WO2003000402A1 - Process for producing heat-expandable microcapsule - Google Patents

Process for producing heat-expandable microcapsule Download PDF

Info

Publication number
WO2003000402A1
WO2003000402A1 PCT/JP2002/006209 JP0206209W WO03000402A1 WO 2003000402 A1 WO2003000402 A1 WO 2003000402A1 JP 0206209 W JP0206209 W JP 0206209W WO 03000402 A1 WO03000402 A1 WO 03000402A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
microcapsules
heat
monomer component
polymer
Prior art date
Application number
PCT/JP2002/006209
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Kawaguchi
Takahiro Omura
Toshiharu Furukawa
Original Assignee
Sekisui Chemical Co., Ltd.
Tokuyama Sekisui Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co., Ltd., Tokuyama Sekisui Co., Ltd. filed Critical Sekisui Chemical Co., Ltd.
Publication of WO2003000402A1 publication Critical patent/WO2003000402A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking

Definitions

  • the present invention relates to a method for producing a heat-expandable microcapsule, particularly a heat-expandable microcapsule having excellent heat resistance and solvent resistance.
  • BACKGROUND ART A method for producing a heat-expandable microcapsule by using a thermoplastic polymer as a wall material and microencapsulating a volatile expanding agent that becomes gaseous at a temperature lower than the softening point of the polymer is known.
  • Japanese Patent Publication No. 42-26524 discloses that a liquid foaming agent such as a low-boiling aliphatic hydrocarbon is added to a monomer, and an oil-soluble polymerization initiator is mixed with the monomer component.
  • a liquid foaming agent such as a low-boiling aliphatic hydrocarbon
  • an oil-soluble polymerization initiator is mixed with the monomer component.
  • the heat-expandable microcapsule obtained by the production method disclosed in the above publication is not excellent in heat resistance and solvent resistance, and expands and expands at a low temperature of about 80 to 130 ° C, There was a problem that the foaming ratio was reduced under heating conditions of high temperature and long time.
  • a heat-expandable microcapsule for converting a volatile expander which becomes gaseous at a temperature equal to or lower than the softening point of the polymer into a micro force Using a polymer obtained from a monomer component containing 0.1 to 1% by weight, a heat-expandable microcapsule for converting a volatile expander which becomes gaseous at a temperature equal to or lower than the softening point of the polymer into a micro force.
  • the heat-expandable microcapsules obtained by this manufacturing method are superior in heat resistance to the heat-expandable microcapsules obtained by the conventional manufacturing method. Is also excellent.
  • microcapsules are liable to shrink or break when heated at high temperatures for long periods of time. There is a problem that the stability at the time of foaming is insufficient. Summary of the Invention
  • An object of the present invention is to provide a combination of excellent heat resistance and excellent solvent resistance, hardly cause shrinkage and bubble breakage even under high temperature and long-time heating conditions, and excellent heat expansion stability (foaming stability).
  • An object of the present invention is to provide an efficient and simple method for producing expandable microcapsules.
  • the present invention acrylonitrile 5 for 5-7 5 weight 0/0, methacrylonitrile 2 0-4 0 wt%, vinyl acetate 1-1 0% by weight and tetrafunctional or more crosslinking agents from 0.1 to 1 weight
  • a volatile expander which becomes gaseous at a temperature lower than the softening point of the polymer obtained from the monomer component, is polymerized under nitrogen pressure to form a microcapsule. It is a manufacturing method of a capsule.
  • the monomer component used in the method for producing a heat-expandable microcapsule of the present invention contains 55 to 75% by weight of acrylonitrile and 20 to 40% by weight of methacrylic nitrile as nitrile monomers.
  • heat-expandable microcapsules hereinafter also referred to as microcapsules.
  • the solvent resistance becomes insufficient, and conversely, the content of acrylonitrile in the monomer component exceeds 75% by weight and / or the content of methacrylonitrile becomes 40% by weight. If it exceeds, the glass transition temperature of the microcapsules becomes too high, and the thermal expansion (foamability) is impaired.
  • the monomer component used in the method for producing a thermally expandable microcapsule of the present invention contains 1 to 10% by weight of vinyl acetate as a non-nitrile monomer.
  • vinyl acetate as a non-nitrile monomer.
  • the content of vinyl acetate in the monomer component is less than 1% by weight, it is not possible to sufficiently promote the growth radical reactivity of metathalonitrile, and conversely, the content of vinyl acetate in the monomer component is reduced. If it exceeds 10% by weight, the glass transition temperature of the polymer becomes too low, and the heat resistance and the solvent resistance of the microcapsule become insufficient.
  • the monomer component used in the method for producing a heat-expandable micro force cell of the present invention contains 0.1 to 1% by weight of a crosslinking agent having four or more functional groups as a crosslinking agent.
  • a crosslinking agent having four or more functional groups in the monomer component, the degree of crosslinking of the polymer obtained from the mixed monomer comprising acrylonitrile, methacrylic acid-tolyl, and butyl acetate can be sufficiently increased.
  • the microcapsules are less likely to shrink or break even under high temperature and long heating conditions.
  • crosslinker having four or more functionalities examples include, for example, pentaerythritol tetraacrylate, pentaerythritol tetramethacrylate, dipentaerythritol hexaatalylate, and dipentaerythritol hexamethacrylate, which are preferably used. These crosslinkers having four or more functionalities may be used alone or in combination of two or more.
  • the content of the cross-linking agent having four or more functionalities in the monomer component is less than 0.1% by weight, the degree of cross-linking of the polymer is not sufficiently improved, and conversely, the cross-linking agent having four or more functionalities in the monomer component is Even if the content exceeds 1% by weight, the degree of crosslinking of the polymer is no longer improved.
  • the monomer component used in the manufacturing method of the heat-expandable micro power capsule of the present invention may optionally within a range that does not inhibit the assignment achievement of the present invention, for example, alpha-Kuroruakuri Ronitorinore, alpha - ethoxyacrylonitrile, such Fumaronitorinore Nitrile monomers other than acrylonitrile and methacrylonitrile, acrylates such as methyl acrylate, ethyl acrylate, butyl acrylate, dicyclopentenyl acrylate, etc., methyl methacrylate, ethyl methacrylate, and butyrate methacrylate.
  • alpha-Kuroruakuri Ronitorinore alpha - ethoxyacrylonitrile
  • Fumaronitorinore Nitrile monomers other than acrylonitrile and methacrylonitrile such as methyl acrylate, ethyl acrylate, butyl acrylate, dicyclopentenyl
  • Methacrylates such as isobonyl methacrylate, and vinyl acetate such as styrene. And a non-nitrile-based monomer other than toluene.
  • nitrile-based monomers other than atarilonitrile and methacrylonitrile and non- nitrile-based monomers other than butyl acetate may be used alone or in combination of two or more.
  • the wall material of the microcapsule produced by the method for producing a thermally expandable microcapsule of the present invention comprises a monomer component comprising the above-mentioned acrylonitrile, methacrylonitrile, biel acetate, and a tetrafunctional or more cross-linking agent; It is prepared by blending as appropriate.
  • polymerization initiator examples include various known polymerization initiators generally used in this field, and are preferably used. Among them, oil-soluble polymerization initiators soluble in acrylonitrile, methacrylonitrile and vinyl acetate are preferred. Agents are particularly preferably used. Examples of the oil-soluble polymerization initiator include dialkyl peroxide, diacyl peroxide, peroxyester, peroxydicarbonate, and azo compound.
  • dialkyl peroxides such as methylethyl peroxide, di-tert-butyl peroxide, and dicumyl peroxide; isoptyl peroxide, benzoin peroxide , 2,4-diclo-benzoylperoxide, 3,5,5-dimethyl peroxide such as trimethylhexanoyl peroxide; t-butyl benzoyl oxyvalate, t-hexyl oxy valiva, t-Butyl peroxy sineodecanoate, t-hexyloxy neodecanoate, 1-cyclohexyl-1- 1-methylethyl peroxy neodecanoate, 1,1,3,3-tetramethyl Peroxyesters such as butyl peroxy neodecanoate, cumyl peroxy neodecanoate, ( ⁇ , ⁇ -bis-neodecanyl baroxy) diisopropylbenzene Bis
  • the volatile swelling agent used in the method for producing a thermally expandable microcapsule of the present invention and contained in the microcapsule is a substance which becomes gaseous at a temperature equal to or lower than the softening point of the polymer obtained from the monomer component. If the volatile expanding agent is a substance which becomes gaseous at a temperature exceeding the softening point of the polymer, the microcapsules tend to contract or break during thermal expansion (foaming).
  • volatile swelling agent examples include a low-boiling organic solvent and a compound which is thermally decomposed by heating and becomes gaseous, and is preferably used. Among them, a low-boiling organic solvent is particularly preferably used. . These volatile swelling agents may be used alone or in combination of two or more.
  • low-boiling organic solvent examples include ethane, ethylene, propane, propylene, n-butane, isobutane, n-butene, isobutene, n-pentane, isopentan, neopentane, n-hexane, heptane, petroleum Low-molecular-weight carbon such as ether; hydrogen such as CC13F, CC12F2, CC1F3, CC1F2-CC12F2; and chlorofluorocarbon such as CC12F2; tetramethylenosilane, trimethylethyl Examples thereof include tetraalkylsilanes such as silane, trimethylisopropyl silane, and trimethyl_n-propyl silane, which are preferably used.
  • n-butane, isobutane, n-pentane, isopentane, n-hexane and Petroleum ether is particularly preferably used.
  • These low-boiling organic solvents may be used alone or in combination of two or more.
  • the monomer component and the volatile expander are polymerized under nitrogen pressure to form a microcapsule.
  • the pressure value at the time of pressurizing the nitrogen is not particularly limited, but is preferably 0.1 to 2.0 MPa. If the pressure value at the time of pressurizing nitrogen is less than 0. IMP a, the radical reactivity of atarilonitrile / methacrylonitrile will deteriorate and the bulk specific gravity will decrease. Microcapsules with low bulk density may have poor thermal expansion stability (foaming stability) under high temperature and long-time heating conditions, causing shrinkage and foam breakage.
  • the method of polymerizing the monomer component and the volatile swelling agent under nitrogen pressure of preferably 0.1 to 2.0 OMPa to microencapsulate is not particularly limited. good. A particularly preferred method is described in, for example,
  • a monomer component is mixed with a volatile swelling agent and a polymerization initiator, and the mixture is mixed in an aqueous dispersion medium containing an appropriate dispersion stabilizer, co-stabilizer and the like. This is a suspension polymerization method.
  • the suspension polymerization is usually carried out in an aqueous dispersion medium containing a dispersion stabilizer, an auxiliary stabilizer and the like.
  • dispersion stabilizer examples include silica such as colloidal silica, calcium phosphate, magnesium hydroxide, aluminum hydroxide, ferric hydroxide, barium sulfate, calcium sulfate, sodium sulfate, calcium oxalate, calcium carbonate, and the like. It includes potassium carbonate, magnesium carbonate and the like, and is preferably used. These dispersion stabilizers may be used alone or in combination of two or more. The amount of the dispersion stabilizer used is not particularly limited, but is preferably 0.1 to 20 parts by weight based on 100 parts by weight of the monomer component.
  • co-stabilizer examples include condensation products such as condensation products of diethanolamine and aliphatic dicarbonic acid and condensation products of urea and formaldehyde; polybutylpyrrolidone and polyethyleneimine; A water-soluble nitrogen-containing compound of the following; polyethylene oxide, tetramethylammonium hydroxide, gelatin, methyl alcohol, polyvinyl alcohol, octyl sulfosuccinate, sorbitan ester, various emulsifiers, and the like. Used for These co-stabilizers may be used alone or in combination of two or more.
  • the aqueous dispersion medium used for the suspension polymerization is prepared by blending the above-mentioned dispersion stabilizer and auxiliary stabilizer in deionized water.
  • the pH of the aqueous phase during suspension polymerization is used It is appropriately determined depending on the type of the dispersion stabilizer, the auxiliary stabilizer and the like. For example, when silica such as colloidal silica is used as the dispersion stabilizer, suspension polymerization is performed in an acidic aqueous phase. To make the aqueous phase acidic, the pH of the aqueous phase may be adjusted to 3 to 6 by adding an acid such as hydrochloric acid as needed.
  • suspension polymerization is performed in an alkaline aqueous phase.
  • the pH of the aqueous phase may be adjusted to 8 to 11 by adding a base such as caustic soda as needed.
  • An example of a preferred combination of the dispersion stabilizer and the co-stabilizer includes a combination of colloidal silica (dispersion stabilizer) and a condensation product (co-stabilizer).
  • a condensation product of diethanolamine and an aliphatic dicarboxylic acid is preferable, and among them, a condensation product of diethanolamine and adipic acid and a condensation product of diethanolamine and itaconic acid are preferable. Particularly preferred.
  • These condensation products may be used alone or in combination of two or more. Further, when an inorganic salt such as sodium chloride / sodium sulfate is added, microcapsules having a more uniform particle shape can be easily obtained.
  • the amount of the above-mentioned colloidal silica may be adjusted depending on the particle size, and is not particularly limited.However, it may be 1 to 20 parts by weight of the colloidal silica with respect to 100 parts by weight of the monomer component. Preferably, it is more preferably 2 to 10 parts by weight.
  • the amount of the condensation product used may be adjusted depending on the kind thereof, and is not particularly limited. However, the amount of the condensation product is 0.0 with respect to 100 parts by weight of the monomer component.
  • the amount of the inorganic salt to be used may be adjusted depending on the type thereof, and is not particularly limited. However, the amount of the inorganic salt is 100 parts by weight or less based on 100 parts by weight of the monomer component. Is preferred.
  • Another example of a preferable combination of the dispersion stabilizer and the co-stabilizer is a combination of colloidal silica (dispersion stabilizer) and a water-soluble nitrogen-containing compound (co-stabilizer).
  • the water-soluble nitrogen-containing compound include polybutylpyrrolidone, polyethyleneimine, polyoxyethylenealkylamine, polydimethylaminoethyl acrylate, and polydialkylaminoalkyl represented by polydimethylaminoethyl methacrylate.
  • polydimethyla Minopropylacrylamide polydialkylaminoalkyl (meth) acrylamide represented by polydimethylaminopropylmethacrylamide, polyatarylamide, polycationic acrylamide, polyaminesulfone, polyallylamine, etc.
  • polyvinylpyrrolidone is particularly preferably used.
  • These water-soluble nitrogen-containing compounds may be used alone or in combination of two or more.
  • the amount of colloidal silica used is preferably fixed to 1 to 20 parts by weight of colloidal silica with respect to 100 parts by weight of the monomer component, and It is preferable to adjust by changing the amount of don used.
  • the combination of the dispersion stabilizer and the co-stabilizer includes a combination of calcium phosphate or magnesium hydroxide (dispersion stabilizer) with an emulsifier (co-stabilizer).
  • each component in the aqueous dispersion medium is arbitrary and not particularly limited.However, usually, deionized water, a dispersion stabilizer and, if necessary, an auxiliary stabilizer are charged into a polymerization vessel, and the dispersion is stabilized. An aqueous dispersion medium containing the agent is prepared. If necessary, compounds such as alkali metal nitrite, stannous chloride, stannic chloride and potassium dichromate are added. The monomer component and the volatile swelling agent may be individually added to an aqueous dispersion medium to form an oily mixture in the aqueous dispersion medium. Prepare and add the oily mixture to the aqueous dispersion medium.
  • the polymerization initiator may be added to the oily mixture in advance, or may be added after stirring and mixing the aqueous dispersion medium and the oily mixture in a polymerization vessel.
  • the aqueous dispersion medium and the oily mixture may be mixed in a separate container in advance and mixed by stirring, and then charged into the polymerization vessel.
  • the particle diameter of the microcapsules obtained by the method for producing thermally expandable microcapsules of the present invention is not particularly limited, but is about 5 to 50 / zm in a state before thermal expansion (unfoamed state). Preferably, there is.
  • the amount of the volatile swelling agent included in the microcapsules is not particularly limited, but is preferably about 10 to 20% by weight. According to the method for producing a heat-expandable microcapsule of the present invention, the amount ratio of acrylonitrile, methacrylonitrile, butyl acetate, and a tetrafunctional or higher crosslinking agent constituting the monomer component is controlled within the above-described specific amounts.
  • Various types of microcapsules exhibiting thermal expansion behavior (foaming behavior) according to the intended use can be manufactured by selecting the type of volatile expanding agent.
  • the microcapsule produced by the method for producing a heat-expandable microcapsule of the present invention is a polymer obtained from a monomer component containing acrylonitrile, methacrylonitrile, vinyl acetate and a specific amount of a tetrafunctional or higher crosslinker.
  • the wall material is composed of a volatile expander which becomes gaseous at a temperature lower than the softening point of the polymer, and has excellent heat resistance and excellent solvent resistance. Shrinkage and foam breakage are unlikely to occur even under heating conditions, and the expansion ratio does not decrease.
  • Example 2 The oil-based mixtures were each prepared with the composition shown in Table 1, and the average particle diameter was 20 ⁇ in the same manner as in Example 1 except that the aqueous dispersion medium prepared in Example 1 was used as the aqueous dispersion medium. (Example 2) and 2 / im (Example 3) microcapsules were produced.
  • Each of the oily mixtures was prepared with the composition shown in Table 1, and the average particle size was 30 / X by the same method as in Example 1 except that the aqueous dispersion medium prepared in Example 1 was used as the aqueous dispersion medium.
  • m Comparative Example 1
  • 25 ⁇ m Comparative Example 2 microcapsules were produced.
  • the expansion ratio of the microcapsules obtained in Examples 1 to 3 and Comparative Example 2 was measured by the following method.
  • Microcapsules and 0 g were placed in a gear oven and heated under the following heating conditions to foam. Next, each of the obtained foams was placed in a measuring cylinder, the volume after foaming was measured, and the foamed volume was divided by the volume when not foamed to obtain a foaming ratio (times). Heating temperature: 140 ° C, 160 ° C, 170 ° C and 180 ° C
  • Heating time 1 minute, 2 minutes, 3 minutes and 4 minutes at each of the above heating temperatures ⁇ atrial from 1 frfe
  • microcapsules of Comparative Example 2 in which the content of the butyl acetate in the monomer component exceeded 10% by weight had poor heat resistance, and started thermal expansion (foaming) even at 140 ° C. Moreover, at a heating temperature of 160 ° C. or more, shrinkage and foam breakage occurred, and a good foam could not be obtained.
  • ADVANTAGE OF THE INVENTION According to this invention, it has excellent heat resistance and excellent solvent resistance, and it is hard to shrink or break even under high-temperature and long-time heating conditions, and has excellent thermal expansion stability (foaming stability).
  • An efficient and simple method for producing an inflatable microphone-mouth capsule can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

A process for efficiently and easily producing heat-expandable microcapsules which combine excellent heat resistance with excellent solvent resistance, are less apt to shrink or break even when heated at a high temperature for long, and highly stably heat-expand (foam stably). The process is characterized in that monomer ingredients comprising 55 to 75 wt.% acrylonitrile, 20 to 40 wt.% methacrylonitrile, 1 to 10 wt.% vinyl acetate, and 0.1 to 1 wt.% crosslinking agent having a functionality of 4 or higher and a volatile expanding agent which gasifies at a temperature not higher than the softening point of the polymer to be obtained from the monomer ingredients are polymerized while being pressurized with nitrogen and that the resultant polymer is formed into microcapsules.

Description

明細書  Specification
熱膨張性マイクロカプセルの製造方法  Method for producing heat-expandable microcapsules
技術分野 Technical field
本発明は、 熱膨張性マイクロカプセル、 特に耐熱性と耐溶剤性とに優れる熱膨 張性マイクロカプセルの製造方法に関する。 背景技術 熱可塑性ポリマーを壁材として用い、 該ポリマーの軟化点以下の温度でガス状 になる揮発性膨張剤をマイクロカプセル化して熱膨張性マイクロカプセルを製造 する方法は既知である。  The present invention relates to a method for producing a heat-expandable microcapsule, particularly a heat-expandable microcapsule having excellent heat resistance and solvent resistance. BACKGROUND ART A method for producing a heat-expandable microcapsule by using a thermoplastic polymer as a wall material and microencapsulating a volatile expanding agent that becomes gaseous at a temperature lower than the softening point of the polymer is known.
例えば、 特公昭 4 2 - 2 6 5 2 4号公報には、 低沸点の脂肪族炭化水素等の液 体発泡剤をモノマーに添加し、 このモノマー成分に油溶性重合開始剤を混合し、 次いで、 分散安定剤を含有する水性分散媒体中に上記モノマー成分を攪拌しなが ら添加して、 懸濁重合を行うことにより、 上記液体発泡剤を内包した球状粒子を 製造する熱膨張性マイクロカプセルの製造方法が開示されている。 しかし、 上記公報に開示されている製造方法で得られる熱膨張性マイクロカブ セルは、 耐熱性及び耐溶剤性に優れるものではなく、 約 8 0〜 1 3 0 °Cの低温で 発泡膨張し、 高温長時間の加熱条件下では発泡倍率が低下するという問題点があ つた。  For example, Japanese Patent Publication No. 42-26524 discloses that a liquid foaming agent such as a low-boiling aliphatic hydrocarbon is added to a monomer, and an oil-soluble polymerization initiator is mixed with the monomer component. The heat-expandable microcapsules for producing spherical particles containing the above-mentioned liquid foaming agent by adding the above-mentioned monomer components to an aqueous dispersion medium containing a dispersion stabilizer while stirring and performing suspension polymerization. Is disclosed. However, the heat-expandable microcapsule obtained by the production method disclosed in the above publication is not excellent in heat resistance and solvent resistance, and expands and expands at a low temperature of about 80 to 130 ° C, There was a problem that the foaming ratio was reduced under heating conditions of high temperature and long time.
このような問題点に対応するために、 例えば、 特公平 5— 1 5 4 9 9号公報に は、 二トリル系モノマー 8 0重量0 /0以上、 非二トリル系モノマー 2 0重量%以下 及び架橋剤 0 . 1〜 1重量%を含有するモノマー成分から得られるポリマーを用 いて、 該ポリマーの軟化点以下の温度でガス状になる揮発性膨張剤をマイクロ力 プセル化する熱膨張性マイクロカプセルの製造方法が開示されている。 この製造 方法で得られる熱膨張性マイクロカプセルは、 従来の製造方法で得られる熱膨張 性マイク口カプセルに比較すると、 耐熱性に優れ、 1 4 0 °C以下では発泡せず、 しかも耐溶剤性にも優れている。 しかしながら、 高温長時間加熱によるマイクロ カプセルの収縮や破泡が起こり易く、 例えば、 壁紙等の製造工程における加熱発 泡時の安定性が不充分であるという問題点があつた。 発明の要約 To cope with such a problem, for example, the Kokoku 5-1 5 4 9 9 JP, nitrile-based monomer 8 0 wt 0/0 or more, the non-nitrile-based monomer 2 0% by weight and Cross-linking agent Using a polymer obtained from a monomer component containing 0.1 to 1% by weight, a heat-expandable microcapsule for converting a volatile expander which becomes gaseous at a temperature equal to or lower than the softening point of the polymer into a micro force. Is disclosed. The heat-expandable microcapsules obtained by this manufacturing method are superior in heat resistance to the heat-expandable microcapsules obtained by the conventional manufacturing method. Is also excellent. However, microcapsules are liable to shrink or break when heated at high temperatures for long periods of time. There is a problem that the stability at the time of foaming is insufficient. Summary of the Invention
本発明の目的は、 優れた耐熱性と優れた耐溶剤性とを兼備し、 高温長時間の加 熱条件下でも収縮や破泡が起こり難く、 熱膨張安定性 (発泡安定性) に優れる熱 膨張性マイクロカプセルの効率的かつ簡便な製造方法を提供することにある。 本発明は、 アクリロニトリル 5 5〜 7 5重量0 /0、 メタクリロニトリル 2 0〜 4 0重量%、 酢酸ビニル 1〜 1 0重量%及び四官能性以上の架橋剤 0 . 1〜 1重量An object of the present invention is to provide a combination of excellent heat resistance and excellent solvent resistance, hardly cause shrinkage and bubble breakage even under high temperature and long-time heating conditions, and excellent heat expansion stability (foaming stability). An object of the present invention is to provide an efficient and simple method for producing expandable microcapsules. The present invention, acrylonitrile 5 for 5-7 5 weight 0/0, methacrylonitrile 2 0-4 0 wt%, vinyl acetate 1-1 0% by weight and tetrafunctional or more crosslinking agents from 0.1 to 1 weight
%を含有するモノマー成分と、 該モノマー成分から得られるポリマーの軟化点以 下の温度でガス状になる揮発性膨張剤とを、 窒素加圧下で重合し、 マイクロカブ セル化する熱膨張性マイクロカプセルの製造方法である。 発明の詳細な開示 %, And a volatile expander which becomes gaseous at a temperature lower than the softening point of the polymer obtained from the monomer component, is polymerized under nitrogen pressure to form a microcapsule. It is a manufacturing method of a capsule. Detailed Disclosure of the Invention
以下に本発明を詳述する。  Hereinafter, the present invention will be described in detail.
本発明の熱膨張性マイクロカプセルの製造方法で用いられるモノマー成分には、 二トリル系モノマーとして、 アクリロニトリル 5 5〜7 5重量%及びメタクリ口 二トリル 2 0〜 4 0重量%が含有される。 モノマー成分中におけるァクリロニトリルの含有量が 5 5重量%未満であるか、 及び 又は、 メタタリ口-トリルの含有量が 2 0重量%未満であると、 熱膨張性 マイクロカプセル (以下、 マイクロカプセルともいう) の耐熱性ゃ耐溶剤性が不 充分となり、 逆にモノマー成分中におけるァクリロ二トリルの含有量が 7 5重量 %を超えるか、 及び/又は、 メタクリロニトリルの含有量が 4 0重量%を超える と、 マイクロカプセルのガラス転移温度が高くなりすぎて、 熱膨張性 (発泡性) が損なわれる。  The monomer component used in the method for producing a heat-expandable microcapsule of the present invention contains 55 to 75% by weight of acrylonitrile and 20 to 40% by weight of methacrylic nitrile as nitrile monomers. When the content of acrylonitrile in the monomer component is less than 55% by weight and / or the content of metall-tolyl is less than 20% by weight, heat-expandable microcapsules (hereinafter also referred to as microcapsules)耐熱) The solvent resistance becomes insufficient, and conversely, the content of acrylonitrile in the monomer component exceeds 75% by weight and / or the content of methacrylonitrile becomes 40% by weight. If it exceeds, the glass transition temperature of the microcapsules becomes too high, and the thermal expansion (foamability) is impaired.
本発明の熱膨張性マイクロカプセルの製造方法で用いられるモノマー成分には、 非二トリル系モノマーとして、 酢酸ビニル 1〜 1 0重量%が含有される。 モノマー成分中にラジカル反応性の高い酢酸ビュルを 1〜 1 0重量%という少 量含有させることにより、 成長ラジカル反応性が顕著に低いメタクリロニトリノレ の反応を効果的に助長することができる。 その結果、 耐熱性の高いメタクリロニ トリルの重合率を上げることが可能となり、 マイクロカプセルは著しく優れた耐 熱性ゃ耐溶剤性を発現するものとなる。 モノマー成分中における酢酸ビニルの含 有量が 1重量%未満であると、 メタタリロニトリルの成長ラジカル反応性を充分 に助長することができず、 逆にモノマー成分中における酢酸ビニルの含有量が 1 0重量%を超えると、 ポリマーのガラス転移温度が低くなりすぎて、 マイクロ力 プセルの耐熱性ゃ耐溶剤性が不充分となる。 The monomer component used in the method for producing a thermally expandable microcapsule of the present invention contains 1 to 10% by weight of vinyl acetate as a non-nitrile monomer. By containing the butyl acetate having a high radical reactivity in a small amount of 1 to 10% by weight in the monomer component, it is possible to effectively promote the reaction of methacrylonitrile having a remarkably low growth radical reactivity. As a result, methacryloni It becomes possible to increase the polymerization rate of toril, and the microcapsules exhibit remarkably excellent heat resistance and solvent resistance. If the content of vinyl acetate in the monomer component is less than 1% by weight, it is not possible to sufficiently promote the growth radical reactivity of metathalonitrile, and conversely, the content of vinyl acetate in the monomer component is reduced. If it exceeds 10% by weight, the glass transition temperature of the polymer becomes too low, and the heat resistance and the solvent resistance of the microcapsule become insufficient.
本発明の熱膨張性マイクロ力プセルの製造方法で用いられるモノマー成分には、 架橋剤として四官能性以上の架橋剤 0 . 1〜1重量%が含有される。 モノマー成 分中に四官能性以上の架橋剤 0 . 1〜1重量%を含有させることにより、 上記ァ クリロニトリル、 メタクリ口-トリル及び酢酸ビュルからなる混合モノマーから 得られるポリマーの架橋度が充分に向上するので、 マイクロカプセルは高温長時 間の加熱条件下でも収縮や破泡を起こし難いものとなる。  The monomer component used in the method for producing a heat-expandable micro force cell of the present invention contains 0.1 to 1% by weight of a crosslinking agent having four or more functional groups as a crosslinking agent. By including 0.1 to 1% by weight of a crosslinking agent having four or more functional groups in the monomer component, the degree of crosslinking of the polymer obtained from the mixed monomer comprising acrylonitrile, methacrylic acid-tolyl, and butyl acetate can be sufficiently increased. The microcapsules are less likely to shrink or break even under high temperature and long heating conditions.
上記四官能性以上の架橋剤としては、 例えば、 ペンタエリスリ トールテトラァ クリレート、 ペンタエリスリ トールテトラメタクリレート、 ジペンタエリスリ ト ールへキサアタリレート、 ジペンタエリスリ トールへキサメタクリレート等が挙 げられ、 好適に用いられる。 これらの四官能性以上の架橋剤は、 単独で用いられ ても良いし、 2種類以上が併用されても良い。  Examples of the crosslinker having four or more functionalities include, for example, pentaerythritol tetraacrylate, pentaerythritol tetramethacrylate, dipentaerythritol hexaatalylate, and dipentaerythritol hexamethacrylate, which are preferably used. These crosslinkers having four or more functionalities may be used alone or in combination of two or more.
モノマー成分中における四官能性以上の架橋剤の含有量が 0 . 1重量%未満で あると、 ポリマーの架橋度が充分に向上せず、 逆にモノマー成分中における四官 能性以上の架橋剤の含有量が 1重量%を超えても、 もはやポリマーの架橋度はそ れ以上向上しない。  If the content of the cross-linking agent having four or more functionalities in the monomer component is less than 0.1% by weight, the degree of cross-linking of the polymer is not sufficiently improved, and conversely, the cross-linking agent having four or more functionalities in the monomer component is Even if the content exceeds 1% by weight, the degree of crosslinking of the polymer is no longer improved.
本発明の熱膨張性マイクロ力プセルの製造方法で用いられるモノマー成分には、 本発明の課題達成を阻害しない範囲で必要に応じて、 例えば、 α—クロルァクリ ロニトリノレ、 α—エトキシアクリロニトリル、 フマロニトリノレ等のァクリロニト リル及びメタクリロ二トリル以外の二トリル系モノマーや、 アタリル酸メチル、 アクリル酸ェチル、 アクリル酸ブチル、 アクリル酸ジシクロペンテニル等のァク リル酸エステル、 メタクリル酸メチル、 メタクリル酸ェチル、 メタクリル酸ブチ ル、 メタクリル酸イソボニル等のメタクリル酸エステル、 スチレン等の酢酸ビニ ル以外の非二トリル系モノマーが含有されていても良い。 これらのアタリロニト リル及びメタクリロニトリル以外の二トリル系モノマーや酢酸ビュル以外の非二 トリル系モノマーは、 単独で用いられても良いし、 2種類以上が併用されても良 レ、。 The monomer component used in the manufacturing method of the heat-expandable micro power capsule of the present invention may optionally within a range that does not inhibit the assignment achievement of the present invention, for example, alpha-Kuroruakuri Ronitorinore, alpha - ethoxyacrylonitrile, such Fumaronitorinore Nitrile monomers other than acrylonitrile and methacrylonitrile, acrylates such as methyl acrylate, ethyl acrylate, butyl acrylate, dicyclopentenyl acrylate, etc., methyl methacrylate, ethyl methacrylate, and butyrate methacrylate. Methacrylates such as isobonyl methacrylate, and vinyl acetate such as styrene. And a non-nitrile-based monomer other than toluene. These nitrile-based monomers other than atarilonitrile and methacrylonitrile and non- nitrile-based monomers other than butyl acetate may be used alone or in combination of two or more.
本発明の熱膨張性マイクロカプセルの製造方法によるマイクロカプセルの壁材 は、 上記アクリロニトリル、 メタクリロニトリル、 酢酸ビエル及び四官能性以上 の架橋剤からなるモノマー成分に、 更に必要に応じて重合開始剤を適宜配合する ことによって調製される。  The wall material of the microcapsule produced by the method for producing a thermally expandable microcapsule of the present invention comprises a monomer component comprising the above-mentioned acrylonitrile, methacrylonitrile, biel acetate, and a tetrafunctional or more cross-linking agent; It is prepared by blending as appropriate.
上記重合開始剤としては、 この分野で一般的に用いられている公知の各種重合 開始剤が挙げられ、 好適に用いられるが、 なかでもアクリロニトリル、 メタクリ ロニトリル及び酢酸ビニルに可溶の油溶性重合開始剤が特に好適に用いられる。 上記油溶性重合開始剤としては、 例えば、 過酸化ジアルキル、 過酸化ジァシル、 パーォキシエステル、 パーォキシジカーボネート、 ァゾ化合物等が挙げられる。 より具体的には、 メチルェチルパーォキサイド、 ジー t一ブチルパーォキサイド、 ジクミルパーォキサイド等の過酸化ジアルキル;ィソプチルパーォキサイド、 ベ ンゾィノレパーオキサイド、 2 , 4—ジクロ口ベンゾィルパーオキサイ ド、 3 , 5 , 5—トリメチルへキサノィルパーォキサイ ド等の過酸化ジァシル; t—ブチルバ 一ォキシビバレート、 t—へキシルバーォキシビバレート、 t—ブチルパーォキ シネオデカノエート、 t—へキシルバーォキシネオデカノエート、 1—シクロへ キシル一 1—メチルェチルパーォキシネオデカノエート、 1 , 1 , 3 , 3—テト ラメチルブチルパーォキシネオデカノエート、 クミルパーォキシネオデカノエー ト、 (α , α—ビス—ネオデカノィルバーオキシ) ジイソプロピルベンゼン等の パーォキシエステル; ビス (4— t—プチルシク口へキシノレ) パーォキシジカー ボネート、 ジー n—プロピルォキシジカーボネート、 ジィソプロピルパーォキシ ジカーボネート、 ジ (2—ェチルェチルパーォキシ) ジカーボネート、 ジメ トキ シプチルバーオキシジカーボネート、 ジ (3—メチル— 3—メ トキシブチルパー ォキシ) ジカーボネート等のパーォキシジカーボネート ; 2 , 2 ' —ァゾビスィ ソブチロニトリル、 2, 2, 一ァゾビス (4—メ トキシ一 2, 4—ジメチルバレ ロニ ト リノレ、 2, 2 ' ーァゾビス (2, 4—ジメチノレバレロ二トリル) 、 1, 1 ' —ァゾビス ( 1—シクロへキサンカルボ二トリル) 等のァゾ化合物等が挙げら れ、 好適に用いられる。 これらの油溶性重合開始剤は、 単独で用いられても良い し、 2種類以上が併用されても良い。 Examples of the polymerization initiator include various known polymerization initiators generally used in this field, and are preferably used. Among them, oil-soluble polymerization initiators soluble in acrylonitrile, methacrylonitrile and vinyl acetate are preferred. Agents are particularly preferably used. Examples of the oil-soluble polymerization initiator include dialkyl peroxide, diacyl peroxide, peroxyester, peroxydicarbonate, and azo compound. More specifically, dialkyl peroxides such as methylethyl peroxide, di-tert-butyl peroxide, and dicumyl peroxide; isoptyl peroxide, benzoin peroxide , 2,4-diclo-benzoylperoxide, 3,5,5-dimethyl peroxide such as trimethylhexanoyl peroxide; t-butyl benzoyl oxyvalate, t-hexyl oxy valiva, t-Butyl peroxy sineodecanoate, t-hexyloxy neodecanoate, 1-cyclohexyl-1- 1-methylethyl peroxy neodecanoate, 1,1,3,3-tetramethyl Peroxyesters such as butyl peroxy neodecanoate, cumyl peroxy neodecanoate, (α, α-bis-neodecanyl baroxy) diisopropylbenzene Bis (4-t-butylcyclohexyl) peroxydicarbonate, di-n-propyloxydicarbonate, disopropylperoxydicarbonate, di (2-ethylethylperoxy) dicarbonate, dimethoxy Peroxydicarbonates such as siptyl baroxydicarbonate and di (3-methyl-3-methoxybutylperoxy) dicarbonate; 2,2'-azobisisobutyronitrile, 2,2,1-azobis (4-methoxy) 1, 2, 4-dimethylvale Azo compounds such as lonitrinole, 2,2′-azobis (2,4-dimethinorevaleronitrile), and 1,1′-azobis (1-cyclohexanecarbonitrile) and the like are mentioned, and are preferably used. These oil-soluble polymerization initiators may be used alone or in combination of two or more.
本発明の熱膨張性マイクロカプセルの製造方法で用いられ、 マイクロカプセル 中に内包される揮発性膨張剤は、 上記モノマー成分から得られるポリマーの軟化 点以下の温度でガス状になる物質である。 上記揮発性膨張剤が上記ポリマーの軟 化点を超える温度でガス状になる物質であると、 熱膨張時 (発泡時) にマイクロ カプセルの収縮や破泡が起こり易くなる。  The volatile swelling agent used in the method for producing a thermally expandable microcapsule of the present invention and contained in the microcapsule is a substance which becomes gaseous at a temperature equal to or lower than the softening point of the polymer obtained from the monomer component. If the volatile expanding agent is a substance which becomes gaseous at a temperature exceeding the softening point of the polymer, the microcapsules tend to contract or break during thermal expansion (foaming).
上記揮発性膨張剤としては、 例えば、 低沸点有機溶剤や加熱により熱分解して ガス状になる化合物等が挙げられ、 好適に用いられるが、 なかでも低沸点有機溶 剤が特に好適に用いられる。 これらの揮発性膨張剤は、 単独で用いられても良い し、 2種類以上が併用されても良い。  Examples of the volatile swelling agent include a low-boiling organic solvent and a compound which is thermally decomposed by heating and becomes gaseous, and is preferably used. Among them, a low-boiling organic solvent is particularly preferably used. . These volatile swelling agents may be used alone or in combination of two or more.
上記低沸点有機溶剤としては、 例えば、 ェタン、 エチレン、 プロパン、 プロぺ ン、 n—ブタン、 イソブタン、 n—ブテン、 イソブテン、 n—ペンタン、 イソぺ ンタン、 ネオペンタン、 n—へキサン、 ヘプタン、 石油エーテル等の低分子量炭 ィ匕水素; CC 1 3 F、 CC 1 2 F 2、 CC 1 F 3、 CC 1 F 2— CC 1 2 F 2等 のクロ口フルォロカーボン;テトラメチノレシラン、 トリメチルェチルシラン、 ト リメチルイソプロビルシラン、 トリメチル _n—プロビルシラン等のテトラアル キルシラン等が挙げられ、 好適に用いられるが、 なかでも n—ブタン、 イソブタ ン、 n—ペンタン、 イソペンタン、 n—へキサン及び石油エーテルが特に好適に 用いられる。 これらの低沸点有機溶剤は、 単独で用いられても良いし、 2種類以 上が併用されても良い。  Examples of the low-boiling organic solvent include ethane, ethylene, propane, propylene, n-butane, isobutane, n-butene, isobutene, n-pentane, isopentan, neopentane, n-hexane, heptane, petroleum Low-molecular-weight carbon such as ether; hydrogen such as CC13F, CC12F2, CC1F3, CC1F2-CC12F2; and chlorofluorocarbon such as CC12F2; tetramethylenosilane, trimethylethyl Examples thereof include tetraalkylsilanes such as silane, trimethylisopropyl silane, and trimethyl_n-propyl silane, which are preferably used. Among them, n-butane, isobutane, n-pentane, isopentane, n-hexane and Petroleum ether is particularly preferably used. These low-boiling organic solvents may be used alone or in combination of two or more.
本発明の熱膨張性マイクロカプセルの製造方法においては、 上記モノマー成分 と上記揮発性膨張剤とを窒素加圧下で重合し、 マイクロカプセル化する。  In the method for producing a thermally expandable microcapsule according to the present invention, the monomer component and the volatile expander are polymerized under nitrogen pressure to form a microcapsule.
上記窒素加圧時の圧力値は、 特に限定されるものではないが、 0. 1〜2. 0 MP aであることが好ましい。 窒素加圧時の圧力値が 0. IMP a未満であると、 アタリ ロニトリルゃメタクリロニトリルのラジカル反応性が悪くなって、 嵩比重 の低いマイクロカプセルしか得られなくなることがあり、 嵩比重の低いマイク口 カプセルは、 高温長時間の加熱条件下における熱膨張安定性 (発泡安定性) が悪 くなつて、 収縮や破泡を起こし易くなることがあり、 逆に窒素加圧時の圧力値がThe pressure value at the time of pressurizing the nitrogen is not particularly limited, but is preferably 0.1 to 2.0 MPa. If the pressure value at the time of pressurizing nitrogen is less than 0. IMP a, the radical reactivity of atarilonitrile / methacrylonitrile will deteriorate and the bulk specific gravity will decrease. Microcapsules with low bulk density may have poor thermal expansion stability (foaming stability) under high temperature and long-time heating conditions, causing shrinkage and foam breakage. The pressure value when pressurizing nitrogen
2 . O M P aを超えても、 もはやマイクロカプセルの熱膨張安定性 (発泡安定性 ) はそれ以上向上しない。 2. Even if it exceeds OMPa, the thermal expansion stability (foaming stability) of the microcapsules no longer improves.
モノマー成分と揮発性膨張剤とを、 好ましくは圧力値 0 . 1〜2 . O M P aの 窒素加圧下で重合し、 マイクロカプセル化する方法は、 特に限定されるものでは なく、 常法に従って行えば良い。 特に好適な方法は、 例えば、 特公昭 4 2— 2 6 The method of polymerizing the monomer component and the volatile swelling agent under nitrogen pressure of preferably 0.1 to 2.0 OMPa to microencapsulate is not particularly limited. good. A particularly preferred method is described in, for example,
5 2 4号公報に記載されているように、 モノマー成分を揮発性膨張剤及び重合開 始剤と混合し、 該混合物を適宜の分散安定剤や補助安定剤等を含有する水性分散 媒体中で懸濁重合させる方法である。 As described in No. 524, a monomer component is mixed with a volatile swelling agent and a polymerization initiator, and the mixture is mixed in an aqueous dispersion medium containing an appropriate dispersion stabilizer, co-stabilizer and the like. This is a suspension polymerization method.
懸濁重合は、 通常、 分散安定剤や補助安定剤等を含有する水性分散媒体中で行 われる。  The suspension polymerization is usually carried out in an aqueous dispersion medium containing a dispersion stabilizer, an auxiliary stabilizer and the like.
上記分散安定剤としては、 例えば、 コロイダルシリカ等のシリカ、 リン酸カル シゥム、 水酸化マグネシウム、 水酸化アルミニウム、 水酸化第二鉄、 硫酸バリゥ ム、 硫酸カルシウム、 硫酸ナトリウム、 蓚酸カルシウム、 炭酸カルシウム、 炭酸 ノくリウム、 炭酸マグネシウム等が挙げられ、 好適に用いられる。 これらの分散安 定剤は、 単独で用いられても良いし、 2種類以上が併用されても良い。 分散安定 剤の使用量は、 特に限定されるものではないが、 モノマー成分 1 0 0重量部に対 して分散安定剤 0 . 1〜2 0重量部であることが好ましい。 また、 上記補助安定剤としては、 例えば、 ジエタノールァミンと脂肪族ジカル ボン酸との縮合生成物や尿素とホルムアルデヒ ドとの縮合生成物等の縮合生成物 ;ポリビュルピロリ ドンやポリエチレンィミン等の水溶性窒素含有化合物;ポリ エチレンオキサイ ド、 テトラメチルアンモニゥムヒ ドロキシド、 ゼラチン、 メチ ノレセル口一ス、 ポリビニルアルコール、 ジォクチルスルホサクシネート、 ソルビ タンエステル、 各種乳化剤等が挙げられ、 好適に用いられる。 これらの補助安定 剤は、 単独で用いられても良いし、 2種類以上が併用されても良い。  Examples of the dispersion stabilizer include silica such as colloidal silica, calcium phosphate, magnesium hydroxide, aluminum hydroxide, ferric hydroxide, barium sulfate, calcium sulfate, sodium sulfate, calcium oxalate, calcium carbonate, and the like. It includes potassium carbonate, magnesium carbonate and the like, and is preferably used. These dispersion stabilizers may be used alone or in combination of two or more. The amount of the dispersion stabilizer used is not particularly limited, but is preferably 0.1 to 20 parts by weight based on 100 parts by weight of the monomer component. Examples of the co-stabilizer include condensation products such as condensation products of diethanolamine and aliphatic dicarbonic acid and condensation products of urea and formaldehyde; polybutylpyrrolidone and polyethyleneimine; A water-soluble nitrogen-containing compound of the following; polyethylene oxide, tetramethylammonium hydroxide, gelatin, methyl alcohol, polyvinyl alcohol, octyl sulfosuccinate, sorbitan ester, various emulsifiers, and the like. Used for These co-stabilizers may be used alone or in combination of two or more.
懸濁重合に用いられる水性分散媒体は、 脱イオン水中に上記分散安定剤や補助 安定剤等を配合することにより調製される。 懸濁重合時の水相の p Hは、 用いる 分散安定剤や補助安定剤等の種類によって適宜決定される。 例えば、 分散安定剤 としてコロイダルシリカ等のシリカを用いる場合には、 酸性水相中で懸濁重合が 行われる。 水相を酸性にするには、 必要に応じて塩酸等の酸を加えて、 水相の p Hを 3〜6に調整すれば良い。 また、 分散安定剤としてリン酸カルシウムや水酸 化マグネシウム等を用いる場合には、 アルカリ性水相中で懸濁重合が行われる。 水相をアルカリ性にするには、 必要に応じて苛性ソーダ等の塩基を加えて、 水相 の p Hを 8〜 1 1に調整すれば良い。 The aqueous dispersion medium used for the suspension polymerization is prepared by blending the above-mentioned dispersion stabilizer and auxiliary stabilizer in deionized water. The pH of the aqueous phase during suspension polymerization is used It is appropriately determined depending on the type of the dispersion stabilizer, the auxiliary stabilizer and the like. For example, when silica such as colloidal silica is used as the dispersion stabilizer, suspension polymerization is performed in an acidic aqueous phase. To make the aqueous phase acidic, the pH of the aqueous phase may be adjusted to 3 to 6 by adding an acid such as hydrochloric acid as needed. When calcium phosphate, magnesium hydroxide, or the like is used as a dispersion stabilizer, suspension polymerization is performed in an alkaline aqueous phase. To make the aqueous phase alkaline, the pH of the aqueous phase may be adjusted to 8 to 11 by adding a base such as caustic soda as needed.
分散安定剤と補助安定剤との好ましい組み合わせの一例として、 コロイダルシ リカ (分散安定剤) と縮合生成物 (補助安定剤) との組み合わせが挙げられる。 上記縮合生成物としては、 ジエタノールァミンと脂肪族ジカルボン酸との縮合 生成物が好ましく、 なかでもジエタノールァミンとアジピン酸との縮合生成物及 びジエタノールァミンとイタコン酸との縮合生成物が特に好ましい。 これらの縮 合生成物は、 単独で用いられても良いし、 2種類以上が併用されても良い。 更に 塩化ナトリゥムゃ硫酸ナトリゥム等の無機塩を添加すると、 より均一な粒子形状 を有するマイクロカプセルを得られ易くなる。  An example of a preferred combination of the dispersion stabilizer and the co-stabilizer includes a combination of colloidal silica (dispersion stabilizer) and a condensation product (co-stabilizer). As the above condensation product, a condensation product of diethanolamine and an aliphatic dicarboxylic acid is preferable, and among them, a condensation product of diethanolamine and adipic acid and a condensation product of diethanolamine and itaconic acid are preferable. Particularly preferred. These condensation products may be used alone or in combination of two or more. Further, when an inorganic salt such as sodium chloride / sodium sulfate is added, microcapsules having a more uniform particle shape can be easily obtained.
上記コロイダルシリカの使用量は、 その粒子径によって調整されれば良く、 特 に限定されるものではないが、 モノマー成分 1 0 0重量部に対してコロイダルシ リカ 1 ~ 2 0重量部であることが好ましく、 より好ましくは 2〜1 0重量部であ る。 また、 縮合生成物の使用量は、 その種類によって調整されれば良く、 特に限 定されるものではないが、 モノマー成分 1 0 0重量部に対して縮合生成物 0 . 0 The amount of the above-mentioned colloidal silica may be adjusted depending on the particle size, and is not particularly limited.However, it may be 1 to 20 parts by weight of the colloidal silica with respect to 100 parts by weight of the monomer component. Preferably, it is more preferably 2 to 10 parts by weight. The amount of the condensation product used may be adjusted depending on the kind thereof, and is not particularly limited. However, the amount of the condensation product is 0.0 with respect to 100 parts by weight of the monomer component.
5〜 2重量部であることが好ましい。 更に、 無機塩の使用量は、 その種類によつ て調整されれば良く、 特に限定されるものではないが、 モノマー成分 1 0 0重量 部に対して無機塩 1 0 0重量部以下であることが好ましい。 Preferably it is 5 to 2 parts by weight. Further, the amount of the inorganic salt to be used may be adjusted depending on the type thereof, and is not particularly limited. However, the amount of the inorganic salt is 100 parts by weight or less based on 100 parts by weight of the monomer component. Is preferred.
また、 分散安定剤と補助安定剤との好ましい組み合わせの他の例として、 コロ ィダルシリカ (分散安定剤) と水溶性窒素含有化合物 (補助安定剤) との組み合 わせが挙げられる。 上記水溶性窒素含有化合物としては、 例えば、 ポリビュルピ ロリ ドン、 ポリエチレンィミン、 ポリオキシエチレンアルキルァミン、 ポリジメ チルアミノエチルアタリ レートやポリジメチルアミノエチルメタタリ レートに代 表されるポリジアルキルアミノアルキル (メタ) アタリ レート、 ポリジメチルァ ミノプロピルァクリルアミ ドゃポリジメチルァミノプロピルメタクリルアミ ドに 代表されるポリジアルキルアミノアルキル (メタ) アクリルアミ ド、 ポリアタリ ルアミ ド、 ポリカチオン性アクリルアミ ド、 ポリアミンサルフォン、 ポリアリル ァミン等が挙げられ好適に用いられるが、 なかでもポリビニルピロリ ドンが特に 好適に用いられる。 これらの水溶性窒素含有化合物は、 単独で用いられても良い し、 2種類以上が併用されても良い。 上記組み合わせの場合、 マイクロカプセルの粒子径を調整するためには、 コロ ィダルシリカの使用量をモノマー成分 1 0 0重量部に対して好ましくはコロイダ ルシリカ 1〜2 0重量部に固定し、 ポリビュルピロリ ドンの使用量を変化させる ことにより調整することが好ましい。 Another example of a preferable combination of the dispersion stabilizer and the co-stabilizer is a combination of colloidal silica (dispersion stabilizer) and a water-soluble nitrogen-containing compound (co-stabilizer). Examples of the water-soluble nitrogen-containing compound include polybutylpyrrolidone, polyethyleneimine, polyoxyethylenealkylamine, polydimethylaminoethyl acrylate, and polydialkylaminoalkyl represented by polydimethylaminoethyl methacrylate. Meta) atarilate, polydimethyla Minopropylacrylamide: polydialkylaminoalkyl (meth) acrylamide represented by polydimethylaminopropylmethacrylamide, polyatarylamide, polycationic acrylamide, polyaminesulfone, polyallylamine, etc. Among them, polyvinylpyrrolidone is particularly preferably used. These water-soluble nitrogen-containing compounds may be used alone or in combination of two or more. In the case of the above combination, in order to adjust the particle size of the microcapsules, the amount of colloidal silica used is preferably fixed to 1 to 20 parts by weight of colloidal silica with respect to 100 parts by weight of the monomer component, and It is preferable to adjust by changing the amount of don used.
更に、 分散安定剤と補助安定剤との好ましい組み合わせの他の例として、 リン 酸カルシウムや水酸化マグネシウム (分散安定剤) と乳化剤 (補助安定剤) との 組み合わせが挙げられる。  Further, another preferred example of the combination of the dispersion stabilizer and the co-stabilizer includes a combination of calcium phosphate or magnesium hydroxide (dispersion stabilizer) with an emulsifier (co-stabilizer).
水性分散媒体に各成分を配合する順序は、 任意で良く特に限定されるものでは ないが、 通常は、 重合器に脱イオン水と分散安定剤及び必要に応じて補助安定剤 を仕込み、 分散安定剤を含有する水性分散媒体を調製する。 また、 必要に応じて 亜硝酸アルカリ金属塩、 塩化第一スズ、 塩化第二スズ、 重クロム酸カリウム等の 化合物を添加する。 上記モノマー成分及び上記揮発性膨張剤は、 それぞれ個別に 水性分散媒体に添加して、 水性分散媒体中で油性混合物を形成しても良いが、 通 常は、 予め両者を混合して油性混合物を調製し、 その油性混合物を水性分散媒体 に添加する。 重合開始剤は、 予め上記油性混合物に添加しても良いし、 水性分散 媒体と油性混合物とを重合器内で攪拌混合した後に添加しても良い。 また、 予め 水性分散媒体と油性混合物との混合を別の容器で行って攪拌混合した後に、 重合 器に仕込んでも良い。  The order of mixing each component in the aqueous dispersion medium is arbitrary and not particularly limited.However, usually, deionized water, a dispersion stabilizer and, if necessary, an auxiliary stabilizer are charged into a polymerization vessel, and the dispersion is stabilized. An aqueous dispersion medium containing the agent is prepared. If necessary, compounds such as alkali metal nitrite, stannous chloride, stannic chloride and potassium dichromate are added. The monomer component and the volatile swelling agent may be individually added to an aqueous dispersion medium to form an oily mixture in the aqueous dispersion medium. Prepare and add the oily mixture to the aqueous dispersion medium. The polymerization initiator may be added to the oily mixture in advance, or may be added after stirring and mixing the aqueous dispersion medium and the oily mixture in a polymerization vessel. Alternatively, the aqueous dispersion medium and the oily mixture may be mixed in a separate container in advance and mixed by stirring, and then charged into the polymerization vessel.
本発明の熱膨張性マイクロカプセルの製造方法で得られるマイクロカプセルの 粒子径は、 特に限定されるものではないが、 熱膨張する前の状態 (未発泡状態) で約 5〜5 0 /z mであることが好ましい。 また、 マイクロカプセル中における揮 発性膨張剤の内包量は、 特に限定されるものではないが、 約 1 0〜2 0重量%で あることが好ましい。 本発明の熱膨張性マイクロカプセルの製造方法によれば、 モノマー成分を構成 するアクリロニトリル、 メタクリロニトリル、 酢酸ビュル及び四官能性以上の架 橋剤の量比を上記各特定量の範囲内で制御したり、 揮発性膨張剤の種類を選択す ることにより、 用途に応じた熱膨張挙動 (発泡挙動) を示す様々なマイクロカブ セルを製造することができる。 The particle diameter of the microcapsules obtained by the method for producing thermally expandable microcapsules of the present invention is not particularly limited, but is about 5 to 50 / zm in a state before thermal expansion (unfoamed state). Preferably, there is. The amount of the volatile swelling agent included in the microcapsules is not particularly limited, but is preferably about 10 to 20% by weight. According to the method for producing a heat-expandable microcapsule of the present invention, the amount ratio of acrylonitrile, methacrylonitrile, butyl acetate, and a tetrafunctional or higher crosslinking agent constituting the monomer component is controlled within the above-described specific amounts. Various types of microcapsules exhibiting thermal expansion behavior (foaming behavior) according to the intended use can be manufactured by selecting the type of volatile expanding agent.
本発明の熱膨張性マイクロカプセルの製造方法により製造されたマイクロカブ セルは、 アクリロニトリル、 メタタリロニトリル、 酢酸ビニル及び四官能性以上 の架橋剤の各特定量を含有するモノマー成分から得られるポリマーにより壁材が 構成され、 該ポリマーの軟化点以下の温度でガス状になる揮発性膨張剤が内包さ れてなるので、 優れた耐熱性と優れた耐溶剤性とを兼備し、 高温長時間の加熱条 件下でも収縮や破泡が起こり難く、 発泡倍率が低下することがない。 特に、 モノ マー成分中にラジカル反応性の高い酢酸ビニルを 1〜 1 0重量%という少量含有 させることにより、 成長ラジカル反応性が顕著に低いメタクリロ二トリルの反応 を効果的に助長することができる。 その結果、 耐熱性の高いメタタリロニトリル の重合率を上げることが可能となり、 マイクロカプセルは著しく優れた耐熱性や 耐溶剤性を発現するものとなる。 発明を実施するための最良の形態  The microcapsule produced by the method for producing a heat-expandable microcapsule of the present invention is a polymer obtained from a monomer component containing acrylonitrile, methacrylonitrile, vinyl acetate and a specific amount of a tetrafunctional or higher crosslinker. The wall material is composed of a volatile expander which becomes gaseous at a temperature lower than the softening point of the polymer, and has excellent heat resistance and excellent solvent resistance. Shrinkage and foam breakage are unlikely to occur even under heating conditions, and the expansion ratio does not decrease. In particular, by including vinyl acetate having a high radical reactivity in a small amount of 1 to 10% by weight in the monomer component, it is possible to effectively promote the reaction of methacrylonitrile having a remarkably low growth radical reactivity. . As a result, it becomes possible to increase the polymerization rate of metatarilonitrile, which has high heat resistance, and the microcapsules exhibit remarkably excellent heat resistance and solvent resistance. BEST MODE FOR CARRYING OUT THE INVENTION
以下に実施例を掲げて本発明を更に詳しく説明するが、 本発明はこれら実施例 のみに限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to only these Examples.
(実施例 1 ) (Example 1)
アクリロニトリル 2 2 2 0重量部、 メタタリロニトリル 9 9 0重量部、 酢酸ビ ニル 1 0 0重量部、 ジペンタエリスリ トールへキサアタリレート 5重量部、 n— ペンタン 6 4 0重量部及びァゾビスイソプチロニトリル 1 7重量部を均一に攪拌 混合して、 油性混合物を調製した。 また、 脱イオン水 7 3 0 0重量部、 シリカ分 散液 (固形分 2 0重量%) 1 2 6 0重量部、 重クロム酸カリウム (2 . 5重量% 水溶液) 4 5重量部、 ポリビュルピロリ ドン 8重量部、 塩化ナトリウム 2 2 0 0 重量部及び塩酸 8 . 5重量部を均一に攪拌混合して、 水性分散媒体を調製した。 次に、 得られた油性混合物及び水性分散媒体をホモジナイザーで攪拌混合した 後、 窒素置換した加圧重合器 (内容量 2 0リツトル) 内へ仕込み、 圧力値 0 . 2 M P aで窒素加圧して、 6 0 °Cで 1 6時間重合させた。 次いで、 得られた重合生 成物の濾過と水洗を繰り返した後、 乾燥して、 平均粒子径が 2 2 / mのマイクロ カプセルを製造した。 220 parts by weight of acrylonitrile, 990 parts by weight of metathallonitrile, 100 parts by weight of vinyl acetate, 5 parts by weight of dipentaerythritol hexatalylate, 64 parts by weight of n-pentane and azobisisop 17 parts by weight of thyronitrile were uniformly stirred and mixed to prepare an oily mixture. Also, 7300 parts by weight of deionized water, silica dispersion (solid content: 20% by weight), 126 parts by weight, potassium dichromate (2.5% by weight aqueous solution) 45 parts by weight, polybutyl Pyrrolidone 8 parts by weight, sodium chloride 220 Parts by weight and 8.5 parts by weight of hydrochloric acid were uniformly stirred and mixed to prepare an aqueous dispersion medium. Next, the obtained oil-based mixture and aqueous dispersion medium are stirred and mixed with a homogenizer, and then charged into a nitrogen-substituted pressure polymerization reactor (20 liters in internal volume), and pressurized with nitrogen at a pressure value of 0.2 MPa. The polymerization was carried out at 60 ° C. for 16 hours. Next, the obtained polymer product was repeatedly filtered and washed with water, and then dried to produce microcapsules having an average particle size of 22 / m.
(実施例 2、 3 ) 、 (Examples 2 and 3),
油性混合物をそれぞれ表 1に示す配合組成で調製し、 水性分散媒体として実施 例 1で調製した水性分散媒体を用いたこと以外は実施例 1と同様の方法により、 平均粒子径が 2 0 μ πι (実施例 2 ) 及び 2 2 /i m (実施例 3 ) のマイクロカプセ ルを製造した。  The oil-based mixtures were each prepared with the composition shown in Table 1, and the average particle diameter was 20 μππι in the same manner as in Example 1 except that the aqueous dispersion medium prepared in Example 1 was used as the aqueous dispersion medium. (Example 2) and 2 / im (Example 3) microcapsules were produced.
(比較例 1、 2 ) (Comparative Examples 1 and 2)
油性混合物をそれぞれ表 1に示す配合組成で調製し、 水性分散媒体として実施 例 1で調製した水性分散媒体を用いたこと以外は実施例 1と同様の方法により、 平均粒子径が 3 0 /X m (比較例 1 ) 及び 2 5 μ m (比較例 2 ) のマイクロカプセ ルを製造した。  Each of the oily mixtures was prepared with the composition shown in Table 1, and the average particle size was 30 / X by the same method as in Example 1 except that the aqueous dispersion medium prepared in Example 1 was used as the aqueous dispersion medium. m (Comparative Example 1) and 25 μm (Comparative Example 2) microcapsules were produced.
実施例 1〜 3及び比較例 2で得られたマイクロカプセルの発泡倍率を以下の 方法で測定した。 The expansion ratio of the microcapsules obtained in Examples 1 to 3 and Comparative Example 2 was measured by the following method.
結果を表 1に示した。 The results are shown in Table 1.
(発泡倍率の測定方法) (Method of measuring expansion ratio)
マイクロカプセルお 0 gをギア式オーブン中に入れ、 下記加熱条件で加熱し て発泡させた。 次いで、 得られたそれぞれの発泡体をメスシリンダーに入れて、 発泡後の体積を測定し、 未発泡時の体積で除して、 発泡倍率 (倍) を求めた。 加熱温度: 1 4 0 °C、 1 6 0 °C、 1 7 0 °C及び 1 8 0 °C  Microcapsules and 0 g were placed in a gear oven and heated under the following heating conditions to foam. Next, each of the obtained foams was placed in a measuring cylinder, the volume after foaming was measured, and the foamed volume was divided by the volume when not foamed to obtain a foaming ratio (times). Heating temperature: 140 ° C, 160 ° C, 170 ° C and 180 ° C
加熱時間:上記各加熱温度において、 1分、 2分、 3分及び 4分 ^ atrial 由1 frfe Heating time: 1 minute, 2 minutes, 3 minutes and 4 minutes at each of the above heating temperatures ^ atrial from 1 frfe
実施例 1 実 ^l  Example 1 Actual ^ l
JS例 2 実 IE例 3 比 例 1 比較例 2 ァクリロニ :卜' Jル 2220 2220 2270 2220 221 0 油 メタクリロニトリル 9 Q 0 820 g g 0 820 700 性 齚酸ビニル 1 00 1 00 5 O 400 混 メタクリル酸メチル 1 6 5 2 β 5  JS example 2 Actual IE example 3 Comparative example 1 Comparative example 2 Acryloni: ethanol 2220 2220 2270 2220 221 0 Oil methacrylonitrile 9 Q 0 820 gg 0 820 700 Properties Vinyl dioxylate 100 1 00 5 O 400 Blended methacryl Methyl acid 1 6 5 2 β 5
シ *へ 'ンタ ι'膽 -ΛΑキサァクリ ト 5  To *
物 n ペンタン R 4. Π R A Π β n R A H fi Λ Π ァソ'ビスィ ザ α二トリル 1 7 1 7  Object n pentane R 4. Π R A Π β n R A H fi Λ Π azo'bisiza α nitrile 1 7 1 7
加 1 1 π 1 n » *+ . リ 熱  Heat 1 1 π 1 n »* +
時 2 1 O 1 5 ク Λ Q 加熱温度  Hour 2 1 O 15 ク Q heating temperature
140 C 間  140 C
3 1 · R o v ク  3 1Rov
発 分  Departure
4 ク n Q  4 Q n Q
 Bubbles
加 1 2 2 2 5 i o Q 体 熱  Heat 1 2 2 2 5 i o Q Body heat
時 2 25 28 25 25 1 6 加熱温度  Hour 2 25 28 25 25 1 6 Heating temperature
 of
1 60°C 間  1 Between 60 ° C
3 25 28 25 23 1 6 発 分  3 25 28 25 23 1 6 departures
4 25 26 23 22 1 5 泡  4 25 26 23 22 1 5 Foam
加 1 40 4 o 3 o 3 o 18 倍 熱  Heat 1 40 4 o 3 o 3 o 18 times heat
時 2 40 40 30 25 1 5 加熱温度  Hour 2 40 40 30 25 1 5 Heating temperature
率 間  Ratio
170°C  170 ° C
3 38 35 30 1 8 1 2 分  3 38 35 30 1 8 1 2 minutes
4 36 33 30 1 5 10 倍  4 36 33 30 1 5 10 times
加 1 43 35 28 25 1 5 熱  Heat 1 43 35 28 25 1 5 Heat
時 2 4 3 3 3 2 8 2 0 1 3 加熱温度  Hour 2 4 3 3 3 2 8 2 0 1 3 Heating temperature
 while
1 80°C  1 80 ° C
3 40 33 28 1 8 10 分  3 40 33 28 1 8 10 minutes
4 40 30 26 1 6 8 表 1より、 実施例 1 3で作製したのマイクロカプセルは、 いずれも 160°C 以上の加熱温度で順調に発泡し、 しかも 180°Cの加熱温度においても発泡倍率 の低下が殆ど認められず、 優れた耐熱性及び熱膨張安定性 (発泡安定性) を発現 した。 差替 え 用 紙 (規則 26) これに対し、 モノマー成分中に酢酸ビエルを含有させなかった比較例 1のマイ クロカプセルは、 1 7 0 °C以上の加熱温度では発泡倍率の低下が認められ、 耐熱 性及び熱膨張安定性 (発泡安定性) が劣っていた。 また、 モノマー成分中におけ る酢酸ビュルの含有量が 1 0重量%を超えていた比較例 2のマイクロカプセルは、 耐熱性が悪く、 1 4 0 °Cでも熱膨張 (発泡) を開始し、 しかも 1 6 0 °C以上の加 熱温度では収縮や破泡が起こり、 良好な発泡体を得ることができなかった。 4 40 30 26 1 6 8 According to Table 1, all of the microcapsules produced in Example 13 foamed smoothly at a heating temperature of 160 ° C or higher, and even when heated at a heating temperature of 180 ° C, Little decrease was recognized, and excellent heat resistance and thermal expansion stability (foaming stability) were exhibited. Replacement paper (Rule 26) In contrast, in the microcapsules of Comparative Example 1 in which no beer acetate was contained in the monomer component, a decrease in the expansion ratio was observed at a heating temperature of 170 ° C or more, and the heat resistance and thermal expansion stability ( (Foaming stability) was inferior. In addition, the microcapsules of Comparative Example 2 in which the content of the butyl acetate in the monomer component exceeded 10% by weight had poor heat resistance, and started thermal expansion (foaming) even at 140 ° C. Moreover, at a heating temperature of 160 ° C. or more, shrinkage and foam breakage occurred, and a good foam could not be obtained.
産業上の利用可能性 Industrial applicability
本発明によれば、 優れた耐熱性と優れた耐溶剤性とを兼備し、 高温長時間の加 熱条件下でも収縮や破泡が起こり難く、 熱膨張安定性 (発泡安定性) に優れる熱 膨張性マイク口カプセルの効率的かつ簡便な製造方法を提供できる。  ADVANTAGE OF THE INVENTION According to this invention, it has excellent heat resistance and excellent solvent resistance, and it is hard to shrink or break even under high-temperature and long-time heating conditions, and has excellent thermal expansion stability (foaming stability). An efficient and simple method for producing an inflatable microphone-mouth capsule can be provided.

Claims

請求の範囲 The scope of the claims
1. アクリロニトリル 55〜 75重量0 /0、 メタクリロニトリノレ 20〜 40重量%、 酢酸ビュル 1〜 10重量%及び四官能性以上の架橋剤 0. 1〜 1重量%を含有す るモノマー成分と、 該モノマー成分から得られるポリマーの軟化点以下の温度で ガス状になる揮発性膨張剤とを、 窒素加圧下で重合し、 マイクロカプセル化する ことを特徴とする熱膨張性マイクロカプセルの製造方法。 1. acrylonitrile 55-75 wt 0/0, and methacrylonitrile Roni Turin les 20-40 wt%, acetic acid Bulle 1-10 wt% and tetrafunctional or more monomer components you a crosslinking agent from 0.1 to 1 wt% A method for producing heat-expandable microcapsules, comprising polymerizing a volatile expander which becomes gaseous at a temperature equal to or lower than the softening point of a polymer obtained from the monomer component under nitrogen pressure to microencapsulate the polymer. .
PCT/JP2002/006209 2001-06-21 2002-06-21 Process for producing heat-expandable microcapsule WO2003000402A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-188239 2001-06-21
JP2001188239A JP2003001099A (en) 2001-06-21 2001-06-21 Method of manufacturing thermally expandable microcapsule

Publications (1)

Publication Number Publication Date
WO2003000402A1 true WO2003000402A1 (en) 2003-01-03

Family

ID=19027377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006209 WO2003000402A1 (en) 2001-06-21 2002-06-21 Process for producing heat-expandable microcapsule

Country Status (2)

Country Link
JP (1) JP2003001099A (en)
WO (1) WO2003000402A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110058095A (en) 2009-11-25 2011-06-01 제일모직주식회사 Heat-expandable microparticles having good expandability and even particle diameter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615972A (en) * 1967-04-28 1971-10-26 Dow Chemical Co Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same
JPS62286534A (en) * 1986-06-04 1987-12-12 Matsumoto Yushi Seiyaku Kk Manufacture of thermal expansion microcapsule
EP0566367A2 (en) * 1992-04-15 1993-10-20 Matsumoto Yushi-Seiyaku Co., Ltd. Thermoexpandable microcapsules, process for production thereof, and microballoons made therefrom
EP1054034A1 (en) * 1998-01-26 2000-11-22 Kureha Kagaku Kogyo Kabushiki Kaisha Expandable microspheres and process for producing the same
WO2001083636A1 (en) * 2000-04-28 2001-11-08 Kureha Kagaku Kogyo K.K. Heat-expandable macrosphere and process for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3615972A (en) * 1967-04-28 1971-10-26 Dow Chemical Co Expansible thermoplastic polymer particles containing volatile fluid foaming agent and method of foaming the same
JPS62286534A (en) * 1986-06-04 1987-12-12 Matsumoto Yushi Seiyaku Kk Manufacture of thermal expansion microcapsule
EP0566367A2 (en) * 1992-04-15 1993-10-20 Matsumoto Yushi-Seiyaku Co., Ltd. Thermoexpandable microcapsules, process for production thereof, and microballoons made therefrom
EP1054034A1 (en) * 1998-01-26 2000-11-22 Kureha Kagaku Kogyo Kabushiki Kaisha Expandable microspheres and process for producing the same
WO2001083636A1 (en) * 2000-04-28 2001-11-08 Kureha Kagaku Kogyo K.K. Heat-expandable macrosphere and process for producing the same

Also Published As

Publication number Publication date
JP2003001099A (en) 2003-01-07

Similar Documents

Publication Publication Date Title
JPH0515499B2 (en)
KR101819766B1 (en) Thermally expandable microcapsule and process for production of thermally expandable microcapsule
JPH0919635A (en) Thermally expandable microcapsule excellent in heat and solvent resistance
US6617363B2 (en) Method of producing thermally expansive microcapsule
JPH11209504A (en) Production of expandable microsphere
JP2016172820A (en) Production method of expandable microsphere, and expandable microsphere
JP5991851B2 (en) Thermally expandable microcapsules
JP2005232274A (en) Thermally expandable microcapsule of high heat resistance and method for producing the same
JP4189155B2 (en) Method for producing thermally expandable microcapsules
JP4027100B2 (en) Method for producing thermally expandable microcapsules
JP5727184B2 (en) Thermally expandable microcapsule, resin composition and foamed sheet
WO2003000402A1 (en) Process for producing heat-expandable microcapsule
JP2003001098A (en) Method of manufacturing thermally expandable microcapsule
JP2010229341A (en) Thermally expandable microcapsule and method for manufacturing the same
JP2005103469A (en) Method of manufacturing heat-expansible microcapsule
JP2012131867A (en) Thermally expandable microcapsule, resin composition and foamed sheet
JP4575023B2 (en) Thermally expandable microcapsule and method for producing the same
JP2011074282A (en) Thermally expandable microcapsule
JP2005162996A (en) Thermally expandable microcapsule
JP2004155999A (en) Thermally expandable microcapsule
JP2004105858A (en) Thermally expandable microcapsule
JP2011168749A (en) Method of manufacturing thermally expansible microcapsule
JP2004168790A (en) Thermally expandable microcapsule
JP5839789B2 (en) Method for producing thermally expandable microcapsules
JP6225227B2 (en) Thermally expandable microcapsules

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2004102693

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2004103475

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase