WO2003013019A1 - Procedimiento de coexistencia de multiples sistemas de transmision de datos sobre red electrica - Google Patents

Procedimiento de coexistencia de multiples sistemas de transmision de datos sobre red electrica Download PDF

Info

Publication number
WO2003013019A1
WO2003013019A1 PCT/ES2002/000349 ES0200349W WO03013019A1 WO 2003013019 A1 WO2003013019 A1 WO 2003013019A1 ES 0200349 W ES0200349 W ES 0200349W WO 03013019 A1 WO03013019 A1 WO 03013019A1
Authority
WO
WIPO (PCT)
Prior art keywords
systems
coexistence
channel
procedure
electrical network
Prior art date
Application number
PCT/ES2002/000349
Other languages
English (en)
French (fr)
Inventor
Jorge Vicente Blasco Claret
Víctor DOMÍNGUEZ RICHARDS
Juan Carlos Riveiro Insua
Salvador Iranzo Molinero
José ABAD MOLINA
Feliciano GÓMEZ MARTÍNEZ
David RUIZ LÓPEZ
Agustín BADENES CORELLA
Alejandro Matas Bonilla
Original Assignee
Diseño De Sistemas En Silicio, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diseño De Sistemas En Silicio, S.A. filed Critical Diseño De Sistemas En Silicio, S.A.
Publication of WO2003013019A1 publication Critical patent/WO2003013019A1/es

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/542Systems for transmission via power distribution lines the information being in digital form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5408Methods of transmitting or receiving signals via power distribution lines using protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5425Methods of transmitting or receiving signals via power distribution lines improving S/N by matching impedance, noise reduction, gain control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5429Applications for powerline communications
    • H04B2203/5445Local network

Definitions

  • the object of the invention is to allow coexistence between different data transmission systems that use the electricity network as a means of communication.
  • the procedure presented defines a form of coexistence independent of the technology used by the system, so that the different manufacturers of communications equipment through the electrical network can use this procedure without making changes in their physical layer or their access layer in the middle.
  • one, several or all of the nodes of a communications system through the electricity network must be selected as representatives of the system and must perform the procedure indicated in the present invention.
  • the representative must be at least one of the nodes that detect signals from other systems competing for the electricity network, although they can be all the nodes that make up the represented system.
  • the invention belongs to the telecommunications sector and more specifically is applicable in the coexistence between multiple systems that use the electricity network as a communication channel, so that all systems can coexist and offer multiple services to users.
  • the invention consists of a coexistence procedure so that multiple systems that use the electricity network as a means of transmission can coexist with each other and use the network optimally at all times without the need to modify their physical level or access to the medium technology.
  • the procedure is based on the distribution of access to the channel by time sharing, and on the sending of characteristic signals that are resistant to impulsive noises and easily detectable by the different systems.
  • end-of-transmission indication signals stands out. Thanks to these signals it is not necessary to make a reservation of the transmission time of each system, which allows to optimize the use of the channel to the need of transmission of each system.
  • interrogation windows are used to detect which systems want to use the electricity network as a means of transmission at a certain time and, in addition, to determine if there are new systems that want to use the power grid as a channel; It is therefore possible to minimize the ranges of the coexistence protocol when there is only one system that uses the power grid as a channel.
  • contention processes are carried out on the channel with N contention levels in the case of multiple systems competing for the channel.
  • Overlapping ranges of access priorities are used in the contest, so that the ranges are selected depending on the quality of the service required and the time elapsed since the last possession of the channel.
  • Other essential characteristics of the procedure are the periodic synchronization of the different systems, which is used to eliminate the probability of blocked systems when the procedure is performed at the system level or minimize it if all the nodes of a system perform the procedure; and that the systems send echo signals of the coexistence signals used in the procedure.
  • signals In order to carry out the process, signals have been designed that maximize the probability of detection, minimize the probability of false detection and are easily performed physically (by hardware), these signals being specifically designed for the synchronization of systems by the electrical network.
  • the coexistence procedure manages to maximize the transmission capacity through the channel, even if there is only one system of a manufacturer trying to access the channel, thanks to the use of the special "single system" mode.
  • the coexistence process presented is a dynamic process, in which the entry and exit of competing systems in the power grid is detected and the channel distribution is optimized in each case. Coexistence would be done at the network level, instead of at the node level, so it is not necessary that all nodes should implement the procedure described in this patent.
  • the process of the invention is carried out in a manner that is independent of the technology used, both at the physical level and at the level of access to the environment of the different coexisting systems.
  • the allocation of the electricity network between the different competing systems is carried out dynamically, which increases the efficiency of the channel and allows different occupations of it to offer data traffic of different qualities. In addition, this allocation allows a fair sharing of the power grid between the different coexisting systems.
  • the coexistence procedure described is especially indicated to minimize the probability of blocking systems and the probability of existence of an indirect hidden node.
  • the first problem occurs when there are two systems that do not interfere and continuously transmit in the presence of a third system that listens to the first two. This third system will be blocked because when you can contend with one of the neighbors on the channel, the other is transmitting and vice versa.
  • the second problem, the indirect hidden node occurs when a node does not detect the start of a transmission because it is being interfered with by another. In this way, when that transmission ends, the node will determine that the channel is free and when it starts transmitting it will interfere with other nodes.
  • the transmission in mini-cells minimizes the problem of the blocked system, this problem being completely eliminated by periodically synchronizing the different systems thanks to the sending of synchronization pulses.
  • the problem of the indirect hidden node is minimized if the indicated procedure is performed at the node level and is eliminated when it is performed at E SO 2/00 54 8
  • One of the advantages of the coexistence procedure presented is that the procedure is performed at the network level and, therefore, it is not necessary for all the nodes of a system to perform the process. Only the nodes that can detect signals from other competing systems on the channel are those that can perform the procedure.
  • nodes are called system representatives, and their number can range from one to all nodes that belong to the system.
  • the coexistence process developed in this invention is especially indicated for communication in the electricity distribution network, but it can be applied, without loss of generality, in other shared media, such as wireless communications or local area networks by coaxial cable or telephone
  • the system that has gained access to the electricity grid is called “owner.”
  • owner When a system owns the power grid, it can use the channel for its communications up to a maximum time (MaxTransTime or SyncPeriod, depending on whether the system is in "multiple systems” or “single system” mode, respectively). This period of time is divided into one or more mini-cells, the size of which is adjusted to allow different types of traffic on the network and to minimize the possibility of having a system locked.
  • the communication time at which a owner can make use of the channel is an integer multiple of the mini-cell size.
  • the owner signals the end of the communication by transmitting the EOT (End Of Transmission) signal.
  • a mini-cell can be used for simple data transmission, to interrogate the different systems about whether or not they need to transmit and to make the resolution of the dispute between systems that they had previously requested to transmit in the interrogation process. It is possible to make different combinations of these uses, so that a mini-cell can be used to perform one or more of the previous actions.
  • EOT end of transmission
  • an interrogation window opens in which the neighboring systems that want to transmit on the channel send a warning signal (WBS). Any system that detects a WBS signal echoes it, sending WBSecho, so that all neighboring systems can realize this sending.
  • WBS warning signal
  • the proprietary system does not detect any WBS or WBSecho signal, and wants to continue using the channel, it remains the owner, and sends a WBS signal after the interrogation window. Otherwise, if a WBS or WBSecho signal has been detected, a contention window (CONT) opens in which the system or systems that requested to communicate make such a contest.
  • CONT contention window
  • the contention window is divided into N subwindows.
  • a system wants to compete, for which it responded to the interrogation with a WBS, it selects a number between 0 and 2 N -1, called CONTENTION KEY. This number can be randomly selected. mind or else the 2 N numbers are grouped into overlapping ranges and the system selects a number within one of these ranges depending on the quality of service of the traffic you want to send and the time you have been waiting to transmit on the channel since the last time That got it.
  • the number is sent bit by bit from the most significant bit by transmitting the WBS signal in the different subwindows of the content window.
  • a system that detects the WBS signal will echo it (WBSecho).
  • the system in contention detects a WBS or WBS signal in a subwindow in which it did not transmit the signal (that is, at a zero of the binary representation of its KEY CONTENTION), it will stop transmitting its number and leave the contest.
  • a system that implements the indicated coexistence procedure may be in a "multiple systems" or "single system” state. In the first one, other systems that compete to transmit over the electricity network have been detected, while in the second, the system is the only communications system that transmits over the network.
  • the transition to "multiple systems" is made when another system responds to a contest, while the transition to a single system is made after V consecutive times in which there was no contest in the interrogation window (ENQ) after synchronization pulse (SYNCHRO), preferably V being equal to 128.
  • ENQ interrogation window
  • SYNCHRO synchronization pulse
  • a synchronism pulse will be sent, which will be detected by the different systems and will be used as a synchronism reference.
  • SyncPeriod the representatives of each system will send a synchronism pulse (SYNCHRO) at the same time. This process will not be carried out on all occasions but the SYNCHRO will be transmitted with probability p and it will be expected to detect synchronism with probability 1-p.
  • Another way of synchronizing is that a system sends the synchronization pulse during a random number (N) of consecutive SyncPeriod size periods and monitors the transmission of pulses by other systems during another random number (M) of subsequent SyncPeriod size periods. .
  • a system If a system does not detect signals from any other system, it will determine that it is the only one that uses the electricity network as a means of communication. In this case, the system enters the "single system" mode and will send the synchronization pulse with 100% probability after the period preset by SyncPeriod.
  • An interrogation window (ENQ) is always open after a SYNCHRO to allow new systems that were previously inactive to access the channel. The systems that want to access the channel will wait for the arrival of the different signals that allow them to compete for it.
  • a system If a system detects a SYNCHRO, EOT or EOTecho signal, it can enter the interrogation and contention process, as long as it wishes to transmit over the network. If it detects a WBS or WBSecho signal, except for
  • a system detects an EOT or EOTecho or SYNCHRO signal but does not detect in the subsequent interrogation window (ENQ) any WBS or WBSecho either during or just after the contention period, it will determine that the channel is free.
  • a system will also determine that the channel is free if it does not detect any of the procedure signals during a period equal to MaxTransTime, if it was in a "multiple systems" state, or during a period of SyncPeriod, if it was in a "system” state. only".
  • the signals used in the coexistence process can be known signals in reception. In this case the detection of these signals would be done by correlating the received with the previously known signal.
  • the signals can be random signals with two exactly equal halves.
  • the type of signal represented is not obtained by the information contained in the form of the signal, which is random, but by the temporal duration of the halves.
  • correlator banks with different sizes would be used, so that they discriminate what type of signal was sent, obtaining a peak by correlating the two parts of the signal with the appropriate size.
  • Figure 1 Schematically represents an example of a coexistence topology between communications systems through the electrical network in which the procedure presented in the present invention can be used.
  • Figure 2. Schematically represents a series of systems in which it can be observed that the problem of the indirect hidden node does not exist at the network level.
  • Figure 3. Schematically represents the way in which the channel can be shared by four competing systems, applying the process presented in the present invention.
  • Figure 4.- Graphically represents the probability of not colliding for different number of systems and different number of bits when contention windows are used to solve the coexistence between systems.
  • Figure 5. Represents the particularization of Figure 4 for the case of five systems competing for the power grid.
  • Figure 6. Represents a simplified version of the finite state machine used to perform the coexistence algorithm of the present invention.
  • Figure 7. represents an embodiment of the finite state machine used to perform the coexistence algorithm of the present invention when the state of the channel is unknown to a given system.
  • Figure 8. represents an embodiment of the finite state machine used to perform the coexistence algorithm of the present invention that shows the transition between the "single system" and “multiple systems” states, which are used to determine if there are several systems using the electricity distribution network as a means of transmission.
  • Figure 9. Represents an embodiment of the finite state machine used to perform the coexistence algorithm of the present invention when a system detects the channel as free.
  • Figure 10. Represents an embodiment of the finite state machine used to perform the coexistence algorithm of the present invention when a system detects the channel as busy.
  • Figure 11. Represents an embodiment of the finite state machine used to perform the coexistence algorithm of the present invention when a system wants to compete for access to the channel.
  • Figure 12.- Represents an embodiment of the finite state machine used to perform the coexistence algorithm of the present invention when a system is the channel holder.
  • Figure 13 Represents the correlation between a signal with two equal halves and the correlation of two different halves, that is, generated by different systems, with a number of offset samples similar to the number of samples of one of the symbols of system coexistence.
  • Figure 14 Represents an embodiment of one of the proposed ways of synchronization, in which a The system randomly selects the synchronism pulse transmission (SYNCHRO) during the synchronism interval in 3 consecutive SyncPeriod periods and the reception of SYNCHRO pulses during the subsequent 4 consecutive periods, these N and M values being randomly recalculated after the system You have completed both periods of transmission and reception.
  • SYNCHRO synchronism pulse transmission
  • the invention consists of a procedure whereby multiple communication systems through the electrical network can coexist on the same electrical network.
  • the purpose of this patent is not to describe the way in which the different nodes of the same system access the medium but how several different systems can share the electrical network.
  • Figure 1 shows a typical topology in which different apartments have installed 3 networks of different manufacturers (A, B and C).
  • the interfering zone is that zone in which the nodes detect the presence of other networks.
  • the representative node of the system that is, the one that must carry out the coexistence process presented in this patent, must be at least one of those located in the inter-front zone, although there may be several and even all the nodes that constitute The system represented.
  • the number of systems that can interfere is at most 5.
  • the proposed procedure is optimized for this case, although it can also be used without any problem in any other case. .
  • the proposed algorithm has several advantages over other coexistence algorithms performed at the node level. Because the systems are independent of each other and do not transmit information between them, there is no problem of the "indirect hidden node", which occurred when a node does not receive control signals from other nodes due to the interference of the transmission of its neighbors . If this node mistakenly believes that the channel is free and begins to transmit, it will interfere with the other transmissions. This problem disappears at the network level, since the problem of interfering nodes has been previously resolved at the level of access to the medium.
  • Figure number 2 shows a typical scenario with 5 systems sharing the electrical network: 1.- The transmission of system D is heard by systems C and E. As the systems use a physical layer technology and a different medium access layer , this transmission will be noise for systems C and E. 2.- If system A wishes to transmit, it will indicate this need with a special signal (the WBS signal). System B will detect the WBS and transmits a WBSecho. 3.- However, system C cannot detect the WBS or the WBSecho, because the noise produced by D masks them.
  • the WBS signal the WBS signal
  • the indicated procedure allows the manufacturer to use the MAC implementation (media access) in the way you want, being able to develop the optimal way for your own technology.
  • the basic idea of the proposed procedure is to synchronize all the systems at the beginning of each of the SyncPeriod-sized frames, with SyncPeriod being much longer than the maximum transmission time allowed to a single system, and one set of the minicell set. existing between two synchronization signals. This thick synchronization reduces the control information that must be included, so that data transmission is performed more efficiently.
  • the frames contain mini-cells, the size of which is selected to reduce the probability of direct blocking of systems between synchronizations.
  • the system owner that is, the system that has gained access to the medium, must transmit over the network for an entire number of mini-cells. Thanks to the use of mini-cells, the proposed algorithm supports different types of traffic, using more or less cells of one or more types.
  • Each mini-cell has a duration of MiniSlotLength.
  • the mini-cells can be used for information transmission, interrogation and contention.
  • three types of mini-cell are indicated.
  • - Type 1 which contains an interrogation window, in the that the systems announce that they wish to transmit, a contention window so that the systems compete for access to the channel and a transmission window where the transmission of data is made between the nodes of the same system.
  • Type 2 which contains an interrogation window and a data transmission window.
  • Figure 3 shows how the power grid can be shared between 4 competing systems.
  • the frame size is proportional to the length of a mini-cell, and in normal operation the three types of mini-cell presented above are used.
  • Type 1 mini-cell is used when any system has responded to a previous interrogation (ENQ).
  • ENQ interrogation window
  • MaxTransTime maximum channel assignment period
  • the "single system” mode is the most efficient because it is only necessary to open an interrogation period (ENQ) each SyncPeriod.
  • V question windows after synchronism preferably with V equal to 128, that is, after 32 seconds
  • nobody has tried to contend it will pass to "single system” mode, in which it will open the ENQ window only after the SYNCHRO (each SyncPeriod).
  • the first time a system wants to transmit data it must wait up to a maximum time of SyncPeriod to obtain the synchronization pulse. If after this time a synchronization pulse is not detected, the network will enter the "single system" mode directly.
  • the length of the contention window can be calculated from various assumptions about coexistence, and from the previous mathematical expression.
  • the first considered in this preferred embodiment is that a probability of collision between requests of less than 1% is allowed, and the second is that the maximum number of competing systems will rarely exceed 5, due to the attenuation existing in the networks electric.
  • This formula shows the probability that R of Q systems win the contest in a subwindow and move on to the next subwindow (in which they will transmit the next bit of the contest number).
  • Figure number 6 shows a simplified version of the general finite state machine for the coexistence protocol. If a system knows that it is the only one that uses the electricity network as a means of communication, it will go to "single system" mode where there is no need for contention. Otherwise, each SyncPeriod (preferably 250ms) will open an interrogation window (ENQ) to discover the existence of new systems in the electrical network. If a system does not know if another is using the power grid as a means of transmission, it must wait for one of the following cases, as can be seen in Figure 7:
  • the difference between the two modes of transmission lies in the maximum time that the proprietary system is allowed to transmit over the power grid.
  • the maximum time that a system can use the channel is limited by MaxTransTime, while in “single system” it can transmit up to the time indicated by SyncPeriod.
  • Figure 8 shows a representation of how a system determines that it is in "single system” mode (that is, it is the only one that uses the electricity distribution network as a transmission medium), or in “multiple mode” systems ", in which it must compete with other systems to transmit it.
  • Figure 9 shows the process that is performed when a system detects that the channel is free. Once in this state the system waits for any of the following events:
  • an interrogation window (ENQ) of the channel is opened to see if other systems want to compete.
  • the system you wish to compete will send a WBS signal in that window.
  • the system that won the contest becomes the new owner and goes to the "owner” state; and if the "busy channel” status does not pass,
  • a system owns the channel as shown in Figure 12, it will continue to be so until:
  • each system sends the synchronism pulse, at the same time, with a certain probability (probability p) or is kept waiting to receive the pulse (with probability 1-p).
  • Another way is that a system sends synchronization pulses for N consecutive SyncPeriod periods, N being a random integer preferably between 3 and 8, and then listening to pulses sent by other systems during the following M consecutive periods, M being another number random integer preferably between 3 and 8.
  • N being a random integer preferably between 3 and 8
  • M being another number random integer preferably between 3 and 8.
  • the system When the system is in "single system” mode, it always sends the synchronization pulse (with 100% probability), allowing other listening systems to synchronize, even if they do not use the power grid to communicate at that time.
  • random signals are preferably used with two exactly equal temporary halves.
  • the type of signal represented is obtained by the time duration of the halves (in number of samples) of the signals.
  • FIG. 13 shows an example in which 2 signals of the same type (with N samples each half) arrive outdated to a third system C, and the number of lag samples coincides with the size of one half of another signal used in the coexistence process (M). Thanks to the use of random information in the generation of the signals by each system, the cross correlation of two different halves (produced by different systems) will not generate correlation peaks, so the probability of false detection of one of the signals is minimized signals used in the coexistence process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Radio Relay Systems (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

Permite la coexistencia entre sistemas de comunicación de datos por la red eléctrica, de distintos fabricantes, mediante un procedimiento independiente de la capa física y de la capa de acceso al medio de los distintos sistemas. Se basa en la asignación de períodos de tiempo diferentes para las comunicaciones de cada sistema, esto es, coexistencia por división en el tiempo. Comprende la utilización de señales características de control que se envían entre los distintos sistemas para permitir su detección por todos los sistemas coexistentes, y que son resistentes a ruidos impulsivos, junto con el empleo de un método de interrogación y contienda para múltiples sistemas adaptado a la calidad de servicio exigida por el tráfico producido por cada sistema.

Description

"PROCEDIMIENTO DE COEXISTENCIA DE MÚLTIPLES SISTEMAS DE TRANSMISIÓN DE DATOS SOBRE RED ELÉCTRICA" OBJETO DE LA INVENCIÓN
La invención tiene por objeto permitir la coexistencia entre distintos sistemas de transmisión de datos que utilizan la red eléctrica como medio de comunicación. El procedimiento presentado define una forma de coexistencia independiente de la tecnología utilizada por el- sistema, de forma que los diferentes fabricantes de equipos de comunicaciones por la red eléctrica pueden utilizar este procedimiento sin necesidad de realizar cambios en su capa física o su capa de acceso al medio.
Para permitir la coexistencia, uno, varios o todos los nodos de un sistema de comunicaciones por la red eléctrica deben ser seleccionados como representantes del sistema y deben realizar el procedimiento indicado en la presente invención. El representante debe ser, al menos, uno de los nodos que detecten señales provenientes de otros sistemas que compiten por la red eléctrica, aunque pueden ser todos los nodos que forman el sistema representado.
La invención pertenece al sector de las telecomunicaciones y más concretamente es aplicable en la coexistencia entre múltiples sistemas que utilizan la red eléctrica como canal de comunicación, de forma que todos los sistemas puedan coexistir y puedan ofrecer múltiples servicios a los usuarios .
ANTECEDENTES DE LA INVENCIÓN En el estado de la técnica es conocido el empleo de la red eléctrica como . medio de transmisión. Diferentes fabricantes han propuesto diferentes sistemas de comunicaciones de datos, y debido a que la red eléctrica es un medio único y compartido por todos estos sistemas, es necesario definir un procedimiento de coexistencia entre estos sistemas para permitir su funcionamiento conjunto en condiciones óptimas. Distintos procedimientos han sido presentados para otros medios compartidos, pero ninguno de ellos específicamente diseñado para la comunicación por la red eléctrica. El procedimiento especificado en este documento tiene la ventaja de realizar la comunicación a alto nivel, por lo que los distintos niveles físicos y de acceso al medio de los diversos fabricantes pueden seguir utilizándose .
Aprovechando las características de atenuación con la distancia y con la frecuencia de la red eléctrica de baja tensión, el procedimiento propone un proceso óptimo para el caso de un número reducido de sistemas contendientes, resolviendo de forma óptima la posible interferencia entre sistemas en la comunicación de datos. DESCRIPCIÓN DE LA INVENCIÓN
La invención consiste en un procedimiento de coexistencia para que múltiples sistemas que utilizan la red eléctrica como medio de transmisión puedan coexistir entre sí y utilizar la red de forma óptima en todo momento sin necesidad de modificar su tecnología de nivel físico ni de acceso al medio.
El procedimiento se basa en el reparto del acceso al canal por compartición en tiempo, y en el envío de señales características que son resistentes a ruidos impulsivos y fácilmente detectables por los distintos sistemas .
Entre las características más importantes del procedimiento destaca la utilización de señales de indicación de final de la transmisión. Gracias a estas señales no es necesario realizar una reserva del tiempo de transmisión de cada sistema, lo que permite optimizar el uso del canal a la necesidad de transmisión de cada sistema. Además se utilizan ventanas de interrogación, para detectar qué sistemas quieren utilizar la red eléctrica como medio de transmisión en un determinado momento y, además, para determinar si hay nuevos sistemas que quieren utilizar la red eléctrica como canal; con lo que es posible minimizar los rangos del protocolo de coexistencia cuando solo hay un sistema que utiliza la red eléctrica como canal. Por otro lado, se realizan procesos de contienda por el canal con N niveles de contienda en el caso de existir múltiples sistemas compitiendo por el canal. En la contienda se utilizan rangos solapados de prioridades de acceso, de forma que se seleccionan los rangos dependiendo de la calidad del servicio requerida y del tiempo transcurrido desde la última posesión del canal. Otras características esenciales del procedimiento son la sincronización periódica de los distintos sistemas, que se utiliza para eliminar la probabilidad de sistemas bloqueados cuando el procedimiento se realiza al nivel de sistema o minimizarla si todos los nodos de un sistema realizan el procedimiento; y que los sistemas envían señales de eco de las señales de coexistencia empleadas en el procedimiento . Para realizar el proceso se han diseñado señales que maximizan la probabilidad de detección, minimizan la probabilidad de falsa detección y son fácilmente realizables de forma física (por hardware), estando estas señales específicamente diseñadas para la sincroniza- ción de sistemas por la red eléctrica.
Además, el procedimiento de coexistencia consigue maximizar la capacidad de transmisión por el canal, incluso en el caso de que sólo exista un sistema de un fabricante intentando acceder al canal, gracias a la utilización del modo especial de "sistema único".
El proceso de coexistencia presentado es un proceso dinámico, en el que se detecta la entrada y salida de sistemas competidores en la red eléctrica y se optimiza la distribución del canal en cada caso. La coexistencia se realizaría al nivel de red, en lugar de al nivel de nodo, por lo que no es necesario que todos los nodos deban realizar la implementación del procedimiento descrito en esta patente.
El procedimiento de la invención se efectúa de manera que es independiente de la tecnología utilizada, tanto en el nivel físico como en el nivel de acceso al medio de los distintos sistemas coexistentes .
La asignación de la red eléctrica entre los distintos sistemas contendientes se realiza de forma dinámica, con lo que se aumenta la eficiencia del canal y se permiten diferentes ocupaciones del mismo para poder ofrecer tráficos de datos de distintas calidades . Además esta asignación permite una compartición justa de la red eléctrica entre los distintos sistemas coexistentes. El procedimiento de coexistencia descrito está especialmente indicado para minimizar la probabilidad de bloqueo de sistemas y la probabilidad de existencia de un nodo oculto indirecto. El primer problema ocurre cuando hay dos sistemas que no se interfieren y transmiten continua- mente en presencia de un tercer sistema que escucha a los dos primeros . Este tercer sistema estará bloqueado porque cuando puede contender por el canal con uno de los vecinos, el otro está transmitiendo y viceversa. El segundo problema, el nodo oculto indirecto, se produce cuando un nodo no detecta el inicio de una transmisión porque está siendo interferido por otra. De esta forma, cuando termine esa transmisión, el nodo determinará que el canal está libre y al empezar a transmitir interferirá a otros nodos .
La transmisión en miniceldas minimiza el problema del sistema bloqueado, siendo este problema completamente eliminado mediante la sincronización periódica de los distintos sistemas gracias al envío de pulsos de sincronismo. Por otro lado, el problema del nodo oculto indirecto se minimiza si el procedimiento indicado se realiza a nivel de nodo y se elimina cuando se realiza a E SO 2 / 00 54 8
- 5 - nivel de red.
Una de las ventajas del procedimiento de coexistencia presentado es que el procedimiento se realiza al nivel de red y, por lo tanto, no es necesario que todos los nodos de un sistema realicen el proceso. Únicamente los nodos que pueden detectar señales de otros sistemas competidores por el canal son los que pueden realizar el procedimiento .
Estos nodos son los denominados representantes del sistema, y su número puede oscilar entre uno y todos los nodos que pertenecen al sistema.
El proceso de coexistencia desarrollado en esta invención está especialmente indicado para la comunicación en la red de distribución de electricidad, pero puede ser aplicado, sin pérdida de generalidad, en otros medios compartidos, como las comunicaciones inalámbricas o las redes de área local por cable coaxial o telefónico.
El sistema que ha ganado acceso a la red eléctrica es denominado "propietario" . Cuando un sistema es propietario de la red eléctrica puede utilizar el canal para sus comunicaciones hasta un tiempo máximo (MaxTransTime o SyncPeriod, dependiendo de si el sistema está en modo "múltiples sistemas" o "sistema único", respectivamente) . Este período de tiempo está dividido en una o más miniceldas, cuyo tamaño está ajustado para permitir distintos tipos de tráfico en la red y para minimizar la posibilidad de tener un sistema bloqueado .
El tiempo de comunicación en que un propieta- rio puede hacer uso del canal es un múltiplo entero del tamaño de minicelda. El propietario señaliza el final de la comunicación transmitiendo la señal EOT (End Of Transmis- sion) .
El tiempo reservado para una minicelda puede ser utilizado para múltiples acciones. Una minicelda puede ser utilizada para la simple transmisión de datos, para interrogar a los distintos sistemas sobre si tienen o no necesidad de transmitir y para realizar la resolución de la contienda entre sistemas que previamente habían pedido transmitir en el proceso de interrogación. Es posible realizar distintas combinaciones de estos usos, de forma que una minicelda puede ser utilizada para realizar una o varias de las anteriores acciones . Cuando el sistema propietario del canal termina de utilizarlo, o bien ha terminado el tiempo máximo que un sistema puede utilizar el canal, envía una señal de final de transmisión (EOT). Esta señal se envía siempre tras un número entero de miniceldas. Cualquier sistema vecino que detecta la señal realizará el eco de la misma, transmitiendo EOTecho, de forma que todos los sistemas vecinos saben que el propietario ha terminado.
Tras enviar la señal EOT, se abre una ventana de interrogación (ENQ) en la que los sistemas vecinos que quieran transmitir por el canal envían una señal de aviso (WBS). Cualquier sistema que detecte una señal WBS realiza un eco de la misma, enviando WBSecho, de forma que todos los sistemas vecinos puedan darse cuenta de este envío.
Si el sistema propietario no detecta ninguna señal WBS o WBSecho, y quiere seguir haciendo uso del canal, sigue siendo el propietario, y envía una señal WBS después de la ventana de interrogación. En caso contrario, si se ha detectado alguna señal WBS o WBSecho, se abre una ventana de contienda (CONT) en la que el o los sistemas que pidieron comunicar realizan dicha contienda.
La ventana de contienda se divide en N subventanas . Cuando un sistema quiere competir, para lo que respondió a la interrogación con un WBS, selecciona un número entre 0 y 2N-1, denominado CONTENTION KEY. Este número puede ser seleccionado aleatoria- mente o bien los 2N números se agrupan en rangos superpuestos y el sistema selecciona un número dentro de uno de estos rangos dependiendo de la calidad de servicio del tráfico que quiere enviar y del tiempo que ha estado esperando transmitir por el canal desde la última vez que lo consiguió.
Una vez seleccionado, el número se envía bit a bit desde el bit más significativo transmitiendo la señal WBS en las distintas subventanas de la ventana de contien- da. Un sistema que detecte la señal WBS realizará el eco de la misma (WBSecho).
Si el sistema en contienda detecta una señal WBS o WBSecho en una subventana en la que no realizó la transmisión de la señal (esto es, en un cero de la repre- sentación binaria de su CONTENTION KEY), dejará de transmitir su número y abandonará la contienda.
El sistema que consiguió enviar correctamente todo su número, esto es, sin haber detectado ninguna señal WBS o WBSecho en las subventanas donde él no transmitió, se convierte en el nuevo propietario del canal (esto es, ha ganado acceso al canal), y realizará las acciones de éste, pudiendo utilizar el canal para transmisión (durante un múltiplo del tamaño temporal de una minicelda y hasta MaxTransTime) . En un determinado momento un sistema que implemente el procedimiento de coexistencia indicado, puede estar en estado "múltiples sistemas" o "sistema único". En el primero se han detectado otros sistemas que compiten por transmitir por la red eléctrica, mientras que en el segundo el sistema es el único sistema de comunicaciones que transmite por la red. La transición hacia "múltiples sistemas" se realiza cuando otro sistema responde a una contienda, mientras que la transición a sistema único se realiza tras V veces consecutivas en las que no se produjo contienda en la ventana de interrogación (ENQ) después del pulso de sincronismo (SYNCHRO), siendo preferentemente V igual a 128.
Por otro lado, para resolver el problema de un sistema bloqueado porque sus vecinos utilizan continuamente la red eléctrica para transmitir sin detectarse entre sí, se utiliza la sincronización de los distintos sistemas. Para realizar la sincronización se enviará un pulso de sincronismo que será detectado por los diferentes sistemas y será utilizado como referencia de sincronismo. Tras cierto período de tiempo, denominado SyncPeriod, los representantes de cada sistema enviarán al mismo tiempo un pulso de sincronismo (SYNCHRO). Este proceso no se realizará en todas las ocasiones sino que el SYNCHRO se transmitirá con probabilidad p y se esperará detectar el sincronismo con probabilidad 1-p. Otra forma de realizar la sincronización es que un sistema envía el pulso de sincronismo durante un número aleatorio (N) de períodos de tamaño SyncPeriod consecutivos y monitoriza la transmisión de pulsos por otros sistemas durante otro número aleatorio (M) de períodos de tamaño SyncPeriod posteriores.
Si un sistema no detecta señales de ningún otro sistema determinará que es el único que utiliza la red eléctrica como medio de comunicación. En este caso el sistema pasa al modo "sistema único" y enviará el pulso de sincronismo con probabilidad 100% después del período prefijado por SyncPeriod. Una ventana de interrogación (ENQ) es siempre abierta después de un SYNCHRO para permitir que nuevos sistemas que previamente estaban inactivos puedan acceder al canal . Los sistemas que quieran acceder al canal esperarán la llegada de las distintas señales que les permiten competir por el mismo.
Si un sistema detecta una señal SYNCHRO, EOT o EOTecho puede entrar en el proceso de interrogación y contienda, siempre y cuando desee transmitir por la red. Si detecta una señal WBS o WBSecho, salvo los
WBSecho detectados justo después de la transmisión de un
WBS propio, deberá esperar a que se abran posteriores ventanas de interrogación y contienda, en el caso de querer transmitir.
Si un sistema detecta una señal EOT o EOTecho o SYNCHRO pero no detecta en la ventana de interrogación (ENQ) posterior ningún WBS o WBSecho ni durante ni justo después del período de contienda, determinará que el canal está libre. Un sistema también determinará que el canal está libre si no detecta ninguna de las señales del procedimiento durante un período igual a MaxTransTime, si se encontraba en estado "múltiples sistemas", o bien durante un período a SyncPeriod, si se encontraba en estado "sistema único". Las señales utilizadas en el proceso de coexistencia (WBS, WBSecho, EOT, EOTecho y SYNCHRO) pueden ser señales conocidas en recepción. En este caso la detección de estas señales se realizaría mediante la correlación de lo recibido con la señal previamente conocida.
Alternativamente las señales pueden ser señales aleatorias con dos mitades exactamente iguales. El tipo de señal representado no se obtiene por la información contenida en la forma de la señal, que es aleatoria, sino por la duración temporal de las mitades.
En este caso, para detectar estas señales con dos mitades iguales, se utilizarían bancos de correladores con distintos tamaños, de forma que discriminen qué tipo de señal fue enviado, obteniendo un pico al correlar las dos partes de la señal con el tamaño adecuado.
La ventaja de utilizar símbolos aleatorios, pero con la simetría y duración en número de muestras fijadas, radica en que se minimiza la probabilidad de falsas detecciones. Esta falsa detección puede ocurrir si dos señales provenientes de otros nodos se reciben en un tercero con un desfase igual al período de repetición de las mitades de una de las señales del sistema. Al utilizar información aleatoria en los símbolos enviados, manteniendo la simetría de las dos mitades, señales de distintos transmisores no generarán picos al ser correladas.
A continuación, para facilitar una mejor comprensión de esta memoria descriptiva y formando parte integrante de la misma, se acompañan unas figuras en las que, con carácter ilustrativo y no limitativo, se ha representado el objeto de la invención.
BREVE ENUNCIADO DE LAS FIGURAS
Figura 1.- Representa esquemáticamente un ejemplo de topología de coexistencia entre sistemas de comunicaciones por la red eléctrica en la que se puede utilizar el procedimiento presentado en la presente invención .
Figura 2.- Representa esquemáticamente una serie de sistemas en la que se puede observar que el problema del nodo oculto indirecto no existe en el nivel de red.
Figura 3.- Representa esquemáticamente la forma en que el canal puede ser compartido por cuatro sistemas en competición, aplicando el proceso presentado en la presente invención. Figura 4.- Representa gráficamente la probabilidad de no colisionar para distinto número de sistemas y distinto número de bits cuando se utilizan ventanas de contienda para resolver la coexistencia entre sistemas .
Figura 5.- Representa la particularización de la figura 4 para el caso de cinco sistemas compitiendo por la red eléctrica.
Figura 6.- Representa una versión simplificada de la máquina de estados finitos utilizada para realizar el algoritmo de coexistencia de la presente invención. Figura 7.- Representa una realización de la máquina de estados finitos utilizada para realizar el algoritmo de coexistencia de la presente invención cuando el estado del canal es desconocido para un determinado sistema. Figura 8.- Representa una realización de la máquina de estados finitos utilizada para realizar el algoritmo de coexistencia de la presente invención que muestra la transición entre los estados de "sistema único" y "múltiples sistemas", que se utilizan para determinar si hay varios sistemas utilizando la red de distribución de electricidad como medio de transmisión.
Figura 9.- Representa una realización de la máquina de estados finitos utilizada para realizar el algoritmo de coexistencia de la presente invención cuando un sistema detecta el canal como libre.
Figura 10.- Representa una realización de la máquina en estados finitos utilizada para realizar el algoritmo de coexistencia de la presente invención cuando un sistema detecta el canal como ocupado. Figura 11.- Representa una realización de la máquina de estados finitos utilizada para realizar el algoritmo de coexistencia de la presente invención cuando un sistema quiere competir por el acceso al canal.
Figura 12.- Representa una realización de la máquina de estados finitos utilizada para realizar el algoritmo de coexistencia de la presente invención cuando un sistema es el poseedor del canal.
Figura 13.- Representa la correlación existente entre una señal con dos mitades iguales y la correla- ción de dos mitades diferentes, esto es, generadas por sistemas diferentes, con un número de muestras de desfase similar al número de muestras de uno de los símbolos de coexistencia del sistema.
Figura 14.- Representa una realización de una de las formas propuestas de sincronización, en la que un sistema selecciona aleatoriamente la transmisión de pulsos de sincronismo (SYNCHRO) durante el intervalo de sincronismo en 3 períodos SyncPeriod consecutivos y la recepción de pulsos de SYNCHRO durante los 4 períodos consecutivos posteriores, siendo estos valores de N y M recalculados aleatoriamente después de que el sistema haya completado ambos períodos de transmisión y recepción.
DESCRIPCIÓN DE LA FORMA DE REALIZACIÓN PREFERIDA
A continuación se realiza una descripción de la invención basada en las figuras anteriormente comentadas .
Tal y como ha sido comentado con anterioridad la invención consiste en un procedimiento por el que múltiples sistemas de comunicación por la red eléctrica pueden coexistir sobre la misma red eléctrica. El propósito de esta patente no radica en describir la forma en la que los distintos nodos de un mismo sistema acceden al medio sino cómo varios sistemas distintos pueden compartir la red eléctrica. En la figura 1 se puede observar una topología típica en la que distintos apartamentos han instalado 3 redes de distintos fabricantes (A, B y C) . La zona interfe- rente es aquella zona en la que los nodos detectan la presencia de otras redes. El nodo representante del sistema, esto es, el que debe realizar el proceso de coexistencia presentado en esta patente, deben ser, al menos, uno de los situados en la zona inter.férente, aunque pueden ser varios e incluso todos los nodos que constituyen el sistema representado. Habitualmente, debido a la atenuación existente en la red de distribución de electricidad, el número de sistemas que pueden interferirse es, como máximo, de 5. El procedimiento propuesto está optimizado para este caso, aunque también puede utilizarse sin ningún problema en cualquier otro caso. El algoritmo propuesto presenta varias ventajas sobre otros algoritmos de coexistencia realizados al nivel de nodo. Debido a que los sistemas son independientes entre sí y no transmiten información entre ellos, no existe el problema del "nodo oculto indirecto", que se producía cuando un nodo no recibe señales de control de otros nodos debido a la interferencia de la transmisión de sus vecinos . Si este nodo erróneamente cree que el canal está libre y comienza a transmitir, interferirá las otras transmisiones. Este problema desaparece al nivel de red, ya que el problema de nodos interferentes se ha resuelto anteriormente en el nivel de acceso al medio.
La figura número 2 muestra un escenario típico con 5 sistemas compartiendo la red eléctrica: 1.- La transmisión del sistema D es escuchada por los sistemas C y E. Como los sistemas utilizan una tecnología de capa física y una capa de acceso al medio diferente, esta transmisión será ruido para los sistemas C y E. 2.- Si el sistema A desea transmitir, indicará esta necesidad con una señal especial (la señal WBS). El sistema B detectará el WBS y transmite un WBSecho. 3.- Sin embargo, el sistema C no puede detectar el WBS ni el WBSecho, porque el ruido producido por D los enmascara.
4.- Cuando el sistema D termina de comunicar, el sistema C asume que el canal está libre y empieza a comunicar. Esto no produce el problema del "nodo oculto indirecto" ya que los datos que envía C están dirigidos a los nodos de su propio sistema y no a los del sistema B. El sistema B escuchará la transmisión de C, pero al no poder interpretarla, la tomará como ruido.
Al realizar la coexistencia entre sistemas al nivel de red, el procedimiento indicado permite al fabri- cante utilizar la implementación de MAC (acceso al medio) de la forma que desee, pudiendo desarrollar la forma óptima para su propia tecnología.
Debido a la atenuación existente en la red eléctrica, el número de sistemas que competirán para acceder al canal será pocas veces superior a 5, por lo que las ventanas de interrogación y contienda pueden limitarse manteniendo una baja probabilidad de colisión.
Además, al realizar la coexistencia al nivel de red, se realiza una compartición más justa que al nivel de nodo, puesto que a este nivel un sistema con mayor número de nodos, tendría más tiempo el canal que otro sistema con menor número de nodos.
La idea básica del procedimiento propuesto es sincronizar todos los sistemas al comienzo de cada una de las tramas de tamaño SyncPeriod, siendo SyncPeriod un tiempo mucho mayor que el tiempo máximo de transmisión que se permite a un solo sistema, y una trama el conjunto de miniceldas existentes entre dos señales de sincronismo. Esta sincronización gruesa reduce la información de control que se debe incluir, de forma que se realiza una transmisión de datos con mayor eficiencia.
Las tramas contienen miniceldas, cuyo tamaño está seleccionado para reducir la probabilidad de bloqueo directo de sistemas entre sincronizaciones. El propietario del sistema, esto es, el sistema que ha ganado el acceso al medio, debe transmitir por la red durante un número entero de miniceldas. Gracias al uso de miniceldas el algoritmo propuesto soporta distintos tipos de tráfico, utilizando más o menos celdas de uno o varios tipos . Cada minicelda tiene una duración de MiniSlotLength.
Las miniceldas pueden ser utilizadas para transmisión de información, interrogación y contienda. En la realización preferida del procedimiento se indican tres tipos de minicelda. - Tipo 1: que contiene una ventana de interrogación, en la que los sistemas anuncian que desean transmitir, una ventana de contienda para que los sistemas compitan por el acceso al canal y una ventana de transmisión donde se realiza la transmisión de datos entre los nodos del mismo sistema.
- Tipo 2 : que contiene una ventana de interrogación y una de transmisión de datos.
- Tipo 3 : que únicamente contiene una ventana de transmisión de datos.
En la siguiente tabla se indican los valores ejemplo de una implementación del procedimiento, para la duración de las distintas ventanas, miniceldas y períodos:
Figure imgf000017_0001
La figura 3 muestra cómo la red eléctrica puede compartirse entre 4 sistemas que compiten entre sí. Como puede observarse en la figura, el tamaño de trama es proporcional a la longitud de una minicelda, y en el funcionamiento normal se utilizan los tres tipos de minicelda presentados anteriormente.
La minicelda de tipo 1 se utiliza cuando cualquier sistema ha respondido a una interrogación (ENQ) anterior. En modo "múltiples sistemas" la ventana de interrogación (ENQ) se abre después del período máximo de asignación del canal (MaxTransTime) . En cambio, el modo de "sistema único", es el más eficiente debido a que únicamente es necesario abrir un período de interrogación (ENQ) cada SyncPeriod. Para que un sistema en modo "múltiples sistemas" pase al modo "sistema único", abre una ventana de contienda cada MaxTransTime, y si después de V ventanas de interrogación después del sincronismo (preferentemente con V igual a 128, esto es, tras 32 segundos) nadie ha intentado contender, pasará al modo de "sistema único", en el que abrirá la ventana ENQ sólo después de los SYNCHRO (cada SyncPeriod).
La primera vez que un sistema quiere transmitir datos deberá esperar hasta un tiempo máximo de SyncPe- riod para obtener el pulso de sincronismo. Si después de transcurrido este tiempo no se detecta un pulso de sincronismo, la red entrará directamente en el modo de "sistema único" .
Cuando un sistema termina de transmitir, envía una señal de final de transmisión (EOT). El tiempo máximo que un sistema en modo "múltiples sistemas" puede hacer uso de la red eléctrica está limitado por el mínimo entre MaxTransTime y el tiempo hasta el próximo pulso de sincronismo (SYNCHRO). Por otro lado la probabilidad de tener un sistema bloqueado se reduce al haber forzado la transmisión en intervalos discretos (miniceldas), y queda completamente eliminada con la sincronización periódica de los distintos sistemas, cuando todos los sistemas pueden realizar la contienda por el canal. En resumen, la combinación de la división en miniceldas y el envío de pulsos de sincronización soluciona el problema del bloqueo de sistemas: "sistema bloqueado directo".
Desde un punto de vista matemático el mecanis- mo descrito en esta invención puede englobarse entre las soluciones CSMA/CR (Carrier Sense Múltiple Access with Collision Resolution) donde las ventanas de contienda se utilizan para resolver los problemas que surgen cuando varios sistemas quieren acceder a la red eléctrica al mismo tiempo. Matemáticamente se puede denominar P(C*) a la probabilidad de que Y sistemas compitan y X colisionen al hacerlo. La probabilidad de resolución de una contienda sería la siguiente:
Figure imgf000019_0001
Esta expresión matemática se ha representado tridimensionalmente en la figura número 4.
La longitud de la ventana de contienda puede ser calculada a partir de varias presunciones sobre la coexistencia, y de la expresión matemática anterior. La primera considerada en esta realización preferida es que se permite una probabilidad de colisión entre peticiones de menos de un 1%, y la segunda es que el número máximo de sistemas que competirán pocas veces superará el 5, debido a la atenuación existente en las redes eléctricas.
Tomando el valor M=5, la gráfica queda reducida a una gráfica bidimensional que se representa en la figura 5. Si seleccionamos una probabilidad de colisión menor de 1%, esto es, una probabilidad de resolución de al menos 99%, llegamos al resultado de que el tamaño de la ventana de contienda (N) debe ser, al menos, de 8.
La fórmula anterior ha sido obtenida a partir del tratamiento estadístico de la probabilidad de colisión, de hecho: P(R de Q nodos
Figure imgf000020_0001
Esta fórmula muestra la probabilidad de que R de Q sistemas ganen la contienda en una subventana y pasen a la siguiente subventana (en la que transmitirán el próximo bit del número de contienda) .
En las figuras 6 a 12 pueden observarse una serie de máquinas de estados finitos que son aplicables en la realización preferida de realización del protocolo de coexistencia que se desarrolla en la presente invención.
La figura número 6 muestra una versión simplificada de la máquina general de estados finitos para el protocolo de coexistencia. Si un sistema sabe que es el único que utiliza la red eléctrica como medio de comunica- ción pasará a modo "sistema único" donde no hay necesidad de contienda. De todas formas, cada SyncPeriod (preferentemente 250ms) abrirá una ventana de interrogación (ENQ) para descubrir la existencia de nuevos sistemas en la red eléctrica. Si un sistema no sabe si otro está utilizando la red eléctrica como medio de transmisión deberá esperar a uno de los siguientes casos, tal y como puede observarse en la figura 7 :
- Si no detecta ninguna señal SYNCHRO, WBS, WBSecho, EOT o EOTecho durante el tiempo indicado en SyncPeriod mas cierto número aleatorio de períodos de la señal WBS (aleatorio 1), el sistema determinará que el canal está libre.
- Si en algún momento detecta un EOT o EOTecho, se prepara- rá para la interrogación y contienda que se realizarán inmediatamente después (enviando WBS la ventana ENQ) .
- Si detecta una señal WBS o WBSecho, el canal ha sido capturado por otro, por lo que tendrá que esperar para poder utilizarlo. - Si un sistema no desea transmitir y escucha una señal EOT o EOTecho pero ningún WBS o WBSecho en la ventana de interrogación posterior, determinará que el canal está libre mientras no detecte ningún WBS o WBSecho posterior. La transición entre el modo de "sistema único" y el de "múltiples sistemas" se produce cuando hay una contienda. La transición contraria, de "múltiples sistemas" a "sistema único", se produce tras V veces consecutivas en las que no se produjo contienda en la ventana de interrogación (ENQ) después del pulso de sincronismo (SYNCHRO) (preferentemente con V igual a 128). La diferencia entre los dos modos de transmisión radica en el tiempo máximo que se permite al sistema propietario transmitir por la red eléctrica. En modo "múltiples sistemas", el tiempo máximo que un sistema puede usar el canal está limitado por MaxTransTime, mientras que en "sistema único" puede transmitir hasta el tiempo indicado por SyncPeriod.
En la figura 8 puede verse una representación de la manera que un sistema determina que está en modo "sistema único" (esto es, que es el único que utiliza la red de distribución de electricidad como medio de transmisión), o en modo "múltiples sistemas", en que debe competir con otros sistemas para transmitir por la misma.
La figura 9 muestra el proceso que se realiza cuando un sistema detecta que el canal está libre. Una vez en este estado el sistema espera a cualquiera de los siguientes eventos:
- Que se detecte una señal WBS o WBSecho. En este caso el sistema sabe que el canal está ocupado, y pasa a ese estado . - Que el sistema quiera transmitir. En este caso espera un número aleatorio de períodos de la señal WBS y envía una señal WBS para avisar a los sistemas vecinos de su intención de usar el canal y que éste deja de estar libre.
Cuando un sistema detecta el canal como ocupado, tal y como se muestra en la figura 10, deberá esperar la llegada de una señal EOT o EOTecho antes de comenzar la contienda por el uso de la red eléctrica (en caso de querer transmitir) . Dichas señales indican que el canal está disponible y para pedirlo los sistemas deberán enviar señales WBS. Si no se detectan ninguna de estas señales en un determinado intervalo de tiempo (dependiente de si el sistema se encontraba en modo "sistema único" o "múltiples sistemas), el sistema determinará que el canal está libre" . Si el sistema está en el estado de "contienda" competirá para saber si será él u otro el nuevo propietario del canal. Este proceso puede observarse en la figura 11. Después del envío del EOT (o del sincronismo) se abre una ventana de interrogación (ENQ) del canal para ver si otros sistemas quieren competir. El sistema que desee competir enviará una señal WBS en dicha ventana. El sistema que ganó la contienda se convierte en el nuevo propietario y pasa al estado "propietario"; y si no pasa el estado de "canal ocupado" , Cuando un sistema es el propietario del canal, como aparece en la figura 12, continuará siéndolo hasta que:
- El sistema termine la transmisión (siempre tras un número entero de miniceldas). - Transcurra el máximo tiempo para la transmisión del sistema: "MaxTransTime" en el caso de "múltiples sistemas" y "SyncPeriod" en el caso de "sistema único"
- LLegue el momento de transmisión de pulsos de sincronismo
(SYNCHRO), lo que ocurre, preferentemente, periódicamente cada 250 ms . En cualquiera de estos casos se abrirá una ventana de interrogación (ENQ) para realizar una nueva contienda y proceder al cambio de propietario, en caso necesario . Para evitar el problema del sistema bloqueado directo, que se produce cuando un sistema está bloqueado porque sus vecinos no detectan su presencia entre sí y se mantienen transmitiendo, los sistemas que compiten por transmitir sobre la red eléctrica deben sincronizarse cada cierto tiempo. Esta sincronización se realiza mediante el envío de un pulso de sincronismo por varios sistemas al mismo tiempo. Los distintos sistemas que reciben el pulso modificarán su reloj para sincronizarse con el resto.
Existen varias formas de realizar este proceso de sincronización. Una de ellas consiste en que cada sistema envía el pulso de sincronismo, al mismo tiempo, con cierta probabilidad (probabilidad p) o bien se mantiene a la espera de recibir el pulso (con probabilidad 1-p) . Otra forma consiste en que un sistema envía pulsos de sincronis- mo durante N períodos SyncPeriod consecutivos, siendo N un número entero aleatorio preferentemente entre 3 y 8, y después escucha pulsos enviados por otros sistemas durante los siguientes M períodos consecutivos, siendo M otro número entero aleatorio preferentemente entre 3 y 8. En la figura 14 puede observarse un ejemplo de realización de esta forma de sincronización, donde el valor aleatoriamente obtenido de N es 3 y de M es 4.
Cuando el sistema está en modo "sistema único" envía siempre el pulso de sincronismo (con probabilidad 100%), permitiendo a otros sistemas a la escucha que se sincronicen, aunque no utilicen la red eléctrica para comunicar en ese momento.
Para generar las señales utilizadas en todo este proceso de coexistencia, (WBS, WBSecho, EOT, EOTecho y SYNCHRO) se utilizan preferentemente señales aleatorias con dos mitades temporales exactamente iguales . El tipo de señal representada se obtiene por la duración temporal de las mitades (en número de muestras) de las señales.
Para detectar estas señales con dos mitades iguales, se utilizarían bancos de correladores con distinto número de muestras de retardo entre sus entradas, de forma que discriminen qué tipo de señal fue enviado obteniendo un pico al correlar las dos partes de la señal con la duración adecuada. Cuando los representantes de dos sistemas diferentes envían dos señales del mismo tipo (esto es, con el mismo número de muestras), un tercer sistema puede recibir ambas señales desfasadas y hacer la correlación. En la figura 13 aparece un ejemplo en el que 2 señales del mismo tipo (con N muestras cada mitad) llegan desfasadas a un tercer sistema C, y el número de muestras del desfase coincide con el tamaño de una mitad de otra señal utilizada en el proceso de coexistencia (M) . Gracias a utilizar información aleatoria en la generación de las señales por cada sistema, la correlación cruzada de dos mitades diferentes (producidas por sistemas diferentes) no generarán picos de correlación, por lo que se reduce al mínimo la probabilidad de detección falsa de una de las señales utilizadas en el proceso de coexistencia.

Claims

- REIVINDICACIONES - 1.- PROCEDIMIENTO DE COEXISTENCIA DE MÚLTIPLES SISTEMAS DE TRANSMISIÓN DE DATOS SOBRE RED ELÉCTRICA, que comprende la comunicación entre distintos sistemas que utilizan la red eléctrica como canal de comunicaciones mediante división en el tiempo junto con la transmisión y recepción de señales características resistentes a ruidos impulsivos y de fácil detección, caracterizado porque:
- se envían señales de indicación de final de la transmi- sión, de forma que no es necesario realizar una reserva del tiempo de transmisión;
- se utilizan ventanas de interrogación para detectar qué sistemas quieren utilizar la red eléctrica como medio de transmisión en un determinado momento, minimizando los recursos del protocolo de coexistencia cuando sólo hay un sistema que utiliza la red eléctrica como canal;
- se utilizan ventanas de contienda, con N niveles de contienda, en el caso de existir varios sistemas que utilizan la misma red como canal, para decidir qué sistema puede transmitir por la red eléctrica en cada momento;
- se utilizan rangos solapados de prioridades para acceder al canal en caso de contienda de dos o más sistemas, seleccionándose los rangos según la calidad de servicio exigida por el tráfico a enviar y el tiempo desde la última posesión del canal;
- se realiza una sincronización periódica de los distintos sistemas mediante el uso de señales especiales de sincronización de sistemas por la red eléctrica para maximizar la probabilidad de detección y minimizar la probabilidad de falsa detección;
- los sistemas envían señales de eco de las señales de coexistencia utilizadas en este procedimiento; todo ello de manera que:
- se maximiza la capacidad de transmisión por el canal, incluso cuando no hay que coexistir con otros fabricantes, gracias a la utilización de un modo especial de "sistema único" ;
- el procedimiento sea dinámico, detectándose la entrada y salida de sistemas competidores por la red eléctrica y optimizando la distribución del canal en cada caso;
- la coexistencia se realice al nivel de red, esto es, entre sistemas que utilizan la red eléctrica como medio de transmisión, con la posibilidad de que todos los nodos de un sistema apliquen el procedimiento de la invención; - el procedimiento sea independiente de la tecnología utilizada tanto en el nivel físico como en el nivel de acceso al medio de los distintos sistemas coexistentes;
- la asignación del canal sea dinámica, por lo que el canal se utiliza eficientemente, permitiendo diferentes ocupacio- nes temporales dependiendo del tráfico y de la calidad de servicio requerida por cada sistema;
- se minimiza el problema del sistema bloqueado mediante la transmisión en miniceldas, siendo este problema el producido porque sistemas vecinos utilizan continuamente el canal, y el sistema no puede contender por la red eléctrica:
- se elimina el problema del sistema bloqueado mediante la sincronización de los distintos sistemas gracias al envío de pulsos de sincronismo de forma periódica; - se minimiza el problema del nodo oculto indirecto si el procedimiento indicado se realiza a nivel de nodo y se elimina si se realiza a nivel de red, ocurriendo este problema cuando un nodo no detecta el inicio de una transmisión porque está siendo interferido por otra, de forma que cuando termine esa transmisión determinará que el canal está libre y al empezar a transmitir interferirá a otros nodos;
2.- PROCEDIMIENTO DE COEXISTENCIA DE MÚLTIPLES SISTEMAS DE TRANSMISIÓN DE DATOS SOBRE RED ELÉCTRICA, según reivindicación 1, caracterizado porque el proceso de coexistencia se realiza, al menos, por uno de los nodos de cada red que reciban la señal emitida por otros sistemas que comparten la red eléctrica (nodo representante), siendo una particularización del procedimiento la consistente en que todos los nodos del sistema sean representantes del mismo, y realicen el proceso de coexistencia.
3.- PROCEDIMIENTO DE COEXISTENCIA DE MÚLTIPLES SISTEMAS DE TRANSMISIÓN DE DATOS SOBRE RED ELÉCTRICA, según reivindicación 1, caracterizado porque el proceso de coexistencia es aplicable a la coexistencia en cualquier otro medio compartido, como comunicaciones inalámbricas o redes de área local por cable coaxial o telefónico.
4.- PROCEDIMIENTO DE COEXISTENCIA DE MÚLTIPLES SISTEMAS DE TRANSMISIÓN DE DATOS SOBRE RED ELÉCTRICA, según reivindicación 2, caracterizado porque se realiza la sincronización de todos los nodos de los distintos sistemas al comienzo de cada trama, en la que el sistema que ha ganado acceso al canal, denominado sistema propietario, puede transmitir, estando dicha trama dividida en una o más miniceldas cuyo tamaño está ajustado para permitir la utilización adecuada de la red eléctrica para diferentes tipos de tráfico y para minimizar la posibilidad de tener un sistema bloqueado.
5.- PROCEDIMIENTO DE COEXISTENCIA DE MÚLTIPLES SISTEMAS DE TRANSMISIÓN DE DATOS SOBRE RED ELÉCTRICA, según reivindicación 4, caracterizado porque una minicelda puede ser utilizada para transmisión de datos, para la interrogación de qué sistemas quieren acceder a la red eléctrica, para resolver una contienda entre sistemas que pidieron comunicar anteriormente, o bien para realizar una combinación de las anteriores utilidades .
6.- PROCEDIMIENTO DE COEXISTENCIA DE MÚLTIPLES SISTEMAS DE TRANSMISIÓN DE DATOS SOBRE RED ELÉCTRICA, según reivindicación 5, caracterizado porque cuando el sistema propietario del canal termina de utilizarlo, tras un número entero de miniceldas, o transcurre el máximo tiempo que un sistema puede ser propietario del canal (MaxTransTime en modo "múltiples sistemas" o SyncPeriod en modo "sistema único"), envía una señal de final de transmisión (EOT), siendo esta señal retransmitida (con el correspondiente eco, EOTecho) por todos los sistemas que la escuchen, de forma que cualquier sistema vecino que lo desee se prepara para la contienda.
7.- PROCEDIMIENTO DE COEXISTENCIA DE MÚLTIPLES SISTEMAS DE TRANSMISIÓN DE DATOS SOBRE RED ELÉCTRICA, según reivindicación 6, caracterizado porque después del período de comunicación del sistema propietario, se abre una ventana de interrogación (ENQ) para que otros sistemas interesados en utilizar la red eléctrica como medio de transmisión envíen una señal de aviso (WBS); transmitiendo, los sistemas que detecten esta señal, el eco de la misma (WBSecho), de forma que si el poseedor del canal no detecta ninguna de estas señales (WBS o WBSecho) y desea seguir transmitiendo, envía el mismo la señal WBS después de la ventana de interrogación y se mantiene como propietario, o bien si detecta alguna de estas señales, comienza una ventana de contienda (CONT) .
8.- PROCEDIMIENTO DE COEXISTENCIA DE MÚLTIPLES SISTEMAS DE TRANSMISIÓN DE DATOS SOBRE RED ELÉCTRICA, según reivindicación 7, caracterizado porque la ventana de contienda se divide en N subventanas y cada sistema que quiera competir por el canal selecciona un número entre 0 y 2N -1 (CONTENTION KEY) , y transmite dicho número bit a bit desde el bit más significativo mediante señales WBS mientras no detecte un WBS o WBSecho en una subventana donde no transmitió WBS.
9.- PROCEDIMIENTO DE COEXISTENCIA DE MÚLTIPLES SISTEMAS DE TRANSMISIÓN DE DATOS SOBRE RED ELÉCTRICA, según reivindicación 8, caracterizado porque el sistema que consiguió enviar correctamente todo su número (CONTENTION KEY) se convierte en el nuevo propietario y puede utilizar el canal hasta un tiempo máximo (MaxTransTime) .
10.- PROCEDIMIENTO DE COEXISTENCIA DE MÚLTIPLES SISTEMAS DE TRANSMISIÓN DE DATOS SOBRE RED ELÉCTRICA, según reivindicaciones 8 y 9, caracterizado porque la selección del número de contienda (CONTENTION KEY) es aleatoria, o bien los 2N posibles números se agrupan en una serie de rangos superpuestos asociados a una determinada calidad de servicio (QoS) y el sistema en contienda elige un número aleatorio del rango adecuado, seleccionando rangos superiores en el caso de tener que realizar transmisión de tráfico con altas necesidades de calidad de servicio o bien en función del tiempo transcurrido desde la última posesión del canal.
11.- PROCEDIMIENTO DE COEXISTENCIA DE MÚLTI¬
PLES SISTEMAS DE TRANSMISIÓN DE DATOS SOBRE RED ELÉCTRICA, según reivindicación 1, caracterizado porque los sistemas están selectivamente en estado "múltiples sistemas" o en estado "sistema único", realizándose la transición hacia "múltiples sistemas" en el momento en que otro sistema responde a una contienda, y realizándose la transición a "sistema único" tras V veces consecutivas en las que no se produjo contienda en la ventana de interrogación (ENQ) después del pulso de sincronismo (SYNCHRO).
12.- PROCEDIMIENTO DE COEXISTENCIA DE MÚLTI¬
PLES SISTEMAS DE TRANSMISIÓN DE DATOS SOBRE RED ELÉCTRICA, según la reivindicación 1, caracterizado porque tras cierto período de tiempo (SyncPeriod) los representantes de cada sistema enviarán un pulso de sincronismo (SYNCHRO) al mismo tiempo para realizar el proceso de sincronización de los múltiples sistemas, selectivamente enviando dicho pulso con cierta probabilidad (probabilidad p) y monitorizando la transmisión de sincronismos por otros sistemas (con probabilidad 1-p), o bien enviando el pulso de sincroni- zación durante un número aleatorio de períodos SyncPeriod consecutivos y monitorizando la transmisión durante un número aleatorio de períodos SyncPeriod consecutivos posteriores; de forma que se resuelve el caso en que una red está bloqueada porque sus vecinos no detectan su presencia entre sí (sistema bloqueado directo), al estar todos los sistemas sincronizados entre si.
13.- PROCEDIMIENTO DE COEXISTENCIA DE MÚLTIPLES SISTEMAS DE TRANSMISIÓN DE DATOS SOBRE RED ELÉCTRICA, según reivindicación 12, caracterizado porque si un sistema determina que es el único que utiliza la red eléctrica como medio de transmisión, enviará el pulso de sincronismo (SYNCHRO) tras cada período de tiempo (SyncPeriod) con una probabilidad de 100% y abrirá una ventana de interrogación (ENQ) para permitir que nuevos sistemas puedan competir por el canal, después de dicho período.
14.- PROCEDIMIENTO DE COEXISTENCIA DE MÚLTIPLES SISTEMAS DE TRANSMISIÓN DE DATOS SOBRE RED ELÉCTRICA, según reivindicación 1, caracterizado porque si un sistema detecta una señal SYNCHRO, EOT o EOTecho entra en el proceso de interrogación o contienda en el caso de querer utilizar la red eléctrica como medio de transmisión; si detecta WBS o WBSecho, salvo los WBSecho detectados justo después de la transmisión de un WBS propio, se mantiene a la espera del final de la comunicación; y si detecta un EOT o EOTecho o SYNCHRO no seguido de ningún WBS o WBSecho ni durante ni justo después del período de contienda; o ninguna señal durante un período de al menos SyncPeriod si el sistema estaba en modo "sistema único" o bien de al menos MaxTransTime si estaba en modo "múltiples sistemas", determina que el canal está libre.
15.- PROCEDIMIENTO DE COEXISTENCIA DE MÚLTIPLES SISTEMAS DE TRANSMISIÓN DE DATOS SOBRE RED ELÉCTRICA, según reivindicación 1, caracterizado porque las señales utilizadas en el proceso de coexistencia son, selectivamen- te, señales conocidas en recepción y que se detectan mediante correlación o bien señales aleatorias con dos mitades iguales, siendo la duración temporal de estas mitades la que determina el tipo de señal (WBS, WBSecho, EOT, EOTecho o SYNCHRO) que se desea enviar.
16.- PROCEDIMIENTO DE COEXISTENCIA DE MÚLTI¬
PLES SISTEMAS DE TRANSMISIÓN DE DATOS SOBRE RED ELÉCTRICA, según reivindicación 15, caracterizado porque en el caso de utilizar señales aleatorias con dos mitades iguales, la detección en recepción se realiza con un banco de correla- dores con distinto número de muestras, de forma que discriminen el tipo de señal únicamente con la información de la separación entre las mitades iguales enviadas .
17.- PROCEDIMIENTO DE COEXISTENCIA DE MÚLTIPLES SISTEMAS DE TRANSMISIÓN DE DATOS SOBRE RED ELÉCTRICA, según reivindicaciones 15 y 16, caracterizado porque la probabilidad de una detección falsa de un tipo de señal provocada por dos nodos transmitiendo otro tipo de señal que llegan al receptor con un desfase igual al período de repetición de las mitades de la señal inicial, se minimiza al utilizar señales aleatorias para generar dos mitades iguales .
PCT/ES2002/000349 2001-08-03 2002-07-11 Procedimiento de coexistencia de multiples sistemas de transmision de datos sobre red electrica WO2003013019A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200101836A ES2181604B1 (es) 2001-08-03 2001-08-03 Procedimiento de coexistencia de multiples sistemas de transmision de datos sobre red electrica.
ESP2001O1836 2001-08-03

Publications (1)

Publication Number Publication Date
WO2003013019A1 true WO2003013019A1 (es) 2003-02-13

Family

ID=8498644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2002/000349 WO2003013019A1 (es) 2001-08-03 2002-07-11 Procedimiento de coexistencia de multiples sistemas de transmision de datos sobre red electrica

Country Status (2)

Country Link
ES (1) ES2181604B1 (es)
WO (1) WO2003013019A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087953A1 (en) * 2008-01-04 2009-07-16 Panasonic Corporation Method, system, integrated circuit, communication module, and computer-readable medium for achieving resource sharing including space and time reuse within a power line communication system
KR101420252B1 (ko) 2012-11-29 2014-07-17 한국전기연구원 다른 기종의 전력선 통신 시스템간 상호 공존을 위한 슬롯 할당 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278862A (en) * 1992-04-03 1994-01-11 Intellon Corporation Timing for spread-spectrum communication across noisy media
US5648958A (en) * 1995-04-05 1997-07-15 Gte Laboratories Incorporated System and method for controlling access to a shared channel for cell transmission in shared media networks
US5926476A (en) * 1996-07-09 1999-07-20 Ericsson, Inc. Network architecture for broadband data communication over a shared medium
US6243413B1 (en) * 1998-04-03 2001-06-05 International Business Machines Corporation Modular home-networking communication system and method using disparate communication channels
US20010048692A1 (en) * 2000-04-10 2001-12-06 Bernd Karner Method for network medium access control
DE10052179A1 (de) * 2000-10-20 2002-05-08 Siemens Ag Verfahren zum Übertragen digitaler Daten, insbesondere über ein Stromnetz, sowie zugehörige Einheiten und zugehöriges Programm

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278862A (en) * 1992-04-03 1994-01-11 Intellon Corporation Timing for spread-spectrum communication across noisy media
US5648958A (en) * 1995-04-05 1997-07-15 Gte Laboratories Incorporated System and method for controlling access to a shared channel for cell transmission in shared media networks
US5926476A (en) * 1996-07-09 1999-07-20 Ericsson, Inc. Network architecture for broadband data communication over a shared medium
US6243413B1 (en) * 1998-04-03 2001-06-05 International Business Machines Corporation Modular home-networking communication system and method using disparate communication channels
US20010048692A1 (en) * 2000-04-10 2001-12-06 Bernd Karner Method for network medium access control
DE10052179A1 (de) * 2000-10-20 2002-05-08 Siemens Ag Verfahren zum Übertragen digitaler Daten, insbesondere über ein Stromnetz, sowie zugehörige Einheiten und zugehöriges Programm

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087953A1 (en) * 2008-01-04 2009-07-16 Panasonic Corporation Method, system, integrated circuit, communication module, and computer-readable medium for achieving resource sharing including space and time reuse within a power line communication system
CN101939923A (zh) * 2008-01-04 2011-01-05 松下电器产业株式会社 电力线通信系统中用于获取包括空间和时间再用的资源共享的方法、系统、集成电路、通信模块、和计算机可读介质
US8073015B2 (en) 2008-01-04 2011-12-06 Panasonic Corporation Method, system, integrated circuit, communication module, and computer-readable medium for achieving resource sharing including space and time reuse within a power line communication system
US8482402B2 (en) 2008-01-04 2013-07-09 Panasonic Corporation Master communication device in a power line communication system and slave communication device in a power line communication system
KR101420252B1 (ko) 2012-11-29 2014-07-17 한국전기연구원 다른 기종의 전력선 통신 시스템간 상호 공존을 위한 슬롯 할당 방법

Also Published As

Publication number Publication date
ES2181604B1 (es) 2004-05-01
ES2181604A1 (es) 2003-02-16

Similar Documents

Publication Publication Date Title
KR101380933B1 (ko) 무선통신 시스템, 무선통신장치 및 무선통신방법과 컴퓨터프로그램
EP1845669B1 (en) Adaptive communication protocol for wireless networks
Chirdchoo et al. RIPT: A receiver-initiated reservation-based protocol for underwater acoustic networks
KR100742611B1 (ko) 초광대역 임펄스 통신을 위한 무선 통신 시스템과 무선통신 장치 및 그 방법
ES2546014T3 (es) Procedimiento para acceder a un medio mediante un dispositivo multicanal
US20040047319A1 (en) Contention-based medium access control for ad hoc wireless piconets
KR101602147B1 (ko) 근거리 네트워크에서의 데이터 전송을 위한 방법
KR101082922B1 (ko) 무선 개인영역 네트워크에서 우선 순위를 적용한무선통신방법
US20020141375A1 (en) Increasing link capacity via concurrent transmissions in centralized wireless LANs
KR20060135739A (ko) 분산식 매체 액세스 제어 방법, 통신 네트워크 및 무선장치
KR20010024100A (ko) 언코디네이트된 무선 멀티 유저 시스템에서의 주파수 호핑피코넷
PT1583309E (pt) Aparelho e método par reduzir a colisão de mensagens entre estações móveis que acedem em simultânio a uma estação de base num sistema de comunicações celular de cdma
US20070195798A1 (en) Medium access control method and device
KR20060063897A (ko) 무선 통신 시스템, 무선 통신 장치 및 무선 통신 방법, 및컴퓨터 프로그램
US8676982B2 (en) Home network domain master
US11057933B2 (en) Method for avoiding collision in synchronous wireless communication system
CN102316518A (zh) 一种改进的rts/cts通信控制方法
MXPA05000355A (es) Metodo para efectuar conmutacion inalambrica.
US4813012A (en) Terminal access protocol circuit for optical fiber star network
KR100797164B1 (ko) Csma/ca방식의 매체접근제어 프로토콜에서의통신방법
KR101511150B1 (ko) 분산형 인지 무선 네트워크에서의 채널 선점을 이용한 매체 접근 제어 방법
JP2020500491A (ja) ネットワークアクセスのための方法、システム、コントローラ、エンティティ及びコンピュータプログラム
WO2003013019A1 (es) Procedimiento de coexistencia de multiples sistemas de transmision de datos sobre red electrica
Gao et al. Radio resource management of D2D communication
Li et al. CRP-CMAC: A priority-differentiated cooperative MAC protocol with contention resolution for multihop wireless networks

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AU BR CA CN HU ID IL IN JP KP MA MX NZ PH PL RO SG US VN YU

Kind code of ref document: A1

Designated state(s): AE AU BR CA CN HU ID IL IN JP KP KR MA MX NZ PH PL RO SG US VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP