WO2003001554A1 - Color selecting mechanism for cathode-ray tube and color cathode-ray tube - Google Patents

Color selecting mechanism for cathode-ray tube and color cathode-ray tube Download PDF

Info

Publication number
WO2003001554A1
WO2003001554A1 PCT/JP2002/006160 JP0206160W WO03001554A1 WO 2003001554 A1 WO2003001554 A1 WO 2003001554A1 JP 0206160 W JP0206160 W JP 0206160W WO 03001554 A1 WO03001554 A1 WO 03001554A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
beam passage
color
passage holes
color selection
Prior art date
Application number
PCT/JP2002/006160
Other languages
French (fr)
Japanese (ja)
Inventor
Kouji Saita
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Publication of WO2003001554A1 publication Critical patent/WO2003001554A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/06Screens for shielding; Masks interposed in the electron stream
    • H01J29/07Shadow masks for colour television tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/07Shadow masks
    • H01J2229/0727Aperture plate
    • H01J2229/075Beam passing apertures, e.g. geometrical arrangements

Definitions

  • the present invention relates to a color selection mechanism for a cathode ray tube and a color cathode ray tube including the color selection mechanism.
  • One type of color selection mechanism for color cathode ray tubes is a color selection mechanism called an aperture grill.
  • a color selection electrode thin plate made of a metal thin plate is stretched over a frame-shaped metal frame composed of a pair of opposing support members and a pair of members welded to the support members. are doing.
  • slit-shaped electron beam communication holes are formed at a predetermined pitch in the color-selecting electrode thin plate, thereby forming a tape-like Daridian element between the electron beam passage holes, and forming a color-specific dalipid body.
  • a grid is formed to select the electron beam corresponding to the phosphor.
  • the color selection mechanism is also required to be miniaturized.
  • the shadow of the damper that is provided across the grid to suppress grid resonance is more noticeable. It is becoming.
  • the pitch of the grid element is as small as 0.2 mm to 0.25 mm or less, the pitch becomes almost indistinguishable to the naked eye, but the shadow of the damper line becomes more noticeable. .
  • the grid element body becomes extremely thin, so that the strength is remarkably deteriorated, and the adverse effects such as the uniformity and the swaying of the color selecting electrode thin plate become remarkable. Disclosure of the invention
  • the present invention includes a color selection mechanism for a cathode-ray tube capable of reducing the grid element pitch and increasing the resolution of the cathode-ray tube, and a color selection mechanism for the cathode-ray tube. It provides a high-definition, high-resolution color cathode ray tube.
  • the color selection mechanism for a cathode ray tube is a color selection mechanism in which a color selection electrode plate is stretched over a frame, and a large number of slit-like electron beam passage holes are formed in the color selection electrode plate in parallel. As a result, a grid element is formed between the slit-shaped electron beam passage holes, and a slot-shaped body is formed in each Darid element body in parallel with the slit-shaped electron beam passage hole.
  • the rows of electron beam passage holes are arranged in n rows (n is a positive integer). It is something.
  • a thin electrode for color selection is stretched on a frame, and a plurality of slit-shaped electron beam passage holes are formed in the thin electrode for color selection in parallel with each other.
  • a dalide element is formed between the electron beam passage holes of each grid, and a slit-like electron beam is formed in each grid element.
  • n rows of slot-like electron beam passage holes are arranged in parallel (n is a positive integer) in parallel with the passage holes.
  • n rows of slot-like electron beam passage holes are provided in each grid element in parallel with the slit-like electron beam passage holes.
  • N is a positive integer
  • the number of rows of electron beam passage holes in the slit and slot is approximately (n + 1) of the number of grid elements. It is twice as many.
  • the number of rows of electron beam passage holes can be reduced without increasing the number of grid elements.
  • the electrode plate for color selection remains between each slot-like passage hole.
  • the remaining portion extends the tape-shaped portion on both sides of the row of slot-shaped electron beam passage holes to form a grid element body, so that a conventional tape-shaped grid element is formed.
  • the structure is more resistant to deformation.
  • the electrode plate for color selection is stretched over the frame, and a large number of slit-shaped electron beam passage holes are formed in the electrode plate for color selection in parallel.
  • a grid element is formed between the slit-shaped electron beam passage holes, and a slot-shaped electron beam is formed in each Darid element body in parallel with the slit-shaped electron beam passage hole. Equipped with a color selection mechanism with n rows of beam passage holes (n is a positive integer), increasing the number of electron beam passage holes for resolution The degree can be increased, and the occurrence of line disturbance or the like due to the deformation of the grid body can be suppressed.
  • FIG. 1 is a plan view of a color selecting electrode thin plate of a color selecting mechanism according to an embodiment of the present invention
  • FIG. 2 is a schematic configuration diagram of an embodiment of a color selecting mechanism to which the present invention is applied
  • FIG. 3 is a schematic configuration diagram (a perspective view showing a part of the inside) of a color cathode ray tube
  • FIG. 4 is a color selection mechanism of another embodiment of the present invention.
  • FIG. 5 is a plan view of a conventional color-selecting electrode thin plate
  • FIG. 6 is a plan view of a conventional color-selecting electrode thin plate according to the present invention.
  • FIG. 1 is a plan view of a color selecting electrode thin plate of a color selecting mechanism according to an embodiment of the present invention
  • FIG. 2 is a schematic configuration diagram of an embodiment of a color selecting mechanism to which the present invention is applied
  • FIG. 3 is a schematic configuration diagram (a perspective view showing a part of the inside) of a color cathode ray
  • FIG. 7 is a plan view showing an irradiation area of the electron beam on the phosphor screen when the electrode plate for color selection of FIG. 6 is used, and FIG. 8 is a conventional color selection.
  • FIG. 5 is a plan view showing an irradiation area of an electron beam on a phosphor screen when a thin electrode plate is used.
  • the present invention relates to a color selection mechanism in which a color selection electrode thin plate is stretched over a frame, and a number of slit-like electron beam passage holes are formed in the color selection electrode thin plate in parallel with each other.
  • a grid element is formed between the slit-shaped electron beam passage holes, and a slit-shaped electron beam passes through each grid element body in parallel with the slit-shaped electron beam passage hole.
  • a thin electrode plate for color selection is stretched over a frame, and a large number of slit-shaped electron beam passage holes are formed in the thin electrode plate for color selection in parallel with each other.
  • a dalit element is formed between the holes, and parallel to the slit-shaped electron beam passage hole in each grid element.
  • this is a color cathode ray tube equipped with a color selection mechanism in which n rows of slot-like electron beam passage holes are arranged (n is a positive integer).
  • FIG. 2 shows a schematic configuration diagram of one embodiment of a color selection mechanism to which the present invention is applied.
  • the color selection mechanism 51 is a color selection mechanism of the type referred to as the aperture grille described above, and includes a pair of opposing support members 52, 53 and a pair of opposite ends of the support members 52, 53.
  • a frame-shaped metal frame 56 composed of a pair of elasticity imparting members 54 and 55 welded so as to be inserted is provided, and the supporting members 52 and 53 of the frame 56 facing each other.
  • An electrode plate 60 for color selection having a large number of slit-like electron beam passage holes 59 is stretched on one direction, that is, in the horizontal direction of the screen (X direction).
  • the electrode plate 60 for color selection is made of, for example, a thin metal plate made of stainless steel, and a number of thin tape-shaped dalide elements 58 are arranged at a predetermined pitch in the above-mentioned one direction.
  • a slit-like electron beam passage hole 59 long in the direction perpendicular to the screen is formed between the element bodies 58.
  • a damper wire 57 is provided on the effective screen area of the color selection electrode thin plate 60 in a state perpendicular to the longitudinal direction of the electron beam passage hole 59.
  • the damper wire 57 is supported by members attached to the elasticity imparting members 54, 55, and is stretched with a predetermined tension on the color selecting electrode thin plate 6Q.
  • two damper wires 57 are provided, and both of them make contact so as to press the grid element 58 against the grid element 58 of the color selection electrode thin plate 60. are doing.
  • FIG. 3 shows a schematic configuration diagram (a perspective view showing a part of the inside) of a color cathode ray tube provided with the color selection mechanism 51 having the above configuration.
  • the color cathode ray tubes 61 are each formed of, for example, glass.
  • the formed panel portion 61a and the funnel portion 61b are connected by a sealing portion 63 to form a cathode ray tube.
  • a fluorescent screen (not shown) is formed on the inner surface of the front surface of the panel section 61a of the cathode ray tube, and the color selection mechanism 51 having the above-described configuration is arranged so as to face the fluorescent screen at a predetermined interval. Have been.
  • the electron beam EB emitted from the electron gun 62 provided in the neck portion 61 c of the cathode ray tube is guided to the phosphor screen through the electron beam passage hole 59.
  • FIG. 1 is a schematic plan view of a color selecting electrode thin plate of a color selecting mechanism for a color cathode ray tube as one embodiment of the present invention.
  • the color selecting electrode thin plate 21 is formed of a metal thin plate, and is used for a color selecting mechanism for a color cathode ray tube.
  • the color selection mechanism can be configured by using the color selection mechanism 51 shown in FIG. 2 instead of the color selection electrode thin plate 60.
  • the thin electrode for color selection 21 has, as an opening, a slit-shaped electron beam passage hole 22 whose longitudinal direction is the vertical direction in the figure, which is the direction perpendicular to the screen of the cathode ray tube (Y direction). Many are formed at the same pitch.
  • the tape-shaped portion that is, the grid element 23 left between the electron beam passing holes 22 of the color selection electrode thin plate 21 corresponds to the phosphor of each color on the phosphor surface of the color cathode ray tube.
  • a grid for selecting the electron beam is constructed.
  • FIG. 1 schematically shows the configuration of the electrode plate 21 for color selection, and the actual electrode plate 21 for color selection has a large number of grid elements 2. 3 and an electron beam passage hole 22 are formed.
  • a rectangular slot-shaped electron beam passage hole 24 is formed in the center of each grid element body 23 in the shape of a rectangle.
  • the rectangular slot-like electron beam passage holes 24 have a longitudinal direction in the vertical direction in the figure, and a large number of rectangular slot-like electron beam passages 24 have a predetermined interval D1 and a slit-like shape. It is arranged in a row parallel to the electron beam passage holes 22. The distance between the rectangular slot-like electron beam passage holes 24 and the left and right slit-like electron beam passage holes 22 is also constant.
  • the slit-like electron beam passage hole 22 and the grid are formed.
  • the electron beam passage holes 22 and 24 are arranged at a half pitch (P / 2) of the pitch P of the element body 23.
  • the rectangular slot-shaped electron beam passage hole 24 is formed in the center of the grid body 23 in this way, the electron beam passes through the electron beam passage hole 24. Color sorting can be performed. Therefore, it is possible to allow the electron beam to pass through the Dalide element body 23 as well.
  • a thin electrode plate 21 for color selection remains between the rectangular slit-like electron beam passage holes 24 arranged vertically, and this portion (hereinafter referred to as a bridge portion 23B) forms a rectangular slot.
  • a grid element 23 is formed by connecting and integrating two tape-shaped portions on the left and right of the hole-shaped electron beam passage hole 24.
  • the electron beam passage holes 22 and 24 have a fine pitch that cannot be discerned by the naked eye, the pattern of the slit-like electron beam passage holes 22 and the rectangular slot-like electron beam passage holes 2 Since pattern 4 cannot be distinguished, s ⁇ and ⁇ are combined with the integrated pattern.
  • FIG. 5 shows a plan view of a conventional aperture grill type thin plate for color selection similar to the thin plate for color selection 60 shown in FIG.
  • a large number of slit-like electron beam passage holes 59 are formed at a constant pitch P in the thin electrode for color selection 60.
  • the pitch P of the slit-like electron beam passage holes 59 is narrowed, and the number of the electron beam passage holes 59 is increased. It can be seen that the strength of the body 58 decreases as the width of the body 58 decreases.
  • a grid element 23 is formed by joining and integrating two tape-shaped portions by a bridge portion 23B. Therefore, the strength of the grid body 23 can be improved as compared with the single tape-shaped grid body 58.
  • a rectangular slit-shaped electron beam passage hole 24 and a slit-shaped electron beam All of the film passage holes 22 can be formed by etching the electrode plate 21 for color selection.
  • Etching is performed by using a mask having a pattern corresponding to the rectangular slot-like electron beam passage holes 24 and the slit-like electron beam passage holes 22, whereby these electron beam passage holes are formed.
  • the holes 22 and 24 can be formed simultaneously.
  • the electrode plate 21 for color selection of the present embodiment is stretched over the support members 52 and 53 of the frame 56 shown in FIG.
  • a color selection mechanism can be configured similarly to the color selection mechanism 51 in FIG. Then, the elasticity imparting members 54 and 55 apply a predetermined tension in the screen vertical direction (Y direction) to each grid element body 23 of the color selecting electrode thin plate 21.
  • the thin plate for color selection electrode 21 of the present embodiment can be manufactured by using the same frame 56 as the color separation mechanism 51 of the conventional aperture grill type by the same manufacturing process as the conventional one. Therefore, the production is easy and the increase in production cost is small.
  • the thin plate for color selection 21 is used as a mask, and the grid element 23 and the electron beam passing holes 22 and 24 are used to perform exposure.
  • phosphors corresponding to the three colors R, G, and B can be sequentially formed in a predetermined pattern on the inner surface of the panel portion of the cathode ray tube.
  • the grid element 2 is similar to the conventional color sorting mechanism 51.
  • a damper wire for suppressing the swing of 3 can be provided.
  • the width of the tape-shaped portion of the grid body 23 becomes narrower than in the conventional case, which tends to cause shaking. Therefore, it is desirable to provide a damper line to prevent shaking.
  • the bridge portion 23B remains between the rectangular slot-like electron beam passage holes 24, so that the bridge portion The shadow of 23 B makes the shadow of Damba line inconspicuous.
  • the slit-shaped electron beam passage hole is provided.
  • a grid element 23 is formed between 22 and a row of slot-like electron beam passage holes 24 is formed at the center of each grid element 23 through a slit-like electron beam. Since the holes are formed in parallel with the holes 22, the number of rows of the electron beam passage holes 22 and 24 can be approximately twice the number of the grid element bodies 23.
  • the width and pitch P of the grid element body 23 are the same as in the conventional case, the number of rows of the electron beam passage holes 22 and 24 can be approximately doubled. It is possible to increase the horizontal resolution to about twice that of the conventional one and achieve higher resolution.
  • the width of the tape-shaped part of the grid element body 23 becomes larger than the conventional one.
  • the two tapes are connected side by side at the bridge portion 23B to form the grid body 23, so the width and strength of the grid body 23 are improved compared to the past. It can be done.
  • the strength of the grid body 23 is ensured to suppress the occurrence of pitch unevenness and line disturbance in the etching process. It is possible to suppress the deterioration of the image quality caused by the deformation of 3 (due to the influence of residual stress, etc.).
  • the grid element body is formed. 2 3 strength Accordingly, it is possible to suppress the occurrence of line disturbance or the like due to the deformation of the grid body 23 (due to the residual stress or the like).
  • the grid element 23 has a structure in which two tape-shaped parts are connected by a bridge portion 23B, the number of rows of electron beam passage holes 22 and 24 is conventionally reduced. Even if it is larger, the width of the grid element 23 does not become narrow. Thereby, in the etching step for forming the electron beam passage holes 22 and 24, occurrence of pitch unevenness and line disturbance can be suppressed.
  • a color selection mechanism using the color selection electrode thin plate 21 of the present embodiment is provided, and a glass such as a color cathode ray tube 61 shown in FIG. 3 is provided.
  • FIG. 4 shows a schematic plan view of a color selecting electrode thin plate of a color selecting mechanism for a color cathode ray tube.
  • each grid element 2 is not noticeable on the screen of the empty cathode ray tube.
  • row 3 two rows of rectangular slot-shaped electron beam passage holes 24 are provided.
  • the number of rows of the electron beam passage holes 22 and 24 is about three times the number of the grid elements 23.
  • the rows of the electron beam passage holes 22 and 24 are grid element 2
  • the pitch is 3 (the pitch of the slit-shaped electron beam passage holes 22).
  • the pitch is 1/3 of P (P / 3).
  • the number of rows of the electron beam passage holes 22 and 24 is set to be approximately three times the number of the Dalide element bodies 23 and the color selecting electrode thin plate 2 of the previous embodiment is set to be three times. It can be more than one.
  • the number of rows of the electron beam passage holes 22 and 24 can be made about three times the conventional number.
  • high definition and high resolution can be achieved, and an ultra-high definition cathode ray tube can be realized.
  • the grid element is narrower than before, but the three tapes are connected side by side at the bridge part 23B to form the grid body 23. Can improve the width and strength.
  • the strength of the grid body 23 is ensured to suppress the occurrence of pitch unevenness and line disturbance in the etching process, and the grid body 23 is improved. This makes it possible to suppress the occurrence of image quality deterioration due to deformation (due to residual stress, etc.).
  • the electrode plate 25 for color selection according to the present embodiment also uses the same frame 56 as the conventional color selection mechanism 51, similarly to the electrode plate 21 for color selection according to the previous embodiment.
  • the mechanism can be configured, manufacturing is easy, and the increase in manufacturing cost is small.
  • phosphors corresponding to the three colors R, G, and B are sequentially specified on the inner surface of the panel portion of the cathode ray tube using the color selection electrode thin plate 25 as a mask. It can be formed in the following pattern. Further, by providing a color cathode-ray tube such as the color cathode-ray tube 61 shown in FIG. 3 by providing a color selection system using the color selection electrode thin plate 25 of the present embodiment, By increasing the number of rows of electron beam passage holes in the sorting mechanism, it is possible to achieve high definition and high resolution of the color cathode ray tube, and to produce high definition and high resolution color cathode ray tubes stably and with good yield. It becomes possible.
  • the bridge portion 23 B having a small width corresponding to the interval D 1 between the slot-like electron beam passage holes 24 prevents the shadow of the damper line from being conspicuous on the screen of the empty cathode ray tube. can do.
  • FIG. 6 is a plan view showing an opening shape of one embodiment of the color selecting electrode thin plate according to the present invention.
  • a rectangular slot-shaped electron beam passage hole 24 is provided between each grid element 23 as in the color selection electrode thin plate 21 shown in FIG. Are arranged in columns.
  • the dimensional ratio such as the aspect ratio of the rectangular slot-shaped electron beam passage hole 24 is different from that in FIG.
  • FIG. 7 is a plan view showing the irradiation area of the electron beam on the phosphor screen when the electrode plate for color selection shown in FIG. 6 is used.
  • reference numeral 30 denotes the shadow of Damba.
  • the electron beam is irradiated to three spots corresponding to the phosphors of three colors (R, G, B) corresponding to the electron beam passage holes 22 and 24, respectively.
  • FIG. 8 is a plan view showing the irradiation area of the electron beam in the inside.
  • FIG. 8 shows the case where the transmittance in the electron beam passage hole, the pitch of the row of the electron beam passage hole, and the diameter of the damper wire are set to be the same as those in FIGS.
  • the pitch of the rows is narrower than the normal pitch according to Figs. 6 and 7.
  • the color selection electrode thin plates are all connected and integrated in the horizontal direction of the screen even within the effective screen area. A so-called doming phenomenon occurs.
  • This dominating phenomenon is, for example, when an electron beam is applied to only a part of the effective screen area to display a color, and the remaining area is displayed in black, and an electron beam is emitted. Only in a part of the area where the beam is irradiated, the color-selecting electrode sheet expands due to the temperature rise, and the color-selecting electrode sheet in this area rises.
  • the slit-shaped electron beam passage holes are basically formed, a large number of color selection electrode thin plates are formed in the effective screen area. It is separated into do primes. Each grid element is framed vertically (Y Direction), and even if thermal expansion occurs in the grid body, the expansion of the grid body is canceled by the frame, so that the doming phenomenon does not occur.
  • the opening shape of the slot-shaped electron beam passage hole is not limited to the rectangular shape of each of the above-described embodiments, but may be any other shape such as an elliptical shape, a square shape, and a circular shape. It is also possible.
  • the aperture ratio is higher than in other shapes. Has the advantage that it can be increased.
  • the ratio of the number of rows and the arrangement of each row are not limited to the above embodiments. Other configurations are also possible.
  • N rows of slot-like electron beam passage holes are arranged between the holes (n is a positive integer).
  • the ratio of the number of rows is approximately 1: n
  • each dalip element body 23 As a result, n rows of slot-like electron beam passage holes 24 are arranged in each dalip element body 23, and the shape and width of each grid element body 23 become the same, and each grid element 23 becomes the same. Since the pad bodies 23 are evenly arranged, the effect can be exerted on the entire screen.
  • the ratio of the number of rows between the slit-shaped electron beam passage holes and the slot-shaped electron beam passage holes is other than 1: n (n is an integer), for example, 2: 1 or 2: 3. Or when two rows are alternately arranged, for example, the slit-shaped electron beam passage holes have two or more rows. It has a continuous part.
  • the pitch of each row of the electron beam passage holes is almost constant because the phosphors are battered using the color selection electrode thin plate as a mask.
  • the grid element body becomes thinner than the other places, so that the above-described problem occurs. Therefore, the effect cannot be exerted on the entire screen.
  • each row of slot-like electron beam passage holes is arranged at a fixed pitch in the grid body.
  • the cross section of the color selecting electrode thin plate becomes substantially symmetric in the horizontal direction.
  • the dalide element body has a structure in which a plurality of tape-shaped portions having the same width are connected side by side by a bridge portion.
  • the phosphor patterns are evenly arranged and formed.
  • the distribution of tension applied to the grid element can be evenly distributed.o
  • the electron beam passage holes formed at the end row that is, the left and right ends in the horizontal direction of the screen, are slit-like electron beam passage holes.
  • the present invention is not limited to the above embodiments, and various other configurations can be adopted without departing from the gist of the present invention.
  • the number of rows of the electron beam passage holes can be set to about n times the number of the Dalit elements, so that the number of the electron beams can be increased without increasing the number of the grid elements so much.
  • the resolution can be improved by increasing the number of rows of passage holes. This makes it possible to improve the resolution without reducing the width of each grid element.
  • the grid body includes a plurality of tape-shaped portions. Since the structure is connected sideways, the strength of each grid element can be improved.
  • the pitch unevenness in the etching step can be improved.
  • the occurrence of line disturbance can be suppressed, and the occurrence of line disturbance due to deformation due to the residual stress of the Dalide element body can be suppressed.
  • the present invention it is possible to increase the number of rows of electron beam passage holes of the color selection mechanism to achieve high definition and high resolution of the color cathode ray tube, and to realize a high definition and high resolution color cathode ray tube. Yield can be manufactured stably.
  • the portion where the electrode plate for color selection remains (the bridge portion) between the slot-like electron beam passage holes prevents the shadow of the damper line from being noticeable on the screen of the empty CRT. be able to.
  • the color selection mechanism for a cathode ray tube of the present invention can be manufactured in the same manufacturing process using the same frame as the conventional color selection mechanism, the manufacturing is easy and the increase in manufacturing cost is small. .

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

A color selecting mechanism for a cathode-ray tube enabling higher resolution of the cathode-ray tube by further making finer the pitches of grid elements. Slit-shaped electron beam passing openings (22) are parallel arranged in a color-selection electrode thin sheet (21) suspended on a frame. Grid elements (23) are provided among the slit-shaped electron beam passing openings (22). N rows (n is a positive integer) of slot-shaped electron beam passing openings (24) parallel to the slit-shaped electron beam passing openings (22) are arranged in each grid element (23). A high-definition high-resolution color cathode-ray tube having such a color selecting mechanism is also disclosed.

Description

明細書  Specification
陰極線管用色選別機構及びカラ—陰極線管 技術分野  Color selection mechanism for cathode ray tube and color cathode ray tube
本発明は、 陰極線管用色選別機構及び色選別機構を備えて成る カラ一陰極線管に係わる。 背景技術  The present invention relates to a color selection mechanism for a cathode ray tube and a color cathode ray tube including the color selection mechanism. Background art
カラー陰極線管の色選別機構の 1種と して、 アパーチャグリル と称する色選別機構がある。  One type of color selection mechanism for color cathode ray tubes is a color selection mechanism called an aperture grill.
このアパーチャグリルタイプの色選別機構では、 相対向する一 対の支持部材とこれら支持部材に溶接された一対の部材から成る 枠状の金属フ レームに金属薄板から成る色選別用電極薄板を架張 している。  In this aperture grill type color selection mechanism, a color selection electrode thin plate made of a metal thin plate is stretched over a frame-shaped metal frame composed of a pair of opposing support members and a pair of members welded to the support members. are doing.
そして、 色選別用電極薄板に所定のピッチでスリ ッ ト状の電子 ビーム逋過孔が形成され、 これにより各電子ビーム通過孔の間に テープ状のダリ ッ ド素体が形成されて各色の蛍光体に対応する電 子ビームを選別するグリ ッ ド (格子) を構成している。  Then, slit-shaped electron beam communication holes are formed at a predetermined pitch in the color-selecting electrode thin plate, thereby forming a tape-like Daridian element between the electron beam passage holes, and forming a color-specific dalipid body. A grid is formed to select the electron beam corresponding to the phosphor.
近年、 カラ一陰極線管において、 高精細 ·高解像度化の要求が 高まつてきている。  In recent years, there has been an increasing demand for higher definition and higher resolution in color cathode ray tubes.
それに伴い、 色選別機構も微細化が求められている。  Along with this, the color selection mechanism is also required to be miniaturized.
そして、 高精細 · 高解像度化のためには、 色選別機構のグリ ッ ド素体のピッチをより細かくする必要がある。  In order to achieve high definition and high resolution, it is necessary to make the pitch of the grid element of the color selection mechanism finer.
しかしながら、 上述のように色選別機構のグリ ッ ド素体のピッ チが細かくなると、 テ一プ状のグリ ッ ド素体の幅が狭くなること から、 グリ ッ ド素体自体の強度が下がってしまう。  However, as described above, when the pitch of the grid element of the color selection mechanism becomes smaller, the width of the tape-shaped grid element becomes narrower, and the strength of the grid element itself decreases. Would.
このため、 色選別用電極薄板にスリ ッ ト状の電子ビーム通過孔 を形成するためのエツチング工程において、 ピッチのムラや線乱 れ等の問題が発生する。 For this reason, in the etching process for forming slit-like electron beam passage holes in the color selection electrode thin plate, pitch unevenness and line disturbance are caused. This causes problems.
また、 グリ ッ ド素体のピッチが細かくなると、 色選別用電極薄 板をフレームに架張した際にかけたテンシヨ ンに起因する素材の 残留ス ト レスの影響が大き く なる。  In addition, when the pitch of the grid body is fine, the effect of the residual stress of the material due to the tension applied when the electrode plate for color selection is stretched over the frame increases.
そして、 色選別機構の黒化熱処理工程において、 この残留ス ト レスが開放されることにより、 線乱れ状の変形 (ス ト リーク) が 発生する。  Then, in the blackening heat treatment step of the color selection mechanism, the residual stress is released, so that line-like deformation (streak) occurs.
さ らに、 ダリ ッ ド素体のピッチを細かく して画面解像度を上げ ることにより、 グリ ツ ドの共振抑制のためにグリ ッ ドを横切るよ うに設けられるダンバ一線の影がより目立つようになってく る。 特に、 グリ ッ ド素体のピッチが 0 . 2 m m〜 0 . 2 5 m m以下 と細かく なると、 肉眼ではそのピッチをほとんど識別できなくな つてく る一方で、 ダンパ一線の影が目立つようになる。  In addition, by increasing the screen resolution by reducing the pitch of the elementary body, the shadow of the damper that is provided across the grid to suppress grid resonance is more noticeable. It is becoming. In particular, when the pitch of the grid element is as small as 0.2 mm to 0.25 mm or less, the pitch becomes almost indistinguishable to the naked eye, but the shadow of the damper line becomes more noticeable. .
そして、 このような細かいピッチになると、 グリ ッ ド素体が極 端に細く なるため、 強度が著しく劣化し、 ユニフォーミティー、 色選別用電極薄板の揺れ等の弊害が顕著になつてく る。 発明の開示  At such a fine pitch, the grid element body becomes extremely thin, so that the strength is remarkably deteriorated, and the adverse effects such as the uniformity and the swaying of the color selecting electrode thin plate become remarkable. Disclosure of the invention
上述した問題の解決のために、 本発明においては、 グリ ッ ド素 体のピ チを細かく して陰極線管の高解像度化を図ることができ る陰極線管用色選別機構及びこの色選別機構を備えて高精細 · 高 解像度のカラ一陰極線管を提供するものである。  In order to solve the above-described problem, the present invention includes a color selection mechanism for a cathode-ray tube capable of reducing the grid element pitch and increasing the resolution of the cathode-ray tube, and a color selection mechanism for the cathode-ray tube. It provides a high-definition, high-resolution color cathode ray tube.
本発明の陰極線管用色選別機構は、 フレームに色選別用電極薄 板が架張された色選別機構であって、 色選別用電極薄板にスリ ッ ト状の電子ビーム通過孔が多数平行に形成されて、 各スリ ッ ト状 の電子ビーム通過孔間にグリ ッ ド素体が形成され、 各ダリ ッ ド素 体内に、 スリ ッ ト状の電子ビーム通過孔に平行に、 スロ ッ ト状の 電子ビーム通過孔の列が n列 (nは正の整数) ずつ配置されてい る ものである。 The color selection mechanism for a cathode ray tube according to the present invention is a color selection mechanism in which a color selection electrode plate is stretched over a frame, and a large number of slit-like electron beam passage holes are formed in the color selection electrode plate in parallel. As a result, a grid element is formed between the slit-shaped electron beam passage holes, and a slot-shaped body is formed in each Darid element body in parallel with the slit-shaped electron beam passage hole. The rows of electron beam passage holes are arranged in n rows (n is a positive integer). It is something.
本発明のカラ一陰極線管は、 フレームに色選別用電極薄板が架 張され、 色選別用電極薄板にスリ ツ 卜状の電子ビーム通過孔が多 数平行に形成されて、 各スリ ッ ト状の電子ビーム通過孔間にダリ ッ ド素体が形成され、 各グリ ッ ド素体内に、 スリ ッ ト状の電子ビ In the color cathode ray tube of the present invention, a thin electrode for color selection is stretched on a frame, and a plurality of slit-shaped electron beam passage holes are formed in the thin electrode for color selection in parallel with each other. A dalide element is formed between the electron beam passage holes of each grid, and a slit-like electron beam is formed in each grid element.
—ム通過孔に平行に、 スロッ ト状の電子ビーム通過孔の列が n列 ( nは正の整数) ずつ配置されている色選別機構を備えたもので ある。 —It is equipped with a color selection mechanism in which n rows of slot-like electron beam passage holes are arranged in parallel (n is a positive integer) in parallel with the passage holes.
上述の本発明の陰極線管用色選別機構の構成によれば、 各グリ ッ ド素体内に、 スリ ツ ト状の電子ビーム通過孔に平行に、 スロッ ト状の電子ビーム通過孔の列が n列 (nは正の整数) ずつ配置さ れていることにより、 スリ ッ ト状とスロッ ト状とを合わせた電子 ビーム通過孔の列数がグリ ッ ド素体の数の約 (n + 1 ) 倍と多く なる。  According to the structure of the color selection mechanism for a cathode ray tube of the present invention described above, n rows of slot-like electron beam passage holes are provided in each grid element in parallel with the slit-like electron beam passage holes. (N is a positive integer), so that the number of rows of electron beam passage holes in the slit and slot is approximately (n + 1) of the number of grid elements. It is twice as many.
これにより、 グリ ッ ド素体の数をあまり增やさなくても、 電子 ビーム通過孔の列数を增やすことができる。  Thus, the number of rows of electron beam passage holes can be reduced without increasing the number of grid elements.
また、 スロッ ト状の電子ビーム通過孔の列において、 各ス口ッ ト状の通過孔の間に色選別用電極薄板が残つている。 この残った 部分によりスロッ ト状の電子ビーム通過孔の列の両側のテープ状 の部分が繫がってグリ ッ ド素体が構成されるため、 従来の 1本の テープ状のグリ ッ ド素体と比較して、 変形に強い構造となる。 上述の本発明の力ラー陰極線管の構成によれば、 フレームに色 選別用電極薄板が架張され、 色選別用電極薄板にスリ ッ ト状の電 子ビーム通過孔が多数平行に形成されて、 各スリ ッ ト状の電子ビ —ム通過孔間にグリ ッ ド素体が形成され、 各ダリ ッ ド素体内に、 スリ ッ ト状の電子ビーム通過孔に平行に、 スロッ ト状の電子ビー ム通過孔の列が n列 (nは正の整数) ずつ配置されている色選別 機構を備えたことにより、 電子ビーム通過孔の数を増やして解像 度を高くすることができると共に、 グリ ッ ド素体の変形に起因す る線乱れ等の発生を抑制することができる。 図面の簡単な説明 Further, in the row of the slot-like electron beam passage holes, the electrode plate for color selection remains between each slot-like passage hole. The remaining portion extends the tape-shaped portion on both sides of the row of slot-shaped electron beam passage holes to form a grid element body, so that a conventional tape-shaped grid element is formed. Compared to the body, the structure is more resistant to deformation. According to the above-described configuration of the cathode ray tube of the present invention, the electrode plate for color selection is stretched over the frame, and a large number of slit-shaped electron beam passage holes are formed in the electrode plate for color selection in parallel. A grid element is formed between the slit-shaped electron beam passage holes, and a slot-shaped electron beam is formed in each Darid element body in parallel with the slit-shaped electron beam passage hole. Equipped with a color selection mechanism with n rows of beam passage holes (n is a positive integer), increasing the number of electron beam passage holes for resolution The degree can be increased, and the occurrence of line disturbance or the like due to the deformation of the grid body can be suppressed. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の一実施の形態の色選別機構の色選別用電極 薄板の平面図であり、 第 2図は、 本発明が適用される色選別機構 の一形態の概略構成図 (斜視図) であり、 第 3図は、 カラ一陰極 線管の概略構成図 (一部内部を示す斜視図) であり、 第 4図は、 本発明の他の実施の形態の色選別機構の色選別用電極薄板の平面 図であり、 第 5図は、 来の色選別用電極薄板の平面図であり、 第 6図は、 本発明に係る色選別用電極薄板の一形態の開口形状を 示す平面図であり、 第 7図は、 第 6図の色選別用電極薄板を使用 した場合における蛍光面内の電子ビームの照射領域を示す平面図 であり、 第 8図は、 従来の色選別用電極薄板を使用した場合にお ける蛍光面内の電子ビームの照射領域を示す平面図である。 発明を実施するための最良の形態  FIG. 1 is a plan view of a color selecting electrode thin plate of a color selecting mechanism according to an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of an embodiment of a color selecting mechanism to which the present invention is applied ( FIG. 3 is a schematic configuration diagram (a perspective view showing a part of the inside) of a color cathode ray tube, and FIG. 4 is a color selection mechanism of another embodiment of the present invention. FIG. 5 is a plan view of a conventional color-selecting electrode thin plate, and FIG. 6 is a plan view of a conventional color-selecting electrode thin plate according to the present invention. FIG. 7 is a plan view showing an irradiation area of the electron beam on the phosphor screen when the electrode plate for color selection of FIG. 6 is used, and FIG. 8 is a conventional color selection. FIG. 5 is a plan view showing an irradiation area of an electron beam on a phosphor screen when a thin electrode plate is used. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 フ レームに色選別用電極薄板が架張された色選別機 構であって、 色選別用電極薄板にスリ ッ ト状の電子ビーム通過孔 が多数平行に形成されて、 各スリ ツ ト状の電子ビーム通過孔間に グリ ッ ド素体が形成され、 各グリ ッ ド素体内に、 スリ ッ ト状の電 子ビーム通過孔に平行に、 スロッ ト状の電子ビ―ム通過孔の列が n列 (nは正の整数) ずつ配置されている陰極線管用色選別機構 である。  The present invention relates to a color selection mechanism in which a color selection electrode thin plate is stretched over a frame, and a number of slit-like electron beam passage holes are formed in the color selection electrode thin plate in parallel with each other. A grid element is formed between the slit-shaped electron beam passage holes, and a slit-shaped electron beam passes through each grid element body in parallel with the slit-shaped electron beam passage hole. This is a color selection mechanism for cathode ray tubes in which n rows of holes are arranged (n is a positive integer).
本発明は、 フ レームに色選別用電極薄板が架張され、 色選別用 電極薄板にスリ ッ ト状の電子ビーム通過孔が多数平行に形成され て、 各ス リ ッ ト状の電子ビーム通過孔間にダリ ッ ド素体が形成さ れ、 各グリ ッ ド素体内に、 スリ ッ ト状の電子ビーム通過孔に平行 に、 スロッ 卜状の電子ビーム通過孔の列が n列 (nは正の整数) ずつ配置されている色選別機構を備えたカラ一陰極線管である。 According to the present invention, a thin electrode plate for color selection is stretched over a frame, and a large number of slit-shaped electron beam passage holes are formed in the thin electrode plate for color selection in parallel with each other. A dalit element is formed between the holes, and parallel to the slit-shaped electron beam passage hole in each grid element. In addition, this is a color cathode ray tube equipped with a color selection mechanism in which n rows of slot-like electron beam passage holes are arranged (n is a positive integer).
まず、 本発明を適用する色選別機構の一形態の概略構成図を第 2図に示す。  First, FIG. 2 shows a schematic configuration diagram of one embodiment of a color selection mechanism to which the present invention is applied.
この色選別機構 5 1 は、 前述したアパーチャグリルと称される タイプの色選別機構であり、 一対の相対向する支持部材 5 2, 5 3 と、 この支持部材 5 2, 5 3 の両端間に差し渡されるように溶 接された一対の弾性付与部材 5 4 , 5 5 とから成る枠状の金属フ レーム 5 6が設けられ、 このフ レーム 5 6 の相対向する支持部材 5 2 , 5 3上に、 一方向即ち画面水平方向 (X方向) に沿って多 数のスリ ッ ト状の電子ビーム通過孔 5 9 を有する色選別用電極薄 板 6 0が架張されて成る。  The color selection mechanism 51 is a color selection mechanism of the type referred to as the aperture grille described above, and includes a pair of opposing support members 52, 53 and a pair of opposite ends of the support members 52, 53. A frame-shaped metal frame 56 composed of a pair of elasticity imparting members 54 and 55 welded so as to be inserted is provided, and the supporting members 52 and 53 of the frame 56 facing each other. An electrode plate 60 for color selection having a large number of slit-like electron beam passage holes 59 is stretched on one direction, that is, in the horizontal direction of the screen (X direction).
色選別用電極薄板 6 0 は、 例えばステンレス材による金属薄板 から成り、 多数の細いテープ状のダリ ッ ド素体 5 8を上記一方向 に所定のピッチをもつて配列し、 各隣り合うグリ ッ ド素体 5 8間 に画'面垂直方向に長いスリ ッ ト状の電子ビーム通過孔 5 9を形成 して構成される。  The electrode plate 60 for color selection is made of, for example, a thin metal plate made of stainless steel, and a number of thin tape-shaped dalide elements 58 are arranged at a predetermined pitch in the above-mentioned one direction. A slit-like electron beam passage hole 59 long in the direction perpendicular to the screen is formed between the element bodies 58.
また、 色選別用電極薄板 6 0 の有効画面領域上には、 電子ビ— ム通過孔 5 9 の長手方向と直交する状態でダンバ—線 5 7が設け られている。 このダンパー線 5 7 は弾性付与部材 5 4, 5 5 に取 付けられた部材に支持されて、 色選別用電極薄板 6 Q上に所定の 張力を持って架張されている。 この色選別機構 5 1では、 2本の ダンパー線 5 7が設けられ、 共に色選別用電極薄板 6 0のグリ ッ ド素体 5 8に対してグリ ッ ド素体 5 8を押さえつけるように接触 している。  In addition, a damper wire 57 is provided on the effective screen area of the color selection electrode thin plate 60 in a state perpendicular to the longitudinal direction of the electron beam passage hole 59. The damper wire 57 is supported by members attached to the elasticity imparting members 54, 55, and is stretched with a predetermined tension on the color selecting electrode thin plate 6Q. In this color selection mechanism 51, two damper wires 57 are provided, and both of them make contact so as to press the grid element 58 against the grid element 58 of the color selection electrode thin plate 60. are doing.
さ らに、 上述の構成の色選別機構 5 1を備えたカラー陰極線管 の概略構成図 (一部内部を示す斜視図) を第 3図に示す。  FIG. 3 shows a schematic configuration diagram (a perspective view showing a part of the inside) of a color cathode ray tube provided with the color selection mechanism 51 having the above configuration.
このカラ一陰極線管 6 1 は、 それぞれ例えばガラスによつて形 成されたパネル部 6 1 a とフア ンネル部 6 1 b とが封止部 6 3に よつて接続されて陰極線管体が構成されている。 The color cathode ray tubes 61 are each formed of, for example, glass. The formed panel portion 61a and the funnel portion 61b are connected by a sealing portion 63 to form a cathode ray tube.
陰極線管体のパネル部 6 1 a前面の内面に蛍光面 (図示せず) が形成され、 この蛍光面に対向して所定の間隔を有するように、 上述の構成の色選別機構 5 1が配置されている。  A fluorescent screen (not shown) is formed on the inner surface of the front surface of the panel section 61a of the cathode ray tube, and the color selection mechanism 51 having the above-described configuration is arranged so as to face the fluorescent screen at a predetermined interval. Have been.
陰極線管体のネック部 6 1 c内に設けられた電子銃 6 2 より出 射された電子ビーム E Bが、 電子ビーム通過孔 5 9を通じて蛍光 面に導かれる。  The electron beam EB emitted from the electron gun 62 provided in the neck portion 61 c of the cathode ray tube is guided to the phosphor screen through the electron beam passage hole 59.
続いて、 本発明の具体的な実施の形態を説明する。  Next, specific embodiments of the present invention will be described.
第 1図は、 本発明の一実施の形態として、 カラ一陰極線管用の 色選別機構の色選別用電極薄板の概略平面図を示す。  FIG. 1 is a schematic plan view of a color selecting electrode thin plate of a color selecting mechanism for a color cathode ray tube as one embodiment of the present invention.
この色選別用電極薄板 2 1 は、 金属薄板により形成され、 カラ —陰極線管用の色選別機構に用いられるものである。  The color selecting electrode thin plate 21 is formed of a metal thin plate, and is used for a color selecting mechanism for a color cathode ray tube.
即ち第 2図に示した色選別機構 5 1に対して、 その色選別用電 極薄板 6 0の代わりに用いて色選別機構を構成することができる ものである。  That is, the color selection mechanism can be configured by using the color selection mechanism 51 shown in FIG. 2 instead of the color selection electrode thin plate 60.
この色選別用電極薄板 2 1 には、 開口部として、 陰極線管の画 面垂直方向 (Y方向) となる図中上下方向を長手方向としたスリ ッ ト状の電子ビーム通過孔 2 2カ 、 同一ピッチで多数形成されて いる。  The thin electrode for color selection 21 has, as an opening, a slit-shaped electron beam passage hole 22 whose longitudinal direction is the vertical direction in the figure, which is the direction perpendicular to the screen of the cathode ray tube (Y direction). Many are formed at the same pitch.
そして、 色選別用電極薄板 2 1 の電子ビーム通過孔 2 2 の間に 残つたテープ状の部分即ちグリ ッ ド素体 2 3により、 カラー陰極 線管の蛍光面における各色の蛍光体に対応する電子ビームを選別 するグリ ッ ドが構成される。  The tape-shaped portion, that is, the grid element 23 left between the electron beam passing holes 22 of the color selection electrode thin plate 21 corresponds to the phosphor of each color on the phosphor surface of the color cathode ray tube. A grid for selecting the electron beam is constructed.
尚、 この第 1図の.平面図は、 色選別用電極薄板 2 1の構成を模 式的に示すものであり、 実際の色選別用電極薄板 2 1には多数の グリ ッ ド素体 2 3及び電子ビーム通過孔 2 2が形成される。  The plan view of FIG. 1 schematically shows the configuration of the electrode plate 21 for color selection, and the actual electrode plate 21 for color selection has a large number of grid elements 2. 3 and an electron beam passage hole 22 are formed.
本実施の形態の色選別用電極薄板 2 1 においては、 特にテープ 状の各グリ ッ ド素体 2 3の中央部に、 さ らに矩形スロッ ト状の電 子ビーム通過孔 2 4が形成されている。 この矩形スロッ ト状の電 子ビーム通過孔 2 4 は、 長手方向が図中上下方向であり、 多数の 矩形スロッ ト状の電子ビーム通過 2 4が所定の間隔 D 1でかつ スリ ツ ト状の電子ビーム通過孔 2 2 に平行な列に配置されている また、 矩形スロッ ト状の電子ビーム通過孔 2 4 と、 左右のスリ ッ ト状の電子ビーム通過孔 2 2 との間隔も一定間隔となっている 従って、 矩形スロッ ト状の電子ビーム通過孔 2 4 とスリ ッ ト状 の電子ビーム通過孔 2 2 とを合わせると、 スリ ッ ト状の電子ビ一 ム通過孔 2 2及びグリ ッ ド素体 2 3のピッチ Pの半分のピッチ ( P / 2 ) で電子ビーム通過孔 2 2 , 2 4が配置されている。 In the electrode plate 21 for color selection of the present embodiment, in particular, the tape A rectangular slot-shaped electron beam passage hole 24 is formed in the center of each grid element body 23 in the shape of a rectangle. The rectangular slot-like electron beam passage holes 24 have a longitudinal direction in the vertical direction in the figure, and a large number of rectangular slot-like electron beam passages 24 have a predetermined interval D1 and a slit-like shape. It is arranged in a row parallel to the electron beam passage holes 22.The distance between the rectangular slot-like electron beam passage holes 24 and the left and right slit-like electron beam passage holes 22 is also constant. Therefore, when the rectangular slot-like electron beam passage hole 24 and the slit-like electron beam passage hole 22 are combined, the slit-like electron beam passage hole 22 and the grid are formed. The electron beam passage holes 22 and 24 are arranged at a half pitch (P / 2) of the pitch P of the element body 23.
このようにグリ ッ ド素体 2 3 の中央部に、 矩形スロッ 卜状の電 子ビーム通過孔 2 4が形成されていることにより、 この電子ビー ム通過孔 2 4 に電子ビームを通過させて色選別を行うことができ る。 従って、 ダリ ッ ド素体 2 3内にも電子ビームを通過させるこ とが可能になる。  Since the rectangular slot-shaped electron beam passage hole 24 is formed in the center of the grid body 23 in this way, the electron beam passes through the electron beam passage hole 24. Color sorting can be performed. Therefore, it is possible to allow the electron beam to pass through the Dalide element body 23 as well.
また、 上下に並ぶ矩形スロッ ト状の電子ビーム通過孔 2 4の間 には色選別用電極薄板 2 1が残っており、 この部分 (以下ブリ ツ ジ部 2 3 Bとする) により矩形スロッ ト状の電子ビーム通過孔 2 4の左右にある 2本のテープ状の部分が繋がって一体化されてグ リ ッ ド素体 2 3が構成されている。  In addition, a thin electrode plate 21 for color selection remains between the rectangular slit-like electron beam passage holes 24 arranged vertically, and this portion (hereinafter referred to as a bridge portion 23B) forms a rectangular slot. A grid element 23 is formed by connecting and integrating two tape-shaped portions on the left and right of the hole-shaped electron beam passage hole 24.
さ らに、 矩形スロッ ト状の電子ビーム通過孔 2 4は、 1列置き に開口される位置が互いに上下にずらされている。  Further, the positions of the rectangular slot-like electron beam passage holes 24 that are opened in every other row are vertically shifted from each other.
即ち第 1図中最も左の矩形スロ ッ ト状の電子ビーム通過孔 2 4 の列と、 右から 2番目の矩形スロ ッ ト状の電子ビ一ム通過孔 2 4 の列とは、 開口の位置が下方にずれている。 一方、 左から 2番目の矩形ス口ッ ト状の電子ビーム通過孔 2 4 の列と、 最も右の矩形スロッ ト状の電子ビーム通過孔 2 4の列は 、 開口の位置が上方にずれている。 That is, the leftmost row of rectangular slot-like electron beam passage holes 24 in FIG. 1 and the second row of rightmost rectangular slot-like electron beam passage holes 24 in FIG. The position is shifted downward. On the other hand, the rows of the second rectangular slot-like electron beam passage holes 24 from the left and the rightmost row of the rectangular slot-like electron beam passage holes 24 have their apertures shifted upward. I have.
このように、 矩形ス口ッ ト状の電子ビーム通過孔 2 4の開口の 位置を 1列置きに上下にずらすことにより、 表示画面全体におけ る上下方向の輝度の分布をならすことができる。  In this way, by shifting the position of the rectangular slit-shaped electron beam passage holes 24 up and down every other row, the distribution of luminance in the vertical direction over the entire display screen can be smoothed.
また、 プリ ッ ジ部 2 3 Bの垂直位置が一直線にはならないので 、 画面上においてプリ ッジ部 2 3 Bの影が目立たなくなる。  In addition, since the vertical position of the bridge portion 23B is not in a straight line, the shadow of the bridge portion 23B is not conspicuous on the screen.
尚、 電子ビーム通過孔 2 2, 2 4が肉眼では識別できないほど 細かいピッチとなつている場合は、 スリ ッ ト状の電子ビーム通過 孔 2 2 のパターンと矩形スロッ ト状の電子ビーム通過孔 2 4のパ ターンとを識別することができないので、 一体化したパターンと s^、 Ββ される。  When the electron beam passage holes 22 and 24 have a fine pitch that cannot be discerned by the naked eye, the pattern of the slit-like electron beam passage holes 22 and the rectangular slot-like electron beam passage holes 2 Since pattern 4 cannot be distinguished, s ^ and Ββ are combined with the integrated pattern.
こ こで、 比較対照として、 第 2図に示した色選別用電極薄板 6 0 と同様の従来のアパーチャグリルタイプの色選別用電極薄板の 平面図を第 5図に示す。 第 5図に示すように、 色選別用電極薄板 6 0 に、 スリ ツ ト状の電子ビーム通過孔 5 9が一定のピッチ Pで 多数並んで形成されている。  Here, as a comparative control, FIG. 5 shows a plan view of a conventional aperture grill type thin plate for color selection similar to the thin plate for color selection 60 shown in FIG. As shown in FIG. 5, a large number of slit-like electron beam passage holes 59 are formed at a constant pitch P in the thin electrode for color selection 60.
この第 5図の構成でスリ ッ ト状の電子ビーム通過孔 5 9のピッ チ Pを狭く して、 電子ビーム通過孔 5 9の数を増やしていく と、 その間のテープ状のグリ ッ ド素体 5 8の幅が狭くなつていき、 強 度が低下していく ことがわかる。  In the configuration shown in Fig. 5, the pitch P of the slit-like electron beam passage holes 59 is narrowed, and the number of the electron beam passage holes 59 is increased. It can be seen that the strength of the body 58 decreases as the width of the body 58 decreases.
これに対して、 本実施の形態の色選別用電極薄板 2 1は、 プリ ッジ部 2 3 Bにより 2本のテープ状の部分が繋がつて一体化され てグリ ッ ド素体 2 3が構成されているため、 1本のテープ状のグ リ ッ ド素体 5 8 と比較してグリ ッ ド素体 2 3の強度を向上するこ とができる。  On the other hand, in the electrode plate 21 for color selection according to the present embodiment, a grid element 23 is formed by joining and integrating two tape-shaped portions by a bridge portion 23B. Therefore, the strength of the grid body 23 can be improved as compared with the single tape-shaped grid body 58.
矩形ス口ッ ト状の電子ビーム通過孔 2 4 とスリ ツ ト状の電子ビ —ム通過孔 2 2 とは、 いずれも色選別用電極薄板 2 1に対してェ ッチングを行う ことにより形成することができる。 A rectangular slit-shaped electron beam passage hole 24 and a slit-shaped electron beam All of the film passage holes 22 can be formed by etching the electrode plate 21 for color selection.
そして、 これら矩形スロッ ト状の電子ビーム通過孔 2 4及びス リ ッ ト状の電子ビーム通過孔 2 2 に対応したパターンを有するマ スクを使用してエッチングを行う ことにより、 これらの電子ビ一 ム通過孔 2 2及び 2 4を同時に形成することができる。  Etching is performed by using a mask having a pattern corresponding to the rectangular slot-like electron beam passage holes 24 and the slit-like electron beam passage holes 22, whereby these electron beam passage holes are formed. The holes 22 and 24 can be formed simultaneously.
また、 本実施の形態の色選別用電極薄板 2 1を、 第 2図に示し たフ レーム 5 6 の支持部材 5 2, 5 3 に架張することにより、 第 In addition, the electrode plate 21 for color selection of the present embodiment is stretched over the support members 52 and 53 of the frame 56 shown in FIG.
2図の色選別機構 5 1 と同様に、 色選別機構を構成することがで きる。 そして、 弾性付与部材 5 4, 5 5 により、 色選別用電極薄 板 2 1の各グリ ッ ド素体 2 3に対して画面垂直方向 ( Y方向) の 所定の張力が与えられる。 A color selection mechanism can be configured similarly to the color selection mechanism 51 in FIG. Then, the elasticity imparting members 54 and 55 apply a predetermined tension in the screen vertical direction (Y direction) to each grid element body 23 of the color selecting electrode thin plate 21.
即ち本実施の形態の色選別用電極薄板 2 1 は、 従来のァパーチ ャグリルタイプの色選別機構 5 1 と同じフ レーム 5 6を使用して 、 従来と同じ製造工程により色選別機構を製造することができる ため、 製造が容易であり、 かつ製造コス 卜の増加も少ない。  That is, the thin plate for color selection electrode 21 of the present embodiment can be manufactured by using the same frame 56 as the color separation mechanism 51 of the conventional aperture grill type by the same manufacturing process as the conventional one. Therefore, the production is easy and the increase in production cost is small.
そして、 通常の色選別機構と同様に、 色選別用電極薄板 2 1を マスク と して使用し、 そのグリ ッ ド素体 2 3及び電子ビーム通過 孔 2 2 , 2 4を利用して、 露光を行う ことにより、 陰極線管体の パネル部内面に R , G , Bの 3色に対応する蛍光体をそれぞれ順 次所定のパターンに形成することができる。  Then, in the same manner as in a normal color selection mechanism, the thin plate for color selection 21 is used as a mask, and the grid element 23 and the electron beam passing holes 22 and 24 are used to perform exposure. By performing the above, phosphors corresponding to the three colors R, G, and B can be sequentially formed in a predetermined pattern on the inner surface of the panel portion of the cathode ray tube.
また、 本実施の形態の色選別用電極薄板 2 1を用いた色選別機 構においても、 従来の色選別機構 5 1 と同様に、 グリ ッ ド素体 2 Also, in the color sorting mechanism using the electrode thin plate 21 for color sorting of the present embodiment, the grid element 2 is similar to the conventional color sorting mechanism 51.
3の揺れを抑制するためのダンパー線を設けることができる。 特に電子ビーム通過孔 2 2, 2 4の列数を従来より増やして高 解像度化を図つた場合には、 グリ ッ ド素体 2 3のテープ状の部分 の幅が従来より狭く なり揺れやすく なるので、 揺れを防止するた めにもダンパ一線を設けることが望ま しい。 本実施の形態の色選別用電極薄板 2 1では、 矩形スロッ ト状の 電子ビーム通過孔 2 4の間にプリ ッジ部 2 3 Bが残っていること により、 後述するようにブリ ッジ部 2 3 Bの影によりダンバ一線 の影が目立たなく なる。 A damper wire for suppressing the swing of 3 can be provided. In particular, when the number of rows of the electron beam passage holes 22 and 24 is increased to improve the resolution, the width of the tape-shaped portion of the grid body 23 becomes narrower than in the conventional case, which tends to cause shaking. Therefore, it is desirable to provide a damper line to prevent shaking. In the electrode plate 21 for color selection of the present embodiment, the bridge portion 23B remains between the rectangular slot-like electron beam passage holes 24, so that the bridge portion The shadow of 23 B makes the shadow of Damba line inconspicuous.
上述の本実施の形態によれば、 スリ ッ 卜状の電子ビーム通過孔 According to the above-described embodiment, the slit-shaped electron beam passage hole is provided.
2 2 の間にグリ ッ ド素体 2 3が形成され、 各グリ ッ ド素体 2 3 の 中央部にスロ ッ ト状の電子ビーム通過孔 2 4 の列がスリ ツ ト状の 電子ビーム通過孔 2 2 と平行に形成されているので、 電子ビーム 通過孔 2 2, 2 4の列数を、 グリ ッ ド素体 2 3の数の約 2倍とす ることができる。 A grid element 23 is formed between 22 and a row of slot-like electron beam passage holes 24 is formed at the center of each grid element 23 through a slit-like electron beam. Since the holes are formed in parallel with the holes 22, the number of rows of the electron beam passage holes 22 and 24 can be approximately twice the number of the grid element bodies 23.
これにより、 例えばグリ ッ ド素体 2 3の幅及びピッチ Pを従来 と同じにした場合には、 電子ビーム通過孔 2 2 , 2 4の列数を従 来の約 2倍にするこ とができ、 水平解像度を従来の約 2倍にして 、 高解像度化を図ることが可能になる。  As a result, for example, when the width and pitch P of the grid element body 23 are the same as in the conventional case, the number of rows of the electron beam passage holes 22 and 24 can be approximately doubled. It is possible to increase the horizontal resolution to about twice that of the conventional one and achieve higher resolution.
また、 電子ビーム通過孔 2 2 , 2 4 の列数を従来より増やして 例えば従来の 1 . 5倍程度にした場合には、 グリ ッ ド素体 2 3の テープ状の部分の幅は従来より狭くなる代わりに、 2本のテープ がブリ ッ ジ部 2 3 Bで横に繋がってグリ ッ ド素体 2 3が構成され るため、 従来よりグリ ッ ド素体 2 3の幅及び強度を向上させるこ とができる。  Also, if the number of rows of the electron beam passage holes 22 and 24 is increased from the conventional one, for example, to about 1.5 times the conventional one, the width of the tape-shaped part of the grid element body 23 becomes larger than the conventional one. Instead of narrowing, the two tapes are connected side by side at the bridge portion 23B to form the grid body 23, so the width and strength of the grid body 23 are improved compared to the past. It can be done.
即ち水平解像度を向上して高解像度化を図っても、 グリ ッ ド素 体 2 3の強度を確保して、 エッチング工程におけるピッチムラや 線乱れの発生を抑制すること、 並びにグリ ッ ド素体 2 3の (残留 ス 卜 レス等の影響による) 変形に起因する画質の劣化の発生を抑 制することが可能になる。  That is, even if the horizontal resolution is improved and the resolution is increased, the strength of the grid body 23 is ensured to suppress the occurrence of pitch unevenness and line disturbance in the etching process. It is possible to suppress the deterioration of the image quality caused by the deformation of 3 (due to the influence of residual stress, etc.).
そして、 上述の実施の形態の色選別用電極薄板 2 1を用いて色 選別機構 構成することにより、 電子ビーム通過孔 2 2, 2 4の 列数を従来より多く してもグリ ツ ド素体 2 3 の強度を確保するこ とができ、 グリ ッ ド素体 2 3の (残留ス ト レス等の影響による) 変形に起因する線乱れ等の発生を抑制することができる。 By configuring the color selection mechanism using the color selection electrode thin plate 21 of the above-described embodiment, even if the number of rows of the electron beam passage holes 22 and 24 is larger than in the past, the grid element body is formed. 2 3 strength Accordingly, it is possible to suppress the occurrence of line disturbance or the like due to the deformation of the grid body 23 (due to the residual stress or the like).
また、 グリ ッ ド素体 2 3 はブリ ッジ部 2 3 Bにより 2本のテ一 プ状の部分が繋がっている構造であるため、 電子ビーム通過孔 2 2 , 2 4の列数を従来より多く しても、 グリ ツ ド素体 2 3の幅は 狭く ならない。 これにより、 電子ビーム通過孔 2 2, 2 4を形成 するエッチング工程における、' ピツチムラや線乱れの発生を抑制 することができる。  Since the grid element 23 has a structure in which two tape-shaped parts are connected by a bridge portion 23B, the number of rows of electron beam passage holes 22 and 24 is conventionally reduced. Even if it is larger, the width of the grid element 23 does not become narrow. Thereby, in the etching step for forming the electron beam passage holes 22 and 24, occurrence of pitch unevenness and line disturbance can be suppressed.
従って、 本実施の形態の色選別用電極薄板 2 1を用いた色選別 機構を備えて、 第 3図に示したカラ一陰極線管 6 1のようなガラ Accordingly, a color selection mechanism using the color selection electrode thin plate 21 of the present embodiment is provided, and a glass such as a color cathode ray tube 61 shown in FIG. 3 is provided.
—陰極線管を構成する.ことにより、 色選別機構の電子ビーム通過 孔の列数を多く してカラー陰極線管の高精細 · 高解像度化を図る ことができると共に、 高精細 · 高解像度のカラー陰極線管を安定 して歩留ま りよく製造することが可能になる。 By constructing a cathode ray tube, it is possible to increase the number of rows of electron beam passage holes in the color selection mechanism to achieve high definition and high resolution of the color cathode ray tube, and to achieve high definition and high resolution color cathode ray tubes. Pipes can be manufactured stably and with good yield.
また、 スロッ ト状の電子ビーム通過孔 2 4の間隔 D 1に相当す る細かい幅のプリ ッ ジ部 2 3 Bにより、 カラ一陰極線管の画面に おいてダンバ一線の影が目立たないようにすることができる。 続いて、 本発明の他の実施の形態として、 カラ一陰極線管用の 色選別機構の色選別用電極薄板の概略平面図を第 4図に示す。 本実施の形態の色選別用電極薄板 2 5では、 各グリ ッ ド素体 2 In addition, due to the small width of the plunger portion 23B corresponding to the interval D1 between the slot-like electron beam passage holes 24, the shadow of the damper line is not noticeable on the screen of the empty cathode ray tube. can do. Next, as another embodiment of the present invention, FIG. 4 shows a schematic plan view of a color selecting electrode thin plate of a color selecting mechanism for a color cathode ray tube. In the electrode plate 25 for color selection of the present embodiment, each grid element 2
3内に矩形スロッ ト状の電子ビーム通過孔 2 4の列が 2列ずっ設 けられている。 In row 3, two rows of rectangular slot-shaped electron beam passage holes 24 are provided.
これにより、 電子ビーム通過孔 2 2 , 2 4の列数がグリ ッ ド素 体 2 3の数の約 3倍となっている。  As a result, the number of rows of the electron beam passage holes 22 and 24 is about three times the number of the grid elements 23.
また、 各電子ビーム通過孔 2 2 , 2 4の列は、 グリ ッ ド素体 2 In addition, the rows of the electron beam passage holes 22 and 24 are grid element 2
3 のピッチ ( =ス リ ッ ト状の電子ビーム通過孔 2 2 のピッチ) P の 3分の 1 のピッチ ( P / 3 ) で配置されている。 The pitch is 3 (the pitch of the slit-shaped electron beam passage holes 22). The pitch is 1/3 of P (P / 3).
その他の構成は、 先の実施の形態の色選別用電極薄板 2 1 と同 様である。 Other configurations are the same as the electrode plate 21 for color selection of the previous embodiment. It is like.
本実施の形態によれば、 電子ビーム通過孔 2 2, 2 4の列数を 、 ダリ ッ ド素体 2 3の数の約 3倍として、 先の実施の形態の色選 別用電極薄板 2 1 より もさ らに多くすることができる。  According to the present embodiment, the number of rows of the electron beam passage holes 22 and 24 is set to be approximately three times the number of the Dalide element bodies 23 and the color selecting electrode thin plate 2 of the previous embodiment is set to be three times. It can be more than one.
これにより、 例えばグリ ッ ド素体 2 3の幅及びピッチ Pを従来 と同じにした場合には、 電子ビーム通過孔 2 2, 2 4の列数を従 来の約 3倍にすることができ、 水平解像度を従来の約 3倍にして 、 高精細 · 高解像度化を図ることが可能になり、 超高精細の陰極 線管を実現することが可能になる。  As a result, for example, when the width and pitch P of the grid element 23 are the same as the conventional one, the number of rows of the electron beam passage holes 22 and 24 can be made about three times the conventional number. However, by increasing the horizontal resolution to about three times the conventional one, high definition and high resolution can be achieved, and an ultra-high definition cathode ray tube can be realized.
また、 電子ビーム通過.孔 2 2, 2 4の列数を従来より増やして 例えば従来の 1 . 5倍〜 2 . 5倍程度にした場合には、 グリ ッ ド 素体 2 3のテープ状の部分の幅は従来より狭くなる代わりに、 3 本のテープがブリ ッ ジ部 2 3 Bで横に繋がってグリ ツ ド素体 2 3 が構成されるため、 従来よりグリ ッ ド素体 2 3の幅及び強度を向 上させることができる。  If the number of rows of holes 22 and 24 for electron beam passage is increased from the conventional one, for example, to about 1.5 to 2.5 times the conventional one, the grid element The width of the part is narrower than before, but the three tapes are connected side by side at the bridge part 23B to form the grid body 23. Can improve the width and strength.
即ち水平解像度を向上して高解像度化を図っても、 グリ ッ ド素 体 2 3の強度を確保して、 エッチング工程におけるピッチムラや 線乱れの発生を抑制すると共に、 グリ ッ ド素体 2 3の (残留ス ト レス等の影響による) 変形に起因する画質の劣化の発生を抑制す ることが可能になる。  That is, even if the horizontal resolution is improved and the resolution is increased, the strength of the grid body 23 is ensured to suppress the occurrence of pitch unevenness and line disturbance in the etching process, and the grid body 23 is improved. This makes it possible to suppress the occurrence of image quality deterioration due to deformation (due to residual stress, etc.).
本実施の形態の色選別用電極薄板 2 5 も、 先の実施の形態の色 選別用電極薄板 2 1 と同様に、 従来の色選別機構 5 1 と同様のフ レーム 5 6を用いて色選別機構を構成することができ、 製造が容 易であり、 かつ製造コス トの増加も少ない。  The electrode plate 25 for color selection according to the present embodiment also uses the same frame 56 as the conventional color selection mechanism 51, similarly to the electrode plate 21 for color selection according to the previous embodiment. The mechanism can be configured, manufacturing is easy, and the increase in manufacturing cost is small.
そして、 通常の色選別機構と同様に、 色選別用電極薄板 2 5を マスクとして使用して、 陰極線管体のパネル部内面に R, G, B の 3色に対応する蛍光体をそれぞれ順次所定のパターンに形成す ることができる。 また、 本実施の形態の色選別用電極薄板 2 5を用いた色選別機 構を備えて、 第 3図に示したカラー陰極線管 6 1のようなカラ一 陰極線管を構成することにより、 色選別機構の電子ビーム通過孔 の列数を多く してカラー陰極線管の高精細 ·高解像度化を図るこ とができると共に、 高精細 · 高解像度のカラ一陰極線管を安定し て歩留まりよく製造することが可能になる。 Then, in the same manner as a normal color selection mechanism, phosphors corresponding to the three colors R, G, and B are sequentially specified on the inner surface of the panel portion of the cathode ray tube using the color selection electrode thin plate 25 as a mask. It can be formed in the following pattern. Further, by providing a color cathode-ray tube such as the color cathode-ray tube 61 shown in FIG. 3 by providing a color selection system using the color selection electrode thin plate 25 of the present embodiment, By increasing the number of rows of electron beam passage holes in the sorting mechanism, it is possible to achieve high definition and high resolution of the color cathode ray tube, and to produce high definition and high resolution color cathode ray tubes stably and with good yield. It becomes possible.
また、 スロッ ト状の電子ビーム通過孔 2 4の間隔 D 1に相当す る細かい幅のブリ ッ ジ部 2 3 Bにより、 カラ一陰極線管の画面に おいてダンバ一線の影が目立たないようにすることができる。  In addition, the bridge portion 23 B having a small width corresponding to the interval D 1 between the slot-like electron beam passage holes 24 prevents the shadow of the damper line from being conspicuous on the screen of the empty cathode ray tube. can do.
ここで、 蛍光面の有効画面領域への影響について、 従来のァパ Here, the effect of the phosphor screen on the effective screen area was compared with the conventional aperture.
—チヤグリルタイプの色選別機構と、 本発明に係る色選別機構と を比較する。 —Compare a grille type color selection mechanism with the color selection mechanism according to the present invention.
まず、 第 6図は本発明に係る色選別用電極薄板の一形態の開口 形状を示す平面図である。 この第 6図に示す構成は、 第 1図に示 した色選別用電極薄板 2 1 と同様に各グリ ッ ド素体 2 3の間に矩 形スロッ ト状の電子ビーム通過孔 2 4が 1列ずつ配置されている 。 尚、 第 6図において、 矩形スロッ ト状の電子ビーム通過孔 2 4 の縦横比等の寸法比は、 第 1図とは異なっている。  First, FIG. 6 is a plan view showing an opening shape of one embodiment of the color selecting electrode thin plate according to the present invention. In the configuration shown in FIG. 6, a rectangular slot-shaped electron beam passage hole 24 is provided between each grid element 23 as in the color selection electrode thin plate 21 shown in FIG. Are arranged in columns. In FIG. 6, the dimensional ratio such as the aspect ratio of the rectangular slot-shaped electron beam passage hole 24 is different from that in FIG.
この第 6図の色選別用電極薄板を使用した場合における蛍光面 内の電子ビームの照射領域を示す平面図を第 7図に示す。 第 7図 中、 3 0 はダンバ一線の影を示している。 · 各電子ビーム通過孔 2 2, 2 4に対応して、 3色 (R, G , B ) の蛍光体に対応する 3箇所に電子ビームが照射される。  FIG. 7 is a plan view showing the irradiation area of the electron beam on the phosphor screen when the electrode plate for color selection shown in FIG. 6 is used. In FIG. 7, reference numeral 30 denotes the shadow of Damba. · The electron beam is irradiated to three spots corresponding to the phosphors of three colors (R, G, B) corresponding to the electron beam passage holes 22 and 24, respectively.
第 7図では、 プリ ッ ジ部 2 3 Bの影により、 縦方向の照射領域 が若干減少しているが、 特に問題となる程ではない。  In FIG. 7, the irradiation area in the vertical direction is slightly reduced due to the shadow of the plunger portion 23B, but this is not so much as to cause a problem.
そして、 このブリ ッ ジ部 2 3 Bの影があることにより、 ダンバ —線の影 3 0があま り 目立たないようになつている。  And, due to the shadow of the bridge portion 23B, the shadow 30 of the damper line becomes less noticeable.
一方、 従来の色選別用電極薄板を使用した場合における蛍光面 内の電子ビームの照射領域を示す平面図を第 8図に示す。 尚、 第 8図では電子ビーム通過孔における透過率、 電子ビーム通過孔の 列のピッチ、 ダンパー線の径を第 6図及び第 7図と同一に設定し た場合であり、 電子ビーム通過孔の列のピツチを第 6図及び第 7 図に合わせて通常のピッチより狭く している。 On the other hand, the fluorescent screen in the case of using the conventional electrode plate for color selection FIG. 8 is a plan view showing the irradiation area of the electron beam in the inside. FIG. 8 shows the case where the transmittance in the electron beam passage hole, the pitch of the row of the electron beam passage hole, and the diameter of the damper wire are set to be the same as those in FIGS. The pitch of the rows is narrower than the normal pitch according to Figs. 6 and 7.
第 8図では、 電子ビーム通過孔の列のピッチを通常より狭く し ているため、 グリ ツ ド素体が細く なっており、 縦の影が細くなる ことから、 ダンパ一線の影 3 0が目立っている。 第 7図と比較す ると明らかに目立っていることがわかる。  In Fig. 8, the pitch of the row of electron beam passage holes is narrower than usual, so the grid element is thinner and the vertical shadow is thinner. ing. Compared to Fig. 7, it is clear that it is noticeable.
即ち、 第 7図と第 8図を比較することにより、 本発明に係る色 選別電極の構成では、 電子ビーム通過孔の列数を多く して解像度 を高く しても、 ダンバ一線の影が余り目立たないようにすること が可能になることがわかる。  That is, by comparing FIGS. 7 and 8, it can be seen that, in the configuration of the color selection electrode according to the present invention, even if the number of rows of electron beam passage holes is increased and the resolution is increased, the shadow of the damper line is not excessive It turns out that it is possible to make it less noticeable.
従って、 画質上のダンバ一レスを実現することができる。  Therefore, it is possible to realize a damperless image quality.
スロッ ト状の開口が形成された色選別用電極薄板'を用いた色選 別機構では、 色選別用電極薄板が有効画面領域内においても画面 水平方向に全て繋がつて一体化されているため、 いわゆる ド一ミ ング現象が起こる。  In a color selection mechanism using a color selection electrode thin plate with a slot-shaped opening, the color selection electrode thin plates are all connected and integrated in the horizontal direction of the screen even within the effective screen area. A so-called doming phenomenon occurs.
この ド一ミ ング現象とは、 例えば.有効画面領域の一部の領域に のみ電子ビームが照射されて色を表示し、 残りの領域は黒表示と するような画像を表示する場合に、 電子ビームが照射された一部 の領域だけが温度上昇により色選別用電極薄板が膨張することに より、 この領域の色選別用電極薄板が盛り上がってしまう現象で め ο  This dominating phenomenon is, for example, when an electron beam is applied to only a part of the effective screen area to display a color, and the remaining area is displayed in black, and an electron beam is emitted. Only in a part of the area where the beam is irradiated, the color-selecting electrode sheet expands due to the temperature rise, and the color-selecting electrode sheet in this area rises.
これに対して、 本発明の色選別機構の構成は、 基本的にスリ ッ ト状の電子ビーム通過孔を形成していることにより、 有効画面領 域内では色選別用電極薄板が多数のグリ ッ ド素体に分離されてい る。 そして、 各グリ ッ ド素体はフ レームにより画面垂直方向 (Y 方向) に張力がかけられており、 またグリ ッ ド素体に熱膨張を生 じてもフレームによりグリ ッ ド素体の膨張がキヤ ンセルされるた め、 ドーミ ング現象を発生しない。 On the other hand, in the configuration of the color selection mechanism of the present invention, since the slit-shaped electron beam passage holes are basically formed, a large number of color selection electrode thin plates are formed in the effective screen area. It is separated into do primes. Each grid element is framed vertically (Y Direction), and even if thermal expansion occurs in the grid body, the expansion of the grid body is canceled by the frame, so that the doming phenomenon does not occur.
尚、 本発明において、 スロッ ト状の電子ビーム通過孔の開口形 状は、 上述の各実施の形態の矩形状に限定されず、 長楕円形や正 方形、 円形等、 その他の形状を採用することも可能である。  In the present invention, the opening shape of the slot-shaped electron beam passage hole is not limited to the rectangular shape of each of the above-described embodiments, but may be any other shape such as an elliptical shape, a square shape, and a circular shape. It is also possible.
上述の各実施の形態のように、 スロッ ト状の電子ビーム通過孔 2 4 の形状を、 画面垂直方向 (Y方向) を長手方向とした矩形 にすると、 他の形状と した場合より も開口率を大きくすることが できる利点を有する。  As in each of the above-described embodiments, when the shape of the slot-like electron beam passage holes 24 is rectangular with the longitudinal direction in the screen vertical direction (Y direction), the aperture ratio is higher than in other shapes. Has the advantage that it can be increased.
また、 スリ ツ ト状の電子ビーム通過孔の列とスロッ ト状の電子 ビーム通過孔の列に関して、 列数の比率や各列の並べ方は、 上述 の各実施の形態に限定されるものではなく、 その他の構成を採る ことも可能である。  Further, regarding the row of slit-shaped electron beam passage holes and the row of slot-shaped electron beam passage holes, the ratio of the number of rows and the arrangement of each row are not limited to the above embodiments. Other configurations are also possible.
ただし、 本発明においては、 少なく とも各スリ ッ ト状の電子ビ However, in the present invention, at least each of the slit-shaped electronic
—ム通過孔の間にスロッ 卜状の電子ビーム通過孔の列を n列 (n は正の整数) ずつ配置する。 この場合、 列数の比率は、 ほぼ 1 : nとなり、 電子ビーム通過孔 2 2 , 2 4の列のピッチは、 グリ ツ ド素体 2 3のピッチ ( =スリ ッ ト状の電子ビーム通過孔 2 2のピ ツチ) Pの 1 / nとなる。 —N rows of slot-like electron beam passage holes are arranged between the holes (n is a positive integer). In this case, the ratio of the number of rows is approximately 1: n, and the pitch of the rows of the electron beam passage holes 22 and 24 is the pitch of the grid element 23 (= the slit-like electron beam passage holes). 22 pitch) 1 / n of P.
これにより、 各ダリ ッ ド素体 2 3にスロッ ト状の電子ビーム通 過孔 2 4が n列ずつ配置され、 各グリ ッ ド素体 2 3の形状及び幅 が同一となると共に、 各グリ ッ ド素体 2 3が均等に配置されるた め、 画面全体において効果を発揮させることができる。  As a result, n rows of slot-like electron beam passage holes 24 are arranged in each dalip element body 23, and the shape and width of each grid element body 23 become the same, and each grid element 23 becomes the same. Since the pad bodies 23 are evenly arranged, the effect can be exerted on the entire screen.
因みに、 スリ ッ ト状の電子ビーム通過孔の列とスロッ ト状の電 子ビーム通過孔の列について、 列数の比率を 1 : n ( nは整数) 以外例えば 2 : 1又は 2 : 3 とした場合や、 例えば 2列ずつ交互 に配置した場合には、 スリ ッ ト状の電子ビーム通過孔が 2列以上 連続する箇所を有する。 Incidentally, the ratio of the number of rows between the slit-shaped electron beam passage holes and the slot-shaped electron beam passage holes is other than 1: n (n is an integer), for example, 2: 1 or 2: 3. Or when two rows are alternately arranged, for example, the slit-shaped electron beam passage holes have two or more rows. It has a continuous part.
色選別用電極薄板をマスクとして利用して蛍光体のバタ一ニン グを行う都合上、 電子ビーム通過孔の各列のピッチはほぼ一定と されるため、 スリ ツ ト状の電子ビーム通過孔の列が 2列以上連続 する箇所では他の箇所よりグリ ッ ド素体が細くなるため、 前述し た問題を発生することになる。 そのため、 画面全体において効果 を発揮させることができなく なる。  The pitch of each row of the electron beam passage holes is almost constant because the phosphors are battered using the color selection electrode thin plate as a mask. In a place where two or more rows are continuous, the grid element body becomes thinner than the other places, so that the above-described problem occurs. Therefore, the effect cannot be exerted on the entire screen.
また、 上述のように電子ビーム通過孔の各列のピッチをほぼ一 定にするためには、 グリ ッ ド素体内にスロ ッ ト状の電子ビーム通 過孔の各列を一定ピツチで配置する。  Also, as described above, in order to make the pitch of each row of electron beam passage holes almost constant, each row of slot-like electron beam passage holes is arranged at a fixed pitch in the grid body. .
このようにすれば、 色選別用電極薄板の断面が水平方向にほぼ 対称になる。  In this way, the cross section of the color selecting electrode thin plate becomes substantially symmetric in the horizontal direction.
また、 ダリ ッ ド素体は、 等しい幅のテープ状の部分がプリ ッジ 部により複数本横に繋がった構造となる。  In addition, the dalide element body has a structure in which a plurality of tape-shaped portions having the same width are connected side by side by a bridge portion.
これにより、 蛍光体のパターンが均等に配置形成されると共に As a result, the phosphor patterns are evenly arranged and formed.
、 グリ ッ ド素体にかかる張力の分布を偏りなくすることができる o The distribution of tension applied to the grid element can be evenly distributed.o
さらに、 同様に張力のバランス等の観点から、 最も端の列即ち 画面水平方向の左右端に形成される電子ビーム通過孔は、 スリ ツ ト状の電子ビーム通過孔にすることが望ま しい。  Further, similarly, from the viewpoint of balance of tension and the like, it is desirable that the electron beam passage holes formed at the end row, that is, the left and right ends in the horizontal direction of the screen, are slit-like electron beam passage holes.
本発明は、 上述の各実施の形態に限定されるものではなく、 本 発明の要旨を逸脱しない範囲でその他様々な構成が取り得る。  The present invention is not limited to the above embodiments, and various other configurations can be adopted without departing from the gist of the present invention.
上述の本発明によれば、 電子ビーム通過孔の列数をダリ ッ ド素 体の数の約 n倍とすることができるため、 グリ ッ ド素体の数をあ まり増やさなく ても電子ビーム通過孔の列数を増やして解像度の 向上を図ることができる。 これにより、 各グリ ツ ド素体の幅を狭 く しなくても解像度の向上を図ることができる。  According to the present invention described above, the number of rows of the electron beam passage holes can be set to about n times the number of the Dalit elements, so that the number of the electron beams can be increased without increasing the number of the grid elements so much. The resolution can be improved by increasing the number of rows of passage holes. This makes it possible to improve the resolution without reducing the width of each grid element.
また、 本発明によれば、 グリ ッ ド素体がテープ状の部分を複数 横に繋いだ構造となるため、 各グリ ッ ド素体の強度を向上させる ことができる。 Further, according to the present invention, the grid body includes a plurality of tape-shaped portions. Since the structure is connected sideways, the strength of each grid element can be improved.
即ち本発明によれば、 各ダリ ッ ド素体の強度が向上すると共に 、 各グリ ッ ド素体の幅を狭く しなくても解像度の向上を図ること が可能になるため、 エツチング工程におけるピッチムラや線乱れ の発生を抑制し、 またダリ ッ ド素体の残留ス ト レス等の影響によ る変形に起因する線乱れの発生を抑制することができる。  That is, according to the present invention, since the strength of each of the grid elements is improved, and the resolution can be improved without reducing the width of each of the grid elements, the pitch unevenness in the etching step can be improved. And the occurrence of line disturbance can be suppressed, and the occurrence of line disturbance due to deformation due to the residual stress of the Dalide element body can be suppressed.
従って、 本発明により、 色選別機構の電子ビーム通過孔の列数 を多く してカラー陰極線管の高精細 ·高解像度化を図ることがで きると共に、 高精細 · 高解像度のカラ一陰極線管を安定して歩留 まりょく製造することが可能になる。  Therefore, according to the present invention, it is possible to increase the number of rows of electron beam passage holes of the color selection mechanism to achieve high definition and high resolution of the color cathode ray tube, and to realize a high definition and high resolution color cathode ray tube. Yield can be manufactured stably.
また、 スロ ッ ト状の電子ビーム通過孔の間に色選別用電極薄板 が残った部分 (ブリ ッ ジ部) により、 カラ一陰極線管の画面にお いてダンパ一線の影が目立たないようにすることができる。  In addition, the portion where the electrode plate for color selection remains (the bridge portion) between the slot-like electron beam passage holes prevents the shadow of the damper line from being noticeable on the screen of the empty CRT. be able to.
また、 本発明の陰極線管用色選別機構は、 従来の色選別機構と 同じフ レームを使用して、 同じ製造工程で製造することが可能で あるため、 製造が容易で製造コス 卜の増加も少ない。  Further, since the color selection mechanism for a cathode ray tube of the present invention can be manufactured in the same manufacturing process using the same frame as the conventional color selection mechanism, the manufacturing is easy and the increase in manufacturing cost is small. .

Claims

請求の範囲 The scope of the claims
. フ レームに色選別用電極薄板が架張された色選別機構であつ て、 A color selection mechanism in which a thin plate for color selection is stretched over the frame,
上記色選別用電極薄板にスリ ッ ト状の電子ビーム通過孔が多 数平行に形成されて、 各スリ ツ 卜状の電子ビーム通過孔間にグ リ ッ ド素体が形成され、  A plurality of slit-shaped electron beam passage holes are formed in the color selection electrode thin plate in parallel, and a grid element is formed between the slit-shaped electron beam passage holes.
上記各グリ ッ ド素体内に、 上記スリ ッ ト状の電子ビーム通過 孔に平行に、 スロ ッ ト状の電子ビーム通過孔の列が n列 (nは 正の整数) ずつ配置されている  In each of the above-mentioned grid elements, n rows (n is a positive integer) of slot-like electron beam passage holes are arranged parallel to the slit-like electron beam passage holes.
ことを特徴とする陰極線管用色選別機構。 A color selection mechanism for a cathode ray tube, characterized in that:
. フ レームに色選別用電極薄板が架張され、 The frame is covered with a thin electrode for color selection,
上記色選別用電極薄板にスリ ッ ト状の電子ビーム通過孔が多 数平行に形成されて、 各スリ ツ ト状の電子ビーム通過孔間にグ リ ッ ド素体が形成され、  A plurality of slit-like electron beam passage holes are formed in the color selection electrode thin plate in parallel, and a grid element is formed between the slit-like electron beam passage holes.
上記各ダリ ッ ド素体内に、 上記スリ ッ ト状の電子ビーム通過 孔に平行に、 スロッ ト状の電子ビーム通過孔の列が n列 (nは 正の整数) ずつ配置されている色選別機構を備えた  Color sorting in which n rows (n is a positive integer) of slot-like electron beam passage holes are arranged in each of the above-mentioned Dalyd elements in parallel with the above-mentioned slit-like electron beam passage holes. Equipped with a mechanism
ことを特徵とするカラ一陰極線管。  A color cathode ray tube characterized by the following.
PCT/JP2002/006160 2001-06-20 2002-06-20 Color selecting mechanism for cathode-ray tube and color cathode-ray tube WO2003001554A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001186972A JP2003007222A (en) 2001-06-20 2001-06-20 Color-selecting mechanism for cathode-ray tube, and color cathode-ray tube
JP2001-186972 2001-06-20

Publications (1)

Publication Number Publication Date
WO2003001554A1 true WO2003001554A1 (en) 2003-01-03

Family

ID=19026336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006160 WO2003001554A1 (en) 2001-06-20 2002-06-20 Color selecting mechanism for cathode-ray tube and color cathode-ray tube

Country Status (2)

Country Link
JP (1) JP2003007222A (en)
WO (1) WO2003001554A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS444924Y1 (en) * 1968-08-27 1969-02-22
JPS57123634A (en) * 1981-01-26 1982-08-02 Toshiba Corp Color picture tube
JPH06333508A (en) * 1993-05-26 1994-12-02 Hitachi Ltd Color cathode-ray tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS444924Y1 (en) * 1968-08-27 1969-02-22
JPS57123634A (en) * 1981-01-26 1982-08-02 Toshiba Corp Color picture tube
JPH06333508A (en) * 1993-05-26 1994-12-02 Hitachi Ltd Color cathode-ray tube

Also Published As

Publication number Publication date
JP2003007222A (en) 2003-01-10

Similar Documents

Publication Publication Date Title
US6812629B2 (en) Shadow mask frame assembly for flat CRT with slot groups
US6472806B1 (en) Tensioned shadow mask for cathode ray tube including tie bars having dummy bridges
KR100395200B1 (en) Color cathode ray tube
JPH08298078A (en) Color picture tube
TW381286B (en) Color cathode ray tube
JPH09259785A (en) Shadow mask
JP2001202899A (en) Cathode-ray tube
JP3244843B2 (en) Color cathode ray tube
WO2003001554A1 (en) Color selecting mechanism for cathode-ray tube and color cathode-ray tube
US6630775B1 (en) Tension mask frame assembly for color cathode ray tube
KR100385214B1 (en) Tension mask frame assembly of the flat CRT
US7012356B2 (en) Color cathode ray tube
JPH05198270A (en) Color picture tube
JP3822790B2 (en) Cathode ray tube
US4950944A (en) Tensed shadow mask assembly
US6917149B2 (en) Tension mask having shaped apertures for color cathode-ray tube and tension mask frame assembly
US6756725B2 (en) Cathode ray tube with tension mask
US6634612B1 (en) Tension mask frame assembly of flat cathode ray tube
JP3082601B2 (en) Shadow mask type color cathode ray tube
JPH06275204A (en) Color cathode-ray tube
JPH0982236A (en) Color cathode ray tube
US6734612B2 (en) Tension mask assembly for flat cathode ray tube
JP2004288413A (en) Color cathode-ray tube
TW451242B (en) Color selecting member, method of preventing vibration of color selecting member, and cathode ray tube
KR100786827B1 (en) Color selection apparatus for cathode ray tube

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US