion.
  • the EMF begins to decrease again.
  • the glass body is located immediately before an interface adhesion the tools; a tool change would be necessary in operational practice.
  • the EMF values shown in Figure 1 are plotted from a shaping temperature of 630 ° C as EMF differences over the shaping temperature.
  • the EMF differences are calculated by subtracting the EMF value shortly before the end of the shaping process from the EMF value at the beginning of the shaping process. For the curve shown in FIG. 2, this results in a base from the respective shaping temperature.
  • the curve profile of the EMF difference which runs asymptotically to the temperature axis. In the example shown, the temperature of the onset of interface adhesion is approximately 670 ° C. If the EMF difference falls below - 0.04 mVolt, a tool change should be carried out during production.
  • FIG. 3 schematically shows the interaction of individual components in the shaping process.
  • the glass body 4 to be molded is located between the upper shaping tool 2a and the lower shaping tool 2b.
  • the connecting cables 3 run to a voltmeter 1.
  • the measured values of the voltmeter 1 become a via a second connecting cable 7
  • Computer 5 transferred and processed there.
  • the computer is connected to the display device 6 via a connection cable 8 in order to display the measured values or a warning in the event of the setpoint value being exceeded and thus limiting the adhesion of the glass body to the tool.
  • connection cable 8 in order to display the measured values or a warning in the event of the setpoint value being exceeded and thus limiting the adhesion of the glass body to the tool.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

The invention relates to a method for detecting imminent surface adhesion during a forming process, between a glass body (3) to be formed and at least two electroconductive tools (2a, 2b) arranged on both sides of the glass body (3), in a temperature range in which the glass body (3) can be formed. The invention also relates to a device for carrying out the method. Production failure often occurs during the glass body (3) forming process due to surface adhesion between the glass body (3) and the tool (2a, 2b), at first remaining undetected. Only after a time-consuming search for the defective tool can production continue. During this time, faulty glass bodies continue to be produced with the damaged tool. Henceforth, the invention enables imminent surface adhesion to be detected before a defective glass body (3) is produced. To this end, at least one EMF value is measured between the tools (2a, 2b) and imminent surface adhesion is detected from the course of the EMF value during the forming process.

Description

Verfahren und Vorrichtung zur Erkennung einer bevorstehenden Method and device for detecting an upcoming
Grenzflachenhaftung zwischen einem zu formendenInterface liability between one to be formed
Glaskörper und einem formgebenden WerkzeugVitreous and a shaping tool
Beschreibungdescription
Die Erfindung betrifft ein Verfahren zur Erkennung einer bevorstehenden Grenzflachenhaftung während eines Formgebungsprozesses zwischen einem zu formenden Glasköφer und mindestens zwei elektrisch leitenden, beidseitig des Glaskörpers angeordneten Werkzeugen in einem Temperaturbereich, in dem der Glasköφer verformbar ist. Weiterhin wird eine Vorrichtung zur Durchführung des Verfahrens beschrieben.The invention relates to a method for detecting impending boundary surface adhesion during a shaping process between a glass body to be molded and at least two electrically conductive tools arranged on both sides of the glass body in a temperature range in which the glass body is deformable. Furthermore, an apparatus for performing the method is described.
Bei der industriellen Fertigung von Glasköφern ist es schwierig, den Werkzeugzustand im laufenden Produktionsprozeß zu überwachen, so daß häufig ein rechtzeitiges Auswechseln der Werkzeuge versäumt wird. Hierdurch kommt es zu einer hohen Ausschußrate von fehlerhaften Glasköφern, da eine Qualitätskontrolle in der Regel erst zeitverzögert am Ende des Kühlbandes durchgeführt und defekte Glasköφer ausgesondert werden. In der Zwischenzeit werden jedoch eine Vielzahl weiterer defekter Glasköφer mit dem auszuwechselnden Werkzeug produziert. Eine häufige Ursache für die Produktion fehlerhafter Glasköφer stellt die Grenzflachenhaftung zwischen dem Werkzeug und dem zu formenden Glaskörper dar. Eine weitere Schwierigkeit besteht bei der großtechnischen Serienfertigung von Glasköφern mit mehreren parallel arbeitenden Werkzeugen darin, den am Glasköφer festgestellten Fehler dem entsprechenden Werkzeug zuzuordnen. Folglich ist es die Aufgabe der Erfindung, ein Verfahren zu entwickeln, bei dem eine bevorstehende Grenzflachenhaftung bereits vor Eintritt der ersten Grenzflachenhaftung unmittelbar an dem betroffenen Werkzeug erkannt werden kann.In the industrial production of glass bodies, it is difficult to monitor the tool condition in the running production process, so that timely replacement of the tools is often neglected. This results in a high rejection rate of defective glass bodies, since quality control is generally only delayed at the end of the cooling belt and defective glass bodies are discarded. In the meantime, however, a large number of other defective glass bodies are produced with the tool to be replaced. A frequent cause for the production of defective glass bodies is the boundary surface adhesion between the tool and the glass body to be formed. Another difficulty with the large-scale series production of glass bodies with several tools working in parallel is to assign the defect found on the glass body to the corresponding tool. It is therefore the object of the invention to develop a method in which an impending interface liability can be recognized directly on the tool concerned before the first interface liability occurs.
Eine weitere Teilaufgabe besteht darin, eine Vorrichtung zur Durchführung des Verfahrens bereitzustellen.Another subtask is to provide an apparatus for performing the method.
Die Aufgabe wird mit einem Verfahren gelöst, bei dem zwischen den Werkzeugen mindestens ein EMK-Wert gemessen und aus dem Verlauf des EMK- Wertes während des Formgebungsprozesses auf eine bevorstehende Grenzflachenhaftung geschlossen wird. Die EMK- Werte weisen einen charakteristischen Verlauf in Abhängigkeit der Kontaktzeit der Werkzeuge mit dem Glasköφer auf. Zu Beginn der Kontaktzeit steigt die EMK zunächst an und bleibt bei Bedingungen unterhalb der Grenzflachenhaftung ungefähr auf gleichem Niveau. Steht dagegen eine Grenzflachenhaftung bevor, fallen die EMK- Werte im Laufe der Kontaktzeit ab, und zwar umso steiler desto näher sich die Prozeßbedingungen an eine Grenzflachenhaftung des Glasköφers an den Werkzeugen verändern. Ein wesentliches Kriterium ist hierbei, daß der Abfall der EMK bereits vor dem Erreichen der Grenzflachenhaftung einsetzt.The object is achieved with a method in which at least one EMF value is measured between the tools and an impending boundary surface liability is inferred from the course of the EMF value during the shaping process. The EMF values have a characteristic course depending on the contact time of the tools with the glass body. At the beginning of the contact time, the EMF initially rises and remains approximately at the same level in conditions below the boundary surface liability. If, on the other hand, there is an interface liability, the EMF values decrease in the course of the contact time, and the steeper the closer the process conditions to the interface adhesion of the glass body to the tools. An important criterion here is that the drop in the EMF starts before the border area liability is reached.
Das neue Verfahren ermöglicht eine kontinuierliche Überwachung der am Formgebungsprozeß beteiligten Werkzeuge im laufenden Betrieb und ermöglicht eine Erkennung des verschlissenen Werkzeugs noch bevor schadhafte Glasköφer produziert werden. Ein weiterer Vorteil besteht darin, daß bei Anwendung des Verfahrens das betroffene Werkzeug unmittelbar erkannt wird und es daher nicht mehr notwendig ist, präventiv alle Werkzeuge parallellaufender Fertigungsstraßen zu erneuern. In einer vorteilhaften Ausgestaltung wird vor Eintreten der Grenzflachenhaftung ein Überschreiten eines vorgebbaren Sollwertes der EMK erkannt.The new method enables continuous monitoring of the tools involved in the shaping process during operation and enables the worn tool to be recognized even before defective glass bodies are produced. Another advantage is that when the method is used the affected tool is recognized immediately and it is therefore no longer necessary to preventively replace all tools on parallel production lines. In an advantageous embodiment, exceeding a predefinable setpoint of the EMF is detected before the boundary surface liability occurs.
Vorzugsweise kann als Sollwert eine vorher ermittelte Eichkurve eingesetzt werden. Dieses hat den Vorteil, daß zunächst für eine Vielzahl von variablen Prozeßparametern unterschiedliche Eichkurven ermittelt werden und entsprechend der jeweilige Ist-Prozeßparameter die nächstliegende Eichkurve zur Anwendung kommt, so daß der Sollwert periodisch verändert und an die tatsächlichen Bedingungen angepaßt wird.A previously determined calibration curve can preferably be used as the setpoint. This has the advantage that different calibration curves are first determined for a large number of variable process parameters and the closest calibration curve is used in accordance with the respective actual process parameters, so that the setpoint value is changed periodically and adapted to the actual conditions.
Bei einer günstigen Ausführungsform wird die vorher ermittelte Eichkurve durch Auftragen einer EMK-Differenz über den jeweiligen unterschiedlichen Formgebungstemperaturen erstellt. Die Formgebungstemperaturen stellen einen wichtigen Einflußparameter hinsichtlich der Grenzflachenhaftung des Glasköφers dar und lassen sich mit vergleichsweise geringem Aufwand meßtechnisch erfassen. Um nicht die gesamten Kurvenverläufe der EMK- Werte jedes einzelnen Formgebungsprozesses miteinander vergleichen zu müssen, werden jeweils zu zwei Zeitpunkten die EMK- Werte bestimmt und die Differenz zwischen beiden berechnet.In a favorable embodiment, the previously determined calibration curve is created by plotting an EMF difference over the respective different shaping temperatures. The shaping temperatures represent an important influencing parameter with regard to the interface adhesion of the glass body and can be measured using comparatively little effort. In order not to have to compare the entire curves of the EMF values of each individual shaping process, the EMF values are determined at two points in time and the difference between the two is calculated.
Vorteilhafterweise wird bei unterschiedlichen Formgebungstemperaturen die EMK-Differenz durch Subtraktion des EMK- Wertes kurz vor Ende des Formgebungsprozesses von dem EMK-Wert zu Beginn des Formgebungsprozesses berechnet. Bei dieser Vörgehensweise werden die Bedingungen zu Beginn und am Ende des Prozeß Verlaufes berücksichtigt.At different shaping temperatures, the EMF difference is advantageously calculated by subtracting the EMF value shortly before the end of the shaping process from the EMF value at the beginning of the shaping process. With this procedure, the conditions at the beginning and at the end of the process are taken into account.
In einer weiteren vorteilhaften Ausgestaltung wird die vorher ermittelte Eichkurve jeweils für verschiedene Fertigungsbedingungen erstellt. Hierbei können zusätzlich zu dem Einflußparameter Formgebungstemperatur noch weitere prozeßrelevante Einflußparameter in Form einer weiteren Eichkurve Berücksichtigung finden und der Sollwert hinsichtlich der tatsächlich vorherrschenden Prozeßbedingungen weiter präzisiert werden.In a further advantageous embodiment, the previously determined calibration curve is created for different manufacturing conditions. Here, in addition to the shaping temperature influencing parameter, further process-relevant influencing parameters in the form of a further calibration curve can be used Take into account and the target value with regard to the actually prevailing process conditions are further specified.
Günstigerweise wird der EMK-Wert während des Formgebungsprozesses in einem zeitlichen Abstand von 10 bis 250 msec gemessen. Der EMK-Wert wird aus Werten bestimmt, die am Anfang des Formgebungsprozesses und an dessen Ende gemessen werden, wobei der Formgebungsprozeß von unter 1 sec bis über eine Minute dauern kann. Die einzelnen EMK- Werte können demnach in zeitlichen Abständen von 10 bis 250 msec aufgenommen werden.The EMF value is advantageously measured at a time interval of 10 to 250 msec during the shaping process. The EMF value is determined from values that are measured at the beginning and at the end of the shaping process, the shaping process taking from less than 1 second to over a minute. The individual EMF values can therefore be recorded at intervals of 10 to 250 msec.
Die Teilaufgabe wird mit einer Vorrichtung mit beidseitig eines zu formenden Glasköφers angeordneten und daran anliegenden, elektrisch leitenden Werkzeugen gelöst, wobei die Werkzeuge über jeweils ein Anschlußkabel mit einem Voltmeter verbunden sind und das Voltmeter mit einem Computer verbunden ist. Das Voltmeter mißt kontinuierlich während des Produktionsprozesses die elektromotorische Kraft und stellt an seinem Ausgang den Meßwert in digitalisierter Form einem an den Voltmeter angeschlossenem Computer zur Verfügung. Der Computer legt die während des jeweiligen Formgebungsprozesses aufgenommenen EMK-Meßwerte in einer Datei ab und vergleicht, ob der vorgegebene Sollwert verlassen wird.The subtask is solved with a device with a glass body to be formed on both sides and attached to it, electrically conductive tools, the tools being connected to a voltmeter via a connecting cable and the voltmeter being connected to a computer. The voltmeter continuously measures the electromotive force during the production process and provides the measured value at its output in digitized form to a computer connected to the voltmeter. The computer stores the EMF measured values recorded during the respective shaping process in a file and compares whether the specified target value is left.
Vorteilhafterweise ist der Computer mit einer Anzeigevorrichtung verbunden. Dieses kann beispielsweise mit einem an den Computer angeschlossenen Monitor zur Visualisierung in einem Leitstand der Anlage oder auch einer akustischen Warneinrichtung realisiert werden.The computer is advantageously connected to a display device. This can be implemented, for example, with a monitor connected to the computer for visualization in a control center of the system or with an acoustic warning device.
In einer besonderen Ausführungsform für drehende Werkzeuge ist die elektrische Verbindung zu dem drehenden Werkzeug mittels Schleifkontakten hergestellt. Hierdurch wird eine unanfällige, verschleißarme elektrische Verbindung, beispielsweise zwischen einer sich drehenden Walze und dem stehenden Teil des Werkzeuges möglich. Die Erfindung wird anhand der nachfolgenden Figuren näher erläutert. Es zeigen dieIn a special embodiment for rotating tools, the electrical connection to the rotating tool is made by means of sliding contacts. This enables an unaffected, low-wear electrical connection, for example between a rotating roller and the stationary part of the tool. The invention is explained in more detail with reference to the following figures. They show
Figur 1 ein Diagramm mit EMK- Werten bei unterschiedlichenFigure 1 is a diagram with EMF values at different
Formgebungstemperaturen über der Zeit; Figur 2 einen Kurvenverlauf der EMK-Differenzen über der Temperatur;Shaping temperatures over time; FIG. 2 shows a curve of the EMF differences over temperature;
Figur 3 eine schematische Darstellung der Vorrichtung zurFigure 3 is a schematic representation of the device for
Durchführung des Verfahrens.Execution of the procedure.
Die Figur 1 zeigt eine Kurvenschar von EMK- Werten unterschiedlicher Formgebungstemperaturen über der Zeit. Hierbei stellen die durchgezogenen Linien im Temperaturbereich von 586°C bis 640°C keine Gefahr der Grenzflachenhaftung dar. In den ersten Sekunden des Fertigungsprozesses steigt die EMK zunächst an und bleibt nach ca. 5 sec auf einem annähernd konstanten Niveau stehen.FIG. 1 shows a family of curves of EMF values of different shaping temperatures over time. The solid lines in the temperature range from 586 ° C to 640 ° C do not pose any risk of interfacial adhesion. In the first seconds of the manufacturing process, the EMF initially rises and remains at an approximately constant level after approx. 5 seconds.
Die in dem Diagramm als Punktlinie dargestellten Kurvenverläufe in einem Temperaturbereich von 670 °C bis 720 °C zeigen den Zustand der Grenzflachenhaftung zwischen Werkzeug und zu bearbeitendem Glasköφer. Charakteristisch hierfür ist der zunächst steile Anstieg der EMK zu Beginn des Formgebungsprozesses, der sein Maximum nach ca. 2 sec erreicht und das nachfolgende, zunächst steile Sinken der EMK über die verbleibende Prozeßzeit.The curves shown in the diagram as a dotted line in a temperature range from 670 ° C to 720 ° C show the state of the interface adhesion between the tool and the glass body to be processed. Characteristic of this is the initially steep increase in the EMF at the beginning of the shaping process, which reaches its maximum after approx. 2 seconds, and the subsequent, initially steep decrease in the EMF over the remaining process time.
Zwischen den beiden diskutierten Extremfällen ist in der Figur 1 beispielhaft ein Grenzbereich mit gestrichelten Linien bei einer Formgebungstemperatur von 650 °C bzw. 660 °C eingezeichnet. Der Kurvenverlauf zeigt in den ersten Sekunden, vergleichbar mit den Kurven ohne Grenzflachenhaftung, ein Ansteigen der EMK. Nach Erreichen eines Maximalwertes beginnt die EMK jedoch wieder zu sinken. In dem Temperaturbereich um 650°C bzw. 660°C befindet sich der Glasköφer unmittelbar vor einer Grenzflachenhaftung mit den Werkzeugen; in der betrieblichen Praxis würde ein Werkzeugwechsel notwendig werden.Between the two extreme cases discussed, a border area with dashed lines at a shaping temperature of 650 ° C. or 660 ° C. is shown as an example in FIG. 1. In the first few seconds, the course of the curve shows an increase in the EMF, comparable to the curves without boundary surface adhesion. After reaching a maximum value, however, the EMF begins to decrease again. In the temperature range around 650 ° C or 660 ° C, the glass body is located immediately before an interface adhesion the tools; a tool change would be necessary in operational practice.
In Figur 2 sind die in Figur 1 dargestellten EMK- Werte ab einer Formgebungstemperatur von 630 °C als EMK-Differenzen über der Formgebungstemperatur aufgetragen. Die EMK-Differenzen werden durch Subtraktion des EMK- Wertes kurz vor Ende des Formgebungsprozesses von dem EMK-Wert zu Beginn des Formgebungsprozesses berechnet. Hieraus ergibt sich für die in Figur 2 dargestellte Kurve jeweils ein Stützpunkt aus der jeweiligen Formgebungstemperatur. Auffällig ist hierbei der zur Temperaturachse asymptotisch zulaufende Kurvenverlauf der EMK-Differenz. Im dargestellten Beispiel liegt die Temperatur der einsetzenden Grenzflachenhaftung bei ca. 670°C. Bei einem Unterschreiten der EMK- Differenz von - 0,04 mVolt sollte bei der Fertigung ein Werkzeugwechsel durchgeführt werden.In Figure 2, the EMF values shown in Figure 1 are plotted from a shaping temperature of 630 ° C as EMF differences over the shaping temperature. The EMF differences are calculated by subtracting the EMF value shortly before the end of the shaping process from the EMF value at the beginning of the shaping process. For the curve shown in FIG. 2, this results in a base from the respective shaping temperature. What is striking here is the curve profile of the EMF difference, which runs asymptotically to the temperature axis. In the example shown, the temperature of the onset of interface adhesion is approximately 670 ° C. If the EMF difference falls below - 0.04 mVolt, a tool change should be carried out during production.
Die Figur 3 zeigt schematisch das Zusammenwirken einzelner Komponenten bei dem Formgebungsprozeß. Zwischen dem oberen formgebenden Werkzeug 2a und dem unteren formgebenden Werkzeug 2b befindet sich der zu formende Glasköφer 4. Ausgehend von den zusammenwirkenden Werkzeugen 2a, 2b verlaufen die Anschlußkabel 3 zu einem Voltmeter 1. Die Meßwerte des Voltmeters 1 werden über ein zweites Anschlußkabel 7 zu einem Computer 5 übertragen und dort verarbeitet. Zur Darstellung der Meßwerte bzw. Warnung im Falle einer Überschreitung des Sollwertes und somit eine Grenzflachenhaftung des Glasköφers an dem Werkzeug ist der Computer über ein Anschlußkabel 8 an der Anzeigevorrichtung 6 angeschlossen. BezugszeichenFIG. 3 schematically shows the interaction of individual components in the shaping process. The glass body 4 to be molded is located between the upper shaping tool 2a and the lower shaping tool 2b. Starting from the interacting tools 2a, 2b, the connecting cables 3 run to a voltmeter 1. The measured values of the voltmeter 1 become a via a second connecting cable 7 Computer 5 transferred and processed there. The computer is connected to the display device 6 via a connection cable 8 in order to display the measured values or a warning in the event of the setpoint value being exceeded and thus limiting the adhesion of the glass body to the tool. reference numeral
1 Voltmeter1 voltmeter
2a oberes formgebendes Werkzeug2a upper shaping tool
2b unteres formgebendes Werkzeug2b lower shaping tool
3 Anschlußkabel Voltmeter3 voltmeter connection cables
4 zu formender Glasköφer4 glass body to be molded
5 Computer5 computers
6 Anzeigevorrichtung6 display device
7 Anschlußkabel Computer7 computer connection cable
8 Anschlußkabel Anzeigevorrichtung 8 connecting cable display device

Claims

Patentansprüche claims
1. Verfahren zur Erkennung einer bevorstehenden Grenzflachenhaftung während eines Formgebungsprozesses zwischen einem zu formenden Glasköφer (4) und mindestens zwei elektrisch leitenden, beidseitig des Glasköφers angeordneten Werkzeugen (2a, 2b) in einem Temperaturbereich, in dem der Glasköφer (4) verformbar ist, dadurch gekennzeichnet, daß zwischen den Werkzeugen (2a, 2b) mindestens ein EMK-Wert gemessen und aus dem Verlauf des EMK- Wertes während des Formgebungsprozesses auf eine bevorstehende Grenzflachenhaftung geschlossen wird.1. A method for detecting impending boundary surface adhesion during a shaping process between a glass body (4) to be molded and at least two electrically conductive tools (2a, 2b) arranged on both sides of the glass body in a temperature range in which the glass body (4) is deformable characterized in that at least one EMF value is measured between the tools (2a, 2b) and an imminent boundary surface liability is inferred from the course of the EMF value during the shaping process.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß vor Eintreten der Grenzflachenhaftung ein Verlassen eines vorgebbaren Sollwertes der EMK erkannt wird.2. The method according to claim 1, characterized in that before the occurrence of the boundary surface liability, a departure from a predetermined setpoint of the EMF is detected.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß als Sollwert eine vorher ermittelte Eichkurve eingesetzt wird.3. The method according to claim 2, characterized in that a previously determined calibration curve is used as the setpoint.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die vorher ermittelte Eichkurve durch Auftragen einer EMK-Differenz über den jeweiligen unterschiedlichen Formgebungstemperaturen erstellt wird.4. The method according to claim 3, characterized in that the previously determined calibration curve is created by plotting an EMF difference over the respective different shaping temperatures.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß bei unterschiedlichen Formgebungstemperaturen die EMK-Differenz durch Subtraktion des EMK- Wertes kurz vor Ende des Formgebungsprozesses von dem EMK-Wert zu Beginn des Formgebungsprozesses berechnet wird. 5. The method according to claim 4, characterized in that at different shaping temperatures the EMF difference is calculated by subtracting the EMF value shortly before the end of the shaping process from the EMF value at the beginning of the shaping process.
6. Verfahren nach einem der Ansprüche 3-5, dadurch gekennzeichnet, daß die vorher ermittelte Eichkurve jeweils für verschiedene Fertigungsbedingungen erstellt wird.6. The method according to any one of claims 3-5, characterized in that the previously determined calibration curve is created for different manufacturing conditions.
7. Verfahren nach Anspruch 1-6, dadurch gekennzeichnet, daß der EMK-Wert während eines Formgebungsprozesses in einem zeitlichen Abstand von 10-250 msec gemessen wird.7. The method according to claim 1-6, characterized in that the EMF value is measured during a shaping process at a time interval of 10-250 msec.
8. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 - 7, mit beidseitig eines zu formenden Glasköφers (4) angeordneten und daran anliegenden elektrisch leitenden Werkzeugen (2a, 2b), in einem Temperaturbereich, in dem der Glasköφer (4) verformbar ist, dadurch gekennzeichnet, daß8. Device for carrying out the method according to one of claims 1-7, with both sides of a glass body (4) to be molded and attached to it, electrically conductive tools (2a, 2b), in a temperature range in which the glass body (4) is deformable , characterized in that
die Werkzeuge (2a, 2b) über jeweils ein Anschlußkabel (3) mit einem Voltmeter (1) verbunden sind, und das Voltmeter (1) mit einem Computer (5) verbunden ist.the tools (2a, 2b) are each connected to a voltmeter (1) via a connecting cable (3), and the voltmeter (1) is connected to a computer (5).
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Computer (5) mit einer Anzeigevorrichtung (6) verbunden ist.9. The device according to claim 8, characterized in that the computer (5) is connected to a display device (6).
10. Vorrichtung für drehende Werkzeuge (2a, 2b) nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, daß die elektrische Verbindung zu dem drehenden Werkzeug (2a, 2b) mittels Schleifkontakten hergestellt ist. 10. Device for rotating tools (2a, 2b) according to one of claims 8 or 9, characterized in that the electrical connection to the rotating tool (2a, 2b) is made by means of sliding contacts.
PCT/EP2002/008618 2001-08-09 2002-08-02 Method and device for detecting imminent surface adhesion between a glass body to be formed and a form tool WO2003014037A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2001139298 DE10139298C1 (en) 2001-08-09 2001-08-09 Process for recognizing a boundary surface adhesion during a molding process between a glass body and electrically conducting tools comprises using an electromotive force value between the tools to indicate the boundary surface adhesion
DE10139298.2 2001-08-09

Publications (1)

Publication Number Publication Date
WO2003014037A1 true WO2003014037A1 (en) 2003-02-20

Family

ID=7695015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/008618 WO2003014037A1 (en) 2001-08-09 2002-08-02 Method and device for detecting imminent surface adhesion between a glass body to be formed and a form tool

Country Status (2)

Country Link
DE (1) DE10139298C1 (en)
WO (1) WO2003014037A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG111995A1 (en) * 2002-07-27 2005-06-29 Zeiss Stiftung Method for blank pressing of optical components

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587367A (en) * 1981-07-06 1983-01-17 Hitachi Koki Co Ltd Manufacture of on-demand type nozzle assembly
JPH06345448A (en) * 1993-06-03 1994-12-20 Canon Inc Production of optical element
EP0978492A1 (en) * 1998-08-04 2000-02-09 Cerdec Aktiengesellschaft Keramische Farben Method for reducing the hot-sticking during forming processes and apparatus used therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8915645D0 (en) * 1989-07-07 1989-08-23 British Glass Mfg Manufacture of hollow glass articles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587367A (en) * 1981-07-06 1983-01-17 Hitachi Koki Co Ltd Manufacture of on-demand type nozzle assembly
JPH06345448A (en) * 1993-06-03 1994-12-20 Canon Inc Production of optical element
EP0978492A1 (en) * 1998-08-04 2000-02-09 Cerdec Aktiengesellschaft Keramische Farben Method for reducing the hot-sticking during forming processes and apparatus used therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 081 (M - 205) 5 April 1983 (1983-04-05) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 03 28 April 1995 (1995-04-28) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG111995A1 (en) * 2002-07-27 2005-06-29 Zeiss Stiftung Method for blank pressing of optical components

Also Published As

Publication number Publication date
DE10139298C1 (en) 2003-01-23

Similar Documents

Publication Publication Date Title
EP1412125B1 (en) Short-time arc welding method and short-time arc welding system for identifying high-frequency disturbances
DE60126390T2 (en) Apparatus and method for monitoring arc welding
EP1607192B1 (en) Method and system for estimating the wear of robot arm joints
DE102013221273A1 (en) Method for monitoring and controlling a quality of welds
DE112018003079T5 (en) Lathe system diagnostic device, power conversion device, lathe system, and lathe system diagnostic method
WO2020207865A1 (en) Method for non-destructively testing a quality of an ultrasonic weld
EP2722949A1 (en) Conductor detection in a process for the removal of insulation from cables
DE3204798C2 (en)
WO2005060063A1 (en) Method and device for detecting a broad-band noise source in a direct voltage distribution network
AT508714B1 (en) METHOD FOR MONITORING A ROLLER IN A PLANT FOR ROLLING METAL
DE3136433A1 (en) METHOD FOR DETECTING AND DETECTING DEVIATIONS OF CYCLICALLY RECURRING PROCESSES FOR FORMING WORKPIECES FROM A NORMAL HISTORY
DE102012010716A1 (en) Determining a quality of an aluminum weld
DE102016005214A1 (en) Device for checking a state of a machine part
EP0534181B1 (en) Method for detecting inadmissible deviations of procedure parameters
WO2003014037A1 (en) Method and device for detecting imminent surface adhesion between a glass body to be formed and a form tool
EP3493005B1 (en) Method for detecting at least one tool condition of a tool of a tooling machine for machining workpieces and tooling machine
EP0999296A2 (en) Apparatus for removing a coating from objects
EP0074535B1 (en) Supervision method of the clamping force in clamping devices of machine tools
WO2002070185A1 (en) Method for inspecting connections produced by ultrasonic wire bonds
DE102017219549A1 (en) Method for condition monitoring of a production plant
EP3679433B1 (en) Method for monitoring a machine tool, in particular for tool fracture
DE10232470A1 (en) Method and device for quality assurance of crimp connections
EP3696964A1 (en) Predictive maintenance of the input and output circuit of inverters and power feed-in elements
DE10151141B4 (en) Device and method for monitoring spot welding processes
DE102009056234A1 (en) Method for monitoring and/or controlling a device for attaching a respective welding spot to many successive joints, comprises measuring a current and a voltage of the joint and determining a resistance of the joint

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DK DZ EC EE ES FI GB GD GE GH GM HR ID IL IN IS JP KE KG KP KR KZ LC LK LS LT LU LV MA MD MG MK MN MW MZ NO NZ OM PH PL PT RO RU SD SE SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WA Withdrawal of international application