WO2003002655A1 - Olefin resin composition for powder molding and process for producing the same - Google Patents

Olefin resin composition for powder molding and process for producing the same Download PDF

Info

Publication number
WO2003002655A1
WO2003002655A1 PCT/JP2002/006602 JP0206602W WO03002655A1 WO 2003002655 A1 WO2003002655 A1 WO 2003002655A1 JP 0206602 W JP0206602 W JP 0206602W WO 03002655 A1 WO03002655 A1 WO 03002655A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
resin composition
parts
vinyl compound
aromatic vinyl
Prior art date
Application number
PCT/JP2002/006602
Other languages
French (fr)
Japanese (ja)
Inventor
Seiki Yada
Shiniti Yoshikawa
Koichi Yanai
Manabu Ogiwara
Satoshi Iwabuchi
Toshiya Kobayashi
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001198109A external-priority patent/JP2003011121A/en
Priority claimed from JP2001366915A external-priority patent/JP3994725B2/en
Priority claimed from JP2001399439A external-priority patent/JP3961284B2/en
Priority claimed from JP2001399440A external-priority patent/JP3961285B2/en
Priority claimed from JP2001399125A external-priority patent/JP3989726B2/en
Priority claimed from JP2002024430A external-priority patent/JP3998989B2/en
Priority claimed from JP2002091952A external-priority patent/JP3994776B2/en
Application filed by Zeon Corporation filed Critical Zeon Corporation
Publication of WO2003002655A1 publication Critical patent/WO2003002655A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to a powdery resin-based resin composition and a method for producing the same. More specifically, it contains a hydride of a polypropylene resin, a thermoplastic resin elastomer, and a hydride of an aromatic vinyl compound and a conjugated gen copolymer, and has excellent heat resistance, bending resistance and abrasion resistance.
  • the present invention relates to a powdery molded refin-based resin composition which gives a molded article and is easy to prepare, and a method for producing the composition. Background art
  • Soft vinyl chloride resin has often been used as a skin material for interior parts such as instrument panels, console boxes, door trims, and glove boxes for automobiles. Refined resin materials that do not generate hydrogen chloride and that can be easily recycled are being used. Therefore, many refining-based resin compositions have been proposed as powder molding materials (for example, JP-A-5-11883, JP-A-5-5500, JP-A-6-17).
  • molded articles obtained from these proposed powdery refin-based resin compositions generally have poor light resistance, and are not as flexible as conventional soft vinyl chloride resins, and a softener is added. Then, there was a problem that bleeding occurred on the surface of the molded product and it became sticky.
  • Polystyrene block, B: polybutadiene block) hydride (SEBS) was found to be suitable as a powder molding material for the skin of automobile interior materials (Japanese Patent Laid-Open No. 5-27979). No. 484).
  • molded articles using the above hydride (SEBS) have sufficient heat resistance.
  • an object of the present invention is to provide a molded product that is easy to produce, has excellent creasing resistance during demolding in powder molding, and provides a molded product having improved heat resistance.
  • An object of the present invention is to provide a refining resin composition.
  • ( ⁇ ) (a) 20 to 80 parts by weight of a polypropylene resin, and (b) 80 to 20 parts by weight of a refining thermoplastic elastomer (where (a) and (b) Is a total of 100 parts by weight.) 20 to 80 parts by weight of a polypropylene resin composition comprising: and (2) a hydride of an aromatic vinyl compound-conjugated gen copolymer of 80 to 2 parts by weight.
  • a refin-based resin composition for powder molding comprising 0 parts by weight (the total of (1) and (2) is 100 parts by weight).
  • FIG. 1 is a flow chart showing a process for producing a powdery resin-based resin composition of the present invention.
  • the powdery resin composition for powder molding of the present invention comprises a polypropylene resin composition (1) comprising a polypropylene resin (a) and a polypropylene resin (b) and an aromatic vinyl compound-conjugated gen. It contains a polymer hydride (2).
  • the polypropylene resin used in the present invention is a propylene homopolymer (crystalline) or a copolymer of 50% by weight or more of propylene and another ⁇ -lefin having 2 to 12 carbon atoms.
  • copolymers of propylene with other a-olefins having 2 to 12 carbon atoms include random copolymers, alternating copolymers, and linear and radial block copolymers.
  • These polypropylene resins are usually produced by polymerization using a Cidara-Natta catalyst or the like. Examples of the above ⁇ -refined copolymerized with propylene include ethylene, butene-1,4-methyl-pentene-1, and octene-1.
  • the melt flow rate (hereinafter referred to as MFR) of the polypropylene resin is not particularly limited, but the MFR according to JISK7210 (load 2.16 k, measurement temperature 230 ° C) is 5 g / 10 min. Those having an MFR of 20 gZl 0 min or more are more preferable. If the MFR of the polypropylene resin is too small, the meltability is poor and pinholes are likely to occur in the molded product.
  • the olefin-based thermoplastic elastomer used in the present invention is usually called TPO or TPE.
  • TPO olefin-based thermoplastic elastomer
  • EPR ethylene-propylene copolymer rubber
  • EPDM ethylene-propylene-non-conjugated gen monomer
  • PP or PP / PE polyethylene
  • the ratio of the ethylene / propylene copolymer block component (EPR component) to the polypropylene block component (PP component) is 1 to 40%. %, Preferably 5 to 20% by weight, and the EPR component is 60 to 99% by weight, preferably 80 to 95% by weight.
  • the EPR component is composed of a random copolymer of ethylene and propylene, and usually has a proportion of monomer units based on ethylene of 10 to 40 mol%, preferably 15 to 35 mol%.
  • the molecular weight of the propylene-based block copolymer is 13 to 35 ° C and the intrinsic viscosity measured in a tetralin solvent is 6 to 30 dI 7 g, preferably 10 to 20 dI Zg. Equivalent to. If the intrinsic viscosity of the propylene-based block copolymer is less than 6 dl / g, the elastic recovery property is impaired, and if it exceeds 30 dl / g, the melt fluidity decreases and the molding of the resin composition becomes extremely difficult. .
  • Examples of the hydrogenated aromatic vinyl compound-conjugated gen copolymer used in the present invention include at least one aromatic vinyl compound such as styrene, a-methylstyrene, and vinyltoluene, butadiene, isoprene, 1,3- Examples thereof include those obtained by hydrogenating a conjugated gen unit of a random copolymer or a block copolymer obtained by random or block copolymerization of at least one kind of a syngene such as pen-yen. Especially preferred are hydrogenated block copolymers.
  • the random copolymer is styrene-butadiene copolymer rubber (SBR), and the block copolymer is an ABA-type linear and radial block copolymer (A is a polystyrene block, B is a polygenoblock or polyisoprene copolymer). Block) is preferred.
  • the above hydrogenated block copolymer is SEBS, SEPS (S: polystyrene, E: polyethylene, B: poly). Ributylene, P: polypropylene) is usually called.
  • SEPS polystyrene
  • E polyethylene
  • B poly
  • Ributylene, P polypropylene
  • These hydrides are usually those obtained by hydrogenating at least 80 mol%, preferably at least 90 mol%, more preferably at least 95 mol% of the unsaturated double bonds in the polymer chain. .
  • the content of the aromatic vinyl compound unit in the hydride of the aromatic vinyl compound-conjugated gen copolymer (hereinafter, sometimes referred to as the amount of bound aromatic vinyl) is usually from 5 to 50% by weight, preferably from 5 to 50% by weight. It is 10 to 30% by weight. If the amount of bound aromatic vinyl is too small, blocking tends to occur during powder molding. Conversely, if it is too large, the hardness of the molded article increases.
  • a hydride of an aromatic vinyl compound-conjugated gen copolymer one having a relatively high content of an aromatic vinyl compound unit and one having a relatively low content of an aromatic vinyl compound unit can be used in combination.
  • a combination not only good creasing resistance and heat resistance at the time of demolding as described above, but also powder characteristics such as anti-blocking property at the time of storage are improved, and Thus, a refining-based resin composition for powder molding capable of producing a molded article having wear resistance is obtained.
  • the content of the aromatic vinyl compound unit is 20 to 80% by weight, It is preferred to mix 25 to 70% by weight with 5% to less than 20% by weight, preferably 10 to 18% by weight.
  • the mixing ratio of the two is usually 10 to 90% by weight, preferably 20 to 80% by weight, more preferably 40 to 100% by weight (content of aromatic vinyl compound unit: 20 to 80% by weight).
  • the latter content of the aromatic vinyl compound unit: 5% by weight or more and less than 20% by weight
  • the polypropylene resin composition (1) in the powder-refined refin-based resin composition of the present invention comprises: (a) 20 to 80 parts by weight, preferably 30 to 70 parts by weight of a polypropylene resin, and (b) ) Refined thermoplastic elastomer 80 to 20 parts by weight, preferred Or 70 to 30 parts by weight (however, the total of (a) and (b) is 100 parts by weight). If the amount of the polypropylene resin is too small, the heat resistance is reduced, and if the amount is too large, folding wrinkles are likely to occur when the mold is removed.
  • (1) is 20 to 80 parts by weight, preferably 30 to 70 parts by weight.
  • (2) is 80 to 20 parts by weight, preferably 70 to 30 parts by weight, more preferably 60 to 40 parts by weight (provided that (1) and (The total of (2) is 100 parts by weight.) If the amount of the polypropylene resin composition (1) is too small, the meltability decreases. On the other hand, if the amount is too large, wrinkling tends to occur, and the molded article has poor scratch resistance.
  • the powdery resin composition for powder molding according to the present invention is a polypropylene resin composition comprising a polypropylene resin (a) and a polypropylene resin (b).
  • Typical additional components (3) can be contained in addition to (1) and a hydride of an aromatic vinyl compound-conjugated gen copolymer (2).
  • Typical additional components (3) are (3-1) fatty acid amide, (3-2) average number of hydroxyl groups per molecule is 1 to 8, and number average molecular weight is 500 to 20.
  • the creasing resistance during demolding in powder molding and the heat resistance of the molded article are improved.
  • the wear resistance of the molded body at room temperature and high temperature is improved.
  • the fatty acid amide used is not particularly limited, but usually includes primary fatty acid amides and bis fatty acid amides, which are derivatives of higher fatty acids having 7 or more carbon atoms.
  • Higher fatty acids include saturated and unsaturated fatty acids. Examples of the saturated higher fatty acids include caprylic acid, lauric acid, tridecylic acid, penicillic acid, palmitic acid, stearic acid, araquinic acid, and lignoceric acid. Examples of the unsaturated fatty acids include pendecylic acid, oleic acid, elaidic acid, sorbic acid, and linoleic acid.
  • fatty acid amide examples include stearamide, peroxy amide, palmito amide, coconut fatty acid amide, methylene bis-stearamide, ethylene bis-stearamide, and ethylenediamine of xistearic acid. These can be used alone or in combination of two or more. Among these fatty acid amides, unsaturated fatty acid amides are preferred. Taylor amide is particularly preferred.
  • the amount of the fatty acid amide is 1 to 20 parts by weight based on 100 parts by weight of the total of the polypropylene resin composition (1) and the hydride (2) of the aromatic vinyl compound-conjugated gen copolymer. preferable. If the amount of the fatty acid amide is too small, the wear resistance of the molded article at high temperatures (about 60 ° C) is not improved, and if it is excessively large, the molded article is liable to be spread on the surface of the molded article. However, for example, when used for interior parts such as those for instrument panels for automobiles, the adhesiveness with polyurethane foam may be reduced.
  • the crease resistance at the time of demolding during powder molding and the heat resistance of the molded body are improved.
  • the abrasion resistance is improved, and the adhesion of the molded body to the polyurethane foam is improved.
  • the hydroxyl group-containing hydrocarbon polymer used herein has an average number of hydroxyl groups per molecule (hereinafter referred to as “number of hydroxyl groups”) of 1 to 8 in the molecule, and has a number average molecular weight of 50.
  • the method for producing such a hydroxyl group-containing hydrocarbon polymer is not particularly limited.For example, various vinyl monomers and gen monomers are polymerized by polymerization methods such as radical polymerization, anion polymerization, and force polymerization.
  • a method in which a terminal is hydroxylated and hydrogenation is carried out by a known method as necessary.
  • Other methods include oxidative decomposition of an isobutylene-monomer copolymer, or a non-conjugated gen (or conjugated gen) copolymer, such as ethylene or propylene, and then reducing it.
  • a hydrogenated product of a hydroxyl group-containing gen-based polymer is preferable.
  • a hydrogenated double bond of a polybutadiene polyol having a hydroxyl group at both terminals is preferable.
  • the hydroxyl group-containing gen-based polymer can be obtained from a conjugated gen or a conjugated gen and a vinyl monomer by a known method, for example, radical polymerization, anion polymerization or the like.
  • radical polymerization a conjugated diene polymer or copolymer having a hydroxyl group at the terminal of the produced polymer can be directly obtained by polymerizing hydrogen peroxide as a polymerization initiator.
  • an anion polymerization catalyst is used to polymerize, for example, a living polymer to which an alkali metal is bonded, and then a lipopolymer is reacted with a monoepoxy compound, formaldehyde, etc., and then hydrolyzed.
  • a polymer having a hydroxyl group examples include 1,3-butadiene, isoprene, and chloroprene. Among them, 1,3-butadiene is preferable.
  • copolymerization component examples include styrene, acrylonitrile, methyl acrylate, methyl methacrylate, and vinyl acetate such as vinyl acetate.
  • the use amount of the copolymer component is preferably 30% by weight or less of the total amount of the monomers.
  • the hydride of the hydroxyl group-containing gen-based polymer can be obtained by a conventional method under hydrogen pressure using a hydrogenation catalyst such as nickel, cobalt, platinum, palladium, ruthenium, and rhodium alone or using a carrier supported on a carrier. It is produced by hydrogenation in At this time, in order to obtain sufficient adhesion and weather resistance between the molded article and the polyurethane foam, the double bond contained in the hydroxyl group-containing gen-based polymer has an iodine value of 100 or less, preferably 500 or less.
  • the hydrogenation is carried out below, more preferably to 20 or less.
  • the above hydroxyl group-containing hydrocarbon polymer is commercially available (Polytail (low molecular weight polyolefin polyol) manufactured by Mitsubishi Chemical Corporation) and is available.
  • the amount of the above-mentioned hydroxyl group-containing hydrocarbon-based polymer is 1 to 100 parts by weight based on a total of 100 parts by weight of the polypropylene resin composition (1) and the hydride of the aromatic vinyl compound-conjugated gen copolymer (2). 20 parts by weight is preferred. The content is more preferably 2 to 10 parts by weight. If the amount is too small, the adhesiveness between the molded article and the polyurethane foam is insufficient, while if it is too large, the molded article surface is pre-deposited depending on the molecular weight of the hydroxyl-containing hydrocarbon polymer. There is fear.
  • the powdery molded refin-based resin composition of the present invention contains, in order to enhance the adhesiveness between the molded article and the polyurethane foam, It is preferable to add a catalyst that promotes the reaction with the isocyanate compound in the foam-forming raw material liquid.
  • a catalyst that promotes the reaction with the isocyanate compound in the foam-forming raw material liquid.
  • organic tin compounds such as dibutyltin dilaurate and dibutyltin distearate
  • tertiary amines such as tetraalkylethylenediamine and N, N'-dialkylbenzylamine.
  • the modified refin-based resin composition for powder molding of the present invention contains a modified silicone oil in addition to the above-mentioned hydroxyl-containing hydrocarbon polymer (3-2).
  • the modified silicone oil used here is a silicone oil in which a functional group has been introduced into polysiloxane, and is roughly classified into four types: those in which the functional group has been introduced into the side chain, both ends, both the side chain and both ends, and one end. Is done. Both terminal introduction type is preferable.
  • Specific examples of the functional group include a carboxyl group, a hydroxyl group, a mercapto group, an amino group, an epoxy group, and an unsaturated bond (such as an acryloyloxy group, a methacryloyloxy group, and a vinyl group).
  • Preferred functional groups are those having active hydrogen reactive with the isocyanate as the raw material of the polyurethane foam, and include a hydroxyl group, an acryloyloxy group and a methacryloyloxy group.
  • the molecular weight of the oil is not particularly limited. It has a molecular weight of about 1,000 to about 30,000 °.
  • Various modified silicone oils are commercially available. The chemical structures of typical modified silicone oils are shown by general formulas (1) to (4), but are not limited thereto. And l. CH3 CH3 CH3
  • the amount of modified silicone oil such as C 3 H 6 SH is a polypropylene resin composition (1) and the aromatic vinyl-compound - conjugated diene copolymer hydrides (2) and the hydroxyl group-containing hydrocarbon
  • the amount is usually 10 parts by weight or less, preferably 0.5 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, based on 100 parts by weight in total with the polymer (3). If the proportion of the modified silicone oil is too small, the effect of improving the abrasion resistance of the molded product is small. Conversely, if the amount is too large, it may bleed on the surface of the molded product, which may reduce the adhesiveness to the polyurethane foam.
  • the polyester (3-3) used here is composed of a polycarboxylic acid component (A) containing cyclohexanedicarboxylic acid or a derivative thereof, and (i) two carbon atoms each having a hydroxyl group bonded thereto.
  • the glass transition temperature of the polyester resin (3-3) is usually 20 ° C or higher, preferably 30 to 100 ° C, more preferably 40 to 80 ° C, and most preferably 50 to 70 ° C.
  • the hydroxyl value is usually in the range of O.I.Z Omg KOH / g, preferably 1 to 10 mg KOHZg, more preferably 2 to 5 mg KOH / g.
  • the number average molecular weight (number average molecular weight in terms of standard polystyrene measured by gel permeation chromatography (GPC)) of this polyester resin is in the range of 7,500 to 100,000, preferably 1 0,000 to 50,000, more preferably ⁇ 2,500-30,000. When the molecular weight is excessively small, the strength characteristics of a molded article using the refin-based resin composition for powder molding of the present invention are reduced. Conversely, if it is too large, the miscibility and dispersibility in the resin composition will decrease.
  • the polycarboxylic acid component (A) used in the synthesis of the polyester resin (3-3) It contains at least cyclohexanedicarboxylic acid or a derivative thereof.
  • cyclohexanedicarboxylic acids include cyclohexanedicyclic acids having a cyclohexane ring as a basic skeleton and a carboxyl group bonded to the 1- and 4-position or 3-position carbons, respectively.
  • Examples of these cyclohexanedicarboxylic acid derivatives include ester compounds and acid halides. Among them, an ester compound is preferable, and a compound having an ester group having an alkyl group having 1 to 6 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, amyl, and hexyl, is preferable.
  • cyclohexane-1,4-dicarboxylic acid and 1,3-dicarboxylic acid include cyclohexane-1,4-dicarboxylic acid, 2-methyl-cyclohexane-1,4-dicarboxylic acid, and 2-ethyl-cyclocarboxylic acid.
  • Hexane-1,4-dicarboxylic acid 2-propyl-cyclohexane-1,4-dicarboxylic acid, 2-t-butyl-cyclohexane-1,4-dicarboxylic acid, 2-t-butyl-cyclohexane-1,4 Dicarboxylic acid, 2,3-dimethyl-cyclohexane-1,4-dicarboxylic acid, 2,3-diethylcyclohexane-1,4-dicarboxylic acid, 2,3-dipropylcyclohexane-1,4-dicarboxylic acid, 2 1,3-Dibutyl-cyclohexane-1,4-dicarboxylic acid, 2-methyl-3-ethyl-cyclohexane-1,4-dicarboxylic acid, 2-methyl-3-propyl Chlohexane- ⁇ , 4-dicarboxylic acid, 2-methyl-3-butyl-cyclohexane-1,4-dicar
  • the polycarboxylic acid component may contain other polycarboxylic acids other than the above. Can be.
  • other polycarboxylic acids include aromatic polycarboxylic acids, linear or branched aliphatic polycarboxylic acids, and derivatives thereof.
  • these polycarboxylic acid derivatives include ester compounds and acid halides. Among them, ester compounds are preferred, and those having an ester group having an alkyl group having 1 to 6 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, amyl, and hexyl, are preferred.
  • the polyvalent carboxylic acid component may contain a monovalent carboxylic acid or a derivative thereof as long as the effect of the polyester resin is not impaired. 0% by weight or less, preferably 5% by weight or less, more preferably 2% by weight or less.
  • Examples of the monovalent carboxylic acid derivative include the same as the above-mentioned examples of the other polyvalent rubonic acid derivatives.
  • the polyhydric alcohol component (B) used in the synthesis of the polyester resin has (i) a non-hydrogen bonded carbon atom between the two carbon atoms bonded to the hydroxyl groups, respectively. It contains an alkanediol having a molecular structure (hereinafter sometimes referred to as "hindered glycol") and (ii) a polyhydric phenoxy alcohol.
  • hindered glycols include 2,2-dimethyl-1,3-propanediyl, 2,2-getyl-1,3-propanediol, 2,2-dipropyl-1,3,3-propanediyl 2, 2-dibutyl-1,3-propanediol, 2-methyl-2-hexyl-1,3-propanediyl, 2-methyl-2-pentyl-1,3-propanediol, 2-ethyl-2- —Butyl-1,3-propanediol, 2-ethyl-2-pentyl-1,3-propanediol, and the like.
  • 2,2-diethyl-1,3-propanediol, 2,2-dipropyl-1,3-propanediyl, 2,2-dibutyl-1,3-propanediyl, 2-ethyl —2—butyl-1,3-propanediol and 2-methyl-2-pentyl-1,3-propanediol are preferred.
  • polyphenolic alcohol in the polyhydric alcohol component examples include those obtained by the addition reaction of polyhydric phenol and alkylene oxide, Examples include those obtained by modifying a phenolic hydroxyl group in a polyhydric phenol to an alcoholic hydroxyl group via an ether bond.
  • polyvalent phenol examples include divalent phenols such as catechol, resorcinol, hydroquinone, 4-methylpyrocatechol, 4-methylresorcinol, 5-methylresorcinol, and 2-methylhydroquinone; 1,2,3-benzenetriol Trivalent phenols such as 1,2,4-benzenetriol and 1,3,5-benzenetriol; 4,4'-dihydroxydiphenylmethane, 2,2-bis (4'-hydroxyphenyl) Non-condensed polycyclic phenols such as propane (bisphenol A;), 3,4-bis (4'-hydroxyphenyl) hexane, and 4,4 ', 4 triphenylmethanetriol.
  • divalent phenols such as catechol, resorcinol, hydroquinone, 4-methylpyrocatechol, 4-methylresorcinol, 5-methylresorcinol, and 2-methylhydroquinone
  • 1,2,3-benzenetriol Trivalent phenols such as 1,2,4-benzenetriol
  • 2,2-bis (4'-hydroxyphenyl) propane bisphenol A
  • hydroxybiphenyl compounds such as biphenyl 2,4'-diol, biphenyl 2,2'-diol, and biphenyl 2,3'-diol can also be used.
  • alkylene oxide include ethylene oxide and propylene oxide.
  • polyhydric phenolic alcohols include ethylene oxide adducts of 4,4'-dihydroxydiphenylmethane, ethylene adducts of bisphenol A, and ethylene adducts of biphenyl-4,4'-diols. Oxides and the like. Among these, an ethylene oxide adduct of bisphenol A is preferred.
  • the ratio of (i) the hindered glycol and (ii) the polyvalent phenoxy alcohol in the polyhydric alcohol component is usually 80 to 100% by weight, preferably 90 to 100% by weight, and more preferably. Is 95 to 100% by weight.
  • the ratio of (i) hindered glycol to (ii) polyhydric phenoxy alcohol is 5/95 to 50/50 in terms of molar ratio, preferably 793-40 / 60, More preferably, the number is from 100 to 300.
  • the polyhydric alcohol component can contain another polyhydric alcohol, and examples of the specific examples thereof include other alkane diols other than the above-mentioned hindered glycol, cyclohexane diol, aromatic diol, and the like. .
  • the polyhydric alcohol component may contain monohydric alcohol as long as the effects of the present invention are not impaired.
  • the allowable amount is usually 10% by weight or less, preferably at most 10% by weight in the polyhydric alcohol component. It is at most 5% by weight, more preferably at most 3% by weight.
  • the polyester resin (3-3) can be synthesized, for example, by polycondensing a polyvalent carboxylic acid component (A) and a polyvalent alcohol component (B).
  • the polycondensation reaction may be performed according to a conventional method.
  • the reaction temperature is 100 to 300 ° C, preferably 150 to 280 ° C, and more preferably 180 to 230 ° C. ° C.
  • the solvent include water-insoluble organic solvents azeotropic with water, such as toluene and xylene.
  • the pressure of the reaction 0. "! ⁇ 2 0 0 mmH g (1. 3 x 1 0 2 ⁇ 2. 7 x 1 0 5 P a), preferably 0. 5 ⁇ 1 OO mmH g (6. 6 x 10 2 to 1.3 x 10 5 Pa), more preferably 1 to 30 mmHg (1.3 x 10 3 to 4.0 ⁇ 10 4 Pa). It is also possible to carry out the reaction in the presence of an inert gas.
  • esterification catalysts conventionally used, for example, Bronsted acids such as P-toluenesulfonic acid, sulfuric acid, phosphoric acid; calcium acetate, zinc acetate, manganese acetate, zinc stearate, alkyl tin
  • Organic metal compounds such as oxides, dialkyltin oxides, and titanium alkoxides; metal oxides such as tin oxide, antimony oxide, titanium oxide, and vanadium oxide are used.
  • organometallic compounds belonging to Group IV of the periodic table are preferable because the obtained polyester resin has good oxidation stability.
  • the polyester resin is used in an amount of 2 to 30 parts by weight based on a total of 100 parts by weight of the polypropylene resin composition (1) and the hydride (2) of the aromatic vinyl compound-conjugated gen copolymer. Parts, preferably 5 to 20 parts by weight. If the added amount of the polyester resin is too small, the adhesion between the molded article and the polyurethane foam is not sufficiently improved.On the other hand, if the added amount is too large, the adhesion reaches a saturated state, which is uneconomical. There is a possibility that the strength of the molded body is reduced.
  • a catalyst that promotes the reaction with the isocyanate compound in the foam-forming raw material liquid In order to enhance (adhesion), it is preferable to add a catalyst that promotes the reaction with the isocyanate compound in the foam-forming raw material liquid. Specific examples and amounts thereof are as described for the hydroxyl group-containing hydrocarbon polymer (3-2).
  • the refin-based resin composition for powder molding of the present invention is modified to improve the wear resistance and mold releasability of the molded article without deteriorating the adhesiveness between the molded article and the polyurethane foam. It is preferable to add silicone oil.
  • the properties, type and amount of the modified silicone oil used here are as described for the hydroxyl group-containing hydrocarbon polymer (3-2).
  • the hydroxyl group-containing aromatic vinyl compound copolymer (3-4) used here is a copolymer of an aromatic vinyl compound and a hydroxyl group-containing vinyl compound, or an aromatic vinyl compound and a hydroxyl group-containing vinyl compound, and Having a glass transition temperature (T g) of 60 ° C. or higher, preferably 70 to 200 ° C., and an average primary particle It is a powder having a diameter of 0.1 to 10 m, preferably 0.5 to 5 tm.
  • Tg of the hydroxyl group-containing aromatic vinyl compound copolymer (3-4) is excessively low, the improvement in powder fluidity is insufficient. If the Tg is excessively high, the compatibility with the hydride of the polypropylene resin composition or the aromatic vinyl compound-conjugated gen copolymer may be reduced. In addition, T g can be obtained by a differential thermal analyzer (DSC).
  • DSC differential thermal analyzer
  • the powder fluidity may decrease in any case.
  • a suspension in which the hydroxyl group vinyl compound copolymer powder was dispersed in water was prepared, and the suspension was subjected to an oscillation frequency of 50 kHz using an ultrasonic shaker. After shaking for 1 minute, allow to stand for 3 minutes, and then determine the integrated particle size distribution by the centrifugal sedimentation turbidity method.
  • the average primary particle size is represented by the particle size that gives a cumulative value of 50%.
  • the powder of the hydroxyl group-containing aromatic vinyl compound copolymer preferably has spherical particles.
  • the sphericity which is a measure representing a spherical shape, is preferably from 0.7 to 1, and more preferably from 0.8 to 1. If the sphericity is too small, the powder fluidity may decrease.
  • the sphericity is measured by using a transmission electron microscope (SEM) at a magnification of 100, 0 ⁇ 0, and measuring the ratio of the minor axis to the major axis of particles 100, and calculating the additive value. Calculate as the average value.
  • SEM transmission electron microscope
  • the hydroxyl group-containing aromatic vinyl compound copolymer (3-4) contains 99.5 to 10% by weight, preferably 99 to 93% by weight of an aromatic vinyl compound, and has a hydroxyl group-containing vinyl compound content of 0%. It is preferably a copolymer with 5 to 10% by weight, preferably 1 to 7% by weight. If the weight-% of the hydroxyl group-containing vinyl compound is too small, the powder fluidity may be reduced. If the weight-% of the hydroxyl-containing vinyl compound is excessively large, the releasability during powder molding may be reduced.
  • hydroxyl group-containing aromatic vinyl compound examples include styrene, ⁇ -methylstyrene, 8-methylstyrene, p-methylstyrene, t-butylstyrene, monochlorostyrene, dichlorostyrene, methoxystyrene, and vinyl vinyl.
  • examples include toluene. Of these, styrene is preferred.
  • the hydroxyl group-containing vinyl compound is not particularly limited, and examples thereof include a hydroxyl group-containing acrylic ester, a hydroxyl group-containing methacrylic ester, a hydroxyl group-containing vinyl ether, a hydroxyl group-containing vinyl monocarboxylic acid ester, a hydroxyl group-containing vinyl dicarbonate ester, and vinyl alcohol. And the like.
  • hydroxyl group-containing acrylates such as hydroxymethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2,3-dihydroxypropyl acrylate, 2-hydroxyamyl acrylate 2-hydroxydodecyl acrylate, 2-hydroxydodecyl acrylate, etc .
  • Methacrylic acid esters include hydroxymethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, methacrylic acid 2,3-dihydroxypropyl acid, 2-hydroxyamyl methacrylate, 2-hydroxymethyl methacrylate, 2-hydroxydodecyl methacrylate, etc .
  • hydroxyl group-containing vinyl ethers include 2-hydroxypropyl vinyl ether; 2-hydroxybutyl vinyl ether, 2,4, -dihydroxy octyl ether, etc .
  • Examples of hydroxyl group-containing vinyl monocarboxylates hydroxy acetate vinyl, 3-hydroxypropion
  • Other monomer compounds copolymerizable with the aromatic vinyl compound and the hydroxyl group-containing vinyl compound include, but are not particularly limited to, for example, acrylates such as ethyl acrylate; methacrylates such as methyl methacrylate; Vinyl cyanide compounds such as acrylonitrile, methacrylonitrile and vinylidene cyanide; vinyl monocarboxylic acid esters such as vinyl acetate and vinyl propyl formate; vinyl dicarboxylic acid esters such as monobutyl malate; Vinyl ether compounds such as ter and methyl vinyl ether; functional group-containing acrylates such as butoxysher acrylate and glycidyl acrylate; Estel; Fine vinyl chloride, and the like.
  • acrylates such as ethyl acrylate
  • methacrylates such as methyl methacrylate
  • Vinyl cyanide compounds such as acrylonitrile, methacrylonitrile and vinylidene cyanide
  • copolymerization of acrylate or methacrylate is preferred because it tends to increase the compatibility with the polypropylene resin and the olefin-based thermoplastic elastomer.
  • These other monomer compounds are used in an amount of less than 40% by weight, preferably less than 30% by weight of the total monomers constituting the hydroxyl group-containing aromatic vinyl compound copolymer (3-4). be able to.
  • the hydroxyl group-containing aromatic vinyl compound copolymer (3-4) is a total of 100% of the propylene resin composition (1) and the hydride (2) of the aromatic vinyl compound-conjugated gen copolymer.
  • the method for producing the hydroxyl-containing aromatic vinyl compound copolymer (3-4) is not particularly limited, but is usually an emulsion polymerization method (including a seeded emulsion polymerization method) or a fine suspension polymerization method (a seeded fine suspension polymerization method). ).
  • Other ingredients including a seeded emulsion polymerization method) or a fine suspension polymerization method (a seeded fine suspension polymerization method).
  • additives can be added to the powdery refin-based resin composition of the present invention, if desired.
  • metal stones such as barium stearate, calcium stearate, magnesium stearate, zinc stearate, and aluminum stearate, and polyvalent are used to improve releasability during molding and prevent blocking during storage.
  • Fatty acid esters of alcohols can be added.
  • various known stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, pigments, and the like can be added.
  • a known plasticizer can be added as long as it is not sticky or does not impair moldability.
  • a polymer other than the above-mentioned polymer components can be used in combination as long as the gist of the present invention is not impaired.
  • a polymer include acrylonitrile-butadiene-styrene resin (ABS resin), acrylonitrile-styrene resin (AS resin), ethylene vinyl acetate resin (EVA resin), norbornene resin, and polyamide resin.
  • ABS resin acrylonitrile-butadiene-styrene resin
  • AS resin acrylonitrile-styrene resin
  • EVA resin ethylene vinyl acetate resin
  • norbornene resin norbornene resin
  • polyamide resin polyamide resin.
  • Resins polyester resins, polycarbonate resins, polybutadiene resins, and the like.
  • an aromatic vinyl compound such as styrene and an ⁇ -olefin such as ethylene and propylene are disclosed in JP-A-3-7705, JP-A-7-72023 and JP
  • the amount of these other polymers used is in the range of 40% by weight or less, preferably 30% by weight or less in the resin composition of the present invention.
  • the method for producing the refin-based resin composition for powder molding of the present invention is not particularly limited as long as each polymer component is contained in the above ratio. Further, the form and shape of each polymer component used are not particularly limited.
  • a production method for example, all the polymer components including the polypropylene resin composition (1) and the hydride of the aromatic vinyl compound-conjugated gen copolymer (2) are put into a mixer at once and mixed.
  • the polypropylene resin composition (1) is prepared using a conventional mixer such as a roll, a single-screw or twin-screw extruder, a Banbury mixer, a kneader, etc.
  • the combined hydride (2) is mixed in the same manner as above. And a method of manufacturing them in combination.
  • the resin composition for powder molding of the present invention is used in a powder form.
  • a conventionally known pulverizer such as a turbo mill, a roller mill, a pole mill, a centrifugal pulverizer, and a pulverizer is used.
  • the particle size of the powder is usually in the range of ⁇ 0 to 500 ⁇ m, preferably 50 to 500 ⁇ , more preferably 100 to 300 m. If the average particle size is too small, the efficiency of the pulverization process is low, and coagulation and shrinkage occur during storage.On the other hand, if the average particle size is too large, the texture of the molded product becomes rough, and pinholes occur in the case of a thin molded product. It will be easier.
  • a method including the following steps, that is, Optionally blended with a polypropylene resin composition (1) consisting of a polypropylene resin and a thermoplastic resin (1), and a hydrogenated aromatic vinyl compound-conjugated gen copolymer (2)
  • a production method comprising the steps of kneading other components to obtain a kneaded resin, preparing a pellet of the kneaded resin, and continuously cooling and pulverizing the pellet is preferred.
  • Polypropylene resin composition (1) comprising a polypropylene resin and a refining thermoplastic elastomer, a hydride of an aromatic vinyl compound-conjugated gen copolymer (2), and other optional components
  • a kneading apparatus generally used for production of a thermoplastic resin composition.
  • the kneading apparatus is not particularly limited, but usually includes a single-screw or twin-screw extruder. Banbury mixers and rolls can also be used.
  • the extruder is capable of extruding from a strand die by melt-kneading a thermoplastic resin fed from a hopper together with various components to be mixed as required.
  • various components can be added from an inlet provided in the middle of the cylinder of the extruder as needed.
  • a gear pump can be installed between the strand die and cylinder.
  • a pelletizer generally used in the production of a thermoplastic resin composition is used, and the average particle diameter is 0.5 to 1 Omm, preferably 0.5 to 10 mm. A pellet of about 5 mm is prepared. If the average particle size of the pellets is too small, efficient production is difficult. Further, when the average particle diameter of the pellets is excessively large, the efficiency of cooling the resin composition is low.
  • the pelletizer is not particularly limited, and includes, for example, an underwater cutter pelletizer, a strand pelletizer, a hot cutter pelletizer, a sheet pelletizer, and the like.
  • the underwater cut pelletizer or the strand pelletizer is used in combination with the resin composition strand discharged from the extruder to adjust the melting temperature of the resin component.
  • the pellets can be continuously cooled from the temperature to around room temperature.
  • a plurality of divided rooms arranged in series are provided in a direction in which the thermoplastic resin composition passes, as a cooling device, and the inlet side to the outlet side It is preferable to use a system in which the resin composition to be conveyed to the room is gradually cooled as it passes through each of the divided rooms.
  • the number of the plurality of divided rooms provided in the cooling device is appropriately determined according to the type and amount of the resin composition, but practically, it is preferable to cool the cooling device by dividing into two or three chambers. .
  • the method of cooling the resin composition is not particularly limited.
  • a method of generating cold air by a refrigerator using an ammonia refrigerant and spraying the same onto the resin is preferable.
  • the resin composition is continuously passed through a cooling device using a belt conveyor or the like.
  • the resin composition is exposed to cold air from above and below.
  • the belt conveyor is preferably made of a metal net.
  • the resin composition is preferably cooled to a temperature lower than its glass transition temperature (Tg).
  • Tg glass transition temperature
  • the composition contains a plurality of thermoplastic resins and the respective glass transition temperatures are observed, it is preferable to cool to a temperature lower than the lowest glass transition temperature among these.
  • the solidification temperature of a plasticizer, a softener, or the like is lower than the glass transition temperature of the thermoplastic resin, it is preferable to cool at a temperature lower than the solidification temperature.
  • the measurement of the glass transition temperature was performed. The determination method is performed using a differential thermal analyzer, a dynamic viscoelasticity meter, or the like.
  • the resin composition pellets cooled as described above are pulverized by a pulverizer.
  • the crusher to be used is not particularly limited, and for example, a crusher such as a turbo mill, a hammer mill, a roller mill, a ball mill, a centrifugal crusher, and a pulverizer can be used. Further, in order to remove heat generated when the resin is crushed, the crusher is preferably provided with a cooling device.
  • the pulverized resin composition is classified into a predetermined particle size. That is, those having a particle size smaller than a predetermined value and those having a larger particle size are separated through a classification screen having an appropriate size, and those having a particle size larger than the predetermined value are returned to the pulverizer again. If necessary, particles having a predetermined particle size or less are classified and removed by a cyclone or the like.
  • the particles are usually prepared into particles having an average particle diameter of 10 to 500 im, preferably 50 to 500 m, more preferably 100 to 300 x m. If the average particle diameter is too small, the efficiency of the pulverizing process is low and the particles tend to agglomerate during storage.On the other hand, if the average particle diameter is too large, the texture of the molded product is rough. Holes are likely to occur.
  • a dusting agent to the powder obtained after the step of pulverizing or after the step of further classifying the pulverized product using a suitable stirrer.
  • a dusting agent an organic or inorganic fine powder having a glass transition temperature or a melting point higher than room temperature is preferably used.
  • the average particle size of the fine powder is smaller than the average particle size of the powdery resin composition described above, and is preferably one tenth or less of the average particle size of the powdery resin composition.
  • Specific examples of the dusting agent include, as an organic material, plastic fine particles of 10 m or less and a fine powder of a polyolefin resin obtained by an emulsion polymerization or a micro-suspension polymerization method. Examples include talc, silicon oxide, and alumina oxide.
  • the amount of the dusting agent is usually in the range of 0.01 to 50 parts by weight, preferably 1 to 20 parts by weight, based on 100 parts by weight of the resin composition. If the added amount is too small, the effect of improving powder fluidity cannot be obtained, while if the added amount is too large, the physical properties of the molded product obtained by molding are impaired, and the moldability is deteriorated. Inconvenience that is damaged Often.
  • the agitator is not particularly limited, and various types such as a Henschel mixer, a Ripon blender, and a tumbler mixer can be used.
  • the particles of the resin composition obtained by freezing and pulverization often absorb moisture in the atmosphere, and include water used for cooling the pellets produced by a kneading apparatus and a pelletizer. Therefore, it is preferable to use a stirrer having a self-heating function by external heating or stirring. It is also possible to add a required amount of a release agent in order to make it easier to remove a molded product obtained by performing powder molding using the resin composition from a mold.
  • the classification step and the stirring step may be performed either continuously or separately.
  • particles of the resin composition having a predetermined average particle diameter obtained in the classification step are stored in a tank or the like, and then transferred to the stirring step.
  • the resin is compounded as necessary. Melt kneading together with the various components to be extruded from a strand die, and then, in a step of preparing a pellet of the resin composition, the strand has an average particle diameter of about 0.5 to 10 mm by a die pelletizer.
  • the pellet is cooled at a temperature lower than the glass transition temperature of the resin composition, and then pulverized.
  • the particles of the pulverized resin composition are subjected to a step of classifying the particles so that the average particle diameter becomes 10 to 500 m, and a step of blending a dusting agent with the particles to obtain powder.
  • a resin composition suitable for molding can be produced.
  • an apparatus for producing a resin composition for powder molding comprising a kneader, a pelletizer and a cooling pulverizer is used. It is preferable to provide a classifier for classifying the pulverized resin composition to a predetermined particle size, and a stirrer for mixing the resin composition and the dusting agent.
  • FIG. 1 is a flow chart showing an example of a production process of the powdery refin-based resin composition of the present invention.
  • the polymer component (1) the polymer component (1),
  • the method further includes a classifying step having a classifier 25 having a screen of 80 mesh, and a step 6 of mixing a dusting agent into the resin powder using a Henschel mixer 26.
  • SEBS styrene-ethylene-butadiene-styrene block copolymer
  • SEBS styrene-ethylene-butadiene-styrene block copolymer
  • the pellets were conveyed to a dehydrator 14 by a pump 13 and dehydrated. Then, it is supplied to the inlet 19 of the cooler 15, placed on the wire mesh belt conveyor 20, and circulated through the cool unit C 1 at first to cool air cooled to 50 ° C. After passing through a certain pre-cooling chamber 21 and then passing through a main cooling chamber 22 in which cold air cooled to 90 ° C. by the cooling unit C 2 is circulated, the temperature of the It will be 80 ° C I adjusted it. The time required for the pellet to pass through the pre-cooling chamber 21 and the main cooling chamber 22 was 10 minutes, and the passing amount was 100 kg / hour.
  • the cooled pellet was put into a hammer mill type pulverizer 24 and pulverized to obtain a particulate resin composition.
  • the crushing section 23 of the crusher was blown with cold air cooled to 190 ° C. by the cooling unit C 3 to prevent the resin from rising due to heat generated during the crushing.
  • the particulate resin composition was classified through an 80 mesh classification screen 25, and then passed through a Henschel mixer 26 (manufactured by Mitsui Miike Co., Ltd., capacity: 75 liters). I put it in.
  • a Henschel mixer 26 100 parts of the particulate resin composition was added to a dusting agent 27 (methyl methacrylate styrene (1/3) having an average particle size of 1 m obtained by microsuspension polymerization. 1) Copolymer powder) 10 parts were added, and stirring was continued for 1 minute to obtain a powder molding resin composition having an average particle diameter of 15.5 m.
  • the water adsorbed by the particulate resin composition was removed by self-heating by stirring and by heating with steam heating. Thereafter, the temperature of the particulate resin composition was cooled to 50 ° C. by pouring water into a jacket of a Henschel mixer.
  • the thus obtained resin composition for powder molding was evaluated for average particle diameter, powder fluidity and sintering moldability.
  • the fall time was ⁇ . ⁇ 5 seconds, indicating good powder flowability.
  • the sinter molding test a good sheet having a uniform thickness and no pinholes was obtained.
  • the average particle size was determined by using a mouth-to-tap shaker to determine the particle size (D50) corresponding to the opening where the cumulative particle size distribution curve obtained by the sieving method showed 50%, and the average particle size was determined. did.
  • the powder flowability was determined by measuring the fall time by the method described below. The shorter the fall time, the better the powder fluidity. If the time is longer than 25 seconds, the fluidity is poor and the uniformity of the thickness of a sheet or the like after molding often becomes poor.
  • the sintering moldability was determined by heating a powdery thermoplastic resin composition to a temperature of 250 ° C, 250 ° C, and 200 ° C in a nickel mold (150 mm X 100 ° C). (mmX 3 mm), sprinkle 500 g of each powder evenly.After 10 seconds, remove unmelted excess powder, Next, the particles adhered to the mold and melted were held for another 30 seconds to promote the melting. Thereafter, the mold was rapidly cooled with water. When the temperature reached 60 ° C., the cooled and solidified sheet was peeled off from the mold, and the condition of the sheet and pinholes on the sheet surface were visually evaluated.
  • the resin composition powder for powder molding is subjected to slush molding, and the obtained sheet-like molded product (thickness: about 1 mm) is released from the mold so that no bent wrinkles remain, and 15 x 5 A 0 mm specimen was cut.
  • the test piece was bent at 180 ° in a room at 23 ° C, placed on a horizontal surface in that state, a 1 kg weight was placed on the surface for 10 seconds, removed, and the angle between the horizontal surface and the bending sheet was measured immediately. .
  • high-temperature folding resistance was measured at 65 ° C. The smaller the value, the better the folding wrinkle resistance.
  • test piece 3 0 ⁇ 8 0 mm taken in the same manner as in (1), 2 3 ° C odor Te, it is placed on reciprocally movable table, steel Masatsuko width 2 O mm (Coated with four sheets of width 3) was placed on the test piece, a load of 2.5 kgf was applied to the test piece, and the surface of the test piece was reciprocated 5 times at a speed of 60 cycles / min. The degree of whitening of the surface of the test piece was observed. Similarly, high-temperature wear resistance was measured at 65 ° C. The results were displayed according to the following three-grade evaluation method.
  • the 150 mm x 100 mm test piece cut in the same manner as in (1) above is left open for 120 hours at 120 ° C. Thereafter, the removed test piece was allowed to stand at room temperature for 1 hour, and the degree of stickiness on the surface was evaluated with a tentacle. The results were displayed according to the following two-grade evaluation method.
  • a 14.5 x 200 mm test piece cut in the same manner as in (1) above was placed in a 14 7 (vertical) ⁇ 2 17 (horizontal) 10 (depth) mm mold.
  • Forming solution polymeric MDI having 2.7 functional groups (4,4'-diphenylmethanediisocyanate) 16 g, polyether polyol (trifunctionality, hydroxyl value 50) (triethylenediamine 1.0%, Water (containing 1.6%) 31.4 g of the mixture) was poured and the mold was sealed.
  • the falling time (unit: second) of the resin composition for powder molding 100 cc at a temperature of 23 ° C. was measured using a bulk specific gravity measuring device. The shorter the fall time, the better the powder flowability.
  • a resin mold for powder molding is filled into a nickel mold (inner dimension: 200 mm x 300 mm x 2 mm) heated to a temperature of 260 ° C, and after 10 seconds, the mold is turned over and surplus Except for the above composition, the resin composition adhering to the mold was held for 30 seconds to gel. Next, the mold was cooled to 60 ° C, the gelled sheet was peeled off from the mold, and evaluated by the following two-grade evaluation method.
  • a polypropylene resin (a) and a thermoplastic resin The properties of a resin composition for powder molding comprising (b) and a hydride of an aromatic vinyl compound-conjugated gen copolymer are shown.
  • a fatty acid was added to a resin composition for powder molding comprising a polypropylene resin (a), a thermoplastic resin (b) and a hydride of an aromatic vinyl compound-conjugated gen copolymer (2). Shows the properties of amide (3-1) added.
  • the polymer components of the type and amount shown in Table 2 were kneaded with a twin-screw extruder (TEM35B, manufactured by Toshiba Machine Co., Ltd.), pelletized, and then pulverized.
  • TEM35B twin-screw extruder
  • Each resin composition for powder molding was obtained.
  • a melting test was performed by slush molding, and the obtained sheets were used to evaluate creasing resistance, abrasion resistance, and heat resistance. The results are shown in Table 2.
  • Table 2 Table 2
  • a resin composition for powder molding comprising a polypropylene resin (a), a thermoplastic resin (b) and a hydride of an aromatic vinyl compound-conjugated gen copolymer (2) is used. Shows the properties of those containing a hydroxyl group-containing hydrocarbon polymer (3-2) (or modified silicone oil).
  • Thyroprene FM-0721 manufactured by Chisso Co., Ltd. was prepared by mixing a polypropylene resin composition, a olefin-based thermoplastic elastomer, and SEBS.
  • the hydrogen polymer and the modified silicone oil were blended (Examples 11 to 16)
  • the bending angle was small, so that the fold wrinkle resistance was good, and the abrasion resistance, heat resistance, and polystyrene foam were obtained. Good adhesion to the body.
  • Examples 17 and 19 have insufficient high-temperature wear resistance. Furthermore, when the hydroxyl group-containing hydrocarbon polymer is not blended (Examples 18 and 20), the adhesiveness to the polyurethane foam is not improved. If you do not mix the refining elastomer
  • Comparative Example 4 has a large bending angle, does not improve the folding wrinkle resistance, and has poor abrasion resistance and poor adhesion to the polyurethane foam.
  • a resin composition for powder molding comprising a polypropylene resin (a), a thermoplastic resin (b) and a hydride of an aromatic vinyl compound-conjugated gen copolymer (2), 3-3) Polyester resin obtained by polycondensing polyhydric carboxylic acid component (A) with (i) alkanediol and (M) alcohol component (B) containing polyhydric phenoxy alcohol, (or And modified silicone oil).
  • Polyester resin obtained by polycondensing polyhydric carboxylic acid component (A) with (i) alkanediol and (M) alcohol component (B) containing polyhydric phenoxy alcohol, (or And modified silicone oil).
  • polyester resin A had a number average molecular weight of 13,660, a hydroxyl value of 7.2 mg KOH / g, and a glass transition temperature of 53 ° C.
  • polyester resin B has a number average molecular weight of 7,930, The hydroxyl value was 9.8 mg K ⁇ H / g and the glass transition temperature was 49 ° C.
  • the number average molecular weight of the polyester resin is measured by GPC and is a standard polystyrene equivalent molecular weight.
  • the hydroxyl value was determined by acetylating the polyester resin with acetic anhydride and then titrating with a mixed solution of potassium hydroxide / ethanol.
  • the glass transition temperature was measured by DSC.
  • the polymer components of the type and amount shown in Table 5 were kneaded with a twin-screw extruder (TEM35B, manufactured by Toshiba Machine Co., Ltd.), pelletized, pulverized by a turbo mill, and powdered.
  • a resin composition for body molding was obtained. Using each of the obtained powdery resin compositions, a fusibility test was performed by slush molding, and the obtained sheets were used to evaluate creasing resistance, abrasion resistance, heat resistance, and adhesion. Table 5 shows the results. Table 5
  • Thyraplane FM-0721 manufactured by Chisso (methacryloxy group-modified silicone oil at one end)
  • the polypropylene resin composition was mixed with a refining thermoplastic elastomer and SEBS.
  • polyester resin A or B was mixed with this (Examples 21 to 27)
  • the fold wrinkle resistance was good and the adhesion to the polyurethane foam was good.
  • the modified silicone oil was used in combination (Examples 25 and 27), the abrasion resistance was further improved without lowering the adhesiveness.
  • a resin composition for powder molding comprising a polypropylene resin (a), a thermoplastic resin (b) and a hydride of an aromatic vinyl compound-conjugated gen copolymer (2), 3-4)
  • the properties of the product added with a hydroxyl group-containing aromatic vinyl compound copolymer having a high glass transition temperature are shown.
  • Production Example 1 Hydrophill-containing aromatic vinyl compound copolymer; production of dusting agent
  • the following hydroxyl-containing aromatic vinyl compound copolymers 1 and 2 were prepared by the fine suspension polymerization method. ) was prepared.
  • Monomer 70 parts of styrene, 27 parts of methyl methacrylate, 3 parts of 2-methyl methacrylate
  • each powdered resin composition was prepared in the same manner when an aromatic vinyl copolymer containing no hydroxyl group (dusting agent 3) was added and when no dusting agent was added.
  • Dusting agent 3 an aromatic vinyl copolymer containing no hydroxyl group
  • Table 6 shows the results. Table 6 Comparative example
  • Powder formability A A A A B A Folding resistance 23 ° C 8 10 12 12 30 40 Test (degrees) 65 ° C 37 39 43 45 55.60
  • Powder fluidity test The measuring instrument was vibrated and forcibly dropped. As shown in Table 6, when the polypropylene resin composition was mixed with a refining-based thermoplastic elastomer and SEBS, and the dusting agent 1 or 2 was added thereto, the powder flowability and powder moldability The sheets obtained by slush molding using these had good folding wrinkle resistance and good adhesion to polyurethane foam (Examples 29 to 31).
  • a powder composed of a hydride of a polypropylene resin (a), a thermoplastic resin (b), and two kinds of aromatic vinyl compounds having different aromatic vinyl compound contents and a conjugated gen copolymer is used.
  • the properties of the resin composition for body molding are shown.
  • Powder fluidity test The measuring instrument was vibrated and forcibly dropped. As shown in Table 7, a powder blended with a polypropylene resin composition, a refining-based thermoplastic elastomer, SEBS having a bound styrene content of 20% or more, and SEBS having a bound styrene content of less than 20%
  • the molding resin compositions (Examples 34 to 36) are excellent in powder properties such as powder fluidity, and are also excellent in wear resistance at high temperatures (60 ° C.).
  • the powder-forming resin of the present invention comprising a polypropylene resin (a), a thermoplastic resin-based thermoplastic elastomer (b), and a hydrogenated aromatic vinyl compound-conjugated gen copolymer (2).
  • the resin composition provides a powder molded article which is easy to produce and has excellent creasing resistance, heat resistance, abrasion resistance and the like.
  • fatty acid amide (3-1) improves hot wear resistance
  • 1 minute Hydroxyl-containing hydrocarbon polymer having an average number of hydroxyl groups per molecule of 1 to 8, a number average molecular weight of 500 to 200,000, and an iodine value of 100 or less (3-2 )) Improves the adhesion to the polyurethane foam and the high-temperature abrasion resistance
  • the polyester resin (3-3) having a number average molecular weight of 7,500 to 1,000,000 is blended with the polyurethane resin to improve the adhesion to the polyurethane foam and the high-temperature abrasion resistance.
  • Such a powdery refin-based resin composition for powder molding can be applied to various powder molding methods such as powder slush molding, fluid immersion molding or powder rotary molding. It is unlikely to cause defects such as thickness, thickness and pinholes, and has excellent moldability and excellent inflow into the undercut part.
  • Molded articles obtained by powder molding the powdery refin-based resin composition include, for example, interior skin materials such as automobile instrument panels, console boxes, and hamlets; and home appliances and OA. It is used in the equipment field, sports equipment field, construction, and housing. In particular, it is suitable as a molding material for the surface layer of automobile interior parts such as instrument panels, headrests, console boxes, door trims, armrests, and the like.

Abstract

An olefin resin composition for powder molding which comprises: (1) 20 to 80 parts by weight of a polypropylene resin composition comprising (a) 20 to 80 parts by weight of a polypropylene resin and (b) 80 to 20 parts by weight of a thermoplastic olefin elastomer (provided that the sum of (a) and (b) is 100 parts by weight); and (2) 80 to 20 parts by weight of a product of the hydrogenation of an aromatic vinyl/conjugated diene copolymer (the sum of (1) and (2) is 100 parts by weight). This olefin resin composition is easy to produce. It gives, through powder molding, a molded article satisfactory in crease resistance, heat resistance, and wearing resistance.

Description

明 細 書 粉体成形用才レフイン系樹脂組成物およびその製造方法 技術分野  Description: Refined resin composition for powder molding and method for producing the same
この発明は、 粉体成形用才レフイン系樹脂組成物およびその製造方法に関する。 さらに詳しくは、 ポリプロピレン樹脂、 才レフィン系熱可塑性エラス卜マーおよ び芳香族系ビニル化合物一共役ジェン共重合体の水素化物を含んでなり、 耐熱性、 耐折れ曲げ性および耐摩耗性に優れた成形品を与える、 その調製が容易な粉体成 形用才レフイン系樹脂組成物、 ならびに該組成物の製造方法に関する。 背景技術  TECHNICAL FIELD The present invention relates to a powdery resin-based resin composition and a method for producing the same. More specifically, it contains a hydride of a polypropylene resin, a thermoplastic resin elastomer, and a hydride of an aromatic vinyl compound and a conjugated gen copolymer, and has excellent heat resistance, bending resistance and abrasion resistance. The present invention relates to a powdery molded refin-based resin composition which gives a molded article and is easy to prepare, and a method for producing the composition. Background art
自動車のインス卜ルメン卜パネル、 コンソールボックス、 ドア卜リム、 グロ一 ブボックスなどの内装部品の表皮材としては、 従来、 軟質塩化ビニル樹脂が多く 使用されてきたが、 最近は、 廃品の焼却時に塩化水素を発生しない樹脂で、 しか もリサイクル利用の容易な才レフィン系樹脂材料が使用されるようになっている。 そのため多くの才レフィン系樹脂組成物が粉体成形用材料として提案されている (例えば、 特開平 5— 1 1 8 3号公報、 特開平 5— 5 05 0号公報、 特開平 6 - 1 7 0 8 7 1号公報、 特開平 6— 2 2 6 7 6 3号公報、 特開平 7— 1 7 8 7 4 2 号公報、 特開平 8— 2 1 7 9 2 7号公報など)。 しかし、 これらの提案された粉 体成形用才レフイン系樹脂組成物から得られる成形品は、 概して、 耐光性が悪く、 また、 従来の軟質塩化ビニル樹脂ほどの柔軟性がなく、 軟化剤を添加すると成形 品表面にブリードが生じてベたつくという問題があった。  Soft vinyl chloride resin has often been used as a skin material for interior parts such as instrument panels, console boxes, door trims, and glove boxes for automobiles. Refined resin materials that do not generate hydrogen chloride and that can be easily recycled are being used. Therefore, many refining-based resin compositions have been proposed as powder molding materials (for example, JP-A-5-11883, JP-A-5-5500, JP-A-6-17). Japanese Patent Application Laid-Open No. 0871/1995, Japanese Patent Application Laid-Open No. Hei 6-2226663, Japanese Patent Application Laid-Open No. Hei 7-18742, Japanese Patent Application Laid-Open No. Hei 8-217792, etc.). However, molded articles obtained from these proposed powdery refin-based resin compositions generally have poor light resistance, and are not as flexible as conventional soft vinyl chloride resins, and a softener is added. Then, there was a problem that bleeding occurred on the surface of the molded product and it became sticky.
本発明者らは、 上記の問題点を解決すべく検討した結果、 結合スチレン量が 2 0~5 0重量%で特定範囲の数平均分子量を有するスチレンとブタジエンの S B S型ブロック共重合体 (S :ポリスチレンブロック、 B :ポリブタジエンブロッ ク) の水素化物 (S E B S) を含む組成物が、 自動車の内装材の表皮などの粉体 成形材料として好適であることを見出した (特開平 5— 2 7 9 4 8 4号公報)。 しかし、 上記の水素化物 (S E B S) を用いた成形品は、 耐熱性が十分とはいえ ず、 そのため、 耐熱性を補うためにポリプロピレン樹脂 (P P) を配合する方法 (特開平 7— 8 2 4 3 3号公報)、 さらにポリオレフインを配合する方法 (特開 2 0 0 0 - 3 3 6 2 1 9 ) などが提案された。 The present inventors have studied to solve the above problems, and as a result, have found that an SBS type block copolymer (S) of styrene and butadiene having a bound styrene content of 20 to 50% by weight and a number average molecular weight in a specific range. : Polystyrene block, B: polybutadiene block) hydride (SEBS) was found to be suitable as a powder molding material for the skin of automobile interior materials (Japanese Patent Laid-Open No. 5-27979). No. 484). However, molded articles using the above hydride (SEBS) have sufficient heat resistance. Therefore, a method of blending a polypropylene resin (PP) to supplement heat resistance (Japanese Patent Laid-Open No. 7-82433) and a method of blending a polyolefin (Japanese Patent Laid-Open No. 2000-336) 219) was proposed.
ところが、 P Pは S E B Sとの相溶性が低いことから、 加工性が悪く、 両者が 均一に混合された組成物を得ることが困難であったり、 P Pが高結晶性のため、 スラッシュ成形における脱型の際に成形品に折り皺が生じ易いという問題があつ た。 発明の開示  However, PP has low compatibility with SEBS, so it has poor processability, making it difficult to obtain a composition in which both are uniformly mixed, and because PP has high crystallinity, demolding in slush molding In this case, there is a problem that the molded product is apt to be wrinkled. Disclosure of the invention
上記のような状況に鑑み、 本発明の目的は、 製造が容易で、 粉体成形における 脱型時の耐折り皺性に優れ、 改善された耐熱性を有する成形品を与える粉体成形 用の才レフィン系樹脂組成物を提供することにある。  In view of the circumstances described above, an object of the present invention is to provide a molded product that is easy to produce, has excellent creasing resistance during demolding in powder molding, and provides a molded product having improved heat resistance. An object of the present invention is to provide a refining resin composition.
かくして本発明によれば、 (Ί ) (a) ポリプロピレン樹脂 2 0~ 80重量部、 ( b) 才レフィン系熱可塑性エラス卜マー 8 0〜 2 0重量部 (但し、 (a) と (b) の合計は 1 0 0重量部である。) とからなるポリプロピレン樹脂組成物 2 0~8 0重量部と、 (2 ) 芳香族系ビニル化合物—共役ジェン共重合体の水素化 物 8 0〜2 0重量部 (( 1 ) と (2) の合計は 1 0 0重量部である。) とを含んで なる粉体成形用才レフイン系樹脂組成物が提供される。  Thus, according to the present invention, (Ί) (a) 20 to 80 parts by weight of a polypropylene resin, and (b) 80 to 20 parts by weight of a refining thermoplastic elastomer (where (a) and (b) Is a total of 100 parts by weight.) 20 to 80 parts by weight of a polypropylene resin composition comprising: and (2) a hydride of an aromatic vinyl compound-conjugated gen copolymer of 80 to 2 parts by weight. A refin-based resin composition for powder molding comprising 0 parts by weight (the total of (1) and (2) is 100 parts by weight).
さらに本発明によれば、 (1 ) (a) ポリプロピレン樹脂 2 0~8 0重量部、 ( b) 才レフィン系熱可塑性エラス卜マー 8 0〜 2 0重量部 (但し、 (a) と (b) の合計は 1 0 0重量部である。) とからなるポリプロピレン樹脂組成物 2 0~8 0重量部と、 (2 ) 芳香族系ビニル化合物一共役ジェン共重合体の水素化 物 8 0〜2 0重量部 (( 1 ) と (2) の合計は 1 0 0重量部である。) と、 所望に より配合されるその他の成分とを混練して樹脂混練物を得る工程と、 該樹脂混練 物のペレツ卜を調製する工程と、 該ペレツ卜を連続的に冷却し、 粉砕する工程と を有する粉体成形用才レフイン系樹脂組成物の製造方法が提供される。 図面の簡単な説明  Further, according to the present invention, (1) (a) 20 to 80 parts by weight of a polypropylene resin, and (b) 80 to 20 parts by weight of a thermoplastic olefin elastomer (provided that (a) and (b) ) Is 100 parts by weight.) 20 to 80 parts by weight of a polypropylene resin composition comprising: (2) a hydride of an aromatic vinyl compound-conjugated gen copolymer of 80 to 80 parts by weight A step of kneading 20 parts by weight (the total of (1) and (2) is 100 parts by weight) and other components optionally blended to obtain a resin kneaded product; Provided is a method for producing a powdery molded olefin resin composition, comprising: a step of preparing a pellet of a kneaded material; and a step of continuously cooling and pulverizing the pellet. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の粉体成形用才レフイン系樹脂組成物の製造プロセスを示すフ ロー図である。 発明を実施するための最良の形態 FIG. 1 is a flow chart showing a process for producing a powdery resin-based resin composition of the present invention. FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の粉体成形用才レフイン系樹脂組成物は、 ポリプロピレン樹脂 (a) と 才レフィン系熱可塑性エラス卜マー (b) からなるポリプロピレン樹脂組成物 (1 ) と芳香族ビニル化合物—共役ジェン共重合体の水素化物 (2) を含んでな るものである。  The powdery resin composition for powder molding of the present invention comprises a polypropylene resin composition (1) comprising a polypropylene resin (a) and a polypropylene resin (b) and an aromatic vinyl compound-conjugated gen. It contains a polymer hydride (2).
ポリプロピレン樹脂 (a)  Polypropylene resin (a)
本発明で使用するポリプロピレン樹脂は、 プロピレン単独重合体 (結晶性) ま たはプロピレン 50重量%以上と炭素数 2〜 1 2の他の α—才レフィンとの共重 合体である。 ここで、 プロピレンと炭素数 2~ 1 2の他の a—才レフインとの共 重合体には、 ランダム共重合体、 交互共重合体ならびにリニアおよびラジアルの ブロック共重合体が含まれる。 これらのポリプロピレン樹脂は、 通常、 チーダラ 一 ·ナッタ系触媒などを用いて重合することにより製造される。 プロピレンと共 重合される上記 α—才レフィンとしては、 例えば、 エチレン、 ブテン一 1、 4— メチルーペンテン— 1、 才クテン— 1などか挙げられる。  The polypropylene resin used in the present invention is a propylene homopolymer (crystalline) or a copolymer of 50% by weight or more of propylene and another α-lefin having 2 to 12 carbon atoms. Here, copolymers of propylene with other a-olefins having 2 to 12 carbon atoms include random copolymers, alternating copolymers, and linear and radial block copolymers. These polypropylene resins are usually produced by polymerization using a Cidara-Natta catalyst or the like. Examples of the above α-refined copolymerized with propylene include ethylene, butene-1,4-methyl-pentene-1, and octene-1.
ポリプロピレン樹脂のメルトフローレ一卜 (以下、 M F Rと記す。) は特に限 定されないが、 J I S K 72 1 0による M F R (荷重 2. 1 6 k , 測定温度 23 0 °C) が 5 g / 1 0 m i n以上のものが好ましく、 M F Rが 20 gZl 0 m i n以上のものがより好まじい。 ポリプロピレン樹脂の M F Rが小さすぎると、 溶融性が悪くて成形品にピンホールが発生し易くなる。  The melt flow rate (hereinafter referred to as MFR) of the polypropylene resin is not particularly limited, but the MFR according to JISK7210 (load 2.16 k, measurement temperature 230 ° C) is 5 g / 10 min. Those having an MFR of 20 gZl 0 min or more are more preferable. If the MFR of the polypropylene resin is too small, the meltability is poor and pinholes are likely to occur in the molded product.
ォレフィン系熱可塑性エラス卜マ一 (b)  Olefin-based thermoplastic elastomer (b)
本発明で使用する才レフイン系熱可塑性エラス卜マーは、 通常 T POまたは T P Eと呼ばれるもので、 例えば、 E P R (エチレン一プロピレン共重合ゴム) や E P DM (エチレン一プロピレン一非共役ジェンモノマー三元共重合ゴム) と P Pや P P/P E (ポリエチレン) をブレンドしたもの、 上記のブレンドを P Pや P P/P Eの溶融下に E P DMなどを架橋させるいわゆる動的架橋によって P P などのマ卜リックス相中に E P D Mなどを分散させたもの (エラス卜マ一ァロ ィ)、 リアクター (R e a c t o r ) T POと称される、 P Pの重合に引き続き プロピレンとエチレンを共重合させて得られるエチレン/プロピレン共重合体 (E P R) ブロック部分が多いプロピレン系ブロック共重合体などが挙げられる。 これらはいずれも市販品があり、 入手可能である。 なかでもプロピレン系プロッ ク共重合体 (リアクター T PO) が好ましく、 卜クャマ (株) 製 P. E. R.とし て市販されている。 The olefin-based thermoplastic elastomer used in the present invention is usually called TPO or TPE. For example, EPR (ethylene-propylene copolymer rubber) and EPDM (ethylene-propylene-non-conjugated gen monomer) Copolymer rubber) and PP or PP / PE (polyethylene) blended. In the matrix phase of PP or the like by so-called dynamic cross-linking of the above-mentioned blend with EP DM while melting PP or PP / PE. With EPDM dispersed in it (Elastomaro B) Reactor TPO, an ethylene / propylene copolymer (EPR) obtained by copolymerizing propylene and ethylene following polymerization of PP, propylene-based block copolymer with many block parts, etc. Is mentioned. All of these are commercially available and available. Among them, a propylene block copolymer (reactor TPO) is preferable, and is commercially available as PER manufactured by Tokuyama Corporation.
前記の好ましいプロピレン系ブロック共重合体 (リアクター T PO) は、 ェチ レン/プロピレン共重合体ブロック成分 (E P R成分) とポリプロピレンプロッ ク成分 (P P成分) の割合が、 P P成分が 1 〜4 0重量%、 好ましくは 5〜2 0 重量%であり、 E P R成分が 6 0〜9 9重量%、 好ましくは 8 0〜9 5重量%の ものである。 また、 E P R成分はエチレンとプロピレンのランダム共重合体から なり、 通常、 エチレンに基づく単量体単位の割合が 1 0~4 0モル%、 好ましく は 1 5〜 3 5モル%でぁる。 さらに、 プロピレン系ブロック共重合体の分子量は、 1 3 5°C、 テトラリン溶媒中で測定した極限粘度が 6~3 0 d I 7gであり、 好 ましくは 1 0~2 0 d I Zgに相当する。 プロピレン系ブロック共重合体の極限 粘度が 6 d l /g未満では、 弾性回復性が損なわれ、 3 0 d l /gを超えると溶 融流動性が低下し、 樹脂組成物の成形が著しく困難となる。  In the preferred propylene-based block copolymer (reactor T PO), the ratio of the ethylene / propylene copolymer block component (EPR component) to the polypropylene block component (PP component) is 1 to 40%. %, Preferably 5 to 20% by weight, and the EPR component is 60 to 99% by weight, preferably 80 to 95% by weight. The EPR component is composed of a random copolymer of ethylene and propylene, and usually has a proportion of monomer units based on ethylene of 10 to 40 mol%, preferably 15 to 35 mol%. Further, the molecular weight of the propylene-based block copolymer is 13 to 35 ° C and the intrinsic viscosity measured in a tetralin solvent is 6 to 30 dI 7 g, preferably 10 to 20 dI Zg. Equivalent to. If the intrinsic viscosity of the propylene-based block copolymer is less than 6 dl / g, the elastic recovery property is impaired, and if it exceeds 30 dl / g, the melt fluidity decreases and the molding of the resin composition becomes extremely difficult. .
芳香族系ビニル化合物一共役ジェン共重合体の水素化物 ( 2 )  Hydride of aromatic vinyl compound-conjugated gen copolymer (2)
本発明で使用する芳香族ビニル化合物一共役ジェン共重合体の水素化物として は、 スチレン、 a—メチルスチレン、 ビニルトルエンなどの芳香族ビニル化合物 の少なくとも 1種と、 ブタジエン、 イソプレン、 1 , 3—ペン夕ジェンなどの共 役ジェンの少なくとも 1種をランダムまたはプロック共重合させて得られるラン ダム共重合体またはブロック共重合体の共役ジェン単位を水素化して得られるも のが挙げられる。 なかでも好ましいのは、 水素化ブロック共重合体である。  Examples of the hydrogenated aromatic vinyl compound-conjugated gen copolymer used in the present invention include at least one aromatic vinyl compound such as styrene, a-methylstyrene, and vinyltoluene, butadiene, isoprene, 1,3- Examples thereof include those obtained by hydrogenating a conjugated gen unit of a random copolymer or a block copolymer obtained by random or block copolymerization of at least one kind of a syngene such as pen-yen. Especially preferred are hydrogenated block copolymers.
上記のランダム共重合体としてはスチレン一ブタジエン共重合ゴ厶 (S B R)、 プロック共重合体としては A B A型のリニアおよびラジアルプロック共重合体 ( Aはポリスチレンブロック、 Bはポリブ夕ジェンプロックまたはポリイソプレ ンブロック) が好ましいものとして挙げられる。 上記の水素化されたプロック共 重合体は、 S E B S、 S E P S (S :ポリスチレン、 E :ポリエチレン、 B :ポ リブチレン、 P :ポリプロピレン) と通常呼ばれている。 これらの水素化物は、 通常、 重合体鎖中の不飽和二重結合の 8 0モル%以上、 好ましくは 9 0モル%以 上、 より好ましくは 9 5モル%以上が水素化されたものである。 The random copolymer is styrene-butadiene copolymer rubber (SBR), and the block copolymer is an ABA-type linear and radial block copolymer (A is a polystyrene block, B is a polygenoblock or polyisoprene copolymer). Block) is preferred. The above hydrogenated block copolymer is SEBS, SEPS (S: polystyrene, E: polyethylene, B: poly). Ributylene, P: polypropylene) is usually called. These hydrides are usually those obtained by hydrogenating at least 80 mol%, preferably at least 90 mol%, more preferably at least 95 mol% of the unsaturated double bonds in the polymer chain. .
芳香族ビニル化合物一共役ジェン共重合体の水素化物中の芳香族ビニル化合物 単位の含有量 (以下、 結合芳香族ビニル量ということがある。) は、 通常、 5 ~ 5 0重量%、 好ましくは 1 0〜3 0重量%でぁる。 結合芳香族ビニル量が少なす ぎると粉体成形の際にブロッキングが生じ易い。 逆に、 多すぎると成形品の硬度 が増大する。  The content of the aromatic vinyl compound unit in the hydride of the aromatic vinyl compound-conjugated gen copolymer (hereinafter, sometimes referred to as the amount of bound aromatic vinyl) is usually from 5 to 50% by weight, preferably from 5 to 50% by weight. It is 10 to 30% by weight. If the amount of bound aromatic vinyl is too small, blocking tends to occur during powder molding. Conversely, if it is too large, the hardness of the molded article increases.
芳香族系ビニル化合物一共役ジェン共重合体の水素化物として、 芳香族ビニル 化合物単位の含有量が比較的多いものと芳香族ビニル化合物単位の含有量が比較 的少ないものとを併用することができる。 このような併用によって、 上記のよう に良好な脱型時の耐折り皺性と耐熱性を有するのみならず、 貯蔵時の耐ブロツキ ング性などの粉体特性が改善され、 かつ、 高温での耐摩耗性を有する成形体の製 造が可能な粉体成形用才レフィン系樹脂組成物が得られる。  As a hydride of an aromatic vinyl compound-conjugated gen copolymer, one having a relatively high content of an aromatic vinyl compound unit and one having a relatively low content of an aromatic vinyl compound unit can be used in combination. . By such a combination, not only good creasing resistance and heat resistance at the time of demolding as described above, but also powder characteristics such as anti-blocking property at the time of storage are improved, and Thus, a refining-based resin composition for powder molding capable of producing a molded article having wear resistance is obtained.
芳香族系ビニル化合物—共役ジェン共重合体の水素化物として、 芳香族ビニル 化合物単位の含有量が異なるものを併用する場合、 芳香族ビニル化合物単位の含 有量が 2 0 ~ 8 0重量%、 好ましくは 2 5 ~ 7 0重量%のものと、 5重量%以上 2 0重量%未満、 好ましくは 1 0〜 1 8重量%のものを混合使用することが好ま しい。 両者の混合割合は、 前者 (芳香族ビニル化合物単位の含有量: 2 0 ~ 8 0 重量%) が通常 1 0〜9 0重量%、 好ましくは 2 0〜 8 0重量%、 より好ましく は 4 0〜6 0重量%であり、 後者 (芳香族ビニル化合物単位の含有量: 5重量% 以上 2 0重量%未満) が通常 9 0 - 1 0重量%、 好ましくは 8 0〜 2 0重量%、 より好ましくは 6 0〜4 0重量%である。 前者の割合が少なすぎると粉体成形用 才レフィン系樹脂組成物の耐ブロッキング性が不充分であり、 逆に、 多すぎると 成形品の硬度が増大し、 高温での耐摩耗性が低下しがちである。  When a hydride of the aromatic vinyl compound-conjugated gen copolymer having a different content of the aromatic vinyl compound unit is used in combination, the content of the aromatic vinyl compound unit is 20 to 80% by weight, It is preferred to mix 25 to 70% by weight with 5% to less than 20% by weight, preferably 10 to 18% by weight. The mixing ratio of the two is usually 10 to 90% by weight, preferably 20 to 80% by weight, more preferably 40 to 100% by weight (content of aromatic vinyl compound unit: 20 to 80% by weight). The latter (content of the aromatic vinyl compound unit: 5% by weight or more and less than 20% by weight) is usually 90 to 10% by weight, preferably 80 to 20% by weight, Preferably it is 60 to 40% by weight. If the ratio of the former is too small, the anti-blocking property of the powdery molding refin-based resin composition is insufficient, and if it is too high, the hardness of the molded article increases and the wear resistance at high temperatures decreases. Tends to.
粉体成形用才レフイン系樹脂組成物  Refined resin composition for powder molding
本発明の粉体成形用才レフイン系樹脂組成物中のポリプロピレン樹脂組成物 ( 1 ) は、 (a ) ポリプロピレン樹脂 2 0〜8 0重量部、 好ましくは 3 0 ~ 7 0 重量部と、 (b ) 才レフィン系熱可塑性エラストマ一 8 0〜 2 0重量部、 好まし くは 7 0〜3 0重量部 (但し、 (a) と (b) の合計は 1 0 0重量部である。) か らなる。 ポリプロピレン樹脂が少なすぎると耐熱性が低下し、 逆に、 多すぎると 脱型時に折り皺が生じ易くなる。 The polypropylene resin composition (1) in the powder-refined refin-based resin composition of the present invention comprises: (a) 20 to 80 parts by weight, preferably 30 to 70 parts by weight of a polypropylene resin, and (b) ) Refined thermoplastic elastomer 80 to 20 parts by weight, preferred Or 70 to 30 parts by weight (however, the total of (a) and (b) is 100 parts by weight). If the amount of the polypropylene resin is too small, the heat resistance is reduced, and if the amount is too large, folding wrinkles are likely to occur when the mold is removed.
上記のポリプロピレン樹脂組成物 (1 ) と芳香族ビニル化合物一共役ジェン共 重合体の水素化物 (2) の割合は、 (1 ) が 2 0~ 80重量部、 好ましくは 3 0 ~7 0重量部、 より好ましくは 4 0〜 6 0重量部、 ( 2 ) が 8 0〜 2 0重量部、 好ましくは 7 0 ~ 3 0重量部、 より好ましくは 6 0〜 4 0重量部 (但し ( 1 ) と ( 2 ) の合計は 1 0 0重量部である。) である。 ポリプロピレン樹脂組成物 ( 1 ) が少なすぎると溶融性が低下し、 逆に、 多すぎると折れ皺が生じ易く、 ま た、 成形品の耐傷付性が低下する。  As for the ratio of the hydride (2) of the above-mentioned polypropylene resin composition (1) and the aromatic vinyl compound monoconjugated copolymer, (1) is 20 to 80 parts by weight, preferably 30 to 70 parts by weight. , More preferably 40 to 60 parts by weight, (2) is 80 to 20 parts by weight, preferably 70 to 30 parts by weight, more preferably 60 to 40 parts by weight (provided that (1) and (The total of (2) is 100 parts by weight.) If the amount of the polypropylene resin composition (1) is too small, the meltability decreases. On the other hand, if the amount is too large, wrinkling tends to occur, and the molded article has poor scratch resistance.
付加的成分 (3 )  Additional ingredients (3)
本発明の粉体成形用才レフイン系樹脂組成物は、 ポリプロピレン樹脂 (a) と 才レフィン系熱可塑性エラス卜マー (b) からなるポリプロピレン樹脂組成物 The powdery resin composition for powder molding according to the present invention is a polypropylene resin composition comprising a polypropylene resin (a) and a polypropylene resin (b).
( 1 ) と芳香族ビニル化合物一共役ジェン共重合体の水素化物 (2) 以外に種々 の付加的成分 (3 ) を含有せしめることができる。 代表的な付加的成分 (3 ) と しては、 (3-1) 脂肪酸アミド、 (3-2) 1分子当りの平均水酸基数が 1 ~ 8個、 数平均分子量が 5 0 0~2 0, 0 0 0で、 ヨウ素価が 1 0 0以下である水酸基含 有炭化水素系重合体、 (3-3) 少なくともシクロへキサンジカルボン酸または その誘導体を含有する多価カルボン酸成分 (A) と、 (j) それぞれヒドロキシ ル基が結合した 2個の炭素原子の間に水素原子が結合していない炭素原子が挟ま れた分子構造を有するアルカンジオール、 および(i i)多価フエノキシアルコー ルを含有するアルコール成分 (B) とを重縮合してなり、 数平均分子量が 7, 5 0 0~ 1 0 0 , 0 0 0であるポリエステル樹脂、 および (3-4) ガラス転移温 度が 6 0°C以上で、 平均一次粒径が 0. 1 〜 1 0 t mである水酸基含有芳香族ビ ニル化合物共重合体が挙げられる。 Various additional components (3) can be contained in addition to (1) and a hydride of an aromatic vinyl compound-conjugated gen copolymer (2). Typical additional components (3) are (3-1) fatty acid amide, (3-2) average number of hydroxyl groups per molecule is 1 to 8, and number average molecular weight is 500 to 20. , A hydroxyl-containing hydrocarbon polymer having an iodine value of 100 or less, (3-3) a polycarboxylic acid component (A) containing at least cyclohexanedicarboxylic acid or a derivative thereof, (J) an alkanediol having a molecular structure in which a carbon atom to which a hydrogen atom is not bonded is sandwiched between two carbon atoms to which a hydroxyl group is bonded, and (ii) a polyvalent phenoxy alcohol A polyester resin having a number average molecular weight of 7,500 to 100,000, and (3-4) a glass transition temperature of 6 obtained by polycondensing an alcohol component (B) containing A hydroxyl group-containing aromatic vinyl compound copolymer having an average primary particle size of 0.1 to 10 tm at 0 ° C. or higher is mentioned. That.
以下、 これらの付加的成分 (3 ) について順次説明する。  Hereinafter, these additional components (3) will be sequentially described.
(3-1) 脂肪酸アミド  (3-1) fatty acid amide
本発明の粉体成形用才レフイン系樹脂組成物に、 さらに、 脂肪酸アミドを配合 すると、 粉体成形における脱型時の耐折り皺性および成形体の耐熱性が改善され ることに加えて、 成形体の室温および高温での耐摩耗性が向上する。 When a fatty acid amide is further added to the powdery refin-based resin composition of the present invention, the creasing resistance during demolding in powder molding and the heat resistance of the molded article are improved. In addition, the wear resistance of the molded body at room temperature and high temperature is improved.
使用する脂肪酸アミドは、 特に制限されないが、 通常、 炭素数が 7以上の高級 脂肪酸の誘導体である第一脂肪酸アミドおよびビス脂肪酸アミドが挙げられる。 高級脂肪酸には飽和脂肪酸および不飽和脂肪酸が含まれる。 飽和高級脂肪酸とし ては、 例えば、 力プリル酸、 ラウリン酸、 トリデシル酸、 ペン夕デシル酸、 パル ミチン酸、 ステアリン酸、 ァラキン酸、 リグノセリン酸などが挙げられる。 不飽 和脂肪酸としては、 例えば、 ゥンデシル酸、 才レイン酸、 エライジン酸、 ソルビ ン酸、 リノール酸などが挙げられる。  The fatty acid amide used is not particularly limited, but usually includes primary fatty acid amides and bis fatty acid amides, which are derivatives of higher fatty acids having 7 or more carbon atoms. Higher fatty acids include saturated and unsaturated fatty acids. Examples of the saturated higher fatty acids include caprylic acid, lauric acid, tridecylic acid, penicillic acid, palmitic acid, stearic acid, araquinic acid, and lignoceric acid. Examples of the unsaturated fatty acids include pendecylic acid, oleic acid, elaidic acid, sorbic acid, and linoleic acid.
脂肪酸アミドの具体例としては、 ステアロアミド、 才レイオアミド、 パルミ卜 アミド、 ヤシ油脂肪酸アミド、 メチレンビス—ステアロアミド、 エチレンビス— ステアロアミド、 才キシステアリン酸のエチレンジァミンなどが挙げられる。 こ れらは 1種または 2種以上を組み合わせて使用することができる。 これらの脂肪 酸アミドのなかでも不飽和脂肪酸アミドが好ましい。 才レイ才アミドが特に好ま しい。  Specific examples of the fatty acid amide include stearamide, peroxy amide, palmito amide, coconut fatty acid amide, methylene bis-stearamide, ethylene bis-stearamide, and ethylenediamine of xistearic acid. These can be used alone or in combination of two or more. Among these fatty acid amides, unsaturated fatty acid amides are preferred. Taylor amide is particularly preferred.
脂肪酸アミドの量は、 ポリプロピレン樹脂組成物 ( 1 ) と芳香族系ビニル化合 物—共役ジェン共重合体の水素化物 (2 ) の合計 1 0 0重量部に対して、 1 〜2 0重量部が好ましい。 脂肪酸アミドの量が過度に少ないと、 高温 (約 6 0 °C程 度) 時の成形体の耐摩耗性が改善されず、 逆に過度に多いと成形体の表面にプリ ードし易くなり、 例えば、 自動車用インストルメントパネル用などの内装品に使 用するとポリゥレタン発泡体との接着性が低下する恐れがある。  The amount of the fatty acid amide is 1 to 20 parts by weight based on 100 parts by weight of the total of the polypropylene resin composition (1) and the hydride (2) of the aromatic vinyl compound-conjugated gen copolymer. preferable. If the amount of the fatty acid amide is too small, the wear resistance of the molded article at high temperatures (about 60 ° C) is not improved, and if it is excessively large, the molded article is liable to be spread on the surface of the molded article. However, for example, when used for interior parts such as those for instrument panels for automobiles, the adhesiveness with polyurethane foam may be reduced.
( 3 - 2 ) 水酸基含有炭化水素系重合体  (3-2) Hydrocarbon-containing hydrocarbon polymer
本発明の粉体成形用才レフイン系樹脂組成物に、 さらに、 特定の水酸基含有炭 化水素系重合体を配合すると、 粉体成形における脱型時の耐折り皺性および成形 体の耐熱性および耐摩耗性が改善されるとともに、 成形体のポリゥレタン発泡体 との接着性が向上する。  When a specific hydroxyl group-containing hydrocarbon-based polymer is further added to the powdery refin-based resin composition of the present invention, the crease resistance at the time of demolding during powder molding and the heat resistance of the molded body are improved. The abrasion resistance is improved, and the adhesion of the molded body to the polyurethane foam is improved.
ここで使用する水酸基含有炭化水素系重合体は、 分子内に 1分子当りの平均水 酸基数 (以下 「水酸基数」 という。) が 1〜8個の水酸基を有し、 数平均分子量 が 5 0 0 ~ 2 0 , 0 0 0の範囲、 好ましくは 1 , 0 0 0 ~ 1 5 , 0 0 0の範囲であ リ、 分子中に含まれる二重結合がヨウ素価として 1 0 0以下の重合体である。 このような水酸基含有炭化水素系重合体の製造方法は、 特に制限されず、 例え ば、 各種ビニルモノマー、 ジェン系モノマーをラジカル重合、 ァニオン重合、 力 チ才ン重合などの重合方法により重合し、 末端を水酸基化したうえで、 必要に応 じて公知の手法で水素添加する方法が挙げられる。 その他の方法としては、 イソ プチレン一ジェン系モノマー共重合体、 または才レフィン (例えばエチレン、 プ ロピレンなど) 一非共役ジェン (または共役ジェン) 共重合体を酸化分解した後、 還元する方法などが挙げられる。 なかでも、 水酸基含有ジェン系重合体の水素添 加物が好ましく、 例えば、 両末端に水酸基を有するポリブタジエンポリオールの 二重結合を水素添加したものが好ましい。 The hydroxyl group-containing hydrocarbon polymer used herein has an average number of hydroxyl groups per molecule (hereinafter referred to as “number of hydroxyl groups”) of 1 to 8 in the molecule, and has a number average molecular weight of 50. A polymer having an iodine value of 100 or less as a double bond contained in the molecule thereof, in the range of 0 to 200, 000, preferably in the range of 1, 000 to 150, 000. It is. The method for producing such a hydroxyl group-containing hydrocarbon polymer is not particularly limited.For example, various vinyl monomers and gen monomers are polymerized by polymerization methods such as radical polymerization, anion polymerization, and force polymerization. A method in which a terminal is hydroxylated and hydrogenation is carried out by a known method as necessary. Other methods include oxidative decomposition of an isobutylene-monomer copolymer, or a non-conjugated gen (or conjugated gen) copolymer, such as ethylene or propylene, and then reducing it. No. Of these, a hydrogenated product of a hydroxyl group-containing gen-based polymer is preferable. For example, a hydrogenated double bond of a polybutadiene polyol having a hydroxyl group at both terminals is preferable.
前記水酸基含有ジェン系重合体は、 共役ジェンまたは、 共役ジェンとビニルモ ノマーを公知の方法、 例えば、 ラジカル重合、 ァニオン重合などによって得るこ とができる。 ラジカル重合による場合、 過酸化水素を重合開始剤として重合すれ ば、 直接、 生成重合体末端に水酸基を有する共役ジェン系ポリマーまたはコポリ マーが得られる。 ァニオン重合による場合、 先ずァニオン重合触媒を用いて末端 に、 例えば、 アルカリ金属が結合したリビングポリマーを重合し、 次いでリピン グポリマーとモノエポキシ化合物、 ホルムアルデヒドなどを反応させた後、 加水 分解することにより末端に水酸基を有するポリマーを得ることができる。 原料の 共役ジェンとしては、 1 , 3—ブタジエン、 イソプレン、 クロ口プレンなどが挙 げられるが、 なかでも 1, 3 —ブタジエンが好ましい。 共重合成分としては、 ス チレン、 アクリロニトリル、 メチルァクリレー卜、 メチルメタクリレー卜、 酢酸 ビニルなどのビニルモノマーが挙げられる。 共重合成分の使用量は総モノマ一量 の 3 0重量%以下が好ましい。  The hydroxyl group-containing gen-based polymer can be obtained from a conjugated gen or a conjugated gen and a vinyl monomer by a known method, for example, radical polymerization, anion polymerization or the like. In the case of radical polymerization, a conjugated diene polymer or copolymer having a hydroxyl group at the terminal of the produced polymer can be directly obtained by polymerizing hydrogen peroxide as a polymerization initiator. In the case of anion polymerization, first, an anion polymerization catalyst is used to polymerize, for example, a living polymer to which an alkali metal is bonded, and then a lipopolymer is reacted with a monoepoxy compound, formaldehyde, etc., and then hydrolyzed. To obtain a polymer having a hydroxyl group. Examples of the conjugated gen of the raw material include 1,3-butadiene, isoprene, and chloroprene. Among them, 1,3-butadiene is preferable. Examples of the copolymerization component include styrene, acrylonitrile, methyl acrylate, methyl methacrylate, and vinyl acetate such as vinyl acetate. The use amount of the copolymer component is preferably 30% by weight or less of the total amount of the monomers.
前記水酸基含有ジェン系重合体の水素化物は、 ニッケル、 コバルト、 白金、 パ ラジウム、 ルテニウム、 ロジウムなどの水素化触媒を単独でまたは担体に担持し たものを用いて、 常法により、 水素加圧下において水素添加することにより製造 される。 その際、 成形体とポリウレタン発泡体との充分な密着性、 耐候性を得る ために、 水酸基含有ジェン系重合体中に含まれる二重結合は、 ヨウ素価が 1 0 0 以下、 好ましくは 5 0以下、 さらに好ましくは 2 0以下となるように水素添加さ れる。 上記の水酸基含有炭化水素系重合体は、 市販品 (三菱化学社製ポリテール (低 分子量ポリオレフイン系ポリオール)) があり、 入手可能である。 The hydride of the hydroxyl group-containing gen-based polymer can be obtained by a conventional method under hydrogen pressure using a hydrogenation catalyst such as nickel, cobalt, platinum, palladium, ruthenium, and rhodium alone or using a carrier supported on a carrier. It is produced by hydrogenation in At this time, in order to obtain sufficient adhesion and weather resistance between the molded article and the polyurethane foam, the double bond contained in the hydroxyl group-containing gen-based polymer has an iodine value of 100 or less, preferably 500 or less. The hydrogenation is carried out below, more preferably to 20 or less. The above hydroxyl group-containing hydrocarbon polymer is commercially available (Polytail (low molecular weight polyolefin polyol) manufactured by Mitsubishi Chemical Corporation) and is available.
上記水酸基含有炭化水素系重合体の量は、 ポリプロピレン樹脂組成物 ( 1 ) と 芳香族系ビニル化合物—共役ジェン共重合体の水素化物 (2 ) の合計 1 0 0重量 部に対して、 1〜2 0重量部が好ましい。 2 ~ 1 0重量部がより好ましい。 使用 量が少なすぎると成形体とポリゥレ夕ン発泡体との接着性が不充分となリ、 逆に、 多すぎると水酸基含有炭化水素系重合体の分子量によっては成形体表面にプリ一 ドする恐れがある。  The amount of the above-mentioned hydroxyl group-containing hydrocarbon-based polymer is 1 to 100 parts by weight based on a total of 100 parts by weight of the polypropylene resin composition (1) and the hydride of the aromatic vinyl compound-conjugated gen copolymer (2). 20 parts by weight is preferred. The content is more preferably 2 to 10 parts by weight. If the amount is too small, the adhesiveness between the molded article and the polyurethane foam is insufficient, while if it is too large, the molded article surface is pre-deposited depending on the molecular weight of the hydroxyl-containing hydrocarbon polymer. There is fear.
また、 本発明の粉体成形用才レフイン系樹脂組成物には、 上記水酸基含有炭化 水素系重合体 (3 - 2 ) とともに、 成形体とポリウレタン発泡体との接着性を高 めるために、 該発泡体形成原料液中のイソシァネー卜化合物との反応を促進させ る触媒を配合することが好ましい。 そのような触媒の具体例としては、 ジブチル 錫ジラウレ一卜、 ジブチル錫ジステアレー卜などの有機錫化合物、 テ卜ラアルキ ルエチレンジァミン、 N, N ' —ジアルキルベンジルァミンなどの第 3級ァミン 化合物、 ナフテン酸コバルト、 ステアリン酸亜鉛などの脂肪酸塩、 アルカリ金属 のカルボン酸塩などが挙げられる。 これらの触媒の使用量は、 本発明の粉体成形 用才レフィン系樹脂組成物 1 0 0重量部当り 0 . 0 1 ~ 5重量部程度である。  In addition, together with the hydroxyl group-containing hydrocarbon-based polymer (3-2), the powdery molded refin-based resin composition of the present invention contains, in order to enhance the adhesiveness between the molded article and the polyurethane foam, It is preferable to add a catalyst that promotes the reaction with the isocyanate compound in the foam-forming raw material liquid. Specific examples of such catalysts include organic tin compounds such as dibutyltin dilaurate and dibutyltin distearate; tertiary amines such as tetraalkylethylenediamine and N, N'-dialkylbenzylamine. Compounds, salts of fatty acids such as cobalt naphthenate, zinc stearate, and carboxylate salts of alkali metals. The amount of these catalysts to be used is about 0.01 to 5 parts by weight per 100 parts by weight of the refining resin composition for powder molding of the present invention.
また、 本発明の粉体成形用才レフイン系樹脂組成物には、 上記水酸基含有炭化 水素系重合体 (3 - 2 ) とともに、 変性シリコーンオイルを含有せしめることが 好ましい。  In addition, it is preferred that the modified refin-based resin composition for powder molding of the present invention contains a modified silicone oil in addition to the above-mentioned hydroxyl-containing hydrocarbon polymer (3-2).
ここで使用する変性シリコーンオイルは、 ポリシロキサンに官能基を導入した シリコーンオイルであり、 官能基を側鎖、 両末端、 側鎖と両末端の両方および片 末端に導入したものの 4種に大別される。 両末端導入型が好ましい。 官能基の具 体例としては、 カルボキシル基、 水酸基、 メルカプト基、 アミノ基、 エポキシ基、 不飽和結合 (ァクリロイロキシ基、 メタクリロイロキシ基、 ビニル基など) が挙 げられ、 これらのいずれか "1種または 2種以上が導入される。 好ましい官能基は、 ポリウレタン発泡体の原料のイソシァネー卜と反応性の活性水素を有するもので あって、 水酸基、 ァクリロイロキシ基およびメタクリロイロキシ基が挙げられる。 変性シリコーンオイルの分子量は格別限定されず、 オリゴマーから数万程度の分 子量を有するものが用いられ、 通常 1 , 000〜 30, 00◦程度である。 ¾々 の変性シリコーンオイルが市販されている。 代表的な変性シリコーンオイルの化 学構造を一般式 ( 1 ) 〜 (4) に示すが、 これらに限定されるものではない。 しl。 CH3 CH3 CH3 The modified silicone oil used here is a silicone oil in which a functional group has been introduced into polysiloxane, and is roughly classified into four types: those in which the functional group has been introduced into the side chain, both ends, both the side chain and both ends, and one end. Is done. Both terminal introduction type is preferable. Specific examples of the functional group include a carboxyl group, a hydroxyl group, a mercapto group, an amino group, an epoxy group, and an unsaturated bond (such as an acryloyloxy group, a methacryloyloxy group, and a vinyl group). Preferred functional groups are those having active hydrogen reactive with the isocyanate as the raw material of the polyurethane foam, and include a hydroxyl group, an acryloyloxy group and a methacryloyloxy group. The molecular weight of the oil is not particularly limited. It has a molecular weight of about 1,000 to about 30,000 °. Various modified silicone oils are commercially available. The chemical structures of typical modified silicone oils are shown by general formulas (1) to (4), but are not limited thereto. And l. CH3 CH3 CH3
I I I I  I I I I
側鎖導入型 H,C-SiO(SiO)m(SiO)n ITSi-CH a) H, C-SiO (SiO) m (SiO) n ITSi-CH a)
I I
CH3 CH 3 R CH 3 CH 3 CH 3 R CH 3
側鎖/両末端導入型 R (2) Side chain / both ends introduced type R (2)
c c
Figure imgf000012_0001
H
Figure imgf000012_0001
H
3  Three
3 Three
'3 3 ,3  '3 3, 3
両末端導入型 R-SiO(SiO)ra(SiO)nSi-R (3) R-SiO (SiO) ra (SiO) n Si-R (3)
CH3 CH3 CH3 CH3  CH3 CH3 CH3 CH3
CH3 CH 3 CH 3 CH 3
片末端導入型 H3C-SiO(SiO)m(SiO)nSi-R (4) H 3 C-SiO (SiO) m (SiO) n Si-R (4)
CH3 CH '3q CH¾ 3 CH  CH3 CH '3q CH¾ 3 CH
(m、 n=1〜約 300、 R=官能基) 官能基 R : - C3H6NH2、 - Cク 2 H"44C、00H、 -C, 3H"R60、C¾C¾0H (m, n = 1~ about 300, R = functional group) functional group R: - C 3 H 6 NH 2, - C click 2 H "4 4C, 00H, -C, 3H" R 60, C¾C¾0H
- C3H60CH2CH- CH2、 -C3H60C0C=CH2 - C 3 H 6 0CH 2 CH- CH 2, -C 3 H 6 0C0C = CH 2
. \ / 1  . \ / 1
0 CH3 0 CH 3
- C3H6SHなど 変性シリコーンオイルの量は、 ポリプロピレン樹脂組成物 (1 ) と芳香族系ビ ニル化合物 -共役ジェン共重合体の水素化物 (2) と上記水酸基含有炭化水素系 重合体 (3) との合計 1 00重量部に対して、 通常 1 0重量部以下、 好ましくは 0.5〜 1 0重量部、 より好ましくは 0.5〜5重量部である。 変性シリコーン オイルの使用割合が少なすぎると成形体の耐摩耗性の改善効果が小さい。 逆に、 多すぎると成形体表面にブリードし、 ポリウレタン発泡体との接着性を低下させ る恐れがある。 - The amount of modified silicone oil such as C 3 H 6 SH is a polypropylene resin composition (1) and the aromatic vinyl-compound - conjugated diene copolymer hydrides (2) and the hydroxyl group-containing hydrocarbon The amount is usually 10 parts by weight or less, preferably 0.5 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, based on 100 parts by weight in total with the polymer (3). If the proportion of the modified silicone oil is too small, the effect of improving the abrasion resistance of the molded product is small. Conversely, if the amount is too large, it may bleed on the surface of the molded product, which may reduce the adhesiveness to the polyurethane foam.
( 3 -3 ) 多価カルボン酸成分と多価アルコールとから構成されるポリエステ ル  (3-3) Polyester composed of polyhydric carboxylic acid component and polyhydric alcohol
本発明の粉体成形用才レフイン系樹脂組成物に、 さらに、 特定のポリエステル を配合すると、 粉体成形における脱型時の耐折り皺性、 および成形体の耐摩耗性 および耐熱性が改善されるとともに、 成形体のポリゥレタン発泡体との接着性が 向上する。 また、 粉体成形用才レフイン系樹脂組成物は製造が容易である。 ここで使用するポリエステル (3-3) は、 シクロへキサンジカルボン酸また はその誘導体を含有する多価カルボン酸成分 (A) と、 (i) それぞれヒドロキ シル基が結合した 2個の炭素原子の間に水素原子が結合していない炭素原子が挟 まれた分子構造を有するアルカンジオール、 および(i i)多価フエノキシアルコ ールを含有するアルコール成分 (B) とを重縮合してなり、 数平均分子量が 7, 500 ~ 1 00, 000であるポリエステル樹脂 (以下、 単に 「ポリエステル樹 脂」 という。) である。  When a specific polyester is further added to the powder-refined refin-based resin composition of the present invention, the creasing resistance during demolding in powder molding, and the abrasion resistance and heat resistance of the molded article are improved. In addition, the adhesiveness of the molded body to the polyurethane foam is improved. In addition, the powdery molded refin-based resin composition is easy to produce. The polyester (3-3) used here is composed of a polycarboxylic acid component (A) containing cyclohexanedicarboxylic acid or a derivative thereof, and (i) two carbon atoms each having a hydroxyl group bonded thereto. An alkanediol having a molecular structure in which a carbon atom having no hydrogen atom bonded between the alkanediol and (ii) an alcohol component (B) containing a polyvalent phenoxy alcohol is polycondensed to obtain a number average molecular weight Is a polyester resin of 7,500 to 100,000 (hereinafter simply referred to as “polyester resin”).
ポリエステル樹脂 (3-3) のガラス転移温度は、 通常 20°C以上、 好ましく は 30 ~ 1 00°C, より好ましくは 40 ~ 80 °C、 最も好ましくは 50~70°C である。 また、 水酸基価は、 通常、 O. I Z Omg KOH/g 好ましくは 1 〜1 0mg KOHZg、 より好ましくは 2〜 5 m g K O H/gの範囲である。 このポリエステル樹脂の数平均分子量 (ゲルパ一ミエ一シヨンクロマ卜グラフ ィ一 (G P C) で測定した標準ポリスチレン換算の数平均分子量) は、 7, 50 0〜 1 00, 000の範囲であり、 好ましくは 1 0, 000〜50, 000、 より 好ましくは Ί 2, 500-30, 000の範囲である。 分子量が過度に小さいと、 本発明の粉体成形用才レフイン系樹脂組成物を用いた成形体の強度特性が低下す る。 逆に、 過度に大きいと、 樹脂組成物中への混和 ·分散性が低下する。  The glass transition temperature of the polyester resin (3-3) is usually 20 ° C or higher, preferably 30 to 100 ° C, more preferably 40 to 80 ° C, and most preferably 50 to 70 ° C. The hydroxyl value is usually in the range of O.I.Z Omg KOH / g, preferably 1 to 10 mg KOHZg, more preferably 2 to 5 mg KOH / g. The number average molecular weight (number average molecular weight in terms of standard polystyrene measured by gel permeation chromatography (GPC)) of this polyester resin is in the range of 7,500 to 100,000, preferably 1 0,000 to 50,000, more preferably Ί2,500-30,000. When the molecular weight is excessively small, the strength characteristics of a molded article using the refin-based resin composition for powder molding of the present invention are reduced. Conversely, if it is too large, the miscibility and dispersibility in the resin composition will decrease.
ポリエステル樹脂 (3-3) の合成に用いる多価カルボン酸成分 (A) は、 少 なくともシクロへキサンジカルボン酸またはその誘導体を含有するものである。 シクロへキサンジカルボン酸の例としては、 その基本骨格として、 シクロへキサ ン環を有し、 1位および、 4位または 3位の炭素にそれぞれカルボキシル基が結 合したシクロへキサン一 1 , 4 —ジカルボン酸およびシクロへキサン— 1 , 3— ジカルボン酸が挙げられる。 なかでも、 シクロへキサン— 1, 4—ジカルボン酸 が好ましい。 The polycarboxylic acid component (A) used in the synthesis of the polyester resin (3-3) It contains at least cyclohexanedicarboxylic acid or a derivative thereof. Examples of cyclohexanedicarboxylic acids include cyclohexanedicyclic acids having a cyclohexane ring as a basic skeleton and a carboxyl group bonded to the 1- and 4-position or 3-position carbons, respectively. —Dicarboxylic acid and cyclohexane— 1,3-dicarboxylic acid. Of these, cyclohexane-1,4-dicarboxylic acid is preferred.
これらのシクロへキサンジカルボン酸の誘導体の例としては、 エステル化合物、 酸ハロゲン化物などが挙げられる。 中でもエステル化合物が好ましく、 メチル、 ェチル、 プロピル、 イソプロピル、 プチル、 ァミル、 へキシルなどの炭素数が 1 ~ 6のアルキル基を有するエステル基を有するものが好ましい。  Examples of these cyclohexanedicarboxylic acid derivatives include ester compounds and acid halides. Among them, an ester compound is preferable, and a compound having an ester group having an alkyl group having 1 to 6 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, amyl, and hexyl, is preferable.
シクロへキサン— 1 , 4ージカルボン酸および 1, 3—ジカルボン酸の具体例 としては、 シクロへキサン— 1, 4 —ジカルボン酸、 2—メチル一シクロへキサ ンー 1, 4ージカルボン酸、 2—ェチルーシクロへキサン一 1, 4ージカルボン 酸、 2 _プロピルーシクロへキサン— 1, 4ージカルボン酸、 2— t—プチルー シクロへキサン一 1, 4—ジカルボン酸、 2 - t 一プチルーシクロへキサン一 1, 4ージカルボン酸、 2, 3 一ジメチル―シクロへキサン— 1, 4 —ジカルボン酸、 2, 3—ジェチルーシクロへキサン— 1, 4ージカルボン酸、 2, 3ージプロピル —シクロへキサン一 1, 4ージカルボン酸、 2, 3—ジブチルーシクロへキサン - 1 , 4 -ジカルボン酸、 2—メチルー 3—ェチルーシクロへキサン— 1 , 4— ジカルボン酸、 2—メチルー 3 —プロピル一シクロへキサン— Ί , 4—ジカルボ ン酸、 2 —メチルー 3—プチルーシクロへキサン— 1, 4—ジカルボン酸、 2— ェチル一 3 —プロピルーシクロへキサン— 1, 4 —ジカルボン酸、 2—ェチルー 3—プチルーシクロへキサン一 1 , 4—ジカルボン酸、 2—メチルー 3— t —ブ チルーシクロへキサン一 1, 4ージカルボン酸などのシクロへキサン一 1 , 4— ジカルボン酸など、 およびこれらに対応する 1 , 3—ジカルボン酸が挙げられる。 多価カルボン酸成分 (A ) 中のシクロへキサンジカルボン酸の割合は、 通常 5 0重量%以上、 好ましくは 8 0重量%以上、 より好ましくは 9 0重量%以上であ る。  Specific examples of cyclohexane-1,4-dicarboxylic acid and 1,3-dicarboxylic acid include cyclohexane-1,4-dicarboxylic acid, 2-methyl-cyclohexane-1,4-dicarboxylic acid, and 2-ethyl-cyclocarboxylic acid. Hexane-1,4-dicarboxylic acid, 2-propyl-cyclohexane-1,4-dicarboxylic acid, 2-t-butyl-cyclohexane-1,4-dicarboxylic acid, 2-t-butyl-cyclohexane-1,4 Dicarboxylic acid, 2,3-dimethyl-cyclohexane-1,4-dicarboxylic acid, 2,3-diethylcyclohexane-1,4-dicarboxylic acid, 2,3-dipropylcyclohexane-1,4-dicarboxylic acid, 2 1,3-Dibutyl-cyclohexane-1,4-dicarboxylic acid, 2-methyl-3-ethyl-cyclohexane-1,4-dicarboxylic acid, 2-methyl-3-propyl Chlohexane-Ί, 4-dicarboxylic acid, 2-methyl-3-butyl-cyclohexane-1,4-dicarboxylic acid, 2-ethyl-13-propylpropylcyclohexane-1,4-dicarboxylic acid, 2-ethylethyl Cyclohexane-1,1,4-dicarboxylic acid such as 3-butyl-cyclohexane-1,4-dicarboxylic acid, 2-methyl-3-t-butyl-cyclohexane-1,4-dicarboxylic acid, and the corresponding 1 , 3-dicarboxylic acid. The proportion of cyclohexanedicarboxylic acid in the polycarboxylic acid component (A) is usually at least 50% by weight, preferably at least 80% by weight, more preferably at least 90% by weight.
また、 多価カルボン酸成分には、 上記以外の他の多価カルボン酸を含有するこ とができる。 他の多価カルボン酸としては、 例えば、 芳香族多価カルボン酸、 鎖 状または分岐状の脂肪族多価カルボン酸またはこれらの誘導体を挙げることがで きる。 これらの多価カルボン酸の誘導体の例としては、 エステル化合物、 酸ハロ ゲン化物などが挙げられる。 中でもエステル化合物が好ましく、 メチル、 ェチル、 プロピル、 イソプロピル、 プチル、 ァミル、 へキシルなどの炭素数が 1 ~ 6のァ ルキル基を有するエステル基を有するものが好ましい。 The polycarboxylic acid component may contain other polycarboxylic acids other than the above. Can be. Examples of other polycarboxylic acids include aromatic polycarboxylic acids, linear or branched aliphatic polycarboxylic acids, and derivatives thereof. Examples of these polycarboxylic acid derivatives include ester compounds and acid halides. Among them, ester compounds are preferred, and those having an ester group having an alkyl group having 1 to 6 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, amyl, and hexyl, are preferred.
なお、 多価カルボン酸成分には、 ポリエステル樹脂の効果が損なわれない範囲 で、 1価カルボン酸またはこれらの誘導体を含有することができ、 その許容量は、 多価カルボン酸成分中、 通常〗 0重量%以下、 好ましくは 5重量%以下、 より好 ましくは 2重量%以下である。 1価カルボン酸の誘導体の例としては、 上記の他 の多価力ルボン酸の誘導体の例として挙げたものと同じものを挙げることができ る。  Incidentally, the polyvalent carboxylic acid component may contain a monovalent carboxylic acid or a derivative thereof as long as the effect of the polyester resin is not impaired. 0% by weight or less, preferably 5% by weight or less, more preferably 2% by weight or less. Examples of the monovalent carboxylic acid derivative include the same as the above-mentioned examples of the other polyvalent rubonic acid derivatives.
ポリエステル樹脂の合成に用いられる多価アルコール成分 (B ) は、 (i ) そ れぞれヒドロキシル基が結合した 2個の炭素原子の間に水素原子が結合していな い炭素原子が挟まれた分子構造を有するアルカンジオール (以下、 「ヒンダード グリコール」 と記すことがある。) および(i i )多価フエノキシアルコールを含有 するものである。  The polyhydric alcohol component (B) used in the synthesis of the polyester resin has (i) a non-hydrogen bonded carbon atom between the two carbon atoms bonded to the hydroxyl groups, respectively. It contains an alkanediol having a molecular structure (hereinafter sometimes referred to as "hindered glycol") and (ii) a polyhydric phenoxy alcohol.
ヒンダードグリコールの具体例としては、 2, 2 —ジメチルー 1, 3 —プロパ ンジ才一ル、 2, 2—ジェチル— 1, 3 —プロパンジオール、 2, 2—ジプロピル - 1 , 3 一プロパンジ才一ル、 2 , 2 -ジブチル— 1, 3 —プロパンジオール、 2 —メチルー 2—へキシルー 1 , 3 —プロパンジ才一ル、 2—メチルー 2—ペンチ ル— 1 , 3—プロパンジオール、 2—ェチルー 2—プチルー 1, 3—プロパンジ オール、 2—ェチル— 2 —ペンチルー 1, 3—プロパンジオールなどが挙げられ る。 これらの中でも、 2, 2—ジェチルー 1, 3—プロパンジオール、 2 , 2—ジ プロピル— 1, 3—プロパンジ才一ル、 2, 2 —ジブチル一 1, 3—プロパンジ才 ール、 2 —ェチル— 2 —プチルー 1 , 3 —プロパンジオール、 2 —メチル— 2— ペンチルー 1, 3—プロパンジオールが好ましい。  Specific examples of hindered glycols include 2,2-dimethyl-1,3-propanediyl, 2,2-getyl-1,3-propanediol, 2,2-dipropyl-1,3,3-propanediyl 2, 2-dibutyl-1,3-propanediol, 2-methyl-2-hexyl-1,3-propanediyl, 2-methyl-2-pentyl-1,3-propanediol, 2-ethyl-2- —Butyl-1,3-propanediol, 2-ethyl-2-pentyl-1,3-propanediol, and the like. Among them, 2,2-diethyl-1,3-propanediol, 2,2-dipropyl-1,3-propanediyl, 2,2-dibutyl-1,3-propanediyl, 2-ethyl —2—butyl-1,3-propanediol and 2-methyl-2-pentyl-1,3-propanediol are preferred.
多価アルコール成分中の (i i ) 多価フエノキシアルコールの例としては、 多 価フエノールとアルキレンォキサイドとの付加反応により得られるものであって, 多価フエノール中のフエノール性水酸基をエーテル結合を介したアルコール性水 酸基に変性したものが挙げられる。 Examples of (ii) polyphenolic alcohol in the polyhydric alcohol component include those obtained by the addition reaction of polyhydric phenol and alkylene oxide, Examples include those obtained by modifying a phenolic hydroxyl group in a polyhydric phenol to an alcoholic hydroxyl group via an ether bond.
多価フエノールとしては、 例えば、 カテコール、 レゾルシン、 ヒドロキノン、 4一メチルピロカテコール、 4ーメチルレゾルシノール、 5—メチルレゾルシノ —ル、 2—メチルヒドロキノンなどの 2価フエノール; 1, 2, 3—ベンゼン卜 リオール、 1 , 2, 4一ベンゼン卜リオ一ル、 1, 3, 5—ベンゼントリオールな どの 3価フエノール; 4, 4'ージヒドロキシジフエニルメタン、 2, 2—ビス (4 '―ヒドロキシフエニル) プロパン (ビスフエノール A;)、 3, 4一ビス (4 'ーヒドロキシフエニル) へキサン、 4, 4', 4 卜リフエニルメタントリ オールなどの非縮合多環式フエノールが挙げられる。 これらのなかでも、 2, 2 一ビス (4 'ーヒドロキシフエニル) プロパン (ビスフエノール A) が好ましい。 なお、 ビフエ二ルー 4, 4'ージオール、 ビフエ二ルー 2, 2 '―ジオール、 ビ フエ二ルー 2, 3 '—ジオールなどのヒドロキシビフエニル化合物も使用するこ とができる。 また、 アルキレンオキサイドとしては、 エチレンオキサイド、 プロ ピレン才キサイドなどが挙げられる。  Examples of the polyvalent phenol include divalent phenols such as catechol, resorcinol, hydroquinone, 4-methylpyrocatechol, 4-methylresorcinol, 5-methylresorcinol, and 2-methylhydroquinone; 1,2,3-benzenetriol Trivalent phenols such as 1,2,4-benzenetriol and 1,3,5-benzenetriol; 4,4'-dihydroxydiphenylmethane, 2,2-bis (4'-hydroxyphenyl) Non-condensed polycyclic phenols such as propane (bisphenol A;), 3,4-bis (4'-hydroxyphenyl) hexane, and 4,4 ', 4 triphenylmethanetriol. Of these, 2,2-bis (4'-hydroxyphenyl) propane (bisphenol A) is preferred. In addition, hydroxybiphenyl compounds such as biphenyl 2,4'-diol, biphenyl 2,2'-diol, and biphenyl 2,3'-diol can also be used. Examples of the alkylene oxide include ethylene oxide and propylene oxide.
多価フエノキシアルコールの具体例としては、 4, 4 '―ジヒドロキシジフエ ニルメタンのエチレンォキサイド付加物、 ビスフエノール Aのエチレン才キサイ ド付加物、 ビフエニル— 4, 4 'ージオールのエチレン才キサイド付加物などが 挙げられる。 これらの中でも、 ビスフエノール Aのエチレンオキサイド付加物が 好ましい。  Specific examples of polyhydric phenolic alcohols include ethylene oxide adducts of 4,4'-dihydroxydiphenylmethane, ethylene adducts of bisphenol A, and ethylene adducts of biphenyl-4,4'-diols. Oxides and the like. Among these, an ethylene oxide adduct of bisphenol A is preferred.
多価アルコール成分中の前記 ( i ) ヒンダードグリコールおよび (i i) 多価 フエノキシアルコールの割合は、 通常 8 0〜 1 0 0重量%、 好ましくは 9 0〜 1 0 0重量%、 より好ましくは 9 5〜1 00重量%でぁる。  The ratio of (i) the hindered glycol and (ii) the polyvalent phenoxy alcohol in the polyhydric alcohol component is usually 80 to 100% by weight, preferably 90 to 100% by weight, and more preferably. Is 95 to 100% by weight.
また、 ( i ) ヒンダードグリコールと (i i) 多価フエノキシアルコールとの割 合は、 モル比で 5/9 5~5 0ノ5 0、 好ましくは 7 9 3〜4 0/6 0、 さら に好ましくは 1 0ノ9 0~3 0 7 0である。  The ratio of (i) hindered glycol to (ii) polyhydric phenoxy alcohol is 5/95 to 50/50 in terms of molar ratio, preferably 793-40 / 60, More preferably, the number is from 100 to 300.
多価アルコール成分には、 他の多価アルコールを含有することができ、 その具 体例としては、 前記ヒンダードグリコール以外の他のアルカンジオール、 シクロ へキサンジオール、 芳香族ジオールなどを挙げることができる。 なお、 多価アルコール成分中には、 本発明の効果を損なわない範囲で 1価アル コールを含有せしめてもよく、 その許容量は、 多価アルコール成分中に通常 1 0 重量%以下、 好ましくは 5重量%以下、 より好ましくは 3重量%以下である。 ポリエステル樹脂 (3-3) は、 例えば、 多価カルボン酸成分 (A) と多価ァ ルコール成分 (B) とを重縮合させることにより合成することができる。 The polyhydric alcohol component can contain another polyhydric alcohol, and examples of the specific examples thereof include other alkane diols other than the above-mentioned hindered glycol, cyclohexane diol, aromatic diol, and the like. . The polyhydric alcohol component may contain monohydric alcohol as long as the effects of the present invention are not impaired. The allowable amount is usually 10% by weight or less, preferably at most 10% by weight in the polyhydric alcohol component. It is at most 5% by weight, more preferably at most 3% by weight. The polyester resin (3-3) can be synthesized, for example, by polycondensing a polyvalent carboxylic acid component (A) and a polyvalent alcohol component (B).
重縮合反応は、 常法に従えばよく、 例えば、 反応温度は 1 00~ 3 0 0°C、 好 ましくは 1 5 0〜2 8 0 °C、 さらに好ましくは 1 8 0~ 2 3 0°Cである。 溶媒と しては、 トルエン、 キシレンなどの水と共沸する非水溶性の有機溶媒が挙げられ る。 反応の圧力は、 0. "!〜 2 0 0 mmH g ( 1 . 3 x 1 02〜2. 7 x 1 05P a)、 好ましくは 0. 5〜1 O O mmH g ( 6. 6 x 1 02~ 1 . 3 x 1 05P a)、 より好 ましくは 1 〜3 0 mmH g ( 1 . 3 x 1 03~ 4. 0 χ 1 04P a) である。 なお、 反応を不活性ガスの存在下で行うことも可能である。 The polycondensation reaction may be performed according to a conventional method.For example, the reaction temperature is 100 to 300 ° C, preferably 150 to 280 ° C, and more preferably 180 to 230 ° C. ° C. Examples of the solvent include water-insoluble organic solvents azeotropic with water, such as toluene and xylene. The pressure of the reaction, 0. "! ~ 2 0 0 mmH g (1. 3 x 1 0 2 ~2. 7 x 1 0 5 P a), preferably 0. 5~1 OO mmH g (6. 6 x 10 2 to 1.3 x 10 5 Pa), more preferably 1 to 30 mmHg (1.3 x 10 3 to 4.0 χ 10 4 Pa). It is also possible to carry out the reaction in the presence of an inert gas.
重縮合反応には、 従来から使用されているエステル化触媒、 例えば、 P—トル エンスルホン酸、 硫酸、 リン酸などのブレンステッド酸;酢酸カルシウム、 酢酸 亜鉛、 酢酸マンガン、 ステアリン酸亜鉛、 アルキル錫オキサイド、 ジアルキル錫 オキサイド、 チタンアルコキサイドなどの有機金属化合物;酸化錫、 酸化アンチ モン、 酸化チタン、 酸化バナジウムなどの金属酸化物などが用いられる。 なかで も、 得られたポリエステル樹脂の酸化安定性が良好なため、 周期律表第 IV族の 有機金属化合物が好ましい。  For the polycondensation reaction, esterification catalysts conventionally used, for example, Bronsted acids such as P-toluenesulfonic acid, sulfuric acid, phosphoric acid; calcium acetate, zinc acetate, manganese acetate, zinc stearate, alkyl tin Organic metal compounds such as oxides, dialkyltin oxides, and titanium alkoxides; metal oxides such as tin oxide, antimony oxide, titanium oxide, and vanadium oxide are used. Among them, organometallic compounds belonging to Group IV of the periodic table are preferable because the obtained polyester resin has good oxidation stability.
上記のポリエステル樹脂は、 前記のポリプロピレン樹脂組成物 (1 ) と芳香族 系ビニル化合物一共役ジェン共重合体の水素化物 (2) の合計 1 0 0重量部に対 して、 2〜 3 0重量部、 好ましくは 5〜 2 0重量部の割合で用いられる。 ポリエ ステル樹脂の添加量が過度に少ないと、 成形体とポリウレタン発泡体との接着性 が十分に改良されず、 逆に過度に多いと接着性は飽和状態に達し、 不経済である だけでなく成形体の強度が低下する恐れがある。  The polyester resin is used in an amount of 2 to 30 parts by weight based on a total of 100 parts by weight of the polypropylene resin composition (1) and the hydride (2) of the aromatic vinyl compound-conjugated gen copolymer. Parts, preferably 5 to 20 parts by weight. If the added amount of the polyester resin is too small, the adhesion between the molded article and the polyurethane foam is not sufficiently improved.On the other hand, if the added amount is too large, the adhesion reaches a saturated state, which is uneconomical. There is a possibility that the strength of the molded body is reduced.
ポリエステル樹脂の使用に際しては、 成形体とポリウレタン発泡体との接着性 When using polyester resin, the adhesion between the molded body and polyurethane foam
(密着性) を高めるために、 該発泡体形成原料液中のイソシァネー卜化合物との 反応を促進させる触媒を配合することが好ましい。 その具体例および量は、 前記 水酸基含有炭化水素系重合体 (3-2) について記載したとおりである。 また、 本発明の粉体成形用才レフイン系樹脂組成物には、 成形体とポリウレタ ン発泡体との接着性を低下させずに成形体の耐摩耗性や離型性を改良するために 変性シリコーンオイルを添加することが好ましい。 In order to enhance (adhesion), it is preferable to add a catalyst that promotes the reaction with the isocyanate compound in the foam-forming raw material liquid. Specific examples and amounts thereof are as described for the hydroxyl group-containing hydrocarbon polymer (3-2). In addition, the refin-based resin composition for powder molding of the present invention is modified to improve the wear resistance and mold releasability of the molded article without deteriorating the adhesiveness between the molded article and the polyurethane foam. It is preferable to add silicone oil.
ここで使用される変性シリコーンオイルの性状、 種類および量などは、 前記水 酸基含有炭化水素系重合体 (3-2) について記載したとおりである。  The properties, type and amount of the modified silicone oil used here are as described for the hydroxyl group-containing hydrocarbon polymer (3-2).
(3-4) 水酸基含有芳香族ビニル化合物共重合体  (3-4) hydroxyl group-containing aromatic vinyl compound copolymer
本発明の粉体成形用才レフイン系樹脂組成物に、 さらに、 特定の水酸基含有芳 香族ビニル化合物共重合体を配合すると、 粉体成形における脱型時の耐折り皺性、 および成形体の耐摩耗性およびポリウレタン発泡体との接着性が向上するととも に、 この水酸基含有芳香族ビニル化合物共重合体がダスティング剤として作用し、 才レフィン系樹脂組成物自体の粉体流動性および粉体成形性が向上する。  When a specific hydroxyl group-containing aromatic vinyl compound copolymer is further blended with the powdery refin-based resin composition of the present invention, the crease resistance during demolding in powder molding, and Abrasion resistance and adhesion to polyurethane foam are improved, and the hydroxyl group-containing aromatic vinyl compound copolymer acts as a dusting agent. Formability is improved.
ここで使用する水酸基含有芳香族ビニル化合物共重合体 (3-4) は、 芳香族 ビニル化合物と水酸基含有ビニル化合物との共重合体、 または、 芳香族ビニル化 合物と水酸基含有ビニル化合物およびこれらと共重合可能な他の単量体化合物と の共重合体であって、 ガラス転移温度 (T g) が 6 0°C以上、 好ましくは 7 0〜 2 0 0 °Cであり、 平均一次粒径が 0. 1 ~ 1 0 m、 好ましくは 0. 5〜5 _tm の粉体である。  The hydroxyl group-containing aromatic vinyl compound copolymer (3-4) used here is a copolymer of an aromatic vinyl compound and a hydroxyl group-containing vinyl compound, or an aromatic vinyl compound and a hydroxyl group-containing vinyl compound, and Having a glass transition temperature (T g) of 60 ° C. or higher, preferably 70 to 200 ° C., and an average primary particle It is a powder having a diameter of 0.1 to 10 m, preferably 0.5 to 5 tm.
前記水酸基含有芳香族ビニル化合物共重合体 (3-4) の T gが過度に低いと、 粉体流動性の向上が不十分である。 また、 T gが過度に高いと、 前記ポリプロピ レン樹脂組成物または芳香族ビニル化合物一共役ジェン共重合体の水素化物との 相溶性が低下するおそれがある。 なお、 T gは示差熱分析計 (D S C) によって 求めることができる。  If the Tg of the hydroxyl group-containing aromatic vinyl compound copolymer (3-4) is excessively low, the improvement in powder fluidity is insufficient. If the Tg is excessively high, the compatibility with the hydride of the polypropylene resin composition or the aromatic vinyl compound-conjugated gen copolymer may be reduced. In addition, T g can be obtained by a differential thermal analyzer (DSC).
前記水酸基含有芳香族ビニル化合物共重合体の粉体の平均一次粒径が過度に小 さい場合、 または、 過度に大きい場合は、 いずれの場合も粉体流動性が低下する おそれがある。 平均一次粒径の測定には、 前記水酸基芳香族ビニル化合物共重合 体の粉末を水中に分散した懸濁液を調製し、 これを超音波振盪器を用いて、 発振 周波数 5 0 k H zで 1分間振盪後 3分間静置し、 さらに、 遠心沈降濁度法により 積分粒径分布を求める方法が採られる。 平均一次粒径は、 累積値 5 0 %となる粒 径をもって表わす。 前記水酸基含有芳香族ビニル化合物共重合体の粉体の形状は、 球状の粒子であ ることが好ましい。 球状の形状を表す尺度である真球度は、 0 . 7 ~ 1が好まし く、 より好ましくは 0 . 8 ~ 1である。 真球度が過度に小さいと、 粉体流動性が 低下するおそれがある。 真球度の測定法は、 透過型電子顕微鏡 (S E M ) を用い、 倍率 1 0, 0 ◦ 0倍にて観察し、 粒子 1 0 0固の短軸/長軸の比を計測し、 相加 平均値として求める。 When the average primary particle diameter of the powder of the hydroxyl group-containing aromatic vinyl compound copolymer is excessively small or excessively large, the powder fluidity may decrease in any case. For the measurement of the average primary particle size, a suspension in which the hydroxyl group vinyl compound copolymer powder was dispersed in water was prepared, and the suspension was subjected to an oscillation frequency of 50 kHz using an ultrasonic shaker. After shaking for 1 minute, allow to stand for 3 minutes, and then determine the integrated particle size distribution by the centrifugal sedimentation turbidity method. The average primary particle size is represented by the particle size that gives a cumulative value of 50%. The powder of the hydroxyl group-containing aromatic vinyl compound copolymer preferably has spherical particles. The sphericity, which is a measure representing a spherical shape, is preferably from 0.7 to 1, and more preferably from 0.8 to 1. If the sphericity is too small, the powder fluidity may decrease. The sphericity is measured by using a transmission electron microscope (SEM) at a magnification of 100, 0 × 0, and measuring the ratio of the minor axis to the major axis of particles 100, and calculating the additive value. Calculate as the average value.
上記水酸基含有芳香族ビニル化合物共重合体 (3 - 4 ) は、 芳香族ビニル化合 物 9 9 . 5〜 1 0重量%、 好ましくは 9 9〜9 3重量%と、 水酸基含有ビニル化 合物 0 . 5〜 1 0重量%、 好ましくは 1 ~ 7重量%との共重合体であることが好 ましい。 水酸基含有ビニル化合物の重量%が過度に少ないと、 粉体流動性が低下 するおそれがある。 また、 水酸基含有ビニル化合物の重量%が過度に多いと、 粉 体成形時の脱型性が低下するおそれがある。  The hydroxyl group-containing aromatic vinyl compound copolymer (3-4) contains 99.5 to 10% by weight, preferably 99 to 93% by weight of an aromatic vinyl compound, and has a hydroxyl group-containing vinyl compound content of 0%. It is preferably a copolymer with 5 to 10% by weight, preferably 1 to 7% by weight. If the weight-% of the hydroxyl group-containing vinyl compound is too small, the powder fluidity may be reduced. If the weight-% of the hydroxyl-containing vinyl compound is excessively large, the releasability during powder molding may be reduced.
上記水酸基含有芳香族ビニル化合物の具体例としては、 スチレン、 α—メチル スチレン、 ;8—メチルスチレン、 p—メチルスチレン、 t 一プチルスチレン、 モ ノクロロスチレン、 ジクロロスチレン、 メ卜キシスチレン、. ビニルトルエンなど が挙げられる。 なかでも、 スチレンが好ましい。  Specific examples of the hydroxyl group-containing aromatic vinyl compound include styrene, α-methylstyrene, 8-methylstyrene, p-methylstyrene, t-butylstyrene, monochlorostyrene, dichlorostyrene, methoxystyrene, and vinyl vinyl. Examples include toluene. Of these, styrene is preferred.
上記水酸基含有ビニル化合物はとくに限定されることはなく、 例えば、 水酸基 含有アクリル酸エステル、 水酸基含有メタクリル酸エステル、 水酸基含有ビニル エーテル、 水酸基含有ビニルモノカルボン酸エステル、 水酸基含有ビニルジカル ボン酸エステルおよびビニルアルコールなどが挙げられる。  The hydroxyl group-containing vinyl compound is not particularly limited, and examples thereof include a hydroxyl group-containing acrylic ester, a hydroxyl group-containing methacrylic ester, a hydroxyl group-containing vinyl ether, a hydroxyl group-containing vinyl monocarboxylic acid ester, a hydroxyl group-containing vinyl dicarbonate ester, and vinyl alcohol. And the like.
具体例としては、 水酸基含有アクリル酸エステルとしては、 アクリル酸ヒドロ キシメチル、 アクリル酸 2—ヒドロキシェチル、 アクリル酸 2—ヒドロキシプロ ピル、 アクリル酸 2, 3—ジヒドロキシプロピル、 アクリル酸 2 —ヒドロキシァ ミル、 アクリル酸 2—ヒドロキシ才クチル、 アクリル酸 2—ヒドロキシドデシル など; メ夕クリル酸エステルとしては、 メタクリル酸ヒドロキシメチル、 メ夕ク リル酸 2—ヒドロキシェチル、 メタクリル酸 2—ヒドロキシプロピル、 メタクリ ル酸 2, 3—ジヒドロキシプロピル、 メ夕クリル酸 2 —ヒドロキシァミル、 メタ クリル酸 2—ヒドロキシ才クチル、 メタクリル酸 2—ヒドロキシドデシルなど; 水酸基含有ビニルエーテルとしては、 2—ヒドロキシプロピルビニルエーテル、 2 —ヒドロキシプチルビニルエーテル、 2 , .4—ジヒドロキシ才クチルエーテル など;水酸基含有ビニルモノカルボン酸エステルとしては、 ヒドロキシ酢酸ビニ ル、 3—ヒドロキシプロピ才ン酸ビニルなど;水酸基含有ビニルジカルボン酸ェ ステルとしては、 マレイン酸 2—ヒドロキシプロピル、 フマル酸ジ 2—ヒドロキ シェチルなどが挙げられる。 Specific examples include hydroxyl group-containing acrylates such as hydroxymethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2,3-dihydroxypropyl acrylate, 2-hydroxyamyl acrylate 2-hydroxydodecyl acrylate, 2-hydroxydodecyl acrylate, etc .; Methacrylic acid esters include hydroxymethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, methacrylic acid 2,3-dihydroxypropyl acid, 2-hydroxyamyl methacrylate, 2-hydroxymethyl methacrylate, 2-hydroxydodecyl methacrylate, etc .; Examples of hydroxyl group-containing vinyl ethers include 2-hydroxypropyl vinyl ether; 2-hydroxybutyl vinyl ether, 2,4, -dihydroxy octyl ether, etc .; Examples of hydroxyl group-containing vinyl monocarboxylates: hydroxy acetate vinyl, 3-hydroxypropionyl vinyl acrylate, etc .; hydroxyl group-containing vinyl dicarboxylic acid ester Examples thereof include 2-hydroxypropyl maleate and di-2-hydroxysethyl fumarate.
芳香族ビニル化合物および水酸基含有ビニル化合物と共重合可能な他の単量体 化合物は、 とくに限定されないが、 例えば、 アクリル酸ェチルなどのアクリル酸 エステル; メ夕クリル酸メチルなどのメタアクリル酸エステル;ァクリロニ卜リ ル、 メタクリロニ卜リル、 シアン化ビニリデンなどのシアン化ビニル化合物;酢 酸ビニル、 プロピ才ン酸ビニルなどのビニルモノカルボン酸エステル;モノプチ ルマレー卜などのビニルジカルボン酸エステル;ェチルビ二ルェ一テル、 メチル ビニルエーテルなどのビニルエーテル化合物;ブ卜キシェチルァクリレー卜、 グ リシジルァクリレー卜などの官能基含有ァクリル酸エステル; ブトキシェチルメ タクリレ一卜、 ダリシジルメタクリレートなどの官能基含有メタクリル酸エステ ル;および塩化ビニルなどを挙げることができる。  Other monomer compounds copolymerizable with the aromatic vinyl compound and the hydroxyl group-containing vinyl compound include, but are not particularly limited to, for example, acrylates such as ethyl acrylate; methacrylates such as methyl methacrylate; Vinyl cyanide compounds such as acrylonitrile, methacrylonitrile and vinylidene cyanide; vinyl monocarboxylic acid esters such as vinyl acetate and vinyl propyl formate; vinyl dicarboxylic acid esters such as monobutyl malate; Vinyl ether compounds such as ter and methyl vinyl ether; functional group-containing acrylates such as butoxysher acrylate and glycidyl acrylate; Estel; Fine vinyl chloride, and the like.
前記他の単量体化合物のなかでも、 ァクリル酸エステルまたはメタクリル酸ェ ステルを共重合すると、 ポリプロピレン樹脂および才レフィン系熱可塑性エラス 卜マーとの相溶性を高める傾向があるので好ましい。 これらの他の単量体化合物 は、 前記水酸基含有芳香族ビニル化合物共重合体 (3 - 4 ) を構成する全単量体 の 4 0重量%未満、 好ましくは 3 0重量%未満の量で用いることができる。 上記水酸基含有芳香族ビニル化合物共重合体 (3 - 4 ) は、 前記のポリプロピ レン樹脂組成物 (1 ) と芳香族系ビニル化合物一共役ジェン共重合体の水素化物 ( 2 ) の合計 1 0 0重量部に対して、 0 . 1 〜3 0重量部、 好ましくは 1 〜2 0 重量部の割合で用いられる。 前記水酸基含有芳香族ビニル化合物共重合体の配合 量が過度に少ないと、 粉体流動性が低下するおそれがあり、 また、 配合量が過度 に多いと、 粉体成形の際に、 成形体を型枠から外し難くなるおそれがある。 水酸基含有芳香族ビニル化合物共重合体 (3 - 4 ) の製造方法は、 とくに限定 されないが、 通常、 乳化重合法 (播種乳化重合法を含む) または微細懸濁重合法 (播種微細懸濁重合法を含む) によって製造することができる。 他の配合成分 Among the other monomer compounds, copolymerization of acrylate or methacrylate is preferred because it tends to increase the compatibility with the polypropylene resin and the olefin-based thermoplastic elastomer. These other monomer compounds are used in an amount of less than 40% by weight, preferably less than 30% by weight of the total monomers constituting the hydroxyl group-containing aromatic vinyl compound copolymer (3-4). be able to. The hydroxyl group-containing aromatic vinyl compound copolymer (3-4) is a total of 100% of the propylene resin composition (1) and the hydride (2) of the aromatic vinyl compound-conjugated gen copolymer. It is used in an amount of 0.1 to 30 parts by weight, preferably 1 to 20 parts by weight, based on parts by weight. If the blending amount of the hydroxyl group-containing aromatic vinyl compound copolymer is too small, the powder fluidity may decrease.If the blending amount is too large, the molded article may be formed during powder molding. There is a possibility that it will be difficult to remove it from the mold. The method for producing the hydroxyl-containing aromatic vinyl compound copolymer (3-4) is not particularly limited, but is usually an emulsion polymerization method (including a seeded emulsion polymerization method) or a fine suspension polymerization method (a seeded fine suspension polymerization method). ). Other ingredients
本発明の粉体成形用才レフイン系樹脂組成物には、 所望により種々の添加剤を 添加することができる。 例えば、 成形時の離型性向上および貯蔵時のブロッキン グ防止のために、 バリウムステアレート、 カルシウムステアレー卜、 マグネシゥ ムステアレート、 亜鉛ステアレ一卜、 アルミニウムステアレー卜などの金属石鹼 類、 多価アルコールの脂肪酸エステル類を添加することができる。 その他の添加 剤として、 公知の各種安定剤、 酸化防止剤、 紫外線吸収剤、 帯電防止剤、 難燃剤、 顔料などを添加することができる。 また、 公知の可塑剤もべたついたり、 成形性 を損なわない範囲で添加することができる。  Various additives can be added to the powdery refin-based resin composition of the present invention, if desired. For example, metal stones such as barium stearate, calcium stearate, magnesium stearate, zinc stearate, and aluminum stearate, and polyvalent are used to improve releasability during molding and prevent blocking during storage. Fatty acid esters of alcohols can be added. As other additives, various known stabilizers, antioxidants, ultraviolet absorbers, antistatic agents, flame retardants, pigments, and the like can be added. In addition, a known plasticizer can be added as long as it is not sticky or does not impair moldability.
さらに、 本発明の趣旨が損なわれない範囲で、 上記の重合体成分以外の重合体 を併用することもできる。 このような重合体としては、 例えば、 ァクリロ二トリ ル—ブタジエン—スチレン樹脂 (A B S樹脂)、 アクリロニトリル—スチレン樹 脂 (A S樹脂)、 エチレン一酢酸ビニル樹脂 (E V A樹脂)、 ノルボルネン系樹脂、 ポリアミド系樹脂、 ポリエステル系樹脂、 ポリカーボネー卜樹脂、 ポリブタジェ ン樹脂などが挙げられる。 さらに、 スチレンなどの芳香族ビニル化合物とェチレ ン、 プロピレンなどの α—才レフィンを特開平 3— 7 7 0 5号公報、 特開平 7— 7 0 2 2 3号公報ゃ特開平 1 0— 1 6 8 1 1 2号公報などに記載の方法で共重合 させて得られる芳香族ビニル化合物一 α—才レフイン共重合体などが挙げられる。 これらの他の重合体の使用量は、 本発明の樹脂組成物中 4 0重量%以下、 好まし くは 3 0重量%以下の範囲である。  Further, a polymer other than the above-mentioned polymer components can be used in combination as long as the gist of the present invention is not impaired. Examples of such a polymer include acrylonitrile-butadiene-styrene resin (ABS resin), acrylonitrile-styrene resin (AS resin), ethylene vinyl acetate resin (EVA resin), norbornene resin, and polyamide resin. Resins, polyester resins, polycarbonate resins, polybutadiene resins, and the like. Further, an aromatic vinyl compound such as styrene and an α-olefin such as ethylene and propylene are disclosed in JP-A-3-7705, JP-A-7-72023 and JP-A-10-1. An aromatic vinyl compound-α-olefin copolymer obtained by copolymerization according to the method described in, for example, Patent Publication No. 68111 or the like. The amount of these other polymers used is in the range of 40% by weight or less, preferably 30% by weight or less in the resin composition of the present invention.
粉体成形用才レフイン系樹脂組成物の製造方法  Method for producing powdery refin-based resin composition for powder molding
本発明の粉体成形用才レフイン系樹脂組成物は、 各重合体成分が上記の割合で 含まれている限り、 製造方法は特に限定されるものではない。 また、 使用する各 重合体成分の形態や形状なども特に制限されない。 製造方法としては、 例えば、 ポリプロピレン樹脂組成物 (1 ) と芳香族ビニル化合物一共役ジェン共重合体の 水素化物 (2 ) とを含む全重合体成分を一括して混合機に投入して混合する方法、 および、 先ずポリプロピレン樹脂組成物 (1 ) をロール、 一軸または二軸押出機、 バンバリ一ミキサー、 ニーダーなどの通常の混合機を用いて調製し、 これと芳香 族ビニル化合物一共役ジェン共重合体の水素化物 (2 ) とを上記と同様にして混 合して製造する方法などが挙げられる。 The method for producing the refin-based resin composition for powder molding of the present invention is not particularly limited as long as each polymer component is contained in the above ratio. Further, the form and shape of each polymer component used are not particularly limited. As a production method, for example, all the polymer components including the polypropylene resin composition (1) and the hydride of the aromatic vinyl compound-conjugated gen copolymer (2) are put into a mixer at once and mixed. First, the polypropylene resin composition (1) is prepared using a conventional mixer such as a roll, a single-screw or twin-screw extruder, a Banbury mixer, a kneader, etc. The combined hydride (2) is mixed in the same manner as above. And a method of manufacturing them in combination.
本発明の粉体成形用樹脂組成物は、 粉末状で使用される。 樹脂組成物を粉末に するには、 ターボミル、 ローラミル、 ポールミル、 遠心力粉砕機、 パルべライザ 一などの従来公知の粉砕機が用いられる。 粉末の粒径は、 通常、 Ί 0〜 5 0 0 μ m、 好ましくは 5 0 ~ 5 0 0 ΓΠ、 より好ましくは 1 0 0〜 3 0 0 mの範囲で ある。 平均粒径が小さすぎると粉砕工程の効率が悪い上に貯蔵時に凝集しゃすく、 逆に大きすぎると、 成形品のキメが荒くなり、 厚さの薄い成形品の場合にはピン ホールが発生し易くなる。  The resin composition for powder molding of the present invention is used in a powder form. In order to make the resin composition into a powder, a conventionally known pulverizer such as a turbo mill, a roller mill, a pole mill, a centrifugal pulverizer, and a pulverizer is used. The particle size of the powder is usually in the range of {0 to 500 μm, preferably 50 to 500}, more preferably 100 to 300 m. If the average particle size is too small, the efficiency of the pulverization process is low, and coagulation and shrinkage occur during storage.On the other hand, if the average particle size is too large, the texture of the molded product becomes rough, and pinholes occur in the case of a thin molded product. It will be easier.
しかしながら、 所望粒径を有し粉体流動性に優れた粉体成形用才レフイン系樹 脂組成物を容易かつ効率的、 経済的に製造するには次の工程を含む方法、 すなわ ち、 ポリプロピレン樹脂と才レフィン系熱可塑性エラス卜マ一とからなるポリプ ロピレン樹脂組成物 (1 ) と、 芳香族系ビニル化合物一共役ジェン共重合体の水 素化物 (2 ) と、 所望により配合されるその他の成分とを混練して樹脂混練物を 得る工程と、 該樹脂混練物のペレツ卜を調製する工程と、 該ペレツ卜を連続的に 冷却し、 粉砕する工程とを有する製造方法が好ましい。  However, in order to easily, efficiently and economically produce a powdery refinable resin composition having a desired particle size and excellent powder fluidity, a method including the following steps, that is, Optionally blended with a polypropylene resin composition (1) consisting of a polypropylene resin and a thermoplastic resin (1), and a hydrogenated aromatic vinyl compound-conjugated gen copolymer (2) A production method comprising the steps of kneading other components to obtain a kneaded resin, preparing a pellet of the kneaded resin, and continuously cooling and pulverizing the pellet is preferred.
以下に、 上記の工程を有する製造方法を詳述する。  Hereinafter, a manufacturing method having the above steps will be described in detail.
ポリプロピレン樹脂と才レフィン系熱可塑性エラストマ一とからなるポリプロ ピレン樹脂組成物 (1 ) と、 芳香族系ビニル化合物一共役ジェン共重合体の水素 化物 (2 ) と、 所望により配合されるその他の成分とを混練して樹脂混練物を得 る工程では、 熱可塑性樹脂組成物の製造に一般的に使用される混練装置が使用さ れる。 混練装置としては、 とくに限定されないが、 通常、 単軸または 2軸の押出 機が挙げられる。 また、 バンバリ一ミキサー、 ロールなども使用可能である。 通常、 前記押出機は、 ホッパーから投入された熱可塑性樹脂を必要に応じて配 合される各種成分とともに溶融混練して、 ストランドダイスから押出し可能とな つている。 また、 各種成分は、 必要に応じて押出機のシリンダー途中に設けられ た投入口からも添加することができる。 また、 吐出量を安定化するため、 ストラ ンドダイスとシリンダーの間にギアポンプを設置することも可能である。 さらに、 押出機のシリンダー内の温度をス卜ランドダイス側から、 細かく調整することも 可能である。 樹脂組成物のペレツトを調製する工程では、 熱可塑性樹脂組成物の製造におい て一般的に使用されるペレタイザ一が使用され、 平均粒子径が 0 . 5〜1 O m m、 好ましくは 0 . 5 ~ 5 m m程度のペレツ卜が調製される。 ペレツ卜の平均粒子径 が過度に小さいものは、 効率よい製造が困難である。 また、 ペレツ卜の平均粒子 径が過度に大きいものは、 樹脂組成物を冷却する効率が低い。 Polypropylene resin composition (1) comprising a polypropylene resin and a refining thermoplastic elastomer, a hydride of an aromatic vinyl compound-conjugated gen copolymer (2), and other optional components In the step of kneading the above to obtain a resin kneaded product, a kneading apparatus generally used for production of a thermoplastic resin composition is used. The kneading apparatus is not particularly limited, but usually includes a single-screw or twin-screw extruder. Banbury mixers and rolls can also be used. Usually, the extruder is capable of extruding from a strand die by melt-kneading a thermoplastic resin fed from a hopper together with various components to be mixed as required. In addition, various components can be added from an inlet provided in the middle of the cylinder of the extruder as needed. To stabilize the discharge rate, a gear pump can be installed between the strand die and cylinder. Furthermore, it is possible to finely adjust the temperature inside the cylinder of the extruder from the strand die side. In the step of preparing a pellet of the resin composition, a pelletizer generally used in the production of a thermoplastic resin composition is used, and the average particle diameter is 0.5 to 1 Omm, preferably 0.5 to 10 mm. A pellet of about 5 mm is prepared. If the average particle size of the pellets is too small, efficient production is difficult. Further, when the average particle diameter of the pellets is excessively large, the efficiency of cooling the resin composition is low.
前記ペレ夕一ザ一はとくに限定されないが、 例えば、 水中カツ卜ペレタイザ一、 ストランドペレタイザ一、 ホットカツ卜ペレタイザ一、 シートペレタイザ一など が挙げられる。 中でも、 水中カットペレタイザ一またはストランドペレタイザ一 は、 前述した混練工程において押出機を使用する場合に、 これと組み合わせて、 押出機から吐出された樹脂組成物のストランドを、 樹脂成分の溶融温度から室温 近傍にまで連続的に冷却しながらペレットにすることができる。  The pelletizer is not particularly limited, and includes, for example, an underwater cutter pelletizer, a strand pelletizer, a hot cutter pelletizer, a sheet pelletizer, and the like. Above all, when an extruder is used in the above-described kneading step, the underwater cut pelletizer or the strand pelletizer is used in combination with the resin composition strand discharged from the extruder to adjust the melting temperature of the resin component. The pellets can be continuously cooled from the temperature to around room temperature.
ペレットを連続的に冷却し、 粉砕する工程では、 冷却装置としては、 熱可塑性 樹脂組成物が通過する方向に、 直列に並べられた複数の分割された部屋が設けら れ、 入り口側から出口側まで運ばれる樹脂組成物が、 分割された前記各部屋を通 過するごとに徐々に冷却されていく方式のものが好ましく使用される。 冷却装置 に設けられた分割された複数の部屋の数は、 樹脂組成物の種類、 量などにより適 宜決められるが、 実用的には冷却装置を 2 ~ 3室に分けて冷却するのが好ましい。 前記冷却装置において、 樹脂組成物を冷却する方法はとくに限定されないが、 例えば、 アンモニア冷媒を利用した冷凍機により冷風を発生させ、 これを樹脂に 吹き付ける方法が好ましい。 また、 樹脂組成物は、 ベル卜コンベアなどを用いて 連続的に冷却装置内を通過させる方式が好ましい。 樹脂組成物を効率的に冷却す るためは、 上下方向から冷風に曝される方が好ましい。 また、 ベル卜コンベアは 金属網製であることが好ましい。  In the step of continuously cooling and pulverizing the pellets, a plurality of divided rooms arranged in series are provided in a direction in which the thermoplastic resin composition passes, as a cooling device, and the inlet side to the outlet side It is preferable to use a system in which the resin composition to be conveyed to the room is gradually cooled as it passes through each of the divided rooms. The number of the plurality of divided rooms provided in the cooling device is appropriately determined according to the type and amount of the resin composition, but practically, it is preferable to cool the cooling device by dividing into two or three chambers. . In the cooling device, the method of cooling the resin composition is not particularly limited. For example, a method of generating cold air by a refrigerator using an ammonia refrigerant and spraying the same onto the resin is preferable. Further, it is preferable that the resin composition is continuously passed through a cooling device using a belt conveyor or the like. In order to efficiently cool the resin composition, it is preferable that the resin composition is exposed to cold air from above and below. Further, the belt conveyor is preferably made of a metal net.
前記冷却装置においては、 樹脂組成物は、 そのガラス転移温度 (T g ) よりも 低温に冷却することが好ましい。 ここで、 該組成物に複数の熱可塑性樹脂が含有 され、 それぞれのガラス転移温度が観測される場合は、 これらの中でも最も低い ガラス転移温度よりも低い温度に冷却するのが好ましい。 さらに、 可塑剤、 軟化 剤などの凝固温度が、 熱可塑性樹脂のガラス転移温度よりも低い場合は、 前記凝 固温度よりも低い温度で冷却するのが好ましい。 なお、 前記ガラス転移温度の測 定方法は、 示差熱分析計、 動的粘弾性測定器などを用いて行われる。 In the cooling device, the resin composition is preferably cooled to a temperature lower than its glass transition temperature (Tg). Here, when the composition contains a plurality of thermoplastic resins and the respective glass transition temperatures are observed, it is preferable to cool to a temperature lower than the lowest glass transition temperature among these. Further, when the solidification temperature of a plasticizer, a softener, or the like is lower than the glass transition temperature of the thermoplastic resin, it is preferable to cool at a temperature lower than the solidification temperature. The measurement of the glass transition temperature was performed. The determination method is performed using a differential thermal analyzer, a dynamic viscoelasticity meter, or the like.
次に、 上述のように冷却された樹脂組成物のペレットは、 粉砕機により粉砕さ れる。 使用する粉砕機は特に限定されるものではなく、 例えば、 ターボミル、 ハ ンマ一ミル、 ローラミル、 ボールミル、 遠心力粉砕機、 パルべライザ一などの粉 砕機を用いることができる。 また、 樹脂を粉砕する際に発生する熱を除去するた めに、 粉砕機には冷却装置が付設されていることが好ましい。  Next, the resin composition pellets cooled as described above are pulverized by a pulverizer. The crusher to be used is not particularly limited, and for example, a crusher such as a turbo mill, a hammer mill, a roller mill, a ball mill, a centrifugal crusher, and a pulverizer can be used. Further, in order to remove heat generated when the resin is crushed, the crusher is preferably provided with a cooling device.
粉砕された樹脂組成物は所定の粒子径に分級される。 すなわち、 適当なサイズ の分級スクリーンを通して所定の粒子径未満のものとそれ以上のものに分離され、 所定の粒子径以上のものは、 再度粉砕機に戻される。 また、 必要に応じて所定の 粒子径以下のものは、 サイクロンなどにより分級されて除去される。  The pulverized resin composition is classified into a predetermined particle size. That is, those having a particle size smaller than a predetermined value and those having a larger particle size are separated through a classification screen having an appropriate size, and those having a particle size larger than the predetermined value are returned to the pulverizer again. If necessary, particles having a predetermined particle size or less are classified and removed by a cyclone or the like.
分級により、 通常、 平均粒子径 1 0 ~ 5 0 0 i m、 好ましくは 5 0〜 5 0 0 ζ m、 より好ましくは 1 0 0〜 3 0 0 x mの範囲の粒子に調製される。 この平均粒 子径が小さすぎると粉砕工程の効率が悪いうえに貯蔵時に凝集しやすく、 逆に大 きすぎると、 成形品のキメが荒くなリ、 厚さの薄い成形品の場合にはピンホール が発生し易くなる。  By classification, the particles are usually prepared into particles having an average particle diameter of 10 to 500 im, preferably 50 to 500 m, more preferably 100 to 300 x m. If the average particle diameter is too small, the efficiency of the pulverizing process is low and the particles tend to agglomerate during storage.On the other hand, if the average particle diameter is too large, the texture of the molded product is rough. Holes are likely to occur.
粉砕する工程の後に、 または、 さらに粉砕物を分級する工程の後に得られた粉 状物にはダスティング剤を適当な攪拌機を用いて配合することが好ましい。 前記 ダスティング剤としては、 ガラス転移温度または融点が室温よりも高い有機質ま たは無機質の微粒粉末が好ましく用いられる。 前記微粒粉末の平均粒子径は、 上 述した粉状樹脂組成物の平均粒子径よりも小さいものであり、 好ましくは、 粉状 樹脂組成物の平均粒子径の 1 0分の 1以下である。 ダスティング剤の具体例とし ては、 有機質のものとしては、 乳化重合またはマイクロサスペンジョン重合法で 得られる数 1 0 m以下のプラスチック微粒子、 ポリオレフイン樹脂の微粉末が 挙げられ、 無機質のものとしては、 タルク、 酸化ケィ素、 酸化アルミナなどが挙 げられる。  It is preferable to add a dusting agent to the powder obtained after the step of pulverizing or after the step of further classifying the pulverized product using a suitable stirrer. As the dusting agent, an organic or inorganic fine powder having a glass transition temperature or a melting point higher than room temperature is preferably used. The average particle size of the fine powder is smaller than the average particle size of the powdery resin composition described above, and is preferably one tenth or less of the average particle size of the powdery resin composition. Specific examples of the dusting agent include, as an organic material, plastic fine particles of 10 m or less and a fine powder of a polyolefin resin obtained by an emulsion polymerization or a micro-suspension polymerization method. Examples include talc, silicon oxide, and alumina oxide.
前記ダステイング剤の量は、 樹脂組成物 1 0 0重量部に対して、 通常 0 . 0 1 〜5 0重量部、 好ましくは 1 ~ 2 0重量部の範囲である。 添加量が過少であると、 粉体流動性の改良効果は得られず、 逆に添加量が過多であると、 成形して得られ る成形品の物性などが損なわれたリ、 成形性が損なわれたりする不都合が生じる 場合が多い。 The amount of the dusting agent is usually in the range of 0.01 to 50 parts by weight, preferably 1 to 20 parts by weight, based on 100 parts by weight of the resin composition. If the added amount is too small, the effect of improving powder fluidity cannot be obtained, while if the added amount is too large, the physical properties of the molded product obtained by molding are impaired, and the moldability is deteriorated. Inconvenience that is damaged Often.
前記攪拌機としては、 とくに限定されるものではなく、 例えば、 ヘンシェルミ キサ一、 リポンブレンダー、 タンブラ一ミキサーなど各種のものが使用可能であ る。 また、 冷凍粉砕で得られる樹脂組成物の.粒子は、 大気中の水分を吸収してい ることが多く、 また混練装置およびペレタイザ一にて作られたペレツ卜の冷却に 使用された水が含まれていることもあるため、 外部加熱あるいは攪拌による自己 発熱機能などを備えた攪拌機を使用することが好ましい。 なお、 樹脂組成物を用 いて粉体成型を行った成型品を金型から脱型しやすくするために、 離型剤を必要 量添加することも可能である。  The agitator is not particularly limited, and various types such as a Henschel mixer, a Ripon blender, and a tumbler mixer can be used. In addition, the particles of the resin composition obtained by freezing and pulverization often absorb moisture in the atmosphere, and include water used for cooling the pellets produced by a kneading apparatus and a pelletizer. Therefore, it is preferable to use a stirrer having a self-heating function by external heating or stirring. It is also possible to add a required amount of a release agent in order to make it easier to remove a molded product obtained by performing powder molding using the resin composition from a mold.
前記の分級工程と攪拌工程とは、 連続して行われる場合と、 または、 それぞれ 別々に行われる場合のどちらかを採用することができる。 また、 通常、 分級工程 により得られた所定の平均粒子径を有する樹脂組成物の粒子は、 タンクなどに貯 えられた後、 攪拌工程に移される。  The classification step and the stirring step may be performed either continuously or separately. Usually, particles of the resin composition having a predetermined average particle diameter obtained in the classification step are stored in a tank or the like, and then transferred to the stirring step.
粉体成形用才レフイン系樹脂組成物の製造方法を実施するためには、 通常、 初 めに、 樹脂および配合成分を混練して樹脂組成物を得る工程において、 樹脂を必 要に応じて配合される各種成分とともに溶融混練してストランドダイスから押出 し、 次に、 樹脂組成物のペレットを調製する工程において、 前記ストランドはダ イスペレタイザ一により、 平均粒子径が 0 . 5〜 1 0 m m程度のペレツ卜に調製 され、 続いて、 樹脂組成物を連続的に冷却し、 粉砕する工程において、 前記ペレ ッ卜は、 樹脂組成物のガラス転移温度よりも低温で冷却され、 次いで粉砕される。 粉砕された樹脂組成物の粒子は、 平均粒子径が 1 0〜5 0 0 mになるように分 級する工程と、 さらに、 前記粒子にダステイング剤を配合する工程を経ることに より、 粉体成形に好適な樹脂組成物を製造することができる。  In order to carry out the method for producing a refin-based resin composition for powder molding, usually, first, in a step of kneading the resin and the compounding components to obtain the resin composition, the resin is compounded as necessary. Melt kneading together with the various components to be extruded from a strand die, and then, in a step of preparing a pellet of the resin composition, the strand has an average particle diameter of about 0.5 to 10 mm by a die pelletizer. In a step of continuously cooling and pulverizing the resin composition after being prepared into a pellet, the pellet is cooled at a temperature lower than the glass transition temperature of the resin composition, and then pulverized. The particles of the pulverized resin composition are subjected to a step of classifying the particles so that the average particle diameter becomes 10 to 500 m, and a step of blending a dusting agent with the particles to obtain powder. A resin composition suitable for molding can be produced.
粉体成形用才レフイン系樹脂組成物を製造するためには、 前述したように、 混 練機、 ペレタイザ一および冷却粉砕機からなる粉体成形用樹脂組成物の製造装置 が用いられる。 粉砕された樹脂組成物を所定の粒子径に分級するための分級装置、 および樹脂組成物とダスティング剤とを配合する攪拌機を設けることが好ましい 実施例  As described above, in order to produce a powdery resin composition for powder molding, an apparatus for producing a resin composition for powder molding comprising a kneader, a pelletizer and a cooling pulverizer is used. It is preferable to provide a classifier for classifying the pulverized resin composition to a predetermined particle size, and a stirrer for mixing the resin composition and the dusting agent.
以下に実施例と比較例を挙げて本発明を具体的に説明するが、 本発明はこれら の実施例に限定されるものではない。 なお、 部数および%は特記のない限り重量 基準である。 Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples. However, the present invention is not limited to the embodiment. Parts and percentages are by weight unless otherwise specified.
粉体成形用樹脂組成物の製造例  Production example of resin composition for powder molding
この例では、 粉体成形用樹脂組成物の製造方法の具体例を添付図 1を参照して 詳細に説明する。  In this example, a specific example of a method for producing a resin composition for powder molding will be described in detail with reference to FIG.
図 1は、 本発明の粉体成形用才レフイン系樹脂組成物の製造プロセスの一例を 示すフロー図である。 本実施形態では、 押出機 8を用いて、 重合体成分 ( 1 )、 FIG. 1 is a flow chart showing an example of a production process of the powdery refin-based resin composition of the present invention. In the present embodiment, the polymer component (1),
( 2 ) および所望により配合されるその他の成分を混練して樹脂混練物を得るェ 程 と、 水中カツ卜ペレタイザ一 1 2を用いて該樹脂混練物のペレツ卜を調製す る工程 J_と、 該ペレツ卜を、 2つの冷却室が設けられた冷却装置 1 5とハンマー ミル型粉碎機 2 4とを用いて連続的に冷却し、 粉碎する工程 とを有する。 さら に、 8 0メッシュのスクリーンを有する分級機 2 5を有する分級工程 と、 ヘン シェルミキサー 2 6を用いて樹脂粉体にダスティング剤を配合する工程 6とを有 する。 (2) a step of kneading the resin kneaded product by kneading the other components optionally blended, and a step J_ of preparing a pellet of the resin kneaded product using an underwater cut pelletizer 12. And a step of continuously cooling and grinding the pellets using a cooling device 15 provided with two cooling chambers and a hammer mill type pulverizer 24. The method further includes a classifying step having a classifier 25 having a screen of 80 mesh, and a step 6 of mixing a dusting agent into the resin powder using a Henschel mixer 26.
ポリプロピレン (P P、 商品名 PM 94 0 M、 サンァロマー (株) 製、 M F R 3 0 gZ 1 0分) 3 0部と、 才レフィン系熱可塑性エラス卜マー (リアクタ一 T P O、 商品名 P. E. R. M 1 4 2 E、 卜クャマ (株) 2 0部と、 スチレンーェチ レン一ブタジエン一スチレンブロック共重合体 (S E B S、 商品名タフテック H 1 2 2 1 , 旭化成工業 (株) 製、 結合スチレン量 1 2 %) 5 0部とを、 ホッパー 1 0から投入して、 2軸押出機 8 (東芝機械 (株) 製、 T E M 4 8 B S、 ギアポ ンプ付き) 中に投入して混練し、 混練物のストランドをストランドダイス 1 1か ら押出し (押出し量: 1 0 0 k g/時間)、 続いて、 押出したス卜ランドを水中 カットペレタイザ一 1 2 (GA L A (株) 製、 商品名 TWS— 8 0) を用いて、 混練物のペレツ卜 (平均粒径: 5 mm) を作成した。  30 parts of polypropylene (PP, trade name PM 940 M, manufactured by San-Alomer Co., Ltd., MFR 30 gZ 10 minutes), and a refining thermoplastic elastomer elastomer (reactor I TPO, trade name PER M 1 4 2 E, 20 parts of Tokuyama Co., Ltd. and styrene-ethylene-butadiene-styrene block copolymer (SEBS, trade name: Tuftec H1221, manufactured by Asahi Kasei Kogyo Co., Ltd .; bound styrene content: 12%) 50 Parts from a hopper 10 and into a twin-screw extruder 8 (manufactured by Toshiba Machine Co., Ltd., TEM48 BS, with a gear pump), and knead the mixture. Extruded from 1 (extrusion amount: 100 kg / hour), and then extruded strands were cut using an underwater cut pelletizer 12 (GALA Co., Ltd., trade name: TWS-80). A pellet (average particle size: 5 mm) of the kneaded material was prepared.
前記ペレツ卜は、 ポンプ 1 3により脱水機 1 4に運んで脱水した。 次いで、 冷 却機 1 5の投入口 1 9に供給し、 金網状ベルトコンベア 2 0に載せて、 初めに冷 却ュニッ卜 C 1 によリー 5 0°Cに冷却された冷風を循環させてある予備冷却室 2 1を通過させ、 次に、 冷却ユニット C 2により一 9 0°Cに冷却された冷風を循環 させてある本冷却室 2 2を通過させて、 前記ペレツ卜の温度が一 8 0°Cになるよ うに調整した。 前記ペレツ卜が、 予備冷却室 2 1および本冷却室 2 2を通過する ための所要時間は 1 0分、 通過量は 1 0 0 k g/時間であった。 The pellets were conveyed to a dehydrator 14 by a pump 13 and dehydrated. Then, it is supplied to the inlet 19 of the cooler 15, placed on the wire mesh belt conveyor 20, and circulated through the cool unit C 1 at first to cool air cooled to 50 ° C. After passing through a certain pre-cooling chamber 21 and then passing through a main cooling chamber 22 in which cold air cooled to 90 ° C. by the cooling unit C 2 is circulated, the temperature of the It will be 80 ° C I adjusted it. The time required for the pellet to pass through the pre-cooling chamber 21 and the main cooling chamber 22 was 10 minutes, and the passing amount was 100 kg / hour.
続いて、 冷却された前記ペレツ卜を、 ハンマーミル型粉砕機 2 4中に投入して 粉砕し、 粒子状の樹脂組成物を得た。 粉砕機の粉砕部 2 3は、 冷却ユニット C 3 により一 9 0°Cに冷却された冷風が吹きつけられ、 粉砕時に発生する発熱によつ て樹脂が昇温するのを防止した。  Subsequently, the cooled pellet was put into a hammer mill type pulverizer 24 and pulverized to obtain a particulate resin composition. The crushing section 23 of the crusher was blown with cold air cooled to 190 ° C. by the cooling unit C 3 to prevent the resin from rising due to heat generated during the crushing.
続いて、 前記粒子状の樹脂組成物を、 8 0メッシュの分級スクリーン 2 5を通 して分級し、 次に、 ヘンシェルミキサー 2 6 (三井三池 (株) 社製、 容量 7 5リ ットル) に投入した。 ヘンシェルミキサー 2 6中には、 粒子状の樹脂組成物 1 0 0部に対してダスティング剤 2 7 (マイクロサスペンジョン重合によって得られ た平均粒径 1 mのメチルメタァクリレー卜 スチレン ( 1 / 1 ) 共重合体粉 末) 1 0部を添加し、 1分間攪拌を継続して、 平均粒子径 1 5 5 mの粉体成形 用樹脂組成物を得た。  Subsequently, the particulate resin composition was classified through an 80 mesh classification screen 25, and then passed through a Henschel mixer 26 (manufactured by Mitsui Miike Co., Ltd., capacity: 75 liters). I put it in. In a Henschel mixer 26, 100 parts of the particulate resin composition was added to a dusting agent 27 (methyl methacrylate styrene (1/3) having an average particle size of 1 m obtained by microsuspension polymerization. 1) Copolymer powder) 10 parts were added, and stirring was continued for 1 minute to obtain a powder molding resin composition having an average particle diameter of 15.5 m.
なお、 粒子状の樹脂組成物が吸着した水分は、 攪拌による自己発熱とスチーム 加熱により昇温することにより除去した。 その後、 ヘンシェルミキサーのジャケ ッ卜に水を注入することにより前記粒子状の樹脂組成物の温度を 5 0°Cまでに冷 却した。  The water adsorbed by the particulate resin composition was removed by self-heating by stirring and by heating with steam heating. Thereafter, the temperature of the particulate resin composition was cooled to 50 ° C. by pouring water into a jacket of a Henschel mixer.
このようにして得られた、 粉体成形用樹脂組成物について、 平均粒子径、 粉体 流動性および焼結成型性の評価を行ったところ、 粉体流動性試験においては、 落 下時間が Ί Ί . 5秒であり、 良好な粉体流動性を示した。 また、 焼結成型製試験 においては、 均一な厚さでピンホールが無い良好なシー卜が得られた。  The thus obtained resin composition for powder molding was evaluated for average particle diameter, powder fluidity and sintering moldability. In the powder fluidity test, the fall time was Ί. Ί5 seconds, indicating good powder flowability. In the sinter molding test, a good sheet having a uniform thickness and no pinholes was obtained.
なお、 平均粒子径は、 口一タップシェーカーを用い、 篩い分け法にて得られる 累積粒子径分布曲線が 5 0 %を示す目開きに当たる粒子径 (D 5 0) を求め、 平 均粒子径とした。 粉体流動性は、 後記測定法によって落下時間を測定した。 落下 時間が短いほど粉体流動性は優れている。 2 5秒より長いと、 流動性が悪く、 成 型後のシ一卜などの厚みの均一性に不良が生じることが多くなる。  The average particle size was determined by using a mouth-to-tap shaker to determine the particle size (D50) corresponding to the opening where the cumulative particle size distribution curve obtained by the sieving method showed 50%, and the average particle size was determined. did. The powder flowability was determined by measuring the fall time by the method described below. The shorter the fall time, the better the powder fluidity. If the time is longer than 25 seconds, the fluidity is poor and the uniformity of the thickness of a sheet or the like after molding often becomes poor.
焼結成型性は、 粉体状の熱可塑性樹脂組成物を、 温度 2 5 0 °C、 2 2 5 °Cおよ び 2 0 0°Cに加熱したニッケル金型 (1 5 0 mmX 1 00 mmX 3 mm) 上に、 各粉体 5 0 0 gを均一に振りかけ、 1 0秒経過後、 未溶融の余剰粉体を除去し、 次に、 金型に付着して溶融した粒子状物についてはさらに 3 0秒保持して溶融を 促進させた。 その後、 金型を速やかに水冷し、 6 0°Cになったとき冷却 ·固化し たシ一卜を金型より剥がし、 シー卜およびシー卜表面のピンホールの状態などを 目視で評価した。 The sintering moldability was determined by heating a powdery thermoplastic resin composition to a temperature of 250 ° C, 250 ° C, and 200 ° C in a nickel mold (150 mm X 100 ° C). (mmX 3 mm), sprinkle 500 g of each powder evenly.After 10 seconds, remove unmelted excess powder, Next, the particles adhered to the mold and melted were held for another 30 seconds to promote the melting. Thereafter, the mold was rapidly cooled with water. When the temperature reached 60 ° C., the cooled and solidified sheet was peeled off from the mold, and the condition of the sheet and pinholes on the sheet surface were visually evaluated.
以下の実施例においては、 特記した他は、 上記粉体成形用樹脂組成物の製造方 法の具体例と実質的に同じ方法、 条件によった。 また、 粉体成形用樹脂組成物の 物性は下記の試験方法により測定した。  In the following Examples, methods and conditions substantially the same as the specific examples of the method for producing the resin composition for powder molding described above were used, except where otherwise noted. The physical properties of the resin composition for powder molding were measured by the following test methods.
( 1 ) 耐折皺性  (1) Crease resistance
粉体成形用樹脂組成物粉体をスラッシュ成形し、 得られたシート状成形品 (厚 さ :約 1 mm) を折曲げ皺が残らないようにして金型から離型し、 1 5 x 5 0 m mの試験片を切り取った。 この試験片を 2 3 °Cの室内で 1 8 0度折り曲げ、 その 状態で水平面に置き、 1 k gの分銅を 1 0秒間載せた後取り除き、 直ちに水平面 と折り曲げシ一卜との角度を測定した。 同様にして 6 5°Cにおいて高温耐折皺性 を測定した。 数値が小さい程、 耐折皺性 ί'ま良好である。  The resin composition powder for powder molding is subjected to slush molding, and the obtained sheet-like molded product (thickness: about 1 mm) is released from the mold so that no bent wrinkles remain, and 15 x 5 A 0 mm specimen was cut. The test piece was bent at 180 ° in a room at 23 ° C, placed on a horizontal surface in that state, a 1 kg weight was placed on the surface for 10 seconds, removed, and the angle between the horizontal surface and the bending sheet was measured immediately. . Similarly, high-temperature folding resistance was measured at 65 ° C. The smaller the value, the better the folding wrinkle resistance.
(2 ) 耐摩耗性  (2) Wear resistance
上記 (1 ) と同様にして切り取った 3 0 χ 8 0 mmの試験片を、 2 3°Cにおい て、 それが往復移動可能なテーブル上に載置し、 幅 2 O mmの鋼製摩擦子 (金幅 3号を 4枚重ねて被覆したもの) を試験片上にのせ、 これに 2. 5 k g f の荷重 を掛け、 試験片の表面を 6 0サイクル/分の速さで 5往復させ、 その時の試験片 の表面の白化度合いを観察した。 同様にして 6 5 °Cにおいて高温耐摩耗性を測定 した。 結果の表示は以下の 3等級評価法によった。 The test piece 3 0 χ 8 0 mm taken in the same manner as in (1), 2 3 ° C odor Te, it is placed on reciprocally movable table, steel Masatsuko width 2 O mm (Coated with four sheets of width 3) was placed on the test piece, a load of 2.5 kgf was applied to the test piece, and the surface of the test piece was reciprocated 5 times at a speed of 60 cycles / min. The degree of whitening of the surface of the test piece was observed. Similarly, high-temperature wear resistance was measured at 65 ° C. The results were displayed according to the following three-grade evaluation method.
A : 白化しない  A: No whitening
B :わずかに白化する  B: slight whitening
C : 白化する  C: Whiten
(3 ) 耐熱性  (3) Heat resistance
上記 ( 1 ) と同様にして切り取った 1 5 0 x 1 0 0 mmの試験片を、 1 2 0 °C のオープンに 1 0 0時間放置する。 その後取り出した試験片を室温で 1時間放置 し、 表面のベとつきの程度を触手にて評価した。 結果の表示は以下の 2等級評価 法によった。 A :表面がベたつかない The 150 mm x 100 mm test piece cut in the same manner as in (1) above is left open for 120 hours at 120 ° C. Thereafter, the removed test piece was allowed to stand at room temperature for 1 hour, and the degree of stickiness on the surface was evaluated with a tentacle. The results were displayed according to the following two-grade evaluation method. A: The surface is not sticky
B :表面がベたつく  B: The surface is sticky
(4) 発泡ポリウレタン層との接着性  (4) Adhesion with foamed polyurethane layer
上記 ( 1 ) と同様にして切り取った 1 4 5 x 2 0 0 mmの試験片を 1 4 7 (縦) χ 2 1 7 (横) 1 0 (深さ) mmの金型に入れ、 発泡ポリウレタン形成 液 (官能基数 2. 7のポリメリック M D I (4 , 4'—ジフエニルメタンジイソシ ァネー卜) 1 6 g、 ポリエーテルポリオール (3官能性、 水酸基価 5 0 ) (トリ エチレンジァミン 1 . 0 %、 水 1 . 6 %を含む) 3 1 . 4 gの混合物) を注ぎ、 金型を密閉した。 金型を常温で 1 0分放置した後、 金型からポリウレタン発泡層 が積層した試験片を取り出し、 試験片を発泡層から剥し、 凝集破壊した発泡層の 面積を測り、 試験片の全面積に占める割合を求めた。 この割合が大きいほど接着 性は良好である。  A 14.5 x 200 mm test piece cut in the same manner as in (1) above was placed in a 14 7 (vertical) χ 2 17 (horizontal) 10 (depth) mm mold. Forming solution (polymeric MDI having 2.7 functional groups (4,4'-diphenylmethanediisocyanate) 16 g, polyether polyol (trifunctionality, hydroxyl value 50) (triethylenediamine 1.0%, Water (containing 1.6%) 31.4 g of the mixture) was poured and the mold was sealed. After leaving the mold at room temperature for 10 minutes, remove the test piece with the polyurethane foam layer laminated from the mold, peel off the test piece from the foam layer, measure the area of the foam layer that has undergone cohesion failure, and apply it to the entire area of the test piece. The occupancy ratio was determined. The higher the ratio, the better the adhesion.
A : 9 0〜 1 0 0 %  A: 90 to 100%
B : 8 0 %〜 9 0 %未満  B: 80% to less than 90%
C : 8 0 %未満  C: less than 80%
(5) 粉体流動性  (5) Powder flowability
J I S K 6 7 2 1 に従い、 温度 2 3 °Cにおいて粉体成形用樹脂組成物 1 0 0 c cの落下時間 (単位:秒) を嵩比重測定装置を用いて測定した。 落下時間が短 い程、 粉体流動性は良好である。  According to JIS K 672 1, the falling time (unit: second) of the resin composition for powder molding 100 cc at a temperature of 23 ° C. was measured using a bulk specific gravity measuring device. The shorter the fall time, the better the powder flowability.
(6 ) 粉体成形性  (6) Powder moldability
温度 2 6 0 °Cに加熱したニッケル製金型 (内寸 2 0 0 mmx 3 0 0 mmx 2 m m) に粉体成形用樹脂組成物を充填し、 1 0秒後に金型を反転させて余剰の該組 成物を除き、 金型に付着している該樹脂組成物をさらに 3 0秒間保持してゲル化 させた。 次に、 金型を 6 0°Cに冷却し、 ゲル化したシートを金型から剥し、 以下 の 2等級評価法により評価した。  A resin mold for powder molding is filled into a nickel mold (inner dimension: 200 mm x 300 mm x 2 mm) heated to a temperature of 260 ° C, and after 10 seconds, the mold is turned over and surplus Except for the above composition, the resin composition adhering to the mold was held for 30 seconds to gel. Next, the mold was cooled to 60 ° C, the gelled sheet was peeled off from the mold, and evaluated by the following two-grade evaluation method.
A : シート厚にムラがなく、 ピンホールがほとんどない。  A: There is no unevenness in sheet thickness and almost no pinholes.
B : シー卜厚にわずかにムラがあり、 ピンホールがわずかにある。  B: Sheet thickness is slightly uneven and pinholes are slightly.
実施例 1 〜 3、 比較例 1 ~ 2  Examples 1-3, Comparative Examples 1-2
この例は、 ポリプロピレン樹脂 (a) と才レフイン系熱可塑性エラス卜マー (b) と芳香族ビニル化合物一共役ジェン共重合体の水素化物からなる粉体成形 用樹脂組成物の特性を示す。 In this example, a polypropylene resin (a) and a thermoplastic resin The properties of a resin composition for powder molding comprising (b) and a hydride of an aromatic vinyl compound-conjugated gen copolymer are shown.
表 1 に示す種類および量の各重合体成分を二軸押出機 (東芝機械 (株) 製 T E M 3 5 B) により混練し、 ペレツ卜化した後、 ターボミルにて粉砕し、 粉末状の 各粉体成形用樹脂組成物を得た。 得られた各粉末 樹脂組成物を用い、 スラッシ ュ成形による溶融性の試験をするとともに、 得られたシー卜を用いて耐折皺性、 耐摩耗性、 耐熱性を評価した。 結果を表 1 に示す。 表 1  The polymer components of the type and amount shown in Table 1 were kneaded with a twin-screw extruder (TEM35B manufactured by Toshiba Machine Co., Ltd.), pelletized, pulverized by a turbo mill, and powdered. A resin composition for body molding was obtained. Using each of the obtained powdered resin compositions, a fusibility test was performed by slush molding, and the obtained sheets were used to evaluate creasing resistance, abrasion resistance, and heat resistance. Table 1 shows the results. table 1
Figure imgf000030_0001
注 ( 1 ) サンァロマ一社製 PM 940 M (M F R 30)
Figure imgf000030_0001
Note (1) PM 940 M (MFR 30) manufactured by Sanaloma
(2) 同 上 サンアタック (ァタクチック P P)  (2) Same as above Sun Attack (Atactic P P)
(3) トクャマ社製 P. E. R. M 1 4 2 E (リアクター T PO)  (3) P.E.R.M1 4 2E (Reactor T PO) manufactured by Tokuyama Corporation
(4) 旭化成社製 タフテック H I 22 1 (結合スチレン量 1 2 %) 表 1 に示されるように、 本発明の粉体成形用樹脂組成物を用いた成形体は、 耐 折曲性、 耐摩耗性および耐熱性が良好である (実施例〗〜 3)。 対照的に、 プロ ピレン系ブロック共重合体を配合しない場合 (比較例 1 ) と P P樹脂を配合しな い場合 (比較例 2 ) は、 耐折曲性と耐摩耗性が不良である。  (4) Asahi Kasei Corporation Tuftec HI221 (Bound styrene content: 12%) As shown in Table 1, a molded article using the resin composition for powder molding of the present invention has bending resistance and abrasion resistance. Good heat resistance and heat resistance (Examples I to 3). In contrast, when the propylene-based block copolymer was not blended (Comparative Example 1) and when the PP resin was not blended (Comparative Example 2), the bending resistance and the abrasion resistance were poor.
実施例 4 ~ 1 0、 比較例 3  Examples 4 to 10, Comparative Example 3
この例は、 ポリプロピレン樹脂 (a) と才レフイン系熱可塑性エラス卜マー (b) と芳香族ビニル化合物—共役ジェン共重合体の水素化物 (2) からなる粉 体成形用樹脂組成物に、 脂肪酸アミド (3 - 1 ) を加えたものの特性を示す。 表 2に示す種類および量の各重合体成分を二軸押出機 (東芝機械 (株) 製 T E M 3 5 B) により混練し、 ペレ、グ卜化した後、 ターボミルにて粉砕し、 粉末状の 各粉体成形用樹脂組成物を得た。 得られた各粉末状樹脂組成物を用い、 スラッシ ュ成形による溶融性の試験をするとともに、 得られたシー卜を用いて耐折皺性、 耐摩耗性、 耐熱性を評価した。 結果を表 2.に示す。 表 2 In this example, a fatty acid was added to a resin composition for powder molding comprising a polypropylene resin (a), a thermoplastic resin (b) and a hydride of an aromatic vinyl compound-conjugated gen copolymer (2). Shows the properties of amide (3-1) added. The polymer components of the type and amount shown in Table 2 were kneaded with a twin-screw extruder (TEM35B, manufactured by Toshiba Machine Co., Ltd.), pelletized, and then pulverized. Each resin composition for powder molding was obtained. Using each of the obtained powdery resin compositions, a melting test was performed by slush molding, and the obtained sheets were used to evaluate creasing resistance, abrasion resistance, and heat resistance. The results are shown in Table 2. Table 2
Figure imgf000031_0001
注 (1 ) サンァロマ一社製 PM 940 M (M F R 30)
Figure imgf000031_0001
Note (1) PM 940 M (MFR 30) manufactured by Sanaloma
(2) 同 上 サンアタック (ァタクチック P P)  (2) Same as above Sun Attack (Atactic P P)
( 3 ) トクャマ社製 P. E. R. M 1 4 2 E (リアクタ一 T PO)  (3) Tokuyama P.E.R.M1 4 2E (reactor-one TPO)
(4) 旭化成社製 タフテック H I 22 1 (結合スチレン量 1 2 %)  (4) Asahi Kasei Corporation Tuftec HI 22 1 (Bound styrene content 12%)
(5) エチレンビスステアリン酸アミド  (5) Ethylene bisstearic acid amide
(6 ) エチレンビスべヘン酸アミド  (6) Ethylene bisbehenamide
(7) 三菱化学社製 表 2に示されるように、 ポリプロピレン樹脂組成物と才レフィン系熱可塑性ェ ラストマーと S E B Sとを混合し、 さらに脂肪酸アミドを配合した場合 (実施例 4〜 1 0) は、 折曲げ角度が小さいことから耐折れ皺性が良好であり、 耐摩耗性 および耐熱性とのバランスが良好であることが分かる。 特に、 脂肪酸アミ ドを配 合しない場合 (実施例 1 ) と比較して、 高温耐摩耗性が改善されている。 ォレフ ィン系熱可塑性エラス卜マーを配合しない場合は脂肪酸アミドを配合したときで も (比較例 2 )、 耐折れ皺性に劣る。 (7) As shown in Table 2 by Mitsubishi Chemical Corporation, when the polypropylene resin composition was mixed with a refining-based thermoplastic elastomer and SEBS, and further mixed with a fatty acid amide (Examples 4 to 10), Since the bending angle is small, it has good fold wrinkle resistance and wear resistance It can be seen that the balance with the heat resistance is good. In particular, the high-temperature abrasion resistance is improved as compared with the case where no fatty acid amide is combined (Example 1). When no thermoplastic thermoplastic elastomer is blended, even when a fatty acid amide is blended (Comparative Example 2), the fold wrinkle resistance is poor.
実施例 1 1 〜 2 0、 比較例 4  Examples 11 to 20 and Comparative Example 4
この例は、 ポリプロピレン樹脂 (a) と才レフイン系熱可塑性エラス卜マ一 (b) と芳香族ビニル化合物一共役ジェン共重合体の水素化物 (2) からなる粉 体成形用樹脂組成物に、 水酸基含有炭化水素系重合体 (3 - 2) (または、 さら に変性シリコンオイル) を加えたものの特性を示す。  In this example, a resin composition for powder molding comprising a polypropylene resin (a), a thermoplastic resin (b) and a hydride of an aromatic vinyl compound-conjugated gen copolymer (2) is used. Shows the properties of those containing a hydroxyl group-containing hydrocarbon polymer (3-2) (or modified silicone oil).
表 3および表 4に示す種類および量の各重合体成分を二軸押出機 (東芝機械 (株) 製 T E M 3 5 B) により混練し、 ペレッ ト化した後、 ターボミルにて粉砕 し、 粉末状の各粉体成形用樹脂組成物を得た。 得られた各粉末状樹脂組成物を用 い、 スラッシュ成形による溶融性の試験をするとともに、 得られたシートを用い て耐折皺性、 耐摩耗性、 耐熱性、 接着性を評価した。 結果を表 3および表 4に示 す。  The polymer components of the types and amounts shown in Tables 3 and 4 were kneaded with a twin-screw extruder (TEM35B manufactured by Toshiba Machine Co., Ltd.), pelletized, pulverized with a turbo mill, and powdered. Was obtained. Each of the obtained powdery resin compositions was subjected to a slash molding meltability test, and the obtained sheets were used to evaluate creasing resistance, abrasion resistance, heat resistance, and adhesion. The results are shown in Tables 3 and 4.
表 3 配合処方(部) 実 施 例  Table 3 Formulations (parts)
試験結果 11 12 13 14 1.5 16  Test result 11 12 13 14 1.5 16
PPO) 30 25 10 10 10 10 (PPO) 30 25 10 10 10 10
PP (2) 5 PP (2) 5
PER (3) 20 20 20 20 20 20 PER (3) 20 20 20 20 20 20
SEBS(4) 50 50 70 70 70 70 水酸基含有炭化水素系 SEBS (4) 50 50 70 70 70 70 Hydroxyl-containing hydrocarbon
重合体(5) 10 10 10 10 3 水酸基含有炭化水素系  Polymer (5) 10 10 10 10 3 Hydroxyl-containing hydrocarbon
重合体 (6) 10  Polymer (6) 10
変性シリ]ンオイル A (7) 2.5 1 2.5 2.5 2.5 変性シリコンオイル B (8) 2.5  Modified silicone oil A (7) 2.5 1 2.5 2.5 2.5 Modified silicone oil B (8) 2.5
23°C 23 21 9 10 9 δ  23 ° C 23 21 9 10 9 δ
折曲角度 (度)  Bending angle (degree)
65°C 50 49 37 42 47 40  65 ° C 50 49 37 42 47 40
23°C A A A A A A  23 ° C A A A A A A A
耐摩耗性 60°C A A A A A A 耐熱性 A A A A A A 接着性(%) A A A A A A 表 4 Abrasion resistance 60 ° CAAAAAA Heat resistance AAAAAA Adhesion (%) AAAAAA Table 4
Figure imgf000033_0001
Figure imgf000033_0001
(注) (1 ) サンァロマー社製 P M 9 4 0 M (M F R 3 0) (Note) (1) PM 9400 M (MFR 30) manufactured by Sanaromar
( 2) 同 上 サンアタック (ァタクチック P P)  (2) Same as above Sun Attack (Atactic P P)
(3 ) トクャマ社製 P. E. R. M 1 4 2 E (リアクタ一 T P O)  (3) P.E.R.M1 4 2E (Reactor-one TPO) manufactured by Tokuyama Corporation
(4) 旭化成社製 タフテック H I 2 2 1 (結合スチレン量 1 2 %)  (4) Asahi Kasei Corporation Tuftec HI221 (Bound styrene content 12%)
(5) 三菱化学社製 ポリテール H (水酸基価 3 7 ~ 5 3、 ヨウ素価 5以下) (5) Mitsubishi Chemical Corporation Polytail H (hydroxyl value 37 to 53, iodine value 5 or less)
( 6) 三菱化学社製 ポリテール H A (水酸基価 4 1〜5 5、 ヨウ素価 5以下)(6) Mitsubishi Chemical Polytail H A (hydroxyl value 41 to 55, iodine value 5 or less)
( 7) G E東芝シリコ一ン社製 X F— 4 2— B 0 9 7 0 (水酸基変性シリコーン オイル) (7) GE X Toshiba Silicon XF—42—B0970 (hydroxyl-modified silicone oil)
(8) チッソ社製 サイラプレーン F M— 0 7 2 1 表 3および表 4に示されるように、 ポリプロピレン樹脂組成物と才レフィン系 熱可塑性エラス卜マーと S E B Sとを混合し、 さらに、 水酸基含有炭化水素重合 体および変性シリコーンオイルを配合した場合 (実施例 1 1 ~ 1 6 ) は、 折曲げ 角度が小さいことから耐折り皺性が良好であり、 耐摩耗性、 耐熱性およびポリゥ レ夕ン発泡体との接着性が良好である。 これに対して、 水酸基含有炭化水素系重合体および変性シリコーンオイルを配 合しない場合 (実施例 1 ) は、 ポリウレタン発泡体との接着性が改善されず、 ま た高温耐摩耗性も十分ではない。 変性シリコーンオイルが配合されていない場合(8) As shown in Tables 3 and 4, Thyroprene FM-0721 manufactured by Chisso Co., Ltd., was prepared by mixing a polypropylene resin composition, a olefin-based thermoplastic elastomer, and SEBS. When the hydrogen polymer and the modified silicone oil were blended (Examples 11 to 16), the bending angle was small, so that the fold wrinkle resistance was good, and the abrasion resistance, heat resistance, and polystyrene foam were obtained. Good adhesion to the body. On the other hand, when the hydroxyl group-containing hydrocarbon polymer and the modified silicone oil were not combined (Example 1), the adhesion to the polyurethane foam was not improved, and the high-temperature abrasion resistance was not sufficient. . When modified silicone oil is not blended
(実施例 1 7、 1 9) は、 高温耐摩耗性が十分でない。 さらに、 水酸基含有炭化 水素系重合体を配合しない場合 (実施例 1 8、 20) は、 ポリウレタン発泡体と の接着性が改良されない。 また、 才レフィン系エラス卜マーを混合しない場合(Examples 17 and 19) have insufficient high-temperature wear resistance. Furthermore, when the hydroxyl group-containing hydrocarbon polymer is not blended (Examples 18 and 20), the adhesiveness to the polyurethane foam is not improved. If you do not mix the refining elastomer
(比較例 4) は、 折曲げ角度が大きく、 耐折れ皺性は改良されず、 耐摩耗性とポ リゥレタン発泡体との接着性も不良である。 実施例 2 1 ~ 28、 比較例 5 (Comparative Example 4) has a large bending angle, does not improve the folding wrinkle resistance, and has poor abrasion resistance and poor adhesion to the polyurethane foam. Example 2 1 to 28, Comparative Example 5
この例は、 ポリプロピレン樹脂 (a) と才レフイン系熱可塑性エラス卜マー (b) と芳香族ビニル化合物一共役ジェン共重合体の水素化物 (2) からなる粉 体成形用樹脂組成物に、 (3-3) 多価カルボン酸成分 (A) と(i)アルカンジ才 ールおよび(M)多価フエノキシアルコールを含有するアルコール成分 (B) と を重縮合してなるポリエステル樹脂、 (または、 さらに変性シリコンオイル) を 加えたものの特性を示す。 製造例 1 (ポリエステル樹脂 Aの製造)  In this example, a resin composition for powder molding comprising a polypropylene resin (a), a thermoplastic resin (b) and a hydride of an aromatic vinyl compound-conjugated gen copolymer (2), 3-3) Polyester resin obtained by polycondensing polyhydric carboxylic acid component (A) with (i) alkanediol and (M) alcohol component (B) containing polyhydric phenoxy alcohol, (or And modified silicone oil). Production Example 1 (Production of polyester resin A)
シクロへキサン一 1, 4ージカルボン酸 1 00部、 2—ェチル— 2—ブチルー 1, 3—プロパンジオール (水酸基価 695 mg KOH/g) 1 4.3部、 ビス フエノール Aのエチレンオキサイド付加物 (水酸基価 344 m g KO HZg) 1 64.3部とエステル化触媒としてモノブチル錫才キサイド 0.28部を用い、 重縮合反応を行った。 得られたポリエステル樹脂 Aは、 数平均分子量が 1 3, 6 60、 水酸基価が 7.2 mg KOH/g、 ガラス転移温度が 53 °Cであった。 製造例 2 (ポリエステル樹脂 Bの製造)  100 parts of cyclohexane-1,4-dicarboxylic acid, 100 parts of 2-ethyl-2-butyl-1,3-propanediol (hydroxyl value 695 mg KOH / g) 14.3 parts, ethylene oxide adduct of bisphenol A (hydroxyl value Polycondensation reaction was carried out using 64.3 parts of 344 mg KO HZg) and 0.28 part of monobutyltin oxide as an esterification catalyst. The obtained polyester resin A had a number average molecular weight of 13,660, a hydroxyl value of 7.2 mg KOH / g, and a glass transition temperature of 53 ° C. Production Example 2 (Production of polyester resin B)
シクロへキサン一 1 , 4ージカルボン酸 1 00部、 2—ェチルー 2—ブチル— 1 , 3—プロパンジオール (水酸基価 S g S mg KOH/g) 7 6.5部、 ビス フエノール Aのエチレンオキサイド付加物 (水酸基価 344 mg KOHZg) 3 8. 7部とエステル化触媒としてモノブチル錫才キサイド 0.2 2部を用い、 重 縮合反応を行った。 得られたポリエステル樹脂 Bは、 数平均分子量が 7, 930、 水酸基価が 9. 8 m g K〇H/g、 ガラス転移温度が 4 9 °Cであつた。 100 parts of cyclohexane-1,4-dicarboxylic acid, 100 parts of 2-ethyl-2-butyl-1,3-propanediol (hydroxyl value S g S mg KOH / g) 76.5 parts, bisphenol A ethylene oxide adduct ( A polycondensation reaction was carried out using 8.7 parts of a hydroxyl value of 344 mg KOHZg) and 0.22 parts of monobutyltin oxide as an esterification catalyst. The obtained polyester resin B has a number average molecular weight of 7,930, The hydroxyl value was 9.8 mg K〇H / g and the glass transition temperature was 49 ° C.
なお、 ポリエステル樹脂の数平均分子量は、 G P Cで測定し、 標準ポリスチレ ン換算の分子量である。 水酸基価は、 ポリエステル樹脂を無水酢酸を用いてァセ チル化した後、 水酸化カリウム/エタノール混合溶液で滴定して求めた。 また、 ガラス転移温度は D S Cで測定した。 表 5に示す種類および量の各重合体成分を二軸押出機 (東芝機械 (株) 製 T E M 3 5 B) により混練し、 ペレツ卜化した後、 ターボミルにて粉砕し、 粉末状の 各粉体成形用樹脂組成物を得た。 得られた各粉末状樹脂組成物を用い、 スラッシ ュ成形による溶融性の試験をするとともに、 得られたシ一卜を用いて耐折皺性、 耐摩耗性、 耐熱性、 接着性を評価した。 結果を表 5に示す。 表 5  In addition, the number average molecular weight of the polyester resin is measured by GPC and is a standard polystyrene equivalent molecular weight. The hydroxyl value was determined by acetylating the polyester resin with acetic anhydride and then titrating with a mixed solution of potassium hydroxide / ethanol. The glass transition temperature was measured by DSC. The polymer components of the type and amount shown in Table 5 were kneaded with a twin-screw extruder (TEM35B, manufactured by Toshiba Machine Co., Ltd.), pelletized, pulverized by a turbo mill, and powdered. A resin composition for body molding was obtained. Using each of the obtained powdery resin compositions, a fusibility test was performed by slush molding, and the obtained sheets were used to evaluate creasing resistance, abrasion resistance, heat resistance, and adhesion. Table 5 shows the results. Table 5
Figure imgf000035_0001
Figure imgf000035_0001
(注) (1 ) サンァロマ一社製 PM 940 M (M F R 30) (Note) (1) PM 940 M (MFR 30) manufactured by Sanaloma
(2) 同 上 サンアタック (ァタクチック P P)  (2) Same as above Sun Attack (Atactic P P)
( 3 ) トクャマ社製 P. E . R . M 1 42 E (リアクタ一T PO)  (3) P.E.R.M 142 E (Reactor-one TPO) manufactured by Tokuyama Corporation
(4) 旭化成社製 タフテック H I 2 2 1 (結合スチレン量 1 2%) (5) G E東芝シリコーン社製 X F 42— B 09 70 (カルビノール変性シリコ ーンオイル) (4) Asahi Kasei Corporation Tuftec HI2 2 1 (Bound styrene content 12%) (5) GE Toshiba Silicone XF42—B0970 (carbinol-modified silicone oil)
(6) チッソ社製 サイラプレーン FM— 07 2 1 (片末端メ夕クリロキシ基変性 シリコーンオイル) 表 5に示されるように、 ポリプロピレン樹脂組成物と才レフィン系熱可塑性ェ ラス卜マーと S E B Sとを混合し、 これにポリエステル樹脂 Aまたは Bを配合し た場合 (実施例 2 1 〜2 7) は、 耐折リ皺性が良好で、 ポリウレタン発泡体との 接着性も良好である。 なかでも、 変性シリコーンオイルを併用すると (実施例 2 5、 2 7) 接着性を低下させずに耐摩耗性がさらに改良された。  (6) Thyraplane FM-0721 manufactured by Chisso (methacryloxy group-modified silicone oil at one end) As shown in Table 5, the polypropylene resin composition was mixed with a refining thermoplastic elastomer and SEBS. When polyester resin A or B was mixed with this (Examples 21 to 27), the fold wrinkle resistance was good and the adhesion to the polyurethane foam was good. Above all, when the modified silicone oil was used in combination (Examples 25 and 27), the abrasion resistance was further improved without lowering the adhesiveness.
これに対して、 ポリエステル樹脂 Aまたは Bを配合しない場合 (実施例 2 8) は、 接着性および高温体摩耗性が不十分である。 また、 才レフィン系エラス卜マ 一を配合しない場合 (比較例 5) は、 耐折れ皺性が不良で、 ポリウレタン発泡体 との接着性も低い。 実施例 2 9 ~ 3 3、 比較例 6  On the other hand, when the polyester resin A or B is not blended (Example 28), the adhesiveness and the high temperature wear resistance are insufficient. In addition, when the old refining elastomer was not blended (Comparative Example 5), the fold wrinkle resistance was poor and the adhesion to the polyurethane foam was low. Examples 2 9 to 3 3, Comparative Example 6
この例は、 ポリプロピレン樹脂 (a) と才レフイン系熱可塑性エラス卜マー (b) と芳香族ビニル化合物一共役ジェン共重合体の水素化物 (2) からなる粉 体成形用樹脂組成物に、 (3-4) ガラス転移温度が高い水酸基含有芳香族ビニ ル化合物共重合体を加えたものの特性を示す。 製造例 1 (水酸基含有芳香族.ビニル化合物共重合体;ダスティング剤の製造) 微細懸濁重合法により、 以下の水酸基含有芳香族ビニル化合物共重合体 1およ び 2 (ダステイング剤 1および 2) を調製した。  In this example, a resin composition for powder molding comprising a polypropylene resin (a), a thermoplastic resin (b) and a hydride of an aromatic vinyl compound-conjugated gen copolymer (2), 3-4) The properties of the product added with a hydroxyl group-containing aromatic vinyl compound copolymer having a high glass transition temperature are shown. Production Example 1 (Hydroxyl-containing aromatic vinyl compound copolymer; production of dusting agent) The following hydroxyl-containing aromatic vinyl compound copolymers 1 and 2 (dusting agents 1 and 2) were prepared by the fine suspension polymerization method. ) Was prepared.
水酸基含有芳香族ビニル化合物共重合体 1 (ダステイング剤 1 ) :  Hydroxyl-containing aromatic vinyl compound copolymer 1 (dusting agent 1):
単量体:スチレン 9 7部、 メタクリル酸 2—ヒドロキシプロピル 3部 Monomer: styrene 97 parts, 2-hydroxypropyl methacrylate 3 parts
平均一次粒径: 1 . 4 m、 T g : 1 0 1 . 5°C、 真球度: 1 Average primary particle size: 1.4 m, Tg: 101.5 ° C, sphericity: 1
水酸基含有芳香族ビニル化合物共重合体 2 (ダステイング剤 2 ) :  Hydroxyl-containing aromatic vinyl compound copolymer 2 (dusting agent 2):
単量体:スチレン 7 0部、 メ夕クリル酸ェチル 2 7部、 メ夕クリル酸 2—ヒドロ キシェチル 3部 Monomer: 70 parts of styrene, 27 parts of methyl methacrylate, 3 parts of 2-methyl methacrylate
平均一次粒径: 3. 2 μ m、 T g : 8 5 °C、 真球度: 0. 9 製造例 2 (芳香族ビニル化合物共重合体;ダスティング剤 3の製造) 単量体:スチレン 7 7部、 メタクリル酸メチル 5 0部、 アクリル酸ステアリル 5 0部 Average primary particle size: 3.2 μm, Tg: 85 ° C, sphericity: 0.9 Production Example 2 (Aromatic vinyl compound copolymer; production of dusting agent 3) Monomer: 77 parts of styrene, 50 parts of methyl methacrylate, 50 parts of stearyl acrylate
平均一次粒径: 3. 8 μ m、 T g : 7 2 °C、 真球度: 1 表 6に示す種類および量の各重合体成分をタンブラ一ミキサーに入れて均一に 混合し、 二軸押出機 (東芝機械 (株) 製 T E M 3 5 B ) により混練し、 ペレット 化した後、 ターボミルにて粉砕し、 メッシュ篩全通の粉粒体を得た。 次いで、 へ ンシェルミキサーにて前記粉粒体に水酸基含有芳香族ビニル化合物共重合体 (ダ スティング剤 1 および 2 ) を配合し、 混合して粉体成形用樹脂組成物を得た。 得 られた各粉末状樹脂組成物を用い、 粉体流動性の試験をするとともに、 得られた シ一卜を用いて耐折れ皺性、 ポリウレタン発泡体との接着性を評価した。 結果を 表 6に示す。 Average primary particle size: 3.8 μm, Tg: 72 ° C, sphericity: 1 The polymer components of the types and amounts shown in Table 6 are mixed uniformly in a tumbler mixer, and then biaxially mixed. The mixture was kneaded by an extruder (TEM35B, manufactured by Toshiba Machine Co., Ltd.), pelletized, and then pulverized by a turbo mill to obtain a fine powder through a mesh sieve. Next, a hydroxyl group-containing aromatic vinyl compound copolymer (dusting agents 1 and 2) was mixed with the powder and granules using a shell-shell mixer and mixed to obtain a resin composition for powder molding. A powder fluidity test was performed using each of the obtained powdery resin compositions, and the obtained sheets were used to evaluate fold wrinkle resistance and adhesion to a polyurethane foam. Table 6 shows the results.
比較のため、 水酸基を含有しない芳香族ビニル共重合体 (ダステイング剤 3 ) を配合した場合、 ダスティング剤を配合しない場合についても同様にして各粉末 状樹脂組成物を調製し、 粉体流動性、 耐折れ皺性、 ポリウレタン発泡体との接着 性を評価した。 結果を表 6に示す。 表 6 実 \列 比較例  For comparison, each powdered resin composition was prepared in the same manner when an aromatic vinyl copolymer containing no hydroxyl group (dusting agent 3) was added and when no dusting agent was added. , Wrinkle resistance and adhesion to polyurethane foam were evaluated. Table 6 shows the results. Table 6 Comparative example
29 30 31 32 33 6 ホ°リ: ΤΠピレン樹脂 *1 10 10 30 30 30 30 配 リ 7クタ- TP0 *2 20 20 20 20 20  29 30 31 32 33 6 Hole: Pyrene resin * 1 10 10 30 30 30 30 Distributor 7 TP0 * 2 20 20 20 20 20
SEBS *3 70 70 50 50 50 70 口 ダステインク *剤 1 15 15 15  SEBS * 3 70 70 50 50 50 70 mouth Dust ink * agent 1 15 15 15
ダステイング剤 2 15  Dusty agent 2 15
(部) ダステインク'剤 3 15  (Part) Dustin ink agent 3 15
粉体流動性 23°C 15.2 16.1 13.5 17.5 25.0* 17.7 Powder flowability 23 ° C 15.2 16.1 13.5 17.5 25.0 * 17.7
(秒) (Seconds)
50°C 26.4 29.4 25.7 30.8 40.2* 32.1 試  50 ° C 26.4 29.4 25.7 30.8 40.2 * 32.1 Trial
粉体成形性 A A A A B A 耐折リ皺性 23°C 8 10 12 12 30 40 験 (度) 65°C 37 39 43 45 55 . 60  Powder formability A A A A B A Folding resistance 23 ° C 8 10 12 12 30 40 Test (degrees) 65 ° C 37 39 43 45 55.60
耐熱性 A A A A A A ウレタン接着性 A A A B B B 注 * 1 グランドポリマー社製 J 709 (M F R 55 g/1 0m i n) Heat resistant AAAAAA Urethane adhesive AAABBB Note * 1 Grand Polymer J 709 (MFR 55 g / 10 min)
* 2 トクャマ社製 P. E . R. M 1 4 2 A (リアクタ一 T PO)  * 2 Tokuyama P.E.R.M.1 4 2 A (reactor-one TPO)
* 3 旭化成工業社製 タフテック H I 2 2 1 (結合スチレン 1 2 %)  * 3 Asahi Kasei Kogyo Co., Ltd. Tuftec H I 2 21
* 粉体流動性試験:測定器を振動させて強制的に落下させた。 表 6に示すように、 ポリプロピレン樹脂組成物と才レフィン系熱可塑性エラス 卜マーと S E B Sとを混合し、 これにダスティング剤 1または 2を配合した場合 は、 粉体流動性および粉体成形性に優れ、 また、 これらを用いてスラッシュ成形 により得られたシ一卜は、 耐折リ皺性および発泡ポリウレタン接着性が良好であ つた (実施例 2 9~3 1 )。  * Powder fluidity test: The measuring instrument was vibrated and forcibly dropped. As shown in Table 6, when the polypropylene resin composition was mixed with a refining-based thermoplastic elastomer and SEBS, and the dusting agent 1 or 2 was added thereto, the powder flowability and powder moldability The sheets obtained by slush molding using these had good folding wrinkle resistance and good adhesion to polyurethane foam (Examples 29 to 31).
これに対して、 水酸基を含有しない重合体粒子をダスティング剤として用いた 場合は、 粉体流動性、 粉体成形性、 耐折り皺性および耐熱性は良好であつたが、 発泡ポリウレタンとの接着性が不十分であった (実施例 3 2)。 ダステイング剤 を配合しない場合は、 粉体流動性および粉体成形性が不十分であった (実施例 3 3)。 また、 才レフィン系熱可塑性エラストマ一を配合しない場合は、 耐折り皺 が低下した (比較例 6)。 実施例 3 4 ~ 3 7  On the other hand, when polymer particles containing no hydroxyl group were used as the dusting agent, powder flowability, powder moldability, creasing resistance and heat resistance were good, but the Adhesion was insufficient (Example 32). When no dusting agent was added, the powder fluidity and powder moldability were insufficient (Example 33). In addition, when the aged refining thermoplastic elastomer was not blended, the creasing resistance was reduced (Comparative Example 6). Examples 3 4 to 3 7
この例は、 ポリプロピレン樹脂 (a) と才レフイン系熱可塑性エラス卜マー ( b) と、 芳香族ビニル化合物含有量が異なる 2種の芳香族ビニル化合物一共役 ジェン共重合体の水素化物からなる粉体成形用樹脂組成物の特性を示す。  In this example, a powder composed of a hydride of a polypropylene resin (a), a thermoplastic resin (b), and two kinds of aromatic vinyl compounds having different aromatic vinyl compound contents and a conjugated gen copolymer is used. The properties of the resin composition for body molding are shown.
表 7に示す種類および量の各重合体成分を二軸押出機 (東芝機械 (株) 製 T E M 3 5 B) により混練し、 ペレツ卜化した後、 ターボミルにて粉砕し、 粉末状の 各粉体成形用樹脂組成物を得た。 得られた各粉末状樹脂組成物を用い、 粉体流特 性、 粉体成形性を試験するとともに、 得られたシートを用いて耐熱性および高温 時耐摩耗性を評価した。 結果を表 7に示す。 表 7 The polymer components of the type and amount shown in Table 7 were kneaded with a twin-screw extruder (TEM 35 B, manufactured by Toshiba Machine Co., Ltd.), pelletized, pulverized by a turbo mill, and powdered. A resin composition for body molding was obtained. Using each of the obtained powdery resin compositions, powder flow properties and powder moldability were tested, and the obtained sheets were used to evaluate heat resistance and high-temperature wear resistance. Table 7 shows the results. Table 7
Figure imgf000039_0001
Figure imgf000039_0001
(注) (1 ) サンァロマ一社製 PM 940 M (M F R 30 ) (Note) (1) PM 940 M (MFR 30) manufactured by Sanaloma I
( 2 ) トクャマ社製 P. E. R. 1 42 E (リアクター T PO)  (2) Tokuyama P.E.R.144E (reactor T PO)
(3) 旭化成社製 タフテック H I 2 2 1 (結合スチレン量 1 2%)  (3) Asahi Kasei Corporation Tuftec H I 2 2 1 (Bound styrene content 12%)
(4) 旭化成社製 タフテック H I 043 (結合スチレン量 6 7 %)  (4) Asahi Kasei Corporation Tuftec H I 043 (Bound styrene content 67%)
* 粉体流動性試験:測定器を振動させて強制的に落下させた。 表 7に示すように、 ポリプロピレン樹脂組成物と才レフィン系熱可塑性エラス 卜マーと、 結合スチレン量が 2 0 %以上の S E B Sと結合スチレン量が 2 0 %未 満の S E B Sとを配合した粉体成形用樹脂組成物 (実施例 3 4 ~ 3 6 ) は、 粉体 流動性などの粉体特性に優れ、 さらに高温 (6 0°C) における耐摩耗性に優れて いる。 これに対し、 結合スチレン量が 2 0 %未満の S E B Sを配合した場合 (実 施例 2 8) および結合スチレン量が 2 0 %以上の S E B Sを配合した場合 (実施 例 3 7 ) は、 いずれも高温における耐摩耗性が十分でない。 産業上の利用可能性  * Powder fluidity test: The measuring instrument was vibrated and forcibly dropped. As shown in Table 7, a powder blended with a polypropylene resin composition, a refining-based thermoplastic elastomer, SEBS having a bound styrene content of 20% or more, and SEBS having a bound styrene content of less than 20% The molding resin compositions (Examples 34 to 36) are excellent in powder properties such as powder fluidity, and are also excellent in wear resistance at high temperatures (60 ° C.). On the other hand, when SEBS having a bound styrene content of less than 20% was blended (Example 28) and when SEBS having a bound styrene content of 20% or more was blended (Example 37), both cases were observed. Insufficient wear resistance at high temperatures. Industrial applicability
ポリプロピレン樹脂 (a) と才レフイン系熱可塑性エラス卜マ一 (b) と、 芳 香族ビニル化合物一共役ジェン共重合体の水素化物 (2) を含んでなる本発明の 粉体成形用才レフイン系樹脂組成物は、 製造が容易で、 かつ、 耐折皺性、 耐熱性、 耐摩耗性などに優れた粉体成形品を与える。  The powder-forming resin of the present invention comprising a polypropylene resin (a), a thermoplastic resin-based thermoplastic elastomer (b), and a hydrogenated aromatic vinyl compound-conjugated gen copolymer (2). The resin composition provides a powder molded article which is easy to produce and has excellent creasing resistance, heat resistance, abrasion resistance and the like.
さらに、 脂肪酸アミド (3- 1 ) を配合すると高温耐摩耗性が改善され; 1分 子当りの平均水酸基数が 1〜 8個、 数平均分子量が 5 0 0~2 0, 0 0 0で、 ョ ゥ素価が 1 0 0以下である水酸基含有炭化水素系重合体 (3-2) を配合すると、 ポリウレタン発泡体との接着性および高温耐摩耗性が改善され;少なくともシク 口へキサンジカルボン酸またはその誘導体を含有する多価カルボン酸成分 (A) と、 (i) それぞれヒドロキシル基が結合した 2個の炭素原子の間に水素原子が 結合していない炭素原子が挟まれた分子構造を有するアルカンジオール、 および (i i)多価フエノキシアルコールを含有するアルコール成分 (B) とを重縮合し てなり、 数平均分子量が 7, 5 0 0 ~ 1 0 0 , 0 0 0であるポリエステル樹脂 (3-3 ) を配合すると、 ポリウレタン発泡体との接着性および高温耐摩耗性が 改善され; (3-4 ) ガラス転移温度が 6 0°C以上で、 平均一次粒径が 0. 1 ~ 1 0 mである水酸基含有芳香族ビニル化合物共重合体を配合すると、 粉体流動性 および粉体成形性が向上し、 また、 耐折皺性および発泡ポリウレタン接着性もよ い。 In addition, the addition of fatty acid amide (3-1) improves hot wear resistance; 1 minute Hydroxyl-containing hydrocarbon polymer having an average number of hydroxyl groups per molecule of 1 to 8, a number average molecular weight of 500 to 200,000, and an iodine value of 100 or less (3-2 )) Improves the adhesion to the polyurethane foam and the high-temperature abrasion resistance; a polycarboxylic acid component (A) containing at least hexanedicarboxylic acid or a derivative thereof; and (i) a hydroxyl group. An alkanediol having a molecular structure in which a carbon atom to which a hydrogen atom is not bonded is sandwiched between two carbon atoms bonded to each other, and (ii) an alcohol component containing a polyhydric phenoxy alcohol (B) and The polyester resin (3-3) having a number average molecular weight of 7,500 to 1,000,000 is blended with the polyurethane resin to improve the adhesion to the polyurethane foam and the high-temperature abrasion resistance. (3-4) When the glass transition temperature is 60 ° C or more, When a hydroxyl group-containing aromatic vinyl compound copolymer having an average primary particle size of 0.1 to 10 m is blended, powder flowability and powder moldability are improved, wrinkle resistance and foamed polyurethane adhesiveness are improved. It is good.
このような粉末状の粉体成形用才レフイン系樹脂組成物は、 粉体スラッシュ成 形、 流動浸漬成形または粉体回転成形などの種々の粉体成形方法に適用でき、 得 られる成形品には、 厚み厶ラ、 ピンホールなどの不具合が生じる可能性が少なく、 成形性においても、 アンダーカツ卜部への流入性などに優れた特性を示す。  Such a powdery refin-based resin composition for powder molding can be applied to various powder molding methods such as powder slush molding, fluid immersion molding or powder rotary molding. It is unlikely to cause defects such as thickness, thickness and pinholes, and has excellent moldability and excellent inflow into the undercut part.
この粉体成形用才レフイン系樹脂組成物を粉体成形して得られる成形品は、 例 えば、 自動車のインストルメントパネル、 コンソールボックス、 ァ一厶レス卜な どの内装表皮材; および家電 · OA機器分野、 スポーツ用品分野、 建築,住宅分 野などで用いられる。 特にインストルメントパネル、 ヘッドレス卜、 コンソール ボックス、 ドア卜リム、 アームレス卜などの自動車内装品の表層用成形材料とし て好適である。  Molded articles obtained by powder molding the powdery refin-based resin composition include, for example, interior skin materials such as automobile instrument panels, console boxes, and hamlets; and home appliances and OA. It is used in the equipment field, sports equipment field, construction, and housing. In particular, it is suitable as a molding material for the surface layer of automobile interior parts such as instrument panels, headrests, console boxes, door trims, armrests, and the like.

Claims

請求の範囲 The scope of the claims
1 . ( 1 ) (a) ポリプロピレン樹脂 2 0- 8 0重量部、 (b) 才レフィン系熱 可塑性エラス卜マー 8 0〜2 0重量部 (但し、 (a) と (b) の合計は 1 0 0重 量部である。) とからなるポリプロピレン樹脂組成物 2 0〜8 0重量部と、 (2) 芳香族系ビニル化合物一共役ジェン共重合体の水素化物 8 0~2 0重量部1. (1) (a) 20 to 80 parts by weight of a polypropylene resin, (b) 80 to 20 parts by weight of a refining thermoplastic elastomer (however, the sum of (a) and (b) is 1 20 to 80 parts by weight of a polypropylene resin composition comprising: (2) a hydrogenated aromatic vinyl compound-conjugated gen copolymer of 80 to 20 parts by weight.
(( 1 ) と (2) の合計は 1 0 0重量部である。) とを含んでなる粉体成形用才レ フィン系樹脂組成物。 (The total of (1) and (2) is 100 parts by weight.)
2. ポリプロピレン樹脂組成物 (1 ) 3 0~7 0重量部と、 芳香族系ビニル化 合物一共役ジェン共重合体の水素化物 (2〉 7 0~3 0重量部 ((1 ) と (2) の合計は 1 0 0重量部である。) とを含んでなる請求の範囲 1記載の粉体成形用 才レフィン系樹脂組成物。  2. 30 to 70 parts by weight of a polypropylene resin composition (1) and a hydride of an aromatic vinyl compound-conjugated gen copolymer (2) 70 to 30 parts by weight ((1) and ( The total amount of 2) is 100 parts by weight.) The refining-based resin composition for powder molding according to claim 1, comprising:
3. 才レフィン系熱可塑性エラス卜マ一 (b) が、 プロピレン系ブロック共重 合体である請求の範囲 1または 2のいずれかに記載の粉体成形用才レフィン系樹 脂組成物。 '  3. The refined resin composition for powder molding according to claim 1, wherein the refined thermoplastic elastomer (b) is a propylene-based block copolymer. '
4. 芳香族系ビニル化合物一共役ジェン共重合体の水素化物 (2) が、 芳香族 系ビニル化合物と共役ジェンとのプロック共重合体の水素化物である請求の範囲 1ないし 3のいずれかに記載の粉体成形用才レフイン系樹脂組成物。  4. The hydride of an aromatic vinyl compound-conjugated gen copolymer (2) is a hydride of a block copolymer of an aromatic vinyl compound and a conjugated gen. A refin-based resin composition for powder molding according to the above.
5. 芳香族系ビニル化合物—共役ジェン共重合体の水素化物 (2 ) が、 芳香族 系ビニル化合物単位含有量が 5 ~ 5 0重量%の芳香族系ビニル化合物一共役ジェ ン共重合体の水素化物である請求の範囲 1ないし 4のいずれかに記載の粉体成形 用才レフイン系樹脂組成物。  5. A hydride of an aromatic vinyl compound-conjugated gen copolymer (2) is an aromatic vinyl compound-conjugated gen copolymer having an aromatic vinyl compound unit content of 5 to 50% by weight. 5. The refin-based resin composition for powder molding according to any one of claims 1 to 4, which is a hydride.
6. 芳香族系ビニル化合物 -共役ジェン共重合体の水素化物 (2) が、 芳香族 系ビニル化合物単位含有量が 2 0 - 8 0重量%の芳香族系ビニル化合物一共役ジ ェン共重合体の水素化物 1 0~9 0重量%と、 芳香族系ビニル化合物単位含有量 が 5重量%以上 2 0重量%未満の芳香族系ビニル化合物一共役ジェン共重合体の 水素化物 9 0- 1 0重量%とからなる混合物である請求の範囲 1ないし 4のいず れかに記載の粉体成形用才レフィン系樹脂組成物。  6. A hydride of an aromatic vinyl compound-conjugated gen copolymer (2) is a copolymer of an aromatic vinyl compound having an aromatic vinyl compound unit content of 20 to 80% by weight and a conjugated diene copolymer. A hydride of a combined hydride of 10 to 90% by weight and an aromatic vinyl compound-conjugated gen copolymer having an aromatic vinyl compound unit content of 5% by weight or more and less than 20% by weight. 5. The refined resin composition for powder molding according to claim 1, which is a mixture comprising 0% by weight.
7. さらに、 (3-1) 脂肪酸アミドを、 ポリプロピレン樹脂組成物 (1 ) と芳 香族系ビニル化合物 -共役ジェン共重合体の水素化物 (2) の合計 1 0 0重量部 に対して、 1 ~2 0重量部含む請求の範囲 1ないし 6のいずれかに記載の粉体成 形用才レフイン系樹脂組成物。 7. Further, (3-1) the fatty acid amide is mixed with the polypropylene resin composition (1). The powder composition according to any one of claims 1 to 6, comprising 1 to 20 parts by weight based on a total of 100 parts by weight of the hydride (2) of the aromatic vinyl compound-conjugated gen copolymer. Shape-forming refin-based resin composition.
8. 脂肪酸アミド (3-1) が不飽和脂肪酸アミドである請求項 7に記載の粉 体成形用才レフイン系樹脂組成物。  8. The refining resin composition for powder molding according to claim 7, wherein the fatty acid amide (3-1) is an unsaturated fatty acid amide.
9. さらに、 (3-2) 1分子当りの平均水酸基数が 1〜 8個、 数平均分子量 が 5 0 0 ~ 2 0, 0 00で、 ヨウ素価が 1 0 0以下である水酸基含有炭化水素系 重合体を、 ポリプロピレン樹脂組成物 (1 ) と芳香族系ビニル化合物一共役ジェ ン共重合体の水素化物 (2) の合計 1 0 0重量部に対して、 1 ~2 0重量部含む 請求の範囲 1ないし 6のいずれかに記載の粉体成形用才レフィン系樹脂組成物。 9. (3-2) Hydroxyl-containing hydrocarbon having an average number of hydroxyl groups of 1 to 8 per molecule, a number average molecular weight of 500 to 200,000, and an iodine value of 100 or less. 1 to 20 parts by weight based on the total of 100 parts by weight of the polypropylene polymer composition (1) and the hydride (2) of the aromatic vinyl compound-conjugated gen copolymer (2). 7. The refined resin composition for powder molding according to any one of 1 to 6.
1 0. 水酸基含有炭化水素系重合体 (3-2) が、 両末端に水酸基を有するポ リブタジエンの水素添加物である請求項 9に記載の粉体成形用才レフィン系樹脂 組成物。 10. The powdery molded olefin resin composition according to claim 9, wherein the hydroxyl group-containing hydrocarbon polymer (3-2) is a hydrogenated polybutadiene having hydroxyl groups at both ends.
1 1 . さらに、 (3-3 ) 少なくともシクロへキサンジカルボン酸またはその 誘導体を含有する多価カルボン酸成分 (A) と、 (i) それぞれヒドロキシル基 が結合した 2個の炭素原子の間に水素原子が結合していな 、炭素原子が挟まれた 分子構造を有するアルカンジオール、 および(i i)多価フエノキシアルコールを 含有するアルコール成分 (B) とを重縮合してなり、 数平均分子量が 7, 5 0 0 〜1 0 0, 0 0 0であるポリエステル樹脂を、 ポリプロピレン樹脂組成物 (1 ) と芳香族系ビニル化合物一共役ジェン共重合体の水素化物 (2) の合計 Ί 0 0重 量部に対して、 2 ~3 0重量部含む請求の範囲 1ないし 6のいずれかに記載の粉 体成形用才レフイン系樹脂組成物。  11. Further, (3-3) a polyvalent carboxylic acid component (A) containing at least cyclohexanedicarboxylic acid or a derivative thereof, and (i) a hydrogen atom between two carbon atoms each having a hydroxyl group bonded thereto. An alkanediol having a molecular structure in which a carbon atom is not bonded and having no molecular bond, and (ii) an alcohol component (B) containing a polyvalent phenoxy alcohol are polycondensed, and have a number average molecular weight of A polyester resin having a viscosity of 7,500 to 100,000 is mixed with a polypropylene resin composition (1) and a hydride (2) of an aromatic vinyl compound and a conjugated gen copolymer (2) in total Ί100 weight. 7. The refining resin composition for powder molding according to any one of claims 1 to 6, comprising 2 to 30 parts by weight based on parts by weight.
1 2. さらに、 変性シリコーンオイルを、 ポリプロピレン樹脂組成物 ( 1 ) と 芳香族系ビニル化合物一共役ジェン共重合体の水素化物 (2) の合計 1 0 0重量 部に対して、 1 0重量部以下含む請求の範囲 9ないし 1 1のいずれかに記載の粉 体成形用才レフイン系樹脂組成物。  1 2. Further, 10 parts by weight of the modified silicone oil is added to 100 parts by weight of the total of 100 parts by weight of the polypropylene resin composition (1) and the hydride of the aromatic vinyl compound-conjugated gen copolymer (2). 12. The refin-based resin composition for powder molding according to any one of claims 9 to 11, including:
1 3. 変性シリコーンオイルが、 分子内に水酸基またはァクリロイ口キシ基もし くはメタクリロイ口キシ基を有する請求の範囲 1 2記載の粉体成形用才レフィン 系樹脂組成物。 13. The refining-based resin composition for powder molding according to claim 12, wherein the modified silicone oil has a hydroxyl group, an acryloyl oxy group or a methacryloyl oxy group in a molecule.
1 4. さらに、 (3- 4) ガラス転移温度が 6 0°C以上で、 平均一次粒径が 0. 1 〜 1 0 xmである水酸基を含有する、 芳香族ビニル化合物共重合体を、 ポリプ ロピレン樹脂組成物 (1 ) と芳香族系ビニル化合物—共役ジェン共重合体の水素 化物 (2) の合計 1 0 0重量部に対して、 0. 1 〜3 0重量部含む請求の範囲 1 ないし 6のいずれかに記載の粉体成形用ォレフイン系樹脂組成物。 1 4. Further, (3-4) a hydroxyl group-containing aromatic vinyl compound copolymer having a glass transition temperature of 60 ° C or more and an average primary particle size of 0.1 to 10 xm, Claims 1 to 10 containing 0.1 to 30 parts by weight based on a total of 100 parts by weight of the propylene resin composition (1) and the hydride of the aromatic vinyl compound-conjugated gen copolymer (2). 7. The resin-based resin composition for powder molding according to any one of 6.
1 5. 水酸基を含有する、 芳香族ビニル化合物共重合体 (3-4) が、 芳香族 ビニル化合物 9 9. 5~ 1 0重量%と水酸基含有ビニル化合物 0. 5〜 1 0重 量%との共重合体である請求項 1 4に記載の粉体成形用才レフイン系樹脂組成物。 1 5. The hydroxyl group-containing aromatic vinyl compound copolymer (3-4) contains 99.5 to 10% by weight of an aromatic vinyl compound and 0.5 to 10% by weight of a hydroxyl group-containing vinyl compound. 15. The powdery refin-based resin composition according to claim 14, which is a copolymer of
1 6. (1 ) (a) ポリプロピレン樹脂 2 0- 80重量部、 (b) 才レフィン系 熱可塑性エラストマ一 8 0〜2 0重量部 (但し、 (a) と (b) の合計は 1 0 0 重量部である。) とからなるポリプロピレン樹脂組成物 2 0〜8 0重量部と、1 6. (1) (a) 20 to 80 parts by weight of polypropylene resin, (b) 80 to 20 parts by weight of a refining thermoplastic elastomer (however, the sum of (a) and (b) is 10 0 to 80 parts by weight of a polypropylene resin composition comprising:
(2) 芳香族系ビニル化合物一共役ジェン共重合体の水素化物 8 0〜2 0重量部 (( 1 ) と (2 ) の合計は 1 0 0重量部である。) と、 所望により配合されるその 他の成分とを混練して樹脂混練物を得る工程と、 該樹脂混練物のペレツ卜を調製 する工程と、 該ペレツ卜を連続的に冷却し、 粉砕する工程とを有する、 請求の範 囲 1ないし 1 5のいずれかに記載の粉体成形用才レフイン系樹脂組成物の製造方 法。 (2) 80 to 20 parts by weight of a hydride of an aromatic vinyl compound-conjugated gen copolymer (the sum of (1) and (2) is 100 parts by weight); A step of obtaining a kneaded resin by kneading the mixture with other components, a step of preparing a pellet of the kneaded resin, and a step of continuously cooling and pulverizing the pellet. The method for producing a powdery resin-based resin composition according to any one of items 1 to 15.
1 7. 前記樹脂混練物のペレツ卜を調製する工程において、 ペレットの平均粒 子径が 0. 5~ 1 0 mmになるように調製する請求の範囲 1 6記載の粉体成形用 才レフィン系樹脂組成物の製造方法。  17. The powder refining system for powder molding according to claim 16, wherein in the step of preparing a pellet of the resin kneaded material, the average particle diameter of the pellets is adjusted to be 0.5 to 10 mm. A method for producing a resin composition.
1 8. ペレツ卜を連続的に冷却し、 粉砕する工程において、 ペレットに含まれ る熱可塑性樹脂のガラス転移温度以下に冷却した後に粉砕する請求の範囲 Ί 6ま たは 1 7に記載の粉体成形用才レフイン系樹脂組成物の製造方法。  1 8. In the step of continuously cooling and pulverizing the pellet, the powder according to claim 6 or 17 is pulverized after cooling to a temperature lower than the glass transition temperature of the thermoplastic resin contained in the pellet. A method for producing a body-forming refin-based resin composition.
1 9. ペレツ卜を連続的に冷却し、 粉砕する工程の後に、 さらに粉砕物を平均 粒子径が 1 0〜5 0 0 tmになるように分級する工程を有する請求の範囲 1 6〜 1 8のいずれかに記載の粉体成形用才レフイン系樹脂組成物の製造方法。  1 9. Claims 16 to 18 after the step of continuously cooling and crushing the pellets, further comprising a step of classifying the crushed material so that the average particle diameter becomes 10 to 500 tm. The method for producing a powdery refin-based resin composition according to any one of the above.
2 0. ペレツ卜を連続的に冷却し、 粉砕する工程の後に、 または、 さらに粉砕 物を平均粒子径が Ί 0~ 5 0 0 mになるように分級する工程の後に、 さらに、 該粉砕または該分級により得られた粉状物にダステイング剤を配合する工程を有 する請求の範囲 1 6 ~ 1 9のいずれかに記載の粉体成形用才レフイン系樹脂組成 物の製造方法。 20. After the step of continuously cooling and pulverizing the pellets, or after the step of further classifying the pulverized material so that the average particle size is about 0 to 500 m, A step of blending a dusting agent into the powder obtained by the classification. 10. The method for producing a powdery resin-based refin-based resin composition according to any one of claims 16 to 19.
2 1 . 混練機、 ペレタイザ一および冷却粉砕機からなる、 請求の範囲 1ないし 1 5のいずれかに記載の粉体成形用才レフイン系樹脂組成物の製造装置。  21. The apparatus for producing a powdery refin-based resin composition for powder molding according to any one of claims 1 to 15, comprising a kneader, a pelletizer, and a cooling pulverizer.
PCT/JP2002/006602 2001-06-29 2002-06-28 Olefin resin composition for powder molding and process for producing the same WO2003002655A1 (en)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2001-198109 2001-06-29
JP2001198109A JP2003011121A (en) 2001-06-29 2001-06-29 Method for producing thermoplastic resin composition for powder molding
JP2001-366915 2001-11-30
JP2001366915A JP3994725B2 (en) 2001-11-30 2001-11-30 Resin composition for powder molding
JP2001-399439 2001-12-28
JP2001-399440 2001-12-28
JP2001399439A JP3961284B2 (en) 2001-12-28 2001-12-28 Resin composition for powder molding
JP2001-399125 2001-12-28
JP2001399440A JP3961285B2 (en) 2001-12-28 2001-12-28 Resin composition for powder molding
JP2001399125A JP3989726B2 (en) 2001-12-28 2001-12-28 Resin composition for powder molding
JP2002024430A JP3998989B2 (en) 2002-01-31 2002-01-31 Resin composition for powder molding
JP2002-24430 2002-01-31
JP2002091952A JP3994776B2 (en) 2002-03-28 2002-03-28 A resin composition for powder molding comprising a hydride of an aromatic vinyl compound-conjugated diene copolymer
JP2002-91952 2002-03-28

Publications (1)

Publication Number Publication Date
WO2003002655A1 true WO2003002655A1 (en) 2003-01-09

Family

ID=27567055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006602 WO2003002655A1 (en) 2001-06-29 2002-06-28 Olefin resin composition for powder molding and process for producing the same

Country Status (1)

Country Link
WO (1) WO2003002655A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116003906A (en) * 2022-12-13 2023-04-25 武汉金发科技有限公司 Low-specific gravity polypropylene composite material and preparation method and application thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179100A (en) * 1992-01-07 1993-07-20 Mitsubishi Petrochem Co Ltd Coated flexible molding
JPH05320442A (en) * 1992-05-21 1993-12-03 Mitsui Petrochem Ind Ltd Propylene polymer composition
WO1997000911A1 (en) * 1995-06-20 1997-01-09 Sumitomo Chemical Company, Limited Thermoplastic elastomer composition and molded articles thereof
EP0811657A2 (en) * 1996-06-06 1997-12-10 Mitsuboshi Belting Ltd. Thermoplastic elastomer composition for powder slush molding and process for the preparation of the composition
JPH1192602A (en) * 1997-07-24 1999-04-06 Mitsuboshi Belting Ltd Thermoplastic elastomer composition for powder slush molding and powder slush molding material
JPH11255981A (en) * 1998-03-10 1999-09-21 Mitsuboshi Belting Ltd Thermoplastic elastomer composition for powder slash molding
JP2973353B2 (en) * 1995-08-10 1999-11-08 三ツ星ベルト株式会社 Powder resin composition used for powder molding
JP2000109609A (en) * 1998-10-07 2000-04-18 Mitsuboshi Belting Ltd Thermoplastic elastomer composition and slush-molded skin by using this
JP2000204207A (en) * 1999-01-18 2000-07-25 Mitsuboshi Belting Ltd Thermoplastic elastomer composition for powder slush molding, and powder slush molding material
JP2001049052A (en) * 1999-06-04 2001-02-20 Sumitomo Chem Co Ltd Thermoplastic elastomer composition for powder molding, powder of the composition, powder molding method using the powder, and molded product obtained by powder molding this powder

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179100A (en) * 1992-01-07 1993-07-20 Mitsubishi Petrochem Co Ltd Coated flexible molding
JPH05320442A (en) * 1992-05-21 1993-12-03 Mitsui Petrochem Ind Ltd Propylene polymer composition
WO1997000911A1 (en) * 1995-06-20 1997-01-09 Sumitomo Chemical Company, Limited Thermoplastic elastomer composition and molded articles thereof
JP2973353B2 (en) * 1995-08-10 1999-11-08 三ツ星ベルト株式会社 Powder resin composition used for powder molding
EP0811657A2 (en) * 1996-06-06 1997-12-10 Mitsuboshi Belting Ltd. Thermoplastic elastomer composition for powder slush molding and process for the preparation of the composition
JPH1192602A (en) * 1997-07-24 1999-04-06 Mitsuboshi Belting Ltd Thermoplastic elastomer composition for powder slush molding and powder slush molding material
JPH11255981A (en) * 1998-03-10 1999-09-21 Mitsuboshi Belting Ltd Thermoplastic elastomer composition for powder slash molding
JP2000109609A (en) * 1998-10-07 2000-04-18 Mitsuboshi Belting Ltd Thermoplastic elastomer composition and slush-molded skin by using this
JP2000204207A (en) * 1999-01-18 2000-07-25 Mitsuboshi Belting Ltd Thermoplastic elastomer composition for powder slush molding, and powder slush molding material
JP2001049052A (en) * 1999-06-04 2001-02-20 Sumitomo Chem Co Ltd Thermoplastic elastomer composition for powder molding, powder of the composition, powder molding method using the powder, and molded product obtained by powder molding this powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116003906A (en) * 2022-12-13 2023-04-25 武汉金发科技有限公司 Low-specific gravity polypropylene composite material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP5797710B2 (en) Resin composition and molded body thereof
WO2007142193A1 (en) Polypropylene resin composition and injection molded item for automobile therefrom
JP2665552B2 (en) Powder resin composition used for powder molding
JP2006137853A (en) Resin composition
EP1249471A1 (en) Polypropylene-based resins and polypropylene-based resin compositions
TW200914523A (en) Compositions exhibiting high ESCR and comprising monovinylidene aromatic polymer and ethylene/alpha-olefin copolymer
JP3931725B2 (en) POLYPROPYLENE RESIN COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND INJECTION MOLDED PRODUCT COMPRISING THE SAME
TW201529688A (en) Polylactic acid/acrylonitrile-butadiene-styrene copolymer alloy resin composition
JP2021116412A (en) Foam sheet, product, and method for producing foam sheet
WO2003002655A1 (en) Olefin resin composition for powder molding and process for producing the same
JP3961284B2 (en) Resin composition for powder molding
JP4287048B2 (en) Hot melt elastomer composition
JP3961285B2 (en) Resin composition for powder molding
Hwang et al. Effect of organoclay on the mechanical/thermal properties of microcellular injection molded polystyrene–clay nanocomposites
JP2001123019A (en) Resin composition for molding powder
JP3998989B2 (en) Resin composition for powder molding
JP2003011142A (en) Composite skin and method for manufacturing the same
JP4454941B2 (en) Powder molding resin composition
JP2000334843A (en) Manufacture of automotive interior trim monolithically formed with skin
JP4454940B2 (en) Powder molding resin composition
JPH083394A (en) Propylene-based resin composition for adhesion of urethane
JP2002265801A (en) Powder molding thermoplastic resin composition improved in moldability and molded product using the same
JP2003119343A (en) Powdery polymer composition
JP4198479B2 (en) Powder molding resin composition
JP2002088210A (en) Thermoplastic elastomer resin composition and molded article therefrom

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase