WO2003005001A1 - Method and device for detecting chemical substance - Google Patents

Method and device for detecting chemical substance Download PDF

Info

Publication number
WO2003005001A1
WO2003005001A1 PCT/JP2002/006480 JP0206480W WO03005001A1 WO 2003005001 A1 WO2003005001 A1 WO 2003005001A1 JP 0206480 W JP0206480 W JP 0206480W WO 03005001 A1 WO03005001 A1 WO 03005001A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical substance
substrate
gas
measured
detecting
Prior art date
Application number
PCT/JP2002/006480
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuyuki Maruo
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Publication of WO2003005001A1 publication Critical patent/WO2003005001A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Definitions

  • the present invention relates to a chemical substance detection method and apparatus capable of detecting a chemical substance present in the environment at high speed and with high sensitivity.
  • VOCs volatile organic compounds
  • Conventional methods for measuring chemical substances present in the environment include, for example, adsorbing the gas to be measured on a porous substance such as TENAX, heating the gas, releasing the adsorbed chemical substance, and using a mass spectrometer.
  • Method for identification and quantification of chemical substance components Heating desorption GC-MS: Gas Chromatography-Mass Spectroscopy
  • FT- IR Frefrared Spectroscopy
  • thermal desorption GC-MS requires a long time for measurement and lacks real-time measurement, making it difficult to measure the environment on the spot.
  • FT-IR it was necessary to secure an enormous infrared light path to increase the detection sensitivity, and in practice, it was difficult to detect trace amounts of chemical substances in the environment with high sensitivity.
  • the conventional method cannot measure chemical substances existing in the environment with high sensitivity and in real time.
  • the present inventors have already proposed a chemical substance detection method and apparatus capable of detecting a chemical substance present in the environment with high sensitivity and in real time (for example, see Japanese Patent Application Laid-Open No. 2001-016). No. 8863).
  • FIG. 5 is a schematic diagram showing the structure of an example of a chemical substance detection device proposed by the present inventors.
  • an infrared transmitting substrate 100 for attaching a chemical substance in a gas to be measured for measurement is placed on a support 102.
  • the support 102 is provided with a cooling device 104 so that the infrared transmitting substrate 100 can be cooled.
  • the infrared transmitting substrate 100 is enclosed in a substrate enclosure 110 having an intake port 106 through which the gas to be measured is introduced and an exhaust port 108 through which the gas to be measured is exhausted. ing.
  • a substrate enclosure 110 having an intake port 106 through which the gas to be measured is introduced and an exhaust port 108 through which the gas to be measured is exhausted.
  • an entrance window 112 made of a material that is transparent to infrared rays is provided on one side surface of the substrate enclosing container 110.
  • a detection window 114 made of a material that is transparent to infrared rays is provided on the side surface opposite to one side surface on which the entrance window 112 is provided, similarly to the entrance window 112.
  • the substrate enclosing container 110 is provided with a heating device 116 so that the entire substrate enclosing container 110 including the infrared transmitting substrate 100 can be heated.
  • a sampling pump 118 for flowing the gas to be measured in the substrate enclosure 110 is connected to the exhaust port 108 of the substrate enclosure 110.
  • An incident optical system 120 is arranged near an entrance window 112 provided on one side surface of the substrate enclosure 110.
  • the incident optical system 120 is composed of an infrared light source 122 that emits infrared light serving as probe light, a reflecting mirror 122 that guides infrared light emitted from the infrared light source 122 to the concave mirror 124, and a reflection. It is composed of a concave mirror 124 that collects the infrared light guided from the mirror 126 and introduces it into the infrared transmitting substrate 100 so that the infrared light is reflected multiple times from the end face.
  • a transparent infrared ray emitted after multiple reflection inside the infrared transmitting substrate 100 is detected and spectrally separated.
  • FT-IR (Fourier transform infrared spectroscopy) device 1 6 0 is arranged through.
  • the detection optical system 130 collects the infrared light emitted from the end face of the infrared transmitting substrate 100 and guides it to the reflecting mirror 132, and the infrared light collected by the concave mirror 133. It is composed of a reflecting mirror 1 32 which reflects the light to the FT-IR device 1 36.
  • the FT-IR device 1336 has a calculation and display device (not shown) that identifies the type of chemical substance in the gas to be measured and calculates the concentration based on the analysis result of the FT-IR device 1336. It is connected.
  • the gas to be measured is caused to flow in the substrate enclosure 110 by the sampling pump 118.
  • the infrared transmitting substrate 100 is cooled by the cooling device 104. Thereby, the adhesion of the chemical substance in the gas to be measured to the surface of the infrared transmitting substrate 100 is promoted.
  • the chemical substance attached to the surface of the infrared transmitting substrate 100 is detected by the infrared multiple internal reflection FT-IR method. That is, infrared rays are incident on one end of the infrared transmitting substrate 100 in the substrate enclosing container 110 by the incident optical system 120 so as to be reflected multiple times inside the substrate. Infrared rays that have entered the inside of the infrared transmitting substrate 100 are resonantly absorbed when the frequency component of the light that seeps out when reflected on the substrate surface matches the molecular vibration frequency of the chemical substance attached to the substrate surface. .
  • the infrared radiation emitted from the other end of the infrared transmitting substrate 100 is spectrally analyzed by an FT-IR device 136 to identify the type of chemical substance attached to the infrared transmitting substrate 100 and to determine the amount of the attached chemical substance. Is calculated. Based on the measurement result of the chemical substance attached to the infrared transmitting substrate 100, the type and concentration of the chemical substance in the gas to be measured are estimated. In this way, it is possible to detect chemical substances in the gas to be measured in real time with high sensitivity.
  • the attachment of the chemical substance to the infrared transmitting substrate 100 is performed by flowing the gas to be measured near the infrared transmitting substrate 100, This was promoted by cooling the infrared transmitting substrate 100.
  • the sensitivity of detecting the chemical substance in the gas to be measured has been improved by increasing the amount of the chemical substance attached to the infrared transmitting substrate 100.
  • the chemical substance detection device shown in Fig. 5 can achieve a detection sensitivity on the order of lOppb (parts per billion). With this level of sensitivity If present, it could be sufficiently practical for some types of chemical substances to be detected.o
  • the emission standard is below 0.8 ppm (parts per million) (80 pb).
  • a detection sensitivity of at least 0.001 Ppm order, preferably lppb.
  • VOC very small amount of VOC
  • An object of the present invention is to provide a chemical substance detection method and apparatus capable of detecting a chemical substance with high accuracy and in real time by further improving the detection sensitivity of the conventional chemical substance detection method and apparatus.
  • the object is to provide a chemical substance detection method for detecting a chemical substance contained in a gas to be measured by irradiating an infrared ray to a substrate exposed to the gas to be measured and analyzing infrared light emitted from the substrate. Storing the substrate in a container, introducing the gas to be measured into the container and applying a positive pressure to the container to promote the chemical substance to adhere to the substrate. This is achieved by the chemical substance detection method described above.
  • the positive pressure state in the container may be adjusted by exhausting the gas to be measured introduced into the container from the container.
  • the substrate may be cooled to further promote the chemical substance in the gas to be measured to adhere to the substrate.
  • the chemical substance in the gas to be measured is analyzed.
  • the type of quality may be identified and / or the concentration of the chemical substance may be calculated.
  • the object to be measured is analyzed by analyzing infrared rays that are incident from one surface side of the substrate, transmitted through the substrate, and emitted from the other surface side of the substrate.
  • the type of the chemical substance in the gas may be identified and / or the concentration of the chemical substance may be calculated.
  • the chemical substance attached to the substrate may be periodically removed to initialize the surface state of the substrate.
  • the above object is to provide a container for introducing a gas to be measured, gas introducing means for introducing the gas to be measured into the container such that the pressure in the container is positive, A substrate mounted thereon, to which a chemical substance contained in the gas to be measured is attached, infrared radiation incident means for irradiating infrared radiation to the substrate, and analyzing infrared radiation emitted after passing through the substrate, A chemical substance detection device comprising: a chemical substance detection unit that identifies a type of the chemical substance in the gas to be measured and calculates Z or the concentration of the chemical substance.
  • the above-mentioned chemical substance detection device may further include exhaust control means for controlling exhaust of the gas to be measured introduced into the container from the inside of the container.
  • the container has first and second windows made of a material that transmits infrared light, and the infrared incident means is provided outside the container through the first window.
  • the chemical substance detecting means is configured to detect the infrared ray emitted through the second window to the outside of the container after passing through the substrate or reflected on the surface of the substrate, The infrared light emitted to the outside of the container through the window may be analyzed.
  • the chemical substance detection means identifies the type of the chemical substance in the gas to be measured by analyzing infrared rays emitted after multiple reflection inside the substrate. And / or the concentration of the chemical substance may be calculated.
  • the chemical substance detection means is incident on one surface of the substrate, transmitted through the substrate, and emitted from the other surface of the substrate.
  • the type of the chemical substance in the gas to be measured may be identified, and Z or the concentration of the chemical substance may be calculated by analyzing the infrared rays.
  • a cooling device that cools the substrate and promotes the chemical substance in the gas to be measured to adhere to the substrate may be further provided.
  • the cooling device is a device that directly contacts the substrate to cool the substrate, and the infrared incident means is configured such that a contact portion between the substrate and the cooling device is an infrared ray. Infrared light may be incident so that it is not located on the optical path of the light.
  • the apparatus may further include a substrate cleaning means for removing the chemical substance attached to the substrate surface and initializing the surface state of the substrate.
  • the substrate cleaning unit may be a heating unit that removes the chemical substance attached to the substrate by heating the substrate.
  • the substrate cleaning means may be an ultraviolet ray irradiating means for irradiating the surface of the substrate with ultraviolet rays to remove the chemical substance attached to the substrate.
  • a chemical substance detection method for detecting a chemical substance contained in a gas to be measured by irradiating infrared rays to a substrate exposed to the gas to be measured and analyzing infrared rays emitted from the substrate. Since the substrate is housed in a container, and the gas to be measured is introduced into the container and the inside of the container is made to have a positive pressure, chemical substances are promoted to adhere to the substrate. The detection sensitivity of chemical substances used.
  • FIG. 1 is a schematic diagram showing the structure of a chemical substance detection device according to one embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the structure of a modification of the chemical substance detection device according to one embodiment of the present invention. It is a schematic diagram.
  • FIG. 3 is a schematic diagram showing the structure of a modification of the chemical substance detection device according to one embodiment of the present invention.
  • FIG. 4 is a schematic view showing the structure of a modification of the chemical substance detection device according to one embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the structure of a conventional chemical substance detection device. [Best Mode for Carrying Out the Invention]
  • FIG. 1 is a schematic diagram showing the structure of the chemical substance detection device according to the present embodiment.
  • an infrared transmitting substrate 10 for attaching a chemical substance in a gas to be measured and performing the measurement is mounted on a support 12. I have.
  • the infrared transmitting substrate 10 is sealed in a substrate sealing container 18 having an inlet 14 into which the gas to be measured is introduced and an outlet 16 from which the gas to be measured is exhausted.
  • the sampling pump 20 that introduces the gas to be measured into the substrate enclosure 18 and makes the substrate enclosure 18 positive pressure is introduced into the inlet 14 of the substrate enclosure 18 via piping 21. It is connected.
  • a pipe 24 having a stop valve 22 is connected to an exhaust port 16 of the substrate enclosing container 18 so that the exhaust from the substrate enclosing container 18 can be controlled.
  • One side of the substrate enclosure 18 is an entrance window made of a material that is transparent to infrared rays.
  • a detection window 28 made of a material that is transparent to infrared rays is provided on a side surface opposite to the one side surface provided with the entrance window 26, similarly to the entrance window 26.
  • an entrance optical system In the vicinity of the entrance window 26 provided on one side of the substrate enclosure 18, an entrance optical system
  • the incident optical system 30 is composed of an infrared light source 32 that emits infrared light serving as probe light, and a reflecting mirror that guides infrared light emitted from the infrared light source 32 to the concave mirror 34. 36, and a concave mirror 34 that collects the infrared light guided from the reflecting mirror 36 and introduces it through the entrance window 26 through the infrared transmitting substrate 10 from the end face so as to cause multiple reflection inside. ing.
  • a FT-IR Frequency-IR
  • the device 46 is arranged via the detection optical system 40.
  • the detection optical system 40 is composed of a concave mirror 44, which collects infrared light emitted from the infrared transmitting substrate 10 through the detection window 28 through the detection window 28, and guides the infrared light to the reflecting mirror 42, and a concave mirror. And a reflector 42 for guiding the infrared light guided from 44 to the FT-IR device 46.
  • the FT-IR device 46 is connected to a calculation and display device (not shown) that identifies the type of chemical substance in the gas to be measured and calculates the concentration based on the analysis results of the FT-IR device 46. ing.
  • the main feature of the chemical substance detection device is that it has a sampling pump 20 that introduces a gas to be measured into the substrate enclosure 18 and applies a positive pressure to the substrate enclosure 18.
  • a sampling pump 20 that introduces a gas to be measured into the substrate enclosure 18 and applies a positive pressure to the substrate enclosure 18.
  • the infrared transmitting substrate 10 is for adsorbing a chemical substance in the gas to be measured for use in the measurement. Therefore, it must be a material that transmits light in the wavelength range corresponding to the molecular vibration of the chemical substance to be detected.
  • the wave number range corresponding to the fundamental vibration of a typical organic substance is from 500 cm- 1 (wavelength 20 ⁇ ) to 500 cm- 1 (wavelength 2 m). Outer area.
  • a substance that transmits at least the wave number band of infrared absorption caused by a specific type of molecular vibration common to the substances, for example, the wave number region corresponding to CH 3 asymmetric stretching vibration, within the wave number range of infrared absorption of this organic substance Is selected as the infrared transmitting substrate 10.
  • the infrared-transparent substrate 10 Therefore, the material must be non-deliquescent.
  • gallium arsenide has a transmission wavelength range of about 1.0 to 18 m, and is a stable substance in the atmosphere. Can be selected as material.
  • zinc selenide ZnSe: transmission wavelength range 0.6 to 13 ⁇
  • silicon Si: transmission wavelength range 1.2 ⁇ m to 6 ⁇ m
  • bromide power Lium KBr: Transmission wavelength range 0, 4 to 22 ⁇ m
  • Calcium fluoride C a F 2 : Transmission wavelength range 0.2 to 8 ⁇ m
  • the shape of the infrared transmitting substrate 10 is desirably polished, for example, such that the inclination of the end face is 45 degrees. By doing so, it is possible to increase the efficiency of incidence of infrared rays into the infrared transmitting substrate 10 and to make the infrared rays undergo multiple reflection inside the infrared transmitting substrate 10. Further, in order to prevent light from being scattered when infrared rays undergo multiple internal reflections, it is necessary to use a substrate polished on both sides as the infrared transmitting substrate 10.
  • An infrared transmitting substrate 10 is placed on the support 12. At this time, beneath the infrared transmitting substrate 10, the chemical substance in the gas to be measured adheres not only to the upper surface of the infrared transmitting substrate 10 but also to the lower surface of the infrared transmitting substrate 10.
  • a device may be designed so that the side surface and the support 12 do not completely adhere to each other. For example, a plurality of convex structures are provided on the mounting surface of the support 12, and the infrared transmitting substrate 10 is mounted thereon. Then, the lower surface of the infrared transmitting substrate 10 is exposed to the gas to be measured. As a result, the area of the infrared transmitting substrate 10 to which the chemical substance can adhere is increased, and the signal-to-noise ratio (S / N ratio) can be improved.
  • An infrared transmitting substrate 10 is accommodated in the substrate enclosing container 18, and a gas to be measured is introduced from the introduction port 34 by the sampling pump 20.
  • the structure of the substrate enclosing container 18 is a structure that can maintain airtightness so that the inside of the substrate enclosing container 18 is at a positive pressure.
  • the stop valve 22 provided in the pipe 24 connected to the exhaust port 16 of the substrate enclosure 18 controls the exhaust from the substrate enclosure 18. When introducing the gas to be measured into the substrate enclosure 18 by the sampling pump 20, the stop valve 22 is closed and the substrate enclosure 18 is closed. As a result, the inside of the substrate enclosing container 18 can be maintained at a positive pressure.
  • the entrance window 26 provided on the side surface of the substrate enclosing container 18 is for introducing infrared rays to the end face of the infrared transmitting substrate 10 housed in the substrate enclosing container 18 by the incident optical system 30.
  • the detection window 28 receives the infrared light emitted from the end face after multiple reflection inside the infrared transmitting substrate 10 accommodated in the substrate enclosing container 18 through the detecting optical system 40 and the FT-IR device. 4 for detection by 6.
  • the chemical substance detection device by providing the entrance window 26 and the detection window 28 in the substrate enclosure 18, the incident optical system 30, the detection optical system 40, and the FT_IR The device 46 is placed outside the substrate enclosure 18.
  • the substrate enclosure 18 itself can be made compact, and the time required for measurement such as introduction and exhaust of the gas to be measured into the substrate enclosure 18 can be reduced. .
  • the sampling pump 20 has an intake port 48 for sucking the gas to be measured from the environment, and an exhaust port 50 for discharging the sucked gas to be measured to a positive pressure.
  • the exhaust port 50 of the sampling pump 22 is connected to the inlet port 14 of the substrate enclosure 18 via a pipe 21.
  • the sampling pump 20 introduces the gas to be measured sucked from the intake port 48 into the substrate enclosure 18 via the pipe 21, and makes the inside of the substrate enclosure 18 a positive pressure.
  • the effect obtained by making the inside of the substrate enclosing container 18 a positive pressure by the sampling pump 20 will be described in detail.
  • k and n are constants depending on the type of the solid as the adsorbent or the gas as the adsorbate, the adsorption temperature, and the like.
  • the chemical substance detection device uses the sampling pump 20 to apply a positive pressure to the inside of the substrate enclosing container 18 and to determine the amount of the chemical substance in the gas to be measured adhering to the infrared transmitting substrate 10.
  • the main characteristic is that the detection sensitivity is increased by increasing the detection sensitivity.
  • Incident optical system 30 infrared light source 32, reflecting mirror 36, concave mirror 34
  • the infrared light source 32 a light source that emits infrared light in a band of 2 to 25 ⁇ m corresponding to molecular vibration of organic molecules can be applied.
  • heat rays generated by applying a current to a silicon carbide (SiC) as a filament or a nichrome wire can be used as a light source.
  • SiC silicon carbide
  • the reflecting mirror 36 and the concave mirror 34 are for introducing infrared light emitted from the infrared light source 32 from the end face of the infrared transmitting substrate 10 so that the infrared light is multiply reflected inside the infrared transmitting substrate 10. .
  • detection optics 40 concave mirror 44, reflection mirror 42
  • FT-IR device 46 concave mirror 44 and reflection mirror 42 reflect infrared light after multiple reflection inside infrared transmission substrate 10.
  • the infrared rays emitted from the end face of the transmission substrate 10 are guided to the FT-IR device 46.
  • the FT-IR device 46 uses, for example, a mechanism of Fourier transform spectroscopy based on a two-beam interferometer (Michelson optical interferometer) to transmit infrared light guided by a reflecting mirror 42. Is subjected to spectral analysis.
  • a mechanism of Fourier transform spectroscopy based on a two-beam interferometer Michelson optical interferometer
  • an infrared spectrometer using a diffraction grating (grating) may be used instead of the FT-IR device 46.
  • the spectrum measurement data obtained by the FT-IR device 46 is sent to a calculation and display device, where the identification and the amount of chemical substances present in the gas to be measured are performed.
  • the types of chemical substances present in the gas to be measured and the calibration curve are separately stored as a database and stored in the storage unit of the display device, and the measured data is quantified with reference to those databases. .
  • the wave numbers of infrared absorption due to various molecular vibrations of various substances are stored in a calculation and display device as a database.
  • a calculation and display device For example, for each chemical substance, data on the number of absorption waves due to CH 3 symmetric stretching vibration, CH 3 asymmetric stretching vibration, CH 2 symmetric stretching vibration, CH 2 asymmetric stretching vibration, and the like are stored.
  • data on the absorption wave number due to a specific molecular vibration is referred to from the database of the absorption wave number due to various molecular vibrations.
  • the chemical substance detection method according to the present embodiment will be described with reference to FIG.
  • the chemical substance detection device according to the present embodiment is installed in the environment to be measured.
  • the sampling pump 20 is operated, and the gas to be measured is introduced into the substrate enclosure 18 from the introduction port 14.
  • the stop valve 22 of the pipe 24 connected to the exhaust port 16 of the substrate enclosure 18 is closed.
  • the inside of the substrate enclosing container 18 becomes a positive pressure. It is desirable that the stop valve 22 be closed after the inside of the substrate enclosure 18 is replaced with the gas to be measured.
  • the infrared light is reflected multiple times inside the infrared transmitting substrate 10 by the incident optical system 30.
  • the infrared transmitting substrate 10 is introduced into the inside from the end face.
  • the infrared light introduced into the infrared transmitting substrate 10 propagates while undergoing multiple reflections inside the infrared transmitting substrate 10. Subsequently, the infrared light emitted from the end face after multiple reflection inside the infrared transmitting substrate 10 is guided to the FT-IR device 46 by the detection optical system 40. Then, the infrared ray is spectrally analyzed by the FT-IR device 46 to obtain an infrared transmission spectrum. Subsequently, based on the measurement results obtained as described above, the chemical substances present in the gas to be measured are analyzed, their types are identified, and / or the amount of adhesion is calculated. The method of identifying the type of chemical substance and calculating the amount of the attached chemical substance is described in detail, for example, in Japanese Patent Application No. 2001-68863.
  • the stop valve 22 of the pipe 24 connected to the exhaust port 16 of the substrate enclosure 18 is opened, and the gas to be measured in the substrate enclosure 18 is exhausted.
  • the chemical substance in the gas to be measured is Since the adhesion to the infrared transmitting substrate 10 is promoted, the detection sensitivity of the chemical substance can be improved.
  • a cooling device 52 for cooling the infrared transmitting substrate 10 to promote the adhesion of the chemical substance in the gas to be measured may be provided.
  • the cooling device 52 for example, a cooling device using a Peltier element can be used.
  • the infrared transmitting substrate 10 is cooled by the cooling device 52 together with the introduction of the gas to be measured into the substrate enclosing container 18 by the sampling pump 20.
  • the effect of improving the adhesion rate of the chemical substance in the gas to be measured by this cooling and the effect of improving the adhesion rate by making the inside of the substrate enclosure 18 positive pressure described above work synergistically, and further detect the chemical substance. Sensitivity can be improved. '
  • the cooling device 52 may be bonded to the surface of the infrared transmitting substrate 10 that is out of the optical path of the infrared light that multiple-reflects the inside. desirable.
  • the cooling of the infrared transmitting substrate 10 may be performed not only by directly cooling the infrared transmitting substrate 10 but also by cooling the support 12 supporting the infrared transmitting substrate 10.
  • a heating device 54 for heating the infrared transmitting substrate 10 and / or the substrate enclosing container 18 may be provided. After or before the measurement, the infrared transmitting substrate 10 and / or the substrate enclosing container 18 is heated by the heating device 54 to the infrared transmitting substrate 10 and / or the substrate enclosing container 18. The attached chemicals can be removed. As a result, each measurement can be started with the measurement conditions initialized, and a highly accurate measurement result can be obtained.
  • a device for irradiating the infrared transmitting substrate 10 with infrared rays may be provided in order to remove a chemical substance attached to the surface of the infrared transmitting substrate 10.
  • the chemical substances attached to the surface of the infrared transmitting substrate 10 are reduced by the oxidizing power of ozone generated when the ultraviolet rays are irradiated into the atmosphere and the energy of the ultraviolet rays themselves. Can be disassembled and removed.
  • the substrate enclosing container 18 is provided with the entrance window 26 and the detection window 28, and the incident optical system 30, the detection optical system 40, and the FT-IR device 46 are respectively connected to the substrate enclosing container 18.
  • these may be arranged in the substrate enclosing container 18 so that the entrance window 26 and the detection window 28 are not provided.
  • FIG. 3 and FIG. 4 are schematic diagrams showing a configuration example of a chemical substance detection device when another detection method is used.
  • a method of irradiating the surface of the infrared transmitting substrate 10 with infrared rays and detecting and spectrally analyzing the infrared rays transmitted through the infrared transmitting substrate 10 may be used.
  • an infrared light source 56 for irradiating infrared rays to the surface of the infrared transmitting substrate 10 is arranged near one surface of the infrared transmitting substrate 10 accommodated in the substrate enclosing container 18. It has been.
  • a spectroscopic analyzer 58 for spectrally analyzing the infrared light transmitted through the infrared transmitting substrate 10 is disposed. Have been.
  • the substrate enclosing container 18 accommodates a pair of substrates 60a and 60b arranged substantially in parallel.
  • an infrared light source 62 for injecting infrared light serving as probe light between the substrates 60a and 60b is arranged. Infrared light from the infrared light source 62 is incident so that multiple reflection occurs between the opposing substrates 60a and 60b.
  • the infrared light emitted after multiple reflection between the opposing substrates 60a and 60b is dispersed.
  • Analyze FT—IR device 6 6 is connected.
  • the substrates 60a and 60b need not be transparent to infrared rays.
  • the method and apparatus for detecting a chemical substance according to the present invention detect various chemical substances present in the environment at high speed and with high sensitivity for the purpose of specifying the source of the chemical substance, controlling and managing the amount of release to the environment, and the like. Especially useful.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

A chemical substance detecting device, comprising a substrate sealing container (18) for leading measured gas therein, a sampling pump (20) for leading the measured gas into the substrate sealing container (18) so that a pressure in the substrate sealing container (18) becomes positive, an infrared transmission substrate (10) put inside the substrate sealing container (18) and adsorbing chemical substances contained in the measured gas, an incident optical system (30) for letting infrared ray onto the infrared transmission substrate (10), and an FT-IR device (46) for determining the type of the chemical substances contained in the measured gas and/or calculating the density of the chemical substances by analyzing the infrared ray emitted after being passed through the infrared transmission substrate (10), whereby, since a detection sensitivity in the conventional method and device for chemical substance can be further increased, the chemical substance can be detected with high accuracy in real time.

Description

明 細 書 化学物質検出方法及び装置  Description Chemical substance detection method and device
[技術分野] [Technical field]
本発明は、 環境中に存在する化学物質を高速かつ高感度に検出しうる化学物質 検出方法及ぴ装置に関する。  The present invention relates to a chemical substance detection method and apparatus capable of detecting a chemical substance present in the environment at high speed and with high sensitivity.
[背景技術] [Background technology]
環境中に存在する化学物質のモニタリングは、 我々の実生活を取り卷く環境に おいて、 急速にその重要性を増している。  Monitoring of chemicals present in the environment is rapidly gaining importance in our real-life environment.
例えば、 近年、 ゴミ焼却施設から排出されるダイォキシン類などの微量な化学 物質に起因する環境汚染が関心を集めている。  For example, in recent years, environmental pollution caused by trace amounts of chemical substances such as dioxins emitted from garbage incineration facilities has attracted attention.
また、 新築住宅、 マンションの建材に含まれる V O C (Volatile Organic Com pound ; 揮発性有機物質) と称される化学物質が室内で気化して住人に健康障害 を与える事例が報告されており、 シックハウス症候群として大きな問題となって いる。  In addition, there have been reports of cases in which chemicals called volatile organic compounds (VOCs) contained in building materials for new homes and condominiums vaporize indoors and cause health problems for residents. This is a major problem.
環境中に存在する化学物質を測定する従来の方法としては、 例えば、 T E N A Xなどの多孔質物質に被測定対象気体を吸着させ、 これを熱して吸着した化学物 質を放出し、 質量分析計によって化学物質成分の同定 ·定量化を行う方法 (加熱 脱離 G C— M S : Gas Chromatography— Mass Spectroscopy) 力 S用レヽられてレ、る。 また、 環境中に存在する化学物質を測定する他の方法として、 被測定対象気体 に赤外線を照射し、 その吸収スペク トルを分光分析する、 いわゆる F T— I R (Fourier Transform Infrared Spectroscopy) 力 ¾ある。 Conventional methods for measuring chemical substances present in the environment include, for example, adsorbing the gas to be measured on a porous substance such as TENAX, heating the gas, releasing the adsorbed chemical substance, and using a mass spectrometer. Method for identification and quantification of chemical substance components (Heating desorption GC-MS: Gas Chromatography-Mass Spectroscopy) Further, as another method for measuring the chemicals present in the environment, and irradiating infrared rays onto the measuring object gas, the absorption spectrum for the spectral analysis, so-called FT- IR (Fourier Transform Infrared Spectroscopy) force is ¾.
しかしながら、 加熱脱離 G C— M Sでは、 測定に長時間を要し、 測定のリアル タイム性に欠けるため、 環境をその場で測定することが困難であった。 一方、 F T一 I Rでは、 検出感度を上げるためには膨大な赤外線の光路を確保しなければ ならず、 実際には、 環境中の微量化学物質を高感度で検出することが困難であつ た。 このように上記従来の方法では、 環境中に存在する化学物質を高感度かつリア ルタイムに測定することができなかった。 However, thermal desorption GC-MS requires a long time for measurement and lacks real-time measurement, making it difficult to measure the environment on the spot. On the other hand, with the FT-IR, it was necessary to secure an enormous infrared light path to increase the detection sensitivity, and in practice, it was difficult to detect trace amounts of chemical substances in the environment with high sensitivity. As described above, the conventional method cannot measure chemical substances existing in the environment with high sensitivity and in real time.
かかる観点から、 本願発明者は、 環境中に存在する化学物質を高感度かつリア ルタイムに検出しうる化学物質検出方法及び装置をすでに提案している (例えば、 特顧平 2 0 0 1— 6 8 8 6 3号公報を参照) 。  From this point of view, the present inventors have already proposed a chemical substance detection method and apparatus capable of detecting a chemical substance present in the environment with high sensitivity and in real time (for example, see Japanese Patent Application Laid-Open No. 2001-016). No. 8863).
図 5は、 本願発明者が提案している化学物質検出装置の一例の構造を示す概略 図である。 図示するように、 被測定対象気体中の化学物質を付着して測定に供す るための赤外透過基板 1 0 0が支持台 1 0 2に載置されている。 支持台 1 0 2に は、 冷却装置 1 0 4が設けられており、 赤外透過基板 1 0 0を冷却できるように なっている。  FIG. 5 is a schematic diagram showing the structure of an example of a chemical substance detection device proposed by the present inventors. As shown in the figure, an infrared transmitting substrate 100 for attaching a chemical substance in a gas to be measured for measurement is placed on a support 102. The support 102 is provided with a cooling device 104 so that the infrared transmitting substrate 100 can be cooled.
赤外透過基板 1 0 0は、 被測定対象気体が導入される吸気口 1 0 6と被測定対 象気体が排気される排気口 1 0 8とを有する基板封入容器 1 1 0内に封入されて いる。 基板封入容器 1 1 0の一の側面には、 赤外線に透過性のある材質からなる 入射窓 1 1 2が設けられている。 入射窓 1 1 2が設けられた一の側面に対向する 側面には、 入射窓 1 1 2と同様に赤外線に透過性のある材質からなる検出窓 1 1 4が設けられている。  The infrared transmitting substrate 100 is enclosed in a substrate enclosure 110 having an intake port 106 through which the gas to be measured is introduced and an exhaust port 108 through which the gas to be measured is exhausted. ing. On one side surface of the substrate enclosing container 110, an entrance window 112 made of a material that is transparent to infrared rays is provided. A detection window 114 made of a material that is transparent to infrared rays is provided on the side surface opposite to one side surface on which the entrance window 112 is provided, similarly to the entrance window 112.
基板封入容器 1 1 0には、 加熱装置 1 1 6が設けられ、 赤外透過基板 1 0 0を 含む基板封入容器 1 1 0全体を加熱することができる.。 基板封入容器 1 1 0の排 気口 1 0 8には、 基板封入容器 1 1 0内で被測定対象気体を流動させるサンプリ ングポンプ 1 1 8が接続されている。  The substrate enclosing container 110 is provided with a heating device 116 so that the entire substrate enclosing container 110 including the infrared transmitting substrate 100 can be heated. A sampling pump 118 for flowing the gas to be measured in the substrate enclosure 110 is connected to the exhaust port 108 of the substrate enclosure 110.
基板封入容器 1 1 0の一の側面に設けられた入射窓 1 1 2の近傍には、 入射光 学系 1 2 0が配置されている。 入射光学系 1 2 0は、 プローブ光となる赤外線を 出射する赤外光源 1 2 2と、 赤外光源 1 2 2から出射された赤外線を凹面鏡 1 2 4に導く反射鏡 1 2 6と、 反射鏡 1 2 6より導かれた赤外線を集光して赤外透過 基板 1 0 0端面から多重反射するようにその内部に導入する凹面鏡 1 2 4とから 構成されている。  An incident optical system 120 is arranged near an entrance window 112 provided on one side surface of the substrate enclosure 110. The incident optical system 120 is composed of an infrared light source 122 that emits infrared light serving as probe light, a reflecting mirror 122 that guides infrared light emitted from the infrared light source 122 to the concave mirror 124, and a reflection. It is composed of a concave mirror 124 that collects the infrared light guided from the mirror 126 and introduces it into the infrared transmitting substrate 100 so that the infrared light is reflected multiple times from the end face.
基板封入容器 1 1 0の他の側面に設けられた検出窓 1 1 4の近傍には、 赤外透 過基板 1 0 0内部で多重反射した後に放出される透過性赤外線を検出して分光分 析する F T— I R (フーリエ変換赤外分光分析) 装置 1 3 6が、 検出光学系 1 3 0を介して配置されている。 検出光学系 1 3 0は、 赤外透過基板 1 0 0端面より 放出された赤外線を集光して反射鏡 1 3 2に導く凹面鏡 1 3 4と、 凹面鏡 1 3 4 により集光された赤外線を反射して F T— I R装置 1 3 6に導く反射鏡 1 3 2と から構成されている。 In the vicinity of the detection window 114 provided on the other side of the substrate enclosing container 110, a transparent infrared ray emitted after multiple reflection inside the infrared transmitting substrate 100 is detected and spectrally separated. FT-IR (Fourier transform infrared spectroscopy) device 1 6 0 is arranged through. The detection optical system 130 collects the infrared light emitted from the end face of the infrared transmitting substrate 100 and guides it to the reflecting mirror 132, and the infrared light collected by the concave mirror 133. It is composed of a reflecting mirror 1 32 which reflects the light to the FT-IR device 1 36.
F T— I R装置 1 3 6には、 F T— I R装置 1 3 6による分析結果に基づき被 測定対象気体中の化学物質の種類の同定や濃度の算出を行う演算 ·表示装置 (図 示せず) が接続されている。  The FT-IR device 1336 has a calculation and display device (not shown) that identifies the type of chemical substance in the gas to be measured and calculates the concentration based on the analysis result of the FT-IR device 1336. It is connected.
本願発明者が提案している上述の化学物質検出装置では、 サンプリングポンプ 1 1 8により基板封入容器 1 1 0内で被測定対象気体を流動させる。 同時に、 冷 却装置 1 0 4により赤外透過基板 1 0 0を冷却する。 これにより、 被測定対象気 体中の化学物質の赤外透過基板 1 0 0表面への付着を促進する。  In the above-described chemical substance detection device proposed by the present inventor, the gas to be measured is caused to flow in the substrate enclosure 110 by the sampling pump 118. At the same time, the infrared transmitting substrate 100 is cooled by the cooling device 104. Thereby, the adhesion of the chemical substance in the gas to be measured to the surface of the infrared transmitting substrate 100 is promoted.
そして、 赤外透過基板 1 0 0表面に付着した化学物質を赤外多重内部反射 F T 一 I R法によって検出する。 すなわち、 入射光学系 1 2 0により赤外線を基板封 入容器 1 1 0内の赤外透過基板 1 0 0の一端に基板内部で多重反射するように入 射する。 赤外透過基板 1 0 0内部に入射された赤外線は、 基板表面で反射すると きに滲み出る光の周波数成分が基板表面に付着した化学物質の分子振動周波数と 一致していると共鳴吸収される。 そして赤外透過基板 1 0 0の他端から放出され た赤外線を F T— I R装置 1 3 6により分光分析して、 赤外透過基板 1 0 0に付 着した化学物質の種類を同定し付着量を算出する。 この赤外透過基板 1 0 0に付 着した化学物質の測定結果に基づき、 被測定対象気体中の化学物質の種類、 濃度 を推定する。 こうして、 被測定対象気体中の化学物質を高感度でリアルタイムに 検出することが可能となっている。  Then, the chemical substance attached to the surface of the infrared transmitting substrate 100 is detected by the infrared multiple internal reflection FT-IR method. That is, infrared rays are incident on one end of the infrared transmitting substrate 100 in the substrate enclosing container 110 by the incident optical system 120 so as to be reflected multiple times inside the substrate. Infrared rays that have entered the inside of the infrared transmitting substrate 100 are resonantly absorbed when the frequency component of the light that seeps out when reflected on the substrate surface matches the molecular vibration frequency of the chemical substance attached to the substrate surface. . The infrared radiation emitted from the other end of the infrared transmitting substrate 100 is spectrally analyzed by an FT-IR device 136 to identify the type of chemical substance attached to the infrared transmitting substrate 100 and to determine the amount of the attached chemical substance. Is calculated. Based on the measurement result of the chemical substance attached to the infrared transmitting substrate 100, the type and concentration of the chemical substance in the gas to be measured are estimated. In this way, it is possible to detect chemical substances in the gas to be measured in real time with high sensitivity.
図 5に示す従来の化学物質検出装置においては、 上述のように、 赤外透過基板 1 0 0への化学物質の付着を、 赤外透過基板 1 0 0付近に被測定対象気体を流動 し、 赤外透過基板 1 0 0を冷却することによって促進していた。 こうして赤外透 過基板 1 0 0への化学物質の付着量を増大することにより、 被測定対象気体中の 化学物質を検出する感度を向上していた。 そして、 実験結果によれば、 図 5に示 す化学物質検出装置により、 およそ l O p p b (parts per billion) のオーダー の検出感度を実現することができることが確認されている。 このレベルの感度で あれば、 検出対象となる化学物質の種類等によっては充分実用に耐えうるもので あった o In the conventional chemical substance detection device shown in FIG. 5, as described above, the attachment of the chemical substance to the infrared transmitting substrate 100 is performed by flowing the gas to be measured near the infrared transmitting substrate 100, This was promoted by cooling the infrared transmitting substrate 100. Thus, the sensitivity of detecting the chemical substance in the gas to be measured has been improved by increasing the amount of the chemical substance attached to the infrared transmitting substrate 100. According to the experimental results, it has been confirmed that the chemical substance detection device shown in Fig. 5 can achieve a detection sensitivity on the order of lOppb (parts per billion). With this level of sensitivity If present, it could be sufficiently practical for some types of chemical substances to be detected.o
しかし、 厚生労働省や環境省は、 ガイドラインとして V O Cの濃度について排 出基準を設けており、 例えば、 室内環境中のホルムアルデヒ ドの濃度については However, the Ministry of Health, Labor and Welfare and the Ministry of the Environment have set emission standards for VOC concentrations as guidelines, for example, for the concentration of formaldehyde in indoor environments.
0 . 0 8 p p m (parts per million) ( 8 0 p p b ) 以下という排出基準となつ ている。 このような排出基準の濃度程度で微量に環境中に存在する化学物質を定 量的に検出するためには、 少なくとも 0 . O l p p mオーダ一、 望ましくは l p p bの検出感度が必要となる。 すなわち、 厚生労働省等が定める排出基準程度の 微量の V O Cを高精度で検出するためには、 図 5に示す従来の化学物質検出方法 及び装置の検出感度をさらにおよそ 1桁向上する必要がある。 The emission standard is below 0.8 ppm (parts per million) (80 pb). In order to quantitatively detect a trace amount of a chemical substance in the environment at such an emission standard concentration, it is necessary to have a detection sensitivity of at least 0.001 Ppm order, preferably lppb. In other words, in order to detect a very small amount of VOC, which is about the emission standard set by the Ministry of Health, Labor and Welfare, with high accuracy, it is necessary to further improve the detection sensitivity of the conventional chemical substance detection method and apparatus shown in FIG.
[発明の開示] [Disclosure of the Invention]
本発明の目的は、 従来の化学物質検出方法及び装置の検出感度をさらに向上し、 化学物質を高精度かつリアルタイムで検出しうる化学物質検出方法及び装置を提 供することにある。  An object of the present invention is to provide a chemical substance detection method and apparatus capable of detecting a chemical substance with high accuracy and in real time by further improving the detection sensitivity of the conventional chemical substance detection method and apparatus.
上記目的は、 被測定対象気体に曝露した基板に赤外線を入射し、 前記基板から 出射される赤外線を分析することにより、 前記被測定対象気体中に含まれる化学 物質を検出する化学物質検出方法において、 容器内に前記基板を収容し、 前記被 測定対象気体を前記容器内に導入して前記容器内を陽圧にすることにより、 前記 化学物質が前記基板に付着することを促進することを特徴とする化学物質検出方 法により達成される。  The object is to provide a chemical substance detection method for detecting a chemical substance contained in a gas to be measured by irradiating an infrared ray to a substrate exposed to the gas to be measured and analyzing infrared light emitted from the substrate. Storing the substrate in a container, introducing the gas to be measured into the container and applying a positive pressure to the container to promote the chemical substance to adhere to the substrate. This is achieved by the chemical substance detection method described above.
また、 上記の化学物質検出方法において、 前記容器内に導入した前記被測定対 象気体を前記容器内から排気することにより、 前記容器内の陽圧状態を調整する ようにしてもよい。  Further, in the chemical substance detection method described above, the positive pressure state in the container may be adjusted by exhausting the gas to be measured introduced into the container from the container.
また、 上記の化学物質検出方法において、 前記基板を冷却することにより、 前 記被測定対象気体中の前記化学物質が前記基板に付着することをさらに促進する ようにしてもよレ、。  Further, in the above chemical substance detection method, the substrate may be cooled to further promote the chemical substance in the gas to be measured to adhere to the substrate.
また、 上記の化学物質検出方法において、 前記基板内部を多重反射した後に出 射される赤外線を分析することにより、 前記被測定対象気体における前記化学物 質の種類を同定し及び 又は前記化学物質の濃度を算出するようにしてもよい。 また、 上記の化学物質検出方法において、 前記基板の一の面側から入射され、 前記基板を透過して前記基板の他の面側から出射される赤外線を分析することに より、 前記被測定対象気体における前記化学物質の種類を同定し及び/又は前記 化学物質の濃度を算出するようにしてもよレ、。 Further, in the chemical substance detection method described above, by analyzing infrared rays emitted after multiple reflection inside the substrate, the chemical substance in the gas to be measured is analyzed. The type of quality may be identified and / or the concentration of the chemical substance may be calculated. Further, in the chemical substance detection method described above, the object to be measured is analyzed by analyzing infrared rays that are incident from one surface side of the substrate, transmitted through the substrate, and emitted from the other surface side of the substrate. The type of the chemical substance in the gas may be identified and / or the concentration of the chemical substance may be calculated.
上記の化学物質検出方法において、 定期的に前記基板に付着した前記化学物質 を除去して前記基板の表面状態を初期化するようにしてもよい。  In the above-described chemical substance detection method, the chemical substance attached to the substrate may be periodically removed to initialize the surface state of the substrate.
また、 上記目的は、 被測定対象気体を導入する容器と、 前記容器内の圧力が陽 圧となるように前記容器内に前記被測定対象気体を導入する気体導入手段と、 前 記容器内に載置され、 前記被測定対象気体中に含まれる化学物質を付着する基板 と、 前記基板に赤外線を入射する赤外線入射手段と、 前記基板を透過した後に出 射された赤外線を分析することにより、 前記被測定対象気体における前記化学物 質の種類を同定し及び Z又は前記化学物質の濃度を算出する化学物質検出手段と を有することを特徴とする化学物質検出装置により達成される。  Further, the above object is to provide a container for introducing a gas to be measured, gas introducing means for introducing the gas to be measured into the container such that the pressure in the container is positive, A substrate mounted thereon, to which a chemical substance contained in the gas to be measured is attached, infrared radiation incident means for irradiating infrared radiation to the substrate, and analyzing infrared radiation emitted after passing through the substrate, A chemical substance detection device comprising: a chemical substance detection unit that identifies a type of the chemical substance in the gas to be measured and calculates Z or the concentration of the chemical substance.
また、 上記の化学物質検出装置において、 前記容器内に導入された前記被測定 対象気体の前記容器内からの排気を制御する排気制御手段を更に有するようにし てもよい。  The above-mentioned chemical substance detection device may further include exhaust control means for controlling exhaust of the gas to be measured introduced into the container from the inside of the container.
また、 上記の化学物質検出装置において、 前記容器は、 赤外線を透過する材質 からなる第 1及び第 2の窓を有し、 前記赤外線入射手段は、 前記第 1の窓を介し て前記容器の外部から赤外線を入射し、 前記化学物質検出手段は、 前記基板を透 過した後に前記第 2の窓を介して前記容器の外部に出射された赤外線又は前記基 板の表面で反射され前記第 2の窓を介して前記容器の外部に出射された赤外線を 分析するようにしてもよい。  Further, in the chemical substance detection device, the container has first and second windows made of a material that transmits infrared light, and the infrared incident means is provided outside the container through the first window. The chemical substance detecting means is configured to detect the infrared ray emitted through the second window to the outside of the container after passing through the substrate or reflected on the surface of the substrate, The infrared light emitted to the outside of the container through the window may be analyzed.
また、 上記の化学物質検出装置において、 前記化学物質検出手段は、 前記基板 内部を多重反射した後に出射される赤外線を分析することにより、 前記被測定対 象気体における前記化学物質の種類を同定し及び/又は前記化学物質の濃度を算 出するようにしてもよい。  In the above chemical substance detection device, the chemical substance detection means identifies the type of the chemical substance in the gas to be measured by analyzing infrared rays emitted after multiple reflection inside the substrate. And / or the concentration of the chemical substance may be calculated.
また、 上記の化学物質検出装置において、 前記化学物質検出手段は、 前記基板 の一の面側から入射され、 前記基板を透過して前記基板の他の面側から出射され る赤外線を分析することにより、 前記被測定対象気体における前記化学物質の種 類を同定し及び Z又は前記化学物質の濃度を算出するようにしてもよい。 In the above chemical substance detection device, the chemical substance detection means is incident on one surface of the substrate, transmitted through the substrate, and emitted from the other surface of the substrate. The type of the chemical substance in the gas to be measured may be identified, and Z or the concentration of the chemical substance may be calculated by analyzing the infrared rays.
また、 上記の化学物質検出装置において、 前記基板を冷却し、 前記被測定対象 気体中の前記化学物質が前記基板へ付着することを促進する冷却装置を更に有す るようにしてもよい。  In the above-described chemical substance detection device, a cooling device that cools the substrate and promotes the chemical substance in the gas to be measured to adhere to the substrate may be further provided.
また、 上記の化学物質検出装置において、 前記冷却装置は、 前記基板に対して 直接接触して前記基板を冷却するものであり、 前記赤外線入射手段は、 前記基板 と前記冷却装置の接触部分が赤外線の光路上に位置することがないように赤外線 を入射するようにしてもよレ、。  In the above chemical substance detection device, the cooling device is a device that directly contacts the substrate to cool the substrate, and the infrared incident means is configured such that a contact portion between the substrate and the cooling device is an infrared ray. Infrared light may be incident so that it is not located on the optical path of the light.
また、 上記の化学物質検出装置において、 前記基板表面に付着した前記化学物 質を除去して前記基板の表面状態を初期化する基板洗浄手段を更に有するように してもよレヽ。  In the above chemical substance detection device, the apparatus may further include a substrate cleaning means for removing the chemical substance attached to the substrate surface and initializing the surface state of the substrate.
また、 上記の化学物質検出装置において、 前記基板洗浄手段は、 前記基板を加 熱することにより前記基板に付着した前記化学物質を除去する加熱手段であるよ うにしてもよい。  In the above-described chemical substance detection device, the substrate cleaning unit may be a heating unit that removes the chemical substance attached to the substrate by heating the substrate.
また、 上記の化学物質検出装置において、 前記基板洗浄手段は、 前記基板表面 に紫外線を照射することにより前記基板に付着した前記化学物質を除去する紫外 線照射手段であるようにしてもよい。  In the above chemical substance detection device, the substrate cleaning means may be an ultraviolet ray irradiating means for irradiating the surface of the substrate with ultraviolet rays to remove the chemical substance attached to the substrate.
本発明によれば、 被測定対象気体に曝露した基板に赤外線を入射し、 基板から 出射される赤外線を分析することにより、 被測定対象気体中に含まれる化学物質 を検出する化学物質検出方法において、 容器内に基板を収容し、 被測定対象気体 を容器内に導入して容器内を陽圧にすることにより、 化学物質が基板に付着する ことを促進するので、 被測定対象気体中に含まれる化学物質の検出感度を向上す ることができる。  According to the present invention, there is provided a chemical substance detection method for detecting a chemical substance contained in a gas to be measured by irradiating infrared rays to a substrate exposed to the gas to be measured and analyzing infrared rays emitted from the substrate. Since the substrate is housed in a container, and the gas to be measured is introduced into the container and the inside of the container is made to have a positive pressure, chemical substances are promoted to adhere to the substrate. The detection sensitivity of chemical substances used.
[図面の簡単な説明] [Brief description of drawings]
図 1は、 本発明の一実施形態による化学物質検出装置の構造を示す概略図であ る。  FIG. 1 is a schematic diagram showing the structure of a chemical substance detection device according to one embodiment of the present invention.
図 2は、 本発明の一実施形態による化学物質検出装置の変形例の構造を示す概 略図である。 FIG. 2 is a schematic diagram showing the structure of a modification of the chemical substance detection device according to one embodiment of the present invention. It is a schematic diagram.
図 3は、 本発明の一実施形態による化学物質検出装置の変形例の構造を示す概 略図である。  FIG. 3 is a schematic diagram showing the structure of a modification of the chemical substance detection device according to one embodiment of the present invention.
図 4は、 本発明の一実施形態による化学物質検出装置の変形例の構造を示す概 略図である。  FIG. 4 is a schematic view showing the structure of a modification of the chemical substance detection device according to one embodiment of the present invention.
図 5は、 従来の化学物質検出装置の構造を示す概略図である。 [発明を実施するための最良の形態]  FIG. 5 is a schematic diagram showing the structure of a conventional chemical substance detection device. [Best Mode for Carrying Out the Invention]
本発明の一実施形態による化学物質検出方法及び装置について図 1を用いて説 明する。 図 1は、 本実施形態による化学物質検出装置の構造を示す概略図である。  A chemical substance detection method and apparatus according to one embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic diagram showing the structure of the chemical substance detection device according to the present embodiment.
〔1〕 化学物質検出装置  [1] Chemical substance detection device
まず、 本実施形態による化学物質検出装置について図 1を用いて説明する。 図 1に示すように、 本実施形態による化学物質検出装置では、 被測定対象気体 中の化学物質を付着して測定に供するための赤外透過基板 1 0が支持台 1 2に載 置されている。  First, the chemical substance detection device according to the present embodiment will be explained with reference to FIG. As shown in FIG. 1, in the chemical substance detection device according to the present embodiment, an infrared transmitting substrate 10 for attaching a chemical substance in a gas to be measured and performing the measurement is mounted on a support 12. I have.
赤外透過基板 1 0は、 被測定対象気体が導入される導入口 1 4と被測定対象気 体が排気される排気口 1 6とを有する基板封入容器 1 8内に封入されている。 基板封入容器 1 8の導入口 1 4には、 基板封入容器 1 8内で被測定対象気体を 導入して基板封入容器 1 8內を陽圧にするサンプリングポンプ 2 0が配管 2 1を 介して接続されている。  The infrared transmitting substrate 10 is sealed in a substrate sealing container 18 having an inlet 14 into which the gas to be measured is introduced and an outlet 16 from which the gas to be measured is exhausted. The sampling pump 20 that introduces the gas to be measured into the substrate enclosure 18 and makes the substrate enclosure 18 positive pressure is introduced into the inlet 14 of the substrate enclosure 18 via piping 21. It is connected.
基板封入容器 1 8の排気口 1 6には、 ス トップバルブ 2 2を有する配管 2 4が 接続されており、 基板封入容器 1 8内からの排気を制御することができる。  A pipe 24 having a stop valve 22 is connected to an exhaust port 16 of the substrate enclosing container 18 so that the exhaust from the substrate enclosing container 18 can be controlled.
基板封入容器 1 8の一の側面には、 赤外線に透過性のある材質からなる入射窓 One side of the substrate enclosure 18 is an entrance window made of a material that is transparent to infrared rays.
2 6が設けられている。 入射窓 2 6が設けられた一の側面に対向する側面には、 入射窓 2 6と同様に赤外線に透過性のある材質からなる検出窓 2 8が設けられて いる。 26 are provided. A detection window 28 made of a material that is transparent to infrared rays is provided on a side surface opposite to the one side surface provided with the entrance window 26, similarly to the entrance window 26.
基板封入容器 1 8の一の側面に設けられた入射窓 2 6の近傍には、 入射光学系 In the vicinity of the entrance window 26 provided on one side of the substrate enclosure 18, an entrance optical system
3 0が配置されている。 入射光学系 3 0は、 プローブ光となる赤外線を放出する 赤外光源 3 2と、 赤外光源 3 2から放出された赤外線を凹面鏡 3 4に導く反射鏡 3 6と、 反射鏡 3 6から導かれた赤外線を集光して入射窓 2 6を介して赤外透過 基板 1 0端面からその内部で多重反射するように導入する凹面鏡 3 4とから構成 されている。 30 are located. The incident optical system 30 is composed of an infrared light source 32 that emits infrared light serving as probe light, and a reflecting mirror that guides infrared light emitted from the infrared light source 32 to the concave mirror 34. 36, and a concave mirror 34 that collects the infrared light guided from the reflecting mirror 36 and introduces it through the entrance window 26 through the infrared transmitting substrate 10 from the end face so as to cause multiple reflection inside. ing.
基板封入容器 1 8の他の側面に設けられた検出窓 2 8の近傍には、 赤外透過基 板 1 0内部で多重反射した後に放出される透過性赤外線を分光分析する F T— I R (フーリエ変換赤外分光分析) 装置 4 6が、 検出光学系 4 0を介して配置され ている。 検出光学系 4 0は、 赤外透過基板 1 0から検出窓 2 8を介して基板封入 容器 1 8外に放出された赤外線を集光して反射鏡 4 2に導く凹面鏡 4 4と、 凹面 鏡 4 4から導かれた赤外線を F T— I R装置 4 6に導く反射鏡 4 2とから構成さ れている。  In the vicinity of the detection window 28 provided on the other side of the substrate enclosing container 18, a FT-IR (Fourier) is used for spectral analysis of transmitted infrared rays emitted after multiple reflections inside the infrared transmitting substrate 10. Conversion infrared spectroscopy) The device 46 is arranged via the detection optical system 40. The detection optical system 40 is composed of a concave mirror 44, which collects infrared light emitted from the infrared transmitting substrate 10 through the detection window 28 through the detection window 28, and guides the infrared light to the reflecting mirror 42, and a concave mirror. And a reflector 42 for guiding the infrared light guided from 44 to the FT-IR device 46.
F T— I R装置 4 6には、 F T— I R装置 4 6による分析結果に基づき被測定 対象気体中の化学物質の種類の同定や濃度の算出を行う演算 ·表示装置 (図示せ ず) が接続されている。  The FT-IR device 46 is connected to a calculation and display device (not shown) that identifies the type of chemical substance in the gas to be measured and calculates the concentration based on the analysis results of the FT-IR device 46. ing.
本実施形態による化学物質検出装置は、 被測定対象気体を基板封入容器 1 8内 に導入して基板封入容器 1 8内を陽圧にするサンプリングポンプ 2 0を有するこ とに主たる特徴がある。 これより、 被測定対象気体中の化学物質の赤外透過基板 1〇への付着率を向上することができ、 化学物質の検出感度を向上することが可 能となる。  The main feature of the chemical substance detection device according to the present embodiment is that it has a sampling pump 20 that introduces a gas to be measured into the substrate enclosure 18 and applies a positive pressure to the substrate enclosure 18. Thus, the adhesion rate of the chemical substance in the gas to be measured to the infrared transmitting substrate 1 can be improved, and the detection sensitivity of the chemical substance can be improved.
以下に、 本実施形態による化学物質検出装置の各構成要素について個々に詳述 する。  Hereinafter, each component of the chemical substance detection device according to the present embodiment will be individually described in detail.
( a ) 赤外透過基板 1 0  (a) Infrared transmitting substrate 10
赤外透過基板 1 0は、 被測定対象気体中の化学物質を吸着して測定に供するた めのものである。 従って、 検出すべき化学物質の分子振動に対応する波長域の光 を透過する材料であることが必要である。 代表的な有機物質の基本振動に対応す る波数域は、 5 0 0 c m一1 (波長 2 0 μ πι) 〜 5 0 0 0 c m一1 (波長 2 m) 程 度の赤外 ·近赤外域である。 この有機物質の赤外吸収の波数域内の、 物質が共通 にもっている特定の種類の分子振動に起因する赤外吸収の波数帯域、 例えば C H 3非対称伸縮振動に対応する波数域を少なくとも透過する物質を赤外透過基板 1 0 として選択する。 また、 化学物質の検出に際しては、 赤外透過基板 1 0を大気中 に曝露することとなるので、 その材料としては、 潮解性がないものであることが 必要である。 The infrared transmitting substrate 10 is for adsorbing a chemical substance in the gas to be measured for use in the measurement. Therefore, it must be a material that transmits light in the wavelength range corresponding to the molecular vibration of the chemical substance to be detected. The wave number range corresponding to the fundamental vibration of a typical organic substance is from 500 cm- 1 (wavelength 20 μππ) to 500 cm- 1 (wavelength 2 m). Outer area. A substance that transmits at least the wave number band of infrared absorption caused by a specific type of molecular vibration common to the substances, for example, the wave number region corresponding to CH 3 asymmetric stretching vibration, within the wave number range of infrared absorption of this organic substance Is selected as the infrared transmitting substrate 10. When detecting chemical substances, the infrared-transparent substrate 10 Therefore, the material must be non-deliquescent.
従って、 例えば、 砒化ガリウム (G aA s) は、 透過波長域が約 1. 0〜1 8 m程度であり、 大気中において安定な物質であるので、 赤外透過基板 1 0を構 成する一材料として選択することができる。 また、 砒化ガリウムのほか、 セレン 化亜鉛 ( Z n S e :透過波長域 0. 6〜1 3 μπα) 、 シリコン (S i :透過波長 域 1. 2 μ m〜 6 μ m) 、 臭化力リウム (K B r :透過波長域 0 · 4〜 2 2 μ m) 、 フッ化カルシウム (C a F2:透過波長域 0. 2〜 8 μ m) 、 ゲルマニウムTherefore, for example, gallium arsenide (GaAs) has a transmission wavelength range of about 1.0 to 18 m, and is a stable substance in the atmosphere. Can be selected as material. In addition to gallium arsenide, zinc selenide (ZnSe: transmission wavelength range 0.6 to 13 μπα), silicon (Si: transmission wavelength range 1.2 μm to 6 μm), bromide power Lium (KBr: Transmission wavelength range 0, 4 to 22 μm), Calcium fluoride (C a F 2 : Transmission wavelength range 0.2 to 8 μm), Germanium
(G e :透過波長域 2〜1 8 xm) 等を赤外透過基板 1 0の材料として選択する こともできる。 (Ge: transmission wavelength range 2 to 18 xm) can be selected as the material of the infrared transmission substrate 10.
赤外透過基板 10の形状は、 例えば、 端面の傾きを 45度に研磨することが望 ましい。 こうすることで、 赤外透過基板 1 0内部への赤外線の入射効率を高める ことができるとともに、 赤外線を赤外透過基板 1 0内部で多重反射させることが できる。 また、 赤外線が多重内部反射する際に光が散乱されるのを防ぐために、 赤外透過基板 10には、 両面研磨された基板を用いる必要がある。  The shape of the infrared transmitting substrate 10 is desirably polished, for example, such that the inclination of the end face is 45 degrees. By doing so, it is possible to increase the efficiency of incidence of infrared rays into the infrared transmitting substrate 10 and to make the infrared rays undergo multiple reflection inside the infrared transmitting substrate 10. Further, in order to prevent light from being scattered when infrared rays undergo multiple internal reflections, it is necessary to use a substrate polished on both sides as the infrared transmitting substrate 10.
(b) 支持台 1 2  (b) Support 1 2
支持台 1 2には、 赤外透過基板 1 0が載置される。 このとき、 赤外透過基板 1 0の上側表面だけでなく、 赤外透過基板 1 0の下側表面にも被測定対象気体中の 化学物質が付着するように、 赤外透過基板 1 0の下側表面と支持台 1 2とが完全 に密着することがないような工夫をしてもよい。 例えば、 支持台 1 2の載置面上 に複数の凸状構造を設け、 これらに赤外透過基板 1 0を載置する。 すると、 赤外 透過基板 1 0の下側表面が被測定対象気体に対して曝露される状態にする。 これ により、 化学物質が付着しうる赤外透過基板 10の面積が大きくなり、 信号対雑 音比 (S/N比) の向上を図ることができる。  An infrared transmitting substrate 10 is placed on the support 12. At this time, beneath the infrared transmitting substrate 10, the chemical substance in the gas to be measured adheres not only to the upper surface of the infrared transmitting substrate 10 but also to the lower surface of the infrared transmitting substrate 10. A device may be designed so that the side surface and the support 12 do not completely adhere to each other. For example, a plurality of convex structures are provided on the mounting surface of the support 12, and the infrared transmitting substrate 10 is mounted thereon. Then, the lower surface of the infrared transmitting substrate 10 is exposed to the gas to be measured. As a result, the area of the infrared transmitting substrate 10 to which the chemical substance can adhere is increased, and the signal-to-noise ratio (S / N ratio) can be improved.
(c) 基板封入容器 1 8、 サンプリングポンプ 20  (c) Substrate enclosure 18 and sampling pump 20
基板封入容器 1 8には、 赤外透過基板 10が収容されており、 サンプリングポ ンプ 20によって導入口 34から被測定対象気体が導入される。 このとき基板封 入容器 1 8内が陽圧になるように、 基板封入容器 1 8の構造は気密性を保つこと ができる構造となっている。 基板封入容器 1 8に排気口 1 6に接続された配管 2 4に設けられたストップバ ルブ 2 2は、 基板封入容器 1 8からの排気を制御するものである。 被測定対象気 体をサンプリングポンプ 2 0により基板封入容器 1 8内に導入する際には、 スト ップバルブ 2 2を閉じておき、 基板封入容器 1 8を密閉状態とする。 これにより、 基板封入容器 1 8内を陽圧にすることができる。 An infrared transmitting substrate 10 is accommodated in the substrate enclosing container 18, and a gas to be measured is introduced from the introduction port 34 by the sampling pump 20. At this time, the structure of the substrate enclosing container 18 is a structure that can maintain airtightness so that the inside of the substrate enclosing container 18 is at a positive pressure. The stop valve 22 provided in the pipe 24 connected to the exhaust port 16 of the substrate enclosure 18 controls the exhaust from the substrate enclosure 18. When introducing the gas to be measured into the substrate enclosure 18 by the sampling pump 20, the stop valve 22 is closed and the substrate enclosure 18 is closed. As a result, the inside of the substrate enclosing container 18 can be maintained at a positive pressure.
基板封入容器 1 8側面に設けられた入射窓 2 6は、 基板封入容器 1 8内に収容 された赤外透過基板 1 0端面に入射光学系 3 0により赤外線を導入するためのも のである。  The entrance window 26 provided on the side surface of the substrate enclosing container 18 is for introducing infrared rays to the end face of the infrared transmitting substrate 10 housed in the substrate enclosing container 18 by the incident optical system 30.
また、 検出窓 2 8は、 基板封入容器 1 8内に収容された赤外透過基板 1 0内部 を多重反射した後に端面から放出される赤外線を、 検出光学系 4 0を介して F T 一 I R装置 4 6によって検出するためのものである。  The detection window 28 receives the infrared light emitted from the end face after multiple reflection inside the infrared transmitting substrate 10 accommodated in the substrate enclosing container 18 through the detecting optical system 40 and the FT-IR device. 4 for detection by 6.
このように、 本実施形態による化学物質検出装置では、 基板封入容器 1 8に入 射窓 2 6及び検出窓 2 8を設けることにより、 入射光学系 3 0、 検出光学系 4 0、 F T _ I R装置 4 6を基板封入容器 1 8の外部に設置している。 これにより、 基 板封入容器 1 8自体をコンパクトなものとすることができ、 基板封入容器 1 8へ の被測定対象気体の導入及ぴ排気など測定に要する時間の短縮化を図ることがで きる。  As described above, in the chemical substance detection device according to the present embodiment, by providing the entrance window 26 and the detection window 28 in the substrate enclosure 18, the incident optical system 30, the detection optical system 40, and the FT_IR The device 46 is placed outside the substrate enclosure 18. As a result, the substrate enclosure 18 itself can be made compact, and the time required for measurement such as introduction and exhaust of the gas to be measured into the substrate enclosure 18 can be reduced. .
サンプリングポンプ 2 0は、 環境中から被測定対象気体を吸入する吸気口 4 8 と、 吸気した被測定対象気体を陽圧にして排出する排気口 5 0とを有している。 サンプリングポンプ 2 2の排気口 5 0は、 基板封入容器 1 8の導入口 1 4に配管 2 1を介して接続されている。 サンプリングポンプ 2 0は、 吸気口 4 8から吸入 した被測定対象気体を基板封入容器 1 8内に配管 2 1を介して導入し、 基板封入 容器 1 8内を陽圧にする。 以下に、 サンプリングポンプ 2 0によって基板封入容 器 1 8内を陽圧にすることにより得られる効果について詳述する。  The sampling pump 20 has an intake port 48 for sucking the gas to be measured from the environment, and an exhaust port 50 for discharging the sucked gas to be measured to a positive pressure. The exhaust port 50 of the sampling pump 22 is connected to the inlet port 14 of the substrate enclosure 18 via a pipe 21. The sampling pump 20 introduces the gas to be measured sucked from the intake port 48 into the substrate enclosure 18 via the pipe 21, and makes the inside of the substrate enclosure 18 a positive pressure. Hereinafter, the effect obtained by making the inside of the substrate enclosing container 18 a positive pressure by the sampling pump 20 will be described in detail.
一般に、 固体表面に付着する気体の吸着量は、 気体分子の分圧が大きくなるほ ど多くなる。 気体の分圧と吸着量の関係を表すモデルは、 その吸着条件によって 複数のものがこれまで提案されている。 その中で代表的なモデルのひとつである Freundlich の吸着式は、 気体の吸着量を wとし、 その気体の分圧を pとすると、 次の式で表される。 w = k 1 /n In general, the amount of gas adsorbed on a solid surface increases as the partial pressure of gas molecules increases. Several models have been proposed to represent the relationship between the gas partial pressure and the amount of adsorption depending on the adsorption conditions. Freundlich's adsorption equation, which is one of the representative models, is expressed by the following equation, where the amount of adsorbed gas is w and the partial pressure of the gas is p. w = k 1 / n
ここで、 k及び nは、 吸着媒である固体や吸着質である気体の種類、 吸着温度等 に依存する定数である。 Here, k and n are constants depending on the type of the solid as the adsorbent or the gas as the adsorbate, the adsorption temperature, and the like.
上記の式も明らかなように、 サンプリングポンプ 2 0によって基板封入容器 1 8内を陽圧にして赤外透過基板 1 0付近の圧力を高くすると、 被測定対象気体中 の化学物質の赤外透過基板 1 0への吸着量を增大することができる。 これにより、 化学物質検出装置の検出感度を相対的に向上することが可能となる。  As is clear from the above equation, when the pressure in the vicinity of the infrared transmitting substrate 10 is increased by making the inside of the substrate enclosing container 18 positive by the sampling pump 20, the infrared transmission of the chemical substance in the gas to be measured is increased. The amount of adsorption to the substrate 10 can be increased. This makes it possible to relatively improve the detection sensitivity of the chemical substance detection device.
このように、 本実施形態による化学物質検出装置は、 サンプリングポンプ 2 0 によって基板封入容器 1 8内を陽圧にし、 赤外透過基板 1 0に付着する被測定対 象気体中の化学物質の量を増大することにより、 その検出感度を増大することに 主たる特徴がある。  As described above, the chemical substance detection device according to the present embodiment uses the sampling pump 20 to apply a positive pressure to the inside of the substrate enclosing container 18 and to determine the amount of the chemical substance in the gas to be measured adhering to the infrared transmitting substrate 10. The main characteristic is that the detection sensitivity is increased by increasing the detection sensitivity.
( f ) 入射光学系 3 0 (赤外光源 3 2、 反射鏡 3 6、 凹面鏡 3 4 )  (f) Incident optical system 30 (infrared light source 32, reflecting mirror 36, concave mirror 34)
赤外光源 3 2としては、 有機分子の分子振動に対応する 2〜 2 5 μ m帯域の赤 外線を発する光源を適用することができる。 例えば、 フィラメントとしてのシリ コンカーバイド (S i C ) やニクロム線に電流を印加して発する熱線を光源とし て用いることができる。 S i Cグローバ灯などの S i Cを用いた光源は、 1 . 1 〜2 5 μ κι帯域の赤外線を発し、 かつ、 空気中でむき出しで使用しても焼損がな いという特徴がある。  As the infrared light source 32, a light source that emits infrared light in a band of 2 to 25 μm corresponding to molecular vibration of organic molecules can be applied. For example, heat rays generated by applying a current to a silicon carbide (SiC) as a filament or a nichrome wire can be used as a light source. Light sources that use SiC, such as SiC glower lamps, emit infrared light in the 1.1 to 25 μκ band and do not burn out when used in the air.
反射鏡 3 6及び凹面鏡 3 4は、 赤外光源 3 2から発せられた赤外線を赤外透過 基板 1 0内部で多重反射するように、 赤外透過基板 1 0端面から導入するための ものである。  The reflecting mirror 36 and the concave mirror 34 are for introducing infrared light emitted from the infrared light source 32 from the end face of the infrared transmitting substrate 10 so that the infrared light is multiply reflected inside the infrared transmitting substrate 10. .
なお、 赤外線の入射角度の設定に関しては、 例えば同一出願人による特願平 1 1 - 9 5 8 5 3号公報に詳述されている。  The setting of the incident angle of infrared rays is described in detail in, for example, Japanese Patent Application No. 11-95853 by the same applicant.
( d ), 検出光学系 4 0 (凹面鏡 4 4、 反射鏡 4 2 ) 、 F T— I R装置 4 6 凹面鏡 4 4及び反射鏡 4 2は、 赤外透過基板 1 0内部で多重反射した後に赤外 透過基板 1 0の端面より放出された赤外線を F T— I R装置 4 6に導くものであ る。  (d), detection optics 40 (concave mirror 44, reflection mirror 42), FT-IR device 46 concave mirror 44 and reflection mirror 42 reflect infrared light after multiple reflection inside infrared transmission substrate 10. The infrared rays emitted from the end face of the transmission substrate 10 are guided to the FT-IR device 46.
F T— I R装置 4 6は、 例えば、 二光束干渉計 (マイケルソン光干渉計) を基 にしたフーリエ変換分光のメカニズムにより、 反射鏡 4 2により導かれた赤外線 を分光分析するものである。 或いは、 F T— I R装置 4 6の代わりに、 回折格子 (グレーティング) による赤外分光計を用いてもよい。 The FT-IR device 46 uses, for example, a mechanism of Fourier transform spectroscopy based on a two-beam interferometer (Michelson optical interferometer) to transmit infrared light guided by a reflecting mirror 42. Is subjected to spectral analysis. Alternatively, instead of the FT-IR device 46, an infrared spectrometer using a diffraction grating (grating) may be used.
( e ) 演算 ·表示装置  (e) Calculation and display device
F T— I R装置 4 6により得られたスぺク トルの測定データは、 演算 .表示装 置に送られ、 被測定対象気体中に存在する化学物質の同定や量の算出が行われる。 被測定対象気体中に存在する化学物質の種類と検量線は別途データベースとし て演算 ·表示装置の記憶部に蓄えられており、 測定データはそれらのデータべ一 スを参照して定量化される。  The spectrum measurement data obtained by the FT-IR device 46 is sent to a calculation and display device, where the identification and the amount of chemical substances present in the gas to be measured are performed. The types of chemical substances present in the gas to be measured and the calibration curve are separately stored as a database and stored in the storage unit of the display device, and the measured data is quantified with reference to those databases. .
被測定対象気体中の化学物質を同定するために、 様々な物質の各種分子振動に よる赤外吸収の波数がデータベースとして演算 ·表示装置に蓄えられている。 例 えば、 各化学物質について、 C H 3対称伸縮振動や、 C H 3非対称伸縮振動、 C H 2対称伸縮振動、 C H 2非対称伸縮振動等による吸収波数のデータが蓄えられてい る。 化学物質の同定の際には、 各種分子振動による吸収波数のデータベースの中 から、 ある特定の分子振動による吸収波数のデータが参照される。 In order to identify chemical substances in the gas to be measured, the wave numbers of infrared absorption due to various molecular vibrations of various substances are stored in a calculation and display device as a database. For example, for each chemical substance, data on the number of absorption waves due to CH 3 symmetric stretching vibration, CH 3 asymmetric stretching vibration, CH 2 symmetric stretching vibration, CH 2 asymmetric stretching vibration, and the like are stored. When identifying a chemical substance, data on the absorption wave number due to a specific molecular vibration is referred to from the database of the absorption wave number due to various molecular vibrations.
〔2〕 化学物質検出方法  [2] Chemical substance detection method
次に、 本実施形態による化学物質検出方法について図 1を用いて説明する。 まず、 測定すべき環境中に本実施形態による化学物質検出装置を設置する。 次いで、 サンプリングポンプ 2 0を稼働し、 被測定対象気体を導入口 1 4から 基板封入容器 1 8内に導入する。 このとき、 基板封入容器 1 8の排気口 1 6に接 続する配管 2 4のストップバルブ 2 2を閉じる。 こうして密閉状態の基板封入容 器 1 8内へ被測定対象気体を導入していくことによって、 基板封入容器 1 8内が 陽圧となる。 なお、 ストップバルブ 2 2は、 基板封入容器 1 8内が被測定対象気 体に置換された後に閉めることが望ましい。 また、 基板封入容器 1 8内の圧力等 に応じて、 サンプリングポンプ 2 0の運転を適宜制御することが望ましい。  Next, the chemical substance detection method according to the present embodiment will be described with reference to FIG. First, the chemical substance detection device according to the present embodiment is installed in the environment to be measured. Next, the sampling pump 20 is operated, and the gas to be measured is introduced into the substrate enclosure 18 from the introduction port 14. At this time, the stop valve 22 of the pipe 24 connected to the exhaust port 16 of the substrate enclosure 18 is closed. By introducing the gas to be measured into the sealed substrate enclosing container 18 in this manner, the inside of the substrate enclosing container 18 becomes a positive pressure. It is desirable that the stop valve 22 be closed after the inside of the substrate enclosure 18 is replaced with the gas to be measured. In addition, it is desirable to appropriately control the operation of the sampling pump 20 according to the pressure in the substrate enclosure 18 and the like.
被測定対象気体中の化学物質が赤外透過基板 1 0表面に付着するために必要な 所定の時間経過後、 入射光学系 3 0により赤外線を赤外透過基板 1 0内部で多重 反射するように赤外透過基板 1 0端面からその内部に導入する。  After a lapse of a predetermined time required for the chemical substance in the gas to be measured to adhere to the surface of the infrared transmitting substrate 10, the infrared light is reflected multiple times inside the infrared transmitting substrate 10 by the incident optical system 30. The infrared transmitting substrate 10 is introduced into the inside from the end face.
赤外透過基板 1 0内部に導入された赤外線は、 赤外透過基板 1 0内部で多重反 射しながら伝搬していく。 続いて、 赤外透過基板 1 0内部で多重反射した後に端面より放出された赤外線 を検出光学系 4 0により F T— I R装置 4 6に導く。 そして、 導かれた赤外線を F T— I R装置 4 6によって分光分析することにより赤外透過スぺクトルを得る。 続いて、 上述のようにして得られた測定結果に基づき、 被測定対象気体中に存 在する化学物質の解析を行い、 それらの種類を同定し及び/又は付着量を算出す る。 なお、 化学物質の種類の同定及びその付着量の算出の方法については、 例え ば、 特願 2 0 0 1 - 6 8 8 6 3号公報に詳述されている。 The infrared light introduced into the infrared transmitting substrate 10 propagates while undergoing multiple reflections inside the infrared transmitting substrate 10. Subsequently, the infrared light emitted from the end face after multiple reflection inside the infrared transmitting substrate 10 is guided to the FT-IR device 46 by the detection optical system 40. Then, the infrared ray is spectrally analyzed by the FT-IR device 46 to obtain an infrared transmission spectrum. Subsequently, based on the measurement results obtained as described above, the chemical substances present in the gas to be measured are analyzed, their types are identified, and / or the amount of adhesion is calculated. The method of identifying the type of chemical substance and calculating the amount of the attached chemical substance is described in detail, for example, in Japanese Patent Application No. 2001-68863.
次いで、 必要に応じて上記測定を繰り返し行い、 被測定対象気体中の化学物質 の経時変化等を測定する。  Next, the above measurement is repeated as necessary to measure the change with time of the chemical substance in the gas to be measured.
測定終了後、 基板封入容器 1 8の排気口 1 6に接続する配管 2 4のストップパ ルプ 2 2を開放し、 基板封入容器 1 8内の被測定対象気体を排出する。  After the measurement is completed, the stop valve 22 of the pipe 24 connected to the exhaust port 16 of the substrate enclosure 18 is opened, and the gas to be measured in the substrate enclosure 18 is exhausted.
このように、 本実施形態によれば、 密閉状態の基板封入容器 1 8内被測定対象 気体を導入して基板封入容器 1 8を陽圧にすることにより、 被測定対象気体中の 化学物質の赤外透過基板 1 0への付着を促進するので、 化学物質の検出感度を向 上することができる。  As described above, according to the present embodiment, by introducing the gas to be measured in the sealed substrate enclosing container 18 to make the substrate enclosing container 18 a positive pressure, the chemical substance in the gas to be measured is Since the adhesion to the infrared transmitting substrate 10 is promoted, the detection sensitivity of the chemical substance can be improved.
: (変形実施形態)  : (Modified embodiment)
本発明の上記実施形態に限らず種々の変形が可能である。  Various modifications are possible without being limited to the above embodiment of the present invention.
例えば、 図 2に示すように、 赤外透過基板 1 0を冷却して被測定対象気体中の 化学物質の付着を促進する冷却装置 5 2を設けてもよい。 冷却装置 5 2としては、 例えばペルティエ素子によるものを用いることができる。 サンプリングポンプ 2 0による基板封入容器 1 8内への被測定対象気体の導入と合わせて、 冷却装置 5 2により赤外透過基板 1 0を冷却する。 この冷却による被測定対象気体中の化学 物質の付着率向上の効果と上述した基板封入容器 1 8内を陽圧にすることによる 付着率向上の効果とが相乗的にはたらき、 さらに化学物質の検出感度を向上する ことができる。 '  For example, as shown in FIG. 2, a cooling device 52 for cooling the infrared transmitting substrate 10 to promote the adhesion of the chemical substance in the gas to be measured may be provided. As the cooling device 52, for example, a cooling device using a Peltier element can be used. The infrared transmitting substrate 10 is cooled by the cooling device 52 together with the introduction of the gas to be measured into the substrate enclosing container 18 by the sampling pump 20. The effect of improving the adhesion rate of the chemical substance in the gas to be measured by this cooling and the effect of improving the adhesion rate by making the inside of the substrate enclosure 18 positive pressure described above work synergistically, and further detect the chemical substance. Sensitivity can be improved. '
なお、 冷却装置 5 2により赤外透過基板 1 0を直接接着して冷却する場合、 赤 外透過基板 1 0内部を多重反射する赤外線の光路からはずれた表面に冷却装置 5 2を接着することが望ましい。 このように赤外透過基板 1 0の赤外線光路となる 領域を熱伝導により間接的に冷却することにより、 赤外吸収への接着面の影響を 回避することができる。 In the case where the infrared transmitting substrate 10 is directly bonded and cooled by the cooling device 52, the cooling device 52 may be bonded to the surface of the infrared transmitting substrate 10 that is out of the optical path of the infrared light that multiple-reflects the inside. desirable. By thus indirectly cooling the region of the infrared transmitting substrate 10 which will be the infrared optical path by heat conduction, the influence of the bonding surface on the infrared absorption is reduced. Can be avoided.
また、 赤外透過基板 1 0の冷却は、 赤外透過基板 1 0を直接冷却するだけでな く、 赤外透過基板 1 0を支持する支持台 1 2を冷却することにより行ってもよい。 また、 図 2に示すように、 赤外透過基板 1 0及び/又は基板封入容器 1 8を加 熱する加熱装置 5 4を設けてもよい。 測定後或いは測定前に、 加熱装置 5 4によ り赤外透過基板 1 0及び Z又は基板封入容器 1 8を加熱することにより、 赤外透 過基板 1 0及び/又は基板封入容器 1 8に付着している化学物質を除去すること ができる。 これにより、 測定条件を初期化した状態で毎回の測定を開始すること ができ、 精度の高い測定結果を得ることが可能となる。  The cooling of the infrared transmitting substrate 10 may be performed not only by directly cooling the infrared transmitting substrate 10 but also by cooling the support 12 supporting the infrared transmitting substrate 10. Further, as shown in FIG. 2, a heating device 54 for heating the infrared transmitting substrate 10 and / or the substrate enclosing container 18 may be provided. After or before the measurement, the infrared transmitting substrate 10 and / or the substrate enclosing container 18 is heated by the heating device 54 to the infrared transmitting substrate 10 and / or the substrate enclosing container 18. The attached chemicals can be removed. As a result, each measurement can be started with the measurement conditions initialized, and a highly accurate measurement result can be obtained.
また、 赤外透過基板 1 0表面に付着した化学物質を除去するために、 赤外透過 基板 1 0に赤外線を照射する装置を設けてもよい。 赤外透過基板 1 0に紫外線を 照射することにより、 紫外線を大気中に照射した際に発生するオゾンの酸化力と 紫外線自身のエネルギーとによって、 赤外透過基板 1 0表面に付着した化学物質 を分解 ·除去することができる。  Further, a device for irradiating the infrared transmitting substrate 10 with infrared rays may be provided in order to remove a chemical substance attached to the surface of the infrared transmitting substrate 10. By irradiating the infrared transmitting substrate 10 with ultraviolet rays, the chemical substances attached to the surface of the infrared transmitting substrate 10 are reduced by the oxidizing power of ozone generated when the ultraviolet rays are irradiated into the atmosphere and the energy of the ultraviolet rays themselves. Can be disassembled and removed.
また、 上記実施形態では、 基板封入容器 1 8に入射窓 2 6、 検出窓 2 8を設け、 入射光学系 3 0、 検出光学系 4 0、 F T— I R装置 4 6をそれぞれ基板封入容器 1 8の外に配置していたが、 これらを基板封入容器 1 8内に配置して入射窓 2 6、 検出窓 2 8を設けない構成としてもよい。  In the above embodiment, the substrate enclosing container 18 is provided with the entrance window 26 and the detection window 28, and the incident optical system 30, the detection optical system 40, and the FT-IR device 46 are respectively connected to the substrate enclosing container 18. However, these may be arranged in the substrate enclosing container 18 so that the entrance window 26 and the detection window 28 are not provided.
また、 上記実施形態では、 被測定対象気体中の化学物質を赤外透過基板 1 0に 付着させ、 赤外透過基板 1 0に付着した化学物質を赤外多重内部反射法により検 出していたが、 化学物質の検出方法はこれに限定されるものではない。 図 3及ぴ 図 4は、 他の検出方法とした場合の化学物質検出装置の構成例を示す概略図であ る。  In the above-described embodiment, the chemical substance in the gas to be measured is attached to the infrared transmitting substrate 10 and the chemical substance attached to the infrared transmitting substrate 10 is detected by the infrared multiple internal reflection method. However, the method of detecting a chemical substance is not limited to this. FIG. 3 and FIG. 4 are schematic diagrams showing a configuration example of a chemical substance detection device when another detection method is used.
例えば、 図 3に示すように、 赤外透過基板 1 0表面に赤外線を照射し、 赤外透 過基板 1 0を透過した赤外線を検出 ·分光分析する方法を用いてもよい。 この場 合、 図示するように、 赤外線を赤外透過基板 1 0表面に照射する赤外光源 5 6が、 基板封入容器 1 8に収容された赤外透過基板 1 0の一方の表面近傍に配置されて いる。 赤外透過基板 1 0の赤外光源 5 6が配置された表面に対向する表面近傍に は、 赤外透過基板 1 0を透過する赤外線を分光分析する分光分析装置 5 8が配置 されている。 For example, as shown in FIG. 3, a method of irradiating the surface of the infrared transmitting substrate 10 with infrared rays and detecting and spectrally analyzing the infrared rays transmitted through the infrared transmitting substrate 10 may be used. In this case, as shown in the figure, an infrared light source 56 for irradiating infrared rays to the surface of the infrared transmitting substrate 10 is arranged near one surface of the infrared transmitting substrate 10 accommodated in the substrate enclosing container 18. It has been. In the vicinity of the surface of the infrared transmitting substrate 10 facing the surface on which the infrared light source 56 is disposed, a spectroscopic analyzer 58 for spectrally analyzing the infrared light transmitted through the infrared transmitting substrate 10 is disposed. Have been.
また、 図 4に示すように、 1枚の赤外透過基板の代わりに、 平行平板の多重反 射を用いることもできる。 この場合、 図示するように、 基板封入容器 1 8には、 ほぼ平行に配置された一対の基板 6 0 a、 6 0 bが収容されている。 基板 6 0 a、 6 0 bの一方の端面近傍には、 プローブ光となる赤外線を基板 6 0 a、 6 O b間 に入射する赤外光源 6 2が配置されている。 赤外光源 6 2からの赤外線は、 対向 する基板 6 0 a、 6 0 bの間を多重反射するように入射される。 基板 6 0 a、 6 O bの赤外光源 6 2が配置された端面に対向する端面近傍には、 対向する基板 6 0 a、 6 0 bの間を多重反射した後に放出される赤外線を分光分析する F T— I R装置 6 6が接続されている。 なお、 図 4に示す構成とした場合には、 基板 6 0 a、 6 0 bが赤外線に対して透過性を有するものである必要はない。  Further, as shown in FIG. 4, instead of one infrared transmitting substrate, multiple reflection of a parallel plate can be used. In this case, as shown in the figure, the substrate enclosing container 18 accommodates a pair of substrates 60a and 60b arranged substantially in parallel. In the vicinity of one end surface of the substrates 60a and 60b, an infrared light source 62 for injecting infrared light serving as probe light between the substrates 60a and 60b is arranged. Infrared light from the infrared light source 62 is incident so that multiple reflection occurs between the opposing substrates 60a and 60b. In the vicinity of the end face opposite to the end face on which the infrared light sources 62 of the substrates 60a and 60b are arranged, the infrared light emitted after multiple reflection between the opposing substrates 60a and 60b is dispersed. Analyze FT—IR device 6 6 is connected. In the case of the configuration shown in FIG. 4, the substrates 60a and 60b need not be transparent to infrared rays.
[産業上の利用の可能性] [Possibility of industrial use]
本発明による化学物質検出方法及び装置は、 化学物質の発生源の特定、 環境へ の排出量の制御 ·管理等のために、 環境中に存在する種々の化学物質を高速且つ 高感度に検出することに有用である。  INDUSTRIAL APPLICABILITY The method and apparatus for detecting a chemical substance according to the present invention detect various chemical substances present in the environment at high speed and with high sensitivity for the purpose of specifying the source of the chemical substance, controlling and managing the amount of release to the environment, and the like. Especially useful.

Claims

請 求 の 範 囲 The scope of the claims
1 . 被測定対象気体に曝露した基板に赤外線を入射し、 前記基板から出射さ れる赤外線を分析することにより、 前記被測定対象気体中に含まれる化学物質を 検出する化学物質検出方法において、 1. A chemical substance detection method for detecting a chemical substance contained in a gas to be measured by irradiating infrared rays to a substrate exposed to the gas to be measured and analyzing infrared rays emitted from the substrate,
容器内に前記基板を収容し、 前記被測定対象気体を前記容器内に導入して前記 容器内を陽圧にすることにより、 前記化学物質が前記基板に付着することを促進 する  By accommodating the substrate in a container and introducing the gas to be measured into the container to make the inside of the container positive pressure, the chemical substance is promoted to adhere to the substrate.
ことを特徴とする化学物質検出方法。  A method for detecting a chemical substance, comprising:
2 . 請求の範囲第 1項に記載の化学物質検出方法において、  2. In the method for detecting a chemical substance according to claim 1,
前記容器内に導入した前記被測定対象気体を前記容器内から排気することによ り、 前記容器内の陽圧状態を調整する  The positive pressure state in the container is adjusted by exhausting the gas to be measured introduced into the container from the inside of the container.
ことを特徴とする化学物質検出方法。  A method for detecting a chemical substance, comprising:
3 . 請求の範囲第 1項又は第 2項に記載の化学物質検出方法において、 前記基板を冷却することにより、 前記被測定対象気体中の前記化学物質が前記 基板に付着することをさらに促進する  3. The chemical substance detection method according to claim 1, wherein the substrate is cooled to further promote the chemical substance in the gas to be measured to adhere to the substrate.
ことを特徴とする化学物質検出方法。  A method for detecting a chemical substance, comprising:
4 . 請求の範囲第 1項乃至第 3項のいずれか 1項に記載の化学物質検出方法 において、  4. The method for detecting a chemical substance according to any one of claims 1 to 3,
前記基板内部を多重反射した後に出射される赤外線を分析することにより、 前 記被測定対象気体における前記化学物質の種類を同定し及び/又は前記化学物質 の濃度を算出する  The type of the chemical substance in the gas to be measured is identified and / or the concentration of the chemical substance is calculated by analyzing infrared light emitted after multiple reflection inside the substrate.
ことを特徴とする化学物質検出方法。  A method for detecting a chemical substance, comprising:
5 . 請求の範囲第 1項乃至第 3項のいずれか 1項に記載の化学物質検出方法 において、 ,  5. The method for detecting a chemical substance according to any one of claims 1 to 3, wherein
前記基板の一の面側から入射され、 前記基板を透過して前記基板の他の面側か ら出射される赤外線を分析することにより、 前記被測定対象気体における前記化 学物質の種類を同定し及び/又は前記化学物質の濃度を算出する  The type of the chemical substance in the gas to be measured is identified by analyzing infrared light that is incident from one surface side of the substrate and transmitted through the substrate and emitted from the other surface side of the substrate. And / or calculate the concentration of said chemical substance
ことを特徴とする化学物質検出方法。 A method for detecting a chemical substance, comprising:
6 . 請求の範囲第 1項乃至第 5項のいずれか 1項に記載の化学物質検出方法 において、 6. The method for detecting a chemical substance according to any one of claims 1 to 5,
定期的に前記基板に付着した前記化学物質を除去して前記基板の表面状態を初 期化する  Periodically remove the chemical substance attached to the substrate to initialize the surface state of the substrate
ことを特徴とする化学物質検出方法。  A method for detecting a chemical substance, comprising:
7 . 被測定対象気体を導入する容器と、  7. A container for introducing the gas to be measured,
前記容器内の圧力が陽圧となるように前記容器内に前記被測定対象気体を導入 する気体導入手段と、  Gas introducing means for introducing the gas to be measured into the container so that the pressure in the container becomes positive pressure;
「己容器内に载置され、 前記被測定対象気体中に含まれる化学物質を付着する 基板と、  "A substrate which is placed in its own container and adheres a chemical substance contained in the gas to be measured,
前記基板に赤外線を入射する赤外線入射手段と、  Infrared incident means for incident infrared light on the substrate,
前記基板を透過した後に出射された赤外線を分析することにより、 前記被測定 対象気体における前記化学物質の種類を同定し及び Z又は前記化学物質の濃度を 算出する化学物質検出手段と  A chemical substance detecting means for identifying the type of the chemical substance in the gas to be measured and calculating Z or the concentration of the chemical substance by analyzing infrared rays emitted after passing through the substrate;
を有することを特徴とする化学物質検出装置。  A chemical substance detection device comprising:
8 . 請求の範囲第 7項に記載の化学物質検出装置において、  8. In the chemical substance detection device according to claim 7,
前記容器内に導入された前記被測定対象気体の前記容器内からの排気を制御す る排気制御手段を更に有する  There is further provided exhaust control means for controlling exhaust of the gas to be measured introduced into the container from the inside of the container.
ことを特徴とする化学物質検出装置。  An apparatus for detecting a chemical substance, comprising:
9 . 請求の範囲第 7項又は第 8項に記載の化学物質検出装置において、 前記容器は、 赤外線を透過する材質からなる第 1及び第 2の窓を有し、 刖 「己赤外線入射手段は、 前記第 1の窓を介して前記容器の外部から赤外線を入 射し、  9. The chemical substance detection device according to claim 7 or 8, wherein the container has first and second windows made of a material that transmits infrared light. Receiving infrared light from outside the container through the first window,
前記化学物質検出手段は、 前記基板を透過した後に前記第 2の窓を介して前記 容器の外部に出射された赤外線又は前記基板の表面で反射され前記第 2の窓を介 して前記容器の外部に出射された赤外線を分析する  The chemical substance detecting means may include an infrared ray emitted to the outside of the container through the second window after passing through the substrate, or an infrared ray reflected on the surface of the substrate and reflected from the surface of the substrate through the second window. Analyze infrared rays emitted outside
ことを特徴とする化学物質検出装置。  An apparatus for detecting a chemical substance, comprising:
1 0 . 請求の範囲第 7項乃至第 9項のいずれか 1項に記載の化学物質検出装 置において、 前記化学物質検出手段は、 前記基板内部を多重反射した後に出射される赤外線 を分析することにより、 前記被測定対象気体における前記化学物質の種類を同定 し及び/又は前記化学物質の濃度を算出する 10. The chemical substance detection device according to any one of claims 7 to 9, wherein: The chemical substance detection means identifies the type of the chemical substance in the gas to be measured and / or calculates the concentration of the chemical substance by analyzing infrared rays emitted after multiple reflection inside the substrate.
ことを特徴とする化学物質検出装置。  An apparatus for detecting a chemical substance, comprising:
1 1 . 請求の範囲第 7項乃至第 9項のいずれか 1項に記載の化学物質検出装 置において、  11. The chemical substance detection device according to any one of claims 7 to 9,
前記化学物質検出手段は、 前記基板の一の面側から入射され、 前記基板を透過 して前記基板の他の面側から出射される赤外線を分析することにより、 前記被測 定対象気体における前記化学物質の種類を同定し及び/又は前記化学物質の濃度 を算出する  The chemical substance detection unit analyzes the infrared rays that are incident from one surface side of the substrate, pass through the substrate, and are emitted from the other surface side of the substrate, and thereby analyze the infrared ray in the gas to be measured. Identify the type of chemical and / or calculate the concentration of said chemical
ことを特徴とする化学物質検出装置。  An apparatus for detecting a chemical substance, comprising:
1 2 . 請求の範囲第 7項乃至第 1 1項のいずれか 1項に記載の化学物質検出 装置において、  12. The chemical substance detection device according to any one of claims 7 to 11, wherein:
前記基板を冷却し、 前記被測定対象気体中の前記化学物質が前記基板へ付着す ることを促進する冷却装置を更に有する  A cooling device that cools the substrate and promotes the chemical substance in the gas to be measured to adhere to the substrate;
ことを特徴とする化学物質検出装置。  An apparatus for detecting a chemical substance, comprising:
1 3 . 請求の範囲第 1 2項に記載の化学物質検出装置において、  1 3. In the chemical substance detection device according to claim 12,
前記冷却装置は、 前記基板に対して直接接触して前記基板を冷却するものであ •9、  The cooling device cools the substrate by directly contacting the substrate.
前記赤外線入射手段は、 前記基板と前記冷却装置の接触部分が赤外線の光路上 に位置することがないように赤外線を入射する  The infrared incident means is configured to input the infrared light so that a contact portion between the substrate and the cooling device is not positioned on an optical path of the infrared light.
ことを特徴とする化学物質検出装置。  An apparatus for detecting a chemical substance, comprising:
1 4 . 請求の範囲第 7項乃至第 1 3項のいずれか 1項に記載の化学物質検出 '装置において、  14. The chemical substance detection device according to any one of claims 7 to 13,
前記基板表面に付着した前記化学物質を除去して前記基板の表面状態を初期化 する基板洗浄手段を更に有する  There is further provided a substrate cleaning means for removing the chemical substance attached to the substrate surface and initializing the surface state of the substrate.
ことを特徴とする化学物質検出装置。  An apparatus for detecting a chemical substance, comprising:
1 5 . 請求の範囲第 1 4項に記載の化学物質検出装置において、  15. In the chemical substance detection device according to claim 14,
前記基板洗浄手段は、 前記基板を加熱することにより前記基板に付着した前記 化学物質を除去する加熱手段である The substrate cleaning unit is configured to heat the substrate and adhere to the substrate. Heating means to remove chemicals
ことを特徴とする化学物質検出装置。  An apparatus for detecting a chemical substance, comprising:
1 6 . 請求の範囲第 1 4項に記載の化学物質検出装置において、  16. In the chemical substance detection device according to claim 14,
前記基板洗浄手段は、 前記基板表面に紫外線を照射することにより前記基板に 付着した前記化学物質を除去する紫外線照射手段である  The substrate cleaning unit is an ultraviolet irradiation unit that removes the chemical substance attached to the substrate by irradiating the substrate surface with ultraviolet light.
ことを特徴とする化学物質検出装置。  An apparatus for detecting a chemical substance, comprising:
PCT/JP2002/006480 2001-07-05 2002-06-27 Method and device for detecting chemical substance WO2003005001A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001204257A JP2003014642A (en) 2001-07-05 2001-07-05 Chemical substance detection method and chemical substance detector
JP2001-204257 2001-07-05

Publications (1)

Publication Number Publication Date
WO2003005001A1 true WO2003005001A1 (en) 2003-01-16

Family

ID=19040755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006480 WO2003005001A1 (en) 2001-07-05 2002-06-27 Method and device for detecting chemical substance

Country Status (2)

Country Link
JP (1) JP2003014642A (en)
WO (1) WO2003005001A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101606785B1 (en) * 2014-08-05 2016-03-28 서울시립대학교 산학협력단 Terahertz spectrometer for gas analysis
JP6681744B2 (en) * 2016-03-01 2020-04-15 旭化成エレクトロニクス株式会社 Mobile device
CN112146967A (en) * 2019-06-28 2020-12-29 Fei 公司 System and method for preparing and delivering biological samples for charged particle analysis
WO2022076500A1 (en) 2020-10-08 2022-04-14 Ecolab Usa Inc. System and technique for detecting cleaning chemical usage to control cleaning efficacy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174941A (en) * 1987-12-29 1989-07-11 Shimadzu Corp Sample trapper for gc-ftir
JPH08313430A (en) * 1995-05-18 1996-11-29 Nippon Telegr & Teleph Corp <Ntt> Gas sensor
JPH1019895A (en) * 1996-07-08 1998-01-23 Toppan Printing Co Ltd Micro plate
JP2000171458A (en) * 1998-12-07 2000-06-23 Nippon Steel Corp Method and device for pre-treating sample for analyzing carbon content of metal
JP2000338109A (en) * 1999-03-19 2000-12-08 Sanyo Electric Co Ltd Odor sensor and odorous substance detecting method
JP2001004609A (en) * 1999-06-17 2001-01-12 Hitachi Chem Co Ltd Container and adsorption apparatus using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174941A (en) * 1987-12-29 1989-07-11 Shimadzu Corp Sample trapper for gc-ftir
JPH08313430A (en) * 1995-05-18 1996-11-29 Nippon Telegr & Teleph Corp <Ntt> Gas sensor
JPH1019895A (en) * 1996-07-08 1998-01-23 Toppan Printing Co Ltd Micro plate
JP2000171458A (en) * 1998-12-07 2000-06-23 Nippon Steel Corp Method and device for pre-treating sample for analyzing carbon content of metal
JP2000338109A (en) * 1999-03-19 2000-12-08 Sanyo Electric Co Ltd Odor sensor and odorous substance detecting method
JP2001004609A (en) * 1999-06-17 2001-01-12 Hitachi Chem Co Ltd Container and adsorption apparatus using the same

Also Published As

Publication number Publication date
JP2003014642A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
WO2002057754A1 (en) Method and system for detecting chemical substance
KR101098124B1 (en) Multigas Monitoring And Detection System
US7612885B2 (en) Spectroscopy method and apparatus for detecting low concentration gases
JP3627112B2 (en) Photoacoustic analyzer and analysis method
US6108096A (en) Light absorption measurement apparatus and methods
US20210396660A1 (en) Apparatus and method for detecting phase changes in a fluid using spectral recognition
US8302461B2 (en) Gas detector having an acoustic measuring cell and selectively adsorbing surface
US20040056196A1 (en) Method and apparatus for monitoring environment and apparatus for producing semiconductor
JPS61258147A (en) Method and device for detecting gas
US6657196B2 (en) Method and apparatus for environmental monitoring
JP2009539064A (en) Contamination monitoring and control technology for use in optical metrology equipment
JP3834224B2 (en) Chemical substance detection method and apparatus
GB2317010A (en) Gas sensor detecting only non-reflected light
CN103257125B (en) For measuring the method for CO2 content and the sensor of fluid
WO2003005001A1 (en) Method and device for detecting chemical substance
JP4792267B2 (en) Surface state measuring method and apparatus
JP2001194297A (en) Method and apparatus for measuring environment
JP2002517740A (en) Method and apparatus for identifying process chamber clean or wafer etching endpoints
JP2001311697A (en) Method and apparatus for measurement of surface state
JP2002350344A (en) Method and apparatus for measuring environment
JP2003215028A (en) Method and apparatus for detecting chemical substance
JP2003156440A (en) Method and device for detecting chemical substance
JP2001194306A (en) Method and device for chemical substance detection
TW317642B (en) Chamber effluent monitoring system and semiconductor processing system comprising absorption spectroscopy measurement system, and methods of use
Jackson et al. Photoacoustic detection of radiation absorbing particles in gases

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642