WO2002103937A1 - Optical communication system and optical communication apparatus - Google Patents

Optical communication system and optical communication apparatus Download PDF

Info

Publication number
WO2002103937A1
WO2002103937A1 PCT/JP2001/005190 JP0105190W WO02103937A1 WO 2002103937 A1 WO2002103937 A1 WO 2002103937A1 JP 0105190 W JP0105190 W JP 0105190W WO 02103937 A1 WO02103937 A1 WO 02103937A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
main signal
wavelength
state
Prior art date
Application number
PCT/JP2001/005190
Other languages
French (fr)
Japanese (ja)
Inventor
Eisaku Touma
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2001/005190 priority Critical patent/WO2002103937A1/en
Publication of WO2002103937A1 publication Critical patent/WO2002103937A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters

Definitions

  • the present invention relates to an optical communication system and an optical communication device, and more particularly, to an optical communication system and an optical communication device that perform optical communication control such as WDM (Wavelength Division Multiplex).
  • WDM Widelength Division Multiplex
  • Optical communication network technology is the core of the foundation of the information communication network, and further enhancement of services and wide area are desired, and its development is progressing rapidly toward the information society.
  • WDM technology is widely used in recent optical communications. WDM is a system that multiplexes light of different wavelengths and simultaneously transmits multiple signals over a single optical fiber.
  • FIG. 10 is a diagram showing a schematic configuration of a conventional WDM transmitting apparatus.
  • WDM transmitting apparatus 500 includes transbonders 501-1 to 501_n and transmitting section 510, and transmitting section 510 includes a wavelength multiplexing section 511 and an amplifying section 512.
  • optical fiber cables C1 to Cn through which the optical signals output from the transbonders 501-1 to 501-n pass are connected to the input ports P1 to Pn of the transmission unit 510, respectively. —:! Connect the transmission section 510 to the transmission section 510.
  • the transbonders 501-1-1 to 501_n receive optical signals of different wavelengths ⁇ 1 to ⁇ n, respectively, transmitted from a TDM device (time division device) and the like, and transmit each optical signal for WDM transmission.
  • the signal is converted into a narrow band optical signal and output.
  • the wavelength multiplexing unit 511 performs wavelength multiplexing of a plurality of optical signals input from the input ports P1 to Pn to generate one WDM signal.
  • Amplifying section 512 amplifies and outputs the WDM signal.
  • the channel terminals CH1 to CHn of the wavelength multiplexing unit 511 are input terminals dedicated to each wavelength.
  • the input ports Pl to Pn The input ports Pl to Pn are specified as dedicated ports for wavelengths ⁇ 1 to ⁇ , respectively, because they are grouped with the channel terminals.
  • the optical fiber cable C1 for outputting the optical signal of the wavelength ⁇ 1 must be connected to the input port ⁇ 1.
  • interference or the like occurs between channels inside the wavelength multiplexing unit 511 and normal operation is not performed.
  • the number of wavelengths to be multiplexed has increased to more than 100 wavelengths, and the number of optical fiber cables connected to the system has increased accordingly.
  • the present invention has been made in view of such a point, and an optical communication system that improves the reliability and quality by quickly performing a process corresponding to the occurrence of a failure related to an incorrect connection of an optical fiber cable or the like.
  • the purpose is to provide a system.
  • another object of the present invention is to provide an optical communication device which improves the reliability and quality by quickly performing a process corresponding to the occurrence of a failure related to an erroneous connection of an optical fiber cable or the like. is there.
  • an optical sub signal generation for generating an optical sub signal including state information of an optical main signal is performed.
  • Optical multiplexed signal control means 10a_l comprising means 11 and multiplex transmission means 12 for generating and transmitting an optical multiplexed signal obtained by multiplexing an optical main signal and an optical sub-signal.
  • Optical multiplexing apparatus having optical transmission apparatus 10 having ⁇ 10 a ⁇ n and ports P 1 PP n in which optical multiplex signals to be inputted are set corresponding to each wavelength of the optical main signal Signal receiving means 21, separating means 22-1 to 22 -n for separating an optical main signal and an optical sub-signal from an optical multiplexed signal, and state information indicated by the separated optical sub-signal, Control of whether the operation status of the optical main signal received via ports Pl to Pn is normal, If an error is detected, the operation state determination means 23 that outputs an abnormality detection signal and the optical level adjustment control of the optical main signal are performed. If an abnormality detection signal is received, the light of the corresponding optical main signal is output.
  • Optical level control means 24 for performing level attenuation control, and the wavelength of the optical main signal to be input is set for each channel, and the optical main signal input through ports P1 to Pn corresponding to the channel
  • an optical communication system 1 comprising: a wavelength multiplexing unit 25 configured to perform wavelength multiplexing of the WDM; and an optical wavelength multiplexing device 20 configured by:
  • the optical sub-signal generating means 11 generates an optical sub-signal including state information of the optical main signal.
  • the multiplexing transmission means 12 generates and transmits an optical multiplexed signal obtained by multiplexing the optical main signal and the optical sub-signal.
  • the optical multiplexed signal receiving means 21 has ports P1 to Pn in which an optical multiplexed signal to be inputted is set corresponding to each wavelength of the optical main signal.
  • the demultiplexing units 22_1 to 22-n separate the optical main signal and the optical sub-signal from the optical multiplexed signal.
  • Judgment control is performed to determine whether the operation state of the optical main signal received through Pn is normal, and when an abnormal state of the operation state is detected, an abnormality detection signal is output.
  • the light level control means 24 performs light level adjustment control of the light main signal, and when receiving the abnormality detection signal, performs attenuation control of the light level of the corresponding light main signal.
  • the wavelength multiplexing means 25 sets the wavelength of the optical main signal to be input for each channel, and performs WDM wavelength multiplexing of the optical main signal input through the ports P1 to Pn corresponding to the channel. . Further, as shown in FIG.
  • the ports Pl to in which the optical main signal to be input is set corresponding to each wavelength of the optical main signal.
  • Second optical Z-electrical converting means 42 for converting the optical level of the optical main signal into a second voltage which is a voltage protruding only with respect to the wavelength of the optical main signal
  • a differential voltage calculating means 43 for calculating a differential voltage between the voltage and the second voltage; and, based on the first voltage and the differential voltage, as an operation state of the received optical main signal, an optical input state and a wavelength shift state.
  • Operating state detecting means 4 for detecting the photoelectric conversion Switching controller 4 0 —:! ⁇ 40-n
  • optical level control means 34 which performs optical level adjustment control of the optical main signal, and performs optical level attenuation control for the optical main signal whose operation state is abnormal.
  • the optical main signal monitoring means 33 which recognizes the operation state of the optical main signal and externally notifies the operation of the optical level control means 34 and the operation state, and the wavelength of the optical main signal to be inputted for each channel.
  • the optical main signal receiving means 31 has ports Pl to Pn in which the optical main signal to be input is set, corresponding to each wavelength of the optical main signal.
  • the first photoelectric conversion means 41 converts the optical level of the optical main signal into a first voltage which is a uniform voltage in a wavelength band used for WDM wavelength multiplexing.
  • the second optical-Z electrical conversion means 42 converts the optical level of the optical main signal into a second voltage which is a voltage protruding only with respect to the wavelength of the optical main signal.
  • the difference voltage calculation means 43 calculates a difference voltage between the first voltage and the second voltage.
  • the operating state detecting means 44 detects an optical input state and a wavelength shift state as an operating state of the received optical main signal based on the first voltage and the differential voltage.
  • the light level control means 34 performs light level adjustment control of the light main signal, and performs light level attenuation control for the light main signal whose operation state is abnormal.
  • the optical main signal monitoring means 33 recognizes the operation state of the optical main signal based on the detection result, and performs operation control of the optical level control means 34 and external notification of the operation state.
  • Wavelength multiplexing means 3 5 The wavelength of the optical main signal to be set is set for each channel, and WDM wavelength multiplexing of the optical main signal input through the ports P1 to Pn corresponding to the channel is performed.
  • FIG. 1 is a principle diagram of the optical communication system of the present invention.
  • FIG. 2 is a flowchart showing the operation of the optical communication system of the present invention.
  • FIG. 3 is a principle diagram of the optical communication device of the present invention.
  • FIG. 4 is a diagram showing a configuration of the optical / electrical conversion control unit.
  • FIG. 5 is a diagram showing a schematic image of the optical-Z electrical conversion of OZE.
  • FIG. 6 is a diagram illustrating the operation of the differential voltage detector.
  • FIG. 7 is a diagram for explaining the detection control of the out-of-wavelength state of the comparator.
  • FIG. 8 is a diagram for explaining detection control of the out-of-wavelength state of the comparator.
  • FIG. 9 is a diagram showing a logical table of detection results by the operation state detection means.
  • FIG. 10 is a diagram showing a schematic configuration of a conventional WDM transmitting apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram illustrating the principle of the optical communication system according to the present invention.
  • the optical communication system 1 includes an optical transmission device 10 and an optical wavelength multiplexing device 20 and performs WDM optical communication control.
  • the optical transmission device 10 has a plurality of optical multiplexed signal control means 10a- :! to 10a- ⁇ corresponding to the wavelengths ⁇ 1 to ⁇ of the optical main signal.
  • the optical sub-signal generating means 11 generates an optical sub-signal including the status information of the optical main signal.
  • the state information of the optical main signal included in the optical sub-signal includes the wavelength of the optical main signal, the current optical level (light intensity) state, and the wavelength stable state.
  • the wavelength stable state is 1-bit information indicating the light emission state when the light emitting section (not shown) of the optical main signal performs light emission control.
  • the wavelength during the pull-in control from the start of light emission of the optical main signal fluctuates. Unstable state, or there is no wavelength fluctuation after the pull-in control ends. Indicates one of the steady state.
  • the multiplexing transmission means 12 multiplexes the optical main signal and the optical sub-signal including the status information of the optical main signal to generate an optical multiplexed signal, and transmits the multiplexed signal to the optical wavelength multiplexing apparatus 20.
  • the multiplexing transmission means 12 of the optical multiplexing signal control means 10a-1 controls the optical main signal m having a wavelength ⁇ ⁇ in normal operation and an optical level defined as Pwl.
  • a wavelength ⁇ 1, an optical level P wl, and an optical sub-signal s having state information of a current wavelength stable state (unstable and stable) are multiplexed with this optical main signal m to generate an optical multiplexed signal M.
  • Send
  • the optical multiplexed signal receiving means 21 is provided for the ports P 1 to P 1 to which the optical multiplexed signal to be inputted is set corresponding to each wavelength of the optical main signal.
  • n ports P 1 to P n correspond to wavelengths ⁇ 1 to ⁇ n, respectively. Therefore, for example, the port P1 is a dedicated port to which the optical multiplexed signal M in which the optical main signal m of the wavelength ⁇ 1 is multiplexed is input.
  • Other ports are also dedicated connection ports for each wavelength.
  • the optical multiplexing signal control means 10 a— :! .About.10a-n and ports P1-Pn of the optical multiplexed signal receiving means 21 are connected through optical fiber cables C1-Cn.
  • the optical multiplexed signals transmitted from the optical multiplexed signal control means 10a_1 to 10a-n are input to the ports Pl to Pn, respectively.
  • the separating means 22-1 to 22_n separate the optical main signal and the optical sub-signal from the optical multiplexed signal.
  • the separated optical main signal is transmitted to the optical level control means 24, and the optical sub signal is transmitted to the operation state determination means 23.
  • the operating state determining means 23 controls the determining whether the operating state of the optical main signal received via the ports P1 to Pn is normal based on the state information indicated by the separated optical sub-signal. Do. Then, when an abnormal state of the operation state is detected, an abnormal state detection signal for the corresponding optical main signal is output. In the operation state determining means 23, information on the normal operation state of each of the optical main signals received via the ports P1 to Pn is set in advance.
  • the operation state determination means 23 performs at least one determination control for the optical main signal, such as a wavelength shift state, an optical level state, and a wavelength stable state related to port matching.
  • a determination control of out-of-wavelength state related to port matching corresponds to detection control of misconnection of optical fiber cable, and judgment control of optical level state is control of detection of improper fitting of optical fiber cable, etc.
  • the determination control of the wavelength stable state corresponds to the detection control of whether or not the light emitting operation of the optical main signal is in the warm-up state.
  • the external notification means 26 notifies the operation state of each optical main signal recognized by the operation state determination means 23 to the outside through a maintenance terminal or the like (performs display control on the maintenance terminal).
  • the light level control means 24 performs light level adjustment control of the light main signal. When an abnormality detection signal is received, attenuation control of the optical level of the optical main signal determined to be abnormal is performed.
  • the light level control means 24 is composed of, for example, a variable attenuator (VAT) using the magneto-optical effect.
  • VAT variable attenuator
  • the wavelength multiplexing means 25 sets the wavelength of the optical main signal to be input for each of the channels CH1 to CHn, and outputs the optical signals input through the ports P1 to Pn corresponding to the channels CH1 to CHn. Performs WDM wavelength multiplexing of the main signal.
  • the terminals of the channels C H1 to C Hn of the wavelength multiplexing means 25 are input terminals dedicated to each wavelength corresponding to the wavelengths ⁇ 1 to ⁇ ⁇ . Then, the optical main signals input through the ports ⁇ 1 to ⁇ ⁇ are respectively input through the corresponding channel terminals C ⁇ 1 to C ⁇ ⁇ , and the wavelength multiplexing means 25 performs WDM wavelength multiplexing control. It is.
  • an optical main signal having the same wavelength as the wavelength allocated to the channels CH1 to CHn must be input.
  • an optical multiplexed signal having an optical main signal of wavelength ⁇ 1 is transmitted from the optical transmitter 10 through the optical fiber cable C1, and an optical multiplexed signal having an optical main signal of wavelength ⁇ 2 is transmitted through the optical fiber cable C2. It is also assumed that a multiplex signal is transmitted. It is also assumed that ports # 1 to # 3 of the optical wavelength multiplexing apparatus 20 are input ports corresponding to wavelengths ⁇ 1 to ⁇ 3, respectively. Then, as a normal cable connection state, the optical fiber cable C1 must be connected to the port # 1, and the optical fiber cable C2 must be connected to the port # 2.
  • the optical fiber cable C 2 has a wavelength ⁇ 3 Assume that it is connected to the corresponding port P3. Then, a transmission error occurs in the wavelength multiplexing control.However, in the past, since there was no function to detect such a wavelength shift state related to port consistency, the system was not affected by the transmission error. Was operating.
  • FIG. 2 is a flowchart showing the operation of the optical communication system 1 of the present invention. An example will be described in which the cable is connected incorrectly as described above.
  • the optical multiplexing signal control means 10a-1 of the optical transmitting apparatus 10 multiplexes the optical sub-signal indicating that the wavelength of the optical main signal is ⁇ 1 into the optical main signal to perform optical multiplexing. It generates a coded signal and outputs it through the optical fiber cable C1.
  • the optical multiplexed signal control means 10a-2 multiplexes the optical sub-signal indicating that the wavelength of the optical main signal is ⁇ 2 into the optical main signal to generate an optical multiplexed signal, Output through optical fiber cable C2.
  • the demultiplexing means 22-1 demultiplexes the optical main signal and the optical sub-signal from the optical multiplexed signal from the port P 1.
  • the separating means 22-3 separates the optical main signal and the optical sub-signal from the optical multiplexed signal from the port P3.
  • the operation state determination means 23 is received via the ports P 1 and P 3 based on the state information indicated by the optical sub-signal transmitted from the demultiplexing means 22-1 and 22-3. Judgment control is performed to determine whether the operation state of the optical main signal is normal.
  • the optical main signal of wavelength ⁇ 3 must be originally input from port P 3, but the operation state determining means 23 recognizes that the optical main signal of wavelength 2 is input, and ⁇ Outputs an abnormality detection signal assuming that the optical main signal input through 3 is in an abnormal state.
  • the optical level control means 24 receives the abnormality detection signal and controls the attenuation of the optical main signal transmitted from the separation means 22-3 corresponding to the port P3. That is, the optical main signal output to the channel CH 3 of the wavelength multiplexing means 25 is subjected to maximum attenuation control, and the input to the wavelength multiplexing means 25 is shut down. As a result, it is possible to suppress the adverse effect of the wavelength multiplexing means 25 on other channels.
  • optical main signal transmitted from the separation means 22-1 corresponding to port P1 is On the other hand, normal light level control is performed.
  • the external notification means 26 acquires the operation state of the optical main signal from the operation state determination means 23, and that the optical main signal of the wavelength ⁇ 2 is input from the port P3 (optical fiber To the outside.
  • the optical sub-signal multiplexed on the optical main signal is used to determine whether or not the operation state of the optical main signal is normal.
  • the optical level of the corresponding optical main signal is controlled to be attenuated, and an external failure is notified.
  • the operation state determining means 23 determines whether the optical level of the optical main signal input through the ports ⁇ 1 to ⁇ is normal, and if there is an optical main signal with an abnormal optical level, The optical level control means 24 performs attenuation control and shuts down the input of the corresponding optical main signal to the wavelength multiplexing means 25. Alternatively, the operation state determination means 23 determines whether or not the wavelength stable state of the optical main signal input through ports ⁇ 1 to ⁇ ⁇ is normal. If the wavelength stable state is unstable, the optical level Attenuation control is performed by the control means 24, and the input of the corresponding optical main signal to the wavelength multiplexing means 25 is reduced.
  • the optical multiplexed signal control means 10a- :! to 10a-n can be installed inside the above-described transbonder or TDM device, for example. it can.
  • the optical wavelength band of the optical main signal usually has a wavelength around 1550 nm. For this reason, an optical wavelength band of about 130 nm is selected for the optical sub-signal as a wavelength that can be easily separated from the optical main signal.
  • FIG. 3 is a diagram illustrating the principle of the optical communication device according to the present invention.
  • the optical communication device 3 performs optical communication control of WDM.
  • the optical main signal receiving means 31 is an optical main signal to be inputted corresponding to each wavelength of the optical main signal. It has ports Pl to Pn to which signals are set. Optical fiber cables C1 to Cn are connected to the ports P1 to Pn, and optical main signals of wavelengths ⁇ :! to ⁇ are input.
  • the optical main signal input through the ports ⁇ 1 to ⁇ ⁇ is transmitted to the optical level control means 34 and the optical / electrical conversion control units 40 -1 to 40 _ installed in the ports ⁇ 1 to ⁇ ⁇ . to ⁇ , branched by force bra.
  • the first opto-electrical conversion means 41 converts the optical level of the optical main signal into a uniform voltage (flat voltage) in the wavelength band used for WDM wavelength multiplexing. Convert to 1 voltage.
  • the second photoelectric converter 42 converts the optical level of the optical main signal into a second voltage that is a voltage protruding only with respect to the wavelength of the optical main signal.
  • the difference voltage calculation means 43 calculates a difference voltage between the first voltage and the second voltage.
  • the operating state detecting means 44 detects an optical input state and a wavelength shift state as an operating state of the received optical main signal based on the first voltage and the differential voltage.
  • the details of the photoelectric conversion control unit 40— :! to 40— ⁇ (collectively referred to as photoelectric conversion control unit 40) will be described later in detail.
  • the light level control means 34 performs light level adjustment control of the light main signal, and performs light level attenuation control on the light main signal whose operation state is abnormal.
  • the optical main signal monitoring means 33 recognizes the operation state of the optical main signal based on the detection result of the operation state detection means 44 and performs operation control of the light level control means 34 and external notification of the operation state.
  • the wavelength multiplexing means 35 sets the wavelength of the optical main signal to be input for each channel, and performs WDM wavelength multiplexing of the optical main signal input through the ports ⁇ 1 to ⁇ corresponding to the channel. .
  • FIG. 4 is a diagram showing a configuration of the photoelectric conversion control unit 40.
  • ⁇ 4 1a is the first light-to-electricity conversion means 41
  • band-pass filter 4 2b and OZE 42 2a is the second light-to-electricity conversion means 42
  • differential voltage detector 43a is the differential voltage
  • the calculating means 43, the comparators 44a and 44b, and the AND element 44c correspond to the operation state detecting means 44.
  • the optical main signal sent from the port P of the optical main signal receiving means 31 is split into two by the power controller CP 1 and sent to the optical level control means 34 and the photoelectric conversion control section 40. Sent.
  • the optical main signal is split into two by the power bra CP 2 and OZE 4 1 The signal is sent to the a side and the band pass filter 4 2 b side.
  • One optical main signal split by the power coupler CP 2 is subjected to optical Z-electric conversion at the received optical level versus output voltage by the OZE 41 a, which is uniform in the wavelength band used for WDM wavelength multiplexing. Is done.
  • the wavelength of the other optical main signal is selected by a bandpass filter 42b composed of a dielectric film or the like, and then the photoelectric conversion is performed by OZE 42a. Therefore, photoelectric conversion with high conversion efficiency is performed only for the selected wavelength.
  • the bandpass filter 42b performs filtering corresponding to the wavelength of the optical main signal of each port.
  • the band-pass filter 42b in the optical-electrical conversion control unit 40-1 which is installed at the port P1 that receives the optical main signal of the wavelength ⁇ 1, performs the filtering of the wavelength ⁇ 1.
  • FIG. 5 is a diagram showing a schematic image obtained by photoelectric conversion of ⁇ 41a and 242b.
  • the vertical axis is voltage, and the horizontal axis is wavelength.
  • the optical main signal converted by the OZE 41a has flat voltage characteristics.
  • the optical main signal converted by the OZE 42a has a prominent voltage characteristic only for the selected wavelength ⁇ 0.
  • FIG. 6 is a diagram showing the operation of the differential voltage detector 43a.
  • the difference voltage detector 43a obtains a difference between the output voltage Va from the OZE 41a and the output voltage Vb from the OZE 42a, and outputs a difference voltage Vc.
  • the differential voltage Vc has a waveform as shown in the figure.
  • the comparator 44a compares the output voltage Va from the OZE 41a with the reference voltage V1.
  • the comparator 44a detects a light input state. If the reference voltage V 1 ⁇ the output voltage V a, it means that the optical main signal is being input from the corresponding port, and the output of the comparator 44 a outputs “H”. If the reference voltage VI> the output voltage Va, the optical main signal is not input from the corresponding port, and the output of the comparator 44a outputs "L”.
  • the comparator 44b compares the difference voltage Vc for each wavelength with the reference voltage V2 to detect a wavelength shift state.
  • FIGS. 7 and 8 are diagrams for explaining detection control of the comparator 44b in the out-of-wavelength state.
  • the differential voltages Vcl to Vcn of the optical main signals of wavelengths ⁇ 1 to ⁇ n are as shown in FIG. It takes shape. Then, each of the comparators 44 b in the photoelectric conversion control section 40-1 to 40-n has the position of the wavelength to be detected by itself for the waveform of the differential voltage Vc. Then, the wavelength deviation is detected based on whether or not the difference voltage Vc is lower than the reference voltage V2.
  • the comparator 44b determines whether the difference voltage Vc1 is lower than the reference voltage V2 at the position of the wavelength ⁇ 1. If the difference voltage Vc1 at the position of the wavelength ⁇ 1 is lower than the reference voltage V2 (reference voltage V2> difference voltage Vc1), the optical main signal of the wavelength ⁇ 1 is correctly input from the corresponding port. You can recognize that you are being empowered.
  • the comparator 44b outputs "H” when the wavelengths match, and outputs "L” when the wavelengths are off.
  • each of the comparators 44 b inside the photoelectric conversion control units 40 — 1 to 40 — n installed for each port uses the differential voltage V c and the reference voltage V c at each wavelength position. Compare with 2 to detect the wavelength shift state.
  • FIG. 9 is a diagram showing a logical table of the detection results of the operation state detection means 44. The logic of the operating state (optical input state, wavelength shift state) of the optical main signal for points A, B, and C shown in Fig. 4 is shown.
  • optical level control means 34 is controlled so as to shut down, and an external notification is performed.
  • the optical communication system 1 and the optical communication device 3 of the present invention can quickly detect a failure caused by an erroneous connection of an optical fiber cable or the like due to an increase in the number of wavelength multiplexing. Becomes possible.
  • the optical level of the erroneously input optical main signal is attenuated, and the input to the wavelength multiplexing means is reduced. Therefore, it is possible to reduce the adverse effects on the channels of other wavelengths.
  • the optical communication control of the WDM has been described.
  • the present invention can be applied to other optical communication control systems other than the WDM.
  • the optical communication system of the present invention performs control to determine whether or not the operation state of the optical main signal is normal based on the optical sub-signal including the state information of the optical main signal.
  • the optical level of the corresponding optical main signal is controlled to be attenuated.
  • the optical communication device of the present invention makes the optical level of the optical main signal protrude only with respect to the first voltage which is uniform in the wavelength band used for WDM wavelength multiplexing and the wavelength of the optical main signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

Reliability and quality are improved by swiftly performing a process dealing with an occurrence of fault. Each optical secondary signal generating means (11) generates an optical secondary signal including the information of the condition of an optical main signal. Each multiplex transmitting means (12) transmits an optical multiplex signal obtained by multiplexing the optical main and secondary signals. Each separating means (22-1 to 22-n) separates the respective optical multiplex signal into the optical main and secondary signals. Operational condition determining means (23) determines, based on the condition information, whether the operational condition of the optical main signal received via a respective port (p1 to pn) is normal or not, and outputs an abnormality detection signal when an abnormality is detected in that operational condition. Optical level control means (24), when receiving the abnormality detection signal, reduces the optical level of the corresponding optical main signal. Wavelength multiplexing means (25), having channels to which the wavelengths of the respective input optical main signals have been assigned, performs a WDM wavelength multiplexing of the optical main signals inputted via the ports (P1 to Pn) associated with those channels.

Description

明 細 書 光通信システム及び光通信装置 技術分野  Description Optical communication system and optical communication device
本発明は光通信システム及び光通信装置に関し、 特に WDM (Wavelength Division Multiplex) 等の光通信制御を行う光通信システム及び光通信装置に関 する。 背景技術  The present invention relates to an optical communication system and an optical communication device, and more particularly, to an optical communication system and an optical communication device that perform optical communication control such as WDM (Wavelength Division Multiplex). Background art
光通信ネットワーク技術は、 情報通信ネットワークの基盤形成の核となるもの で、 一層のサービスの高度化、 広域化が望まれており、 情報化社会に向けて急速 に開発が進んでいる。 一方、 近年の光通信では、 WDM技術が広く用いられてい る。 WDMは、 波長の異なる光を多重して、 1本の光ファイバで複数の信号を同 時に伝送する方式である。  Optical communication network technology is the core of the foundation of the information communication network, and further enhancement of services and wide area are desired, and its development is progressing rapidly toward the information society. On the other hand, WDM technology is widely used in recent optical communications. WDM is a system that multiplexes light of different wavelengths and simultaneously transmits multiple signals over a single optical fiber.
図 1 0は従来の WDM送信装置の概略構成を示す図である。 WDM送信装置 5 00は、 トランスボンダ 50 1— 1〜501 _n、 送信部 51 0から構成され、 送信部 5 10は、 波長多重化部 51 1、 増幅部 512から構成される。  FIG. 10 is a diagram showing a schematic configuration of a conventional WDM transmitting apparatus. WDM transmitting apparatus 500 includes transbonders 501-1 to 501_n and transmitting section 510, and transmitting section 510 includes a wavelength multiplexing section 511 and an amplifying section 512.
また、 トランスボンダ 50 1— 1〜501—nから出力される光信号を通す光 ファイバケーブル C l〜Cnは、 送信部 510の入力ポート P l〜Pnとそれぞ れ接続して、 トランスボンダ 501— :!〜 50 1—nと送信部 510とを接続す る。  The optical fiber cables C1 to Cn through which the optical signals output from the transbonders 501-1 to 501-n pass are connected to the input ports P1 to Pn of the transmission unit 510, respectively. —:! Connect the transmission section 510 to the transmission section 510.
トランスボンダ 50 1— 1〜50 1 _nは、 TDM装置 (時分割装置) 等から 送信された、 異なる波長 λ 1〜λ nの光信号をそれぞれ受信し、 WDM伝送のた めに各光信号を狭帯域の光信号に変換して出力する。 波長多重化部 5 1 1は、 入 力ポート P l〜Pnから入力された複数の光信号の波長多重化を行って、 1つの WDM信号を生成する。 増幅部 512は、 WDM信号を増幅して出力する。 ここで、 一般には、 波長多重化部 5 1 1のチャネル端子 CH l〜CHnは、 各 波長専用の入力端子になっている。 そして、 入力ポート P l〜Pnは、 これらチ ャネル端子と括り付けになっているために、 入力ポート P l ~ P nはそれぞれ、 波長 λ 1〜λ ηの専用ポートというように特定されることになる。 The transbonders 501-1-1 to 501_n receive optical signals of different wavelengths λ1 to λn, respectively, transmitted from a TDM device (time division device) and the like, and transmit each optical signal for WDM transmission. The signal is converted into a narrow band optical signal and output. The wavelength multiplexing unit 511 performs wavelength multiplexing of a plurality of optical signals input from the input ports P1 to Pn to generate one WDM signal. Amplifying section 512 amplifies and outputs the WDM signal. Here, generally, the channel terminals CH1 to CHn of the wavelength multiplexing unit 511 are input terminals dedicated to each wavelength. The input ports Pl to Pn The input ports Pl to Pn are specified as dedicated ports for wavelengths λ1 to λη, respectively, because they are grouped with the channel terminals.
したがって、 例えば、 入力ポート Ρ 1が波長 λ 1の専用ポートである場合には、 波長 λ 1の光信号を出力する光ファイバケーブル C 1を、 入力ポート Ρ 1に接続 しなければならず、 その他の波長の光信号を通す光ファイバケーブルを接続した 場合には、 波長多重化部 5 1 1の内部でチャネル間による干渉等が生じて、 正常 動作が行われないことになる。  Therefore, for example, when the input port Ρ1 is a dedicated port of the wavelength λ1, the optical fiber cable C1 for outputting the optical signal of the wavelength λ1 must be connected to the input port Ρ1. When an optical fiber cable that transmits an optical signal having a wavelength of is connected, interference or the like occurs between channels inside the wavelength multiplexing unit 511 and normal operation is not performed.
一方、 近年の WDMのシステムでは、 波長多重される波長数が 1 0 0波以上と 大容量化しており、 システムに接続される光ファイバケーブルの数量もそれに伴 つて増大している。  On the other hand, in recent WDM systems, the number of wavelengths to be multiplexed has increased to more than 100 wavelengths, and the number of optical fiber cables connected to the system has increased accordingly.
したがって、 このような状況では、 光ファイバケーブルを誤接続する可能性が 高くなり、 動作不良を起こす回数も多くなるが、 上記のような従来技術では、 光 ファイバケーブルが誤接続された場合の、 効率のよい対策が何ら施されておらず、 信頼性及び品質を低下させてしまうといった問題があった。  Therefore, in such a situation, the possibility of misconnection of the optical fiber cable increases, and the number of times of malfunctions increases. However, in the above-described conventional technology, when the optical fiber cable is misconnected, There was a problem that no efficient measures were taken and the reliability and quality deteriorated.
また、 光ファイバケーブルの誤接続だけでなく、 光ファイバケーブルの嵌合不 良やケーブル自体の劣化、 またはトランスボンダ 5 0 1—:!〜 5 0 1 _ ηの出力 低下などがあった場合には、 対応する波長の光信号のレベルが、 多重すべき他の 光信号のレベルに比べて低下することになる。  In addition to incorrect connection of the optical fiber cable, poor connection of the optical fiber cable, deterioration of the cable itself, or transbonder 501- :! If there is a decrease in the output of 5 501 — η, the level of the optical signal of the corresponding wavelength will be lower than the levels of other optical signals to be multiplexed.
このために、 WDMの多重化信号の O S N R (光 S ZN) が低下してしまい、 品質が悪化することになるが、 誤接続の場合と同様に、 このような場合に対して も、 従来技術では効率のよい対策が施されていなかった。 発明の開示  As a result, the OSNR (optical SZN) of the multiplexed signal of the WDM is reduced, and the quality is degraded. Did not take effective measures. Disclosure of the invention
本発明はこのような点に鑑みてなされたものであり、 光ファイバケーブルの誤 接続等に関連した障害発生に対応する処理を迅速に行って、 信頼性及び品質の向 上を図った光通信システムを提供することを目的とする。  SUMMARY OF THE INVENTION The present invention has been made in view of such a point, and an optical communication system that improves the reliability and quality by quickly performing a process corresponding to the occurrence of a failure related to an incorrect connection of an optical fiber cable or the like. The purpose is to provide a system.
また、 本発明の他の目的は、 光ファイバケーブルの誤接続等に関連した障害発 生に対応する処理を迅速に行って、 信頼性及び品質の向上を図った光通信装置を 提供することである。 本発明では上記課題を解決するために、 図 1に示すような、 WDMの光通信制 御を行う光通信システム 1において、 光主信号の状態情報を含む光副信号を生成 する光副信号生成手段 1 1と、 光主信号及び光副信号を多重化した光多重化信号 を生成して送信する多重化送信手段 1 2と、 から構成される光多重化信号制御手 段 1 0 a _ l〜1 0 a— nを有する光送信装置 1 0と、 光主信号の各波長に対応 して、 入力されるべき光多重化信号が設定されているポート P l〜P nを有する 光多重化信号受信手段 2 1と、 光多重化信号から、 光主信号と光副信号とを分離 する分離手段 2 2 — 1〜2 2— nと、 分離された光副信号が示す状態情報にもと づいて、 ポート P l〜P nを介して受信された光主信号の運用状態が正常か否か の判定制御を行い、 運用状態の異常状態を検出した場合には、 異常検出信号を出 力する運用状態判定手段 2 3と、 光主信号の光レベル調整制御を行い、 異常検出 信号を受信した場合には、 対応する光主信号の光レベルの減衰制御を行う光レべ ル制御手段 2 4と、 入力されるべき光主信号の波長がチャネル毎に設定され、 チ ャネルに対応したポート P 1〜P nを通じて入力された光主信号の WD Mの波長 多重化を行う波長多重化手段 2 5と、 から構成される光波長多重化装置 2 0と、 を有することを特徴とする光通信システム 1が提供される。 Further, another object of the present invention is to provide an optical communication device which improves the reliability and quality by quickly performing a process corresponding to the occurrence of a failure related to an erroneous connection of an optical fiber cable or the like. is there. In the present invention, in order to solve the above problem, in an optical communication system 1 for performing WDM optical communication control as shown in FIG. 1, an optical sub signal generation for generating an optical sub signal including state information of an optical main signal is performed. Optical multiplexed signal control means 10a_l comprising means 11 and multiplex transmission means 12 for generating and transmitting an optical multiplexed signal obtained by multiplexing an optical main signal and an optical sub-signal. Optical multiplexing apparatus having optical transmission apparatus 10 having 〜10 a−n and ports P 1 PP n in which optical multiplex signals to be inputted are set corresponding to each wavelength of the optical main signal Signal receiving means 21, separating means 22-1 to 22 -n for separating an optical main signal and an optical sub-signal from an optical multiplexed signal, and state information indicated by the separated optical sub-signal, Control of whether the operation status of the optical main signal received via ports Pl to Pn is normal, If an error is detected, the operation state determination means 23 that outputs an abnormality detection signal and the optical level adjustment control of the optical main signal are performed. If an abnormality detection signal is received, the light of the corresponding optical main signal is output. Optical level control means 24 for performing level attenuation control, and the wavelength of the optical main signal to be input is set for each channel, and the optical main signal input through ports P1 to Pn corresponding to the channel There is provided an optical communication system 1 comprising: a wavelength multiplexing unit 25 configured to perform wavelength multiplexing of the WDM; and an optical wavelength multiplexing device 20 configured by:
ここで、 光副信号生成手段 1 1は、 光主信号の状態情報を含む光副信号を生成 する。 多重化送信手段 1 2は、 光主信号及び光副信号を多重化した光多重化信号 を生成して送信する。 光多重化信号受信手段 2 1は、 光主信号の各波長に対応し て、 入力されるべき光多重化信号が設定されているポート P 1〜P nを有する。 分離手段 2 2 _ 1〜2 2— nは、 光多重化信号から、 光主信号と光副信号とを分 離する。 運用状態判定手段 2 3は、 分離された光副信号が示す状態情報にもとづ いて、 ポート P:!〜 P nを介して受信された光主信号の運用状態が正常か否かの 判定制御を行い、 運用状態の異常状態を検出した場合には、 異常検出信号を出力 する。 光レベル制御手段 2 4は、 光主信号の光レベル調整制御を行い、 異常検出 信号を受信した場合には、 対応する光主信号の光レベルの減衰制御を行う。 波長 多重化手段 2 5は、 入力されるべき光主信号の波長がチャネル毎に設定され、 チ ャネルに対応したポート P 1〜P nを通じて入力された光主信号の WDMの波長 多重化を行う。 また、 図 3に示すように、 WD Mの光通信制御を行う光通信装置 3において、 光主信号の各波長に対応して、 入力されるべき光主信号が設定されているポート P l〜P nを有する光主信号受信手段 3 1と、 光主信号の光レベルを、 WDMの 波長多重に使用される波長帯域で均一な電圧である第 1の電圧に変換する第 1の 光 電気変換手段 4 1と、 光主信号の光レベルを、 光主信号の波長に対してのみ 突出させた電圧である第 2の電圧に変換する第 2の光 Z電気変換手段 4 2と、 第 1の電圧と第 2の電圧との差分電圧を算出する差分電圧算出手段 4 3と、 第 1の 電圧及び差分電圧にもとづいて、 受信された光主信号の運用状態として、 光入力 状態及び波長はずれ状態を検出する運用状態検出手段 4 4と、 から構成されてポ ート P l〜P n毎に設置された光 電気変換制御部 4 0 — :!〜 4 0— nと、 光主 信号の光レベル調整制御を行い、 運用状態が異常状態である光主信号に対しては 光レベルの減衰制御を行う光レベル制御手段 3 4と、 検出結果により、 光主信号 の運用状態を認識し、 光レベル制御手段 3 4の動作制御及び運用状態の外部通知 を行う光主信号監視手段 3 3と、 入力されるべき光主信号の波長がチャネル毎に 設定され、 チャネルに対応したポート P 1〜P nを通じて入力された光主信号の WD Mの波長多重化を行う波長多重化手段 3 5と、 を有することを特徴とする光 通信装置 3が提供される。 Here, the optical sub-signal generating means 11 generates an optical sub-signal including state information of the optical main signal. The multiplexing transmission means 12 generates and transmits an optical multiplexed signal obtained by multiplexing the optical main signal and the optical sub-signal. The optical multiplexed signal receiving means 21 has ports P1 to Pn in which an optical multiplexed signal to be inputted is set corresponding to each wavelength of the optical main signal. The demultiplexing units 22_1 to 22-n separate the optical main signal and the optical sub-signal from the optical multiplexed signal. The operation state determination means 23, based on the state information indicated by the separated optical sub-signals, uses the port P :! Judgment control is performed to determine whether the operation state of the optical main signal received through Pn is normal, and when an abnormal state of the operation state is detected, an abnormality detection signal is output. The light level control means 24 performs light level adjustment control of the light main signal, and when receiving the abnormality detection signal, performs attenuation control of the light level of the corresponding light main signal. The wavelength multiplexing means 25 sets the wavelength of the optical main signal to be input for each channel, and performs WDM wavelength multiplexing of the optical main signal input through the ports P1 to Pn corresponding to the channel. . Further, as shown in FIG. 3, in the optical communication device 3 that performs optical communication control of the WDM, the ports Pl to in which the optical main signal to be input is set corresponding to each wavelength of the optical main signal. An optical main signal receiving means 31 having Pn; and a first opto-electrical converter for converting an optical level of the optical main signal into a first voltage which is a uniform voltage in a wavelength band used for WDM wavelength multiplexing. Means 41, second optical Z-electrical converting means 42 for converting the optical level of the optical main signal into a second voltage which is a voltage protruding only with respect to the wavelength of the optical main signal, A differential voltage calculating means 43 for calculating a differential voltage between the voltage and the second voltage; and, based on the first voltage and the differential voltage, as an operation state of the received optical main signal, an optical input state and a wavelength shift state. Operating state detecting means 4 for detecting the photoelectric conversion Switching controller 4 0 —:! ~ 40-n, optical level control means 34, which performs optical level adjustment control of the optical main signal, and performs optical level attenuation control for the optical main signal whose operation state is abnormal. The optical main signal monitoring means 33, which recognizes the operation state of the optical main signal and externally notifies the operation of the optical level control means 34 and the operation state, and the wavelength of the optical main signal to be inputted for each channel. A wavelength multiplexing means 35 for performing WDM wavelength multiplexing of optical main signals inputted through ports P1 to Pn corresponding to the set channels, and an optical communication device 3 comprising: Is done.
ここで、 光主信号受信手段 3 1は、 光主信号の各波長に対応して、 入力される べき光主信号が設定されているポート P l〜P nを有する。 第 1の光 電気変換 手段 4 1は、 光主信号の光レベルを、 WD Mの波長多重に使用される波長帯域で 均一な電圧である第 1の電圧に変換する。 第 2の光 Z電気変換手段 4 2は、 光主 信号の光レベルを、 光主信号の波長に対してのみ突出させた電圧である第 2の電 圧に変換する。 差分電圧算出手段 4 3は、 第 1の電圧と第 2の電圧との差分電圧 を算出する。 運用状態検出手段 4 4は、 第 1の電圧及び差分電圧にもとづいて、 受信された光主信号の運用状態として、 光入力状態及び波長はずれ状態を検出す る。 光レベル制御手段 3 4は、 光主信号の光レベル調整制御を行い、 運用状態が 異常状態である光主信号に対しては光レベルの減衰制御を行う。 光主信号監視手 段 3 3は、 検出結果により、 光主信号の運用状態を認識し、 光レベル制御手段 3 4の動作制御及び運用状態の外部通知を行う。 波長多重化手段 3 5は、 入力され るべき光主信号の波長がチャネル毎に設定され、 チャネルに対応したポート P 1 〜P nを通じて入力された光主信号の WD Mの波長多重化を行う。 Here, the optical main signal receiving means 31 has ports Pl to Pn in which the optical main signal to be input is set, corresponding to each wavelength of the optical main signal. The first photoelectric conversion means 41 converts the optical level of the optical main signal into a first voltage which is a uniform voltage in a wavelength band used for WDM wavelength multiplexing. The second optical-Z electrical conversion means 42 converts the optical level of the optical main signal into a second voltage which is a voltage protruding only with respect to the wavelength of the optical main signal. The difference voltage calculation means 43 calculates a difference voltage between the first voltage and the second voltage. The operating state detecting means 44 detects an optical input state and a wavelength shift state as an operating state of the received optical main signal based on the first voltage and the differential voltage. The light level control means 34 performs light level adjustment control of the light main signal, and performs light level attenuation control for the light main signal whose operation state is abnormal. The optical main signal monitoring means 33 recognizes the operation state of the optical main signal based on the detection result, and performs operation control of the optical level control means 34 and external notification of the operation state. Wavelength multiplexing means 3 5 The wavelength of the optical main signal to be set is set for each channel, and WDM wavelength multiplexing of the optical main signal input through the ports P1 to Pn corresponding to the channel is performed.
本発明の上記および他の目的、 特徴および利点は本発明の例として好ましい実 施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。 図面の簡単な説明  The above and other objects, features and advantages of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings which illustrate preferred embodiments of the present invention. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の光通信システムの原理図である。  FIG. 1 is a principle diagram of the optical communication system of the present invention.
図 2は、 本発明の光通信システムの動作を示すフローチヤ一トである。  FIG. 2 is a flowchart showing the operation of the optical communication system of the present invention.
図 3は、 本発明の光通信装置の原理図である。  FIG. 3 is a principle diagram of the optical communication device of the present invention.
図 4は、 光ノ電気変換制御部の構成を示す図である。  FIG. 4 is a diagram showing a configuration of the optical / electrical conversion control unit.
図 5は、 OZEの光 Z電気変換による概略イメージを示す図である。  FIG. 5 is a diagram showing a schematic image of the optical-Z electrical conversion of OZE.
図 6は、 差分電圧検出器の動作内容を示す図である。  FIG. 6 is a diagram illustrating the operation of the differential voltage detector.
図 7は、 比較器の波長はずれ状態の検出制御を説明するための図である。 図 8は、 比較器の波長はずれ状態の検出制御を説明するための図である。 図 9は、 運用状態検出手段での検出結果の論理表を示す図である。  FIG. 7 is a diagram for explaining the detection control of the out-of-wavelength state of the comparator. FIG. 8 is a diagram for explaining detection control of the out-of-wavelength state of the comparator. FIG. 9 is a diagram showing a logical table of detection results by the operation state detection means.
図 1 0は、 従来の WD M送信装置の概略構成を示す図である。 発明を実施するための最良の形態  FIG. 10 is a diagram showing a schematic configuration of a conventional WDM transmitting apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を図面を参照して説明する。 図 1は本発明の光通信 システムの原理図である。 光通信システム 1は、 光送信装置 1 0と、光波長多重 化装置 2 0から構成されて、 WDMの光通信制御を行う。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating the principle of the optical communication system according to the present invention. The optical communication system 1 includes an optical transmission device 10 and an optical wavelength multiplexing device 20 and performs WDM optical communication control.
光送信装置 1 0は、 光主信号の波長 λ 1〜λ ηに対応した、 複数の光多重化信 号制御手段 1 0 a—:!〜 1 0 a— ηを有する。 光副信号生成手段 1 1は、 光主信 号の状態情報を含む光副信号を生成する。 光副信号が含む光主信号の状態情報と しては、 光主信号の波長、 現在の光レベル (光強度) 状態、 波長安定状態などが ある。  The optical transmission device 10 has a plurality of optical multiplexed signal control means 10a- :! to 10a-η corresponding to the wavelengths λ1 to λη of the optical main signal. The optical sub-signal generating means 11 generates an optical sub-signal including the status information of the optical main signal. The state information of the optical main signal included in the optical sub-signal includes the wavelength of the optical main signal, the current optical level (light intensity) state, and the wavelength stable state.
波長安定状態とは、 光主信号の発光部 (図示せず) が発光制御を行った場合の 発光状態を示す 1ビット情報であり、 光主信号の光り始めから引き込み制御中の 波長が変動している不安定状態、 または引き込み制御終了後の波長変動がない安 定状態のいずれかを示す。 The wavelength stable state is 1-bit information indicating the light emission state when the light emitting section (not shown) of the optical main signal performs light emission control. The wavelength during the pull-in control from the start of light emission of the optical main signal fluctuates. Unstable state, or there is no wavelength fluctuation after the pull-in control ends. Indicates one of the steady state.
多重化送信手段 1 2は、 光主信号と、 この光主信号の状態情報を含む光副信号 とを多重化して光多重化信号を生成し、 光波長多重化装置 2 0へ送信する。 例え ば、 光多重化信号制御手段 1 0 a— 1の多重化送信手段 1 2が、 正常運用時の波 長が λ ΐで、 光レベルが P w lと定められた光主信号 mを制御する場合、 波長 λ 1、 光レベル P w l、 現在の波長安定状態 (不安定 安定) の状態情報を持つ光 副信号 sを、 この光主信号 mに多重化して光多重化信号 Mを生成して送信する。 光波長多重化装置 2 0に対し、 光多重化信号受信手段 2 1は、 光主信号の各波 長に対応して、 入力されるべき光多重化信号が設定されているポート P l〜P n を有する (ポート P l〜P nは、 それぞれ波長 λ 1〜λ nに対応している) 。 し たがって、 例えば、 ポート P 1は、 波長 λ 1の光主信号 mが多重化された光多重 化信号 Mが入力される専用ポートということである。 その他のポートも同様に、 各波長に対する専用の接続ポートになっている。  The multiplexing transmission means 12 multiplexes the optical main signal and the optical sub-signal including the status information of the optical main signal to generate an optical multiplexed signal, and transmits the multiplexed signal to the optical wavelength multiplexing apparatus 20. For example, the multiplexing transmission means 12 of the optical multiplexing signal control means 10a-1 controls the optical main signal m having a wavelength λ ΐ in normal operation and an optical level defined as Pwl. In this case, a wavelength λ 1, an optical level P wl, and an optical sub-signal s having state information of a current wavelength stable state (unstable and stable) are multiplexed with this optical main signal m to generate an optical multiplexed signal M. Send. In contrast to the optical wavelength multiplexing apparatus 20, the optical multiplexed signal receiving means 21 is provided for the ports P 1 to P 1 to which the optical multiplexed signal to be inputted is set corresponding to each wavelength of the optical main signal. n (ports P 1 to P n correspond to wavelengths λ 1 to λ n, respectively). Therefore, for example, the port P1 is a dedicated port to which the optical multiplexed signal M in which the optical main signal m of the wavelength λ1 is multiplexed is input. Other ports are also dedicated connection ports for each wavelength.
そして、 光送信装置 1 0と光波長多重化装置 2 0が接続する際には、 光多重化 信号制御手段 1 0 a—:!〜 1 0 a— nと光多重化信号受信手段 2 1のポート P 1 〜P nとが光ファイバケーブル C l〜C nを通じて接続する。 そして、 光多重化 信号制御手段 1 0 a _ 1〜 1 0 a— nから送信される光多重化信号は、 ポート P l〜P nにそれぞれ入力される。  Then, when the optical transmitting apparatus 10 and the optical wavelength multiplexing apparatus 20 are connected, the optical multiplexing signal control means 10 a— :! .About.10a-n and ports P1-Pn of the optical multiplexed signal receiving means 21 are connected through optical fiber cables C1-Cn. The optical multiplexed signals transmitted from the optical multiplexed signal control means 10a_1 to 10a-n are input to the ports Pl to Pn, respectively.
分離手段 2 2— 1〜2 2 _ nは、 光多重化信号から、 光主信号と光副信号とを 分離する。 分離された光主信号は光レベル制御手段 2 4へ、 光副信号は運用状態 判定手段 2 3へ送信される。  The separating means 22-1 to 22_n separate the optical main signal and the optical sub-signal from the optical multiplexed signal. The separated optical main signal is transmitted to the optical level control means 24, and the optical sub signal is transmitted to the operation state determination means 23.
運用状態判定手段 2 3は、 分離された光副信号が示す状態情報にもとづいて、 ポート P 1〜P nを介して受信された光主信号の運用状態が正常か否かの判定制 御を行う。 そして、 運用状態の異常状態を検出した場合には、 該当の光主信号に 対しての異常検出信号を出力する。 なお、 運用状態判定手段 2 3には、 ポート P l〜P nを介して受信される光主信号それぞれの、 正常時の運用状態の情報はあ らかじめ設定されている。  The operating state determining means 23 controls the determining whether the operating state of the optical main signal received via the ports P1 to Pn is normal based on the state information indicated by the separated optical sub-signal. Do. Then, when an abnormal state of the operation state is detected, an abnormal state detection signal for the corresponding optical main signal is output. In the operation state determining means 23, information on the normal operation state of each of the optical main signals received via the ports P1 to Pn is set in advance.
また、 運用状態判定手段 2 3は、 光主信号に対する、 ポートの整合に関連する 波長はずれ状態、 光レベル状態、 波長安定状態の少なくとも 1つの判定制御を行 う。 ポートの整合に関連する波長はずれ状態の判定制御とは、 光ファイバケープ ルの誤接続の検出制御に該当し、 光レベル状態の判定制御とは、 光ファイバケー ブルの嵌合不良等の検出制御に該当する。 また、 波長安定状態の判定制御とは、 光主信号の発光動作がウォームアツプ状態中か否かの検出制御に該当する。 外部通知手段 2 6は、 運用状態判定手段 2 3で認識された各光主信号の運用状 態を、 保守端末等を通じて外部へ通知する (保守端末への表示制御を行う) 。 光レベル制御手段 2 4は、 光主信号の光レベル調整制御を行う。 また、 異常検 出信号を受信した場合には、 異常状態と判定された光主信号の光レベルの減衰制 御を行う。 光レベル制御手段 2 4は、 例えば、 光磁気効果を利用した可変減衰デ バイス ( V A T: variable attenuator) 等で構成される。 In addition, the operation state determination means 23 performs at least one determination control for the optical main signal, such as a wavelength shift state, an optical level state, and a wavelength stable state related to port matching. U. Judgment control of out-of-wavelength state related to port matching corresponds to detection control of misconnection of optical fiber cable, and judgment control of optical level state is control of detection of improper fitting of optical fiber cable, etc. Corresponds to. The determination control of the wavelength stable state corresponds to the detection control of whether or not the light emitting operation of the optical main signal is in the warm-up state. The external notification means 26 notifies the operation state of each optical main signal recognized by the operation state determination means 23 to the outside through a maintenance terminal or the like (performs display control on the maintenance terminal). The light level control means 24 performs light level adjustment control of the light main signal. When an abnormality detection signal is received, attenuation control of the optical level of the optical main signal determined to be abnormal is performed. The light level control means 24 is composed of, for example, a variable attenuator (VAT) using the magneto-optical effect.
波長多重化手段 2 5は、 入力されるべき光主信号の波長がチャネル C H 1〜C H n毎に設定され、 チャネル C H l〜C H nに対応したポート P l〜P nを通じ て入力された光主信号の WD Mの波長多重化を行う。  The wavelength multiplexing means 25 sets the wavelength of the optical main signal to be input for each of the channels CH1 to CHn, and outputs the optical signals input through the ports P1 to Pn corresponding to the channels CH1 to CHn. Performs WDM wavelength multiplexing of the main signal.
すなわち、 波長多重化手段 2 5のチャネル C H l〜C H nの端子は、 波長 λ 1 〜λ ηに対応した各波長専用の入力端子になっている。 そして、 ポート Ρ 1〜Ρ ηを通じて入力された光主信号はそれぞれ、 対応するチヤネル端子 C Η 1〜 C Η ηを通じて入力されて、 波長多重化手段 2 5で WD Mの波長多重化制御が行われ る。  That is, the terminals of the channels C H1 to C Hn of the wavelength multiplexing means 25 are input terminals dedicated to each wavelength corresponding to the wavelengths λ 1 to λ η. Then, the optical main signals input through the ports Ρ 1 to Ρ η are respectively input through the corresponding channel terminals C Η 1 to C η η, and the wavelength multiplexing means 25 performs WDM wavelength multiplexing control. It is.
したがって、 波長多重化手段 2 5が正しく波長多重化制御を行うためには、 チ ャネル C H l〜C H nに割り当てられた波長と同じ波長を持つ光主信号が入力さ れなければならない。  Therefore, in order for the wavelength multiplexing means 25 to perform the wavelength multiplexing control correctly, an optical main signal having the same wavelength as the wavelength allocated to the channels CH1 to CHn must be input.
ここで、 例えば、 光送信装置 1 0から光ファイバケーブル C 1を通じて波長 λ 1の光主信号を持つ光多重化信号が送信され、 光ファイバケーブル C 2を通じて 波長 λ 2の光主信号を持つ光多重化信号が送信されるものとする。 また、 光波長 多重化装置 2 0のポート Ρ 1〜Ρ 3がそれぞれ波長 λ 1〜え 3対応の入力ポート であるとする。 すると、 正常なケーブル接続状態としては、 光ファイバケーブル C 1がポート Ρ 1に接続され、 光ファイバケーブル C 2がポート Ρ 2に接続され なければならない。  Here, for example, an optical multiplexed signal having an optical main signal of wavelength λ1 is transmitted from the optical transmitter 10 through the optical fiber cable C1, and an optical multiplexed signal having an optical main signal of wavelength λ2 is transmitted through the optical fiber cable C2. It is assumed that a multiplex signal is transmitted. It is also assumed that ports # 1 to # 3 of the optical wavelength multiplexing apparatus 20 are input ports corresponding to wavelengths λ1 to λ3, respectively. Then, as a normal cable connection state, the optical fiber cable C1 must be connected to the port # 1, and the optical fiber cable C2 must be connected to the port # 2.
ここで、 オペレータの作業ミス等により、 光ファイバケーブル C 2が波長 λ 3 対応のポート P 3に接続されたとする。 すると、 波長多重化制御において伝送ェ ラーが生じることになるが、 従来では、 このようなポート整合性に関連する波長 はずれ状態等の検出機能を持っていなかつたため、 伝送エラーが生じたままシス テムが運用されていた。 Here, the optical fiber cable C 2 has a wavelength λ 3 Assume that it is connected to the corresponding port P3. Then, a transmission error occurs in the wavelength multiplexing control.However, in the past, since there was no function to detect such a wavelength shift state related to port consistency, the system was not affected by the transmission error. Was operating.
図 2は本発明の光通信システム 1の動作を示すフローチャートである。 上記で 示した、 ケーブルが誤接続された状態を例にして説明する。  FIG. 2 is a flowchart showing the operation of the optical communication system 1 of the present invention. An example will be described in which the cable is connected incorrectly as described above.
〔S 1〕 光送信装置 1 0の光多重化信号制御手段 1 0 a— 1は、 光主信号の波長 が λ 1であることを示す光副信号を、 光主信号に多重化して光多重化信号を生成 して、 光ファイバケーブル C 1を通じて出力する。  [S1] The optical multiplexing signal control means 10a-1 of the optical transmitting apparatus 10 multiplexes the optical sub-signal indicating that the wavelength of the optical main signal is λ1 into the optical main signal to perform optical multiplexing. It generates a coded signal and outputs it through the optical fiber cable C1.
同様に、 光多重化信号制御手段 1 0 a— 2は、 光主信号の波長が λ 2であるこ とを示す光副信号を、 光主信号に多重化して光多重化信号を生成して、 光フアイ バケーブル C 2を通じて出力する。  Similarly, the optical multiplexed signal control means 10a-2 multiplexes the optical sub-signal indicating that the wavelength of the optical main signal is λ2 into the optical main signal to generate an optical multiplexed signal, Output through optical fiber cable C2.
〔S 2〕 分離手段 2 2— 1は、 ポート P 1からの光多重化信号から、 光主信号と 光副信号とを分離する。 分離手段 2 2— 3は、 ポート P 3からの光多重化信号か ら、 光主信号と光副信号とを分離する。  [S 2] The demultiplexing means 22-1 demultiplexes the optical main signal and the optical sub-signal from the optical multiplexed signal from the port P 1. The separating means 22-3 separates the optical main signal and the optical sub-signal from the optical multiplexed signal from the port P3.
〔S 3〕 運用状態判定手段 2 3は、 分離手段 2 2— 1、 2 2— 3から送信された 光副信号が示す状態情報にもとづいて、 ポート P l、 P 3を介して受信された光 主信号の運用状態が正常か否かの判定制御を行う。  [S 3] The operation state determination means 23 is received via the ports P 1 and P 3 based on the state information indicated by the optical sub-signal transmitted from the demultiplexing means 22-1 and 22-3. Judgment control is performed to determine whether the operation state of the optical main signal is normal.
ここでは、 ポート P 3からは波長 λ 3の光主信号が本来入力されなければなら ないが、 運用状態判定手段 2 3では波長久 2の光主信号が入力されていることを 認識し、 ポート Ρ 3を通じて入力している光主信号が、 異常状態であるものとし て異常検出信号を出力する。  Here, the optical main signal of wavelength λ 3 must be originally input from port P 3, but the operation state determining means 23 recognizes that the optical main signal of wavelength 2 is input, and光 Outputs an abnormality detection signal assuming that the optical main signal input through 3 is in an abnormal state.
〔S 4〕 光レベル制御手段 2 4は、 異常検出信号を受信して、 ポート P 3に対応 している分離手段 2 2— 3から送信される光主信号の減衰制御を行う。 すなわち、 波長多重化手段 2 5のチャネル C H 3へ出力される光主信号に対して、 最大減衰 制御を施して、 波長多重化手段 2 5への入力をシャットダウンする。 これにより、 波長多重化手段 2 5に対する他チャネルへ与えられる悪影響の抑制を図ることが でさる。  [S4] The optical level control means 24 receives the abnormality detection signal and controls the attenuation of the optical main signal transmitted from the separation means 22-3 corresponding to the port P3. That is, the optical main signal output to the channel CH 3 of the wavelength multiplexing means 25 is subjected to maximum attenuation control, and the input to the wavelength multiplexing means 25 is shut down. As a result, it is possible to suppress the adverse effect of the wavelength multiplexing means 25 on other channels.
なお、 ポート P 1に対応している分離手段 2 2— 1から送信される光主信号に 対しては、 正常時の光レベル制御が行われる。 Note that the optical main signal transmitted from the separation means 22-1 corresponding to port P1 is On the other hand, normal light level control is performed.
〔S 5〕 外部通知手段 2 6は、 運用状態判定手段 2 3から、 光主信号の運用状態 を取得し、 ポート P 3から波長 λ 2の光主信号が入力されていること (光フアイ バケーブルの誤接続) を外部へ通知する。  [S5] The external notification means 26 acquires the operation state of the optical main signal from the operation state determination means 23, and that the optical main signal of the wavelength λ2 is input from the port P3 (optical fiber To the outside.
以上説明したように、 本発明の光通信システム 1では、 光主信号に多重化した 光副信号から、 光主信号の運用状態が正常か否かの判定制御を行い、 異常状態の 場合には、 対応する光主信号の光レベルを減衰制御し、 かつ外部へ障害が発生し た旨を通知する構成とした。  As described above, in the optical communication system 1 of the present invention, the optical sub-signal multiplexed on the optical main signal is used to determine whether or not the operation state of the optical main signal is normal. In addition, the optical level of the corresponding optical main signal is controlled to be attenuated, and an external failure is notified.
これにより、 光ファイバケーブルの誤接続等に関連した障害発生に対応する処 理を迅速に行うことが可能になる。 また、 上記の例では、 ポートの整合に関連す る波長はずれ状態の検出について説明したが、 光レベル状態、 波長安定状態につ いても同様の検出制御を行う。  As a result, it becomes possible to quickly perform a process corresponding to the occurrence of a failure related to an erroneous connection of an optical fiber cable or the like. Also, in the above example, detection of the out-of-wavelength state related to port matching was described, but the same detection control is performed in the optical level state and the wavelength stable state.
すなわち、 運用状態判定手段 2 3で、 ポート Ρ 1〜ポート Ρ ηを通じて入力さ れた光主信号の光レベルが正常か否かを判定し、 光レベルが異常な光主信号があ る場合には、 光レベル制御手段 2 4で減衰制御を行って、 該当の光主信号の波長 多重化手段 2 5への入力シャットダウンを行う。 または、 運用状態判定手段 2 3 で、 ポート Ρ 1〜ポート Ρ ηを通じて入力された光主信号の波長安定状態が正常 か否かを判定し、 波長安定状態が不安定の場合には、 光レベル制御手段 2 4で減 衰制御を行って、 該当の光主信号の波長多重化手段 2 5への入力シャツ卜ダウン を行う。  That is, the operation state determining means 23 determines whether the optical level of the optical main signal input through the ports Ρ1 to Ρη is normal, and if there is an optical main signal with an abnormal optical level, The optical level control means 24 performs attenuation control and shuts down the input of the corresponding optical main signal to the wavelength multiplexing means 25. Alternatively, the operation state determination means 23 determines whether or not the wavelength stable state of the optical main signal input through ports Ρ 1 to Ρ η is normal. If the wavelength stable state is unstable, the optical level Attenuation control is performed by the control means 24, and the input of the corresponding optical main signal to the wavelength multiplexing means 25 is reduced.
なお、 本発明の光通信システム 1に対し、 光多重化信号制御手段 1 0 a—:!〜 1 0 a— nは、 例えば、 上述したトランスボンダや、 あるいは T D M装置の内部 に設置することができる。  Note that, in the optical communication system 1 of the present invention, the optical multiplexed signal control means 10a- :! to 10a-n can be installed inside the above-described transbonder or TDM device, for example. it can.
また、 光主信号の光波長帯は、 通常 1 5 5 0 n m付近の波長となっている。 こ のため、 光副信号は、 光主信号と容易に分離することができる波長として、 1 3 1 0 n m程度の光波長帯を選択する。  In addition, the optical wavelength band of the optical main signal usually has a wavelength around 1550 nm. For this reason, an optical wavelength band of about 130 nm is selected for the optical sub-signal as a wavelength that can be easily separated from the optical main signal.
次に本発明の光通信装置について説明する。 図 3は本発明の光通信装置の原理 図である。 光通信装置 3は、 WDMの光通信制御を行う。  Next, the optical communication device of the present invention will be described. FIG. 3 is a diagram illustrating the principle of the optical communication device according to the present invention. The optical communication device 3 performs optical communication control of WDM.
光主信号受信手段 3 1は、 光主信号の各波長に対応して、 入力されるべき光主 信号が設定されているポート P l〜P nを有する。 ポート P l〜P nには、 光フ アイバケーブル C l〜C nが接続されて波長 λ:!〜 λ ηの光主信号が入力される。 また、 ポート Ρ 1〜Ρ ηを通じて入力された光主信号は、 光レベル制御手段 3 4と、 ポート Ρ 1〜Ρ ηに設置されている光/電気変換制御部 4 0— 1〜4 0 _ ηとへ、 力ブラによって分岐される。 光 電気変換制御部 4 0— :!〜 4 0— ηに 対し、 第 1の光 電気変換手段 4 1は、 光主信号の光レベルを、 WDMの波長多 重に使用される波長帯域で均一な電圧 (平坦な電圧) である第 1の電圧に変換す る。 第 2の光 Ζ電気変換手段 4 2は、 光主信号の光レベルを、 光主信号の波長に 対してのみ突出させた電圧である第 2の電圧に変換する。 The optical main signal receiving means 31 is an optical main signal to be inputted corresponding to each wavelength of the optical main signal. It has ports Pl to Pn to which signals are set. Optical fiber cables C1 to Cn are connected to the ports P1 to Pn, and optical main signals of wavelengths λ :! to λη are input. The optical main signal input through the ports Ρ 1 to Ρ η is transmitted to the optical level control means 34 and the optical / electrical conversion control units 40 -1 to 40 _ installed in the ports Ρ 1 to η η. to η, branched by force bra. Photoelectric conversion controller 4 0—:! The first opto-electrical conversion means 41 converts the optical level of the optical main signal into a uniform voltage (flat voltage) in the wavelength band used for WDM wavelength multiplexing. Convert to 1 voltage. The second photoelectric converter 42 converts the optical level of the optical main signal into a second voltage that is a voltage protruding only with respect to the wavelength of the optical main signal.
差分電圧算出手段 4 3は、 第 1の電圧と第 2の電圧との差分電圧を算出する。 運用状態検出手段 4 4は、 第 1の電圧及び差分電圧にもとづいて、 受信された光 主信号の運用状態として、 光入力状態及び波長はずれ状態を検出する。 なお、 光 電気変換制御部 4 0— :!〜 4 0 — η (総称する場合は、 光 Ζ電気変換制御部 4 0 ) の詳細は後述する。  The difference voltage calculation means 43 calculates a difference voltage between the first voltage and the second voltage. The operating state detecting means 44 detects an optical input state and a wavelength shift state as an operating state of the received optical main signal based on the first voltage and the differential voltage. The details of the photoelectric conversion control unit 40— :! to 40—η (collectively referred to as photoelectric conversion control unit 40) will be described later in detail.
光レベル制御手段 3 4は、 光主信号の光レベル調整制御を行い、 運用状態が異 常状態である光主信号に対しては光レベルの減衰制御を行う。 光主信号監視手段 3 3は、 運用状態検出手段 4 4の検出結果により、 光主信号の運用状態を認識し、 光レベル制御手段 3 4の動作制御及び運用状態の外部通知を行う。  The light level control means 34 performs light level adjustment control of the light main signal, and performs light level attenuation control on the light main signal whose operation state is abnormal. The optical main signal monitoring means 33 recognizes the operation state of the optical main signal based on the detection result of the operation state detection means 44 and performs operation control of the light level control means 34 and external notification of the operation state.
波長多重化手段 3 5は、 入力されるべき光主信号の波長がチャネル毎に設定さ れ、 チャネルに対応したポート Ρ 1〜Ρ ηを通じて入力された光主信号の WDM の波長多重化を行う。  The wavelength multiplexing means 35 sets the wavelength of the optical main signal to be input for each channel, and performs WDM wavelength multiplexing of the optical main signal input through the ports Ρ1 to ηη corresponding to the channel. .
次に光/電気変換制御部 4 0について説明する。 図 4は光 Ζ電気変換制御部 4 0の構成を示す図である。 ΟΖΕ 4 1 aは第 1の光 Ζ電気変換手段 4 1、 バンド パスフィルタ 4 2 bと OZ E 4 2 aは第 2の光 電気変換手段 4 2、 差分電圧検 出器 4 3 aは差分電圧算出手段 4 3、 比較器 4 4 a、 4 4 b、 AN D素子 4 4 c は運用状態検出手段 4 4に該当する。  Next, the optical / electrical conversion controller 40 will be described. FIG. 4 is a diagram showing a configuration of the photoelectric conversion control unit 40. ΟΖΕ 4 1a is the first light-to-electricity conversion means 41, band-pass filter 4 2b and OZE 42 2a is the second light-to-electricity conversion means 42, differential voltage detector 43a is the differential voltage The calculating means 43, the comparators 44a and 44b, and the AND element 44c correspond to the operation state detecting means 44.
ここで、 光主信号受信手段 3 1のポート Pから送られた光主信号は、 力ブラ C P 1で 2つに分岐されて、 光レベル制御手段 3 4と光ノ電気変換制御部 4 0へ送 出される。 さらに、 光主信号は、 力ブラ C P 2で 2つに分岐されて、 OZE 4 1 a側とバンドパスフィルタ 4 2 b側へ送出される。 Here, the optical main signal sent from the port P of the optical main signal receiving means 31 is split into two by the power controller CP 1 and sent to the optical level control means 34 and the photoelectric conversion control section 40. Sent. In addition, the optical main signal is split into two by the power bra CP 2 and OZE 4 1 The signal is sent to the a side and the band pass filter 4 2 b side.
力ブラ C P 2で分岐された一方の光主信号は、 OZE 4 1 aによって、 WDM の波長多重に使用される波長帯域で均一な、 受信光レベル対出力電圧での光 Z電 気変換が施される。 また、 他方の光主信号は、 誘電体膜等で構成されるバンドパ スフィル夕 4 2 bで、 波長が選択され、 その後に OZE 4 2 aによって、 光 電 気変換される。 したがって、 選択された波長に対してのみ、 高い変換効率を持つ た光 電気変換がなされることになる。  One optical main signal split by the power coupler CP 2 is subjected to optical Z-electric conversion at the received optical level versus output voltage by the OZE 41 a, which is uniform in the wavelength band used for WDM wavelength multiplexing. Is done. The wavelength of the other optical main signal is selected by a bandpass filter 42b composed of a dielectric film or the like, and then the photoelectric conversion is performed by OZE 42a. Therefore, photoelectric conversion with high conversion efficiency is performed only for the selected wavelength.
なお、 バンドパスフィル夕 4 2 bは、 各ポートの光主信号の波長に対応したフ ィル夕リングを行う。 例えば、 波長 λ 1の光主信号を受信するポート P 1に設置 された光 Ζ電気変換制御部 4 0— 1内のバンドパスフィルタ 4 2 bは波長 λ 1の フィルタリングを行うことになる。  The bandpass filter 42b performs filtering corresponding to the wavelength of the optical main signal of each port. For example, the band-pass filter 42b in the optical-electrical conversion control unit 40-1, which is installed at the port P1 that receives the optical main signal of the wavelength λ1, performs the filtering of the wavelength λ1.
図 5は ΟΖΕ 4 1 a、 4 2 bの光 電気変換による概略イメージを示す図であ る。 縦軸は電圧、 横軸は波長である。 OZE 4 1 aで変換された光主信号は、 平 坦な電圧特性を有する。 また、 OZE 4 2 aで変換された光主信号は、 選択され た波長 λ 0に対してのみ突出した電圧特性を有する。  FIG. 5 is a diagram showing a schematic image obtained by photoelectric conversion of 、 41a and 242b. The vertical axis is voltage, and the horizontal axis is wavelength. The optical main signal converted by the OZE 41a has flat voltage characteristics. The optical main signal converted by the OZE 42a has a prominent voltage characteristic only for the selected wavelength λ0.
図 6は差分電圧検出器 4 3 aの動作内容を示す図である。 差分電圧検出器 4 3 aは、 OZE 4 1 aからの出力電圧 V aと、 OZE 4 2 aからの出力電圧 V bと の差分を求め、 差分電圧 V cを出力する。 差分電圧 V cは図に示すような波形と なる。  FIG. 6 is a diagram showing the operation of the differential voltage detector 43a. The difference voltage detector 43a obtains a difference between the output voltage Va from the OZE 41a and the output voltage Vb from the OZE 42a, and outputs a difference voltage Vc. The differential voltage Vc has a waveform as shown in the figure.
次に比較器 4 4 a、 4 4 bについて説明する。 比較器 4 4 aでは、 OZE 4 1 aからの出力電圧 V aと、 基準電圧 V 1とを比較する。 この比較器 4 4 aは、 光 入力状態を検出するものである。 基準電圧 V 1 <出力電圧 V aならば、 該当のポ —トから光主信号が入力されていることになり、 比較器 4 4 aの出力は "H" を 出力する。 また、 基準電圧 V I〉出力電圧 V aならば、 該当のポートから光主信 号が入力されていないことになり、 比較器 4 4 aの出力は " L " を出力する。 一方、 比較器 4 4 bは、 各波長に対する差分電圧 V cと基準電圧 V 2とを比較 して、 波長はずれ状態を検出する。 図 7、図 8は比較器 4 4 bの波長はずれ状態 の検出制御を説明するための図である。  Next, the comparators 44a and 44b will be described. The comparator 44a compares the output voltage Va from the OZE 41a with the reference voltage V1. The comparator 44a detects a light input state. If the reference voltage V 1 <the output voltage V a, it means that the optical main signal is being input from the corresponding port, and the output of the comparator 44 a outputs “H”. If the reference voltage VI> the output voltage Va, the optical main signal is not input from the corresponding port, and the output of the comparator 44a outputs "L". On the other hand, the comparator 44b compares the difference voltage Vc for each wavelength with the reference voltage V2 to detect a wavelength shift state. FIGS. 7 and 8 are diagrams for explaining detection control of the comparator 44b in the out-of-wavelength state.
波長 λ 1〜 λ nの光主信号の差分電圧 V c l〜V c nは、 図 7に示すような波 形となる。 そして、 光 電気変換制御部 4 0— 1〜4 0— n内部のそれぞれの比 較器 4 4 bでは、 このような差分電圧 V cの波形に対して、 自己が検出すべき波 長の位置で、 差分電圧 V cが基準電圧 V 2より下回るか否かで、 波長はずれを検 出する。 The differential voltages Vcl to Vcn of the optical main signals of wavelengths λ1 to λn are as shown in FIG. It takes shape. Then, each of the comparators 44 b in the photoelectric conversion control section 40-1 to 40-n has the position of the wavelength to be detected by itself for the waveform of the differential voltage Vc. Then, the wavelength deviation is detected based on whether or not the difference voltage Vc is lower than the reference voltage V2.
ここで、 図 8を用いて、 波長 λ 1の光主信号の波長はずれを検出する比較器 4 4 bについて考える。 自己が検出すべき波長は λ 1であるから、 比較器 4 4 bは、 波長 λ 1の位置で、 差分電圧 V c 1が基準電圧 V 2を下回るか否かを判定する。 そして、 波長 λ 1の位置での差分電圧 V c 1が、 基準電圧 V 2を下回れば (基準 電圧 V 2 >差分電圧 V c 1 ) 、 該当のポートから波長 λ 1の光主信号が正しく入 力されていることを認識できる。  Here, with reference to FIG. 8, consider a comparator 44b that detects a wavelength shift of the optical main signal having the wavelength λ1. Since the wavelength to be detected by itself is λ1, the comparator 44b determines whether the difference voltage Vc1 is lower than the reference voltage V2 at the position of the wavelength λ1. If the difference voltage Vc1 at the position of the wavelength λ1 is lower than the reference voltage V2 (reference voltage V2> difference voltage Vc1), the optical main signal of the wavelength λ1 is correctly input from the corresponding port. You can recognize that you are being empowered.
また、 波長 λ 1の位置での差分電圧 V c 1が、 基準電圧 V 2を下回らなければ (基準電圧 V 2 <電圧 V c 1 ) 、 波長 λ 1以外の波長 λ ιηの光主信号が入力され ているとみなしてよく、 光ファイバケーブルの誤接続等が起きていると判断でき る。 なお、 このような比較制御により、 波長が一致している場合は、 比較器 4 4 bは "H" を出力し、 波長がはずれている場合は " L " を出力する。  If the difference voltage Vc1 at the position of the wavelength λ1 does not fall below the reference voltage V2 (reference voltage V2 <voltage Vc1), the optical main signal of the wavelength λιη other than the wavelength λ1 is input. Therefore, it can be determined that the optical fiber cable is incorrectly connected. By such a comparison control, the comparator 44b outputs "H" when the wavelengths match, and outputs "L" when the wavelengths are off.
このように、 各ポート毎に設置された光 電気変換制御部 4 0— 1〜4 0— n 内部のそれぞれの比較器 4 4 bでは、 各波長の位置で、 差分電圧 V cと基準電圧 V 2とを比較して、 波長はずれ状態を検出する。  As described above, each of the comparators 44 b inside the photoelectric conversion control units 40 — 1 to 40 — n installed for each port uses the differential voltage V c and the reference voltage V c at each wavelength position. Compare with 2 to detect the wavelength shift state.
図 9は運用状態検出手段 4 4での検出結果の論理表を示す図である。 図 4に示 された A点、 B点、 C点に対する、 光主信号の運用状態 (光入力状態、 波長はず れ状態) の論理を示す。  FIG. 9 is a diagram showing a logical table of the detection results of the operation state detection means 44. The logic of the operating state (optical input state, wavelength shift state) of the optical main signal for points A, B, and C shown in Fig. 4 is shown.
これらの論理情報は、 光主信号監視手段 3 3へ送信され、 異常のあるポートが ある場合には、 そのポートからの光主信号のレベルを減衰して、 波長多重化手段 3 5への入力をシャットダウンするように、 光レベル制御手段 3 4に対して制御 を行い、 また、 外部への通知が行われることになる。  These pieces of logical information are transmitted to the optical main signal monitoring means 33, and when there is an abnormal port, the level of the optical main signal from that port is attenuated and input to the wavelength multiplexing means 35. The optical level control means 34 is controlled so as to shut down, and an external notification is performed.
以上説明したように、 本発明の光通信システム 1及び光通信装置 3により、 波 長多重数が増大するのに伴う、 光ファイバケーブルの誤接続等により発生する障 害を、 迅速に検出することが可能になる。 また、 誤って入力された光主信号の光 レベルを減衰して、 波長多重化手段への入力をシャツトダウンする構成としたた め、 他波長のチャネルに及ぼす悪影響の低減を図ることが可能になる。 As described above, the optical communication system 1 and the optical communication device 3 of the present invention can quickly detect a failure caused by an erroneous connection of an optical fiber cable or the like due to an increase in the number of wavelength multiplexing. Becomes possible. In addition, the optical level of the erroneously input optical main signal is attenuated, and the input to the wavelength multiplexing means is reduced. Therefore, it is possible to reduce the adverse effects on the channels of other wavelengths.
なお、 上記の説明では、 WD Mの光通信制御を対象にして説明したが、 WDM 以外のその他の光通信制御のシステムに対しても、 本発明を適用することができ、 このようなシステムに対しても、 光フアイバケーブルの誤接続等による障害検出 を迅速に行うことが可能である。  In the above description, the optical communication control of the WDM has been described. However, the present invention can be applied to other optical communication control systems other than the WDM. On the other hand, it is possible to quickly detect a failure due to an incorrect connection of an optical fiber cable.
以上説明したように、 本発明の光通信システムは、 光主信号の状態情報を含む 光副信号にもとづいて、 光主信号の運用状態が正常か否かの判定制御を行い、 異 常状態の場合には、 対応する光主信号の光レベルの減衰制御を行う構成とした。 これにより、 光ファイバケ一ブルの誤接続等に関連した障害発生に対応する処理 を迅速に行うことができるので、 信頼性及び品質の向上を図ることが可能になる。 また、 本発明の光通信装置は、 光主信号の光レベルを、 WD Mの波長多重に使 用される波長帯域で均一な第 1の電圧と、 光主信号の波長に対してのみ突出させ た第 2の電圧とに変換し、 これらの差分電圧と第 1の電圧にもとづいて、 光主信 号の光入力状態及び波長はずれ状態を検出し、 異常を認識した場合には、 対応す る光主信号の光レベルの減衰制御を行う構成とした。 これにより、 光ファイバケ 一ブルの誤接続等に関連した障害発生に対応する処理を迅速に行うことができる ので、 信頼性及び品質の向上を図ることが可能になる。  As described above, the optical communication system of the present invention performs control to determine whether or not the operation state of the optical main signal is normal based on the optical sub-signal including the state information of the optical main signal. In such a case, the optical level of the corresponding optical main signal is controlled to be attenuated. As a result, it is possible to quickly perform a process corresponding to the occurrence of a failure related to an erroneous connection of an optical fiber cable, and thus to improve reliability and quality. Further, the optical communication device of the present invention makes the optical level of the optical main signal protrude only with respect to the first voltage which is uniform in the wavelength band used for WDM wavelength multiplexing and the wavelength of the optical main signal. Based on the difference voltage and the first voltage, detects the optical input state and the wavelength deviation state of the optical main signal, and responds when an abnormality is recognized. The optical level of the optical main signal is attenuated. As a result, it is possible to quickly perform a process corresponding to the occurrence of a failure related to an erroneous connection of an optical fiber cable or the like, thereby improving reliability and quality.
上記については単に本発明の原理を示すものである。 さらに、 多数の変形、 変 更が当業者にとって可能であり、 本発明は上記に示し、 説明した正確な構成およ び応用例に限定されるものではなく、 対応するすべての変形例および均等物は、 添付の請求項およびその均等物による本発明の範囲とみなされる。  The above merely illustrates the principles of the invention. In addition, many modifications and changes will be apparent to those skilled in the art and the present invention is not limited to the exact configuration and application shown and described above, but all corresponding variations and equivalents. Is deemed to be within the scope of the present invention by the appended claims and their equivalents.

Claims

請 求 の 範 囲 The scope of the claims
1 . WDMの光通信制御を行う光通信システムにおいて、 1. In an optical communication system that performs WDM optical communication control,
光主信号の状態情報を含む光副信号を生成する光副信号生成手段と、 前記光主 信号及び前記光副信号を多重化した光多重化信号を生成して送信する多重化送信 手段と、 から構成される光多重化信号制御手段を有する光送信装置と、  Optical sub-signal generation means for generating an optical sub-signal including state information of the optical main signal; multiplex transmission means for generating and transmitting an optical multiplexed signal obtained by multiplexing the optical main signal and the optical sub-signal; An optical transmission device having an optical multiplexed signal control unit composed of:
前記光主信号の各波長に対応して、 入力されるべき前記光多重化信号が設定さ れているポートを有する光多重化信号受信手段と、 前記光多重化信号から、 前記 光主信号と前記光副信号とを分離する分離手段と、 分離された前記光副信号が示 す前記状態情報にもとづいて、 前記ポートを介して受信された前記光主信号の運 用状態が正常か否かの判定制御を行い、 前記運用状態の異常状態を検出した場合 には、 異常検出信号を出力する運用状態判定手段と、 前記光主信号の光レベル調 整制御を行い、 前記異常検出信号を受信した場合には、 対応する前記光主信号の 光レベルの減衰制御を行う光レベル制御手段と、 入力されるべき前記光主信号の 波長がチャネル毎に設定され、 チャネルに対応した前記ポートを通じて入力され た前記光主信号の WD Mの波長多重化を行う波長多重化手段と、 から構成される 光波長多重化装置と、  An optical multiplexed signal receiving unit having a port in which the optical multiplexed signal to be inputted is set corresponding to each wavelength of the optical main signal; Separating means for separating the optical sub-signal from the optical sub-signal; and, based on the status information indicated by the separated optical sub-signal, whether the operation state of the optical main signal received via the port is normal or not. When an abnormal state of the operation state is detected, an operation state determination unit that outputs an abnormality detection signal, and a light level adjustment control of the optical main signal is performed, and the abnormality detection signal is received. In this case, the optical level control means for controlling the attenuation of the optical level of the corresponding optical main signal, and the wavelength of the optical main signal to be input is set for each channel, and is input through the port corresponding to the channel. Said said Wavelength multiplexing means for performing wavelength multiplexing WD M of the main signal, and configured optical wavelength multiplexer from
を有することを特徴とする光通信システム。  An optical communication system comprising:
2 . 前記運用状態判定手段は、 前記光主信号に対する、 前記ポートの整合に関 連する波長はずれ状態、 光レベル状態、 波長安定状態の少なくとも 1つの前記判 定制御を行うことを特徴とする請求項 1記載の光通信システム。  2. The operation state determining means performs at least one of the wavelength shift state, the optical level state, and the wavelength stable state related to the matching of the port with respect to the optical main signal. Item 1. The optical communication system according to Item 1.
3 . 前記運用状態を外部へ通知する外部通知手段をさらに有することを特徴と する請求項 1記載の光通信システム。  3. The optical communication system according to claim 1, further comprising external notification means for notifying the operation state to the outside.
4 . 光送信制御を行う光送信装置において、  4. In an optical transmission device that performs optical transmission control,
光主信号の正常運用時の状態情報を含む光副信号を生成する光副信号生成手段 と、  Optical sub-signal generating means for generating an optical sub-signal including state information of the optical main signal during normal operation;
前記光主信号及び前記光副信号を多重化した光多重化信号を生成して送信する 多重化送信手段と、  Multiplex transmission means for generating and transmitting an optical multiplexed signal obtained by multiplexing the optical main signal and the optical sub-signal,
を有することを特徴とする光送信装置。 An optical transmission device comprising:
5 . WD Mの波長多重化制御を行う光波長多重化装置において、 5. In an optical wavelength multiplexing device that performs WDM wavelength multiplexing control,
前記光主信号と、 前記光主信号の状態情報を含む光副信号と、 が多重化された 光多重化信号に対し、 前記光主信号の各波長に対応して、 入力されるべき前記光 多重化信号が設定されているポートを有する光多重化信号受信手段と、  The optical multiplexed signal, in which the optical main signal and the optical sub-signal including the status information of the optical main signal, are multiplexed. The light to be input corresponding to each wavelength of the optical main signal. Optical multiplexed signal receiving means having a port where a multiplexed signal is set,
前記光多重化信号から、 前記光主信号と前記光副信号とを分離する分離手段と、 分離された前記光副信号が示す前記状態情報にもとづいて、 前記ポートを介し て受信された前記光主信号の運用状態が正常か否かの判定制御を行い、 前記運用 状態の異常状態を検出した場合には、 異常検出信号を出力する運用状態判定手段 と、  Separating means for separating the optical main signal and the optical sub-signal from the optical multiplexed signal; and the light received via the port based on the state information indicated by the separated optical sub-signal. An operation state determination unit that performs determination control as to whether or not the operation state of the main signal is normal, and outputs an abnormality detection signal when an abnormal state of the operation state is detected.
前記光主信号の光レベル調整制御を行い、 前記異常検出信号を受信した場合に は、 対応する前記光主信号の光レベルの減衰制御を行う光レベル制御手段と、 入力されるべき前記光主信号の波長がチャネル毎に設定され、 チャネルに対応 した前記ポートを通じて入力された前記光主信号の WDMの波長多重化を行う波 長多重化手段と、  Light level control means for performing light level adjustment control of the light main signal, and, when receiving the abnormality detection signal, performing attenuation control of light level of the corresponding light main signal; and Wavelength multiplexing means for setting a wavelength of a signal for each channel and performing WDM wavelength multiplexing of the optical main signal input through the port corresponding to the channel;
を有することを特徴とする光波長多重化装置。  An optical wavelength multiplexing device comprising:
6 . 前記運用状態判定手段は、 前記光主信号に対する、 前記ポートの整合に関 連する波長はずれ状態、 光レベル状態、 波長安定状態の少なくとも 1つの前記判 定制御を行うことを特徴とする請求項 5記載の光波長多重化装置。  6. The operation state determination means performs at least one of the wavelength shift state, the optical level state, and the wavelength stable state related to the matching of the port with respect to the optical main signal. Item 6. The optical wavelength multiplexing device according to Item 5.
7 . 前記運用状態を外部へ通知する外部通知手段をさらに有することを特徴と する請求項 5記載の光波長多重化装置。  7. The optical wavelength multiplexing apparatus according to claim 5, further comprising external notification means for notifying the operation state to the outside.
8 . WD Mの光通信制御を行う光通信装置において、  8. In an optical communication device that performs optical communication control of WDM,
光主信号の各波長に対応して、 入力されるべき前記光主信号が設定されている ポートを有する光主信号受信手段と、  Optical main signal receiving means having a port in which the optical main signal to be inputted is set, corresponding to each wavelength of the optical main signal;
前記光主信号の光レベルを、 WD Mの波長多重に使用される波長帯域で均一な 電圧である第 1の電圧に変換する第 1の光 電気変換手段と、 前記光主信号の光 レベルを、 前記光主信号の波長に対してのみ突出させた電圧である第 2の電圧に 変換する第 2の光 電気変換手段と、 前記第 1の電圧と前記第 2の電圧との差分 電圧を算出する差分電圧算出手段と、 前記第 1の電圧及び前記差分電圧にもとづ いて、 受信された前記光主信号の運用状態として、 光入力状態及び波長はずれ状 態を検出する運用状態検出手段と、 から構成されて前記ポート毎に設置された光 Z電気変換制御部と、 First photoelectric conversion means for converting an optical level of the optical main signal into a first voltage which is a uniform voltage in a wavelength band used for WDM wavelength multiplexing; and A second photoelectric conversion means for converting into a second voltage which is a voltage protruding only with respect to the wavelength of the optical main signal, and calculating a difference voltage between the first voltage and the second voltage Based on the first voltage and the difference voltage, the operation state of the received optical main signal, the light input state and the wavelength are shifted. Operating state detecting means for detecting a state,
前記光主信号の光レベル調整制御を行い、 前記運用状態が異常状態である光主 信号に対しては光レベルの減衰制御を行う光レベル制御手段と、  Light level control means for performing light level adjustment control of the light main signal, and performing light level attenuation control on the light main signal whose operation state is abnormal.
検出結果により、 前記光主信号の前記運用状態を認識し、 前記光レベル制御手 段の動作制御及び前記運用状態の外部通知を行う光主信号監視手段と、  An optical main signal monitoring unit that recognizes the operation state of the optical main signal based on the detection result, and performs operation control of the optical level control unit and external notification of the operation state;
入力されるべき前記光主信号の波長がチャネル毎に設定され、 チャネルに対応 した前記ポートを通じて入力された前記光主信号の WD Mの波長多重化を行う波 長多重化手段と、  Wavelength multiplexing means for setting the wavelength of the optical main signal to be input for each channel, and performing wavelength multiplexing of WDM of the optical main signal input through the port corresponding to the channel;
を有することを特徴とする光通信装置。  An optical communication device comprising:
9 . 光通信制御を行う光通信システムにおいて、  9. In an optical communication system that performs optical communication control,
光主信号の状態情報を含む光副信号を生成する光副信号生成手段と、 前記光主 信号及び前記光副信号を多重化した光多重化信号を生成して送信する多重化送信 手段と、 から構成される光多重化信号制御手段を有する光送信装置と、  Optical sub-signal generation means for generating an optical sub-signal including state information of the optical main signal; multiplex transmission means for generating and transmitting an optical multiplexed signal obtained by multiplexing the optical main signal and the optical sub-signal; An optical transmission device having an optical multiplexed signal control unit composed of:
前記光主信号の各波長に対応して、 入力されるべき前記光多重化信号が設定さ れているポートを有する光多重化信号受信手段と、 前記光多重化信号から、 前記 光主信号と前記光副信号とを分離する分離手段と、 分離された前記光副信号が示 す前記状態情報にもとづいて、 前記ポートを介して受信された前記光主信号の運 用状態が正常か否かの判定制御を行い、 前記運用状態の異常状態を検出した場合 には、 異常検出信号を出力する運用状態判定手段と、 前記光主信号の光レベル調 整制御を行い、 前記異常検出信号を受信した場合には、 対応する前記光主信号の 光レベルの減衰制御を行う光レベル制御手段と、 から構成される光通信制御装置 と、  An optical multiplexed signal receiving unit having a port in which the optical multiplexed signal to be inputted is set corresponding to each wavelength of the optical main signal; Separating means for separating the optical sub-signal from the optical sub-signal; and, based on the status information indicated by the separated optical sub-signal, whether the operation state of the optical main signal received via the port is normal or not. When an abnormal state of the operation state is detected, an operation state determination unit that outputs an abnormality detection signal, and a light level adjustment control of the optical main signal is performed, and the abnormality detection signal is received. In this case, an optical communication control device comprising: an optical level control means for performing attenuation control of the optical level of the corresponding optical main signal; and
を有することを特徴とする光通信システム。  An optical communication system comprising:
1 0 . 前記運用状態判定手段は、 前記光主信号に対する、 前記ポートの整合に 関連する波長はずれ状態、 光レベル状態、 波長安定状態の少なくとも 1つの前記 判定制御を行うことを特徴とする請求項 9記載の光通信システム。 10. The operation state determination means performs at least one of the wavelength shift state, the optical level state, and the wavelength stable state related to the matching of the port with respect to the optical main signal. 9. The optical communication system according to 9.
1 1 . 前記運用状態を外部へ通知する外部通知手段をさらに有することを特徴 とする請求項 9記載の光通信システム。 11. The optical communication system according to claim 9, further comprising external notification means for notifying the operation state to the outside.
1 2 . 光通信制御を行う光通信装置において、 1 2. In an optical communication device that performs optical communication control,
光主信号の各波長に対応して、 入力されるべき前記光主信号が設定されている ポートを有する光主信号受信手段と、  Optical main signal receiving means having a port in which the optical main signal to be inputted is set, corresponding to each wavelength of the optical main signal;
前記光主信号の光レベルを、 平坦電圧である第 1の電圧に変換する第 1の光 Z 電気変換手段と、 前記光主信号の光レベルを、 前記光主信号の波長に対してのみ 突出させた電圧である第 2の電圧に変換する第 2の光 Z電気変換手段と、 前記第 1の電圧と前記第 2の電圧との差分電圧を算出する差分電圧算出手段と、 前記第 1の電圧及び前記差分電圧にもとづいて、 受信された前記光主信号の運用状態と して、 光入力状態及び波長はずれ状態を検出する運用状態検出手段と、 から構成 されて前記ポート毎に設置された光 電気変換制御部と、  First optical Z-electrical conversion means for converting the optical level of the optical main signal into a first voltage that is a flat voltage; and projecting the optical level of the optical main signal only with respect to the wavelength of the optical main signal. A second optical Z-electric conversion unit that converts the voltage into a second voltage that is the applied voltage; a difference voltage calculation unit that calculates a difference voltage between the first voltage and the second voltage; Operating state detecting means for detecting an optical input state and an out-of-wavelength state as an operating state of the received optical main signal based on a voltage and the differential voltage, and installed for each of the ports. Photoelectric conversion control unit,
前記光主信号の光レベル調整制御を行い、 前記運用状態が異常状態である光主 信号に対しては光レベルの減衰制御を行う光レベル制御手段と、  Light level control means for performing light level adjustment control of the light main signal, and performing light level attenuation control for the light main signal whose operation state is abnormal.
検出結果により、 前記光主信号の前記運用状態を認識し、 前記光レベル制御手 段の動作制御及び前記運用状態の外部通知を行う光主信号監視手段と、  An optical main signal monitoring unit that recognizes the operation state of the optical main signal based on a detection result, and performs operation control of the optical level control unit and external notification of the operation state;
を有することを特徴とする光通信装置。  An optical communication device comprising:
PCT/JP2001/005190 2001-06-18 2001-06-18 Optical communication system and optical communication apparatus WO2002103937A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/005190 WO2002103937A1 (en) 2001-06-18 2001-06-18 Optical communication system and optical communication apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/005190 WO2002103937A1 (en) 2001-06-18 2001-06-18 Optical communication system and optical communication apparatus

Publications (1)

Publication Number Publication Date
WO2002103937A1 true WO2002103937A1 (en) 2002-12-27

Family

ID=11737452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005190 WO2002103937A1 (en) 2001-06-18 2001-06-18 Optical communication system and optical communication apparatus

Country Status (1)

Country Link
WO (1) WO2002103937A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04294647A (en) * 1991-03-25 1992-10-19 Mitsubishi Electric Corp Optical amplifier relay transmitter
JPH04314223A (en) * 1991-04-12 1992-11-05 Nippon Telegr & Teleph Corp <Ntt> Relay transmission line
JPH09289503A (en) * 1996-04-23 1997-11-04 Nec Corp Optical amplification device and wavelength multiplex optical transmission device using same
JPH10262001A (en) * 1997-03-19 1998-09-29 Fujitsu Ltd Optical transmission equipment provided with automatic wavelength control function
JPH10303860A (en) * 1997-04-25 1998-11-13 Nec Corp Wavelength division multiplex optical transmitter
JP2000068595A (en) * 1998-08-18 2000-03-03 Nec Corp Optical output drop detecting method and optical transmitter using the same
JP2000209155A (en) * 1999-01-14 2000-07-28 Nec Corp Optical wavelength monitor controller, optical wavelength multiplex optical transmitter, optical wavelength monitor control method and optical wavelength multiplex optical transmission method
JP2000236301A (en) * 1998-12-18 2000-08-29 Fujitsu Ltd Control method for optical multi-wavelength transmission equipment
JP2001007766A (en) * 1999-06-18 2001-01-12 Ntt Communications Kk Wdm optical interface device
JP2001069082A (en) * 1999-08-25 2001-03-16 Oki Electric Ind Co Ltd Optical wavelength multiplex network system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04294647A (en) * 1991-03-25 1992-10-19 Mitsubishi Electric Corp Optical amplifier relay transmitter
JPH04314223A (en) * 1991-04-12 1992-11-05 Nippon Telegr & Teleph Corp <Ntt> Relay transmission line
JPH09289503A (en) * 1996-04-23 1997-11-04 Nec Corp Optical amplification device and wavelength multiplex optical transmission device using same
JPH10262001A (en) * 1997-03-19 1998-09-29 Fujitsu Ltd Optical transmission equipment provided with automatic wavelength control function
JPH10303860A (en) * 1997-04-25 1998-11-13 Nec Corp Wavelength division multiplex optical transmitter
JP2000068595A (en) * 1998-08-18 2000-03-03 Nec Corp Optical output drop detecting method and optical transmitter using the same
JP2000236301A (en) * 1998-12-18 2000-08-29 Fujitsu Ltd Control method for optical multi-wavelength transmission equipment
JP2000209155A (en) * 1999-01-14 2000-07-28 Nec Corp Optical wavelength monitor controller, optical wavelength multiplex optical transmitter, optical wavelength monitor control method and optical wavelength multiplex optical transmission method
JP2001007766A (en) * 1999-06-18 2001-01-12 Ntt Communications Kk Wdm optical interface device
JP2001069082A (en) * 1999-08-25 2001-03-16 Oki Electric Ind Co Ltd Optical wavelength multiplex network system

Similar Documents

Publication Publication Date Title
US8891968B2 (en) Method and apparatus for loading, detecting, and monitoring channel-associated optical signals
US7046929B1 (en) Fault detection and isolation in an optical network
US5867289A (en) Fault detection for all-optical add-drop multiplexer
US6134032A (en) Method and apparatus for automatically identifying system faults in an optical communications system from repeater loop gain signatures
JP3320452B2 (en) Monitoring and control method for optical repeaters
US8009987B2 (en) Optical add/drop multiplexer
US20020129295A1 (en) Network node apparatus, network system using the same and fault location detecting method
JPH10322287A (en) Output port switching device in n-wdm system
EP1004184B1 (en) Self-healing ring network and a method for fault detection and rectifying
US6512865B1 (en) Cross-traffic suppression in wavelength division multiplexed systems
US7546034B2 (en) Circuit arrangement for line protection of optical data transmission
JP4728697B2 (en) Optical switch device and optical access network method and optical access network system using the same
US7660529B2 (en) System and method for providing failure protection in optical networks
JP2010147674A (en) Wavelength multiplex optical transmitter
US20050002671A1 (en) Wavelength division multiplexed optical transmission systems, apparatuses, and methods
US7657175B2 (en) Optical communication device
WO2002103937A1 (en) Optical communication system and optical communication apparatus
KR101586076B1 (en) System and method for recovering error in Passive Optical Network
JP5557670B2 (en) GEPON system, ONU and OLT
KR100334907B1 (en) Uni-Directional Protection of OCH Signal Layer for the Multi-channel WDM Optical Transmission System
EP1511331A1 (en) Controller for switching wavelength-division multiplex optical signal
US20240106559A1 (en) Systems and methods for coupling optical networks
WO2008031261A1 (en) System and method for providing failure protection in optical networks
WO2023238317A1 (en) Optical transmission device and optical transmission management method
JP2009159481A (en) Optical switching method and optical switching system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

NENP Non-entry into the national phase

Ref country code: JP