WO2003002874A1 - Impeller for multiblade blower, and multiblade blower having the same - Google Patents

Impeller for multiblade blower, and multiblade blower having the same Download PDF

Info

Publication number
WO2003002874A1
WO2003002874A1 PCT/JP2002/005883 JP0205883W WO03002874A1 WO 2003002874 A1 WO2003002874 A1 WO 2003002874A1 JP 0205883 W JP0205883 W JP 0205883W WO 03002874 A1 WO03002874 A1 WO 03002874A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
main plate
blade
wing
wings
Prior art date
Application number
PCT/JP2002/005883
Other languages
French (fr)
Japanese (ja)
Inventor
Masahito Higashida
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001196180A external-priority patent/JP4774637B2/en
Priority claimed from JP2001196179A external-priority patent/JP4736253B2/en
Priority claimed from JP2001220008A external-priority patent/JP4945859B2/en
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to DE60229060T priority Critical patent/DE60229060D1/en
Priority to EP02733494A priority patent/EP1411247B1/en
Publication of WO2003002874A1 publication Critical patent/WO2003002874A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • F04D29/283Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis rotors of the squirrel-cage type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence

Definitions

  • Multi-blade impeller impeller and multi-blade blower provided with the impeller
  • the present invention relates to an impeller of a multi-blade fan and a multi-blade fan including the same, and more particularly, to an impeller of a multi-blade fan having ends of a plurality of blades extending from a main plate connected by an annular side plate, and a multi-blade including the same. It relates to a wing blower. Background art
  • FIG. 1 shows a side view of a conventional multi-blade fan
  • FIG. 2 shows a perspective view of an impeller of the conventional multi-blade fan
  • FIG. 3 shows a blade of the conventional multi-blade fan.
  • FIG. 2 shows a plan view of the car.
  • the multi-blade blower 10 includes an impeller 13, a casing 11 for covering the impeller 13, a motor 14 for rotating the impeller 13, and the like.
  • the impeller 13 one end of a number of blades 33 is fixed to an outer peripheral edge of a disk-shaped main plate 31, and the other ends of the blades 33 are connected by an annular side plate 32.
  • the casing 11 has a gas outlet 11 a and a gas inlet 11 b surrounded by a bell mouth 12.
  • the suction port 11b faces the side plate 32 of the impeller 13.
  • the outlet 11a is formed in a direction perpendicular to the inlet 11b so as to blow out gas in a direction substantially perpendicular to the rotation axis 0-0 of the impeller 13.
  • each blade 33 of the impeller 13 pumps out gas from the space on the inner circumference side to the space on the outer circumference side, and gas flows from the suction port 11 b into the space on the inner circumference side of the impeller 13. While being sucked, the gas pushed to the outer peripheral side of the impeller 13 is sent out through the outlet 11a. That is, the multi-blade blower 10 sucks gas from the inlet 11b and sends gas from the outlet 11a. I do.
  • the turbulent vortex develops gradually as the gas flow X moves toward the outer periphery and the flow colliding with the main plate 31 further merges. Form a vortex.
  • the developed turbulent vortex is ejected toward the outer peripheral side by the wings 33 to generate noise.
  • the cross-sectional shape of the wing is almost the same at each position so that the pair of upper and lower dies can be integrally molded from a resin material. It is designed to be.
  • the wings with inclined wings are not bent so that they can be formed only by the upper and lower dies (see wing 33 in Figs. 2 and 3).
  • a wing shape creates a condition in which the amount of inflow and outflow of air is different at each position of the wing, which contributes to noise generation.
  • An object of the present invention is to reduce noise caused by turbulent vortices generated near the main plate of an impeller. It is an object of the present invention to provide an efficient impeller and a low-noise multi-blade blower.
  • the interblade located between the plurality of wings of the main plate is notched at least forward in the rotation direction of the wing.
  • the inter-blade located between the multiple blades of the main plate is notched at least forward in the rotational direction, so that the gas flow impinges on the main plate and the flow merges.
  • a part of the developed turbulent vortex escapes from the space between the wings cut just before being ejected by the wings toward the outside of the main plate in the axial direction. As a result, noise generated when the gas flow is extracted by the wing can be reduced.
  • the side plate has an inner diameter equal to or larger than the outer diameter of the main plate in claim 1.
  • the inter-blade portion located between the wings of the main plate is notched larger than the outer dimensions of the wing.
  • the notch between the blades of the main plate which had not been cut off in the past, was cut out so that the wings of the other impeller were inserted between the wings of one impeller. So that two impellers can be overlapped.
  • the side plate having an inner diameter equal to or larger than the outer diameter of the main plate does not become an obstacle, and the two impellers are superposed as long as the blades of the other impeller can pass through the cutout in the blade section of the main plate. Is done. Since a notch larger than the outer dimensions of the wing is formed in the space between the wings, the two impellers can be overlapped. As a result, the space efficiency during transportation is approximately doubled when two impellers are stacked, compared to the conventional method. If there is a large space between the blades and a notch that allows the two blades to pass through is formed in the space between the blades, it is possible to improve the space efficiency by about three times by overlapping three impellers.
  • the notch of the main plate between the blades seems to reduce the performance of the multi-blade blower on the other hand, so it has not been tried before.
  • the inventor of the present application reviewed the impeller from various viewpoints, and the performance (efficiency and noise) of the blower was hardly reduced even if the notch was provided in the blade portion of the main plate as described above. Came to recognize. Based on this knowledge, the impeller according to the present invention has been created, and this impeller achieves both maintenance of the blowing capacity and improvement of transportability.
  • the inter-blade portion according to claim 1 or 2 is partially notched in a circumferential direction.
  • the interblade portion is partially notched in the circumferential direction at least in front of the main plate in the rotation direction, and is not cut to the rear in the rotation direction of the interblade portion.
  • cutting out the rear part of the space between the blades in the rotational direction has the effect of releasing the turbulent vortex from the rear part in the rotational direction to the outside in the axial direction of the main plate together with the gas flow. Since it is the negative pressure surface of the wing, the gas flow becomes large. As a result, the gas flow may be separated, and the effect of noise reduction may be reduced. Therefore, in the impeller of this multi-blade fan, the gas flow does not increase because the rear portion in the rotational direction of the blade portion is not cut off. As a result, the effect of noise reduction due to the notch in the rotation direction of the space between the blades is not impaired.
  • the inter-blade portion is cut off from the outer peripheral edge to the inner peripheral edge of the blade in any one of claims 1 to 3.
  • the interblade is cut from the outer peripheral edge to the inner peripheral edge of the blade, so that the turbulent vortex is cut before reaching the outer peripheral edge of the blade. Almost escaped from the missing wings. As a result, the turbulent vortex reaching the outer peripheral edge of the blade is further reduced, and the noise can be reduced.
  • the multi-blade blower according to claim 5 is the multi-blade blower according to any one of claims 1 to 4, wherein each of the plurality of blades has an inclined portion that is inclined forward in the rotation direction.
  • the inter-blade part is cut off at least by the projected partial force of the slope of each wing.
  • the slopes are provided on the multiple blades, so that the difference in the amount of gas inflow and outflow at each position of the blades can be kept small, improving the ventilation efficiency and reducing noise. It will be easier. Also, besides providing an inclined part on each wing, Interference (main plate) is removed from the projected part of the slope of each wing. For this reason, the plurality of blades including the main plate can be integrally formed from the resin material using a pair of molds. In other words, the mold that enters through the notch (blade) of the main plate to form the inner surface of the inclined portion and the mold that forms the outer surface of the inclined portion from the opposite side allows the inclined portion that could not be integrally molded in the past. Wings can be formed. That is, with this blower, it is possible to obtain not only the effect of reducing noise but also the effect that resin integral molding becomes possible.
  • the plurality of blades are entirely inclined.
  • the entire wing is inclined and the entire wing is inclined, so that the gas flow can be changed almost uniformly as a whole.
  • a multi-blade blower according to claim 7, an impeller according to any one of claims 1 to 6, a driving unit for rotating the main plate, a suction port and an impeller opposed to an inner peripheral opening of the side plate. And a casing which is provided on the outer peripheral side of the nozzle and has an air outlet for sending out gas in a direction substantially perpendicular to the rotation axis and which covers the impeller.
  • this multi-blade blower when the main plate is rotated by the driving means, the impeller rotates with respect to the casing. Then, each blade of the impeller blows out gas from the space on the inner circumference side to the space on the outer circumference side, and the gas pushed out from the suction port to the outer circumference side of the impeller is sent out through the outlet. That is, the multi-blade blower sucks gas from the inlet and sends out gas from the outlet.
  • FIG. 1 (a) is a side view of a conventional multi-blade blower (the casing is a sectional view).
  • FIG. 1 (b) is a side view of a conventional multi-blade blower, illustrating a noise generation mechanism in the vicinity of a main plate (partially showing a cross section of an impeller).
  • FIG. 1 (c) is a side view of a conventional multi-blade fan, illustrating a noise generation mechanism near a side plate (a cross-section of a part of the impeller is shown).
  • FIG. 2 is a perspective view of an impeller of a conventional multi-blade fan.
  • FIG. 3 is a plan view of an impeller of a conventional multi-blade fan.
  • FIG. 4 is a side view of the multi-blade blower of the first embodiment (a casing is a sectional view).
  • FIG. 5 is a side view (partially sectioned) of the impeller of the multi-blade fan of the first embodiment.
  • FIG. 6 is a plan view of an impeller of the multi-blade blower according to the first embodiment.
  • Fig. 7 (a) is an enlarged view of the waveform shape (triangular wave shape).
  • Fig. 7 (b) is an enlarged view of the waveform (sinusoidal).
  • Fig. 7 (c) is an enlarged view of the waveform (rectangular waveform).
  • FIG. 8 (a) is a side view of the multi-blade blower of the first embodiment, illustrating a noise reduction effect of a corrugated shape formed on a main plate (a part of the cross section of the impeller is shown).
  • FIG. 8 (b) is a side view of the multi-blade blower of the first embodiment, illustrating the noise reduction effect of the corrugated shape formed on the side plate.
  • FIG. 8 (c) is a side view of the multi-blade blower of the first embodiment, illustrating a noise reduction effect of a shape in which the main plate is cut off between blades (a cross-sectional view of a part of the impeller is illustrated). ).
  • FIG. 9 is a front view of an impeller according to a second embodiment of the present invention.
  • FIG. 10 (a) is a side view of the impeller of the second embodiment.
  • FIG. 10 (b) is a bb sectional view.
  • FIG. 11 (a) is a side view showing a state in which the impeller of the second embodiment is overlaid.
  • Fig. 11 (b) is a side view showing a state in which conventional impellers are stacked.
  • FIG. 12 is a front view of an impeller according to a third embodiment of the present invention.
  • FIG. 13 (a) is a side view of the impeller of the third embodiment.
  • Fig. 13 (b) is a bb sectional view.
  • FIG. 14 is a top view of an impeller according to a fourth embodiment of the present invention.
  • Fig. 15 is a side view of the impeller.
  • FIG. 16 is a sectional view taken along the line VI-VI of FIG.
  • Fig. 17 is an enlarged view of part VII in Fig. 14.
  • FIG. 18 is a cross-sectional view taken along arrow VI 11 of FIG.
  • FIG. 19 is a cross-sectional view of the mold in the cross section of FIG.
  • FIG. 20 is a longitudinal sectional view of a wing of a modified example (A) of the wing.
  • FIG. 21 is a longitudinal sectional view of a wing of a modified example (B) of the wing.
  • FIG. 22 is a longitudinal sectional view of a wing of a modified example (C) of the wing.
  • Fig. 23 is an enlarged top view of the wing of the modified example (D) of the wing.
  • FIG. 24 is an enlarged top view of another wing of the modified example (D) of the wing.
  • FIG. 25 is an enlarged top view of the wing of the modified example (E) of the wing.
  • a multi-blade blower (centrifugal blower) according to an embodiment of the present invention includes an impeller 13 of a conventional multi-blade blower 10 shown in FIGS. It has a corrugated shape in the vicinity of the edge, a corrugated shape on the side of the main plate 31 of the side plate 32, and a cutout at the front in the rotation direction of the plurality of interblades 35 of the main plate 31. The only difference is that it has a curved shape.
  • FIG. 4 shows a side view of the multi-blade blower 40 of the present embodiment
  • FIGS. 5 and 6 show a side view and a plan view of the impeller 43 of the multi-blade blower 40.
  • the multi-blade blower 40 is mainly composed of an impeller 63, a casing 11 for covering the impeller 63, and a motor 14 for rotating the impeller 43.
  • the impeller 43 has a plurality of blades 33 fixed to an outer peripheral edge of a disk-shaped main plate 61, and the other ends of the plurality of blades 33 are connected by an annular side plate 62. Details of the impeller 43 will be described later.
  • the casing 11 has a gas outlet 11 a and a gas inlet 11 b surrounded by a bell mouth 12.
  • the suction port 11b is arranged to face the side plate 62 of the impeller 43.
  • the gas flowing through the suction port 1 1b into the space around the inner periphery of the impeller 4 3 generally flows along the rotation axis 0-0 of the impeller 43, and the rotation of the impeller 43 As a result, it flows in the direction away from the rotation axis 0-0 (in the outer circumferential direction of the impeller 43).
  • the outlet 1 1a corresponds to the rotation axis 0-0 of the impeller 43. It is formed so as to blow out the gas in a direction substantially orthogonal to the suction port 11b.
  • the rotary shaft of the motor 14 is mounted in the center hole 61 a of the main plate 61 (see FIG. 6), and the entire impeller 43 is rotated by rotating the main plate 61.
  • the main body of the motor 14 is fixed to the casing 11.
  • the impeller 43 includes a main plate 61, a plurality of blades 33, and an annular side plate 62, as shown in FIGS.
  • the impeller 43 is a resin product in which the main plate 61, the plurality of blades 33, and the side plates 62 are all integrally formed using a mold.
  • the main plate 61 is a disc-shaped member having a center hole 61a formed therein, and the rotating shaft of the motor 14 is fixed to the center hole 61a.
  • the waveform shape 64 has a triangular wave shape, and has a wave pitch P of 3 mm and a wave height H of 2 mm (see FIG. 7 (a)).
  • the waveform shape is not limited to a triangular wave shape, but may be a sine wave shape or a rectangular wave shape as shown in FIGS. 7 (b) and 7 (c).
  • the dimensions of the waveform shape are not limited to the dimensions of the present embodiment, and the pitch P is in the range of 2 mm or more and 8 mm or less, and the wave height H is 1 mm or more and 5 mm or less. It only has to be within the range.
  • interblade portion 65 located between the plurality of wings 33 of the main plate 61 is notched forward in the rotation direction.
  • These inter-blade portions 65 are circumferentially thicker than the circumferential thickness of the wing 33 and do not reach the rotational direction rearward of the other adjacent wings 33 in the rotational direction. Cut out in length.
  • the radial direction of the interblade portion 65 is notched along the shape of the blade 33 so as to extend from the outer peripheral edge to the inner peripheral edge.
  • the wing 33 is a member having a concave shape in the front in the rotation direction and arranged in a plurality of rings around the rotation axis 0-0.
  • One end of the wing 33 is fixed to the outer peripheral edge of the main plate 61, and extends therefrom without any twist along the rotation axis 0-0. And the other end of wing 3 3 As shown in FIGS. 5 and 6, they are connected by an annular side plate 62.
  • the annular side plate 62 is arranged on the outer peripheral side of the other end of the wing 33, and connects the wings 33.
  • the side plate 62 is also integrally formed with the main plate 61 and the plurality of blades 33.
  • An uneven corrugated shape 66 is formed on the surface of the side plate 62 on the main plate 61 side.
  • the waveform shape 66 is, like the waveform shape 64 of the main plate 61, a triangular waveform having a wave pitch P of 3 mm and a wave height H of 2 mm (see FIG. 7 (a)).
  • the waveform shape is not limited to a triangular wave shape, but may be a sine wave shape or a rectangular wave shape as shown in FIGS. 7 (b) and 7 (c).
  • the dimensions of the waveform shape are not limited to the dimensions of the present embodiment, and the pitch P is in the range of 2 mm or more and 8 mm or less, and the wave height H is in the range of 1 mm or more and 5 mm or less. Should be fine.
  • the impeller 43 rotates in the direction of rotation R shown in FIG. 6 with respect to the casing 11. That is, in the multi-blade blower 40, air is mainly extracted by the concave surface of the blade 33 in the front in the rotation direction. As a result, the blades 3 3 of the impeller 4 3 discharge gas from the space on the inner peripheral side of the impeller 4 3 to the space on the outer peripheral side, and the inner peripheral side of the impeller 4 3 from the suction port 1 1 b. While the gas is sucked into the space, the gas discharged to the outer peripheral side of the impeller 43 is collected at the outlet 11a and blown out (see the gas flow Z in FIG. 4).
  • the multi-blade blower 40 sucks gas from the inlet 11b along the rotation axis 0-0, and sends out gas from the outlet 11a in a direction perpendicular to the rotation axis 0-0.
  • FIG. 4 only the gas flow Z on the right side of the rotating shaft 0-0 is shown, but the gas discharged to the outer peripheral side of the impeller 13 on the left side of the rotating shaft 0-0 is a casing. It flows along the outlet 11 to the outlet 11a and is blown out from there.
  • the inter-blade portion 65 of the main plate 61 of the impeller 43 of the present embodiment is, as described above, circumferentially larger than the circumferential thickness of the blade 33, and radially.
  • Each of the wings 33 is notched so as to extend from the outer peripheral edge to the inner peripheral edge of the wing 33 along the curved shape of the wing 33. Utilizing this shape, the two impellers 4 3 are moved from the rotation axis 0-0 direction. Overlap.
  • the corresponding blades 33 of the other impeller 43 can be fitted into the cutouts of the plurality of blade portions 65 of one impeller 43.
  • the two impellers 43 fitted in this way are further transported after being loaded to a predetermined loading height.
  • the noise value was reduced by 0.8 dB compared to the conventional example.
  • the noise value was reduced by 0.5 dB compared to the conventional example.
  • the features of the multi-blade blower of the present embodiment include the following.
  • the conventional multi-blade fan 10 there is noise caused by turbulent vortices generated near the main plate 31. Specifically, it is caused by the following generation mechanism. As shown in Fig. 1 (b), a part of the gas sucked from the suction port 11b inside the impeller 13 collides with the main plate 31 in the vicinity of the main plate 31, and then the outer peripheral side. Some are flowing toward (see Gas Flow X). This gas flow X However, a turbulent vortex is generated due to the collision with the main plate 31. In the turbulent vortex, as the gas flow X moves toward the outer periphery, the flow colliding with the main plate 31 further joins. Then, the turbulent vortex of the gas flow X gradually develops and forms the largest turbulent vortex at the inner peripheral edge of the wing 33. The developed turbulent vortex is blown out toward the outer periphery by the wings 33, and noise is generated.
  • the corrugated shape 64 of the concavo-convex shape is formed at least in the vicinity of the inner peripheral edge of the blade 33 on the side of the side plate 62 of the main plate 61.
  • the turbulent vortex developed due to the collision of the gas flow Z1 with the main plate 61 and the merging of the flows is collapsed just before reaching the wings 33, as shown in Fig. 8 (a). It becomes smaller. Thus, noise generated when the gas flow Z1 is extracted by the wings 33 can be reduced.
  • a swirling vortex having a vortex center near the outer peripheral end of the side plate 32 is generated. Since the swirling vortex does not contribute to the air blowing work of the impeller 13, as a result, it lowers the fan efficiency and causes noise. Specifically, it is caused by the following generation mechanism.
  • a part of the gas in the casing 11 is discharged to the outer periphery of the impeller 13 near the side plate 32, and then is discharged from the impeller 13.
  • a swirling vortex Y is generated from the vicinity of the bellmouth 12 to the inner periphery of the impeller 13 again. Therefore, in the impeller 13, the ratio b ZB (hereinafter referred to as a blockage factor BF ) of the axial length b of the portion where the swirl vortex Y is generated with respect to the axial total length B of the impeller 13 is given.
  • the ventilation work has not been effectively performed. This results in reduced fan efficiency and noise.
  • the impeller 43 of the multi-blade blower 40 of the present embodiment since the corrugated shape 66 of the uneven shape is formed on the surface of the side plate 62 on the main plate 61 side, the impeller 4 of the side plate 62 is formed. (3) Pressure fluctuation near the outlet is reduced. Then, as shown in FIG. 8 (b), the gas flow discharged to the outlet side by the impeller 43 changes from the rotation axis side plate 62 side of the impeller 43 to the inner periphery of the impeller 43 again. Since it is difficult to be sucked into the side, the swirl vortex Z 2 generated near the side plate 62 is reduced. This reduces the BF value to b 1 ZB 1 Since the portion of the small impeller 43 that can effectively perform the blowing work is increased, the efficiency of the blower is improved and the noise is reduced.
  • the impeller 43 of the multi-blade blower 40 In the impeller 43 of the multi-blade blower 40 according to the present embodiment, at least the front in the rotation direction of the inter-blade portion 65 located between the plurality of blades 33 of the main plate 61 is notched. As shown in (c), the turbulent vortex developed due to the collision of the gas flow Z3 with the main plate 61 and the merged flow forms a cut-off wing 6 just before being ejected by the wing 33. Part of the main plate 61 is relieved from 5 toward the outside in the axial direction. This makes it possible to reduce the noise generated when the wings 33 extract the gas flow, like the corrugated shape 64 formed on the main plate 61 shown in FIG. 8A.
  • the front of the main plate 61 in the rotation direction is partially cut out in the circumferential direction, and the inter-blade portion 65 of the impeller 43 to the rear in the rotation direction of the inter-blade portion 65 is not included. Not notched. Therefore, there is no increase in gas flow separation behind the interblade 65 in the rotational direction. As a result, the effect of noise reduction by cutting off the front portion in the rotation direction of the interblade portion 65 is not impaired.
  • the inter-blade portion 65 of the impeller 43 of the present embodiment is cut out from the outer peripheral edge to the inner peripheral edge of the blade 33, so that the turbulent vortex of the gas flow Z3 is generated by the blade. Before reaching the outer peripheral edge of 33, it is easy to escape from the cut-out space 65. Thereby, the turbulent vortex reaching the outer peripheral edge of the wing 33 can be further reduced, and the noise can be reduced.
  • the inter-blade portion 65 of the main plate 61 of the impeller 43 of the present embodiment has, in the circumferential direction, a thickness greater than the circumferential direction of the blade 33 and a radial direction. Is cut off so that the curvature of the wing 33 extends from the outer peripheral edge to the inner peripheral edge of the wing 33 along the rib shape.
  • two impellers 43 can be overlapped from the rotation axis 0-0 direction, and the corresponding blades 33 can be fitted into the notches of the plurality of blade portions 65. Thereby, the loading efficiency when loading the impeller 43 can be improved.
  • the multi-blade blower according to the second embodiment of the present invention includes an impeller 13 of the conventional multi-blade blower 10 shown in FIGS. 1 to 3, and an impeller 11 shown in FIGS. 9 and 10. O replaced
  • the impeller 1 13 is a resin product integrally formed by a mold, and includes a main plate 13 1, a side plate 13 2, and a plurality of blades 13 3.
  • the main plate 13 1 is circular, and is rotated around a rotation axis 0-0 (see FIG. 1) by a motor 14.
  • the main plate 13 1 is provided with a center hole 31 a, and the rotating shaft of the motor 14 is mounted in the center hole 13 a.
  • the plurality of wings 133 are arranged annularly around the rotation axis 0-0, and extend along the rotation axis 0-0. One end of each wing 13 33 is fixed to the outer peripheral portion of the main plate 13 1.
  • the side plate 1332 is an annular member and has an inner diameter that is the same as or slightly larger than the outer diameter of the main plate 1331.
  • This side plate 13 2 is connected to the outer peripheral edge of the wings 13 3 at the other end of the plurality of wings 13 3.
  • a cutout 13b is formed in a portion of the main plate 131 located between the adjacent wings 13 (hereinafter referred to as an inter-wing portion). ing.
  • the notch 1 3 1b extends from the outer edge of the main plate 13 1 to the radial position of the inner edge of the wing 13 3, more specifically, from the outer edge of the main plate 13 1 to the wing 13 3 It has reached a position slightly inward of the inner edge from the radial position.
  • the circumferential width of the notch 13 1 b is larger than the maximum value of the circumferential width of the blade 13. That is, the inter-blade portion of the main plate 13 1 is cut out larger than the cross-sectional outer dimension of the wing 13 3.
  • a wing front plate 131c In the space between the wings of the main plate 131, in addition to the notch 131b, there are a wing front plate 131c and a wing rear plate 13d.
  • the wing front plate 13 G is an outer peripheral portion of the main plate 13 1 extending forward from the root of the wing 13 3 in the rotation direction.
  • the wing rear plate portion 131d is an outer peripheral portion of the main plate 131 extending rearward in the rotational direction from the root of the wing 133.
  • the casing 11 has an air outlet 11 a and an air inlet 11 b surrounded by a bell mouth 12.
  • the suction port 1 1b faces the side plate 13 2 of the impeller 1 13.
  • the outlet 11 a is formed so as to blow air in a direction substantially perpendicular to the rotation axis 0-0 of the impeller 113 so as to be orthogonal to the inlet 11 b.
  • the inter-blade portion of the main plate 13 1 is substantially cut out from the radial position of the inner peripheral end of the wing 13 13 on the outer peripheral side (see FIG. 10 ( b)). Therefore, it is considered that the gas sucked into the inner peripheral space of the impeller 1 13 from the suction port 1 1 b is prevented from flowing unnecessarily to the back side of the main plate 13 1, and a decrease in the blowing efficiency was confirmed. It has not been.
  • the multi-blade blower of the present embodiment uses the impeller 113 which has good space efficiency during transportation and does not decrease in performance, so that the production cost can be reduced while maintaining the performance.
  • the notch 1 3 1 b of the main plate 13 1 in the space between the wings is formed in the intermediate portion between the wings 13 3 and 13 3, If there is no problem, it is desirable to arrange the notch forward in the rotation direction of the wing as shown in FIGS.
  • an impeller 2 13 shown in FIGS. 12 and 13 is used instead of the impeller 113 of the second embodiment.
  • the impeller 2 13 includes a main plate 2 3 1, a side plate 1 3 2, and a plurality of blades 1 3 3.
  • the main plate 2 31 is circular, and is rotated about a rotation axis 0-0 (see FIG. 1) by a motor 14.
  • the main plate 231 is provided with a center hole 231a, and the rotation shaft of the motor 14 is mounted in the center hole 231a.
  • the plurality of wings 133 are arranged annularly around the rotation axis 0-0, and extend along the rotation axis 0-0.
  • One end of each wing 13 3 is fixed to the outer peripheral portion of the main plate 2 31.
  • the side plate 1332 is an annular member and has an inner diameter that is the same as or slightly larger than the outer diameter of the main plate 231. This side plate 13 2 is connected to the outer peripheral edge of the wings 13 3 at the other end of the plurality of wings 13 3.
  • a notch 2 3 1b is formed in a portion of the main plate 2 3 1 located between adjacent wings 1 3 (hereinafter referred to as an inter-blade portion). ing.
  • This notch 2 3 1b is located in the radial direction from the outer peripheral edge of the main plate 2 3 1 to the inner peripheral edge of the wing 1 3 3. In particular, it extends from the outer peripheral edge of the main plate 231 to a position slightly inward of the radial position of the inner peripheral edge of the wing 133. Also, the circumferential width of the notch 2 3 1 b is larger than the maximum circumferential width of the wing 1 33.
  • the inter-blade portion of the main plate 23 1 is cut out to be larger than the cross-sectional outer dimension of the wing 13 3. Further, the notch 2 3 1 b is cut out from the root in the rotation direction of the wing 13 3, and there is no plate between the wing 13 3 and the notch 2 3 1 b. In other words, only the wing rear plate portion 2131d extending rearward in the rotational direction from the root of the wing 133 exists in the space between the wings of the main plate 231 (see Fig. 13 (b)).
  • the notch 2 3 1 b is provided in a portion of the inter-blade portion of the main plate 2 3 1 in the rotation direction front of the blade 1 3 3.
  • the notch 231 is provided in the space between the wings of the main plate 231, so that the turbulent vortex is notched immediately before being released by the wing 1333. It is presumed that the noise is released to the outside in the axis 0-0 direction through 2 3 1b, and the noise is smaller than that of the conventional impeller without the notch 2 3 1b.
  • the blade portion of the main plate 2 31 of the impeller 2 13 is cut away from the root of the blade 13 3 in the rotation direction forward, the blade rear plate portion 2 3 1 d A sufficient circumferential width can be ensured, and the gas flow separation phenomenon behind the blades 133 in the rotation direction can be more effectively suppressed. For this reason, it is presumed that the noise is lower than in the second embodiment.
  • the sirocco fan according to one embodiment of the present invention replaces the impeller 13 of the conventional sirocco fan 10 shown in FIGS. 1 to 3 with the impeller 11 13 shown in FIGS. 14 and 15. It is a thing.
  • the impeller 1 1 1 3 is a resin product integrally molded from a resin material by a mold. As shown in FIG. 15, the main plate 1 1 3 1, the side plate 1 1 3 2, and the plurality of blades 1 1 It is composed of 33.
  • the main plate 113 is circular, and is rotated by a motor 14 about a rotation axis 110 (see FIG. 1).
  • the main plate 1 1 3 1 is provided with a center hole 1 1 3 1 a, and the rotating shaft of the motor 14 is mounted in the center hole 1 1 3 1 a.
  • the plurality of wings 1 1 3 3 are annularly arranged around the rotation axis 0-0, and extend along the rotation axis 0-0.
  • each wing 1 1 3 3 is fixed to the outer peripheral portion of the main plate 1 1 3 1.
  • the side plate 113 is an annular member, and has an inner diameter that is the same as or slightly larger than the outer diameter of the main plate 113.
  • the side plate 1 1 3 2 is connected to the outer peripheral edge of the wings 1 1 3 3 at the other end of the plurality of wings 1 1 3 3.
  • the multiple wings 1 1 3 3 extending from the main plate 1 1 3 1 along the rotation axis 0-0 are bent forward in the rotation direction from the middle as shown in Fig. 14, Fig. 15, Fig. 17 and Fig. 18.
  • the tip (the other end) is connected to the side plate 113. Therefore, as shown in Fig. 18, the wing 1 1 3 3 is composed of a main body 1 1 3 3 a on the main plate 1 1 3 1 side and an inclined section 1 1 3 3 b on the side plate 1 1 3 2 side. Will be done.
  • the main plate 1 13 1 has a cut-out portion in which the inclined portion 1 1 3 3 b of the wing 1 1 1 3 3 is projected on the main plate 1 1 3 1 along the rotation axis 0-0.
  • a cutout 1 1 3 1 b is formed on the main plate 1 1 3 1 between the wing 1 1 3 3 and the adjacent wing 1 1 3 3.
  • These notches 1 13 1 b have a shape reaching the outer peripheral edge of the main plate 1 13 1, as shown in FIG.
  • the notch 1 1 3 1 b has the wing 1 1 3 3 of the main plate 1 1 3 1 because the slope 1 1 3 3 b of the wing 1 1 3 3 is inclined forward in the rotation direction. It is located at the front in the rotation direction of the part (see Figures 16 and 17).
  • the wing 1 1 3 3 is bent at an appropriate position, and the wing 1 1 3 3 is provided with an inclined portion 1 1 3 3 b. Therefore, each position along the rotation direction 0-0 of the wing 1 1 3 3 The difference in the amount of inflow and outflow of air is small, and the ventilation efficiency is improved and noise is suppressed.
  • the wings 1 1 3 3 are provided with an inclined section 1 1 3 3 b and cut into the main plate 1 1 3 1 A notch 1 1 31b is formed to remove the interfering object (main plate) from the projection of the slope 1 1 133b.
  • the pair of dies 1 060 and 1 070 form an impeller 1 113 composed of a main plate 1 131, side plates 1 132 and wings 1 133 from a resin material. Can be molded.
  • the molds for resin molding the impellers 1 1 1 1 3 are an upper mold 1 060 and a lower mold 1 070 shown in FIG.
  • the upper mold 1060 has a protrusion 1 061 that enters between the wings 1 133 and 1 133.
  • the projection 1 061 has a vertical surface 1 061 a that forms the rear surface of the main body 1 133 a of the wing 1 133 a in the rotation direction, and a rear surface in the rotation direction of the inclined portion 1 133 b of the wing 1 133 a.
  • An inclined surface 1061 b that forms the surface, a horizontal surface 1061 c that forms the surface of the main plate 1 131 on which the wings 1 133 are attached, and the like are formed.
  • the lower mold 1070 has a protruding portion 1071, which extends downward from the cutout 1131b after molding. Further, a tip portion 1072 of the protruding portion 1071 has a tapered shape.
  • a lower mold 1 070 has a horizontal plane 1 070a that forms the surface of the main plate 1 1 31 without the wings 1 133, and the main body 1 1 33a of the wing 1 133
  • a vertical surface 1 071 a forming a surface, an inclined surface 1 072 a forming a front surface in the rotation direction of the inclined portion 1 133 b of the wing 1 133 are formed.
  • the vertical surface 1071a is a surface of the protruding portion 1071
  • the inclined surface 1072a is a surface of a tip portion 1072 of the protruding portion 1071.
  • the impeller 1 1 13 including the inclined portion 1 133 b of the wing 1 133 is formed, and then both the molds 1 060 and 1 070 are formed. It can be pulled up and down.
  • the lower die 1070 which enters the notch 1 1 31b of the main plate 1 31 to form the inner surface of the inclined portion 1 133b, and the outer surface of the inclined portion 1 133b from the opposite side,
  • the wings 1 133 and the impellers 1 1 1 3 which can not be integrally formed and which have the inclined portion 1 133 b can be formed.
  • the main plate 1 131 is cut off at the projected portion of the inclined portion 1 133 b of the wing 1 133 so that the impeller 1 1 13 can be integrally formed by a pair of molds 1 060 and 1070.
  • the main plate 1 The lack of this has not been tried before, as it is felt on the other hand as degrading the performance of the sirocco fan.
  • the structure of the impeller was reviewed from various viewpoints, and even if the main plate 1 13 1 1 was cut off for the projected portion of the inclined portion 1 1 3 3 b of the wing 1 1 3 3 as described above, We came to recognize that the performance (efficiency and noise) of the fan did not decrease, and that the performance improvement due to the presence of the inclined portion 113 b was an advantage. Based on this finding, the impeller 1 1 1 3 according to the present embodiment has been produced, and the impeller 1 1 1 3 has improved ventilation efficiency and reduced noise as compared with the conventional one.
  • the notch 1 1 3 1 b of the main plate 1 1 3 1 including the projection of the slope 1 1 3 3 b of the wing 1 1 3 3 is changed to the main plate 1 1 3 1 as shown in Fig. 16.
  • the lower mold 1 0 7 0 used for integral molding is composed of a portion that covers the outer peripheral edge of the main plate 1 1 3 1 and a notch 1 1 3 1 The structure is directly connected to 1 and the strength as a mold is easily secured.
  • the inclined portion 1 1 3 3 b of the wing 1 1 3 3 is inclined forward in the rotation direction, and the main plate 1 1 3 1 is cut off in the rotation direction forward portion of each wing 1 1 3 3. (See Figure 18).
  • the impeller 1 1 13 can not only maintain its performance but also improve its performance as compared with the case where the notch 1 1 3 1 b is not provided.
  • the turbulent vortex contained in the gas flowing toward the outer periphery after colliding with the main plate 1 1 3 1 escapes from the notch 1 1 3 1 b in the direction of the rotation axis 0-0 This has resulted in improved performance with reduced noise.
  • the plurality of wings 1 2 3 3 extending from the main plate 1 1 3 1 are entirely inclined forward in the rotation direction as shown in FIG. Further, the main plate 1 131 has a cutout portion in which the entire wing 1 233 is projected on the main plate 1 131 along the rotation axis 0-0. As a result, the wing 1
  • a notch 1 1 31 c is formed between 233 and the adjacent wing 1 233. Since the wings 1233 are inclined forward in the rotational direction, these cutouts 1 1 31 c are arranged in the rotationally forward portion of the main plate 1 131 with the wings 1 233.
  • the resin can be integrally molded and a low noise impeller can be obtained.
  • the plurality of wings 1 333 extending from the main plate 1 131 are bent forward in the rotation direction from the root portion connected to the main plate 1 131, and the rotation axis 0-0 Parallel. Then, in the vicinity of the side plate 1 132, it is again bent forward in the rotation direction, and the tip is connected to the side plate 1 132. Therefore, as shown in FIG. 21, the wing 1 333 has an inclined portion 1 333 c on the main plate 1 131 side, an inclined portion 1 333 b on the side plate 1 132 side, and both inclined portions 1 333 b and 1 333 c. And the main body 1333a.
  • the main plate 1 131 has a cut-out portion in which both inclined portions 1 333 b and 1 333 c of the wing 1 333 are projected onto the main plate 1 131 along the rotation axis 0-0.
  • the main plate 1 131 has a notch 1 131 d formed between the wing 1 333 and the adjacent wing 1 333.
  • 333 Since 333 is inclined forward in the rotation direction, it is arranged in the rotation direction forward portion of the main plate 1 131 where the wing 1 333 is attached (see FIG. 21).
  • a wing 1 133 having a vertical cross section shown in FIG. 18 (instead, a wing 1 433 having a vertical cross section shown in FIG. 22 may be used.
  • the plurality of wings 1 4 3 3 extending from the main plate 1 1 3 1 along the rotation axis 0-O are bent backward in the rotation direction from the middle as shown in Fig. 22 and the tip (the other end) is the side plate 1 1 3 Connected to two. Therefore, the wing 1443 is composed of the main body 1443a on the main plate 113 side and the inclined and inclined portions 144b on the side plate 113 side.
  • the main plate 1 13 1 has a cut-out portion in which the inclined portion 1 4 3 3 b of the wing 1 4 3 3 is projected on the main plate 1 1 3 1 along the rotation axis 0-0.
  • a cutout 1 1 3 1 e is formed on the main plate 1 1 3 1 between the wing 1 4 3 3 and the adjacent wing 1 4 3 3.
  • These notches 1 1 3 1 e have wings 1 4 3 3 of the main plate 1 1 3 1 because the slope 1 4 3 3 b of the wing 1 4 3 3 is inclined backward in the rotation direction. It is arranged at the rear part in the rotation direction of the part.
  • the wings 150 3 3 having the inclined portion 135 33 b shown in FIG. 23 can be used.
  • the plurality of wings 1 5 3 3 extending from the main plate 1 1 3 1 are bent forward in the rotation direction from the middle, and the tips (the other ends) are connected to the side plates 1 1 3 2. Therefore, as shown in Fig. 23, the wing 1 53 3 is composed of a main body 1 15 3 3a on the main plate 1 1 3 1 side and an inclined portion 1 5 3 3 b on the side plate 1 1 3 2 side. Will be done.
  • the inclined portion 1 5 3 3 b has a large forward inclination in the rotation direction on the inner peripheral side and a smaller inclination on the outer peripheral side.
  • the main plate 1 13 1 has a cut-out portion in which the inclined portion 1 5 3 3 b of the wing 1 5 3 3 is projected on the main plate 1 1 3 1 along the rotation axis 0-0.
  • a cutout 1 1 3 1 f is formed on the main plate 1 1 3 1 between the wing 1 5 3 3 and the adjacent wing 1 5 3 3.
  • These notches 1 1 3 1 f reach the outer peripheral edge of the main plate 1 1 3 1, but the width dimension of the part that goes outward is small.
  • 1 13 1 f may be expanded to form notches 1 13 1 g as shown in FIG. 24 in the main plate 1 13 1.
  • the notch 1 1 3 1 g includes the projected portion of the wing 1 5 3 3 on the main plate 1 1 3 1 along the axis of rotation 0-0 along the inclined portion 1 5 3 3 b of the wing 15 3 3 While reaching the outer peripheral edge while maintaining This cut If the notch 1 1 3 1 g is formed, a part of the mold that enters the notch 1 1 3 1 g will be firmly connected to the mold body located around the main plate 1 1 3 1. (4) It is easy to secure the strength of the mold.
  • a wing 163 having the inclined portion 16333b shown in FIG. 25 can be used.
  • the plurality of wings 1633 extending from the main plate 113 are bent forward in the rotational direction from the middle, and the ends (the other ends) are connected to the side plates 113. Therefore, the wing 1633, as shown in Fig. 25, is composed of the main body 1163a on the main plate 1131 side and the inclined portion 16333b on the side plate 1132 side. Will be done.
  • the inclined portion 1 6 3 3 b has a smaller inclination on the inner peripheral side and a larger inclination on the outer peripheral side in the rotation direction.
  • the main plate 1 13 1 is notched at a projected portion where the inclined portion 16 3 3 b of the wing 16 3 3 is projected on the main plate 1 13 ′′ I along the rotation axis 0-0.
  • a cutout 1 1 3 1 h is formed on the main plate 1 1 3 1 between the wing 1 6 3 3 and the adjacent wing 1 6 3 3.
  • the present invention is applied to a sirocco fan, which is one of centrifugal fans, but the present invention can be applied to other centrifugal fans, for example, a turbo fan.
  • a turbo fan for example, a turbo fan.
  • the projected portion of the turbofan blade, which is entirely inclined, projected onto the main plate along the rotation axis is cut out, so that the main plate and the multiple blades can be integrally molded with only a pair of upper and lower molds. May be configured.
  • the shroud which corresponds to the side plate of the sirocco fan, will be installed on the main plate and the multiple wings, which are molded integrally.
  • the present invention is applied to a turbofan in which each blade is conventionally formed using a slide, the main plate and the blade can be formed only by the upper die and the lower die.
  • the cost and molding time can be reduced, and a low-cost turbofan can be provided.
  • the inventions described in the first to third embodiments can be applied not only to a resin-made impeller integrally formed, but also to a sheet-metal-made impeller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The invention provides an impeller capable of reducing the noise due to turbulence vortexes produced in the vicinity of the main plate of the impeller, and provides a low-noise multiblade blower. A multiblade blower (40) consists mainly of an impeller (43), a casing (11) covering the impeller (43), and a motor (14) for rotating the impeller (43). The impeller (43) comprises a plurality of blades (33) fixed in the outer peripheral edge of a main plate (61) in the form of a circular plate, the blades (33) being connected together at their other ends by an annular side plate (62). Interblade portions (65) between the blades (33) on the main plate (61) are cut at their front portions as seen in the direction of rotation. These interblade portions (65) are greater than the circumferential thickness of the blades (33) and are cut to such a length that they do not reach the rear of the other blades (33) that are adjacent the front as seen in the direction of rotation. Further, the radial portions of the interblade portions (65) are cut along the shape of the blades (33) to a length extending from the outer peripheral edge to the inner peripheral edge.

Description

明 細 書 多翼送風機の羽根車及びそれを備えた多翼送風機 技術分野  Description Multi-blade impeller impeller and multi-blade blower provided with the impeller
本発明は、 多翼送風機の羽根車及びそれを備えた多翼送風機、 特に、 主板から 延びる複数の翼の端部が環状の側板により結ばれた多翼送風機の羽根車及びそれ を備えた多翼送風機に関する。 背景技術  The present invention relates to an impeller of a multi-blade fan and a multi-blade fan including the same, and more particularly, to an impeller of a multi-blade fan having ends of a plurality of blades extending from a main plate connected by an annular side plate, and a multi-blade including the same. It relates to a wing blower. Background art
気体清浄機やエアコンなどの空気調和機 (以下、 空調機という。 ) においては 、 送風を行うために、 多翼送風機が用いられている。 図 1〜図 3に、 従来例の多 翼送風機を示す。 ここで、 図 1は、 従来例の多翼送風機の側面図を示し、 図 2は 、 従来例の多翼送風機の羽根車の斜視図を示し、 図 3は、 従来例の多翼送風機の 羽根車の平面図を示している。  2. Description of the Related Art In air conditioners such as gas purifiers and air conditioners (hereinafter referred to as air conditioners), multi-blade blowers are used to blow air. Figures 1 to 3 show a conventional multi-blade blower. Here, FIG. 1 shows a side view of a conventional multi-blade fan, FIG. 2 shows a perspective view of an impeller of the conventional multi-blade fan, and FIG. 3 shows a blade of the conventional multi-blade fan. FIG. 2 shows a plan view of the car.
多翼送風機 1 0は、 羽根車 1 3、 羽根車 1 3を覆うケ一シング 1 1、 羽根車 1 3を回転するためのモータ 1 4等から構成されている。 羽根車 1 3は、 円板状の 主板 3 1の外周縁に多数枚の翼 3 3の一端が固定され、 それらの翼 3 3の他端が 環状の側板 3 2で結ばれている。 ケーシング 1 1には、 気体の吹出口 1 1 aと、 ベルマウス 1 2により囲われる気体の吸込口 1 1 bとが形成されている。 吸込口 1 1 bは、 羽根車 1 3の側板 3 2に対向している。 また、 吹出口 1 1 aは、 羽根 車 1 3の回転軸 0— 0に対して略直交する向きに気体を吹き出すように、 吸込口 1 1 bに直交する方向に形成されている。  The multi-blade blower 10 includes an impeller 13, a casing 11 for covering the impeller 13, a motor 14 for rotating the impeller 13, and the like. In the impeller 13, one end of a number of blades 33 is fixed to an outer peripheral edge of a disk-shaped main plate 31, and the other ends of the blades 33 are connected by an annular side plate 32. The casing 11 has a gas outlet 11 a and a gas inlet 11 b surrounded by a bell mouth 12. The suction port 11b faces the side plate 32 of the impeller 13. The outlet 11a is formed in a direction perpendicular to the inlet 11b so as to blow out gas in a direction substantially perpendicular to the rotation axis 0-0 of the impeller 13.
モータ 1 4を回転して多翼送風機 1 0を作動させると、 羽根車 1 3が、 ケーシ ング 1 1に対して、 図 3の回転方向 Rの向きに回転する。 これにより、 羽根車 1 3の各翼 3 3が内周側の空間から外周側の空間へと気体を搔き出し、 吸込口 1 1 bから羽根車 1 3の内周側の空間に気体が吸い込まれるとともに、 羽根車 1 3の 外周側に押し出された気体が吹出口 1 1 aを通って送出される。 すなわち、 多翼 送風機 1 0は、 吸込口 1 1 bから気体を吸い込み、 吹出口 1 1 aから気体を送出 する。 When the motor 14 is rotated to operate the multi-blade blower 10, the impeller 13 rotates in the rotation direction R of FIG. 3 with respect to the casing 11. As a result, each blade 33 of the impeller 13 pumps out gas from the space on the inner circumference side to the space on the outer circumference side, and gas flows from the suction port 11 b into the space on the inner circumference side of the impeller 13. While being sucked, the gas pushed to the outer peripheral side of the impeller 13 is sent out through the outlet 11a. That is, the multi-blade blower 10 sucks gas from the inlet 11b and sends gas from the outlet 11a. I do.
このような多翼送風機 1 0においては、 主板 3 1近傍において生じる乱れ渦に 起因する騒音がある。 具体的には、 以下のような発生機構によって生じている。 羽根車 1 3の内部において、 吸込口 1 1 bから吸い込まれた気体は、 主に、 図 1 ( a ) に示すように、 主板 3 1に向かう方向から徐々に外周に向かうように流 れている (気体流れ W参照) 。 ところで、 図 1 ( b ) に示すように、 吸込口 1 1 bから吸い込まれた気体の一部は、 主板 3 1近傍において、 主板 3 1に衝突した 後、 外周側に向かうように流れるものがある (気体流れ X参照) 。 この気体流れ Xには、 主板 3 1への衝突による乱れ渦が発生している。 この乱れ渦は、 気体流 れ Xが外周方向に向かうとともに、 主板 3 1に衝突する流れがさらに合流するた め、 徐々に乱れ渦が発達し翼 3 3の内周側縁部において最大の乱れ渦を形成する 。 この発達した乱れ渦が翼 3 3によって外周側に向かって搔き出されて、 騒音が 生じている。  In such a multi-blade blower 10, there is noise due to turbulent vortices generated near the main plate 31. Specifically, it is caused by the following generation mechanism. Inside the impeller 13, the gas sucked from the inlet 11 b flows mainly from the direction toward the main plate 31 toward the outer periphery gradually as shown in FIG. 1 (a). Yes (see gas flow W). By the way, as shown in Fig. 1 (b), a part of the gas sucked from the suction port 11b flows toward the outer periphery after colliding with the main plate 31 near the main plate 31. Yes (see gas flow X). In this gas flow X, a turbulent vortex is generated due to collision with the main plate 31. The turbulent vortex develops gradually as the gas flow X moves toward the outer periphery and the flow colliding with the main plate 31 further merges. Form a vortex. The developed turbulent vortex is ejected toward the outer peripheral side by the wings 33 to generate noise.
また、 上記のような送風機において、 製造コストの低減を重視する場合、 上下 一対の 2つの金型によって樹脂材料からの一体成形が可能となるように、 翼の断 面形状が各位置で概ね同一となるように設計される。 すなわち、 上型及び下型だ けで成形できるように、 翼に傾斜をつけたリ翼を折り曲げたりすることは行って いない (図 2及び図 3の翼 3 3参照) 。 しかしながら、 このような翼形状は、 気 体の流出入の量が翼の各位置で異なるという状態を生みだしておリ、 騒音発生の 一因となっている。  Also, in the blower as described above, if reduction of manufacturing cost is important, the cross-sectional shape of the wing is almost the same at each position so that the pair of upper and lower dies can be integrally molded from a resin material. It is designed to be. In other words, the wings with inclined wings are not bent so that they can be formed only by the upper and lower dies (see wing 33 in Figs. 2 and 3). However, such a wing shape creates a condition in which the amount of inflow and outflow of air is different at each position of the wing, which contributes to noise generation.
このような騒音の低減策としては、 翼を適当な位置で傾斜させる等の対策を採 ることが有効であるが、 そうするだけでは上型及び下型だけによる一体成形がで きない翼形状になってしまい羽根車の製作コス卜が大幅にアップする。 すなわち、 翼の傾斜部を成形するためにスライドを使った樹脂成形作業が必要となり、 金型 の数量が増えるなど製造コストがアップするとともに、 成形時間も長くなつてし まう。 発明の開示  As a measure to reduce such noise, it is effective to take measures such as tilting the wing at an appropriate position, but by doing so, the wing shape cannot be integrally formed with only the upper and lower dies. And the cost of producing the impeller is greatly increased. In other words, a resin molding operation using a slide is required to form the inclined part of the wing, which increases the manufacturing cost by increasing the number of dies and increases the molding time. Disclosure of the invention
この発明の目的は、 羽根車の主板近傍に生じる乱れ渦に起因する騒音が低減可 能な羽根車の提供、 及び低騒音の多翼送風機を提供することにある。 An object of the present invention is to reduce noise caused by turbulent vortices generated near the main plate of an impeller. It is an object of the present invention to provide an efficient impeller and a low-noise multi-blade blower.
請求項 1に記載の多翼送風機の羽根車は、 回転軸を中心 έして回転する主板と 、 回転軸を中心として環状に配置され、 それぞれ一端が前記主板に固定されてい る複数の翼と、 複数の翼の他端を結ぶ環状の側板とを備えている。 そして、 主板 の複数の翼の間に位置する翼間部は、 少なくとも翼の回転方向前方が切リ欠かれ ている。  The impeller of the multi-blade blower according to claim 1, further comprising: a main plate that rotates around a rotation axis; and a plurality of blades that are annularly arranged around the rotation axis and each of which has one end fixed to the main plate. An annular side plate connecting the other ends of the plurality of wings. The interblade located between the plurality of wings of the main plate is notched at least forward in the rotation direction of the wing.
この多翼送風機の羽根車では、 主板の複数の翼の間に位置する翼間部の少なく とも回転方向前方が切り欠かれているため、 気体流れの主板への衝突と流れの合 流とによって発達した乱れ渦は、 翼によって搔き出される直前に切り欠かれた翼 間部から主板の軸方向外側に向かってその一部が逃がされる。 これにより、 翼に よって気体流れを搔き出す際に発生する騒音を小さくできる。  In the impeller of this multi-blade blower, the inter-blade located between the multiple blades of the main plate is notched at least forward in the rotational direction, so that the gas flow impinges on the main plate and the flow merges. A part of the developed turbulent vortex escapes from the space between the wings cut just before being ejected by the wings toward the outside of the main plate in the axial direction. As a result, noise generated when the gas flow is extracted by the wing can be reduced.
請求項 2に記載の多翼送風機の羽根車は、 請求項 1において、 側板は主板の外 径以上の内径を有している。 そして、 主板の複数の翼の間に位置する翼間部は、 翼の外形寸法よリも大きく切リ欠かれている。  In the impeller for a multi-blade blower according to claim 2, the side plate has an inner diameter equal to or larger than the outer diameter of the main plate in claim 1. The inter-blade portion located between the wings of the main plate is notched larger than the outer dimensions of the wing.
ここでは、 従来切り欠かれることのなかった主板の翼間部を切り欠くことによ つて、 一方の羽根車の翼間に他方の羽根車の翼を入れ込むような形で、 少なくと も 2つの羽根車を重ね合わせることができるようにしている。 重ね合わせに際し ては、 主板の外径以上の内径を持つ側板は障害とならず、 主板の翼間部の切り欠 きを他の羽根車の翼が通過することができれば 2つの羽根車が重ね合わされる。 そして、 ここでは翼の外形寸法よりも大きい切り欠きが翼間部に形成されている ため、 2つの羽根車の重ね合わせが可能となっている。 これにより、 従来に較べ て、 2つの羽根車を重ねる場合で、 輸送時におけるスペース効率が約 2倍に向上 することになる。 また、 大きな翼間部が存在し 2つの翼を通す切り欠きが翼間部 に形成されていれば、 3つの羽根車を重ね合わせてスペース効率を約 3倍に向上 させることも可能である。  Here, the notch between the blades of the main plate, which had not been cut off in the past, was cut out so that the wings of the other impeller were inserted between the wings of one impeller. So that two impellers can be overlapped. In the superposition, the side plate having an inner diameter equal to or larger than the outer diameter of the main plate does not become an obstacle, and the two impellers are superposed as long as the blades of the other impeller can pass through the cutout in the blade section of the main plate. Is done. Since a notch larger than the outer dimensions of the wing is formed in the space between the wings, the two impellers can be overlapped. As a result, the space efficiency during transportation is approximately doubled when two impellers are stacked, compared to the conventional method. If there is a large space between the blades and a notch that allows the two blades to pass through is formed in the space between the blades, it is possible to improve the space efficiency by about three times by overlapping three impellers.
このように主板の翼間部を切リ欠くということは、 一方では多翼送風機の性能 を低下させることのように感じられるため、 今までに試さることがなかった。 し かし、 本願の発明者は、 種々の観点から羽根車を見直し、 上記のように主板の翼 間部に切り欠きを設けても送風機の性能 (効率や騒音性) が殆ど低下しないこと を認識するに至った。 この知見を基にして本請求項に係る羽根車が生み出されて おり、 この羽根車では、 送風能力の維持と輸送性の向上とが両立している。 The notch of the main plate between the blades seems to reduce the performance of the multi-blade blower on the other hand, so it has not been tried before. However, the inventor of the present application reviewed the impeller from various viewpoints, and the performance (efficiency and noise) of the blower was hardly reduced even if the notch was provided in the blade portion of the main plate as described above. Came to recognize. Based on this knowledge, the impeller according to the present invention has been created, and this impeller achieves both maintenance of the blowing capacity and improvement of transportability.
なお、 強度的な問題がなく多少の性能低下を許容する場合には、 主板の翼間部 の一部ではなく翼間部すベてを切り欠きスペース効率を最大限に向上させるとい う選択をすることもできる。  If there is no problem in strength and a slight decrease in performance can be tolerated, the option to cut out the entire wing between the wings instead of a part of the wing between the main plates and maximize space efficiency is selected. You can also.
請求項 3に記載の多翼送風機の羽根車は、 請求項 1又は 2において、 翼間部は 、 円周方向に部分的に切り欠かれている。  In the impeller of the multi-blade blower according to claim 3, the inter-blade portion according to claim 1 or 2 is partially notched in a circumferential direction.
この多翼送風機の羽根車では、 翼間部は、 主板の少なくとも回転方向前方が円 周方向に部分的に切り欠かれており、 翼間部の回転方向後方までは切り欠かれて いない。  In the impeller of this multi-blade blower, the interblade portion is partially notched in the circumferential direction at least in front of the main plate in the rotation direction, and is not cut to the rear in the rotation direction of the interblade portion.
ところで、 翼間部の回転方向後方を切り欠くと、 気体流れとともに乱れ渦を回 転方向後方から主板の軸方向外側に向かって逃がす効果を有するが、 一方で、 翼 間部の回転方向後方は翼の負圧面であるため、 気体流れのはくりが大きくなる。 これにより、 気体流れのはくりが生じ、 騒音低減の効果が小さくなるおそれがあ る。 従って、 この多翼送風機の羽根車では、 翼間部の回転方向後方は切り欠かれ ていないため、 気体流れのはくりを増大することがない。 これにより、 翼間部の 回転方向前方を切り欠くことによる騒音低減の効果を損なうことがない。  By the way, cutting out the rear part of the space between the blades in the rotational direction has the effect of releasing the turbulent vortex from the rear part in the rotational direction to the outside in the axial direction of the main plate together with the gas flow. Since it is the negative pressure surface of the wing, the gas flow becomes large. As a result, the gas flow may be separated, and the effect of noise reduction may be reduced. Therefore, in the impeller of this multi-blade fan, the gas flow does not increase because the rear portion in the rotational direction of the blade portion is not cut off. As a result, the effect of noise reduction due to the notch in the rotation direction of the space between the blades is not impaired.
請求項 4に記載の多翼送風機の羽根車は、 請求項 1 〜3のいずれかにおいて、 翼間部は翼の外周側縁部から内周側縁部まで切り欠かれている。  In the impeller of the multi-blade blower according to claim 4, the inter-blade portion is cut off from the outer peripheral edge to the inner peripheral edge of the blade in any one of claims 1 to 3.
この多翼送風機の羽根車では、 翼間部が翼の外周側縁部から内周側縁部まで切 りかかれているため、 乱れ渦が、 翼の外周側縁部まで到達する前に、 切り欠かれ た翼間部から逃がされやすい。 これにより、 翼の外周側縁部まで到達する乱れ渦 をさらに減少させて、 騒音を小さくできる。  In the impeller of this multi-blade blower, the interblade is cut from the outer peripheral edge to the inner peripheral edge of the blade, so that the turbulent vortex is cut before reaching the outer peripheral edge of the blade. Easily escaped from the missing wings. As a result, the turbulent vortex reaching the outer peripheral edge of the blade is further reduced, and the noise can be reduced.
請求項 5に記載の多翼送風機は、 請求項 1 〜4のいずれかにおいて、 複数の翼 は、 それぞれ回転方向前方側に傾斜する傾斜部を有している。 翼間部は、 少なく とも各翼の傾斜部の投影部分力切り欠かれている。  The multi-blade blower according to claim 5 is the multi-blade blower according to any one of claims 1 to 4, wherein each of the plurality of blades has an inclined portion that is inclined forward in the rotation direction. The inter-blade part is cut off at least by the projected partial force of the slope of each wing.
ここでは、 複数の翼に傾斜部を設けているため、 翼の各位置で気体の流出入の 量の差を小さく抑えることができるようになり、 送風効率の向上や騒音低下を図 ることが容易となる。 また、 各翼に傾斜部を設けるとともに、 主板を切り欠いて 各翼の傾斜部の投影部分から干渉物 (主板) を取り除いている。 このため、 主板 を含む複数の翼を、 一対の型により樹脂材料から一体成形することができる。 す なわち、 主板の切り欠き部分 (翼間部) から入り込んで傾斜部の内面を形作る型 と、 その反対側から傾斜部の外面を形作る型とにより、 従来一体成形ができなか つた傾斜部を有する翼が成形できるようになつている。 すなわち、 この送風機で は、 騒音低下の効果をとともに、 樹脂一体成形が可能になるという効果を得るこ とができる。 Here, the slopes are provided on the multiple blades, so that the difference in the amount of gas inflow and outflow at each position of the blades can be kept small, improving the ventilation efficiency and reducing noise. It will be easier. Also, besides providing an inclined part on each wing, Interference (main plate) is removed from the projected part of the slope of each wing. For this reason, the plurality of blades including the main plate can be integrally formed from the resin material using a pair of molds. In other words, the mold that enters through the notch (blade) of the main plate to form the inner surface of the inclined portion and the mold that forms the outer surface of the inclined portion from the opposite side allows the inclined portion that could not be integrally molded in the past. Wings can be formed. That is, with this blower, it is possible to obtain not only the effect of reducing noise but also the effect that resin integral molding becomes possible.
請求項 6に記載の多翼送風機は、 請求項 5において、 複数の翼は全体が傾斜し ている。  In the multi-blade blower according to claim 6, in claim 5, the plurality of blades are entirely inclined.
ここでは、 翼全体を傾斜させ、 翼全体を傾斜部としているため、 気体流れを全 体として概ね一様に変えることができる。  Here, the entire wing is inclined and the entire wing is inclined, so that the gas flow can be changed almost uniformly as a whole.
請求項 7に記載の多翼送風機は、 請求項 1 〜 6のいずれかに記載の羽根車と、 主板を回転させる駆動手段と、 側板の内周側の開口部に対向する吸込口と羽根車 の外周側に設けられ回転軸に略直交する方向に気体を送出する吹出口とを有し羽 根車を覆うケーシングとを備えている。  A multi-blade blower according to claim 7, an impeller according to any one of claims 1 to 6, a driving unit for rotating the main plate, a suction port and an impeller opposed to an inner peripheral opening of the side plate. And a casing which is provided on the outer peripheral side of the nozzle and has an air outlet for sending out gas in a direction substantially perpendicular to the rotation axis and which covers the impeller.
この多翼送風機では、 駆動手段によって主板を回転させると、 ケーシングに対 して羽根車が回転する。 すると、 羽根車の各翼が内周側の空間から外周側の空間 へと気体を搔き出し、 吸込口から羽根車の外周側に押し出された気体が吹出口を 通って送り出される。 すなわち、 多翼送風機は、 吸込口から気体を吸い込み、 吹 出口から気体を送り出す。  In this multi-blade blower, when the main plate is rotated by the driving means, the impeller rotates with respect to the casing. Then, each blade of the impeller blows out gas from the space on the inner circumference side to the space on the outer circumference side, and the gas pushed out from the suction port to the outer circumference side of the impeller is sent out through the outlet. That is, the multi-blade blower sucks gas from the inlet and sends out gas from the outlet.
このとき、 請求項 1〜 6のいずれかに記載の羽根車を採用しているため、 気体 流れの主板への衝突と流れの合流とによって生じる乱れ渦を主板の切り欠かれた 翼間部から逃がすことができる。 これにより、 羽根車の外周側縁部に到達する乱 れ渦を減少させ、 騒音を小さくできる。 図面の簡単な説明  At this time, since the impeller according to any one of claims 1 to 6 is employed, turbulent vortices generated by the collision of the gas flow with the main plate and the merge of the flows are generated from the interblade between the notched main plate. You can escape. This reduces turbulent vortices reaching the outer peripheral edge of the impeller, thereby reducing noise. BRIEF DESCRIPTION OF THE FIGURES
第 1図 (a ) は、 従来例の多翼送風機の側面図 (ケーシング部分は断面図) 。 第 1図 (b ) は、 従来例の多翼送風機の側面図であって、 主板近傍の騒音の発 生機構を説明する図 (一部羽根車の断面を図示) 。 第 1図 (c ) は、 従来例の多翼^!風機の側面図であって、 側板近傍の騒音の発 生機構を説明する図 (一部羽根車の断面を図示) 。 Fig. 1 (a) is a side view of a conventional multi-blade blower (the casing is a sectional view). FIG. 1 (b) is a side view of a conventional multi-blade blower, illustrating a noise generation mechanism in the vicinity of a main plate (partially showing a cross section of an impeller). FIG. 1 (c) is a side view of a conventional multi-blade fan, illustrating a noise generation mechanism near a side plate (a cross-section of a part of the impeller is shown).
第 2図は、 従来例の多翼送風機の羽根車の斜視図。  FIG. 2 is a perspective view of an impeller of a conventional multi-blade fan.
第 3図は、 従来例の多翼送風機の羽根車の平面図。  FIG. 3 is a plan view of an impeller of a conventional multi-blade fan.
第 4図は、 第 1実施形態の多翼送風機の側面図 (ケーシング部分は断面図) 。 第 5図は、 第 1実施形態の多翼送風機の羽根車の側面図 (一部断面を図示) 。 第 6図は、 第 1実施形態の多翼送風機の羽根車の平面図。  FIG. 4 is a side view of the multi-blade blower of the first embodiment (a casing is a sectional view). FIG. 5 is a side view (partially sectioned) of the impeller of the multi-blade fan of the first embodiment. FIG. 6 is a plan view of an impeller of the multi-blade blower according to the first embodiment.
第 7図 (a ) は、 波形形状 (三角波状) の拡大図。  Fig. 7 (a) is an enlarged view of the waveform shape (triangular wave shape).
第 7図 (b ) は、 波形形状 (正弦波状) の拡大図。  Fig. 7 (b) is an enlarged view of the waveform (sinusoidal).
第 7図 (c ) は、 波形形状 (矩形波状) の拡大図。  Fig. 7 (c) is an enlarged view of the waveform (rectangular waveform).
第 8図 (a ) は、 第 1実施形態の多翼送風機の側面図であって、 主板に成形さ れた波形形状の騒音低減効果を説明する図 (一部羽根車の断面を図示) 。  FIG. 8 (a) is a side view of the multi-blade blower of the first embodiment, illustrating a noise reduction effect of a corrugated shape formed on a main plate (a part of the cross section of the impeller is shown).
第 8図 (b ) は、 第 1実施形態の多翼送風機の側面図であって、 側板に成形さ れた波形形状の騒音低減効果を説明する図。  FIG. 8 (b) is a side view of the multi-blade blower of the first embodiment, illustrating the noise reduction effect of the corrugated shape formed on the side plate.
第 8図 (c ) は、 第 1実施形態の多翼送風機の側面図であって、 主板の翼間部 を切り欠いた形状の騒音低減効果を説明する図 (一部羽根車の断面を図示) 。 第 9図は、 本発明の第 2実施形態に係る羽根車の正面図。  FIG. 8 (c) is a side view of the multi-blade blower of the first embodiment, illustrating a noise reduction effect of a shape in which the main plate is cut off between blades (a cross-sectional view of a part of the impeller is illustrated). ). FIG. 9 is a front view of an impeller according to a second embodiment of the present invention.
第 1 0図 (a ) は、 第 2実施形態の羽根車の側面図。  FIG. 10 (a) is a side view of the impeller of the second embodiment.
第 1 0図 (b ) は、 b— b断面図。  FIG. 10 (b) is a bb sectional view.
第 1 1図 (a ) は、 第 2実施形態の羽根車を重ね合わした状態を表す側面図。 第 1 1図 (b ) は、 従来の羽根車を積み重ねた状態を表す側面図。  FIG. 11 (a) is a side view showing a state in which the impeller of the second embodiment is overlaid. Fig. 11 (b) is a side view showing a state in which conventional impellers are stacked.
第 1 2図は、 本発明の第 3実施形態に係る羽根車の正面図。  FIG. 12 is a front view of an impeller according to a third embodiment of the present invention.
第 1 3図 (a ) は、 第 3実施形態の羽根車の側面図。  FIG. 13 (a) is a side view of the impeller of the third embodiment.
第 1 3図 (b ) は、 b— b断面図。  Fig. 13 (b) is a bb sectional view.
第 1 4図は、 本発明の第 4実施形態に係る羽根車の上面図。  FIG. 14 is a top view of an impeller according to a fourth embodiment of the present invention.
第 1 5図は、 羽根車の側面図。  Fig. 15 is a side view of the impeller.
第 1 6図は、 第 1 5図の VI-VI矢視断面図。  FIG. 16 is a sectional view taken along the line VI-VI of FIG.
第 1 7図は、 第 1 4図の VI I部拡大図。  Fig. 17 is an enlarged view of part VII in Fig. 14.
第 1 8図は、 第 1 7図の VI I卜 VI 1 1矢視断面図。 第 1 9図は、 第 1 8図の断面における金型の断面図。 FIG. 18 is a cross-sectional view taken along arrow VI 11 of FIG. FIG. 19 is a cross-sectional view of the mold in the cross section of FIG.
第 2 0図は、 翼の変形例 (A) の翼の縦断面図。  FIG. 20 is a longitudinal sectional view of a wing of a modified example (A) of the wing.
第 2 1図は、 翼の変形例 (B ) の翼の縦断面図。  FIG. 21 is a longitudinal sectional view of a wing of a modified example (B) of the wing.
第 2 2図は、 翼の変形例 (C ) の翼の縦断面図。  FIG. 22 is a longitudinal sectional view of a wing of a modified example (C) of the wing.
第 2 3図は、 翼の変形例 (D ) の翼の拡大上面図。  Fig. 23 is an enlarged top view of the wing of the modified example (D) of the wing.
第 2 4図は、 翼の変形例 (D ) の他の翼の拡大上面図。  FIG. 24 is an enlarged top view of another wing of the modified example (D) of the wing.
第 2 5図は、 翼の変形例 (E ) の翼の拡大上面図。 発明を実施するための最良の形態  FIG. 25 is an enlarged top view of the wing of the modified example (E) of the wing. BEST MODE FOR CARRYING OUT THE INVENTION
[第 1実施形態]  [First Embodiment]
( 1 ) 多翼送風機の構成  (1) Configuration of multi-blade fan
本発明の一実施形態にかかる多翼送風機 (遠心送風機) は、 図 1〜図 3に示す 従来例の多翼送風機 1 0の羽根車 1 3において、 主板 3 1の複数の翼の内周側縁 部の近傍に凹凸形の波形形状を有し、 側板 3 2の主板 3 1側に凹凸形の波形形状 を有し、 主板 3 1の複数の翼間部 3 5の回転方向前方が切り欠かれた形状を有し ている点のみが異なる。  A multi-blade blower (centrifugal blower) according to an embodiment of the present invention includes an impeller 13 of a conventional multi-blade blower 10 shown in FIGS. It has a corrugated shape in the vicinity of the edge, a corrugated shape on the side of the main plate 31 of the side plate 32, and a cutout at the front in the rotation direction of the plurality of interblades 35 of the main plate 31. The only difference is that it has a curved shape.
図 4は、 本実施形態の多翼送風機 4 0の側面図を示し、 図 5及び図 6は、 多翼 送風機 4 0の羽根車 4 3の側面図及び平面図を示す。  FIG. 4 shows a side view of the multi-blade blower 40 of the present embodiment, and FIGS. 5 and 6 show a side view and a plan view of the impeller 43 of the multi-blade blower 40.
多翼送風機 4 0は、 主として、 羽根車 6 3と、 羽根車 6 3を覆うケ一シング 1 1と、 羽根車 4 3を回すモータ 1 4とから構成されている。  The multi-blade blower 40 is mainly composed of an impeller 63, a casing 11 for covering the impeller 63, and a motor 14 for rotating the impeller 43.
羽根車 4 3は、 円板状の主板 6 1の外周縁に複数の翼 3 3が固定され、 複数の 翼 3 3の他端が環状の側板 6 2で結ばれている。 この羽根車 4 3の詳細は後述す る。  The impeller 43 has a plurality of blades 33 fixed to an outer peripheral edge of a disk-shaped main plate 61, and the other ends of the plurality of blades 33 are connected by an annular side plate 62. Details of the impeller 43 will be described later.
ケ一シング 1 1には、 気体の吹出口 1 1 aと、 ベルマウス 1 2により囲まれて いる気体の吸込口 1 1 bとが形成されている。 吸込口 1 1 bは、 羽根車 4 3の側 板 6 2に対向するように配置されている。 この吸込口 1 1 bを通って羽根車 4 3 の内周部の空間へ流れる気体は、 概ね羽根車 4 3の回転軸 0— 0に沿った形で流 入し、 羽根車 4 3の回転によって回転軸 0— 0から離れる方向 (羽根車 4 3の外 周方向) に流れていく。 また、 吹出口 1 1 aは、 羽根車 4 3の回転軸 0— 0に対 して略直交する向きに気体を吹き出すよう、 吸込口 1 1 bに直交するように形成 されている。 The casing 11 has a gas outlet 11 a and a gas inlet 11 b surrounded by a bell mouth 12. The suction port 11b is arranged to face the side plate 62 of the impeller 43. The gas flowing through the suction port 1 1b into the space around the inner periphery of the impeller 4 3 generally flows along the rotation axis 0-0 of the impeller 43, and the rotation of the impeller 43 As a result, it flows in the direction away from the rotation axis 0-0 (in the outer circumferential direction of the impeller 43). In addition, the outlet 1 1a corresponds to the rotation axis 0-0 of the impeller 43. It is formed so as to blow out the gas in a direction substantially orthogonal to the suction port 11b.
モータ 1 4は、 その回転シャフ卜が主板 6 1の中心孔 6 1 a (図 6参照) に装 着されており、 主板 6 1を回転させることによって羽根車 4 3全体を回転させる 。 モータ 1 4の本体部分は、 ケーシング 1 1に固定されている。  The rotary shaft of the motor 14 is mounted in the center hole 61 a of the main plate 61 (see FIG. 6), and the entire impeller 43 is rotated by rotating the main plate 61. The main body of the motor 14 is fixed to the casing 11.
次に羽根車 4 3について説明する。  Next, the impeller 43 will be described.
羽根車 4 3は、 図 5及び図 6に示すように、 主板 6 1と、 複数の翼 3 3と、 環 状の側板 6 2とから構成されている。 この羽根車 4 3は、 本実施形態においては 、 金型を使って、 主板 6 1、 複数の翼 3 3及び側板 6 2のすべてが一体成形され る樹脂製品である。  The impeller 43 includes a main plate 61, a plurality of blades 33, and an annular side plate 62, as shown in FIGS. In the present embodiment, the impeller 43 is a resin product in which the main plate 61, the plurality of blades 33, and the side plates 62 are all integrally formed using a mold.
主板 6 1は、 図 6に示すように、 中心孔 6 1 aが形成された円板形状の部材で あり、 中心孔 6 1 aには、 モータ 1 4の回転シャフトが固定される。  As shown in FIG. 6, the main plate 61 is a disc-shaped member having a center hole 61a formed therein, and the rotating shaft of the motor 14 is fixed to the center hole 61a.
主板 6 1の外周縁には、 後述の複数の翼 3 3が回転方向に等間隔に形成されて おり、 これらの複数の翼 3 3の内周側縁部の近傍には内周側縁部の周囲に沿って 凹凸形状の波形形状 6 4が成形されている。 ここで、 波形形状 6 4は、 三角波状 を有し、 波ピッチ Pが 3 mm、 波高さ Hが 2 mmの三角波状である (図 7 ( a ) 参照) 。 尚、 波形形状は、 三角波状に制限されるものではなく、 図 7 ( b ) 及び 図 7 ( c ) に示されるような正弦波状や矩形波状でもよい。 また、 波形形状の寸 法についても、 本実施形態の寸法に制限されるものではなく、 ピッチ Pは 2 mm 以上、 8 mm以下の範囲であり、 波高さ Hは 1 mm以上、 5 mm以下の範囲であ ればよい。  On the outer peripheral edge of the main plate 61, a plurality of blades 33 described later are formed at equal intervals in the rotation direction, and near the inner peripheral edge of the plurality of blades 33, an inner peripheral edge is formed. An irregular corrugated shape 64 is formed along the periphery of. Here, the waveform shape 64 has a triangular wave shape, and has a wave pitch P of 3 mm and a wave height H of 2 mm (see FIG. 7 (a)). The waveform shape is not limited to a triangular wave shape, but may be a sine wave shape or a rectangular wave shape as shown in FIGS. 7 (b) and 7 (c). Also, the dimensions of the waveform shape are not limited to the dimensions of the present embodiment, and the pitch P is in the range of 2 mm or more and 8 mm or less, and the wave height H is 1 mm or more and 5 mm or less. It only has to be within the range.
また、 主板 6 1の複数の翼 3 3の間に位置する翼間部 6 5は、 回転方向前方が 切り欠かれている。 これらの複数の翼間部 6 5は、 円周方向には、 翼 3 3の円周 方向厚みよりも大きく、 かつ、 回転方向前方に隣接する他の翼 3 3の回転方向後 方に達しない長さに切り欠かれている。 また、 翼間部 6 5の径方向は、 翼 3 3の 形状に沿って、 外周側縁部から内周側縁部まで達する長さに切り欠かれている。 翼 3 3は、 回転方向前方に凹面形を有し、 回転軸 0— 0を中心として環状に複 数配置された部材である。 翼 3 3は、 一端が主板 6 1の外周縁に固定され、 そこ から回転軸 0— 0に沿ってねじれ無く長く延びている。 そして、 翼 3 3の他端は 、 図 5及び図 6に示すように、 環状の側板 6 2で連結されている。 In addition, the interblade portion 65 located between the plurality of wings 33 of the main plate 61 is notched forward in the rotation direction. These inter-blade portions 65 are circumferentially thicker than the circumferential thickness of the wing 33 and do not reach the rotational direction rearward of the other adjacent wings 33 in the rotational direction. Cut out in length. The radial direction of the interblade portion 65 is notched along the shape of the blade 33 so as to extend from the outer peripheral edge to the inner peripheral edge. The wing 33 is a member having a concave shape in the front in the rotation direction and arranged in a plurality of rings around the rotation axis 0-0. One end of the wing 33 is fixed to the outer peripheral edge of the main plate 61, and extends therefrom without any twist along the rotation axis 0-0. And the other end of wing 3 3 As shown in FIGS. 5 and 6, they are connected by an annular side plate 62.
環状の側板 6 2は、 翼 3 3の他端の外周側に配置され、 各翼 3 3を連結してい る。 この側板 6 2も、 主板 6 1及び複数の翼 3 3とともに一体成形されている。 そして、 側板 6 2の主板 6 1側の面には、 凹凸形状の波形形状 6 6が成形されて いる。 ここで、 波形形状 6 6は、 主板 6 1の波形形状 6 4と同様に、 波ピッチ P が 3 mm、 波高さ Hが 2 mmの三角波状である (図 7 ( a ) 参照) 。 尚、 波形形 状は、 三角波状に制限されるものではなく、 図 7 ( b ) 及び図 7 ( c ) に示され るように、 正弦波状や矩形波状でもよい。 また、 波形形状の寸法についても、 本 実施形態の寸法に制限されるものではなく、 ピッチ Pは 2 mm以上、 8 mm以下 の範囲であり、 波高さ Hは 1 mm以上、 5 mm以下の範囲であればよい。  The annular side plate 62 is arranged on the outer peripheral side of the other end of the wing 33, and connects the wings 33. The side plate 62 is also integrally formed with the main plate 61 and the plurality of blades 33. An uneven corrugated shape 66 is formed on the surface of the side plate 62 on the main plate 61 side. Here, the waveform shape 66 is, like the waveform shape 64 of the main plate 61, a triangular waveform having a wave pitch P of 3 mm and a wave height H of 2 mm (see FIG. 7 (a)). The waveform shape is not limited to a triangular wave shape, but may be a sine wave shape or a rectangular wave shape as shown in FIGS. 7 (b) and 7 (c). Also, the dimensions of the waveform shape are not limited to the dimensions of the present embodiment, and the pitch P is in the range of 2 mm or more and 8 mm or less, and the wave height H is in the range of 1 mm or more and 5 mm or less. Should be fine.
( 2 ) 多翼送風機の動作  (2) Operation of multi-blade blower
モータ 1 4を回して多翼送風機 4 0を作動させると、 羽根車 4 3が、 ケ一シン グ 1 1に対して、 図 6に示す回転方向 Rの向きに回転する。 すなわち、 多翼送風 機 4 0では、 主として翼 3 3の凹面となっている回転方向前方の面によって、 気 体を搔き出す。 これにより、 羽根車 4 3の翼 3 3が羽根車 4 3の内周側の空間か ら外周側の空間へと気体を搔き出し、 吸込口 1 1 bから羽根車 4 3の内周側の空 間に気体が吸い込まれるとともに、 羽根車 4 3の外周側に搔き出された気体が吹 出口 1 1 aに集められて吹き出される (図 4の気体流れ Zを参照) 。 すなわち、 多翼送風機 4 0は、 吸込口 1 1 bから回転軸 0— 0に沿った形で気体を吸い込み 、 吹出口 1 1 aから回転軸 0— 0に直交する方向に気体を送り出す。 尚、 図 4で は回転軸 0— 0の右側における気体流れ Zのみを表示しているが、 回転軸 0— 0 の左側において羽根車 1 3の外周側に搔き出された気体は、 ケーシング 1 1に沿 つて吹出口 1 1 aまで流れ、 そこから吹き出される。  When the motor 14 is turned to operate the multi-blade blower 40, the impeller 43 rotates in the direction of rotation R shown in FIG. 6 with respect to the casing 11. That is, in the multi-blade blower 40, air is mainly extracted by the concave surface of the blade 33 in the front in the rotation direction. As a result, the blades 3 3 of the impeller 4 3 discharge gas from the space on the inner peripheral side of the impeller 4 3 to the space on the outer peripheral side, and the inner peripheral side of the impeller 4 3 from the suction port 1 1 b. While the gas is sucked into the space, the gas discharged to the outer peripheral side of the impeller 43 is collected at the outlet 11a and blown out (see the gas flow Z in FIG. 4). That is, the multi-blade blower 40 sucks gas from the inlet 11b along the rotation axis 0-0, and sends out gas from the outlet 11a in a direction perpendicular to the rotation axis 0-0. In FIG. 4, only the gas flow Z on the right side of the rotating shaft 0-0 is shown, but the gas discharged to the outer peripheral side of the impeller 13 on the left side of the rotating shaft 0-0 is a casing. It flows along the outlet 11 to the outlet 11a and is blown out from there.
( 3 ) 羽根車の輸送  (3) Impeller transportation
羽根車 4 3を輸送する際、 複数の羽根車 4 3を回転軸 0— 0方向に積載する。 ここで、 本実施形態の羽根車 4 3の主板 6 1の翼間部 6 5は、 前述のように、 円周方向には、 翼 3 3の円周方向厚さよりも大きく、 また、 径方向には、 翼 3 3 の曲がり形状に沿って翼 3 3の外周側縁部から内周側縁部まで達する長さに切り 欠かれている。 この形状を利用して、 二つの羽根車 4 3を回転軸 0— 0方向から 重ねる。 一方の羽根車 4 3の複数の翼間部 6 5の切り欠きに、 他方の羽根車 4 3 の対応する翼 3 3を嵌め込むことができる。 このようにして嵌合した二つの羽根 車 4 3は、 さらに所定の積載高さまで積載された後、 輸送される。 When transporting the impeller 43, a plurality of impellers 43 are loaded in the rotation axis 0-0 direction. Here, the inter-blade portion 65 of the main plate 61 of the impeller 43 of the present embodiment is, as described above, circumferentially larger than the circumferential thickness of the blade 33, and radially. Each of the wings 33 is notched so as to extend from the outer peripheral edge to the inner peripheral edge of the wing 33 along the curved shape of the wing 33. Utilizing this shape, the two impellers 4 3 are moved from the rotation axis 0-0 direction. Overlap. The corresponding blades 33 of the other impeller 43 can be fitted into the cutouts of the plurality of blade portions 65 of one impeller 43. The two impellers 43 fitted in this way are further transported after being loaded to a predetermined loading height.
( 4 ) 実験例  (4) Experimental example
本実施形態の羽根車を使用した多翼送風機について、 騒音測定実験を行った結 果について説明する。  The results of a noise measurement experiment performed on a multi-blade blower using the impeller of the present embodiment will be described.
本実験は、 図 2及び図 3に示す従来例のものと、 図 5及び図 6に示される本実 施形態のものとについての測定実験を行った。 尚、 本実施形態においては、 騒音 低減を目的として、 主板 6 1に成形された波形形状 6 4と、 側板 6 2に成形され た波形形状 6 6と、 主板 6 1の翼間部 6 5を切り欠いたものとが同時に成形され ている。 そこで、 これら 3つの形状のそれぞれについての騒音低減の効果を確認 するために、 これら 3つの形状の各一つのみを成形した羽根車を準備し、 騒音測 定実験を行った。 以下に騒音測定実験の結果を示す。  In this experiment, a measurement experiment was performed on the conventional example shown in FIGS. 2 and 3 and on the present embodiment shown in FIGS. 5 and 6. In the present embodiment, for the purpose of reducing noise, the corrugated shape 64 formed on the main plate 61, the corrugated shape 66 formed on the side plate 62, and the inter-blade portion 65 of the main plate 61 are formed. The notched part is formed at the same time. Therefore, in order to confirm the noise reduction effect of each of these three shapes, we prepared an impeller molded with only one of each of these three shapes, and conducted a noise measurement experiment. The results of the noise measurement experiment are shown below.
①主板 6 1に波形形状 6 4のみが成形された羽根車の場合  ① In the case of an impeller in which only the corrugated shape 6 4 is formed on the main plate 6 1
従来例に比べて、 騒音値が 0. 8 d B減少した。  The noise value was reduced by 0.8 dB compared to the conventional example.
②側板 6 2に波形形状 6 6のみが成形された羽根車の場合  ② In the case of an impeller in which only the corrugated shape 6 6 is formed on the side plate 6 2
従来例に比べて、 騒音値が 0. 5 d B減少した。  The noise value was reduced by 0.5 dB compared to the conventional example.
③主板 6 1の翼間部 6 5を切り欠いた形状のみを有する羽根車の場合 従来例に比べて、 騒音値が 0. 5 d B減少した。  (3) In the case of the impeller having only the shape in which the interblade portion 65 of the main plate 61 is notched, the noise value has been reduced by 0.5 dB compared to the conventional example.
以上の結果より、 本実施形態において騒音低減を目的として適用された 3つの 形状のいずれにおいても騒音値の低減が確認された。  From the above results, it was confirmed that the noise value was reduced in any of the three shapes applied for the purpose of reducing noise in the present embodiment.
( 5 ) 多翼送風機の特徴  (5) Characteristics of multi-blade blower
本実施形態の多翼送風機の特徴には、 以下のようなものがある。  The features of the multi-blade blower of the present embodiment include the following.
①羽根車の主板に成形された波形形状による騒音低減  ① Noise reduction by the corrugated shape formed on the main plate of the impeller
従来例の多翼送風機 1 0においては、 主板 3 1近傍において生じる乱れ渦に起 因する騒音がある。 具体的には、 以下のような発生機構によって生じている。 羽根車 1 3の内部において、 図 1 ( b ) に示すように、 吸込口 1 1 bから吸い 込まれた気体の一部は、 主板 3 1近傍において、 主板 3 1に衝突した後、 外周側 に向かうように流れているものがある (気体流れ X参照) 。 この気体流れ Xには 、 主板 3 1への衝突による乱れ渦が発生している。 この乱れ渦は、 気体流れ Xが 外周方向に向かうとともに、 主板 3 1に衝突する流れがさらに合流する。 そして 、 気体流れ Xの乱れ渦が徐々に発達し、 翼 3 3の内周側縁部において最大の乱れ 渦を形成する。 この発達した乱れ渦が翼 3 3によって外周側に向かって搔き出さ れて、 騒音が生じている。 In the conventional multi-blade fan 10, there is noise caused by turbulent vortices generated near the main plate 31. Specifically, it is caused by the following generation mechanism. As shown in Fig. 1 (b), a part of the gas sucked from the suction port 11b inside the impeller 13 collides with the main plate 31 in the vicinity of the main plate 31, and then the outer peripheral side. Some are flowing toward (see Gas Flow X). This gas flow X However, a turbulent vortex is generated due to the collision with the main plate 31. In the turbulent vortex, as the gas flow X moves toward the outer periphery, the flow colliding with the main plate 31 further joins. Then, the turbulent vortex of the gas flow X gradually develops and forms the largest turbulent vortex at the inner peripheral edge of the wing 33. The developed turbulent vortex is blown out toward the outer periphery by the wings 33, and noise is generated.
一方、 本実施形態の多翼送風機 4 0の羽根車 4 3では、 主板 6 1の側板 6 2側 の面の少なくとも翼 3 3の内周側縁部の近傍に凹凸形の波形形状 6 4が成形され ているため、 図 8 ( a ) に示すように、 気体流れ Z 1の主板 6 1への衝突と流れ の合流とによって発達した乱れ渦は、 翼 3 3に到達する直前につぶされて小さく なる。 これにより、 翼 3 3によって気体流れ Z 1を搔き出す際に発生する騒音を 小さくできる。  On the other hand, in the impeller 43 of the multi-blade blower 40 of the present embodiment, the corrugated shape 64 of the concavo-convex shape is formed at least in the vicinity of the inner peripheral edge of the blade 33 on the side of the side plate 62 of the main plate 61. As shown in Fig. 8 (a), the turbulent vortex developed due to the collision of the gas flow Z1 with the main plate 61 and the merging of the flows is collapsed just before reaching the wings 33, as shown in Fig. 8 (a). It becomes smaller. Thus, noise generated when the gas flow Z1 is extracted by the wings 33 can be reduced.
②羽根車の側板に成形された波形形状による騒音低減  ② Noise reduction by the corrugated shape formed on the side plate of the impeller
従来例の多翼送風機 1 0においては、 側板 3 2の外周端近傍を渦中心とした旋 回渦が生じている。 この旋回渦は、 羽根車 1 3の送風仕事に寄与しないため、 結 果として、 送風機効率の低下や騒音の原因となっている。 具体的には、 以下のよ うな発生機構によって生じている。  In the multiblade blower 10 of the conventional example, a swirling vortex having a vortex center near the outer peripheral end of the side plate 32 is generated. Since the swirling vortex does not contribute to the air blowing work of the impeller 13, as a result, it lowers the fan efficiency and causes noise. Specifically, it is caused by the following generation mechanism.
図 1 ( c ) に示すように、 ケ一シング 1 1内の気体の一部は、 側板 3 2近傍に おいて、 羽根車 1 3の外周に搔き出された後、 羽根車 1 3のベルマウス 1 2近傍 から羽根車 1 3の内周側に再度吸い込まれるような旋回渦 Yを生じている。 この ため、 羽根車 1 3において、 羽根車 1 3の軸方向全長 Bに対する旋回渦 Yが生じ ている部分の軸方向長さ bの比 b Z B (以下、 ブロッケージファクタ BFとする 。 ) に相当する分については、 有効に送風仕事ができていない。 これにより、 送 風機効率の低下や騒音が生じる。 As shown in FIG. 1 (c), a part of the gas in the casing 11 is discharged to the outer periphery of the impeller 13 near the side plate 32, and then is discharged from the impeller 13. A swirling vortex Y is generated from the vicinity of the bellmouth 12 to the inner periphery of the impeller 13 again. Therefore, in the impeller 13, the ratio b ZB (hereinafter referred to as a blockage factor BF ) of the axial length b of the portion where the swirl vortex Y is generated with respect to the axial total length B of the impeller 13 is given. For the corresponding part, the ventilation work has not been effectively performed. This results in reduced fan efficiency and noise.
一方、 本実施形態の多翼送風機 4 0の羽根車 4 3では、 側板 6 2の主板 6 1側 の面に凹凸形状の波形形状 6 6が成形されているため、 側板 6 2の羽根車 4 3出 口近傍の圧力変動が緩和される。 すると、 図 8 ( b ) に示すように、 羽根車 4 3 によって出口側に搔き出された気体流れは、 羽根車 4 3の回転軸方向側板 6 2側 から再度羽根車 4 3の内周側に吸い込まれにくくなるため、 側板 6 2の近傍にお いて生じていた旋回渦 Z 2が小さくなる。 これにより、 BF値が b 1 Z B 1 と小 さくなリ羽根車 4 3の有効に送風仕事ができる部分が大きくなるため、 送風機効 率が向上し、 騒音も小さくなる。 On the other hand, in the impeller 43 of the multi-blade blower 40 of the present embodiment, since the corrugated shape 66 of the uneven shape is formed on the surface of the side plate 62 on the main plate 61 side, the impeller 4 of the side plate 62 is formed. (3) Pressure fluctuation near the outlet is reduced. Then, as shown in FIG. 8 (b), the gas flow discharged to the outlet side by the impeller 43 changes from the rotation axis side plate 62 side of the impeller 43 to the inner periphery of the impeller 43 again. Since it is difficult to be sucked into the side, the swirl vortex Z 2 generated near the side plate 62 is reduced. This reduces the BF value to b 1 ZB 1 Since the portion of the small impeller 43 that can effectively perform the blowing work is increased, the efficiency of the blower is improved and the noise is reduced.
③羽根車の主板の翼間部を切リ欠くことによる騒音低減  ③ Noise reduction by cutting out the blades of the main plate of the impeller
本実施形態の多翼送風機 4 0の羽根車 4 3では、 主板 6 1の複数の翼 3 3の間 に位置する翼間部 6 5の少なくとも回転方向前方が切り欠かれているため、 図 8 ( c ) に示すように、 気体流れ Z 3の主板 6 1への衝突と流れの合流とによって 発達した乱れ渦は、 翼 3 3によって搔き出される直前に切 y欠かれた翼間部 6 5 から主板 6 1の軸方向外側に向かってその一部が逃がされる。 これにより、 図 8 ( a ) に示す主板 6 1に成形された波形形状 6 4と同様に、 翼 3 3によって気体 流れを搔き出す際に発生する騒音を小さくできる。  In the impeller 43 of the multi-blade blower 40 according to the present embodiment, at least the front in the rotation direction of the inter-blade portion 65 located between the plurality of blades 33 of the main plate 61 is notched. As shown in (c), the turbulent vortex developed due to the collision of the gas flow Z3 with the main plate 61 and the merged flow forms a cut-off wing 6 just before being ejected by the wing 33. Part of the main plate 61 is relieved from 5 toward the outside in the axial direction. This makes it possible to reduce the noise generated when the wings 33 extract the gas flow, like the corrugated shape 64 formed on the main plate 61 shown in FIG. 8A.
また、 本実施形態の羽根車 4 3の翼間部 6 5は、 主板 6 1の回転方向前方が円 周方向に部分的に切り欠かれており、 翼間部 6 5の回転方向後方までは切り欠か れていない。 従って、 翼間部 6 5の回転方向後方における気体流れのはくりを増 大することがない。 これにより、 翼間部 6 5の回転方向前方を切 y欠くことによ る騒音低減の効果を損なうことがない。  Further, in the inter-blade portion 65 of the impeller 43 of the present embodiment, the front of the main plate 61 in the rotation direction is partially cut out in the circumferential direction, and the inter-blade portion 65 of the impeller 43 to the rear in the rotation direction of the inter-blade portion 65 is not included. Not notched. Therefore, there is no increase in gas flow separation behind the interblade 65 in the rotational direction. As a result, the effect of noise reduction by cutting off the front portion in the rotation direction of the interblade portion 65 is not impaired.
さらに、 本実施形態の羽根車 4 3の翼間部 6 5は、 翼 3 3の外周側縁部から内 周側縁部まで切り欠かれているため、 気体流れ Z 3の乱れ渦が、 翼 3 3の外周側 縁部まで到達する前に、 切り欠かれた翼間部 6 5から逃がされやすい。 これによ リ、 翼 3 3の外周側縁部まで到達する乱れ渦をさらに減少させて、 騒音を小さく できる。  Further, the inter-blade portion 65 of the impeller 43 of the present embodiment is cut out from the outer peripheral edge to the inner peripheral edge of the blade 33, so that the turbulent vortex of the gas flow Z3 is generated by the blade. Before reaching the outer peripheral edge of 33, it is easy to escape from the cut-out space 65. Thereby, the turbulent vortex reaching the outer peripheral edge of the wing 33 can be further reduced, and the noise can be reduced.
④羽根車の輸送時の積載効率の向上  向上 Improvement of loading efficiency during transportation of impeller
本実施形態の羽根車 4 3の主板 6 1の翼間部 6 5には、 前述のように、 円周方 向には、 翼 3 3の円周方向厚さよりも大きく、 また、 径方向には、 翼 3 3の曲が リ形状に沿って翼 3 3の外周側縁部から内周側縁部まで達する長さに切り欠かれ ている。 この形状を利用して、 二つの羽根車 4 3を回転軸 0— 0方向から重ねて 、 複数の翼間部 6 5の切り欠きに、 それぞれ対応する翼 3 3を嵌め込むことがで きる。 これにより、 羽根車 4 3の積載時の積載効率を向上することができる。  As described above, the inter-blade portion 65 of the main plate 61 of the impeller 43 of the present embodiment has, in the circumferential direction, a thickness greater than the circumferential direction of the blade 33 and a radial direction. Is cut off so that the curvature of the wing 33 extends from the outer peripheral edge to the inner peripheral edge of the wing 33 along the rib shape. By utilizing this shape, two impellers 43 can be overlapped from the rotation axis 0-0 direction, and the corresponding blades 33 can be fitted into the notches of the plurality of blade portions 65. Thereby, the loading efficiency when loading the impeller 43 can be improved.
[第 2実施形態]  [Second embodiment]
(多翼送風機の構成) 本発明の第 2実施形態に係る多翼送風機は、 図 1〜図 3に示す従来の多翼送風 機 1 0の羽根車 1 3を、 図 9及び図 1 0に示す羽根車 1 1 3に置き換えたもので ある o (Configuration of multi-blade blower) The multi-blade blower according to the second embodiment of the present invention includes an impeller 13 of the conventional multi-blade blower 10 shown in FIGS. 1 to 3, and an impeller 11 shown in FIGS. 9 and 10. O replaced
羽根車 1 1 3は、 金型によって一体成形される樹脂製品であり、 主板 1 3 1 と 、 側板 1 3 2と、 複数の翼 1 3 3とから構成されている。 主板 1 3 1は、 円形で あり、 モータ 1 4によって回転軸 0— 0 (図 1参照) を中心として回転させられ る。 主板 1 3 1には中心孔 ΐ 3 1 aが設けられており、 この中心孔 1 3 1 aにモ ータ 1 4の回転シャフトが装着される。 複数の翼 1 3 3は、 回転軸 0— 0を中心 として環状に配置され、 回転軸 0— 0に沿って延びている。 各翼 1 3 3の一端は 、 主板 1 3 1の外周部分に固定されている。 側板 1 3 2は、 環状の部材であり、 主板 1 3 1の外径と同じ又は若干大きい内径を有している。 この側板 1 3 2は、 複数の翼 1 3 3の他端において、 それらの翼 1 3 3の外周縁とつながつている。 主板 1 3 1のうち隣接する翼 1 3 3の間に位置する部分 (以下、 翼間部という 。 ) には、 図 1 0 ( b ) に示すように、 切り欠き 1 3 1 bが形成されている。 こ の切り欠き 1 3 1 bは、 主板 1 3 1の外周縁から翼 1 3 3の内周縁の径方向位置 付近まで、 より詳細には、 主板 1 3 1の外周縁から翼 1 3 3の内周縁の径方向位 置よりも若干内周側に入ったところまで達している。 また、 切り欠き 1 3 1 bの 円周方向の幅は、 翼 1 3 3の円周方向幅の最大値よりも大きい。 すなわち、 主板 1 3 1の翼間部は、 翼 1 3 3の断面外形寸法よりも大きく切り欠かれている。 主板 1 3 1の翼間部には、 切り欠き 1 3 1 bの他、 翼前方板部 1 3 1 c及び翼 後方板部 1 3 1 dが存在する。 翼前方板部 1 3 1 Gは、 翼 1 3 3の根元から回転 方向前方に延びる主板 1 3 1の外周部分である。 翼後方板部 1 3 1 dは、 翼 1 3 3の根元から回転方向後方に延びる主板 1 3 1の外周部分である。  The impeller 1 13 is a resin product integrally formed by a mold, and includes a main plate 13 1, a side plate 13 2, and a plurality of blades 13 3. The main plate 13 1 is circular, and is rotated around a rotation axis 0-0 (see FIG. 1) by a motor 14. The main plate 13 1 is provided with a center hole 31 a, and the rotating shaft of the motor 14 is mounted in the center hole 13 a. The plurality of wings 133 are arranged annularly around the rotation axis 0-0, and extend along the rotation axis 0-0. One end of each wing 13 33 is fixed to the outer peripheral portion of the main plate 13 1. The side plate 1332 is an annular member and has an inner diameter that is the same as or slightly larger than the outer diameter of the main plate 1331. This side plate 13 2 is connected to the outer peripheral edge of the wings 13 3 at the other end of the plurality of wings 13 3. As shown in FIG. 10 (b), a cutout 13b is formed in a portion of the main plate 131 located between the adjacent wings 13 (hereinafter referred to as an inter-wing portion). ing. The notch 1 3 1b extends from the outer edge of the main plate 13 1 to the radial position of the inner edge of the wing 13 3, more specifically, from the outer edge of the main plate 13 1 to the wing 13 3 It has reached a position slightly inward of the inner edge from the radial position. The circumferential width of the notch 13 1 b is larger than the maximum value of the circumferential width of the blade 13. That is, the inter-blade portion of the main plate 13 1 is cut out larger than the cross-sectional outer dimension of the wing 13 3. In the space between the wings of the main plate 131, in addition to the notch 131b, there are a wing front plate 131c and a wing rear plate 13d. The wing front plate 13 G is an outer peripheral portion of the main plate 13 1 extending forward from the root of the wing 13 3 in the rotation direction. The wing rear plate portion 131d is an outer peripheral portion of the main plate 131 extending rearward in the rotational direction from the root of the wing 133.
ケーシング 1 1には、 図 1に示すように、 空気の吹出口 1 1 aと、 ベルマウス 1 2により囲われる空気の吸込口 1 1 bとが形成されている。 吸込口 1 1 bは、 羽根車 1 1 3の側板 1 3 2に対向する。 また、 吹出口 1 1 aは、 羽根車 1 1 3の 回転軸 0— 0に対して略直交する向きに空気を吹き出すよう、 吸込口 1 1 bに直 交するように形成されている。  As shown in FIG. 1, the casing 11 has an air outlet 11 a and an air inlet 11 b surrounded by a bell mouth 12. The suction port 1 1b faces the side plate 13 2 of the impeller 1 13. The outlet 11 a is formed so as to blow air in a direction substantially perpendicular to the rotation axis 0-0 of the impeller 113 so as to be orthogonal to the inlet 11 b.
(多翼送風機及び羽根車の特徴) ①本実施形態の羽根車 1 1 3では、 従来切り欠かれることのなかった主板 1 3 1の翼間部を切り欠くことによって、 図 1 1 ( a ) に示すように、 一方の羽根車 1 1 3の翼 1 3 3と翼1 3 3との間に他方の羽根車 1 1 3の翼 1 3 3を入れ込む ような形で、 2つの羽根車 1 1 3, 1 1 3を重ね合わせることができる。 重ね合 わせに際しては、 主板 1 3 1の外径以上の内径を持つ側板 1 3 2は障害とならず 、 主板 1 3 1の翼間部の切り欠き 1 3 1 bを他の羽根車 1 1 3の翼 1 3 3が通過 することによって 2つの羽根車 1 1 3, 1 1 3が重ね合わされる。 このような重 ね合わせは、 翼 1 3 3の断面形状よりも大きい切り欠き 1 3 1 bが主板 1 3 1の 翼間部に形成されていることにより実現されている。 (Features of multi-blade blower and impeller) (1) In the impeller 1 13 of the present embodiment, as shown in FIG. 11A, one of the impellers 1 The two impellers 1 1 3 and 1 1 3 are superimposed such that the other impeller 1 1 3 wing 1 3 3 is inserted between the wing 1 3 3 and the wing 1 3 3 be able to. At the time of superposition, the side plate 13 2 having an inner diameter equal to or larger than the outer diameter of the main plate 13 1 does not become an obstacle, and the cutout 13 1 b between the blades of the main plate 13 1 As the three wings 13 pass, the two impellers 1 13 and 1 13 are superimposed. Such overlapping is realized by forming a notch 1 31 b larger than the cross-sectional shape of the blade 13 3 in the inter-blade portion of the main plate 13 1.
これにより、 図 1 1 ( b ) に示すように 2つの羽根車 1 3 ' , 1 3 ' を積み上 げることしかできなかった従来に べ、 輸送時におけるスペース効率が約 2倍に 向上している。 また、 切り欠き 1 3 1 bが 2本の翼 1 3 3を通すことができる大 きさであれば、 3つの羽根車を重ね合わせてスペース効率を約 3倍に向上させる ことも可能である。  As a result, as shown in Fig. 11 (b), the space efficiency during transportation has been improved by a factor of about 2, compared to the conventional method where only two impellers 13 'and 13' could be stacked. ing. If the notch 1 3 1b is large enough to allow two blades 1 3 3 to pass, it is possible to improve the space efficiency by about 3 times by stacking three impellers. .
②上記のように主板 1 3 1の翼間部を切り欠くということは、 一方では多翼送 風機の性能を低下させることのように感じられるため、 今までに試さることがな かった。 し力、し、 種々の観点から羽根車を見直して試験を行ったところ、 主板 1 3 1の翼間部に切り欠き 1 3 1 bを設けても送風機の性能 (効率や騒音性) が低 下しないことが確認されている。  (2) Notching the inter-blade part of the main plate 13 1 as described above, on the other hand, seems to impair the performance of the multi-blade fan, so we have not tried it before. The impeller was re-examined from various viewpoints and tests were conducted. The performance (efficiency and noise) of the blower was low even if a cut-out 13 1 b was provided between the blades of the main plate 13 1 It has been confirmed that it will not go down.
このように切り欠き 1 3 1 bの存在があっても多翼送風機の性能が低下しない 原因は、 次のように推測される。  The reason why the performance of the multi-blade fan does not decrease even if the notch 1 3 1b is present is assumed as follows.
多翼送風機における気体流れの中には、 吸込口 1 1 bから羽根車 1 1 3の内周 側空間に吸い込まれた後に主板 1 3 1に衝突して外周側に流れるものがある。 こ の気体流れは、 主板 1 3 1との衝突や他の気体流れとの合流によって発生■発達 する乱れ渦を含むことになる。 そして、 乱れ渦は、 翼 1 3 3によって羽根車 1 1 3の外周側に気体が搔き出されるときに、 騒音を発生させる。 しかし、 ここでは 主板 1 3 Λの翼間部に切り欠き 1 3 Λ bが設けられているため、 翼 1 3 3により 搔き出される直前に乱れ渦が切り欠き 1 3 1 bを通って軸 0— 0方向の外側に逃 がされる。 このため、 切り欠き 1 3 1 bがない従来の羽根車に較べて騒音が小さ くなると考えられる。 この騒音低下効果は、 切り欠き 1 3 1 bの存在による性能 低下があるとしても、 それを補う役割を果たすと推測される。 Among the gas flows in the multi-blade blower, there is a gas flow that is sucked into the inner peripheral space of the impeller 1 13 from the inlet 11 b and then collides with the main plate 13 1 and flows to the outer peripheral side. This gas flow contains turbulent vortices generated and developed by collision with the main plate 13 1 and merging with other gas flows. Then, the turbulent vortex generates noise when gas is discharged to the outer peripheral side of the impeller 113 by the blades 133. However, since the notch 13 板 b is provided between the wings of the main plate 13 こ こ, the turbulent vortex passes through the notch 13 b 1 b just before the wing 13 3 0—Escaped in the 0 direction. For this reason, the noise is smaller than that of the conventional impeller without the notch 1 3 1b. It is thought to be. This noise reduction effect is presumed to play a role in compensating for any performance degradation due to the presence of the notches 13b.
③本実施形態の羽根車 1 1 3では、 主板 1 3 1の翼間部を、 実質的に翼 1 3 3 の内周端の径方向位置から外周側において切り欠いている (図 1 0 ( b ) 参照) 。 したがって、 吸込口 1 1 bから羽根車 1 1 3の内周側空間に吸い込まれた気体 が無駄に主板 1 3 1の裏側に流れることが抑えられていると考えられ、 送風効率 の低下は確認されていない。  (3) In the impeller 1 13 of the present embodiment, the inter-blade portion of the main plate 13 1 is substantially cut out from the radial position of the inner peripheral end of the wing 13 13 on the outer peripheral side (see FIG. 10 ( b)). Therefore, it is considered that the gas sucked into the inner peripheral space of the impeller 1 13 from the suction port 1 1 b is prevented from flowing unnecessarily to the back side of the main plate 13 1, and a decrease in the blowing efficiency was confirmed. It has not been.
④本実施形態の多翼送風機は、 輸送時におけるスペース効率が良く且つ性能低 下のない羽根車 1 1 3を用いているため、 性能を維持しつつ製造コストを小さく 抑えることができる。  多 The multi-blade blower of the present embodiment uses the impeller 113 which has good space efficiency during transportation and does not decrease in performance, so that the production cost can be reduced while maintaining the performance.
[第 3実施形態]  [Third embodiment]
上記第 2実施形態の羽根車 1 1 3では主板 1 3 1の翼間部の切り欠き 1 3 1 b を翼 1 3 3と翼1 3 3との中間部分に形成しているが、 強度的に問題がなければ 、 図 1 2及び図 1 3に示すように、 切り欠きを翼の回転方向前方に配することが 望ましい。  In the impeller 1 13 of the second embodiment, the notch 1 3 1 b of the main plate 13 1 in the space between the wings is formed in the intermediate portion between the wings 13 3 and 13 3, If there is no problem, it is desirable to arrange the notch forward in the rotation direction of the wing as shown in FIGS.
(羽根車の構成)  (Configuration of impeller)
本実施形態では、 第 2実施形態の羽根車 1 1 3の代わりに、 図 1 2及び図 1 3 に示す羽根車 2 1 3を用いる。 羽根車 2 1 3は、 主板 2 3 1と、 側板 1 3 2と、 複数の翼 1 3 3とから構成されている。 主板 2 3 1は、 円形であり、 モータ 1 4 によって回転軸 0— 0 (図 1参照) を中心として回転させられる。 主板 2 3 1に は中心孔 2 3 1 aが設けられており、 この中心孔 2 3 1 aにモータ 1 4の回転シ ャフトが装着される。 複数の翼 1 3 3は、 回転軸 0— 0を中心として環状に配置 され、 回転軸 0— 0に沿って延びている。 各翼 1 3 3の一端は、 主板 2 3 1の外 周部分に固定されている。 側板 1 3 2は、 環状の部材であり、 主板 2 3 1の外径 と同じ又は若干大きい内径を有している。 この側板 1 3 2は、 複数の翼 1 3 3の 他端において、 それらの翼 1 3 3の外周縁とつながつている。  In the present embodiment, an impeller 2 13 shown in FIGS. 12 and 13 is used instead of the impeller 113 of the second embodiment. The impeller 2 13 includes a main plate 2 3 1, a side plate 1 3 2, and a plurality of blades 1 3 3. The main plate 2 31 is circular, and is rotated about a rotation axis 0-0 (see FIG. 1) by a motor 14. The main plate 231 is provided with a center hole 231a, and the rotation shaft of the motor 14 is mounted in the center hole 231a. The plurality of wings 133 are arranged annularly around the rotation axis 0-0, and extend along the rotation axis 0-0. One end of each wing 13 3 is fixed to the outer peripheral portion of the main plate 2 31. The side plate 1332 is an annular member and has an inner diameter that is the same as or slightly larger than the outer diameter of the main plate 231. This side plate 13 2 is connected to the outer peripheral edge of the wings 13 3 at the other end of the plurality of wings 13 3.
主板 2 3 1のうち隣接する翼 1 3 3の間に位置する部分 (以下、 翼間部という 。 ) には、 図 1 3 ( b ) に示すように、 切り欠き 2 3 1 bが形成されている。 こ の切り欠き 2 3 1 bは、 主板 2 3 1の外周縁から翼 1 3 3の内周縁の径方向位置 付近まで、 より詳細には、 主板 2 3 1の外周縁から翼 1 3 3の内周縁の径方向位 置よりも若干内周側に入ったところまで達している。 また、 切り欠き 2 3 1 bの 円周方向の幅は、 翼 1 3 3の円周方向幅の最大値よりも大きい。 すなわち、 主板 2 3 1の翼間部は、 翼 1 3 3の断面外形寸法よりも大きく切り欠かれている。 さらに、 切り欠き 2 3 1 bは、 翼 1 3 3の回転方向前方の根元から切り欠かれ ており、 翼 1 3 3と切り欠き 2 3 1 bとの間にはプレートが存在しない。 すなわ ち、 主板 2 3 1の翼間部には、 翼 1 3 3の根元から回転方向後方に延びる翼後方 板部 2 3 1 dだけが存在する (図 1 3 ( b ) 参照) 。 As shown in Fig. 13 (b), a notch 2 3 1b is formed in a portion of the main plate 2 3 1 located between adjacent wings 1 3 (hereinafter referred to as an inter-blade portion). ing. This notch 2 3 1b is located in the radial direction from the outer peripheral edge of the main plate 2 3 1 to the inner peripheral edge of the wing 1 3 3. In particular, it extends from the outer peripheral edge of the main plate 231 to a position slightly inward of the radial position of the inner peripheral edge of the wing 133. Also, the circumferential width of the notch 2 3 1 b is larger than the maximum circumferential width of the wing 1 33. That is, the inter-blade portion of the main plate 23 1 is cut out to be larger than the cross-sectional outer dimension of the wing 13 3. Further, the notch 2 3 1 b is cut out from the root in the rotation direction of the wing 13 3, and there is no plate between the wing 13 3 and the notch 2 3 1 b. In other words, only the wing rear plate portion 2131d extending rearward in the rotational direction from the root of the wing 133 exists in the space between the wings of the main plate 231 (see Fig. 13 (b)).
(羽根車の特徴)  (Features of the impeller)
本実施形態の羽根車 2 1 3では、 主板 2 3 1の翼間部のうち、 翼 1 3 3の回転 方向前方の部分に切り欠き 2 3 1 bを設けている。 このように翼間部を切り欠く ことにより、 羽根車 2 1 3は、 翼間部が切り欠かれていない場合に対し、 単に性 能が維持されるだけではなく、 性能が向上している。 これは従来では想像できな かったことであるが、 以下のような理由から騒音が低下して多翼送風機の性能が 向上していると考えられる。  In the impeller 2 13 of the present embodiment, the notch 2 3 1 b is provided in a portion of the inter-blade portion of the main plate 2 3 1 in the rotation direction front of the blade 1 3 3. By notching the interblade in this way, the impeller 2 13 not only maintains the performance but also improves the performance when the interblade is not cut. Although this could not be imagined in the past, it is considered that the noise has been reduced and the performance of the multi-blade fan has been improved for the following reasons.
まず、 上記第 2実施形態と同様に、 主板 2 3 1の翼間部に切り欠き 2 3 1 が 設けられているため、 翼 1 3 3によリ搔き出される直前に乱れ渦が切り欠き 2 3 1 bを通って軸 0— 0方向の外側に逃がされ、 切り欠き 2 3 1 bがない従来の羽 根車に較べて騒音が小さくなると推測される。  First, as in the second embodiment, the notch 231 is provided in the space between the wings of the main plate 231, so that the turbulent vortex is notched immediately before being released by the wing 1333. It is presumed that the noise is released to the outside in the axis 0-0 direction through 2 3 1b, and the noise is smaller than that of the conventional impeller without the notch 2 3 1b.
さらに、 本実施形態では、 羽根車 2 1 3の主板 2 3 1の翼間部が翼 1 3 3の根 元から回転方向前方において切り欠かれているため、 翼後方板部 2 3 1 dの円周 方向幅を十分に確保することができ、 翼 1 3 3の回転方向後方における気体流れ のはくり現象をより効果的に抑えることができる。 このため、 第 2実施形態のも のよリも騒音が小さくなっていると推測される。  Further, in the present embodiment, since the blade portion of the main plate 2 31 of the impeller 2 13 is cut away from the root of the blade 13 3 in the rotation direction forward, the blade rear plate portion 2 3 1 d A sufficient circumferential width can be ensured, and the gas flow separation phenomenon behind the blades 133 in the rotation direction can be more effectively suppressed. For this reason, it is presumed that the noise is lower than in the second embodiment.
[第 4実施形態]  [Fourth embodiment]
( 1 ) 遠心送風機の構成  (1) Configuration of centrifugal blower
本発明の一実施形態に係るシロッコファンは、 図 1〜図 3に示す従来のシロッ コファン 1 0の羽根車 1 3を、 図 1 4及び図 1 5に示す羽根車 1 1 1 3に置き換 えたものである。 ( 2 ) 羽根車の構成 The sirocco fan according to one embodiment of the present invention replaces the impeller 13 of the conventional sirocco fan 10 shown in FIGS. 1 to 3 with the impeller 11 13 shown in FIGS. 14 and 15. It is a thing. (2) Configuration of impeller
羽根車 1 1 1 3は、 金型によって樹脂材料から一体成形される樹脂製品であり、 図 1 5に示すように、 主板 1 1 3 1と、 側板 1 1 3 2と、 複数の翼 1 1 3 3とか ら構成されている。 主板 1 1 3 1は、 円形であり、 モータ 1 4によって回転軸 0 一 0 (図 1参照) を中心として回転させられる。 主板 1 1 3 1には中心孔 1 1 3 1 aが設けられており、 この中心孔 1 1 3 1 aにモータ 1 4の回転シャフトが装 着される。 複数の翼 1 1 3 3は、 回転軸 0— 0を中心として環状に配置され、 回 転軸 0— 0に沿って延びている。 各翼 1 1 3 3の一端は、 主板 1 1 3 1の外周部 分に固定されている。 側板 1 1 3 2は、 環状の部材であり、 主板 1 1 3 1の外径 と同じ又は若干大きい内径を有している。 この側板 1 1 3 2は、 複数の翼 1 1 3 3の他端において、 それらの翼 1 1 3 3の外周縁とつながつている。  The impeller 1 1 1 3 is a resin product integrally molded from a resin material by a mold. As shown in FIG. 15, the main plate 1 1 3 1, the side plate 1 1 3 2, and the plurality of blades 1 1 It is composed of 33. The main plate 113 is circular, and is rotated by a motor 14 about a rotation axis 110 (see FIG. 1). The main plate 1 1 3 1 is provided with a center hole 1 1 3 1 a, and the rotating shaft of the motor 14 is mounted in the center hole 1 1 3 1 a. The plurality of wings 1 1 3 3 are annularly arranged around the rotation axis 0-0, and extend along the rotation axis 0-0. One end of each wing 1 1 3 3 is fixed to the outer peripheral portion of the main plate 1 1 3 1. The side plate 113 is an annular member, and has an inner diameter that is the same as or slightly larger than the outer diameter of the main plate 113. The side plate 1 1 3 2 is connected to the outer peripheral edge of the wings 1 1 3 3 at the other end of the plurality of wings 1 1 3 3.
主板 1 1 3 1から回転軸 0— 0に沿って延びる複数の翼 1 1 3 3は、 図 1 4、 図 1 5、 図 1 7及び図 1 8に示すように途中から回転方向前方に折れ曲がり、 そ の先端 (他端) が側板 1 1 3 2に接続されている。 したがって、 翼 1 1 3 3は、 図 1 8に示すように、 主板 1 1 3 1側の本体部 1 1 3 3 aと、 側板 1 1 3 2側の 傾斜部 1 1 3 3 bとから構成されることになる。  The multiple wings 1 1 3 3 extending from the main plate 1 1 3 1 along the rotation axis 0-0 are bent forward in the rotation direction from the middle as shown in Fig. 14, Fig. 15, Fig. 17 and Fig. 18. The tip (the other end) is connected to the side plate 113. Therefore, as shown in Fig. 18, the wing 1 1 3 3 is composed of a main body 1 1 3 3 a on the main plate 1 1 3 1 side and an inclined section 1 1 3 3 b on the side plate 1 1 3 2 side. Will be done.
また、 主板 1 1 3 1は、 翼 1 1 3 3の傾斜部 1 1 3 3 bを回転軸 0— 0に沿つ て主板 1 1 3 1に投影した投影部分が切り欠かれている。 これにより、 主板 1 1 3 1には、 翼 1 1 3 3とそれに隣接する翼 1 1 3 3との間に切り欠き 1 1 3 1 b が形成されるようになる。 これらの切り欠き 1 1 3 1 bは、 図 1 6に示すように、 主板 1 1 3 1の外周縁に達する形状である。  In addition, the main plate 1 13 1 has a cut-out portion in which the inclined portion 1 1 3 3 b of the wing 1 1 1 3 3 is projected on the main plate 1 1 3 1 along the rotation axis 0-0. As a result, a cutout 1 1 3 1 b is formed on the main plate 1 1 3 1 between the wing 1 1 3 3 and the adjacent wing 1 1 3 3. These notches 1 13 1 b have a shape reaching the outer peripheral edge of the main plate 1 13 1, as shown in FIG.
なお、 切り欠き 1 1 3 1 bは、 翼 1 1 3 3の傾斜部 1 1 3 3 bが回転方向前方 側に傾斜していることから、 主板 1 1 3 1の翼1 1 3 3が付いている部分の回転 方向前方部分に配置される (図 1 6及び図 1 7参照) 。  The notch 1 1 3 1 b has the wing 1 1 3 3 of the main plate 1 1 3 1 because the slope 1 1 3 3 b of the wing 1 1 3 3 is inclined forward in the rotation direction. It is located at the front in the rotation direction of the part (see Figures 16 and 17).
( 3 ) シロッコファン及び羽根車の特徴  (3) Features of sirocco fans and impellers
①ここでは、 翼 1 1 3 3を適切な位置で折り曲げ翼 1 1 3 3に傾斜部 1 1 3 3 bを設けているため、 翼 1 1 3 3の回転方向 0— 0に沿った各位置での空気の流 出入の量の差が小さくなリ、 送風効率が向上するとともに騒音が抑えられている。 また、 翼 1 1 3 3に傾斜部 1 1 3 3 bを設けるとともに、 主板 1 1 3 1に切り 欠き 1 1 31 bを形成して傾斜部 1 1 33 bの投影部分から干渉物 (主板) を取 リ除いている。 このため、 図 1 9に示すように、 一対の型 1 060, 1 070に より、 主板 1 1 31、 側板 1 1 32及び翼 1 1 33から成る羽根車 1 1 1 3を樹 脂材料から一体成形することができる。 (1) Here, the wing 1 1 3 3 is bent at an appropriate position, and the wing 1 1 3 3 is provided with an inclined portion 1 1 3 3 b. Therefore, each position along the rotation direction 0-0 of the wing 1 1 3 3 The difference in the amount of inflow and outflow of air is small, and the ventilation efficiency is improved and noise is suppressed. Also, the wings 1 1 3 3 are provided with an inclined section 1 1 3 3 b and cut into the main plate 1 1 3 1 A notch 1 1 31b is formed to remove the interfering object (main plate) from the projection of the slope 1 1 133b. For this reason, as shown in FIG. 19, the pair of dies 1 060 and 1 070 form an impeller 1 113 composed of a main plate 1 131, side plates 1 132 and wings 1 133 from a resin material. Can be molded.
羽根車 1 1 1 3を樹脂成形するための金型は、 図 1 9に示す上型 1 060と下 型 1 070である。  The molds for resin molding the impellers 1 1 1 1 3 are an upper mold 1 060 and a lower mold 1 070 shown in FIG.
上型 1 060は、 翼 1 1 33と翼1 1 33との間に入り込む突出部 1 061を 有している。 突出部 1 061には、 翼 1 1 33の本体部 1 1 33 aの回転方向後 方の面を形作る垂直面 1 061 a、 翼 1 1 33の傾斜部 1 1 33 bの回転方向後 方の面を形作る傾斜面 1061 b、 主板 1 1 31の翼 1 1 33が付いているほう の面を形作る水平面 1061 c等が形成されている。  The upper mold 1060 has a protrusion 1 061 that enters between the wings 1 133 and 1 133. The projection 1 061 has a vertical surface 1 061 a that forms the rear surface of the main body 1 133 a of the wing 1 133 a in the rotation direction, and a rear surface in the rotation direction of the inclined portion 1 133 b of the wing 1 133 a. An inclined surface 1061 b that forms the surface, a horizontal surface 1061 c that forms the surface of the main plate 1 131 on which the wings 1 133 are attached, and the like are formed.
下型 1 070は、 成形後の切り欠き 1 1 31 bから下方へと抜ける突出部 1 0 71を有している。 また、 突出部 1 071の先端部分 1 072は、 先細り形状と なっている。 このような下型 1 070には、 主板 1 1 31の翼 1 1 33が付いて いないほうの面を形作る水平面 1 070 a、 翼 1 1 33の本体部 1 1 33 aの回 転方向前方の面を形作る垂直面 1 071 a、 翼 1 1 33の傾斜部 1 1 33 bの回 転方向前方の面を形作る傾斜面 1 072 a等が形成されている。 垂直面 1 071 aは突出部 1 071に、 傾斜面 1 072 aは突出部 1 071の先端部分 1 072 の一面である。  The lower mold 1070 has a protruding portion 1071, which extends downward from the cutout 1131b after molding. Further, a tip portion 1072 of the protruding portion 1071 has a tapered shape. Such a lower mold 1 070 has a horizontal plane 1 070a that forms the surface of the main plate 1 1 31 without the wings 1 133, and the main body 1 1 33a of the wing 1 133 A vertical surface 1 071 a forming a surface, an inclined surface 1 072 a forming a front surface in the rotation direction of the inclined portion 1 133 b of the wing 1 133 are formed. The vertical surface 1071a is a surface of the protruding portion 1071, and the inclined surface 1072a is a surface of a tip portion 1072 of the protruding portion 1071.
このような上型 1 060及び下型 1 070であれば、 翼 1 1 33の傾斜部 1 1 33 bを含む羽根車 1 1 1 3を形作リ、 その後両金型 1 060, 1 070を上下 に引き抜くことが可能である。 このように、 主板 1 1 31の切り欠き 1 1 31 b となる部分から入り込んで傾斜部 1 1 33 bの内面を形作る下型 1 070と、 そ の反対側から傾斜部 1 133 bの外面を形作る上型 1060とにより、 従来一体 成形ができなかつナこ傾斜部 1 1 33 bを有する翼 1 1 33及び羽根車 1 1 1 3が 成形できるようになつている。  In the case of such an upper mold 1060 and a lower mold 1070, the impeller 1 1 13 including the inclined portion 1 133 b of the wing 1 133 is formed, and then both the molds 1 060 and 1 070 are formed. It can be pulled up and down. In this way, the lower die 1070, which enters the notch 1 1 31b of the main plate 1 31 to form the inner surface of the inclined portion 1 133b, and the outer surface of the inclined portion 1 133b from the opposite side, With the upper mold 1060 to be formed, the wings 1 133 and the impellers 1 1 1 3 which can not be integrally formed and which have the inclined portion 1 133 b can be formed.
ところで、 ここでは翼 1 1 33の傾斜部 1 1 33 bの投影部分について主板 1 1 31を切り欠くことによって一対の型 1 060, 1070によって羽根車 1 1 1 3を一体成形可能な構造としているが、 従来においては、 主板 1 1 31を切り 欠くということは、 一方ではシロッコファンの性能を低下させることのように感 じられるため、 今までに試されていなかった。 しかし、 ここでは、 種々の観点か ら羽根車の構造を見直し、 上記のように翼 1 1 3 3の傾斜部 1 1 3 3 bの投影部 分について主板 1 1 3 1を切り欠いてもシロッコファンの性能 (効率や騒音性) が低下せず、 傾斜部 1 1 3 3 bの存在による性能向上がメリッ卜となることを認 識するに至った。 この知見を基にして本実施形態に係る羽根車 1 1 1 3が生み出 されており、 この羽根車 1 1 1 3では、 従来よりも送風効率が向上するとともに 騒音が抑えられている。 By the way, here, the main plate 1 131 is cut off at the projected portion of the inclined portion 1 133 b of the wing 1 133 so that the impeller 1 1 13 can be integrally formed by a pair of molds 1 060 and 1070. However, conventionally, the main plate 1 The lack of this has not been tried before, as it is felt on the other hand as degrading the performance of the sirocco fan. However, here, the structure of the impeller was reviewed from various viewpoints, and even if the main plate 1 13 1 1 was cut off for the projected portion of the inclined portion 1 1 3 3 b of the wing 1 1 3 3 as described above, We came to recognize that the performance (efficiency and noise) of the fan did not decrease, and that the performance improvement due to the presence of the inclined portion 113 b was an advantage. Based on this finding, the impeller 1 1 1 3 according to the present embodiment has been produced, and the impeller 1 1 1 3 has improved ventilation efficiency and reduced noise as compared with the conventional one.
②ここでは、 翼 1 1 3 3の傾斜部 1 1 3 3 bの投影部分を含む主板 1 1 3 1の 切り欠き 1 1 3 1 bが、 図 1 6に示すように、 主板 1 1 3 1の外周縁に達してい る。 したがって、 一体成形のために使用される下型 1 0 7 0は、 主板 1 1 3 1の 外周縁を覆う部分と主板 1 1 3 1の切り欠き 1 1 3 1 bから入る突出部 1 0つ 1 とが直接結ばれる構造となり、 金型としての強度が確保し易くなつている。  (2) Here, the notch 1 1 3 1 b of the main plate 1 1 3 1 including the projection of the slope 1 1 3 3 b of the wing 1 1 3 3 is changed to the main plate 1 1 3 1 as shown in Fig. 16. Reach the outer edge of Therefore, the lower mold 1 0 7 0 used for integral molding is composed of a portion that covers the outer peripheral edge of the main plate 1 1 3 1 and a notch 1 1 3 1 The structure is directly connected to 1 and the strength as a mold is easily secured.
③ここでは、 翼 1 1 3 3の傾斜部 1 1 3 3 bを回転方向前方に傾斜させ、 各翼 1 1 3 3の回転方向前方部分について主板 1 1 3 1が切り欠かれる構造としてい る (図 1 8参照) 。 このように主板 1 1 3 1を切り欠くことにより、 羽根車 1 1 1 3は、 切り欠き 1 1 3 1 bがない場合に対し、 単に性能が維持されるだけでは なく、 性能が向上する。 これは従来では想像できなかったことであるが、 主板 1 1 3 1に衝突して外周側に流れる気体に含まれる乱れ渦が切り欠き 1 1 3 1 bか ら回転軸 0— 0方向に逃げることから、 騒音が小さくなるという性能向上が生み 出されている。 これにより、 本実施形態の羽根車 1 1 1 3では、 翼 1 1 3 3の傾 斜部 1 1 3 3 bの存在による性能向上以外に、 主板 1 1 3 1に切り欠き 1 1 3 1 bを設けること自体による騒音低下のメリツトも享受することができる。  (3) Here, the inclined portion 1 1 3 3 b of the wing 1 1 3 3 is inclined forward in the rotation direction, and the main plate 1 1 3 1 is cut off in the rotation direction forward portion of each wing 1 1 3 3. (See Figure 18). By notching the main plate 1 13 1 in this way, the impeller 1 1 13 can not only maintain its performance but also improve its performance as compared with the case where the notch 1 1 3 1 b is not provided. Although this could not have been imagined in the past, the turbulent vortex contained in the gas flowing toward the outer periphery after colliding with the main plate 1 1 3 1 escapes from the notch 1 1 3 1 b in the direction of the rotation axis 0-0 This has resulted in improved performance with reduced noise. Accordingly, in the impeller 1 1 13 of the present embodiment, in addition to the performance improvement due to the presence of the inclined portion 1 1 3 3 b of the wing 1 1 3 3, notch 1 1 3 1 b The advantage of noise reduction due to the provision of this can be enjoyed.
( 4 ) 翼の変形例  (4) Modified example of wing
(A )  (A)
図 1 8に示す縦断面形状の翼 1 1 3 3に代えて、 図 2 0に示す縦断面形状の翼 1 2 3 3を用いても、 一体樹脂成形が可能で低騒音の羽根車となる。  By using the wings 1 2 3 3 shown in Fig. 20 instead of the wings 1 1 3 3 shown in Fig. 18, integral resin molding is possible, resulting in a low noise impeller. .
主板 1 1 3 1から延びる複数の翼 1 2 3 3は、 図 2 0に示すように、 全体が回 転方向前方に傾斜している。 また、 主板 1 1 31は、 翼 1 233全体を回転軸 0— 0に沿って主板 1 1 31 に投影した投影部分が切り欠かれている。 これにより、 主板 1 1 31には、 翼 1The plurality of wings 1 2 3 3 extending from the main plate 1 1 3 1 are entirely inclined forward in the rotation direction as shown in FIG. Further, the main plate 1 131 has a cutout portion in which the entire wing 1 233 is projected on the main plate 1 131 along the rotation axis 0-0. As a result, the wing 1
233とそれに隣接する翼 1 233との間に切り欠き 1 1 31 cが形成されるよ うになる。 これらの切り欠き 1 1 31 cは、 翼 1 233が回転方向前方側に傾斜 していることから、 主板 1 1 31の翼 1 233が付いている部分の回転方向前方 部分に配置される。 A notch 1 1 31 c is formed between 233 and the adjacent wing 1 233. Since the wings 1233 are inclined forward in the rotational direction, these cutouts 1 1 31 c are arranged in the rotationally forward portion of the main plate 1 131 with the wings 1 233.
(B)  (B)
図 1 8に示す縦断面形状の翼 1 1 33に代えて、 図 21に示す縦断面形状の翼 1 333を用いても、 一体樹脂成形が可能で低騒音の羽根車となる。  Even if the blade 1 333 having the vertical cross section shown in FIG. 21 is used in place of the blade 1 133 having the vertical cross section shown in FIG. 18, the resin can be integrally molded and a low noise impeller can be obtained.
主板 1 1 31から延びる複数の翼 1 333は、 図 21に示すように、 主板 1 1 31に接続される付根部分から回転方向前方に折れ曲がつており、 途中で回転軸 0— 0に対して平行となる。 そして、 側板 1 1 32近傍において、 再び回転方向 前方に折れ曲がり、 その先端が側板 1 1 32に接続されている。 したがって、 翼 1 333は、 図 21に示すように、 主板 1 1 31側の傾斜部 1 333 cと、 側板 1 1 32側の傾斜部 1 333 bと、 両傾斜部 1 333 b, 1 333 cを結ぷ本体 部 1 333 aとから構成されることになる。  As shown in FIG. 21, the plurality of wings 1 333 extending from the main plate 1 131 are bent forward in the rotation direction from the root portion connected to the main plate 1 131, and the rotation axis 0-0 Parallel. Then, in the vicinity of the side plate 1 132, it is again bent forward in the rotation direction, and the tip is connected to the side plate 1 132. Therefore, as shown in FIG. 21, the wing 1 333 has an inclined portion 1 333 c on the main plate 1 131 side, an inclined portion 1 333 b on the side plate 1 132 side, and both inclined portions 1 333 b and 1 333 c. And the main body 1333a.
また、 主板 1 1 31は、 翼 1 333の両傾斜部 1 333 b, 1 333 cを回転 軸 0— 0に沿って主板 1 1 31に投影した投影部分が切り欠かれている。 これに より、 主板 1 1 31には、 翼 1 333とそれに隣接する翼 1 333との間に切り 欠き 1 1 31 dが形成されるようになる。 これらの切り欠き 1 1 31 dは、 翼 1 In addition, the main plate 1 131 has a cut-out portion in which both inclined portions 1 333 b and 1 333 c of the wing 1 333 are projected onto the main plate 1 131 along the rotation axis 0-0. As a result, the main plate 1 131 has a notch 1 131 d formed between the wing 1 333 and the adjacent wing 1 333. These cutouts 1 1 31d the wings 1
333が回転方向前方側に傾斜していることから、 主板 1 1 31の翼1 333が 付いている部分の回転方向前方部分に配置される (図 21参照) 。 Since 333 is inclined forward in the rotation direction, it is arranged in the rotation direction forward portion of the main plate 1 131 where the wing 1 333 is attached (see FIG. 21).
ここでは、 翼 1 333に複数の傾斜部 1 333 b, 1 333 cを形成するため、 より極め細かく翼 1 333の各位置での気体の流出入の量を調整することが可能 となり、 翼 1 333の各位置での気体流出入の量の差をより小さくすることがで きるようになる。  Here, since a plurality of inclined portions 1 333b and 1 333c are formed on the wing 1 333, it is possible to more finely adjust the amount of gas flowing in and out at each position of the wing 1 333. The difference in the amount of gas inflow and outflow at each position of 333 can be made smaller.
(C)  (C)
図 1 8に示す縦断面形状の翼 1 1 33 (こ代えて、 図 22に示す縦断面形状の翼 1 433を用いることもできる。 主板 1 1 3 1から回転軸 0— Oに沿って延びる複数の翼 1 4 3 3は、 図 2 2に 示すように途中から回転方向後方に折れ曲がり、 その先端 (他端) が側板 1 1 3 2に接続されている。 したがって、 翼 1 4 3 3は、 主板 1 1 3 1側の本体部 1 4 3 3 aと、 側板 1 1 3 2側の傾、斜部 1 4 3 3 bとから構成されることになる。 また、 主板 1 1 3 1は、 翼 1 4 3 3の傾斜部 1 4 3 3 bを回転軸 0— 0に沿つ て主板 1 1 3 1に投影した投影部分が切り欠かれている。 これにより、 主板 1 1 3 1には、 翼 1 4 3 3とそれに隣接する翼 1 4 3 3との間に切り欠き 1 1 3 1 e が形成されるようになる。 これらの切り欠き 1 1 3 1 eは、 翼 1 4 3 3の傾斜部 1 4 3 3 bが回転方向後方側に傾斜していることから、 主板 1 1 3 1の翼1 4 3 3が付いている部分の回転方向後方部分に配置される。 A wing 1 133 having a vertical cross section shown in FIG. 18 (instead, a wing 1 433 having a vertical cross section shown in FIG. 22 may be used. The plurality of wings 1 4 3 3 extending from the main plate 1 1 3 1 along the rotation axis 0-O are bent backward in the rotation direction from the middle as shown in Fig. 22 and the tip (the other end) is the side plate 1 1 3 Connected to two. Therefore, the wing 1443 is composed of the main body 1443a on the main plate 113 side and the inclined and inclined portions 144b on the side plate 113 side. In addition, the main plate 1 13 1 has a cut-out portion in which the inclined portion 1 4 3 3 b of the wing 1 4 3 3 is projected on the main plate 1 1 3 1 along the rotation axis 0-0. As a result, a cutout 1 1 3 1 e is formed on the main plate 1 1 3 1 between the wing 1 4 3 3 and the adjacent wing 1 4 3 3. These notches 1 1 3 1 e have wings 1 4 3 3 of the main plate 1 1 3 1 because the slope 1 4 3 3 b of the wing 1 4 3 3 is inclined backward in the rotation direction. It is arranged at the rear part in the rotation direction of the part.
( D )  (D)
図 1 7に示す傾斜部 1 1 3 3 bを有する翼 1 1 3 3に代えて、 図 2 3に示す傾 斜部 1 5 3 3 bを有する翼 1 5 3 3を用いることもできる。  Instead of the wings 1 133 having the inclined portion 113 b shown in FIG. 17, the wings 150 3 3 having the inclined portion 135 33 b shown in FIG. 23 can be used.
主板 1 1 3 1から延びる複数の翼 1 5 3 3は、 途中から回転方向前方に折れ曲 がり、 その先端 (他端) が側板 1 1 3 2に接続されている。 したがって、 翼 1 5 3 3は、 図 2 3に示すように、 主板 1 1 3 1側の本体部 1 5 3 3 aと、 側板 1 1 3 2側の傾斜部 1 5 3 3 bとから構成されることになる。 傾斜部 1 5 3 3 bは、 回転方向前方への傾斜が内周側で大きく外周側で小さくなっている。  The plurality of wings 1 5 3 3 extending from the main plate 1 1 3 1 are bent forward in the rotation direction from the middle, and the tips (the other ends) are connected to the side plates 1 1 3 2. Therefore, as shown in Fig. 23, the wing 1 53 3 is composed of a main body 1 15 3 3a on the main plate 1 1 3 1 side and an inclined portion 1 5 3 3 b on the side plate 1 1 3 2 side. Will be done. The inclined portion 1 5 3 3 b has a large forward inclination in the rotation direction on the inner peripheral side and a smaller inclination on the outer peripheral side.
また、 主板 1 1 3 1は、 翼 1 5 3 3の傾斜部 1 5 3 3 bを回転軸 0— 0に沿つ て主板 1 1 3 1に投影した投影部分が切り欠かれている。 これにより、 主板 1 1 3 1には、 翼 1 5 3 3とそれに隣接する翼 1 5 3 3との間に切り欠き 1 1 3 1 f が形成されるようになる。 これらの切り欠き 1 1 3 1 f は、 主板 1 1 3 1の外周 縁に達しているが、 外方に抜ける部分の幅寸法は小さい。  In addition, the main plate 1 13 1 has a cut-out portion in which the inclined portion 1 5 3 3 b of the wing 1 5 3 3 is projected on the main plate 1 1 3 1 along the rotation axis 0-0. As a result, a cutout 1 1 3 1 f is formed on the main plate 1 1 3 1 between the wing 1 5 3 3 and the adjacent wing 1 5 3 3. These notches 1 1 3 1 f reach the outer peripheral edge of the main plate 1 1 3 1, but the width dimension of the part that goes outward is small.
この切り欠き 1 1 3 1 f の外方に抜ける部分の幅寸法が小さければ羽根車を一 体樹脂成形するための金型の強度の確保が難しくなるため、 これを回避するよう に、 切り欠き 1 1 3 1 f を拡充して、 図 2 4に示すような切り欠き 1 1 3 1 gを 主板 1 1 3 1に形成するようにしてもよい。 切り欠き 1 1 3 1 gは、 翼 1 5 3 3 の傾斜部 1 5 3 3 bを回転軸 0— 0に沿って主板 1 1 3 1に投影した投影部分を 含み、 内周端の幅寸法を保ったまま外周縁に達するような形状である。 この切り 欠き 1 1 3 1 gが形成されていれば、 切り欠き 1 1 3 1 gに入り込む金型の一部 分が主板 1 1 3 1の周囲に位置する金型の本体と強固につながることになリ、 金 型の強度の確保が容易となる。 If the width of the part that goes outside of this notch 1 1 3 1 f is small, it is difficult to secure the strength of the mold for molding the impeller integrally with the resin, so the notch is used to avoid this. 1 13 1 f may be expanded to form notches 1 13 1 g as shown in FIG. 24 in the main plate 1 13 1. The notch 1 1 3 1 g includes the projected portion of the wing 1 5 3 3 on the main plate 1 1 3 1 along the axis of rotation 0-0 along the inclined portion 1 5 3 3 b of the wing 15 3 3 While reaching the outer peripheral edge while maintaining This cut If the notch 1 1 3 1 g is formed, a part of the mold that enters the notch 1 1 3 1 g will be firmly connected to the mold body located around the main plate 1 1 3 1. (4) It is easy to secure the strength of the mold.
( E)  (E)
図 1 7に示す傾斜部 1 1 3 3 bを有する翼 1 1 3 3に代えて、 図 2 5に示す傾 斜部 1 6 3 3 bを有する翼 1 6 3 3を用いることもできる。  Instead of the wing 113 having the inclined portion 11333b shown in FIG. 17, a wing 163 having the inclined portion 16333b shown in FIG. 25 can be used.
主板 1 1 3 1から延びる複数の翼 1 6 3 3は、 途中から回転方向前方に折れ曲 がり、 その先端 (他端) が側板 1 1 3 2に接続されている。 したがって、 翼 1 6 3 3は、 図 2 5に示すように、 主板 1 1 3 1側の本体部 1 6 3 3 aと、 側板 1 1 3 2側の傾斜部 1 6 3 3 bとから構成されることになる。 傾斜部 1 6 3 3 bは、 回転方向前方への傾、斜が内周側で小さく外周側で大きくなつている。  The plurality of wings 1633 extending from the main plate 113 are bent forward in the rotational direction from the middle, and the ends (the other ends) are connected to the side plates 113. Therefore, the wing 1633, as shown in Fig. 25, is composed of the main body 1163a on the main plate 1131 side and the inclined portion 16333b on the side plate 1132 side. Will be done. The inclined portion 1 6 3 3 b has a smaller inclination on the inner peripheral side and a larger inclination on the outer peripheral side in the rotation direction.
また、 主板 1 1 3 1は、 翼 1 6 3 3の傾斜部 1 6 3 3 bを回転軸 0— 0に沿つ て主板 1 1 3 "Iに投影した投影部分が切り欠かれている。 これにより、 主板 1 1 3 1には、 翼 1 6 3 3とそれに隣接する翼 1 6 3 3との間に切り欠き 1 1 3 1 h が形成されるようになる。  In addition, the main plate 1 13 1 is notched at a projected portion where the inclined portion 16 3 3 b of the wing 16 3 3 is projected on the main plate 1 13 ″ I along the rotation axis 0-0. As a result, a cutout 1 1 3 1 h is formed on the main plate 1 1 3 1 between the wing 1 6 3 3 and the adjacent wing 1 6 3 3.
[第 5実施形態]  [Fifth Embodiment]
上記第 4実施形態では、 遠心送風機の 1つであるシロッコファンに本発明を適 用しているが、 他の遠心送風機、 例えばターボファンに対しても本発明を適用す ることが可能である。 この場合には、 全体が傾斜しているターボファンの翼を回 転軸に沿って主板に投影した投影部分を切り欠き、 主板及び複数の翼を上下一対 の金型のみによって一体樹脂成形できるように構成すればよい。 なお、 シロッコ ファンの側板に相当するシュラウドは、 一体樹脂成形した主板及び複数の翼に対 して装着することになる。  In the fourth embodiment, the present invention is applied to a sirocco fan, which is one of centrifugal fans, but the present invention can be applied to other centrifugal fans, for example, a turbo fan. . In this case, the projected portion of the turbofan blade, which is entirely inclined, projected onto the main plate along the rotation axis is cut out, so that the main plate and the multiple blades can be integrally molded with only a pair of upper and lower molds. May be configured. The shroud, which corresponds to the side plate of the sirocco fan, will be installed on the main plate and the multiple wings, which are molded integrally.
このように、 従来各翼に対しスライドを使った成形を行っているターボファン に本発明を適用すれば、 上型及び下型だけで主板及び翼の成形が可能となるため 、 金型費用のコストダウンや成形時間の短縮が図られ、 低コストのターボファン を提供することができるようになる。  As described above, if the present invention is applied to a turbofan in which each blade is conventionally formed using a slide, the main plate and the blade can be formed only by the upper die and the lower die. The cost and molding time can be reduced, and a low-cost turbofan can be provided.
[他の実施形態]  [Other embodiments]
(A) 上記各実施形態の羽根車では、 主板の翼間部の一部を切り欠いているが、 強度 的な問題がなく多少の性能低下を許容する場合には、 翼間部の一部ではなく翼間 部すベてを切り欠いてスペース効率を最大限に向上させるという選択をすること も可能である。 (A) In the impeller of each of the above embodiments, a part of the inter-blade portion of the main plate is cut out. However, if there is no problem in strength and a slight reduction in performance is allowed, the blade is not a part of the inter-blade portion. It is possible to choose to cut out all the parts to maximize space efficiency.
( B)  (B)
前記第 1〜第 3実施形態に記載の発明は、 一体成形される樹脂製の羽根車に限 らず、 板金製の羽根車に対しても適用が可能である。  The inventions described in the first to third embodiments can be applied not only to a resin-made impeller integrally formed, but also to a sheet-metal-made impeller.
産業上の利用可能性 Industrial applicability
本発明を利用すれば、 多翼送風機の羽根車において、 翼によって気体流れを搔 き出す際に発生する騒音を小さくできる。  By using the present invention, in an impeller of a multi-blade blower, noise generated when a gas flow is emitted by a blade can be reduced.

Claims

請 求 の 範 囲 The scope of the claims
1. 回転軸 (0— 0) を中心として回転する主板 (61、 231、 1 131) と 前記回転軸 (0— 0) を中心として環状に配置され、 それぞれ一端が前記主板 (61、 231、 1 131 ) に固定されている複数の翼 (33、 133、 1 13 3〜1333、 1533、 1633) と、 1. A main plate (61, 231, 1131) rotating about a rotation axis (0-0) and an annular arrangement around the rotation axis (0-0), and one end of each of the main plates (61, 231, 1 131) fixed to the wings (33, 133, 1 133 3-1333, 1533, 1633) and
前記複数の翼 (33、 1 33、 1 133〜 1333、 1 533、 1633) の 他端を結ぶ環状の側板 (62、 132、 1 132) と、  An annular side plate (62, 132, 1132) connecting the other ends of the plurality of wings (33, 133, 1133 to 1333, 1533, 1633);
を備え、 With
前記主板 (61、 231、 1 131) の前記複数の翼 (33、 133、 1 13 3〜 1333、 1533、 1633 ) の間に位置する翼間部は、 少なくとも前記 翼 (33、 133、 1 133〜 1333、 1533、 1633) の回転方向前方 が切り欠かれている、  The inter-blade portion of the main plate (61, 231, 1131) located between the wings (33, 133, 1133 to 1333, 1533, 1633) is at least the wing (33, 133, 1133). ~ 1333, 1533, 1633) are cut off in the rotation direction,
多翼送風機の羽根車 (43、 213、 11 13) 。 Impellers of multi-blade blowers (43, 213, 11 13).
2. 前記側板 (62、 132、 1132) は、 前記主板 (61、 231、 1 13 1 ) の外径以上の内径を有しており、  2. The side plate (62, 132, 1132) has an inner diameter equal to or larger than the outer diameter of the main plate (61, 231, 1131);
前記主板 (61、 231、 1 131) の前記複数の翼 (33、 133、 1 13 3〜1333、 1 533、 1633 ) の間に位置する翼間部は、 前記翼 (33、 133、 1 133〜 1333、 1533、 1633 ) の外形寸法よりも大きく切 リ欠かれている、  The wing portion (33, 133, 1133) of the main plate (61, 231, 1131) located between the plurality of wings (33, 133, 1133 to 1333, 1533, 1633) is provided. ~ 1333, 1533, 1633)
請求項 1に記載の多翼送風機の羽根車 (43、 213、 1 1 13) 。 The impeller (43, 213, 1113) of the multi-blade blower according to claim 1.
3. 前記翼間部は、 円周方向に部分的に切り欠かれている、 請求項 1又は 2に記 載の多翼送風機の羽根車 (43、 213、 1 113) 。  3. The impeller (43, 213, 1113) of the multi-blade blower according to claim 1 or 2, wherein the inter-blade portion is partially notched in a circumferential direction.
4. 前記翼間部は、 前記翼 (33、 133、 1 133〜1333、 1 533、 1 633) の外周側縁部から内周側縁部まで切り欠かれている、 請求項 1〜3のい ずれかに記載の多翼送風機の羽根車 (43、 213、 1 1 13) 。 4. The said wing | blade part is notched from the outer periphery side edge of the said wing (33, 133, 1133-1333, 1533, 1633) from the inner periphery side edge, The 1-3 of Claims 1-3. The impeller of a multi-blade blower as described in any of them (43, 213, 113).
5■ 前記複数の翼 (1 133〜"! 333、 1533、 1633) は、 それぞれ回 転方向前方側に傾斜する傾斜部 (1 133b〜 1333b、 1333c、 1 53 3 b、 1633 b) を有しており、 5 ■ Each of the wings (1133-"! 333, 1533, 1633) has an inclined portion (1133b-1333b, 1333c, 153) that is inclined forward in the rotation direction. 3 b, 1633 b)
前記翼間部は、 少なくとも前記各翼 (1 1 33〜1 333、 1 533、 1 63 3 ) の傾斜部 (1 1 33 b〜 1 333 b、 1 333 c、 1 533 b、 1 633 b ) の投影部分が切り欠かれている、  The inter-blade portion is at least an inclined portion (1 133 b to 1 333 b, 1 333 c, 1 533 b, 1 633 b) of each of the wings (1 133 to 1 333, 1 533, 163 3). The projection of is cut off,
請求項 1〜4のいずれかに記載の多翼送風機の羽根車 (1 1 1 3) 。 The impeller of a multi-blade blower according to any one of claims 1 to 4.
6. 前記複数の翼 (1 233) は全体が傾斜している、 請求項 5に記載の多翼送 風機の羽根車 (1 1 1 3) 。  6. The impeller (111) of a multi-blade fan according to claim 5, wherein the plurality of blades (1233) are entirely inclined.
7. 請求項 1〜6のいずれかに記載の羽根車 (43、 21 3、 1 1 1 3) と、 前記主板 (61、 231、 1 131 ) を回転させる駆動手段 (14) と、 前記側板 (62、 1 32、 1 1 32) の内周側の開口部に対向する吸込口 (1 7. The impeller (43, 213, 1113) according to any one of claims 1 to 6, driving means (14) for rotating the main plate (61, 231, 1131), and the side plate (62, 1 32, 1 1 32) Suction port (1
1 b) と、 前記羽根車 (43、 21 3、 1 1 1 3) の外周側に設けられ前記回転 軸 (0— 0) に略直交する方向に気体を送出する吹出口 (1 1 a) とを有し、 前 記羽根車 (43、 21 3、 1 1 13) を覆うケーシング (1 1 ) と、 1b) and an outlet (11a) which is provided on the outer peripheral side of the impeller (43, 213, 1113) and sends out gas in a direction substantially perpendicular to the rotating shaft (0-0). And a casing (11) covering the impeller (43, 213, 1113).
を備えた多翼送風機。 Multi-blade blower with.
PCT/JP2002/005883 2001-06-28 2002-06-12 Impeller for multiblade blower, and multiblade blower having the same WO2003002874A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE60229060T DE60229060D1 (en) 2001-06-28 2002-06-12 WHEEL FOR MULTIPLOWER FAN AND THIS EXPOSED MULTIPLE FAN
EP02733494A EP1411247B1 (en) 2001-06-28 2002-06-12 Impeller for multiblade blower and multiblade blower having the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001-196179 2001-06-28
JP2001-196180 2001-06-28
JP2001196180A JP4774637B2 (en) 2001-06-28 2001-06-28 Impeller of multi-blade fan and multi-blade fan equipped with the impeller
JP2001196179A JP4736253B2 (en) 2001-06-28 2001-06-28 Impeller of multi-blade fan and multi-blade fan equipped with the impeller
JP2001-220008 2001-07-19
JP2001220008A JP4945859B2 (en) 2001-07-19 2001-07-19 Centrifugal blower impeller and centrifugal blower provided with the impeller

Publications (1)

Publication Number Publication Date
WO2003002874A1 true WO2003002874A1 (en) 2003-01-09

Family

ID=27347039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005883 WO2003002874A1 (en) 2001-06-28 2002-06-12 Impeller for multiblade blower, and multiblade blower having the same

Country Status (6)

Country Link
EP (1) EP1411247B1 (en)
CN (2) CN1212478C (en)
AT (1) ATE409287T1 (en)
DE (1) DE60229060D1 (en)
ES (1) ES2312576T3 (en)
WO (1) WO2003002874A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3698150B2 (en) 2003-05-09 2005-09-21 ダイキン工業株式会社 Centrifugal blower
KR20060027916A (en) * 2004-09-24 2006-03-29 삼성전자주식회사 Sirocco fan and an air conditioner having the same sirocco fan
US7311494B2 (en) * 2005-09-08 2007-12-25 Delphi Technologies, Inc. Fan and scroll design for high efficiency and low noise
JP4779627B2 (en) 2005-12-14 2011-09-28 パナソニック株式会社 Multi-blade blower
WO2008034049A1 (en) * 2006-09-15 2008-03-20 The Dial Corporation Centrifugal fan for a compact air purifier
JP5717046B2 (en) * 2010-11-12 2015-05-13 日本電産株式会社 Blower fan
KR102289384B1 (en) * 2014-12-18 2021-08-13 삼성전자주식회사 Centrifugal fan assembly
KR20160137117A (en) 2015-05-22 2016-11-30 삼성전자주식회사 Turbo Fan and air conditioner having the same
CN105252058A (en) * 2015-11-20 2016-01-20 湖北双剑鼓风机股份有限公司 Five-shaft milling processing method of turbine impeller

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239593U (en) * 1988-09-06 1990-03-16
JPH0239595U (en) * 1988-09-06 1990-03-16
JPH0763195A (en) * 1993-08-25 1995-03-07 Matsushita Electric Ind Co Ltd Impeller for motor-driven blower

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR755M (en) * 1960-11-14 1961-08-21
FR1299948A (en) * 1961-09-08 1962-07-27 mounted component of a fluid-flowing machine rotor and rotor formed with elements in accordance with the above, as well as a machine or apparatus provided with said rotor
DE4204531A1 (en) * 1992-02-15 1993-08-19 Pvs Kunststofftechnik Gmbh & C Air ventilator, esp. radial type - has vanes connected to hub fitting central shaft by elastic mountings
GB2296943B (en) * 1994-12-21 1998-08-26 Valeo Climate Control Ltd Radial flow fan wheel
DE69724868T2 (en) * 1996-05-17 2004-05-06 Calsonic Kansei Corp. Multi-blade rotor for centrifugal fans
US5927947A (en) * 1997-12-08 1999-07-27 Ford Motor Company Dynamically balanced centrifugal fan
US6158954A (en) * 1998-03-30 2000-12-12 Sanyo Electric Co., Ltd. Cross-flow fan and an air-conditioner using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0239593U (en) * 1988-09-06 1990-03-16
JPH0239595U (en) * 1988-09-06 1990-03-16
JPH0763195A (en) * 1993-08-25 1995-03-07 Matsushita Electric Ind Co Ltd Impeller for motor-driven blower

Also Published As

Publication number Publication date
EP1411247A1 (en) 2004-04-21
DE60229060D1 (en) 2008-11-06
EP1411247B1 (en) 2008-09-24
CN1212478C (en) 2005-07-27
ES2312576T3 (en) 2009-03-01
ATE409287T1 (en) 2008-10-15
CN2572074Y (en) 2003-09-10
EP1411247A4 (en) 2004-08-11
CN1395046A (en) 2003-02-05

Similar Documents

Publication Publication Date Title
JP5608062B2 (en) Centrifugal turbomachine
EP1953391B1 (en) Multi-vane centrifugal blower
JP3698150B2 (en) Centrifugal blower
JP3879764B2 (en) Centrifugal blower
JP5832804B2 (en) Centrifugal fan
JP5728209B2 (en) Centrifugal fan
WO2012056990A1 (en) Multi-blade centrifugal fan and air conditioner using same
KR20130143094A (en) Fan diffuser having a circular inlet and a rotationally asymmetrical outlet
WO2004097225A1 (en) Multi-vane centrifugal blower
CN209743192U (en) Diagonal flow fan
WO2006028057A1 (en) Impeller of multiblade blower and multiblade blower having the same
JP2011137463A (en) System and apparatus relating to compressor stator blade and diffuser of turbine engine
CN112424480A (en) Fan and deflector plate for a fan
WO2008075467A1 (en) Cascade of axial compressor
JP2006194245A (en) Centrifugal blower and air conditioner with centrifugal blower
WO2003002874A1 (en) Impeller for multiblade blower, and multiblade blower having the same
JP2005290987A (en) Impeller and guide wheel for fluid machines, especially compressor and ventilator
JP2004506141A (en) Centrifugal fan
JP2001032794A (en) Centrifugal fan
CN116348680A (en) Multi-wing centrifugal blower
JP5675298B2 (en) Multiblade centrifugal fan and air conditioner using the same
WO2003002873A1 (en) Impeller of centrifugal blower, and centrifugal blower having the impeller
JP4638026B2 (en) Centrifugal blower and vehicle air conditioner equipped with the same
JP5114845B2 (en) Blower impeller
JP2007092671A (en) Blower

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002733494

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002733494

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004110616

Country of ref document: RU

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 2002733494

Country of ref document: EP