WO2003012156A1 - Procede de fabrication d'une piece mecanique, et piece mecanique ainsi realisee - Google Patents

Procede de fabrication d'une piece mecanique, et piece mecanique ainsi realisee Download PDF

Info

Publication number
WO2003012156A1
WO2003012156A1 PCT/FR2002/002596 FR0202596W WO03012156A1 WO 2003012156 A1 WO2003012156 A1 WO 2003012156A1 FR 0202596 W FR0202596 W FR 0202596W WO 03012156 A1 WO03012156 A1 WO 03012156A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
content
steels
samples
carbonitriding
Prior art date
Application number
PCT/FR2002/002596
Other languages
English (en)
Inventor
André BADARD
Pascal Daguier
Valérie CHABRETOU
Original Assignee
Ascometal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ascometal filed Critical Ascometal
Publication of WO2003012156A1 publication Critical patent/WO2003012156A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process

Definitions

  • the invention relates to the field of the steel industry, and, more specifically, that of mechanical steel parts such as pinions.
  • Steels for the gable industry must have a high resistance to contact fatigue. Most of the time, they undergo a carburizing or carbonitriding treatment to provide them with sufficient surface hardness and mechanical strength, while retaining good toughness at heart, in particular thanks to a carbon content of the order of 0. , 10 to 0.30% only. In the cemented layer, this carbon content can range up to around 1%.
  • Document US-A-5, 518,685 describes steels for the gable industry intended to be case-hardened.
  • They mainly contain, in weight percentages, 0.18 to 0.25% of C, 0.45 to 1% of Si, 0.40 to 0.70% of Mn, 0.30 to 0.70% of Ni, 1.0-0.5% Cr, 0.30-0.70% Mo, up to 0.50% Cu, 0.015-0.030% Ai, 0.03-0.30% V , 0.010 to 0.030% of Nb, up to 15 ppm of O, from 100 to 200 ppm of N. They undergo after hardening a quenching treatment avoiding the formation of ferrite at heart.
  • the Si and Mn contents are here kept within relatively low limits, to avoid intergranular oxidation during the cementation treatment.
  • JP-A-4-21757 describes steels for gearboxes intended to be case-hardened by plasma or under reduced pressure, then shot.
  • composition is, in weight percentages, 0.10 to 0.30% of
  • the object of the invention is to provide mechanical steel parts, in particular parts for gearboxes, having a low deformation in, service, so as to minimize the appearance of play, by preserving the dimensions and the geometry of the parts concerned.
  • the subject of the invention is a method for manufacturing a mechanical steel part, characterized in that the composition of the steel is, in weight percentages:
  • the steel can also contain at least one element selected from up to 0.02% of Te, up to 0.04% of Se, up to 0.07% of Pb, up to 0.05% of Ca, up to 0.08% Bi.
  • the steel contains from 0.008 to 0.05% of AI, from 0.02 to 0.05% of Nb and from 0.007 to 0.025% of N, and the carburizing or the carbonitriding is practiced between 950 and 1100 ° C.
  • the invention also relates to a mechanical part, characterized in that it is produced by the preceding method.
  • This mechanical part can be a gear room.
  • the invention consists in adjusting the composition of the steel, in particular its Si and Mn contents, to obtain a cyclic plastic deformation in service of the entire part as small as possible, and in coupling this adjustment of the composition to carrying out carburizing or carbonitriding under low pressure.
  • the plastic deformation in service depends on both the forces exerted on the part and the material used. It is linked on the one hand to the intrinsic mechanical characteristics of the material, in particular to the evolution of the elastic limit during cycling, that is to say the dynamic elastic limit, and on the other hand the structural stability in service, in particular the thermal or mechanical stability of the residual austenite often present in the materials used. This is likely to turn into martensite during heating of the room.
  • the inventors have determined the conditions of chemical composition of a steel for cemented or carbonitrided parts making it possible to minimize the plastic deformation produced during each stress cycle in service. They were established by carrying out a first series of compression tests and austenite stability measurements on steels whose composition reproduced that of the surface layer obtained after cementation of steels according to the invention. These results were then supplemented by tests carried out on samples in all points in accordance with the invention, which showed that these steels were capable of constituting cemented parts having, at heart, the desired mechanical properties, in particular a low residual deformation. during cyclic stresses.
  • Case-hardening or carbonitriding under low pressure (not limited to 3 to 20 mbar, or 300 to 2,000 Pa), generally followed by gas quenching which can also be followed by quenching with another fluid (oil, polymer, etc.).
  • gas quenching which can also be followed by quenching with another fluid (oil, polymer, etc.).
  • another fluid oil, polymer, etc.
  • . is a technique that can be used in the automotive sprocket industry due to its advantages in terms of service performance. Indeed, this technique makes it possible to avoid any oxidation of the parts to the extreme surface, which gives them better resistance to fatigue and in service.
  • oxidation is observed on the surface, in particular along the grain boundaries, which is very detrimental to the behavior in service.
  • this low pressure carburizing or carbonitriding is carried out at high temperature, that is to say between 950 and 1100 ° C., which allows the treatment time to be divided by 2 to 3, compared to an operation carried out at 820 - 930 ° C as usual. Under these conditions, it is preferable to adjust the composition of the steel so as to avoid excessive grain growth.
  • Case-hardening and carbonitriding being two surface treatment techniques having similar objectives and being carried out under similar conditions apart from the nature of the treatment atmosphere, they can be used indifferently within the framework of the process according to the invention.
  • FIG. 3 which shows the rate of residual deformation undergone during fatigue-compression tests by a steel sample used in the context of the invention and a reference sample with low silicon content, as a function of the number of deformation cycles.
  • the steels used in the context of the invention must have the following composition. All percentages are weight percentages.
  • the chromium content must be between 0.4 and 1.6%, so as to provide good hardenability to the steel and sufficient mechanical properties at the core in terms of hardness and resistance. A content greater than 1.6% is no longer necessary from this point of view, and moreover makes the production of steel more difficult.
  • the molybdenum optionally present makes it possible to adjust the hardenability of the steel. Above 0.30%, the addition becomes too expensive and superfluous to obtain the adjustment of the quenchability.
  • the nickel content must be between 0% (or the content resulting naturally from an elaboration without addition of Ni) and 0.6%.
  • the addition of Ni makes it possible to obtain better impact resistance which can prove to be important during the mounting of the mechanical assembly in which the part is integrated. Above 0.6%, no additional effect is obtained and the cost of steel is unnecessarily increased.
  • the aluminum content must be between traces resulting from the production and 0.06%. This deoxidizing element is not essential, the deoxidation obtained by silicon and manganese being sufficient. In addition, if the preparation and the casting are not cared for sufficiently, there is a risk of an excessive presence of alumina inclusions constituting priming sites for fatigue cracks, when quantities of Al significant are added.
  • the production and casting conditions are well controlled, it may be advantageous to add Al to avoid excessive grain growth during cementation or carbonitriding, which is favorable for less propagation. cracks.
  • the content of Ai is preferably 0.008 to 0.05%, to avoid excessive grain growth, in conjunction with preferential contents of Nb and N which will be mentioned below.
  • the copper content, resulting from the production of steel, must not exceed 0.30% in order not to degrade the ductility and the toughness of the core material.
  • the sulfur content can be between simple traces and 0.10%. This element can be added if one wishes to improve the machinability of the steel.
  • the phosphorus content must not exceed 0.03%, so as not to cause excessive segregation at the grain boundaries during tempering, which would weaken the steel.
  • the niobium content can be between simple traces resulting from the production and 0.050%.
  • An addition of niobium makes it possible to obtain a more homogeneous grain size which promotes the homogeneity of the plastic deformation in service and further minimizes this deformation. Above 0.050%, the effect of niobium no longer increases, and an addition to higher contents would unnecessarily increase the cost of steel.
  • the Nb content should preferably be between 0.02 and 0.05%.
  • Samples 11 to 16 are a first series of steel samples which cannot be used in the context of the invention, in that they have a carbon content greater than the required limit. But, as we have said, their composition simulates that of the case hardened layer of steels which would, at heart, conform to the composition required in the context of the invention. They make it possible to easily assess whether this composition would be suitable for solving the problem posed, which similar experiments carried out on steel samples usable in the context of the case hardened or carbonitrided would not make it possible to achieve with the same evidence. .
  • Table 1 also gives the composition of various reference samples, which cannot be used in the context of the invention and which do not simulate such steels, but which make it possible to assess the suitability for plastic deformations in service (destabilization of the residual austenite under cyclic stresses) as a function of the elements Mn and Si, for cemented layers of analyzes close to those obtained on the steels usable within the framework of the invention.
  • the Ni content was less than 0.25%, the Al content less than 0.050%, the Cu content less than 0.2% and the N content less than 150 ppm, knowing that this nitrogen content is not imperative and could be much higher without departing from the spirit of the invention. Indeed, a high nitrogen content is not prohibitive for the types of steel in question.
  • a relatively high content, from 70 to 250 ppm, is even recommended in the case where carburizing or carbonitriding takes place at high temperature.
  • Table 1 Compositions of samples from the first series of tests (in% by weight)
  • the samples exhibiting the best stability of the residual austenite are those which contain the most Si, the content of Mn also exerting a second influence.
  • Samples 12, 13 and 14 simulating the steels which can be used in the invention have very good residual austenite stability. Those of samples 11 and 16 are less good. But the sample 11, because of its relatively low silicon content compared to the previous ones, has a small amount of residual austenite at the start. This relative lack of structural stability therefore does not compromise the obtaining of the properties sought for the parts of the invention.
  • Concerning sample 16 it is mainly its relatively high chromium content which causes its initial amount of austenite residual is low, and the same comments can be made about it as for sample 11.
  • the remanent deformation undergone during a fatigue-compression test has been represented by a steel sample put in the form of a cylindrical stud of diameter 7mm and height 12mm as a function of the number of cycles, for a stress of 2000 MPa, at ambient temperature, and for different Si contents.
  • This test concerned samples 10, 11 and 12 of Table 1, for which the Mn content was approximately 1.25%, and the content of If 0.25%, 0.85% and 1.45% respectively. It can be seen that for the reference sample 10 to 0.25% of Si, the remanent deformation ranges from 0.42% after 5000 cycles to 0.75% after 10 6 cycles.
  • this remanent deformation is clearly lower for steels simulating the steels which can be used in the context of the invention.
  • the residual deformation ranges from 0.21% after 5000 cycles to 0.32% after 10 6 cycles.
  • the residual deformation ranges from 0.18% after 5000 cycles to 0.24% after 10 6 cycles.
  • FIG. 2 illustrates the remanent deformation undergone by various samples, put in the form mentioned above, after 10 6 cycles, as a function of the torque (Si%, Mn%).
  • the numbers of the samples concerned have been plotted on the figure, which can be distributed over three curves, corresponding to Mn contents of the order of 0.3%, 1% and 2%.
  • the best results are obtained with the reference samples, 2, 3, 5, 6 and with samples 13, 14, 15 and 16 simulating the steels which can be used in the context of the invention, namely remanent deformations less than 0, 8%.
  • samples 2, 3 and 5 moreover have insufficient stability of the residual austenite, while sample 6 has an excessive Si content, which is liable to result in the formation of ferrite islands. and making it difficult to shape the part.
  • Samples 13, 14, 15, 16 at 1% Mn and approximately 1% Si give good results from all points of view.
  • FIG. 3 illustrates the remanent deformation undergone by two samples from a second series of tests, put in the form mentioned above, for a stress of 1000 MPa, at ambient temperature. These samples had the compositions shown in Table 3.
  • Table 3 Compositions of samples from the second series of tests (in% by weight)
  • the 0.95% silicon sample was therefore in all respects consistent with the steels which can be used in the invention.
  • the reference sample differed only in its lower silicon content. It can be seen in FIG. 3 that the elevation of the silicon content to a value in accordance with those required by the invention provides the desired low residual deformation for the core of the case hardened parts of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

L'invention a pour objet un procédé de fabrication d'une pièce mécanique en acier, caractérisé en ce que la composition de l'acier est, en pourcentages pondéraux :0,12 C 0,30% 0,8 Si 1,5% 1,0 Mn 1,6% 0,4 Cr 1,6% 0 Mo 0,30% 0 Ni 0,6% 0 Al 0,06% 0 Cu 0,30% S 0,10% 0 P 0,03% 0 Nb 0,050% le reste étant du fer et des impuretés résultant de l'élaboration, et en ce qu'on fait subir ô ladite pièce une cémentation sous basse pression ou une carbonitruration sous basse pression. L'invention a également pour objet une pièce mécanique ainsi obtenue.

Description

Procédé de fabrication d'une pièce mécanique, et pièce mécanique ainsi réalisée.
L'invention concerne le domaine de la sidérurgie, et, plus précisément, celui des pièces mécaniques en acier telles que des pignons.
Les aciers pour pignonnerie doivent avoir une grande résistance à la fatigue de contact. La plupart du temps, ils subissent un traitement de cémentation ou de carbonitruration pour leur procurer une dureté superficielle et une résistance mécanique suffisantes, tout en leur conservant une bonne ténacité à cœur grâce, notamment, à une teneur en carbone de l'ordre de 0,10 à 0,30% seulement. Dans la couche cémentée, cette teneur en carbone peut aller jusqu'à 1 % environ. Le document US-A-5, 518,685 décrit des aciers pour pignonnerie destinés à être cémentés. Ils contiennent principalement, en pourcentages pondéraux, 0,18 à 0,25% de C, 0,45 à 1% de Si, 0,40 à 0,70% de Mn, 0,30 à 0,70% de Ni, 1 ,0 à 1 ,5% de Cr, 0,30 à 0,70% de Mo, jusqu'à 0,50% de Cu, 0,015 à 0,030% d'Aï, 0,03 à 0,30% de V, 0,010 à 0,030% de Nb, jusqu'à 15 ppm d'O, de 100 à 200 ppm de N. Ils subissent après cémentation un traitement de trempe-revenu évitant la formation de ferrite à cœur. Les teneurs en Si et Mn sont ici maintenues dans des limites relativement basses, pour éviter une oxydation intergranulaire lors du traitement de cémentation.
Le document JP-A-4-21757 décrit des aciers pour pignonnerie destinés à être cémentés par plasma ou sous pression réduite, puis grenailles.
Leur composition est, en pourcentages pondéraux, 0,10 à 0,30% de
C, 0,25 à 1 ,50% de Si, 0,2 à 2% de Mn, jusqu'à 0,015% de P, jusqu'à 0,020% de S, jusqu'à 2% de Cr, de 0,2 à 1% de Mo, avec Si + Mo compris entre 0,6 et
2%, 0,010 à 0,060% d'AI, de 50 à 250 ppm de N et jusqu'à 15 ppm d'O. Ces aciers ont une haute résistance à la pression superficielle subie par le pignon, dont la durée de vie est ainsi élevée.
Cependant, les utilisateurs de pignons, par exemple pour des boites de vitesses de véhicules, sont confrontés au problème suivant. On observe à la longue l'apparition de jeux entre les diverses pièces constituant le système mécanique auquel sont intégrés les pignons. Ces jeux dégradent les fonctionnalités des pièces, en augmentant leurs sollicitations cycliques, les vibrations, les nuisances sonores, et endommagent prématurément les pièces. Ces jeux sont liés aux modifications dimensionnelles des pièces, qui se produisent soit lors de leurs traitements thermiques et/ou thermochimiques, soit lors de leurs utilisations suite à des déformations plastiques en service. Pour éviter ou limiter les déformations plastiques en service, suivant la pièce et les sollicitations, il est parfois suffisant d'agir sur les propriétés de la couche superficielle correspondant à la zone où les contraintes exercées sont au plus haut niveau, en particulier en pignonnerie. Mais les propriétés du substrat (l'acier qui a subi la cémentation) vis à vis des déformations permanentes en cours de cyclage influencent aussi les déformations plastiques en service de la pièce.
Le but de l'invention est de fournir des pièces mécaniques en acier, notamment des pièces pour pignonnerie, présentant une faible déformation en , service, de manière à minimiser l'apparition de jeux, par conservation des cotes et de la géométrie des pièces concernées. A cet effet, l'invention a pour objet un procédé de fabrication d'une pièce mécanique en acier, caractérisé en ce que la composition de l'acier est, en pourcentages pondéraux :
- 0,12 < C < 0,30%
- 0,8 < Si < 1 ,5% - 1 ,0 < Mn < 1 ,6%
- 0,4 < Cr < 1 ,6%
- 0 < Mo < 0,30%
- 0 < Ni < 0,6%
- 0 < Al < 0,06% - 0 ≤ Cu < 0,30%
- 0 < S < 0,10%
- 0 < P < 0,03%
- 0 < Nb < 0,050% le reste étant du fer et des impuretés résultant de l'élaboration, et en ce qu'on fait subir à ladite pièce une cémentation sous basse pression ou une carbonitruration sous basse pression.
L'acier peut également contenir au moins un élément sélectionné parmi jusqu'à 0,02% de Te, jusqu'à 0,04% de Se, jusqu'à 0,07% de Pb, jusqu'à 0,05% de Ca, jusqu'à 0,08% de Bi. Selon une variante de l'invention, l'acier contient de 0,008 à 0,05 % d'AI, de 0,02 à 0,05 % de Nb et de 0,007 à 0,025 % de N, et la cémentation ou la carbonitruration est pratiquée entre 950 et 1100 °C.
L'invention a également pour objet une pièce mécanique, caractérisée en ce qu'elle est réalisée par le procédé précédent.
Cette pièce mécanique peut être une pièce de pignonnerie. L'invention consiste à ajuster la composition de l'acier, notamment ses teneurs en Si et Mn, pour obtenir une déformation plastique cyclique en service de l'ensemble de la pièce aussi faible que possible, et à coupler cet ajustement de la composition à la réalisation de la cémentation ou de la carbonitruration sous basse pression.
La déformation plastique en service dépend à la fois des efforts exercés sur la pièce et du matériau utilisé. Elle est liée d'une part aux caractéristiques mécaniques intrinsèques du matériau, en particulier à l'évolution de la limite d'élasticité au cours du cyclage, c'est-à-dire la limite d'élasticité dynamique, et d'autre part à la stabilité structurale en service, en particulier à la stabilité thermique ou mécanique de l'austénite résiduelle souvent présente dans les matériaux utilisés. Celle-ci est susceptible de se transformer en martensite lors d'un échauffement de la pièce. Les inventeurs ont déterminé des conditions de composition chimique d'un acier pour pièces cémentées ou carbonitrurées permettant de minimiser la déformation plastique produite à chaque cycle de sollicitation en service. Elles ont été établies en procédant à une première série d'essais de compression et à des mesures de stabilité de l'austénite sur des aciers dont la composition reproduisait celle de la couche superficielle obtenue après une cémentation d'aciers selon l'invention. Ces résultats ont ensuite été complétés par des essais réalisés sur des échantillons en tous points conformes à l'invention, qui ont montré que ces aciers étaient aptes à constituer des pièces cémentées ayant, à cœur, les propriétés mécaniques souhaitées, notamment une faible déformation rémanente lors de sollicitations cycliques.
La cémentation ou carbonitruration sous basse pression (à titre non limitatif de 3 à 20 mbar, soit 300 à 2000 Pa), généralement suivie d'une trempe gaz pouvant également être suivie d'une trempe par un autre fluide (huile, polymère...) est une technique utilisable dans le domaine de la pignonnerie automobile du fait de ses avantages en matière de tenue en service. En effet, cette technique permet d'éviter toute oxydation des pièces jusqu'à l'extrême surface, ce qui confère à celles-ci une meilleure tenue en fatigue et en service. Lors d'une cémentation ou carbonitruration classique, on observe une oxydation en surface, notamment le long des joints de grains, qui est très préjudiciable à la tenue en service. L'utilisation de l'acier décrit justifie d'autant plus l'emploi d'une cémentation ou carbonitruration sous basse pression qu'il contient des éléments fortement oxydables tels que Mn et Si et que cette technique permet en même temps de limiter les déformations. Avantageusement, cette cémentation ou carbonitruration basse pression est réalisée à haute température, c'est-à-dire entre 950 et 1100 °C, ce qui permet de diviser le temps de traitement par 2 à 3, par rapport à une opération réalisée à 820 - 930 °C comme habituellement. Dans ces conditions, il est préférable d'ajuster la composition de l'acier de manière à éviter une croissance excessive des grains.
La cémentation et la carbonitruration étant deux techniques de traitement de surface ayant des objectifs similaires et étant réalisées dans des conditions semblables mise à part la nature de l'atmosphère de traitement, elles peuvent être indifféremment utilisées dans le cadre du procédé selon l'invention.
L'invention sera mieux comprise à la lecture de la description qui suit, donnée en référence aux figures suivantes :
- la figure 1 qui montre le taux de déformation rémanente subie lors d'essais de fatigue-compression par deux échantillons d'aciers simulant les aciers utilisés dans le cadre de l'invention et un acier de référence, en fonction de la teneur en silicium de l'acier et du nombre de cycles de déformation ; - la figure 2 qui montre ce même taux de déformation rémanente après 106 cycles pour différents aciers simulant les aciers utilisés dans le cadre de l'invention et aciers de référence, en fonction de leurs teneurs en silicium et manganèse.
- la figure 3 qui montre le taux de déformation rémanente subie lors d'essais de fatigue-compression par un échantillon d'acier utilisé dans le cadre de l'invention et un échantillon de référence à basse teneur en silicium, en fonction du nombre de cycles de déformation.
Les aciers utilisés dans le cadre de l'invention doivent avoir la composition suivante. Tous les pourcentages sont des pourcentages pondéraux.
Leur teneur en carbone doit être comprise entre 0,12 et 0,3%, ce qui correspond sensiblement aux teneurs habituellement rencontrées sur les aciers pour pignonnerie. La cémentation ou la carbonitruration doit porter, comme il est classique, cette teneur à plus de 0,5%, généralement entre 0,7 et 1% dans, leur couche superficielle. Le traitement de cémentation ou carbonitruration est effectué par cémentation ou carbonitruration sous basse pression pour les raisons qui ont été indiquées.
On doit avoir une teneur en Mn suffisamment élevée entre 1 et 1 ,6% pour donner à l'acier une trempabilite permettant une moindre déformation aux traitements thermiques et/ou thermochimiques. En l'associant à une teneur en Si comprise entre 0,8 et 1 ,5% on agit, de plus, sur les déformations plastiques pouvant être provoquées par les sollicitations cycliques en service.
Les résultats expérimentaux présentés plus loin permettront de préciser les avantages de cette gamme de teneurs en Si et Mn. On peut déjà dire qu'une teneur en Si trop faible a pour effet une déformation rémanente trop importante lors d'efforts cycliques. Une teneur trop élevée est susceptible d'entraîner dans la couche de cémentation la formation d'îlots de ferrite préjudiciables aux propriétés mécaniques requises. Elle rendrait également plus difficile la mise en forme à chaud ou à froid de la pièce. Une teneur en Mn trop faible est également néfaste à la déformation rémanente lors d'efforts cycliques, car la faible quantité d'austénite résiduelle procure une stabilité structurelle insuffisante lors des déformations. Une teneur en Mn trop forte provoque une teneur en austénite résiduelle trop importante, ayant pour conséquence des caractéristiques mécaniques de ductilité trop faibles et des déformations rémanentes trop élevées.
Le teneur en chrome doit être comprise entre 0,4 et 1 ,6%, de manière à procurer une bonne trempabilite à l'acier et des propriétés mécaniques à coeur suffisantes en termes de dureté et de résistance. Une teneur supérieure à 1 ,6% n'est plus nécessaire de ce point de vue, et rend, de plus, l'élaboration de l'acier plus difficile.
Le molybdène optionnellement présent permet d'ajuster la trempabilite de l'acier. Au-dessus de 0,30%, l'addition devient trop coûteuse et superflue pour obtenir l'ajustement de la trempabilite.
La teneur en nickel doit être comprise entre 0% (ou la teneur résultant naturellement d'une élaboration sans ajout de Ni) et 0,6%. L'ajout de Ni permet d'obtenir une meilleure tenue aux chocs qui peut se révéler importante lors du montage de l'ensemble mécanique auquel la pièce est intégrée. Au-delà de 0,6%, on n'obtient pas d'effet supplémentaire et le coût de l'acier est inutilement accru. La teneur en aluminium doit être comprise entre des traces résultant de l'élaboration et 0,06%. Cet élément désoxydant n'est pas indispensable, la désoxydation que permettent d'obtenir le silicium et le manganèse étant suffisante. De plus, si l'élaboration et la coulée ne sont pas assez soignées, il y a un risque d'une présence excessive d'inclusions d'alumine constituant des sites d'amorçage pour les fissures de fatigue, lorsque des quantités d'Ai significatives sont ajoutées. Cependant, si les conditions d'élaboration et de coulée sont bien maîtrisées, il peut être intéressant d'ajouter de l'Ai pour éviter une croissance des grains excessive lors de la cémentation ou de la carbonitruration, ce qui est favorable à une moindre propagation des fissures. Si la cémentation ou la carbonitruration est pratiquée à haute température, la teneur en Ai est de 0,008 à 0,05 % de préférence, pour éviter une croissance excessive des grains, en conjonction avec des teneurs préférentielles en Nb et N qui seront citées plus loin. La teneur en cuivre, résultant de l'élaboration de l'acier, ne doit pas dépasser 0,30% pour ne pas dégrader la ductilité et la ténacité du matériau à coeur.
La teneur en soufre peut être comprise entre de simples traces et 0,10%. Cet élément peut être rajouté si on désire améliorer l'usinabilité de l'acier.
La teneur en phosphore ne doit pas dépasser 0,03%, afin de ne pas causer de ségrégation excessive aux joints de grains lors du revenu, ce qui fragiliserait l'acier.
La teneur en niobium peut être comprise entre de simples traces résultant de l'élaboration et 0,050%. Un ajout de niobium permet d'obtenir une taille de grains plus homogène qui favorise l'homogénéité de la déformation plastique en service et minimise encore cette déformation. Au delà de 0,050%, l'effet du niobium n'augmente plus, et une addition à des teneurs plus élevées augmenterait inutilement le coût de l'acier. Dans le cas d'une cémentation ou carbonitruration à haute température, la teneur en Nb doit de préférence être comprise entre 0,02 et 0,05 %.
Par ailleurs, il est envisageable d'ajouter à l'acier un ou plusieurs éléments permettant d'améliorer son usinabilité, à savoir du tellure (jusqu'à 0,02%), du sélénium (jusqu'à 0,04%), du plomb (jusqu'à 0,07%), du calcium 'usqu'à 0,05%), ou du bismuth (jusqu'à 0,08%)
Des essais ont été réalisés sur des échantillons d'acier massifs dont les compositions sont reportées dans le tableau 1. Les échantillons 11 à 16 sont une première série d'échantillons d'acier qui ne sont pas utilisables dans le cadre de l'invention, en ce qu'ils ont une teneur en carbone supérieure à la limite exigée. Mais, comme on l'a dit, leur composition simule celle de la couche cémentée d'aciers qui seraient, à cœur, conformes à la composition requise dans le cadre de l'invention. Ils permettent d'évaluer aisément si cette composition serait adaptée à la résolution du problème posé, ce que des expériences similaires réalisées sur des échantillons d'acier utilisables dans le cadre de l'invention cémentés ou carbonitrurés ne permettraient pas de réaliser avec la même évidence. Le tableau 1 donne également la composition de divers échantillons de référence, non utilisables dans le cadre de l'invention et ne simulant pas de tels aciers, mais permettant d'apprécier l'aptitude aux déformations plastiques en service (déstabilisation de l'austénite résiduelle sous sollicitations cycliques) en fonction des éléments Mn et Si, pour des couches cémentées d'analyses proches de celles obtenues sur les aciers utilisables dans le cadre de l'invention. Pour tous les échantillons du tableau 1, la teneur en Ni était inférieure à 0,25%, la teneur en Al inférieure à 0,050%, la teneur en Cu inférieure à 0,2% et la teneur en N inférieure à 150 ppm, sachant que cette teneur en azote n'a rien d'impératif et pourrait être nettement supérieure sans sortir de l'esprit de l'invention. En effet une teneur en azote élevée n'est pas rédhibitoire pour les types d'acier en cause. Une teneur relativement élevée, de 70 à 250 ppm, est même conseillée dans le cas où la cémentation ou carbonitruration a lieu à haute température.
Tableau 1 : Compositions des échantillons de la première série d'essais (en % pondéraux)
Figure imgf000010_0001
Une première expérience a consisté à évaluer, pour ces divers échantillons, la stabilité de l'austénite résiduelle. D'une part, on a mesuré la température à laquelle 50% du volume d'austénite résiduelle a été déstabilisée en martensite. D'autre part, on a mesuré le pourcentage d'austénite résiduelle déstabilisée à 350°C, qui est une température de toute façon supérieure à celle qu'atteignent les pièces de l'invention dans leurs utilisations privilégiées envisagées. Tableau 2 : Mesures de stabilité de l'austénite résiduelle
Figure imgf000011_0001
On notera que d'une manière générale, les échantillons présentant la meilleure stabilité de l'austénite résiduelle sont ceux qui contiennent le plus de Si, la teneur en Mn exerçant également une influence en second rang. Les échantillons de référence 6, 8 et 9, qui ont au moins une des teneurs en Mn et Si au dessus de ce qu'exige l'invention, présentent de très bonnes caractéristiques de stabilité structurelle, mais avec les inconvénients que l'on a signalés plus haut. Les échantillons 12, 13 et 14 simulant les aciers utilisables dans l'invention ont une stabilité de l'austénite résiduelle très bonne. Celles des échantillons 11 et 16 sont moins bonnes. Mais l'échantillon 11 , du fait de sa relativement faible teneur en silicium par rapport aux précédents, a une quantité d'austénite résiduelle faible au départ. Ce relatif manque de stabilité structurelle ne compromet donc pas l'obtention des propriétés recherchées pour les pièces de l'invention. Concernant l'échantillon 16, c'est principalement sa teneur relativement élevée en chrome qui fait que sa quantité initiale d'austénite résiduelle est faible, et qu'on peut formuler à son propos les mêmes commentaires que pour l'échantillon 11.
Sur la figure 1 , on a représenté la déformation rémanente subie lors d'un essai de fatigue-compression par un échantillon d'acier mis sous forme d'un plot cylindrique de diamètre 7mm et de hauteur 12mm en fonction du nombre de cycles, pour une contrainte de 2000 MPa, à température ambiante, et pour différentes teneurs en Si. Cet essai a concerné les échantillons 10, 11 et 12 du tableau 1 , pour lesquels la teneur en Mn était de 1 ,25% environ, et la teneur en Si respectivement de 0,25%, 0,85% et 1 ,45%. On voit que pour l'échantillon de référence 10 à 0,25% de Si, la déformation rémanente va de 0,42% après 5000 cycles à 0,75% après 106 cycles. En revanche, cette déformation rémanente est nettement pius faible pour les aciers simulant les aciers utilisables dans le cadre de l'invention. Pour l'échantillon 11 à 0,85% de Si, la déformation rémanente va de 0,21 % après 5000 cycles à 0,32% après 106 cycles. Pour l'échantillon 12 à 1 ,45% de Si, la déformation rémanente va de 0,18% après 5000 cycles à 0,24% après 106 cycles.
La figure 2 illustre la déformation rémanente subie par divers échantillons, mis sous la forme précédemment citée, après 106 cycles, en fonction du couple (Si%, Mn%). On a reporté sur la figure les numéros des échantillons concernés, qui peuvent se répartir sur trois courbes, correspondant à des teneurs en Mn de l'ordre de 0,3%, 1% et 2%. Les meilleurs résultats sont obtenus avec les échantillons de référence, 2, 3, 5, 6 et avec les échantillons 13, 14, 15 et 16 simulant les aciers utilisables dans le cadre de l'invention, à savoir des déformations rémanentes inférieures à 0,8%. Cependant, on a vu que les échantillons 2, 3 et 5 avaient par ailleurs une stabilité de l'austénite résiduelle insuffisante, alors que l'échantillon 6 a une teneur en Si excessive, risquant d'aboutir à la formation d'îlots de ferrite et rendant la mise en forme de la pièce difficile. Les échantillons 13, 14, 15, 16 à 1% de Mn et 1% de Si environ donnent de bons résultats à tous points de vue.
La figure 3 illustre la déformation rémanente subie par deux échantillons d'une deuxième série d'essais, mis sous la forme précédemment citée, pour une contrainte de 1000 MPa, à température ambiante. Ces échantillons avaient les compositions reportées dans le tableau 3. Tableau 3 : Compositions des échantillons de la deuxième série d'essais (en % pondéraux)
Figure imgf000013_0001
L'échantillon à 0,95% de silicium était donc en tous points conforme aux aciers utilisables dans l'invention. L'échantillon de référence n'en différait que par sa plus faible teneur en silicium. On voit sur la figure 3 que i'éiévation de la teneur en silicium jusqu'à une valeur conforme à celles exigées par l'invention procure la déformation rémanente faible souhaitée pour le cœur des pièces cémentées de l'invention.
Ces essais montrent que le meilleur compromis entre les différentes propriétés exigées, pour les pièces mécaniques cémentées devant être résistantes à la fatigue de contact et ne se déformer que très peu durant les traitements thermochimiques et durant leur utilisation, est obtenu pour les aciers simulant la couche cémentée des aciers utilisés dans le procédé selon l'invention. Cela justifie la gamme de compositions imposée à ces aciers.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une pièce mécanique en acier, caractérisé en ce qu'on fabrique une pièce en acier de composition, en pourcentages pondéraux : - 0,12<C<0,30%
- 0,8 < Si < 1,5%
- 1,0<Mn<1,6%
- 0,4<Cr<1,6%
- 0 < Mo < 0,30% - 0<Ni<0,6%
- 0 < Al < 0,06%
- 0 < Cu < 0,30%
- 0<S<0,10%
- 0 < P < 0,03% - 0 < Nb < 0,050% le reste étant du fer et des impuretés résultant de l'élaboration, et en ce qu'on fait subir à ladite pièce une cémentation sous basse pression ou une carbonitruration sous basse pression.
2. Procédé selon la revendication 1, caractérisé en ce que l'acier contient au moins un élément sélectionné parmi jusqu'à 0,02% de Te, jusqu'à
0,04% de Se, jusqu'à 0,07% de Pb, jusqu'à 0,05% de Ca, jusqu'à 0,08% de Bi.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'acier contient de 0,008 à 0,05 % d'AI, de 0,02 à 0,05 % de Nb et de 0,007 à 0,025 % de N, et en ce que la cémentation ou la carbonitruration est pratiquée entre 950 et 1100 °C.
4. Pièce mécanique, caractérisée en ce qu'elle a été obtenue par le procédé selon l'une des revendications 1 à 3.
5. Pièce mécanique selon la revendication 4, caractérisée en ce qu'il s'agit d'une pièce de pignonnerie.
PCT/FR2002/002596 2001-07-24 2002-07-19 Procede de fabrication d'une piece mecanique, et piece mecanique ainsi realisee WO2003012156A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0109871 2001-07-24
FR0109871A FR2827875B1 (fr) 2001-07-24 2001-07-24 Acier pour pieces mecaniques, et pieces mecaniques cementees ou carbonitrurees realisees a partir de cet acier

Publications (1)

Publication Number Publication Date
WO2003012156A1 true WO2003012156A1 (fr) 2003-02-13

Family

ID=8865843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/002596 WO2003012156A1 (fr) 2001-07-24 2002-07-19 Procede de fabrication d'une piece mecanique, et piece mecanique ainsi realisee

Country Status (3)

Country Link
AR (1) AR034875A1 (fr)
FR (1) FR2827875B1 (fr)
WO (1) WO2003012156A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2868083A1 (fr) * 2004-03-24 2005-09-30 Ascometal Sa Acier pour pieces mecaniques, procede de fabrication de pieces mecaniques l'utilisant et pieces mecaniques ainsi realisees
CN101942605A (zh) * 2010-09-13 2011-01-12 江小明 一种硅锰钢及其制备方法
CN101974873A (zh) * 2010-09-13 2011-02-16 江苏宜鹏锻压机械制造有限公司 一种矿用挖掘机回转支承环轨的加工方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757711B1 (fr) * 2005-08-24 2013-03-27 Daido Steel Co.,Ltd. Portions de machines carburées
CA2771090C (fr) 2009-08-07 2017-07-11 Swagelok Company Carburation a basse temperature sous vide partiel
DK2804965T3 (da) 2012-01-20 2020-12-14 Swagelok Co Samtidigt flow af aktiveringsgas ved lavtemperatur-karburering

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194149A (ja) * 1989-01-23 1990-07-31 Nippon Steel Corp 浸炭―ショットピーニング用鋼
EP0465333A1 (fr) * 1990-07-02 1992-01-08 Acieries Aubert Et Duval Procédé et installation de cémentation de pièces en alliage métallique à basse pression
JPH0421757A (ja) * 1990-05-15 1992-01-24 Nissan Motor Co Ltd 高面圧歯車
JPH08109435A (ja) * 1994-10-11 1996-04-30 Toa Steel Co Ltd 低歪み型浸炭焼入れ歯車用鋼
JPH0959756A (ja) * 1995-08-22 1997-03-04 Kobe Steel Ltd 耐高面圧浸炭部品の製法
EP0769566A1 (fr) * 1995-09-29 1997-04-23 Toa Steel Co., Ltd. Acier de cémentation pour engrenages
JPH09111403A (ja) * 1995-10-11 1997-04-28 Toa Steel Co Ltd 低歪み型浸炭焼入れ歯車用鋼材
JPH09287644A (ja) * 1996-04-23 1997-11-04 Toa Steel Co Ltd 高強度、低熱処理変形歯車およびその製造方法
FR2784692A1 (fr) * 1998-10-20 2000-04-21 Aubert & Duval Sa Acier de construction cementable, procede pour son obtention et pieces formees avec cet acier
JP2000273574A (ja) * 1999-03-25 2000-10-03 Mitsubishi Seiko Muroran Tokushuko Kk 浸炭あるいは浸炭窒化処理用鋼
EP1069198A1 (fr) * 1999-01-28 2001-01-17 Sumitomo Metal Industries, Ltd. Produit en acier destine a des pieces structurelles de machines

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2705365B1 (fr) * 1993-05-14 1995-08-18 Creusot Loire Acier résistant à l'abrasion et tôle en acier.

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194149A (ja) * 1989-01-23 1990-07-31 Nippon Steel Corp 浸炭―ショットピーニング用鋼
JPH0421757A (ja) * 1990-05-15 1992-01-24 Nissan Motor Co Ltd 高面圧歯車
EP0465333A1 (fr) * 1990-07-02 1992-01-08 Acieries Aubert Et Duval Procédé et installation de cémentation de pièces en alliage métallique à basse pression
JPH08109435A (ja) * 1994-10-11 1996-04-30 Toa Steel Co Ltd 低歪み型浸炭焼入れ歯車用鋼
JPH0959756A (ja) * 1995-08-22 1997-03-04 Kobe Steel Ltd 耐高面圧浸炭部品の製法
EP0769566A1 (fr) * 1995-09-29 1997-04-23 Toa Steel Co., Ltd. Acier de cémentation pour engrenages
JPH09111403A (ja) * 1995-10-11 1997-04-28 Toa Steel Co Ltd 低歪み型浸炭焼入れ歯車用鋼材
JPH09287644A (ja) * 1996-04-23 1997-11-04 Toa Steel Co Ltd 高強度、低熱処理変形歯車およびその製造方法
FR2784692A1 (fr) * 1998-10-20 2000-04-21 Aubert & Duval Sa Acier de construction cementable, procede pour son obtention et pieces formees avec cet acier
EP1069198A1 (fr) * 1999-01-28 2001-01-17 Sumitomo Metal Industries, Ltd. Produit en acier destine a des pieces structurelles de machines
JP2000273574A (ja) * 1999-03-25 2000-10-03 Mitsubishi Seiko Muroran Tokushuko Kk 浸炭あるいは浸炭窒化処理用鋼

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 014, no. 470 (C - 0769) 15 October 1990 (1990-10-15) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 180 (C - 0935) 30 April 1992 (1992-04-30) *
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 08 30 August 1996 (1996-08-30) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 07 31 July 1997 (1997-07-31) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 08 29 August 1997 (1997-08-29) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 03 27 February 1998 (1998-02-27) *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 13 5 February 2001 (2001-02-05) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2868083A1 (fr) * 2004-03-24 2005-09-30 Ascometal Sa Acier pour pieces mecaniques, procede de fabrication de pieces mecaniques l'utilisant et pieces mecaniques ainsi realisees
WO2005098070A2 (fr) * 2004-03-24 2005-10-20 Ascometal Acier pour pieces mecaniques, procede de fabrication de pieces mecaniques l'utilisant et pieces mecaniques ainsi realisees
WO2005098070A3 (fr) * 2004-03-24 2006-10-05 Ascometal Sa Acier pour pieces mecaniques, procede de fabrication de pieces mecaniques l'utilisant et pieces mecaniques ainsi realisees
JP2007530780A (ja) * 2004-03-24 2007-11-01 アスコメタル 機械的部品用の鋼材、該鋼材から機械的部品を製造する方法、および該鋼材を用いて得られる機械的部品
AU2005232002B2 (en) * 2004-03-24 2010-07-29 Ascometal Steel for mechanical parts, method for producing mechanical parts from said steel and the thus obtainable mechanical parts
CN101942605A (zh) * 2010-09-13 2011-01-12 江小明 一种硅锰钢及其制备方法
CN101974873A (zh) * 2010-09-13 2011-02-16 江苏宜鹏锻压机械制造有限公司 一种矿用挖掘机回转支承环轨的加工方法

Also Published As

Publication number Publication date
FR2827875A1 (fr) 2003-01-31
FR2827875B1 (fr) 2006-09-15
AR034875A1 (es) 2004-03-24

Similar Documents

Publication Publication Date Title
EP1426453B1 (fr) Procédé de fabrication d&#39;une pièce forgée en acier
EP1896624B1 (fr) Composition d&#39;acier inoxydable martensitique, procede de fabrication d&#39;une piece mecanique a partir de cet acier et piece ainsi obtenue
EP2310546B1 (fr) Acier martensitique durci à teneur faible en cobalt, procédé de fabrication d&#39;une pièce à partir de cet acier, et pièce ainsi obtenue
CA2984131C (fr) Acier, produit realise en cet acier, et son procede de fabrication
EP2164998B1 (fr) Acier martensitique durci à teneur faible ou nulle en cobalt, procédé de fabrication d&#39;une pièce à partir de cet acier, et pièce ainsi obtenue
CA3001158C (fr) Acier, produit realise en cet acier, et son procede de fabrication
EP3783117A1 (fr) Tôles prerevêtues permettant la fabrication de pieces d&#39;acier revêtues et durcies a la presse
EP0890653B1 (fr) Procédé de fabrication d&#39;une pièce en acier cementée ou carbonitrurée et acier pour la fabrication de cette pièce
FR2590947A1 (fr) Palier a roulement a grande duree de vie
EP3704280A1 (fr) Acier inoxydable martensitique, et son procédé de fabrication
CA2559562C (fr) Acier pour pieces mecaniques, procede de fabrication de pieces mecaniques l&#39;utilisant et pieces mecaniques ainsi realisees
WO2003012156A1 (fr) Procede de fabrication d&#39;une piece mecanique, et piece mecanique ainsi realisee
EP2134882B1 (fr) Acier micro-allié à bonne tenue à l&#39;hydrogène pour le formage à froid de pièces mécaniques à hautes caractéristiques
BE899854A (fr) Procede pour fabriquer du tube d&#39;acier cintre ayant une resistance mecanique et une tenacite a basse temperature excellentes.
FR2781813A1 (fr) Acier pour la fabrication d&#39;une piece pour roulement
EP0884399B1 (fr) Procédé de fabrication d&#39;un ressort en acier, ressort obtenu et acier pour la fabrication d&#39;un tel ressort
EP4347903A1 (fr) Pièce en acier mise en forme à chaud et procédé de fabrication
FR2741360A1 (fr) Acier inoxydable a deux phases superplastique ayant une faible resistance a la deformation et d&#39;excellentes proprietes d&#39;allongement
WO2000023632A1 (fr) Acier de construction cementable, procede pour son obtention et pieces formees avec cet acier
FR2935988A1 (fr) Acier, notamment pour roulements et pieces mecaniques aptes a la cementation ou a la carbonitruration, et pieces realisees avec cet acier.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP