WO2003006362A1 - Dispositif de production de nanoparticules chargees negativement et procede connexe - Google Patents

Dispositif de production de nanoparticules chargees negativement et procede connexe Download PDF

Info

Publication number
WO2003006362A1
WO2003006362A1 PCT/CN2002/000328 CN0200328W WO03006362A1 WO 2003006362 A1 WO2003006362 A1 WO 2003006362A1 CN 0200328 W CN0200328 W CN 0200328W WO 03006362 A1 WO03006362 A1 WO 03006362A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitter
platinum
gold
lead
iridium
Prior art date
Application number
PCT/CN2002/000328
Other languages
English (en)
French (fr)
Inventor
Moxi Fang
Yue Sun
Original Assignee
Moxi Fang
Yue Sun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moxi Fang, Yue Sun filed Critical Moxi Fang
Priority to AU2002257508A priority Critical patent/AU2002257508B2/en
Priority to EP02727178A priority patent/EP1413545A4/en
Priority to MXPA04000225A priority patent/MXPA04000225A/es
Priority to KR1020047000357A priority patent/KR100619322B1/ko
Priority to US10/483,843 priority patent/US7390384B2/en
Priority to CA002452581A priority patent/CA2452581C/en
Priority to JP2003512141A priority patent/JP2004533940A/ja
Priority to BR0211056-3A priority patent/BR0211056A/pt
Publication of WO2003006362A1 publication Critical patent/WO2003006362A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/44Applying ionised fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/081Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing particle radiation or gamma-radiation
    • B01J19/085Electron beams only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/38Particle charging or ionising stations, e.g. using electric discharge, radioactive radiation or flames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T23/00Apparatus for generating ions to be introduced into non-enclosed gases, e.g. into the atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention relates to a device and method for generating nano particles, in particular to a device and method for combining two types of unrelated particles and charges in biometeorology and physics to generate a brand-new negatively charged nano particle, Used in medical, home appliances, aseptic engineering, fresh-keeping engineering, biological engineering and other fields. Background technique
  • Nanoparticles exhibit small size effects, surface and interface effects, and quantum size effects, and have large specific surface areas and surface atomic numbers. Surface and interface effects will decrease with the particle size, and the specific surface area will increase sharply, increasing the number of atoms on the surface, greatly enhancing the activity of the nanoparticles; due to the small size effect and surface effect, nanoparticles of different sizes At the same time, it also causes changes in the surface electron spin conformation and the distribution of the electronic energy spectrum. Due to the quantum size effect of the nano-particles, the electronic energy levels appear discrete energy levels, and as the size of the nano-particles changes, the energy-level spacing also changes. Nanoparticles in air aerosols are composed of different particles and sizes. Due to the above characteristics of the nanoparticles, these nanoparticles of different sizes and sizes greatly broaden the ability to combine with electrons of different energy levels, forming a wide electron affinity band.
  • Electrosol Center which sprayed compressed gas to atomize physiological saline, while ejecting electrons in the same direction.
  • the ejector was at a potential of 26kv-60kv. Cheng charge electrosol.
  • respiratory diseases such as: bronchitis and asthma, upper respiratory infections, emphysema, laryngitis, pharyngitis, etc.
  • this device also needs an air pump, a liquid delivery system, etc.
  • Auxiliary equipment, and the particles of atomized normal saline are mostly not nano-sized particles.
  • the purpose of the present invention is to use a micron-scale or smaller micron-scale electron emission electrode.
  • the electrode surface has a sufficiently strong electric field, the surface barrier of the electrode will be narrowed, and the electrons of the electrode will pass through the tunnel due to the quantum mechanical tunneling effect. Escape, forming field electron emission, can provide high emission current density.
  • the invention combines the physical properties of the nanoparticles with the quantum mechanical tunneling effect.
  • the electrons e emitted from the electron emitters adjust the energy and cause the electrons to attach to the nanoparticles Nm with a wide electron affinity band during the collision with the particles in the aerosol, forming a new type of negatively charged nanoparticles N _ m, that is: e + Nm ⁇ N'm.
  • the new particles are produced by using the physical properties of the nanoparticles and the tunneling effect, the result is that the new negatively charged nanoparticles are composed of only the nanoparticles, without any other compounds and impurities.
  • a negatively charged nanoparticle generating device includes a power source, a casing, and a control group. Components, an ultra-microelectronic emitter, wherein the power supply device is connected to the ultra-microelectronic emitter and a control component, respectively, and the ultra-microelectronic emitter is at a potential of negative 2KV to negative 29KV to the ground.
  • the ultra-microelectronic emitter means that the size of the electrode emitter portion is on the order of micrometers or smaller.
  • the material of the ultra-microelectronic emitter used in the present invention is platinum, gold, osmium, iridium, tungsten or carbon fiber or a combination thereof, or an alloy whose main component is platinum, gold, osmium, iridium and / or tungsten .
  • the shape can be any one of a disc shape, a cylindrical shape, a zigzag shape, a needle shape, a sharp shape, a spherical shape, a semispherical shape, an arc shape, a circular ring shape, a strip shape, or a combination of the above shapes.
  • a nanoelectron emitter can consist of a single or multiple electrodes. The size of the emitter portion of the nanoelectronic emitter is 100 microns.
  • the method for generating negatively charged nanoparticles according to the present invention is: using a negatively charged particle generating device composed of a power source device connected to an ultramicroelectronic emitter and a control component, so that the nanoparticles in the air and the ultramicroelectronic emitter are connected to the power Under the action of the control component, the electrons emitted by the tunneling effect are combined with the nanoparticles in the potential range of minus 2KV to minus 29KV to the ground to generate a brand-new negatively charged nanoparticle.
  • Electrode shape, electrode size, and different devices are used to select the potential range.
  • the field electron emission due to the tunneling effect, and the electron e generated at a high current density can adjust the energy during the collision with the particles in the aerosol (for example, high-energy electrons, during the collision, the energy loss is reduced, Energy), so that electrons are attached to nanoparticles Nm of different sizes with a wide energy band (nanoparticles in the air are composed of different molecular groups, solid, liquid, gaseous and different sizes (10 ⁇ 7 -10_ 9 meters) Nanoparticle composition) to achieve the following reactions:
  • Negatively-charged nanoparticles are formed and quickly diffuse outward to cover a certain area under the action of any potential electric field between negative 2KV and negative 29KV.
  • the production of the above ultra-microelectronic emitter can be performed according to one of the following methods-a. Fixing platinum, gold, and carbon fiber filaments on a glass support by melting; the lead-out end can be made of platinum, gold, and carbon fiber A conductive adhesive made of a conductive paste (such as a silver powder epoxy blend) Glue) and lead it out after bonding with the copper wire, and the platinum wire can also be led out after being melted with the wire at low temperature.
  • a conductive adhesive made of a conductive paste (such as a silver powder epoxy blend) Glue
  • the lead-out terminal can be led out by bonding platinum, gold, osmium, tungsten, iridium, and carbon fiber with a conductive adhesive (such as a conductive adhesive made of a silver powder epoxy resin mixture) to a copper wire.
  • the fixing method can be referred to a.
  • c Arrange platinum, gold, rhenium, tungsten, iridium, carbon fiber wires, etc. on the surface of the insulator, arrange them in various shapes such as combined bars, circular rings, arcs, etc .; then use an adhesive such as epoxy resin For fixing and bonding, etc .; the method of fixing the insulator material, the lead-out terminal, and the wire can be referred to a and b.
  • the lead-out terminal can be bonded with conductive adhesive and the lead wire, and the lead-out wire and the electrode can also be fixed to the insulator at the same time by mechanical methods.
  • the following uses two specific examples to illustrate the above connection.
  • the first solution is to pull out with epoxy resin and conductive glue, that is, under the sawtooth electrode is epoxy resin, and below it is an insulator. wire.
  • Another solution is: use a mechanical fixing scheme, that is, there is an insulator under the sawtooth electrode, and the two sides of the sawtooth electrode are clamped with rivets, and the one side of the clamp and the lead wire are fixed with rivets. .
  • the sharp and needle electrodes can also adopt the above solution, but they are different in specific structure.
  • needle electrodes do not need to use fixing clamps, but pin or rivet sleeves are used to directly fix the electrodes and lead wires on the insulator.
  • Ultramicroelectronic emitters can be made using photolithography.
  • the method is on the insulator plate, A uniform metal film is plated by sputtering or sputtering.
  • the material of the metal film can be platinum, gold, iridium, etc., and then covered with a photosensitive polymer material film such as polyimide, and then subjected to photolithography to make it Form electrodes of desired shape.
  • the base material of the electrode may be Si / Si0 2 , quartz, glass, silicon nitride, or the like. It can be drawn out by connecting conductive adhesive with copper wire.
  • the size of the negatively charged nanoparticles is smaller than that of red blood cells and ordinary bacteria in the blood. It is a fraction or less of them. They can enter the body through the body's breathing and skin and mucous membranes, reach the lungs and enter the blood circulation, and release their charge. It can improve the balance of the cell wall charge and become a bioelectricity that can have a direct biological effect on the physiological state of the human body, tissue cells and metabolic processes.
  • the negatively charged nanoparticles that enter the body directly participate in the tissue-cell-molecule level electrical metabolism process, promote the conversion of bioelectricity, adjust the body's own potential balance, and improve the natural physiological state and biochemical environment of the human body. It exerts its non-specific and broad-spectrum medical effects through neuro-humoral regulatory functions.
  • Negatively-charged nanoparticles with significant biological effects have obvious conditioning effects on the nervous system, cardiovascular system, respiratory system, urinary system, and digestive system, and can treat a variety of diseases.
  • the therapeutic effects have attracted widespread attention in clinical applications. .
  • bioelectricity composed of negatively charged nanoparticles can be widely used in electronic equipment in various fields such as physical medical equipment, household appliances, biological engineering, fresh-keeping engineering, aseptic engineering, and environmental improvement.
  • FIG. 1 is a principle block diagram of the present invention
  • FIG. 2 is a schematic diagram of the structure of the epoxy resin and conductive adhesive used for the zigzag electrode
  • FIG. 3 is a schematic diagram of the structure of the zigzag electrode by mechanical fixing. detailed description
  • the device of the present invention is composed of an ultra-microelectronic emitter 1, a power supply 2, a device casing 3, and a control component 4. This is the basic building block. Depending on the application and equipment, other components can be added, such as a multifunctional stand or a turntable. The present invention can also be used in combination with other equipment to form a completely new function equipment, the control part of which is composed with the control of other components.
  • the ultramicroelectronic emitter can use different materials and shapes.
  • the ultramicroelectronic emitter of a device can be composed of single or multiple electrodes or combined electrodes; due to the structure, size, The shape and the material of the village are different, and the purpose of use is different, and the ground is at a potential of negative 2KV to negative 29KV; therefore, a completely different shape, function and structure of the device casing are designed.
  • an epoxy resin and a conductive adhesive are used to fix and lead the electrode.
  • the sawtooth electrode 8 is fixed with an epoxy resin 7 and an insulator 6 underneath.
  • the lead 5 is led out from one end of the electrode 8 through the conductive adhesive 9.
  • the electrode is fixed and drawn out by a mechanical fixing method.
  • the sawtooth electrode 8 is fixed to the insulator 6 through a fixing chuck 10 and a rivet 11.
  • the lead wires 5 are led out through the fixing chuck 10 and the rivet 11.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Veterinary Medicine (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Cold Cathode And The Manufacture (AREA)

Description

荷负电纳米粒子产生装置及方法 技术领域
本发明涉及一种纳米粒子产生装置及方法, 尤其涉及一种将生物气象 学和物理学中两种不相关联的粒子和电荷结合起来, 产生一种全新的荷负 电纳米粒子的装置及方法, 以用于医疗、 家电、 无菌工程、 保鲜工程、 生 物工程等领域。 背景技术
在生物气象学中, 科学工作者将空气环境的状态称之为气溶胶状态。 以气溶胶状态分散于空气中的分子团、 液态和固态粒子, 大多数为纳米级 粒子。
纳米粒子表现出小尺寸效应、 表面与界面效应和量子尺寸效应, 具有 大的比表面积和表面原子数。 表面与界面效应将随着粒径减小, 比表面积 急剧变大, 使处于表面的原子数越来越多, 大大增强了纳米粒子的活性; 由于小尺寸效应和表面效应, 不同尺寸的纳米粒子同时也引起表面电子自 旋构象和电子能谱分布的变化; 由于纳米粒子的量子尺寸效应, 电子能级 出现离散能级现象, 而且随着纳米粒子尺寸的变化, 能级间距也随之变化。 空气气溶胶中的纳米粒子是由不同微粒和尺寸组成。 由于纳米粒子的上述 特性, 这些不同粒子和尺寸的纳米粒子大大加宽了与不同能级电子相结合 的能力, 形成很宽的电子亲和能带。
现在的问题是, 采用什么样的电子发射电极, 使其表面有足够强的电 场时, 电极表面势垒变窄, 电极的电子将由于量子力学的隧道效应, 由隧 道贯穿逸出形成场电子发射, 提高发射电流密度, 是个正在研究的课题。
60年代美国得克萨斯州等地曾建立荷电气溶胶中心, 利用喷射压缩气 体将生理盐水雾化, 同时同方向喷出电子, 喷射器处于 26kv-60kv电位, 形 成荷电气溶胶。 尽管用以治疗呼吸系统疾病, 例如: 支气管炎及哮喘、 上 呼吸道感染、 肺气肿、 喉炎、 咽炎等均有一定疗效, 但此装置除喷射器外, 还要有气泵, 液体输送系统等辅助设备, 而且雾化的生理盐水的颗粒, 大 多不是纳米级粒子, 尽管在 26KV-60KV电场作用下, 但荷电气溶胶行程仅 1.8m左右, 超过此距离而消失。 这种荷电气溶胶不能直接参与组织-细胞- 分子水平的电代谢过程, 所以生物效应与灭菌功效均较差。 发明内容
本发明目的是采用微米级或小于微米级的超微电子发射电极, 当电极 表面有足够强的电场时, 电极表面势垒将减窄, 电极的电子将由于量子力 学隧道效应, 而由隧道贯穿逸出, 形成场电子发射, 能提供很高的发射电 流密度。
本发明是使纳米粒子的物理特性与量子力学隧道效应相结合。 由电子 发射极发出的电子 e在与空气气溶胶中粒子碰撞过程中, 调节能量并使电 子附着于具有宽的电子亲和能带的纳米粒子 Nm上, 形成一种全新的荷负 电纳米粒子 N_m, 即实现: e+Nm→N'm。
. 通常空气中带少量不同电荷的粒子, 并且带电荷与不带电荷的粒子之 间会发生相互吸引和聚结, 从而出现相反电荷的复合和产生大颗粒粒子飘 落于地电位而消失; 而用本发明的新方法产生的荷负电纳米粒子, 由于其 在一定的范围, 产生相当大量的荷负电纳米粒子, 这种大量同电荷粒子相 互排斥。 生物气象学和物理学的科学工作者都一致认为, 这种体系状态是 更加稳定的体系状态。
由于是利用纳米粒子的物理特性和隧道效应的方法产生新粒子, 其必 然结果是只由纳米粒子组成新的荷负电纳米粒子, 无其它任何化合物和杂 质。
按照本发明的荷负电纳米粒子产生装置包括供电电源、 外壳、 控制组 件、 超微电子发射极, 其中, 电源装置分别与超微电子发射极及控制组件 连接, 超微电子发射极对地处于负 2KV至负 29KV的电位。
所述超微电子发射极是指电极发射体部分的尺寸达到微米级或小于微 米级。 本发明使用的所述超微电子发射极的材料为铂、 金、 铼、 铱、 钨或 碳素纤维或它们的结合, 或者为铂、 金、 铼、 铱和 /或钨为主要成份的合金。 其形状可以是圆盘形、 圆柱形、 锯齿形、 针状、 尖锐形、 球形、 偏球形、 弧形、 圆环形、 条形等形状中的任一种或由上述形状组合而成的形状。 超 微电子发射极可以是单个或多个电极组成。 超微电子发射极发射部分的尺 寸为 100微米。
按照本发明的产生荷负电纳米粒子的方法是: 使用由电源装置分别和 超微电子发射极及控制组件连接组成的荷负电粒子产生装置, 使空气中的 纳米粒子和超微电子发射极在电源和控制组件作用下, 控制在对地处于负 2KV至负 29KV的电位范围内, 由隧道效应发射的电子与纳米粒子相结合, 来产生出全新的荷负电纳米粒子, 其中根据不同的电极材料、 电极形状、 电极尺寸和不同的使用装置来选用电位范围。
由于隧道效应形成的场电子发射, 所产生的高电流密度的电子 e, 在与 空气气溶胶中的粒子碰撞过程中, 能够调节能量 (例如高能量的电子, 在 碰撞过程中, 能量损失, 降低能量), 使电子附着于具有较宽能带的不同尺 寸的纳米粒子 Nm上 (空气中的纳米粒子是由不同的分子团, 固态、 液态、 气态及不同尺寸 (10·7-10_9米)的纳米粒子组成), 实现以下反应即:
e+Nm→ N'm
形成荷负电纳米粒子, 在负 2KV至负 29KV之间任一电位电场作用下, 迅 速向外扩散, 覆盖一定区域。
上述超微电子发射极的制作, 可按下列方法之一进行- a. 将铂、 金、 碳素纤维丝用熔悍法固定在玻璃支架上; 引出端可通过 将铂、 金、 碳素纤维用导电胶 (例如由银粉环氧树脂混合制成的一种导电 胶) 与铜导线粘合后引出, 其中铂丝还可用金属铟在低温融化与导线联结 后引出。
b. 将铂、 金、 铼、 钨、 铱、 碳素纤维丝用环氧树脂粘合剂粘封于石英、 玻璃、 聚乙稀、 聚四氟乙稀 (塑料类)、 聚脂纤维类、 氮化硅、 氧化铝 (陶 瓷类) 等绝缘体做成的支架上。 引出端可通过将铂、 金、 铼、 钨、 铱、 碳 素纤维用导电胶 (例如由银粉环氧树脂混合制成的一种导电胶) 与铜导线 粘合后引出, 引出端及导线的固定方法可参照 a进行。
c 将铂、 金、 铼、 钨、 铱、 碳素纤维线等排列在绝缘体的表面, 排列 成各种形状如组合条形、 圆环形、 弧形等; 然后用粘合剂如环氧树脂等进 行固定和粘合; 绝缘体材料和引出端及导线的固定方法可参照 a和 b进行。
d. 将铼、 钨或其相应的合金, 用电解腐蚀法制成各种形状的电极如尖 锐状、 针状、 锯齿状等; 电解腐蚀法在一般教科书及资料中均可查阅; 制 成的电极可用环氧树脂固定在绝缘支架上, 也可用机械方法如铆接固定在 绝缘体上; 绝缘体材料根据固定的方法, 可以选用石英、 玻璃、 聚乙稀、 聚四氟乙稀 (塑料类)、 氮化硅、 氧化铝 (陶瓷类)、 聚脂复合板等。 引出 端可用导电胶与导线粘合引出, 也可用机械方法将引出导线与电极同时固 定在绝缘体上。 下面用两个具体例子说明上述的连接。 用锯齿形电极固定 及引出可分两种方案: 第一种方案是用环氧树脂和导电胶引出, 即在锯齿 电极下面是环氧树脂, 其下是绝缘体, 电极一侧通过导电胶连接引出导线。 另一种方案是: 用机械固定方案, 即, 在锯齿电极下面有绝缘体, 在锯齿 电极两侧分别将固定夹头用铆钉将二者夹紧, 一侧固定夹头和引出导线用 铆钉固紧。
尖锐状及针状电极同样可以采用上述方案, 只是在具体结构上有所区 别, 例如针状电极不需要用固定夹头, 而用销套或铆钉套将电极和引出线 直接固定在绝缘体上。
e . 可利用光刻技术制成超微电子发射极。 其方法是在绝缘体平板上, 用喷镀或溅射法镀上一层均匀的金属膜, 金属膜的材料可以是铂、 金、 铱 等, 再利用聚酰亚胺等光敏高分子材料薄膜覆盖后进行光刻蚀, 使其形成 所需形状的电极。 电极的基体材料可以是 Si/Si02、 石英、 玻璃、 氮化硅等。 可用导电胶与铜导线联结后引出。
荷负电纳米粒子尺寸小于血液中的红细胞和通常的细菌, 是它们的几 分之一或更小, 能通过人体的呼吸以及皮肤粘膜进入体内, 到达肺和进入 血液循环, 并释放其电荷, 进而能改善细胞壁电荷的平衡状态, 成为能对 人体的生理状态, 组织细胞和新陈代谢过程产生直接生物学效应的生物电。
进入体内的荷负电纳米粒子,直接参与组织-细胞-分子水平的电代谢过 程, 促进生物电的转换, 调整机体组织自身的电位平衡, 改善人体的自然 生理状态和生物化学环境。 通过神经-体液调节功能, 从而发挥其非特异性 和广谱的医学作用。
具有明显生物学效应的荷负电纳米粒子对神经系统、 心血管系统、 呼 吸系统、 泌尿系统、 消化系统有明显的调理作用, 能治疗多种疾病, 其治 疗效果在临床应用中已引起普遍的关注。
实验证明, 由于荷负电纳米粒子具有量子力学特性, 能迅速覆盖一定 的区域, 对其覆盖区域的有害病菌和病毒, 如绿浓杆菌, 梅毒、 葡萄球菌、 大肠杆菌、 霉菌、 念球菌等有强烈的抑制和使其消亡的作用。
众所周知, 生物电的研究和应用在不断发展, 脑电图、 心电图、 胃电 图在临床诊断中的应用,挽救了无数人的生命,如同物理医学诊断设备 CT、 B 超、 核磁共振、 正电子断层扫描等在临床诊断中的应用, 为临床诊断不 断发展, 开创了新纪元。 荷负电纳米粒子生物电, 将能创造出许多新技术 和新设备, 特.别是在临床治疗.中的应用有划时代的前景。
因此, 由荷负电纳米粒子构成的生物电, 可以广泛应用于物理医学设 备、 家用电器、 生物工程、 保鲜工程、 无菌工程和改善环境状态等多种领 域的电子设备中。 附图说明
图 1是本发明的原理方框图;
图 2是锯齿形电极用环氧树脂和导电胶引出的结构示意图;
图 3是锯齿形电极用机械固定方法引出的结构示意图。 具体实施方式
如图 1所示: 本发明装置由超微电子发射极 1、 供电电源 2、 装置外壳 3、 控制组件 4组成。 这是基本组成部件。 根据不同的用途和设备, 可以增 加其它部件, 如增加多功能支架或转盘。 也可以将本发明与其它设备结合 使用, 形成一种全新功能的设备, 其控制部份与其它部件的控制配合组成。
根据不同的使用目的和产品的功能, 超微电子发射极可以使用不同的 材料和形状, 一个装置的超微电子发射极可以是单个或多个电极或组合电 极组成; 发射电极由于结构、 尺寸、 形状和村料的不同, 使用目的的不同, 而对地处于负 2KV至负 29KV的电位; 因而设计出完全不同形状, 功能和 结构的装置外壳。
如图 2所示是用环氧树脂和导电胶将电极固定及引出的方案, 锯齿电 极 8下面用环氧树脂 7和绝缘体 6相固定, 导线 5通过导电胶 9从电极 8 的一端引出。
如图 3所示是用机械固定方法将电极固定和引出的方案, 锯齿电极 8 通过固定夹头 10和铆钉 11与绝缘体 6固定在一起。 引出导线 5通过固定 夹头 10和铆钉 11引出。

Claims

权利要求书
1、 一种荷负电纳米粒子产生装置, 它包括: 供电电源、 外壳、 控制组 件和超微电子发射极, 其特征是: 电源装置分别和超微电子发射极及控制 组件连接; 超微电子发射极对地处于负 2KV至负 29KV的电位。
2、 根据权利要求 1所述的装置, 其特征是: 所述的超微电子发射极由 单个或多个电极组成, 其形状为圆盘形、 圆柱形、 锯齿形、 针状、 尖锐状、 球状、 偏球形、 弧形、 圆环形、 条形中的任一种或由上述形状组合而成的 形状, 超微电子发射极的发射部分的尺寸为 100微米。
3、 根据权利要求 1或 2所述的装置, 其特征是: 所述超微电子发射极 的材料为铂、 金、 铼、 铱、 钨或碳素纤维或它们的结合, 或者为铂、 金、 铼、 铱和 /或钨为主要成份的合金。
4、 一种产生荷负电纳米粒子的方法, 其特征是: 使用权利要求 1所述 装置, 使超微电子发射极在电源和控制组件上, 依据超微电子发射极的材 料、 形状、 尺寸和不同的使用装置, 控制所述超微电子发射极使其对地处 于负 2KV至负 29KV的电位, 形成隧道效应的场电子发射, 其所产生的高 电流密度电子 e, 在与空气气溶胶中的粒子碰撞过程中能调节能量, 使电子 附着在具有较宽能带的不同尺寸的纳米粒子 Nm上, 实现以下反应:
e+Nm -> N'm
形成荷负电纳米粒子。
5、 根据权利要求 4所述的方法, 其特征是: 所述超微电子发射极按照 下列方法之一制造: a) 将铂、 金、 碳素纤维丝用熔悍法将其固定在玻璃支架上; 引出端可 通过将铂、 金、 碳素纤维用导电胶与铜导线粘合后引出, 其中铂丝还可用 金属铟在低温融化与导线联结后引出。
b)将铂、 金、 铼、 钨、 铱、 碳素纤维丝用环氧树脂粘合剂封于石英、 玻璃、 聚乙烯、 聚四氟乙烯、 聚脂纤维类、 氮化硅和 /或氧化铝做成的支架 上, 引出端通过将铂、 金、 铼、 钨、 铱、 碳素纤维用导电胶与铜导线粘合 后引出;
. C)将铂、 金、 铼、 钨、 铱、 碳素纤维丝排列在石英、 玻璃、 聚乙烯、 聚四氟乙烯、 聚脂纤维类、 氮化硅和 /或氧化铝的绝缘体的表面, 排列成所 需形状, 然后用粘合剂进行固定和粘合, 引出端通过将铂、 金、 铼、 钨、 铱、 碳素纤维用导电胶与铜导线粘合后引出;
d)将铼、 钨或其相应的合金, 用电解腐蚀法制成各种形状的超微电子 发射极, 该超微电子发射极用环氧树脂固定在绝缘支架上, 或用机械法铆 接固定在绝缘体上, 绝缘体材料选用石英、 玻璃、 聚乙烯、 聚四氟乙稀、 氮化硅、 氧化铝、 聚脂复合板中的任一种, 引出端用导电胶与导线粘接引 出, 或用机械法将引出导线与电极同时固定在绝缘体上; 尖锐状及针状电 极同样使用上述方案; 或
e) 利用光刻技术制成超微电子发射极, 其方法为: 在绝缘体平板上, 用喷镀或溅射法镀上一层均匀金属膜, 金属膜材料用铂、 金、 铱, 然后用 聚酰亚胺光敏高分子材料薄膜覆盖后进行光刻蚀, 使其形成所需形状的电 极, 电极的基体材料是 Si/Si02、 石英、 玻璃、 氮化硅中的一种, 用导电胶 与铜导线联结后引出。
PCT/CN2002/000328 2001-07-11 2002-05-13 Dispositif de production de nanoparticules chargees negativement et procede connexe WO2003006362A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2002257508A AU2002257508B2 (en) 2001-07-11 2002-05-13 A device for producing negatively charged nanoparticles and a method for the same
EP02727178A EP1413545A4 (en) 2001-07-11 2002-05-13 DEVICE FOR PRODUCING NEGATIVELY-LOADED NANOTEHTES AND METHOD THEREFOR
MXPA04000225A MXPA04000225A (es) 2001-07-11 2002-05-13 Dispositivo para producir la noparticula negativamente cargado y metodo para ello.
KR1020047000357A KR100619322B1 (ko) 2001-07-11 2002-05-13 음으로 하전된 나노입자를 제조하는 장치 및 그 방법
US10/483,843 US7390384B2 (en) 2001-07-11 2002-05-13 Device for producing negatively charged nanoparticles and a method for the same
CA002452581A CA2452581C (en) 2001-07-11 2002-05-13 A device for producing negatively charged nanoparticles and a method for the same
JP2003512141A JP2004533940A (ja) 2001-07-11 2002-05-13 荷負電ナノ粒子の生産装置および荷負電ナノ粒子の生産方法
BR0211056-3A BR0211056A (pt) 2001-07-11 2002-05-13 Dispositivo para produção de nanopartìculas com carga negativa e método para o mesmo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN01120188.6 2001-07-11
CNB011201886A CN1145579C (zh) 2001-07-11 2001-07-11 荷负电纳米粒子产生装置及方法

Publications (1)

Publication Number Publication Date
WO2003006362A1 true WO2003006362A1 (fr) 2003-01-23

Family

ID=4663965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2002/000328 WO2003006362A1 (fr) 2001-07-11 2002-05-13 Dispositif de production de nanoparticules chargees negativement et procede connexe

Country Status (12)

Country Link
US (1) US7390384B2 (zh)
EP (1) EP1413545A4 (zh)
JP (1) JP2004533940A (zh)
KR (1) KR100619322B1 (zh)
CN (1) CN1145579C (zh)
AU (1) AU2002257508B2 (zh)
BR (1) BR0211056A (zh)
CA (1) CA2452581C (zh)
MX (1) MXPA04000225A (zh)
RU (1) RU2290969C2 (zh)
WO (1) WO2003006362A1 (zh)
ZA (1) ZA200309933B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3147580A4 (en) * 2014-04-23 2018-04-18 Moxi Fang Environment-improving and healthful air conditioning device and application method thereof

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100404084C (zh) * 2002-03-06 2008-07-23 方墨希 生物电治疗仪
KR20020082816A (ko) * 2002-09-13 2002-10-31 김기동 알칼리 금속의 전기화학적 표면처리에 의한 고기능성 탄소나노소재 및 이의 제조 방법
KR100750622B1 (ko) 2004-07-26 2007-08-20 재단법인서울대학교산학협력재단 나노입자의 대전 방법
CN100364617C (zh) * 2004-12-28 2008-01-30 方墨希 荷负电纳米粒子空气消毒机
US7685678B2 (en) * 2005-04-22 2010-03-30 Lg Electronics Inc. Refrigerator having height-adjustable door
US8946200B2 (en) * 2006-11-02 2015-02-03 Southwest Research Institute Pharmaceutically active nanosuspensions
KR100849674B1 (ko) * 2007-07-27 2008-08-01 한국기계연구원 탄소섬유를 이용한 입자 하전장치
US8404850B2 (en) * 2008-03-13 2013-03-26 Southwest Research Institute Bis-quaternary pyridinium-aldoxime salts and treatment of exposure to cholinesterase inhibitors
US8722706B2 (en) * 2008-08-15 2014-05-13 Southwest Research Institute Two phase bioactive formulations of bis-quaternary pyridinium oxime sulfonate salts
US8309134B2 (en) * 2008-10-03 2012-11-13 Southwest Research Institute Modified calcium phosphate nanoparticle formation
US8973851B2 (en) * 2009-07-01 2015-03-10 The Procter & Gamble Company Apparatus and methods for producing charged fluid droplets
US8685038B2 (en) 2009-12-07 2014-04-01 Incube Labs, Llc Iontophoretic apparatus and method for marking of the skin
US9028873B2 (en) * 2010-02-08 2015-05-12 Southwest Research Institute Nanoparticles for drug delivery to the central nervous system
RU2447537C1 (ru) * 2010-11-30 2012-04-10 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ изготовления эмиттеров электронов и устройство для его осуществления
CN102386564B (zh) * 2011-06-02 2012-12-05 济南森林态生物技术有限公司 离子变换器
US8956157B2 (en) 2012-01-31 2015-02-17 Alexander Philippovich Rutberg Apparatus and method for treatment of periodontal disease
CN102899656B (zh) * 2012-08-31 2014-07-30 北方工业大学 一种纳米氧化铝颗粒增强转化膜制备方法
CN103884147B (zh) * 2014-04-14 2016-09-21 方墨希 一种具有消毒和保鲜功能的低温保藏设备
CN103920237B (zh) * 2014-04-29 2016-11-16 方墨希 一种修复dna氧化损害的装置
RU2656762C1 (ru) * 2017-08-25 2018-06-06 Общество с ограниченной ответственностью "БиоНаноАэрозоли" (ООО "БиоНаноАэрозоли") Устройство контроля заряда биологически активных наноаэрозолей
CN113387589B (zh) * 2021-06-11 2022-06-07 北京大学 一种利用碳模板和电镀法制备金属同质和杂化超微电极的方法
CN114054766B (zh) * 2021-11-17 2023-08-04 广东工业大学 一种多尺寸纳米金属颗粒及其制备系统、制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159283A (ja) * 1988-12-14 1990-06-19 Yamagishi Shigechika マイナス・イオン発生装置
US4954711A (en) * 1988-11-01 1990-09-04 International Business Machines Corporation Low-voltage source for narrow electron/ion beams
US5247842A (en) * 1991-09-30 1993-09-28 Tsi Incorporated Electrospray apparatus for producing uniform submicrometer droplets
CN1107373A (zh) * 1994-02-28 1995-08-30 广西医科大学 药物气态负离子治疗保健器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3413545A (en) * 1965-06-23 1968-11-26 Univ Minnesota Apparatus and method for determining aerosol particle concentration and particle size distribution
ES491478A0 (es) * 1979-05-18 1981-06-01 Monsanto Co Un aparato para cargar particulas de tamano inferior a la micra y mayores en una corriente de gas.
US4572194A (en) * 1982-10-05 1986-02-25 Head Edwin L Device for therapy of the human or animal body
US6163098A (en) * 1999-01-14 2000-12-19 Sharper Image Corporation Electro-kinetic air refreshener-conditioner with optional night light
FR2794295B1 (fr) * 1999-05-31 2001-09-07 Joel Mercier Dispositif generateur d'ions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954711A (en) * 1988-11-01 1990-09-04 International Business Machines Corporation Low-voltage source for narrow electron/ion beams
JPH02159283A (ja) * 1988-12-14 1990-06-19 Yamagishi Shigechika マイナス・イオン発生装置
US5247842A (en) * 1991-09-30 1993-09-28 Tsi Incorporated Electrospray apparatus for producing uniform submicrometer droplets
CN1107373A (zh) * 1994-02-28 1995-08-30 广西医科大学 药物气态负离子治疗保健器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1413545A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3147580A4 (en) * 2014-04-23 2018-04-18 Moxi Fang Environment-improving and healthful air conditioning device and application method thereof

Also Published As

Publication number Publication date
RU2004102034A (ru) 2005-02-27
CN1145579C (zh) 2004-04-14
ZA200309933B (en) 2004-09-16
BR0211056A (pt) 2004-07-20
US7390384B2 (en) 2008-06-24
RU2290969C2 (ru) 2007-01-10
MXPA04000225A (es) 2005-03-07
CA2452581A1 (en) 2003-01-23
CA2452581C (en) 2009-01-20
US20040168923A1 (en) 2004-09-02
JP2004533940A (ja) 2004-11-11
CN1325820A (zh) 2001-12-12
KR100619322B1 (ko) 2006-09-08
EP1413545A1 (en) 2004-04-28
AU2002257508B2 (en) 2007-07-26
EP1413545A4 (en) 2006-02-08
KR20040030802A (ko) 2004-04-09

Similar Documents

Publication Publication Date Title
WO2003006362A1 (fr) Dispositif de production de nanoparticules chargees negativement et procede connexe
CN106083050A (zh) 量子能量粉体、量子能量浆料、量子能量板
CN1196531C (zh) 清除空气中的灰尘和悬浮微粒的设备
JP3481578B2 (ja) 電子放出素子およびそれを利用した電子源、電界放出型画像表示装置、蛍光灯、並びにそれらの製造方法
US20030044608A1 (en) Nanowire, method for producing the nanowire, nanonetwork using the nanowires, method for producing the nanonetwork, carbon structure using the nanowire, and electronic device using the nanowire
CN104428012B (zh) 放电单元以及使用了其的空气净化装置
CN202121206U (zh) 小粒径高活性生态负氧离子生成机
WO2019227840A1 (zh) 一种石墨烯纳米蒸汽发生装置及美容仪
KR101701047B1 (ko) 디지털 엑스레이 소스
CN106208802A (zh) 一种柔性可拉伸的摩擦发电机及其制备方法
CN106852079B (zh) 一种离子风除尘通风机柜
WO2005115088A2 (en) Nano particle generator and a method for generating nanoparticles by said device
CN106391129B (zh) 电磁发光光催化四功能两层纳米纤维复合膜及其制备方法
CN111454516B (zh) 杀菌聚丙烯复合材料及其制备方法
KR101835980B1 (ko) 나노 입자 제조장치 및 나노 입자의 제조방법
WO2021012064A1 (zh) 一种空气净化器
CN115674834A (zh) 一种摩擦纳米发电机及其制备方法
JP2526398B2 (ja) 複合超微粒子の製造方法
JP2004033875A (ja) マイナスイオン発生装置
JP5981197B2 (ja) イオン発生装置
CN2379951Y (zh) 无臭氧高性能负氧离子发生器
CN106283397B (zh) 绿色发光电磁三功能两层复合纳米纤维膜及其制备方法
KR20050098567A (ko) 탄소 나노팁을 이용한 이온 발생장치 및 그 제조 방법
CN109273994A (zh) 电场分离式负氧离子发生装置
CN209475394U (zh) 一种冷等离子体装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200309933

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2452581

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 7/KOLNP/2004

Country of ref document: IN

Ref document number: 00007/KOLNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2002257508

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2002727178

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003512141

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/000225

Country of ref document: MX

Ref document number: 1020047000357

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10483843

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002727178

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002257508

Country of ref document: AU