WO2003004718A2 - Non-oxidic ceramic coating powder and layers produced therefrom - Google Patents

Non-oxidic ceramic coating powder and layers produced therefrom Download PDF

Info

Publication number
WO2003004718A2
WO2003004718A2 PCT/DE2002/002369 DE0202369W WO03004718A2 WO 2003004718 A2 WO2003004718 A2 WO 2003004718A2 DE 0202369 W DE0202369 W DE 0202369W WO 03004718 A2 WO03004718 A2 WO 03004718A2
Authority
WO
WIPO (PCT)
Prior art keywords
compounds
carbides
powder
aluminum
sic
Prior art date
Application number
PCT/DE2002/002369
Other languages
German (de)
French (fr)
Other versions
WO2003004718A3 (en
Inventor
Jörg ADLER
Lutz-Michael Berger
Jan Ihle
Manfred Nebelung
Petri Vuoristo
Tapio Mäntylä
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7691112&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2003004718(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2003004718A2 publication Critical patent/WO2003004718A2/en
Publication of WO2003004718A3 publication Critical patent/WO2003004718A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • Non-oxide ceramic coating powder and layers made therefrom are non-oxide ceramic coating powder and layers made therefrom.
  • the invention relates to the fields of ceramics and surface technology and relates to a non-oxide ceramic coating powder which can be used, for example, for the production of layers using processes from the process group of thermal spraying.
  • Non-oxide ceramic materials are characterized by a variety of excellent properties, including high wear resistance and resistance in various corrosive media and are widely used as ceramic construction materials.
  • Important representatives of ceramic non-oxide materials are SiC and Si 3 N 4 .
  • the use of all-ceramic components in wear and corrosion protection is rarely possible for many reasons, due to the difficult manufacturing technology of large-format or large-area ceramic molded parts and their costs, the often difficult fitting into a metallic periphery, etc. It is therefore of a high technical level It is important, for example, to provide metallic substrates with a non-oxide ceramic layer.
  • the group of thermal spraying methods has become widespread as a coating method, for example for oxidic ceramics, since compared to other coating methods there is great flexibility in the use of different materials. However, the material has to melt or melt during the coating process.
  • Redissolution processes for the formation of an amorphous oxide nitride binder matrix Due to the rapid cooling of the material on the substrate during thermal spraying, the amorphous fraction is increased, which leads to high brittleness and low hardness of the layers.
  • EP 0 005 632 describes a coating powder which consists of a mechanical mixture of SiC and silicon. Furthermore, for example, coating powders based on mechanical mixtures are known, which consist of a coarse SiC and metals or alloys such as Al or NiCr (F-Alonso et al. Proc. 2 and Plasma Technology Symposium 1991, Vol. 2, p 175-186). Composite powders of SiC with binder metals are also known, for example SiC-Al composite powders (K.Ghosh et al. J. Thermal Spray Technology, 1998 Vol. 7, No 1, 78-86).
  • SiC in these coating powders is very low and chemical reactions with binder metals can lead to undesired silicide formation during the coating process.
  • the object of the present invention is to provide a non-oxide ceramic coating powder which can be processed into layers using the conventional methods of the thermal spraying method group (variants of plasma spraying, detonation spraying, high-speed flame spraying (HVOF)) and layers produced therefrom.
  • the thermal spraying method group variants of plasma spraying, detonation spraying, high-speed flame spraying (HVOF)
  • the non-oxide ceramic coating powder according to the invention contains carbides or mixtures and / or compounds of carbides as the non-oxide ceramic main constituent and as secondary constituents compounds of aluminum and rare earth oxides.
  • SiC, TiC, ZrC are contained alone or in mixtures or compounds, with SiC and TiC and / or ZrC in particular each forming 50% by volume of the main constituent of the powder. If SiC is contained together with TiC or ZrC, the proportion of TiC and / or ZrC can advantageously be 25-35% by volume of the main constituent of the powder. These volume fractions relate to the total volume fraction of carbide / mixture / compound in the powder.
  • cubic carbides of TiC and ZrC up to 50% of the anions can be replaced by nitrogen and / or oxygen. There may also be gaps in the non-metal sublattice.
  • SiC and also the other carbides differ from Si 3 N 4 by several properties, which make them more suitable as a main component for coating powder and thermally sprayed layers.
  • the high thermal conductivity of the SiC leads to improved processability and higher application rates.
  • coating powder as well as in the thermal stress when spraying with the oxidic binder matrix does not lead to a complete redissolution as with Si 3 N 4 , which improves the formation of a favorable microstructure and open porosity.
  • the total content of oxides can be kept lower, since these mostly impair the corrosion and wear resistance of the sprayed layers.
  • no nitrogen dissolves in the oxidic compounds, they are more easily crystalline and not amorphous.
  • aluminum and rare earth oxide compounds are advantageously part of the powder.
  • These compounds can, for example, aluminum-yttrium oxide compounds or aluminum
  • Be lanthanoid oxide compounds Be lanthanoid oxide compounds.
  • the ratio of the secondary components to one another is advantageously 40:60 to 90:10 mol% of aluminum oxides to rare earth oxides.
  • the use of yttrium oxide as rare earth oxide is particularly favorable.
  • the aluminum and rare earth oxide compounds are> 80% contained in crystalline form.
  • the powder has a grain size of 5-250 ⁇ m, still advantageously 10-45 ⁇ m, and an open porosity of 3–40% by volume, even more advantageously 5–30% by volume ,
  • the powder can be produced by various processes and process steps known per se, for example by means of agglomeration by spray drying and subsequent sintering.
  • the microstructure of the coating powder must be able to form during the sintering process in order to optimally protect the SiC grains from oxidation and sublimation during the coating process.
  • the granule size that can be used must be adapted to the preferred method from the thermal spraying process group for the respective application.
  • the coating powder is in principle also for the production of layers with other surface technologies (e.g.
  • Laser surface coating can be used.
  • the granule grain size may have to be adapted to these other technologies.
  • the layers according to the invention are produced using the powder according to the invention by a method from the thermal spraying method group.
  • Such methods can e.g. plasma spraying, detonation spraying or that
  • the layers produced in this way consist of carbides or mixtures and / or compounds of carbides which are essentially sintered with crystalline aluminum-rare earth oxide compounds as secondary phases.
  • the main phase contains> 65% by volume carbides or mixtures and / or compounds of carbides, in particular SiC, TiC, ZrC, alone or in mixtures or compounds, with more than 65% by volume SiC being particularly advantageous.
  • Particularly good layers are achieved when more than 80% by volume of the secondary phase consists of crystalline aluminum-rare earth oxide compounds.
  • the starting composition of the coating powder is 67% by mass SiC, 21.2% by mass Al 2 0 3 and 11.8% by mass Y 2 0 3 . This corresponds to a content of around 73 vol.% SiC and 27 vol.% Of a mixture of Al 2 0 3 and Y 2 0 3 .
  • the ratio of aluminum oxide to yttrium oxide is therefore 80:20 mol%.
  • the granules were sintered at 1850 ° C. in an argon atmosphere. After the subsequent cooling to room temperature, gentle grinding and fractionation took place. According to the X-ray phase analysis, SiC, yttrium aluminum garnet (YAG) and corundum are present, with 95% of the aluminum and rare earth oxide compounds being in crystalline form. The open porosity within the granules determined by means of mercury pressure porosimetry was 21%.
  • the 20-45 ⁇ m fraction of the coating powder thus obtained was processed into layers using a "Perun P" detonation spraying unit (Paton Institute, Ukraine).
  • the spraying distance was 150 mm at a detonation rate of 6.6 detonations / s.
  • An acetylene / Oxygen mixture used in a volume ratio of 0.8 In the layer produced in this way, the main phase SiC is sintered with the secondary phase, which consists of aluminum oxide-yttrium oxide, this secondary phase being 93% crystalline, the main phase forming 80% by volume of the layer and the secondary phase 20 vol%.

Abstract

The invention involves the fields of ceramics and surface technology and relates to a non-oxidic ceramic coating powder that can, for example, be used for producing layers using methods taken from the thermal spraying process group. The aim of the invention is to provide a non-oxidic ceramic coating powder, which can be processed into layers by using the current methods of the thermal spraying method group (variants of plasma spraying, detonation spraying, high-velocity flame spraying (HVOF)), and to provide layers produced therefrom. To this end, a non-oxidic ceramic coating powder containing, as a main constituent, a carbide or mixtures and/or compounds of carbides and containing, as secondary constituents, compounds comprised of aluminum oxides and of rare-earth oxides. In addition, a non-oxidic ceramic layer is provided in which carbides or mixtures and/or compounds of carbides are sintered with essentially crystalline aluminum rare-earth oxide compounds serving as secondary phases.

Description

Nichtoxidisches keramisches Beschichtungspulver und daraus hergestellte SchichtenNon-oxide ceramic coating powder and layers made therefrom
Anwendungsgebiet der ErfindungField of application of the invention
Die Erfindung bezieht sich auf die Gebiete der Keramik und der Oberflächentechnik und betrifft ein nichtoxidisches keramisches Beschichtungspulver, welches beispielsweise für die Herstellung von Schichten mit Verfahren aus der Prozessgruppe des thermischen Spritzens zur Anwendung kommen kann.The invention relates to the fields of ceramics and surface technology and relates to a non-oxide ceramic coating powder which can be used, for example, for the production of layers using processes from the process group of thermal spraying.
Stand der TechnikState of the art
Nichtoxidische keramische Werkstoffe zeichnen sich durch eine Vielzahl hervorragender Eigenschaften aus, darunter hohe Verschleißbeständigkeit und Beständigkeit in verschiedenen korrosiven Medien und finden als keramische Konstruktionswerkstoffe breite Anwendung. Wichtige Vertreter der keramischen nichtoxidischen Werkstoffe sind SiC und Si3N4. Der Einsatz von Vollkeramik- Bauteilen im Verschleiß- und Korrosionsschutz ist jedoch aus vielen Gründen nur selten möglich, aufgrund der schwierigen Herstellungstechnologie großformatiger bzw. großflächiger Keramikformteile bzw. deren Kosten, der häufig schwierigen Einpassung in eine metallische Peripherie etc. Es ist daher von hoher technischer Bedeutung z.B. metallische Substrate mit einer nichtoxidischen Keramikschicht zu versehen. Als Beschichtungsverfahren z.B. für oxidische Keramiken ist die Gruppe der thermischen Spritzverfahren inzwischen weit verbreitet, da gegenüber anderen Beschichtungsverfahren eine hohe Flexibilität bei der Verwendung verschiedener Werkstoffe gegeben ist. Allerdings muss das Material während des Beschichtungsprozesses auf - bzw. anschmelzen.Non-oxide ceramic materials are characterized by a variety of excellent properties, including high wear resistance and resistance in various corrosive media and are widely used as ceramic construction materials. Important representatives of ceramic non-oxide materials are SiC and Si 3 N 4 . However, the use of all-ceramic components in wear and corrosion protection is rarely possible for many reasons, due to the difficult manufacturing technology of large-format or large-area ceramic molded parts and their costs, the often difficult fitting into a metallic periphery, etc. It is therefore of a high technical level It is important, for example, to provide metallic substrates with a non-oxide ceramic layer. The group of thermal spraying methods has become widespread as a coating method, for example for oxidic ceramics, since compared to other coating methods there is great flexibility in the use of different materials. However, the material has to melt or melt during the coating process.
Daher ist die Verarbeitbarkeit von reinem Siliciumcarbid oder Siliciumnitrid zu Schichten durch Verfahren aus der Gruppe des thermischen Spritzens als einfacher Werkstoff nicht möglich, da beide Materialien sublimieren.It is therefore not possible to process pure silicon carbide or silicon nitride into layers by processes from the group of thermal spraying as a simple material, since both materials sublimate.
Für Siliciumnitrid wurde versucht, für die Verfahrensgruppe des thermischen Spritzens geeignete Pulver zu entwickeln (DE 196 12 926), welche eine oxidnitridische oder Siliciumbindermatrix enthalten, jedoch ist die Herstellung dieser Verbundpulver und ihre Verarbeitung zu Schichten durch eine Vielzahl von Problemen gekennzeichnet.For silicon nitride, attempts have been made to develop powders suitable for the thermal spraying process group (DE 196 12 926) which contain an oxide nitride or silicon binder matrix, but the production of these is Composite powder and its processing into layers are characterized by a variety of problems.
Bei der Verwendung von Si3N4 mit typischen Binderoxiden wie Al203 und Y203 kommt es durch chemische Reaktionen zur Bildung von Sialonen, was einen erhöhten Gehalt der Oxide zur Folgen hat. Zusätzlich kommt es durch die für die Synthese oxidgebunderer Siliciumnitridwerkstoffe charakteristischenWhen using Si 3 N 4 with typical binder oxides such as Al 2 0 3 and Y 2 0 3 , chemical reactions lead to the formation of sialons, which results in an increased content of the oxides. In addition, it is due to the characteristics of the synthesis of oxide-bonded silicon nitride materials
Umlösungsprozesse zur Ausbildung einer amorphen oxidnitridischen Bindermatrix. Durch die schnelle Abkühlung des Werkstoffes auf dem Substrat beim thermischen Spritzen wird der amorphe Anteil noch erhöht, was zu einer hohen Sprödigkeit und einer geringen Härte der Schichten führt.Redissolution processes for the formation of an amorphous oxide nitride binder matrix. Due to the rapid cooling of the material on the substrate during thermal spraying, the amorphous fraction is increased, which leads to high brittleness and low hardness of the layers.
In der o.g. DE 196 12 926 ist die Herstellung dichter Granalien für Beschichtungspulver als besonders vorteilhaft beschrieben worden (Spalte 4, Zeilen 16-18). Es hat sich aber gezeigt, dass der Wärmeübertrag in die Beschichtungspulver während des Beschichtungsprozesses für dichte Pulver geringer ist als bei Beschichtungspulvern mit einem gewissen Grad an offener Porosität.In the above DE 196 12 926 describes the production of dense granules for coating powders as being particularly advantageous (column 4, lines 16-18). However, it has been shown that the heat transfer into the coating powders during the coating process for dense powders is lower than with coating powders with a certain degree of open porosity.
Auch im Falle des Siliciumcarbid wurde versucht thermisch gespritzte Schichten zu entwickeln. EP 0 005 632 beschreibt eine Beschichtungspulver, welches aus einer mechanischen Mischung von SiC und Silicium besteht. Weiterhin sind zum Beispiel Beschichtungspulver auf der Basis mechanischer Mischungen bekannt, welche aus einem groben SiC und Metallen bzw. Legierungen wie AI oder NiCr bestehen (F- Alonso et al. Proc. 2nd Plasma-Technik-Symposium 1991 , Vol. 2, p. 175-186). Auch Verbundpulver von SiC mit Bindermetallen sind bekannt, so z.B. SiC-AI Verbundpulver (K.Ghosh et al. J. Thermal Spray Technology, 1998 Vol. 7, No 1, 78- 86). Bei diesen Beschichtungspulvern sind die Gehalte an SiC sehr gering und es kann durch chemische Reaktionen mit Bindermetallen während des Beschichtungsprozesses zu einer unerwünschten Silicidbildung kommen. Sehr niedrig schmelzende Metalle, wie Aluminium, führen auch zu einer starken Einschränkung bei den Einsatztemperaturen. Darlegung des Wesens der ErfindungIn the case of silicon carbide, too, attempts have been made to develop thermally sprayed layers. EP 0 005 632 describes a coating powder which consists of a mechanical mixture of SiC and silicon. Furthermore, for example, coating powders based on mechanical mixtures are known, which consist of a coarse SiC and metals or alloys such as Al or NiCr (F-Alonso et al. Proc. 2 and Plasma Technology Symposium 1991, Vol. 2, p 175-186). Composite powders of SiC with binder metals are also known, for example SiC-Al composite powders (K.Ghosh et al. J. Thermal Spray Technology, 1998 Vol. 7, No 1, 78-86). The content of SiC in these coating powders is very low and chemical reactions with binder metals can lead to undesired silicide formation during the coating process. Metals with a very low melting point, such as aluminum, also lead to severe restrictions in the operating temperatures. State the nature of the invention
Die Aufgabe der vorliegenden Erfindung besteht darin, ein nichtoxidisches keramisches Beschichtungspulver anzugeben, welches mit den gängigen Verfahren der Verfahrensgruppe des thermischen Spritzens (Varianten des Plasmaspritzens, Detonationsspritzen, Hochgeschwindigkeitsflammspritzen (HVOF)) zu Schichten verarbeitbar ist und daraus hergestellte Schichten.The object of the present invention is to provide a non-oxide ceramic coating powder which can be processed into layers using the conventional methods of the thermal spraying method group (variants of plasma spraying, detonation spraying, high-speed flame spraying (HVOF)) and layers produced therefrom.
Die Aufgabe wird durch die in den Ansprüchen angegebene Erfindung gelöst. Weiterbildungen sind Gegenstand der Unteransprüche.The object is achieved by the invention specified in the claims. Further training is the subject of the subclaims.
Das erfindungsgemäße nichtoxidische keramische Beschichtungspulver enthält Carbide oder Mischungen und/oder Verbindungen von Carbiden als nichtoxidischen keramischen Hauptbestandteil und als Nebenbestandteile Verbindungen aus Aluminium- und Seltenerdoxiden.The non-oxide ceramic coating powder according to the invention contains carbides or mixtures and / or compounds of carbides as the non-oxide ceramic main constituent and as secondary constituents compounds of aluminum and rare earth oxides.
Vorteilhafterweise sind als Carbid oder Mischungen und/oder Verbindungen von Carbiden SiC, TiC, ZrC allein oder in Mischungen oder Verbindungen enthalten, wobei insbesondere SiC und TiC und/oder ZrC zu jeweils 50 Vol.-% den Hauptbestandteil des Pulvers bilden. Wenn SiC mit TiC oder ZrC gemeinsam enthalten sind, kann der Anteil an TiC und/oder ZrC vorteilhafterweise 25 - 35 Vol.-% am Hauptbestandteil des Pulvers betragen. Diese Volumenanteile beziehen sich jeweils auf den Gesamtvolumenanteil an Carbid/Mischung/Verbindung im Pulver.Advantageously, as carbide or mixtures and / or compounds of carbides, SiC, TiC, ZrC are contained alone or in mixtures or compounds, with SiC and TiC and / or ZrC in particular each forming 50% by volume of the main constituent of the powder. If SiC is contained together with TiC or ZrC, the proportion of TiC and / or ZrC can advantageously be 25-35% by volume of the main constituent of the powder. These volume fractions relate to the total volume fraction of carbide / mixture / compound in the powder.
Im Falle des Einsatzes von kubischen Carbiden des TiC und ZrC können jeweils bis zu 50 % der Anionen durch Stickstoff und/oder Sauerstoff ersetzt sein. Dabei können im Nichtmetalluntergitter auch Leerstellen enthalten sein.If cubic carbides of TiC and ZrC are used, up to 50% of the anions can be replaced by nitrogen and / or oxygen. There may also be gaps in the non-metal sublattice.
Besonders vorteilhaft ist der Einsatz von > 55 Vol.-% SiC in der α-Modifikation. SiC und auch die anderen Carbide unterscheiden sich von Si3N4 durch mehrere Eigenschaften, welches sie als Hauptbestandteil für Beschichtungspulver und thermisch gespritzte Schichten geeigneter machen. Prinzipiell führt die hohe Wärmeleitfähigkeit des SiC zu einer verbesserten Verarbeitbarkeit und höheren Auftragsraten. Bereits bei der Beschichtungspulverherstellung als auch bei der thermischen Beanspruchung beim Spritzen mit der oxidischen Bindermatrix kommt es zu keiner vollständigen Umlösung wie beim Si3N4, was die Ausbildung einer günstigen MikroStruktur und von offener Porosität verbessert. Weiterhin kommt es zu keiner thermischen Reaktion zwischen Oxiden und SiC im Sinne einer SiAlON- Bildung, wie beim Si3N4. Dadurch kann der Gesamtgehalt an Oxiden geringer gehalten werden, da diese die Korrosions- und Verschleißfestigkeit der gespritzten Schichten zumeist verschlechtern. Gleichzeitig löst sich im Vergleich zum Si3N4 kein Stickstoff in den oxidischen Verbindungen, sie bilden sich leichter kristallin und nicht amorph aus.The use of> 55% by volume SiC in the α modification is particularly advantageous. SiC and also the other carbides differ from Si 3 N 4 by several properties, which make them more suitable as a main component for coating powder and thermally sprayed layers. In principle, the high thermal conductivity of the SiC leads to improved processability and higher application rates. Already in the production of coating powder as well as in the thermal stress when spraying with the oxidic binder matrix does not lead to a complete redissolution as with Si 3 N 4 , which improves the formation of a favorable microstructure and open porosity. Furthermore, there is no thermal reaction between oxides and SiC in the sense of SiAlON formation, as with Si 3 N 4 . As a result, the total content of oxides can be kept lower, since these mostly impair the corrosion and wear resistance of the sprayed layers. At the same time, compared to Si 3 N 4, no nitrogen dissolves in the oxidic compounds, they are more easily crystalline and not amorphous.
Als Nebenbestandteil der erfindungsgemäßen Pulver sind vorteilhafterweise 15 - 45 Vol.-%, bezogen auf die Ausgangsstoffe, Verbindungen aus Aluminium- und Seltenerdoxiden Bestandteil des Pulvers. Diese Verbindungen können beispielsweise Aluminium-Yttriumoxid-Verbindungen oder Aluminium-As a secondary constituent of the powders according to the invention, 15-45% by volume, based on the starting materials, of aluminum and rare earth oxide compounds are advantageously part of the powder. These compounds can, for example, aluminum-yttrium oxide compounds or aluminum
Lanthanoidoxid-Verbindungen sein.Be lanthanoid oxide compounds.
Das Verhältnis der Nebenbestandteile zueinander ist vorteilhafterweise 40 : 60 bis 90 : 10 Mol.-% Aluminiumoxide zu Seltenerdoxide. Besonders günstig ist der Einsatz von Yttriumoxid als Seltenerdoxid.The ratio of the secondary components to one another is advantageously 40:60 to 90:10 mol% of aluminum oxides to rare earth oxides. The use of yttrium oxide as rare earth oxide is particularly favorable.
Es ist ebenfalls besonders vorteilhaft, wenn die Aluminium- und Seltenerdoxid- Verbindungen zu > 80 % in kristalliner Form enthalten sind.It is also particularly advantageous if the aluminum and rare earth oxide compounds are> 80% contained in crystalline form.
Weiterhin ist es von Vorteil, wenn das Pulver eine Korngröße von 5 - 250 μm, noch vorteilhafterweise von 10 - 45 μm, und eine offene Porosität von 3 - 40 Vol.-%, noch vorteilhafter von 5 - 30 % Vol.-% aufweist.It is also advantageous if the powder has a grain size of 5-250 μm, still advantageously 10-45 μm, and an open porosity of 3–40% by volume, even more advantageously 5–30% by volume ,
Die Herstellung der Pulver kann durch verschiedene an sich bekannte Verfahren und Verfahrensschritte durchgeführt werden, wie beispielsweise mittels Agglomeration durch Sprühtrocknung und anschließende Sinterung .The powder can be produced by various processes and process steps known per se, for example by means of agglomeration by spray drying and subsequent sintering.
Obwohl eine gewisse Porosität des Beschichtungspulvers von Vorteil ist, muss sich die MikroStruktur des Beschichtungspulvers während des Sinterprozesses ausbilden können, um die SiC-Körner während des Beschichtungsprozesses optimal vor Oxidation und Sublimation zu schützen. Die einsetzbare Granulatkorngröße muss dem für die jeweilige Anwendung bevorzugten Verfahren aus der Verfahrensgruppe des thermischen Spritzens angepasst werden. Das Beschichtungspulver ist prinzipiell auch für die Herstellung von Schichten mit anderen Oberflächentechnologien (z.B.Although a certain porosity of the coating powder is advantageous, the microstructure of the coating powder must be able to form during the sintering process in order to optimally protect the SiC grains from oxidation and sublimation during the coating process. The granule size that can be used must be adapted to the preferred method from the thermal spraying process group for the respective application. The coating powder is in principle also for the production of layers with other surface technologies (e.g.
Laseroberflächenbeschichten) einsetzbar. Auch hier muss die Granulatkorngröße gegebenenfalls diesen anderen Technologien angepasst werden.Laser surface coating) can be used. Here, too, the granule grain size may have to be adapted to these other technologies.
Die erfindungsgemäßen Schichten werden unter Verwendung des erfindungsgemäßen Pulvers durch ein Verfahren aus der Verfahrensgruppe des thermischen Spritzens hergestellt. Derartige Verfahren können z.B. das Plasmaspritzen, das Detonationsspritzen oder dasThe layers according to the invention are produced using the powder according to the invention by a method from the thermal spraying method group. Such methods can e.g. plasma spraying, detonation spraying or that
Hochgeschwindigkeitsflammspritzen sein.Be high speed flame spraying.
Die so hergestellten Schichten bestehen aus Carbiden oder Mischungen und/oder Verbindungen von Carbiden, die im wesentlichen mit kristallinen Aluminium- Seltenerdoxid-Verbindungen als Sekundärphasen versintert sind.The layers produced in this way consist of carbides or mixtures and / or compounds of carbides which are essentially sintered with crystalline aluminum-rare earth oxide compounds as secondary phases.
Vorteilhafterweise sind auch hier als Hauptphase > 65 Vol.-% Carbide oder Mischungen und/oder Verbindungen von Carbiden, insbesondere SiC, TiC, ZrC allein oder in Mischungen oder Verbindungen enthalten, wobei besonders vorteilhaft mehr als 65 Vol.-% SiC sind.Advantageously, here too, the main phase contains> 65% by volume carbides or mixtures and / or compounds of carbides, in particular SiC, TiC, ZrC, alone or in mixtures or compounds, with more than 65% by volume SiC being particularly advantageous.
Besonders gute Schichten werden erreicht, wenn mehr als 80 Vol.-% der Sekundärphase aus kristallinen Aluminium-Seltenerdoxid-Verbindungen besteht.Particularly good layers are achieved when more than 80% by volume of the secondary phase consists of crystalline aluminum-rare earth oxide compounds.
Bester Weg zur Ausführung der ErfindungBest way to carry out the invention
Im weiteren wird die Erfindung an einem Ausführungsbeispiel näher erläutert.The invention is explained in more detail using an exemplary embodiment.
Beispiel 1example 1
Die Ausgangszusammensetzung des Beschichtungspulvers beträgt 67 Ma.-% SiC, 21,2 Ma.-% Al203 und 11,8 Ma.-% Y203 . Das entspricht einem Gehalt von rund 73 Vol.-% SiC und 27 Vol.-% einer Mischung aus Al203 und Y203. Das Verhältnis von Aluminiumoxid zu Yttriumoxid beträgt somit 80 : 20 Mol.-%. Als Ausgangsstoff wurde ein SiC in der α-Modifikation mit einer Korngröße des SiC von dgo = 1 ,0 μm verwendet. Diese Ausgangsstoffe wurden gemischt und unter Zusatz eines organischen Binders in Wasser dispergiert. Anschließend wurden durch Sprühtrocknung Granalien in einer kugeligen Form hergestellt. Der organische Binder wurde an Luft bei 650 °C ausgetrieben. Die Sinterung der Granalien erfolgte bei 1850 °C in Argonatmosphäre. Nach der anschließenden Abkühlung auf Raumtemperatur erfolgte eine schonende Mahlung und eine Fraktionierung. Entsprechend der Röntgenphasenanalyse liegen SiC, Yttriumaluminiumgranat (YAG) und Korund vor, wobei die Aluminium- und Seltenerdoxid-Verbindungen zu 95 % in kristalliner Form vorliegen. Die mittels Quecksilberdruckporosimetrie bestimmte offene Porosität innerhalb der Granalien betrug 21 %.The starting composition of the coating powder is 67% by mass SiC, 21.2% by mass Al 2 0 3 and 11.8% by mass Y 2 0 3 . This corresponds to a content of around 73 vol.% SiC and 27 vol.% Of a mixture of Al 2 0 3 and Y 2 0 3 . The ratio of aluminum oxide to yttrium oxide is therefore 80:20 mol%. As a starting material an SiC in the α modification with a grain size of the SiC of dgo = 1.0 μm is used. These starting materials were mixed and dispersed in water with the addition of an organic binder. Granules in a spherical shape were then produced by spray drying. The organic binder was driven off in air at 650 ° C. The granules were sintered at 1850 ° C. in an argon atmosphere. After the subsequent cooling to room temperature, gentle grinding and fractionation took place. According to the X-ray phase analysis, SiC, yttrium aluminum garnet (YAG) and corundum are present, with 95% of the aluminum and rare earth oxide compounds being in crystalline form. The open porosity within the granules determined by means of mercury pressure porosimetry was 21%.
Die Fraktion 20 - 45 μm des so erhaltenen Beschichtungspulvers wurde mit einer Detonationsspritzanlage „Perun P" (Paton-Institut, Ukraine) zu Schichten verarbeitet. Der Spritzabstand betrug 150 mm bei einer Detonationsrate von 6,6 Detonationen/s. Es wurde ein Acetylen/Sauerstoffgemisch im Volumenverhältnis von 0,8 verwendet. In der so hergestellten Schicht sind die Hauptphase SiC mit der Sekundärphase, die aus Aluminiumoxid-Yttriumoxid besteht, versintert, wobei diese Sekundärphase zu 93 % kristallin ist. Die Hauptphase bildet 80 Vol.-% der Schicht und die Sekundärphase 20 Vol.-%. The 20-45 μm fraction of the coating powder thus obtained was processed into layers using a "Perun P" detonation spraying unit (Paton Institute, Ukraine). The spraying distance was 150 mm at a detonation rate of 6.6 detonations / s. An acetylene / Oxygen mixture used in a volume ratio of 0.8 In the layer produced in this way, the main phase SiC is sintered with the secondary phase, which consists of aluminum oxide-yttrium oxide, this secondary phase being 93% crystalline, the main phase forming 80% by volume of the layer and the secondary phase 20 vol%.

Claims

Patentansprüche claims
1. Nichtoxidisches keramisches Beschichtungspulver, enthaltend als Hauptbestandteil ein Carbid oder Mischungen und/oder Verbindungen von Carbiden und als Nebenbestandteile Verbindungen aus Aluminium- und Seltenerdoxiden.1. Non-oxide ceramic coating powder containing a carbide or mixtures and / or compounds of carbides as the main component and compounds of aluminum and rare earth oxides as secondary components.
2. Pulver nach Anspruch 1, bei dem als Carbid oder Mischungen und/oder Verbindungen von Carbiden SiC, TiC, ZrC allein oder in Mischungen oder Verbindungen enthalten sind.2. Powder according to claim 1, in which as carbide or mixtures and / or compounds of carbides SiC, TiC, ZrC are contained alone or in mixtures or compounds.
3. Pulver nach Anspruch 1, bei dem SiC und TiC und/oder ZrC zu jeweils 50 Vol.-% den Hauptbestandteil des Pulvers bilden.3. Powder according to claim 1, in which SiC and TiC and / or ZrC each form 50% by volume of the main constituent of the powder.
4. Pulver nach Anspruch 1 , bei dem SiC mit TiC oder ZrC gemeinsam enthalten sind, wobei der Anteil an TiC und/oder ZrC 25 - 35 Vol.-% am Hauptbestandteil des Pulvers ist.4. Powder according to claim 1, in which SiC is contained together with TiC or ZrC, the proportion of TiC and / or ZrC being 25-35% by volume of the main constituent of the powder.
5. Pulver nach Anspruch 2 - 4, bei dem bei den kubischen Carbiden TiC und ZrC jeweils bis zu 50 % der Anionen durch Stickstoff und/oder Sauerstoff ersetzt sind.5. Powder according to claims 2-4, in which in the case of the cubic carbides TiC and ZrC in each case up to 50% of the anions are replaced by nitrogen and / or oxygen.
6. Pulver nach Anspruch 1, bei dem eine Menge von > 55 Vol.-% SiC Bestandteil des Pulver ist.6. Powder according to claim 1, in which an amount of> 55 vol .-% SiC is part of the powder.
7. Pulver nach Anspruch 1 , bei dem eine Menge von 15 - 45 Vol.-% Verbindungen aus Aluminium- und Seltenerdoxiden Bestandteile des Pulvers sind.7. Powder according to claim 1, in which an amount of 15-45 vol .-% compounds of aluminum and rare earth oxides are components of the powder.
8. Pulver nach Anspruch 1, bei dem als Verbindungen aus Aluminium- und Seltenerdoxiden Aluminium-Yttriumoxid-Verbindungen oder Aluminium- Lanthanoidoxid-Verbindungen enthalten sind.8. Powder according to claim 1, in which aluminum-yttrium oxide compounds or aluminum-lanthanoid oxide compounds are contained as compounds of aluminum and rare earth oxides.
9. Pulver nach Anspruch 1, bei dem SiC in allen Modifikationen, vorteilhafterweise in der α-Modifikation enthalten ist. 9. Powder according to claim 1, in which SiC is contained in all modifications, advantageously in the α-modification.
10. Pulver nach Anspruch 1, bei dem die Verbindungen aus Aluminium- und Seltenerdoxiden im Verhältnis 40 : 60 bis 90 : 10 Aluminiumoxide zu Seltenerdoxide enthalten sind.10. Powder according to claim 1, in which the compounds of aluminum and rare earth oxides are contained in a ratio of 40:60 to 90:10 aluminum oxides to rare earth oxides.
11. Pulver nach Anspruch 1 , bei dem als Seltenerdoxide Yttriumoxid enthalten ist.11. Powder according to claim 1, in which yttrium oxide is contained as rare earth oxides.
12. Pulver nach Anspruch 1, bei dem die Aluminium- und Seltenerdoxid- Verbindungen > 80 % kristallin enthalten sind.12. Powder according to claim 1, in which the aluminum and rare earth oxide compounds are> 80% crystalline.
13. Pulver nach Anspruch 1, bei dem das Pulver eine offene Porosität von 3 - 40 Vol.-% aufweist.13. Powder according to claim 1, wherein the powder has an open porosity of 3 - 40 vol .-%.
14. Pulver nach Anspruch 13, bei dem das Pulver eine offene Porosität von 5 - 30 Vol.-% aufweist.14. A powder according to claim 13, wherein the powder has an open porosity of 5-30% by volume.
15. Nichtoxidische keramische Schicht, bei der Carbide oder Mischungen und/oder Verbindungen von Carbiden mit im wesentlichen kristallinen Aluminium- Seltenerdoxid-Verbindungen als Sekundärphasen versintert sind.15. Non-oxide ceramic layer in which carbides or mixtures and / or compounds of carbides with essentially crystalline aluminum-rare earth oxide compounds are sintered as secondary phases.
16. Schicht nach Anspruch 15, bei der als Carbide oder Mischungen und/oder Verbindungen von Carbiden SiC, TiC, ZrC allein oder in Mischungen oder Verbindungen enthalten sind.16. Layer according to claim 15, in which as carbides or mixtures and / or compounds of carbides SiC, TiC, ZrC are contained alone or in mixtures or compounds.
17. Schicht nach Anspruch 15, bei der > 65 Vol.-% Carbide oder Mischungen und/oder Verbindungen von Carbiden enthalten sind.17. Layer according to claim 15, in which> 65 vol .-% carbides or mixtures and / or compounds of carbides are contained.
18. Schicht nach Anspruch 15, bei der > 65 Vol.-% SiC enthalten sind.18. Layer according to claim 15, in which> 65 vol .-% SiC are contained.
19. Schicht nach Anspruch 15, bei der > 80 Vol.-% der Sekundärphase aus kristallinen Aluminium-Seltenerdoxid-Verbindungen besteht. 19. Layer according to claim 15, in which> 80 vol .-% of the secondary phase consists of crystalline aluminum-rare earth oxide compounds.
PCT/DE2002/002369 2001-07-02 2002-06-27 Non-oxidic ceramic coating powder and layers produced therefrom WO2003004718A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10133209A DE10133209C5 (en) 2001-07-02 2001-07-02 Non-oxide ceramic coating powder and layers made therefrom
DE10133209.2 2001-07-02

Publications (2)

Publication Number Publication Date
WO2003004718A2 true WO2003004718A2 (en) 2003-01-16
WO2003004718A3 WO2003004718A3 (en) 2003-09-25

Family

ID=7691112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/002369 WO2003004718A2 (en) 2001-07-02 2002-06-27 Non-oxidic ceramic coating powder and layers produced therefrom

Country Status (2)

Country Link
DE (1) DE10133209C5 (en)
WO (1) WO2003004718A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2196555A1 (en) * 2008-12-03 2010-06-16 Siemens Aktiengesellschaft Powder mixture made from ceramic and glass, component with masking and method for application
CN102703850A (en) * 2012-06-13 2012-10-03 辽宁工程技术大学 Ternary boride ceramic coating with cerium oxide and preparation method thereof
CN103205667A (en) * 2013-04-03 2013-07-17 北京工业大学 Thermal spraying composite coating material for piston ring and preparation method of thermal spraying composite coating material
KR20150092138A (en) * 2012-11-01 2015-08-12 세람 코팅스 에이에스 Thermal spraying of ceramic materials
US10851026B2 (en) 2017-06-21 2020-12-01 Rolls-Royce Corporation Impurity barrier layer for ceramic matrix composite substrate
US11697880B2 (en) 2016-08-16 2023-07-11 Seram Coatings As Thermal spraying of ceramic materials comprising metal or metal alloy coating

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015205807A1 (en) * 2015-03-31 2016-10-06 Siemens Aktiengesellschaft Coating system for gas turbines
DE102016212872A1 (en) 2016-07-14 2018-01-18 Siemens Aktiengesellschaft Ceramic heat shields with reaction coating
CN106868372B (en) * 2017-03-08 2018-06-19 天津大学 A kind of preparation method of MoFeB based metal ceramic coatings

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19727115A1 (en) * 1996-07-01 1998-01-08 Fraunhofer Ges Forschung Porous silicon carbide ceramic production

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4226914A (en) * 1978-05-19 1980-10-07 Ford Motor Company Novel spraying composition, method of applying the same and article produced thereby
JPS61243164A (en) * 1985-04-19 1986-10-29 Toshiba Corp Formation of heat resistant coating
DE3530103A1 (en) * 1985-08-23 1987-03-05 Kempten Elektroschmelz Gmbh Polycrystalline sintered articles based on silicon nitride, having a high fracture toughness and hardness
JPH0645862B2 (en) * 1986-12-29 1994-06-15 トヨタ自動車株式会社 Method for forming ceramic sprayed layer
US4829027A (en) * 1987-01-12 1989-05-09 Ceramatec, Inc. Liquid phase sintering of silicon carbide
JPH028358A (en) * 1988-06-25 1990-01-11 Idemitsu Kosan Co Ltd Composite thermal spraying material, manufacture of same, thermal spraying body using same, and infrared-ray radiator consisting of same
DE19612926C2 (en) * 1996-04-01 1999-09-30 Fraunhofer Ges Forschung Silicon nitride composite powder for thermal coating technologies and processes for their production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19727115A1 (en) * 1996-07-01 1998-01-08 Fraunhofer Ges Forschung Porous silicon carbide ceramic production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE CHEMICAL ABSTRACTS [Online] Columbus, Ohio, US, Juli 1995 (1995-07) TAMARI N, TANAKA T, KONDOH I, KAWAHARA M, TOKITA M: "Effect of spark plasma sintering on densification and mechanical properties of silicon carbide" Database accession no. 123:90873 XP002247008 & JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, Bd. bd, Nr. 103, 1995, Seiten 740-742, *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2196555A1 (en) * 2008-12-03 2010-06-16 Siemens Aktiengesellschaft Powder mixture made from ceramic and glass, component with masking and method for application
CN102703850A (en) * 2012-06-13 2012-10-03 辽宁工程技术大学 Ternary boride ceramic coating with cerium oxide and preparation method thereof
KR20150092138A (en) * 2012-11-01 2015-08-12 세람 코팅스 에이에스 Thermal spraying of ceramic materials
US20150307980A1 (en) * 2012-11-01 2015-10-29 Seram Coatings As Thermal spraying of ceramic materials
JP2016501983A (en) * 2012-11-01 2016-01-21 セラム コーティングス エーエス Thermal spraying of ceramic materials
EP2914760B1 (en) * 2012-11-01 2018-07-25 Seram Coatings As Thermal spraying of ceramic materials
KR102254982B1 (en) * 2012-11-01 2021-05-24 세람 코팅스 에이에스 Thermal spraying of ceramic materials
CN103205667A (en) * 2013-04-03 2013-07-17 北京工业大学 Thermal spraying composite coating material for piston ring and preparation method of thermal spraying composite coating material
US11697880B2 (en) 2016-08-16 2023-07-11 Seram Coatings As Thermal spraying of ceramic materials comprising metal or metal alloy coating
US10851026B2 (en) 2017-06-21 2020-12-01 Rolls-Royce Corporation Impurity barrier layer for ceramic matrix composite substrate

Also Published As

Publication number Publication date
DE10133209C5 (en) 2006-11-23
DE10133209A1 (en) 2003-02-06
WO2003004718A3 (en) 2003-09-25
DE10133209C2 (en) 2003-10-16

Similar Documents

Publication Publication Date Title
DE69527124T3 (en) Hard composite material for tools
DE60201922T2 (en) Spray powder and process for its preparation
DE2759159C2 (en)
DE19736560C2 (en) Process for producing a porous body, body made of SiC, and use of the porous body
DE3914010C2 (en) Process for the production of metal-ceramic composites and use of the process for controlling the material properties of composites
DE69927854T2 (en) METHOD FOR PRODUCING A SILICON CARBIDE COMPOSITE
DE1521636A1 (en) Flame spray powder
KR960010815B1 (en) Surface refined sintered alloy and process for producing the same and coated surface refined intered alloy comprising rigid film coated on the alloy
DE102006013746A1 (en) Sintered wear-resistant material used in the production of wear components comprises finely ground transition metal diboride or mixed crystal, oxygen-containing grain boundary phase and particulate boron and/or silicon carbide
DE10133209C2 (en) Non-oxide ceramic coating powder and layers made therefrom
EP0491184B1 (en) Sintered composite abrasive body, method of preparation and use thereof
EP4251589A1 (en) Method for producing coated substrates, coated substrate, and use thereof
EP0564982A2 (en) Ceramic alumina body with high metallization adherence
DE19612926C2 (en) Silicon nitride composite powder for thermal coating technologies and processes for their production
WO2005016847A1 (en) Material based on sialon's
WO1994018140A1 (en) Method of producing ceramic moldings containing fine-grained alumina, using powdered aluminum metal
EP0310985B1 (en) Sliding or sealing-element pairing and process for the manufacture thereof
EP0247528B1 (en) Polycrystalline sintered articles based on silicon nitride with high rupture strength and hardness
DE102004002303B4 (en) A method of making a coated carbon / carbon composite and coated carbon / carbon composite produced thereafter
WO2012052437A1 (en) Target for arc processes
DE3603191C2 (en)
DE10110448A1 (en) Coating powder based on titanium sub-oxides with defined defect structure used in coating technology is modified by alloy elements stabilizing defect structure during processing of coating powder
DE3714240C1 (en) Sintered body made of silicon nitride with an outer ceramic wear layer based on aluminum nitride
DE102004002304B4 (en) Process for producing a coated carbon / carbon composite and composite material produced therefrom
DE102004035364B4 (en) Material based on SiAIONes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase