WO2023238317A1 - Optical transmission device and optical transmission management method - Google Patents

Optical transmission device and optical transmission management method Download PDF

Info

Publication number
WO2023238317A1
WO2023238317A1 PCT/JP2022/023256 JP2022023256W WO2023238317A1 WO 2023238317 A1 WO2023238317 A1 WO 2023238317A1 JP 2022023256 W JP2022023256 W JP 2022023256W WO 2023238317 A1 WO2023238317 A1 WO 2023238317A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wavelength
signal
light
wavelength conversion
Prior art date
Application number
PCT/JP2022/023256
Other languages
French (fr)
Japanese (ja)
Inventor
春香 巳波
剛志 関
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/023256 priority Critical patent/WO2023238317A1/en
Publication of WO2023238317A1 publication Critical patent/WO2023238317A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present invention relates to an optical transmission device and an optical transmission management method.
  • the optical signals may be significantly attenuated in the middle of the transmission path, or the transmission quality may deteriorate. is expected to occur. Therefore, in order to ensure that the optical signal transmitted from the transmitting node reaches the receiving node, one or more relay nodes are generally placed in the middle of the transmission path to amplify the attenuated optical signal and It is necessary to correct bit errors that occur during the process.
  • relay nodes since it is usually necessary to place relay nodes at regular intervals, when performing long-distance optical transmission, many relay nodes are connected to the middle of the transmission path between the sending node and the receiving node. .
  • Each relay node in an optical transmission system usually has an electrical termination function. That is, the received optical signal is once converted into an electrical signal, and the information of the converted electrical signal is relayed. Furthermore, when processing electrical signal information, transmission quality data (Pre-FEC BER, dispersion compensation amount, polarization mode dispersion amount, polarization dependent loss) at the relay node can be obtained.
  • transmission quality data Pre-FEC BER, dispersion compensation amount, polarization mode dispersion amount, polarization dependent loss
  • Non-Patent Document 1 discloses a technology for an optical transport network that omits electrical termination processing in an optical node device. Furthermore, Non-Patent Document 1 discloses the introduction of a wavelength conversion function for converting the wavelength of an optical signal to another wavelength in an optical node device passing through in order to efficiently use limited wavelength resources.
  • each relay node is equipped with an electrical termination function, transmission quality data can be obtained for each relay node. Therefore, by comparing the transmission quality data of each relay node, it is possible to determine whether or not a failure has occurred in each section.
  • an optical splitter at the relay node, for example.
  • one optical signal received by a relay node is split into two paths using an optical splitter, and the main signal on one path is relayed as an optical signal, while the optical signal on the other path is converted into an electrical signal. It is used to obtain transmission quality data.
  • the signal delay of the optical main signal due to relaying can be reduced.
  • the optical intensity of the optical main signal to be relayed decreases, resulting in deterioration of transmission quality at the relay node.
  • the present invention has been made in view of the above-mentioned situation, and is an optical fiber that can acquire transmission quality data for each relay node without affecting the delay of the optical main signal relayed by the relay node or the deterioration of the transmission quality.
  • the purpose of the present invention is to provide a transmission device and an optical transmission management method.
  • An optical transmission node capable of transmitting optical signals and an optical reception node capable of receiving optical signals are connected via an optical transmission line, and one or more An optical transmission device that can be installed in at least one optical relay node of an optical transmission system to which optical relay nodes are connected, an all-optical wavelength conversion device that converts the wavelength of an optical signal relayed by at least one optical relay node; an unnecessary light extraction unit that extracts unnecessary light components other than the optical main signal having the same wavelength as the optical main signal to be relayed before wavelength conversion; a photoelectrical signal converter that converts the unnecessary light component light extracted by the unnecessary light extractor into an electrical signal;
  • An optical transmission device comprising:
  • An optical transmitting node capable of transmitting optical signals and an optical receiving node capable of receiving optical signals are connected via an optical transmission line, and one or more An optical transmission management method for managing an optical transmission system to which optical relay nodes are connected, the method comprising: In at least one of the optical relay nodes of the optical transmission system, a step of converting the wavelength of the received optical signal and transmitting the wavelength-converted optical signal as a relay output; a step of extracting, from the received optical signal, unnecessary optical components other than the optical main signal having the same wavelength as the optical main signal to be relayed before wavelength conversion; a step of converting the extracted unnecessary light component light into an electrical signal; generating transmission quality data based on the electrical signal; Optical transmission management method to implement.
  • the optical transmission device and optical transmission management method of the present invention there is no need for electrical termination processing at the relay node, and the relay node It becomes possible to acquire transmission quality data at each time. Therefore, when a fault occurs on the optical network, it becomes easy to identify the location of the fault. Furthermore, even if no failure has occurred, information useful for predicting failures on optical networks can be obtained.
  • FIG. 1 is a block diagram showing an example of the configuration of a general optical transmission system.
  • FIG. 1 is a block diagram showing an example of the configuration of a general optical transmission system.
  • FIG. 3 is a block diagram showing a modification of the optical transmission system.
  • FIG. 3 is a block diagram showing a modification of the optical transmission system.
  • FIG. 2 is a schematic diagram showing an example of the relationship between optical communication links and wavelength bands in multiband networking technology.
  • 1 is a block diagram showing a configuration example of an optical transmission system in an embodiment of the present invention.
  • 7 is a block diagram showing a configuration example of an all-optical wavelength conversion section included in the optical transmission system of FIG. 6.
  • FIG. 6 is a block diagram showing an all-optical wavelength conversion section included in the optical transmission system of FIG. 6.
  • FIG. 8 is a graph showing a list of optical signal wavelength distributions in each part of the all-optical wavelength conversion section in FIG. 7.
  • FIG. 7 is a block diagram showing the configuration of a modification example of FIG. 6.
  • FIG. 10 is a block diagram showing a first configuration example of an all-optical wavelength conversion section included in the optical transmission system of FIG. 9.
  • FIG. 11 is a graph showing a list of optical signal wavelength distributions in each part of the all-optical wavelength conversion section in FIG. 10;
  • 10 is a block diagram showing a second configuration example of an all-optical wavelength conversion section included in the optical transmission system of FIG. 9.
  • FIG. 13 is a graph showing a list of optical signal wavelength distributions in each part of the all-optical wavelength conversion section in FIG. 12.
  • FIG. 3 is a flowchart showing an example of a processing procedure of the optical transmission management method of the present invention.
  • FIG. 3 is a block diagram showing a modification of the configuration of the all-optical wavelength conversion section.
  • FIG. 1 shows a configuration example of a general optical transmission system 100A.
  • FIG. 1 shows a configuration example of a general optical transmission system 100B. Further, modified examples of the optical transmission system shown in FIG. 1 are shown in FIGS. 3 and 4.
  • optical transmission devices 10-1, 10-2, 10-3, 10-4, 10-5, 10-6, and 10-7 are arranged in an example, They are connected to each other in series via a common optical fiber cable 15. Further, a network controller 20 is connected to each of the optical transmission devices 10-1 to 10-7 to manage a communication network including these optical transmission devices 10-1 to 10-7.
  • the optical transmission device 10-1 when transmitting data from the optical transmission device 10-1 at one end of this communication network to the optical transmission device 10-7 at the other end, the optical transmission device 10-1 becomes a transmission node, and the optical transmission device 10-1 -7 becomes the receiving node. Further, optical transmission devices 10-2 to 10-6 located between these transmitting nodes and receiving nodes are respectively used as relay nodes.
  • the optical transmission device 10-1 of the transmitting node converts the data to be transmitted from an electrical signal into an optical signal of a predetermined wavelength inside a transponder (TPD) 11, and sends this optical signal to the optical fiber cable 15.
  • the optical transmission device 10-7 of the receiving node receives the optical signal from the optical fiber cable 15, converts the optical signal into an electrical signal with the transponder 11 in the optical transmission device 10-7, and obtains received data.
  • the optical intensity decreases and transmission quality such as bit error rate (BER) deteriorates. Furthermore, if the optical intensity decreases significantly or the bit error rate increases significantly, the optical transmission device 10-7 of the receiving node will be unable to correctly receive the transmitted data.
  • BER bit error rate
  • each relay node perform predetermined relay processing. That is, each relay node amplifies the optical intensity of the optical signal received at its respective relay position, and restores the original data free of bit errors through predetermined error correction processing.
  • the optical transmission devices 10-2 to 10-6 convert optical signals into electrical signals within the transponder 11, process data of the obtained electrical signals, and perform error correction processing and the like. Further, the optical transmission devices 10-2 to 10-6 convert the processed electrical signals into optical signals again, and send them as relay outputs to the optical fiber cable 15 on the downstream side.
  • the configuration of the optical transmission system 100A shown in FIG. 1 can be improved like the optical transmission system 100B shown in FIG.
  • the transponders 11 are present in the optical transmission devices 10-1 and 10-7, but the transponders 11 are not present in the other optical transmission devices 10-2 to 10-6. That is, when transmitting an optical signal from the optical transmission device 10-1 of the transmitting node to the optical transmission device 10-7 of the receiving node, relaying including electrical termination processing is not performed even once. Therefore, the delay time associated with optical signal transmission in optical transmission system 100B is significantly reduced compared to optical transmission system 100A.
  • each of the optical transmission devices 10-2 to 10-6 does not have a transponder 11 and does not perform electrical termination processing, so the relay nodes of each optical transmission device 10-2 to 10-6 Transmission quality data cannot be obtained at the location.
  • the network controller 20 normally transmits optical signals to narrow down candidates for the location where the failure has occurred based on transmission quality data detected at the location of each node used for optical signal transmission. Divide into sections. However, in the case of the optical transmission system 100B, transmission quality data at the relay positions of each optical transmission device 10-2 to 10-6 cannot be obtained, so the output of the optical transmission device 10-1 and the input of the optical transmission device 10-7 are It is not possible to isolate in which section the failure is occurring. As a result, it becomes difficult to identify the location where the failure has occurred, and it takes a long time to recover from the failure. In particular, when the distance of the optical fiber cable 15 is very long, it is difficult to find the location where the fault has occurred.
  • the optical transmission device 10-4 used as a relay node is equipped with a transponder 11, so the network controller 20 can acquire transmission quality data at this relay position. Therefore, when a failure occurs, the failure location is located in the section from the output of the optical transmission device 10-1 to the input of the optical transmission device 10-4, and from the relay output of the optical transmission device 10-4 to the optical transmission device 10-4. Based on the transmission quality data detected by the optical transmission device 10-4, it can be determined which of the sections up to the input of No. 7 is included.
  • the transponder 11 having an electrical termination function in the optical transmission device 10-4 of the relay node as in the optical transmission system 100C, the location of the failure can be identified compared to the optical transmission system 100B in FIG. This makes it easier to divide sections for However, in the case of the optical transmission system 100C, the optical transmission device 10-4 of the relay node has an electrical termination function, which causes a transmission delay.
  • the optical transmission device 10-4 of the relay node is equipped with an optical splitter 12.
  • the optical splitter 12 branches the optical signal inputted from the optical fiber cable 15 into two paths in the form of light, and outputs them to optical output ends 12a and 12b, respectively.
  • An optical output end 12a of the optical splitter 12 is connected to an optical fiber cable 15 on the relay output side.
  • the optical output end 12b of the optical splitter 12 is connected to the input of the transponder 11 in the optical transmission device 10-4.
  • the optical transmission device 10-4 since the optical transmission device 10-4 relays and outputs the optical signal without electrical termination processing as it is, it is possible to prevent transmission delays from occurring at this node position. Furthermore, since the transponder 11 in the optical transmission device 10-4 detects the transmission quality data at this node position, it becomes easy to isolate the faulty section as in the case of the optical transmission system 100C.
  • the optical signal to be relayed (main signal) is lost due to the loss that occurs when it passes through the optical splitter 12.
  • Light intensity decreases. Therefore, deterioration in transmission quality occurs at the node position of the optical transmission device 10-4.
  • FIG. 5 shows an example of the relationship between optical communication links and wavelength bands in multiband networking technology (see Non-Patent Document 1).
  • L band is a wavelength band of 1565 to 1625 nm.
  • the C-band is a wavelength band from 1530 to 1565 nm.
  • the S-band is a wavelength band from 1460 to 1530 nm.
  • each of the L band, C band, and S band has a mutually independent optical path.
  • the optical signals of each optical communication link 31, 32 are adaptively band-switched depending on the situation, and are switched so as to straddle the optical path of multiple bands. That is, after the optical signal of the optical communication link 31 shown in FIG. It is converted into a band optical signal and enters the S-band optical path. This light is then converted into an L-band optical signal by wavelength conversion, enters the L-band optical path, is converted into an electrical signal by Ph-EX (Photonic Exchange), is processed, and is output. Ph-EX is a component that minimizes electrical processing such as exchange, multiplexing, and switching.
  • the optical signal of the optical communication link 32 having a C-band wavelength passes through the C-band optical path, is converted into an S-band optical signal by wavelength conversion, enters the S-band optical path, and is converted into an electrical signal by Ph-EX. converted and processed.
  • the optical transmission system can efficiently use limited wavelength resources. Specifically, the amount of traffic that can be accommodated on the transmission line can be increased by about 30%. Furthermore, since electrical termination processing can be omitted at each communication node and optical signals can be processed as they are, effects such as power savings, increased capacity, and reduced delay in the network can be expected. However, the optical transmission equipment at each node position needs to be equipped with a function to convert the wavelength of the optical signal.
  • FIG. 6 shows a configuration example of an optical transmission system 100 in an embodiment of the present invention.
  • the optical transmission system 100 shown in FIG. 6 includes five optical transmission devices 41, 42, 43, 44, and 45 and a network controller 20.
  • the five optical transmission devices 41 to 45 are installed, for example, in a line at locations separated from each other by a certain distance. Further, the optical transmission devices 41 to 45 are connected in series to each other via one optical fiber cable 15 used as a transmission path for optical signals.
  • the network controller 20 manages the entire optical communication network composed of the optical transmission devices 41 to 45 and the optical fiber cable 15. For example, when a failure occurs on the optical communication network, the network controller 20 can generate information useful for identifying the location of the failure.
  • optical transmission device 41 when transmitting data from an optical transmission device 41 at one end of this communication network to an optical transmission device 45 at the other end, the optical transmission device 41 becomes a transmitting node and the optical transmission device 45 becomes a receiving node. Further, optical transmission devices 42 to 44 located between these transmitting nodes and receiving nodes are respectively used as relay nodes.
  • the optical transmission device 41 of the transmitting node converts the data to be transmitted from an electrical signal into an optical signal of a predetermined wavelength inside the transponder 11, and sends this optical signal to the optical fiber cable 15.
  • the optical transmission device 45 of the receiving node receives the optical signal from the optical fiber cable 15, converts the optical signal into an electrical signal with the transponder 11 in the optical transmission device 45, and obtains received data.
  • an all-optical wavelength conversion unit 13 that implements an AO-WC (All Optical Wavelength Conversion) function is installed inside an optical transmission device 43 used as one relay node. We are prepared.
  • the all-optical wavelength conversion unit 13 in the optical transmission device 43 performs wavelength conversion processing on the input optical signal Oin, which is inputted to the optical transmission device 43 from the optical fiber cable 15 and has a wavelength of ⁇ 1, as an optical signal, and converts it into a signal different from the input.
  • An optical signal with a wavelength ⁇ 2 can be generated and sent to the optical fiber cable 15 on the downstream side as an output optical signal Oo2 with a wavelength ⁇ 2.
  • the all-optical wavelength converter 13 shown in FIG. 6 extracts an unnecessary optical component different from the optical main signal relayed inside the optical transmission device 43 and inputs it to the detector 11A inside the optical transmission device 43. be able to.
  • the detector 11A has the same electrical termination function as the transponder 11, but does not have the function of transmitting an optical signal. That is, the detector 11A has a function of converting an input optical signal into an electrical signal, and a function of processing this electrical signal to detect transmission quality data.
  • the optical transmission device 43 relays the optical main signal to be relayed without electrical termination processing, and transmits the optical signal as it is to the downstream optical fiber cable 15, so it is possible to prevent an increase in delay due to the relay processing. Furthermore, as will be described later, since there is no need to use an optical splitter to extract the optical signal input to the detector 11A, it is possible to prevent the optical main signal from decreasing in optical intensity.
  • the all-optical wavelength converter 13 extracts an unnecessary optical component different from the optical main signal to be relayed and inputs it to the detector 11A in the optical transmission device 43, so the detector 11A is located at the node position of the optical transmission device 43 transmission quality data can be detected.
  • the network controller 20 can acquire transmission quality data of relay nodes such as the optical transmission equipment 43 that do not perform electrical termination processing. For example, when a failure occurs, the network controller 20 can determine whether or not a failure has occurred for each section based on transmission quality data at the location of each relay node.
  • FIG. 7 shows a configuration example of the all-optical wavelength conversion section 13 included in the optical transmission system 100 of FIG. 6.
  • the all-optical wavelength conversion unit 13 shown in FIG. 7 includes an excitation light source 14, an optical fiber 15A, an optical multiplexer 16, a nonlinear optical medium 17, an optical demultiplexer 18, and an optical fiber 15B.
  • the all-optical wavelength conversion unit 13 is an all-optical wavelength conversion device that includes a nonlinear optical medium 17 into which both the main optical signal to be relayed and the excitation light emitted from the excitation light source 14 can be input simultaneously.
  • the excitation light source 14 generates excitation light Oe with a predetermined wavelength ⁇ e.
  • the excitation light Oe generated by the excitation light source 14 passes through the optical fiber 15A and enters the optical multiplexer 16.
  • the wavelength ⁇ e of the excitation light Oe is different from the wavelength ⁇ 1 of the input optical signal Oin.
  • the optical intensity of the excitation light Oe is sufficiently large compared to the input optical signal Oin.
  • the optical multiplexer 16 generates light by combining the input optical signal Oin input from the optical fiber cable 15 and the excitation light Oe input from the optical fiber 15A, and sends it to the input end of the nonlinear optical medium 17.
  • the nonlinear optical medium 17 has nonlinear optical characteristics and can generate an optical signal with a wavelength different from that of the incident light.
  • any one of a highly nonlinear fiber (HNLF), a periodically poled lithium niobate (PPLN), and a semiconductor optical amplifier (SOA) can be used as the nonlinear optical medium 17.
  • the optical demultiplexer 18 is connected to the light output side of the nonlinear optical medium 17, which is a total light wave conversion device.
  • the output light Oout output from the output end of the nonlinear optical medium 17 is input to the optical demultiplexer 18 .
  • the optical demultiplexer 18 demultiplexes the incident light according to its wavelength selection characteristics, and extracts two types of optical signals. That is, the output optical signal Oo2 with the wavelength ⁇ 2 and the output light Oo1 with the wavelength ⁇ 1 are output from different output terminals of the optical demultiplexer 18.
  • the wavelength ⁇ 2 of the outgoing optical signal Oo2 is generated based on the wavelength of the input optical signal Oin, the wavelength ⁇ e of the excitation light Oe, and the nonlinear optical characteristics of the nonlinear optical medium 17. That is, by passing the input optical signal Oin with the wavelength ⁇ 1 through the nonlinear optical medium 17 together with the excitation light Oe, the wavelength ⁇ 2 of the wavelength-converted output optical signal Oo2 is generated. Furthermore, the light emitted from the nonlinear optical medium 17 also contains a light component having the same wavelength ⁇ 1 as before wavelength conversion.
  • the output optical signal Oo2 of wavelength ⁇ 2 outputted from the optical demultiplexer 18 is sent out from the output of the optical transmission device 43 to the downstream optical fiber cable 15 as a relay output. Further, the output light Oo1 having the wavelength ⁇ 1 output from the optical demultiplexer 18 is input to the detector 11A in the optical transmission device 43 via the optical fiber 15B.
  • the wavelength of the optical main signal relayed by the optical transmission device 43 is converted from ⁇ 1 to ⁇ 2 without electrical termination processing. This can prevent an increase in delay.
  • the output light Oo1 having the same wavelength ⁇ 1 as before wavelength conversion, which is output from the all-optical wavelength conversion unit 13, that is, unnecessary light components other than the main signal can be input to the detector 11A.
  • the detector 11A can internally convert the input output light Oo1 of wavelength ⁇ 1 into an electrical signal, and perform various processing on the electrical signal. Thereby, transmission quality data at the relay node position of the optical transmission device 43 is obtained.
  • the wavelength ⁇ 2 of the main optical signal transmitted by the relay node is different from the wavelength ⁇ 1 of light other than the main signal input to the detector 11A. Therefore, the correlation between the transmission quality detected for the wavelength ⁇ 1 and the transmission quality detected for the wavelength ⁇ 2 is specified in advance, and the transmission quality data detected by the detector 11A is determined based on the correlation. and converts it into transmission quality data for the optical signal to be relayed. This conversion process may be performed inside the detector 11A or may be performed on the network controller 20 side.
  • FIG. 8 shows a list of optical signal wavelength distributions in each part of the all-optical wavelength conversion section 13 in FIG. 7.
  • the horizontal axis in FIG. 8 represents wavelength, and the vertical axis represents light intensity.
  • the input optical signal Oin input from the upstream optical fiber cable 15 to the optical transmission device 43 includes only a component of a single wavelength ⁇ 1. Furthermore, the excitation light Oe generated by the excitation light source 14 includes only a component of a single wavelength ⁇ e. Further, as shown in the second graph, the optical intensity of the excitation light Oe is sufficiently larger than the input optical signal Oin.
  • the output light Oout output from the nonlinear optical medium 17 includes components of three types of wavelengths ⁇ 1, ⁇ e, and ⁇ 2, as shown in the third graph in FIG.
  • the component of wavelength ⁇ 2 is a component generated by wavelength conversion of the input optical signal Oin as it passes through the nonlinear optical medium 17.
  • the light intensity of the wavelength ⁇ 2 component included in the output light Oout depends on the nonlinear optical medium and the excitation light intensity, and can be made equal to the input optical signal Oin. In other words, wavelength conversion can be performed without attenuating the light intensity.
  • the light intensity of the component of wavelength ⁇ 1 included in the output light Oout is equivalent to the input optical signal Oin.
  • an optical signal other than the main signal having the same wavelength ⁇ 1 as before wavelength conversion and having a sufficiently high optical intensity can be extracted from the output of the nonlinear optical medium 17.
  • a transmitted optical signal Oo2 containing only the component of wavelength ⁇ 2 is extracted from one output of the optical demultiplexer 18.
  • the fourth graph in FIG. 8 shows the transmitted optical signal Oo2. This outgoing optical signal Oo2 is sent out to the optical fiber cable 15 on the downstream side as a relay output optical main signal.
  • the output light Oo1 containing only the component of the same wavelength ⁇ 1 as that before wavelength conversion is extracted from the other output of the optical demultiplexer 18, and this output light Oo1 passes through the optical fiber 15B.
  • the signal is input to the detector 11A via the sensor.
  • the fifth graph in FIG. 8 shows the output light Oo1.
  • the detector 11A since the emitted light Oo1 with sufficiently high light intensity is input to the detector 11A, the detector 11A can easily detect transmission quality data at the position of the corresponding relay node.
  • the detector 11A internally converts the input optical signal into an electrical signal, and detects transmission quality data by processing the electrical signal.
  • FIG. 9 shows a configuration of an optical transmission system 200 that is a modification of the configuration in FIG. 6.
  • the optical transmission system 200 shown in FIG. 9 includes five optical transmission devices 51, 52, 53, 54, and 55 and a network controller 20.
  • the five optical transmission devices 51 to 55 are installed, for example, in a line at locations separated from each other by a certain distance. Further, each of the optical transmission devices 51 to 55 shown in FIG. 9 has a function of transmitting a WDM (Wavelength Division Multiplexing) optical signal in which optical signals of multiple wavelengths are multiplexed.
  • WDM Widelength Division Multiplexing
  • the five optical transmission devices 51 to 55 are connected in series to each other via one or more optical fiber cables 15 used as transmission paths for WDM optical signals.
  • Optical transmission devices 51 and 55 located at the end of the network that function as transmitting nodes or receiving nodes are each equipped with a plurality of transponders 11a to 11n that are capable of processing WDM optical signals.
  • the network controller 20 manages the entire optical communication network composed of the optical transmission devices 51 to 55 and the optical fiber cable 15. For example, when a failure occurs on the optical communication network, the network controller 20 can generate information useful for identifying the location of the failure.
  • optical transmission device 51 when transmitting data from an optical transmission device 51 at one end of this communication network to an optical transmission device 55 at the other end, the optical transmission device 51 becomes a transmitting node and the optical transmission device 55 becomes a receiving node. Furthermore, optical transmission devices 52 to 54 located between these transmitting nodes and receiving nodes are used as relay nodes, respectively.
  • the optical transmission device 51 of the transmission node converts the data to be transmitted from an electrical signal into an optical signal of a predetermined wavelength inside each transponder 11a to 11n, and sends out a WDM optical signal multiplexed with multiple wavelengths to the optical fiber cable 15. do.
  • the optical transmission device 55 of the receiving node receives the WDM optical signal from the optical fiber cable 15.
  • the optical transmission device 55 separates the received WDM optical signal for each wavelength, converts the optical signal into an electrical signal in each transponder 11a to 11n, and obtains received data by processing the electrical signal.
  • the optical transmission device 53 used as one relay node includes an all-optical wavelength conversion section 13A that implements the AO-WC function. Further, a plurality of transponders 11a to 11n compatible with WDM optical signals are mounted on the optical transmission device 53.
  • the all-optical wavelength conversion unit 13A in the optical transmission device 53 performs wavelength conversion processing on the WDM optical signal inputted to the optical transmission device 53 from the upstream optical fiber cable 15 as an optical signal, so that the wavelength is different from the input one.
  • a WDM optical signal can be generated and sent to the downstream optical fiber cable 15.
  • the all-optical wavelength conversion section 13A can extract unnecessary optical components separated from the WDM optical main signal relayed by the optical transmission device 53 and input them to the detectors 11Aa to 11An in the optical transmission device 53.
  • the optical transmission device 53 relays the WDM optical main signal to be relayed without electrical termination processing, and relays the optical signal as it is and sends it to the downstream optical fiber cable 15, so it is possible to prevent an increase in delay due to relay processing. . Further, since it is not necessary to use an optical splitter to extract the optical signals input to the detectors 11Aa to 11An, it is possible to suppress a decrease in the optical intensity of the WDM optical main signal.
  • the all-optical wavelength converter 13A extracts unnecessary optical components separated from the WDM optical main signal to be relayed and inputs them to the detectors 11Aa to 11An in the optical transmission device 53. Transmission quality data at 53 node locations can be detected.
  • the network controller 20 can acquire transmission quality data of a relay node such as the optical transmission device 53 that does not perform electrical termination processing. For example, when a failure occurs, the network controller 20 can determine whether the failure has occurred in each section based on transmission quality data at the location of each relay node. Furthermore, the optical transmission device 53 can also replace the transmission signal and the extraction signal. In this case, the optical transmission device 53 transmits each optical component with wavelengths ⁇ 11 to ⁇ 1n, detects each optical component with wavelengths ⁇ 21 to ⁇ 2n as an extraction signal, and obtains transmission quality data. As a result, the optical transmission device 53 can acquire transmission quality data even when wavelength conversion is not performed.
  • the all-optical wavelength conversion section 13A shown in FIG. 10 includes an excitation light source 14, an optical fiber 15A, an optical multiplexer 16, a nonlinear optical medium 17, an optical demultiplexer 18, and an optical fiber 15B.
  • the excitation light source 14 generates excitation light Oe with a predetermined wavelength ⁇ e.
  • the excitation light Oe generated by the excitation light source 14 passes through the optical fiber 15A and enters the optical multiplexer 16.
  • the wavelength ⁇ e of the excitation light Oe is different from each of the wavelengths ⁇ 1 to ⁇ n included in the WDM input optical signal Oin. Further, the optical intensity of the excitation light Oe is sufficiently large compared to the WDM input optical signal Oin.
  • the optical multiplexer 16 generates light by combining the WDM input optical signal Oin input from the optical fiber cable 15 and the excitation light Oe input from the optical fiber 15A, and sends it to the input end of the nonlinear optical medium 17. do.
  • the output light Oout output from the output end of the nonlinear optical medium 17 is input to the optical demultiplexer 18.
  • This emitted light Oout includes a WDM optical signal after wavelength conversion.
  • the optical demultiplexer 18 demultiplexes the incident light according to its wavelength selection characteristics, and extracts the outgoing optical signal Oo2, which is the WDM optical main signal to be relayed, and the output lights Oo11 to Oo1n, which are other than the WDM optical main signal. do.
  • the wavelength of the output optical signal Oo2 which is a WDM optical signal, is generated from each wavelength included in the WDM input optical signal Oin, the wavelength ⁇ e of the excitation light Oe, and the nonlinear optical characteristics of the nonlinear optical medium 17. That is, the input optical signal Oin including a plurality of wavelengths ⁇ 1 to ⁇ n passes through the nonlinear optical medium 17 together with the excitation light Oe, thereby generating an output optical signal Oo2 that is wavelength-converted for each WDM wavelength. Furthermore, the light emitted from the nonlinear optical medium 17 also contains light components having the same plurality of wavelengths ⁇ 1 to ⁇ n as before wavelength conversion.
  • the wavelength-converted transmission optical signal Oo2 output from the optical demultiplexer 18 is transmitted from the output of the optical transmission device 53 to the downstream optical fiber cable 15 as a relay output. Furthermore, the WDM output light Oo1 containing the same plurality of wavelengths ⁇ 1 to ⁇ n as before wavelength conversion, which is output from the optical demultiplexer 18, is sent to the plurality of detectors 11Aa to 11An in the optical transmission device 53 via the optical fiber 15B. The output lights are inputted as output lights Oo11 to Oo1n separated for each wavelength.
  • the wavelength of the WDM optical main signal relayed by the optical transmission device 53 can be converted as it is without electrical termination processing, and the wavelength can be delayed. can prevent an increase in Further, the output lights Oo11 to Oo1n of the same wavelengths ⁇ 1 to ⁇ n as before wavelength conversion outputted from the all-optical wavelength conversion unit 13A, that is, unnecessary light components other than the main signal to be relayed, are sent to the plurality of detectors 11Aa to 11An for each wavelength. can be entered.
  • Each of the detectors 11Aa to 11An internally converts any of the output lights Oo11 to Oo1n separated for each wavelength into an electrical signal, and can perform various processing in the form of the electrical signal. As a result, transmission quality data for each wavelength at the relay node position of the optical transmission device 53 can be obtained.
  • FIG. 11 shows a list of optical signal wavelength distributions in each part of the all-optical wavelength conversion section 13A in FIG. 10.
  • the horizontal axis in FIG. 11 represents wavelength, and the vertical axis represents light intensity.
  • the input optical signal Oin input from the upstream optical fiber cable 15 to the optical transmission device 53 includes multiplexed components of multiple wavelengths ⁇ 11 to ⁇ 1n.
  • the excitation light Oe generated by the excitation light source 14 includes only a component of a single wavelength ⁇ e. Further, the optical intensity of the excitation light Oe is sufficiently larger than the input optical signal Oin.
  • the optical components with wavelengths ⁇ 21 to ⁇ 2n are optical components generated by wavelength conversion of the input optical signal Oin as it passes through the nonlinear optical medium 17. Furthermore, the light intensity of the components of wavelengths ⁇ 21 to ⁇ 2n included in the output light Oout is equal to that of the input optical signal Oin. In other words, wavelength conversion can be performed without attenuating the light intensity.
  • the light intensity of the components of wavelengths ⁇ 11 to ⁇ 1n included in the output light Oout is equal to that of the input optical signal Oin.
  • optical signals other than the main signal having the same wavelengths ⁇ 11 to ⁇ 1n as before wavelength conversion can be extracted from the output of the nonlinear optical medium 17 with sufficiently high optical intensity.
  • an output optical signal Oo2 containing optical components with wavelengths ⁇ 21 to ⁇ 2n is extracted from one output of the optical demultiplexer 18, and this output optical signal Oo2 becomes the WDM optical main signal of the relay output.
  • the signal is sent out to the optical fiber cable 15 on the downstream side.
  • the fourth graph shows the transmitted optical signal Oo2.
  • output lights Oo11 to Oo1n containing light components of the same wavelengths ⁇ 11 to ⁇ 1n as before wavelength conversion are extracted to the other output of the optical demultiplexer 18, and these output lights Oo11 to Oo1n are extracted.
  • oO1n is input to a plurality of detectors 11Aa to 11An for each wavelength via an optical fiber 15B.
  • the fifth graph shows the emitted light Oo11.
  • the sixth graph shows the output light Oo1n.
  • the detectors 11Aa to 11An can easily detect transmission quality data for each wavelength at the position of the corresponding relay node.
  • each of the detectors 11Aa to 11An internally converts an input optical signal into an electrical signal, and detects transmission quality data by processing the electrical signal.
  • FIG. 12 shows a second configuration example of the all-optical wavelength conversion section 13B that can be implemented in the optical transmission system 200 of FIG. 9.
  • a wavelength filter 19 is connected to the downstream side of the optical fiber 15B, and a single detector 11A is connected to the output side of the wavelength filter 19.
  • the wavelength filter 19 can selectively extract the component of the optical signal Oo1x of a specific wavelength from the output light Oo1 in which optical components of multiple wavelengths ⁇ 11 to ⁇ 1n are multiplexed, and input it to the detector 11A.
  • the wavelength filter 19 As a representative example of the wavelength filter 19, it is assumed that one of the following (1) to (3) is adopted, for example.
  • a 1 ⁇ n wavelength selective switch (WSS) is used. In that case, the wavelength of the optical signal passing through each port can be electrically controlled.
  • BSS wavelength selective switch
  • the wavelength of the optical signal to be detected can be selected by setting the optical wavelength of the local light within the detector 11A.
  • the installation of the wavelength filter 19 is omitted, the output light Oo1 is made to enter the detector 11A as a WDM signal, and the wavelength to be processed is selected inside the detector 11A.
  • the configuration of the all-optical wavelength converter 13B other than the above is the same as that of the all-optical wavelength converter 13A.
  • FIG. 13 shows a list of optical signal wavelength distributions in each part of the all-optical wavelength conversion section 13B in FIG. 12.
  • the horizontal axis in FIG. 13 represents wavelength, and the vertical axis represents light intensity.
  • the input optical signal Oin input from the upstream optical fiber cable 15 to the optical transmission device 53 includes multiplexed components of multiple wavelengths ⁇ 11 to ⁇ 1n. Furthermore, the excitation light Oe generated by the excitation light source 14 includes only a component of a single wavelength ⁇ e. Further, the optical intensity of the excitation light Oe is sufficiently larger than the input optical signal Oin.
  • the output light Oout output from the nonlinear optical medium 17 includes light components with wavelengths ⁇ 11 to ⁇ 1n, ⁇ e, and ⁇ 21 to ⁇ 2n, as shown in FIG.
  • the optical components with wavelengths ⁇ 21 to ⁇ 2n are optical components generated by wavelength conversion of the input optical signal Oin as it passes through the nonlinear optical medium 17. Furthermore, the light intensity of the components of wavelengths ⁇ 21 to ⁇ 2n included in the output light Oout is equal to that of the input optical signal Oin. In other words, wavelength conversion can be performed without attenuating the light intensity.
  • the light intensity of the components of wavelengths ⁇ 11 to ⁇ 1n included in the output light Oout is equal to that of the input optical signal Oin.
  • optical signals other than the main signal having the same wavelengths ⁇ 11 to ⁇ 1n as before wavelength conversion can be extracted from the output of the nonlinear optical medium 17 with sufficiently high optical intensity.
  • an output optical signal Oo2 containing optical components with wavelengths ⁇ 21 to ⁇ 2n is extracted from one output of the optical demultiplexer 18, and this output optical signal Oo2 becomes the WDM optical main signal of the relay output.
  • the signal is sent out to the optical fiber cable 15 on the downstream side.
  • the output light Oo1 containing the light components of the same wavelengths ⁇ 11 to ⁇ 1n as before wavelength conversion is extracted to the other output of the optical demultiplexer 18, and this output light Oo1 is filtered by the wavelength filter. 19 is input.
  • the wavelength filter 19 selectively extracts a light component of one wavelength ⁇ 1a from the wavelengths ⁇ 11 to ⁇ 1n and inputs it to the detector 11A.
  • the single detector 11A sequentially selects each of the wavelengths ⁇ 11 to ⁇ 1n included in the WDM optical signal of the emitted light Oo1, converts each wavelength into an electrical signal, and processes it. Transmission quality data at each location can be detected for each wavelength.
  • FIG. 14 shows an example of the processing procedure of the optical transmission management method of the present invention. The processing procedure of FIG. 14 will be explained below.
  • This processing procedure can be used, for example, to manage the optical transmission system 100 as shown in FIG.
  • the optical transmission device 43 at the node position of the optical transmission device 43 that relays communication, the optical transmission device 43 receives the input optical signal Oin from the upstream optical fiber cable 15 in step S11, and 13 performs wavelength conversion of the input optical signal Oin in step S12.
  • the optical demultiplexer 18 in the all-optical wavelength converter 13 sends out the wavelength-converted outgoing optical signal Oo2 to the downstream optical fiber cable 15 as a relay output in step S13. Further, the optical demultiplexer 18 in the all-optical wavelength converter 13 extracts the output light Oo1 having the same wavelength as before wavelength conversion, that is, unnecessary light that is not used for relaying communication, in step S14.
  • the detector 11A in the optical transmission device 43 receives the unnecessary light extracted by the optical demultiplexer 18 in step S15 and converts it into an electrical signal.
  • the detector 11A may be a receiver equivalent to a transponder, a spectrum analyzer, a polarization monitor, a power meter, or the like.
  • the transponder receiving unit converts unnecessary light into an electrical signal and processes it to obtain transmission quality data in step S16.
  • For spectrum analyzers obtain the signal-to-noise ratio. In the case of a polarization monitor, the polarization state of the optical signal is obtained, and in the case of a power meter, the optical intensity is obtained.
  • the optical transmission device 43 associates the transmission quality data detected by the internal detector 11A with the relay node position and notifies the network controller 20 in step S17. Therefore, by performing the relay processing shown in FIG. 14, the network controller 20 can obtain transmission quality data even for relay nodes that omit electrical termination processing of optical signals to be transmitted.
  • FIG. 15 shows the configuration of the all-optical wavelength conversion section 13C.
  • This all-optical wavelength converter 13C is a modification of the all-optical wavelength converter 13 shown in FIG.
  • the output light Oo1 with the wavelength ⁇ 1 is extracted by the optical demultiplexer 18, It is sent out to the optical fiber cable 15 as a relay output. Furthermore, among the optical components of wavelengths ⁇ 1 and ⁇ 2 included in the output light Oout of the nonlinear optical medium 17, the output optical signal Oo2 of wavelength ⁇ 2 is extracted by the optical demultiplexer 18 and sent to the detector 11A via the optical fiber 15B. is input.
  • the configuration of the all-optical wavelength converter 13C other than the above is the same as that of the all-optical wavelength converter 13 shown in FIG.
  • the wavelength of the optical signal to be relayed is not converted.
  • unnecessary light other than the optical main signal can be extracted and input to the detector 11A without attenuating the optical intensity of the optical main signal to be relayed.
  • the wavelength ⁇ 1 of the optical main signal to be relayed is different from the wavelength ⁇ 2 of the transmission quality data detected by the detector 11A. Therefore, the correlation between the transmission quality data for the wavelength ⁇ 1 and the transmission quality data for the wavelength ⁇ 2 is grasped in advance. Then, the transmission quality data detected by the detector 11A is converted into transmission quality data of the wavelength ⁇ 1 of the optical main signal to be relayed based on the correlation. This conversion process may be performed inside the detector 11A or may be performed on the network controller 20 side.
  • the optical demultiplexer 18 can selectively control the wavelength of the light outputted to each output port.
  • the configuration of the all-optical wavelength converter 13 shown in FIG. 7 and the configuration of the all-optical wavelength converter 13C shown in FIG. 15 can be switched as necessary. This allows the network controller 20 to dynamically switch whether wavelength conversion is to be performed at each relay node depending on the situation.
  • the total optical wavelength conversion unit 13 shown in FIG. The output light Oo1 having the same wavelength ⁇ 1 is extracted by the optical demultiplexer 18 and input to the detector 11A.
  • the optical demultiplexer 18 when reflection or scattering of the input optical signal Oin occurs on the light incidence side of the nonlinear optical medium 17, there is a possibility that reflected light or scattered light can be extracted on the incidence side of the nonlinear optical medium 17.
  • an optical demultiplexer (unnecessary light extraction section) is connected to the light incidence side of the nonlinear optical medium 17 to extract the light component having the same wavelength as the wavelength of the main optical signal to be relayed before wavelength conversion as unnecessary light.
  • the extracted unnecessary light may be input to the detector 11A. Thereby, the degree of freedom in connecting the optical demultiplexer can be improved.
  • an optical demultiplexer (unnecessary light extraction section) is connected to the light output side of the nonlinear optical medium 17, and from the light output from the nonlinear optical medium 17, the wave of the optical main signal to be relayed is converted.
  • the light component of wave (2) may be extracted as unnecessary light.
  • the network controller 20 of the optical transmission system 100 uses "Pre-FEC BER" as transmission quality data detected by the transponder 11 of each optical relay node.
  • the detector 11A and the transponder 11 can obtain data such as chromatic dispersion compensation amount, polarization mode dispersion, polarization dependent loss, etc. in addition to "Pre-FEC BER" by electrical signal processing of communication data. Therefore, the network controller 20 also collects data such as the amount of chromatic dispersion compensation, polarization mode dispersion, and polarization dependent loss from each optical relay node that implements the detector 11A or the transponder 11, and uses the data as learning data for machine learning. Can be used. This helps in predicting failures in optical networks without electrical termination.
  • An optical transmission node capable of transmitting optical signals and an optical reception node capable of receiving optical signals are connected via an optical transmission line, and one or more An optical transmission device that can be installed in at least one optical relay node of an optical transmission system (100) to which optical relay nodes are connected, an all-optical wavelength conversion device (all-optical wavelength conversion unit 13) that converts the wavelength of an optical signal relayed by at least one of the optical relay nodes; an unnecessary light extraction unit (optical demultiplexer 18) that extracts an unnecessary light component (output light Oo1) other than the optical main signal having the same wavelength as the optical main signal to be relayed before wavelength conversion; a photoelectric signal converter (detector 11A) that converts the unnecessary light component light extracted by the unnecessary light extractor into an electrical signal;
  • An optical transmission device (43) comprising:
  • optical transmission device configured in [1] above, unnecessary optical components other than the optical main signal relayed by the optical relay node are extracted and converted into electrical signals, so it is necessary to electrically terminate the optical main signal. Therefore, the unnecessary optical component can be extracted and converted into an electrical signal without affecting the delay, optical intensity, transmission quality, etc. of the optical main signal. Therefore, it becomes possible to detect transmission quality data at the position of each relay node, and it becomes easy to identify the section where a fault has occurred. Furthermore, by equipping an optical relay node with a wavelength conversion function for optical signals, it becomes possible to effectively utilize limited wavelength resources, and the effect of increasing the amount of accommodated traffic can be obtained.
  • the unnecessary light extraction section is connected to the light output side of the all-optical wavelength conversion device, and extracts a wavelength of a main optical signal to be relayed before wavelength conversion from among the light emitted from the all-optical wavelength conversion device. Extracts the light component with the same wavelength.
  • the optical transmission device having the configuration [2] above since the unnecessary light component contained in the light that has passed through the all-optical wavelength conversion device is extracted and utilized, the unnecessary light with a sufficiently high light intensity is Components can be extracted. Therefore, the opto-electrical signal converter can easily convert the unnecessary optical component into an electrical signal with less deterioration.
  • the optical transmission device includes a pumping light source (pumping light source 14) that emits pumping light of a different wavelength from the wavelength of the optical main signal to be relayed before wavelength conversion
  • the all-optical wavelength conversion device is a nonlinear optical medium into which both the optical main signal to be relayed and the excitation light emitted from the excitation light source can enter simultaneously,
  • the unnecessary light extraction section separates the light emitted from the nonlinear optical medium into a light component having a wavelength after wavelength conversion and a light component having a wavelength before wavelength conversion.
  • wavelength conversion can be performed without deteriorating the optical intensity of the optical main signal to be relayed. Furthermore, an optical signal having a sufficiently high light intensity can be obtained from the unnecessary light component extracted by the unnecessary light extraction section.
  • the optical transmission device includes at least one of a highly nonlinear fiber, periodically poled lithium niobate, and a semiconductor optical amplifier as the nonlinear optical medium.
  • optical transmission device having the configuration described in [4] above, it is possible to efficiently perform wavelength conversion of an optical signal using the nonlinear optical medium.
  • the optical transmission device includes a transmission quality detection section (detector 11A) that generates transmission quality data based on the electrical signal output from the opto-electrical signal conversion section.
  • the optical transmission device having the configuration described in [5] above, by utilizing the transmission quality data generated by the transmission quality detection section, it is possible to detect deterioration in transmission quality due to differences in the positions of relay nodes. Therefore, when a failure occurs, it is possible to determine whether or not there is a failure in each section, and to predict failure.
  • an optical multiplexer that multiplexes WDM signal light including optical main signals of multiple wavelengths ( ⁇ 11 to ⁇ 1n) having different wavelengths and pump light used for wavelength conversion is the all-optical wavelength converter.
  • An optical demultiplexer is connected to the light output side of the all-optical wavelength conversion device, and extracts unnecessary optical components divided into wavelengths that are the same as wavelengths before wavelength conversion of a plurality of optical main signals included in the WDM signal light.
  • a plurality of the photoelectric signal converters (a plurality of detectors 11Aa to 11An) are connected to the output of the optical demultiplexer, and the plurality of photoelectric signal converters convert the plurality of unnecessary light components having different wavelengths from each other.
  • the light (outgoing light Oo11 to Oo1n) is individually converted into electrical signals.
  • the transmission quality at the corresponding relay node position is determined for each wavelength of the optical main signal included in the WDM signal light. Data can be detected at all times.
  • an optical multiplexer that combines WDM signal light including optical main signals of multiple wavelengths ( ⁇ 11 to ⁇ 1n) with different wavelengths and pump light used for wavelength conversion is the all-optical wavelength converter. connected to the light input side of the device, The unnecessary light extractor is connected to the light output side of the all-optical wavelength conversion device, and the unnecessary light extractor extracts the same wavelength ( ⁇ 11 to It has the function of extracting unnecessary light components of ⁇ 1n), An optical wavelength selection section (wavelength filter 19) is arranged between the output of the unnecessary light extraction section and the input of one of the photoelectric signal conversion sections (detector 11A).
  • optical transmission device having the configuration [7] above, when the WDM signal light is relayed at each optical relay node, transmission quality data for each wavelength of the optical main signal included in the WDM signal light can be sequentially detected. Furthermore, the number of opto-electrical signal converters mounted on each optical relay node can be reduced. This makes it possible to reduce power consumption and cost.
  • the unnecessary light extraction section is connected to the light output side of the all-optical wavelength conversion device, and extracts a main optical signal to be relayed from the light emitted from the all-optical wavelength conversion device.
  • the light component of the wave ⁇ after the wave ⁇ conversion is extracted as unnecessary light.
  • An optical transmission node capable of transmitting optical signals and an optical reception node capable of receiving optical signals are connected via an optical transmission line, and one or more An optical transmission management method for managing an optical transmission system (100) to which optical relay nodes are connected, the method comprising: In at least one of the optical relay nodes (optical transmission device 43 or 53) of the optical transmission system, a step of converting the wavelength of the received optical signal and transmitting the wavelength-converted optical signal as a relay output (step S13); a step of extracting, from the received optical signal, unnecessary optical components other than the optical main signal having the same wavelength as the optical main signal to be relayed before wavelength conversion (step S14); a step of converting the extracted unnecessary light component into an electrical signal (step S15); a step of generating transmission quality data based on the electrical signal (step S16); Optical transmission management method to implement.
  • unnecessary optical components other than the optical main signal relayed by the optical relay node are extracted and converted into electrical signals, so there is no need to electrically terminate the optical main signal. Therefore, the unnecessary optical component can be extracted and converted into an electrical signal without affecting the delay, optical intensity, transmission quality, etc. of the optical main signal. Therefore, it becomes possible to detect transmission quality data at the position of each relay node, and it becomes easy to identify the section where a fault has occurred. Further, by performing wavelength conversion of optical signals within the optical relay node, it becomes possible to effectively utilize limited wavelength resources, and the effect of increasing the amount of accommodated traffic can be obtained.
  • Optical transmission device 11 Transponder 11A, 11Aa to 11An Detector 12 Optical splitter 12a, 12b Optical output end 13, 13A, 13B, 13C All optical wavelengths Conversion section (all-optical wavelength conversion device) 14 Excitation light source 15 Optical fiber cable 15A, 15B Optical fiber 16 Optical multiplexer 17 Nonlinear optical medium 18 Optical demultiplexer (unnecessary light extraction section) 19 Wavelength filter 20 Network controller 31, 32 Optical communication link 41, 42, 43, 44, 45 Optical transmission device 51, 52, 53, 54, 55 Optical transmission device 100, 100A, 100B, 100C, 100D, 200 Optical transmission system Oe Pumping light Oin Input optical signal Oo2 Outgoing optical signal Oo1, Oo11 to Oo1n, Oout Outgoing light Oo1x Optical signal ⁇ 1, ⁇ 11, ⁇ 1n, ⁇ 2, ⁇ 21, ⁇ 2

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

Functions of an all optical wavelength conversion (AO-WC) unit (13) are equipped in an optical transmission device (43) at the location of each relay node disposed in an optical communication network that transmits optical signals in a long distance optical communication channel. The all optical wavelength conversion unit (13) extracts a component of unnecessary light other than a main optical signal of the same wavelength (λ1) as that before wavelength conversion and converts the extracted component into an electrical signal in an internal detector (11A). The main optical signal of which the converted wavelength is (λ2) is not electrically terminated and is transmitted to a downstream-side transmission channel as a relay output. A case in which a WDM optical signal into which a plurality of wavelengths are multiplexed is treated is also processed in the same manner. The main optical signal to be relayed is wavelength-converted and efficiently relayed without delay and degradation. Transmission quality data is acquired on the basis of the electrical signal generated from the unnecessary light simultaneously with the relay of the main optical signal. Low delay, large capacity power saving in a network can be achieved, and the separation of a trouble generation section or a failure prediction is enabled with the transmission quality data at the locations of the relay nodes.

Description

光伝送装置および光伝送管理方法Optical transmission equipment and optical transmission management method
 本発明は、光伝送装置および光伝送管理方法に関する。 The present invention relates to an optical transmission device and an optical transmission management method.
 送信ノードと受信ノードとの間を比較的長距離の光ファイバケーブルで接続し、光信号の伝送を行う光伝送システムにおいては、伝送路の途中で光信号が大きく減衰したり、伝送品質の劣化が生じることが予想される。したがって、送信ノードから送信された光信号を確実に受信ノードに届けるために、一般的には伝送路の途中に1つ以上の中継ノードを配置して、減衰した光信号を増幅したり伝送路の途中で発生したビットエラーなどを訂正する必要がある。 In optical transmission systems that connect transmitting nodes and receiving nodes with relatively long-distance optical fiber cables to transmit optical signals, the optical signals may be significantly attenuated in the middle of the transmission path, or the transmission quality may deteriorate. is expected to occur. Therefore, in order to ensure that the optical signal transmitted from the transmitting node reaches the receiving node, one or more relay nodes are generally placed in the middle of the transmission path to amplify the attenuated optical signal and It is necessary to correct bit errors that occur during the process.
 また、通常は一定の距離毎に中継ノードを配置する必要があるので、長距離の光伝送を行う場合は多数の中継ノードが送信ノードと受信ノードの間の伝送路の中間部に接続される。 In addition, since it is usually necessary to place relay nodes at regular intervals, when performing long-distance optical transmission, many relay nodes are connected to the middle of the transmission path between the sending node and the receiving node. .
 光伝送システムの各中継ノードは、通常は電気終端処理の機能を備えている。すなわち、受信した光信号を電気信号に一旦変換し、変換された電気信号の情報を中継処理する。また、電気信号の情報を処理する際に、当該中継ノードにおける伝送品質データ(Pre-FEC BER、分散補償量、偏波モード分散量、偏波依存損失)を取得できる。 Each relay node in an optical transmission system usually has an electrical termination function. That is, the received optical signal is once converted into an electrical signal, and the information of the converted electrical signal is relayed. Furthermore, when processing electrical signal information, transmission quality data (Pre-FEC BER, dispersion compensation amount, polarization mode dispersion amount, polarization dependent loss) at the relay node can be obtained.
 しかし、各中継ノードで電気終端処理を行うと、電気信号の中継処理に伴う遅延時間の増大は避けられない。また、電気信号の中継処理に伴って電力消費が増大する。また、光伝送の際に利用可能な波長リソースに制約があるので伝送容量拡大の妨げになる。 However, if electrical termination processing is performed at each relay node, an increase in delay time associated with the relay processing of electrical signals is unavoidable. Furthermore, power consumption increases with the relay processing of electrical signals. Furthermore, there are restrictions on wavelength resources that can be used during optical transmission, which hinders expansion of transmission capacity.
 一方、近年では光ファイバケーブルや光送信機の機能が向上している。そこで、電気終端処理の機能を備えた中継ノードを配置する間隔を拡大する傾向がある。これにより、電気終端処理を行いながら中継するノードの数が減るためネットワークの省電力化、大容量化、低遅延化が可能になる。 On the other hand, in recent years, the functionality of optical fiber cables and optical transmitters has improved. Therefore, there is a tendency to increase the interval at which relay nodes equipped with electrical termination processing functions are arranged. This reduces the number of relay nodes while performing electrical termination processing, making it possible to save power, increase capacity, and reduce delay in the network.
 一方、例えば非特許文献1は光ノード装置における電気終端処理を省略した光トランスポートネットワークの技術を開示している。また、非特許文献1は限られた波長リソースを効率的に使用するため、経由する光ノード装置において、光信号の波長を他の波長へ変換する波長変換機能の導入について開示している。 On the other hand, for example, Non-Patent Document 1 discloses a technology for an optical transport network that omits electrical termination processing in an optical node device. Furthermore, Non-Patent Document 1 discloses the introduction of a wavelength conversion function for converting the wavelength of an optical signal to another wavelength in an optical node device passing through in order to efficiently use limited wavelength resources.
 ところで、光伝送システムに障害が発生した場合には、障害箇所を特定する必要がある。そのためには、まず最初に長距離の伝送路の全長を中継ノード毎の複数の区間に分離して、区間毎に故障発生の有無の切り分けを行う必要がある。 By the way, when a failure occurs in the optical transmission system, it is necessary to identify the location of the failure. To do this, it is first necessary to divide the entire length of a long-distance transmission line into a plurality of sections for each relay node, and to determine whether or not a failure has occurred in each section.
 各中継ノードが電気終端処理の機能を実装している場合には、中継ノード毎に伝送品質データを取得できる。したがって、各中継ノードの伝送品質データを比較することで、区間毎の故障発生の有無の切り分けが可能になる。 If each relay node is equipped with an electrical termination function, transmission quality data can be obtained for each relay node. Therefore, by comparing the transmission quality data of each relay node, it is possible to determine whether or not a failure has occurred in each section.
 しかし、電気終端処理の機能を実装していない中継ノードについてはその地点の伝送品質データが得られない。そのため、故障有無の切り分けが可能な区間のそれぞれの中に多数の光伝送装置が含まれたり、区間毎の光ファイバケーブルの長さが非常に長くなる状況になる。そのため、障害箇所の特定が困難になる。 However, for relay nodes that do not have the electrical termination function installed, transmission quality data at that point cannot be obtained. Therefore, a situation arises in which a large number of optical transmission devices are included in each section in which it is possible to determine whether there is a failure or not, and the length of the optical fiber cable for each section becomes extremely long. This makes it difficult to identify the location of the failure.
 そこで、例えば中継ノードに光スプリッタを配置することが考えられる。すなわち、中継ノードが受信した1つの光信号を光スプリッタで2つの経路に分岐して、一方の経路の主信号は光信号のままで中継し、他方の経路の光信号は電気信号に変換して伝送品質データの取得のために利用する。これにより、中継に伴う光主信号の信号遅延を低減できる。しかし、入力された光信号が光スプリッタを通過する際に中継する光主信号の光強度が低下するため、中継ノードで伝送品質の劣化が発生する。 Therefore, it is conceivable to arrange an optical splitter at the relay node, for example. In other words, one optical signal received by a relay node is split into two paths using an optical splitter, and the main signal on one path is relayed as an optical signal, while the optical signal on the other path is converted into an electrical signal. It is used to obtain transmission quality data. Thereby, the signal delay of the optical main signal due to relaying can be reduced. However, when the input optical signal passes through the optical splitter, the optical intensity of the optical main signal to be relayed decreases, resulting in deterioration of transmission quality at the relay node.
 本発明は、上記の状況に鑑みてなされたものであり、中継ノードが中継する光主信号の遅延や伝送品質の劣化に影響を及ぼすことなく、中継ノード毎の伝送品質データ取得が可能な光伝送装置および光伝送管理方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned situation, and is an optical fiber that can acquire transmission quality data for each relay node without affecting the delay of the optical main signal relayed by the relay node or the deterioration of the transmission quality. The purpose of the present invention is to provide a transmission device and an optical transmission management method.
(1) 光信号の送信が可能な光送信ノードと、光信号の受信が可能な光受信ノードとの間が光伝送路を介して接続され、前記光伝送路の中間位置に1つ以上の光中継ノードが接続された光伝送システムの少なくとも1つの前記光中継ノードに装備可能な光伝送装置であって、
 少なくとも1つの前記光中継ノードが中継する光信号の波長を変換する全光波長変換デバイスと、
 中継する光主信号の波長変換前と波長が同じ前記光主信号以外の不要光成分を抽出する不要光抽出部と、
 前記不要光抽出部が抽出した前記不要光成分の光を電気信号に変換する光電気信号変換部と、
 を備える光伝送装置。
(1) An optical transmission node capable of transmitting optical signals and an optical reception node capable of receiving optical signals are connected via an optical transmission line, and one or more An optical transmission device that can be installed in at least one optical relay node of an optical transmission system to which optical relay nodes are connected,
an all-optical wavelength conversion device that converts the wavelength of an optical signal relayed by at least one optical relay node;
an unnecessary light extraction unit that extracts unnecessary light components other than the optical main signal having the same wavelength as the optical main signal to be relayed before wavelength conversion;
a photoelectrical signal converter that converts the unnecessary light component light extracted by the unnecessary light extractor into an electrical signal;
An optical transmission device comprising:
(2) 光信号の送信が可能な光送信ノードと、光信号の受信が可能な光受信ノードとの間が光伝送路を介して接続され、前記光伝送路の中間位置に1つ以上の光中継ノードが接続された光伝送システムを管理するための光伝送管理方法であって、
 前記光伝送システムの少なくとも1つの前記光中継ノードにおいて、
 受信した光信号の波長変換を実施すると共に、波長変換された後の前記光信号を中継出力として送出する手順と、
 受信した前記光信号の中から、中継する光主信号の波長変換前と波長が同じ前記光主信号以外の不要光成分を抽出する手順と、
 抽出された前記不要光成分の光を電気信号に変換する手順と、
 前記電気信号に基づいて伝送品質データを生成する手順と、
 を実施する光伝送管理方法。
(2) An optical transmitting node capable of transmitting optical signals and an optical receiving node capable of receiving optical signals are connected via an optical transmission line, and one or more An optical transmission management method for managing an optical transmission system to which optical relay nodes are connected, the method comprising:
In at least one of the optical relay nodes of the optical transmission system,
a step of converting the wavelength of the received optical signal and transmitting the wavelength-converted optical signal as a relay output;
a step of extracting, from the received optical signal, unnecessary optical components other than the optical main signal having the same wavelength as the optical main signal to be relayed before wavelength conversion;
a step of converting the extracted unnecessary light component light into an electrical signal;
generating transmission quality data based on the electrical signal;
Optical transmission management method to implement.
 本発明の光伝送装置および光伝送管理方法によれば、中継ノードにおいて電気終端処理する必要がなく、中継ノードが中継する光主信号の遅延や伝送品質の劣化に影響を及ぼすことなく、中継ノード毎の伝送品質データ取得が可能になる。したがって、光ネットワーク上で障害が発生した場合に障害箇所の特定が容易になる。また、障害が発生していない場合でも、光ネットワーク上の故障予知に役立つ情報が得られる。 According to the optical transmission device and optical transmission management method of the present invention, there is no need for electrical termination processing at the relay node, and the relay node It becomes possible to acquire transmission quality data at each time. Therefore, when a fault occurs on the optical network, it becomes easy to identify the location of the fault. Furthermore, even if no failure has occurred, information useful for predicting failures on optical networks can be obtained.
一般的な光伝送システムの構成例を示すブロック図である。FIG. 1 is a block diagram showing an example of the configuration of a general optical transmission system. 一般的な光伝送システムの構成例を示すブロック図である。FIG. 1 is a block diagram showing an example of the configuration of a general optical transmission system. 光伝送システムの変形例を示すブロック図である。FIG. 3 is a block diagram showing a modification of the optical transmission system. 光伝送システムの変形例を示すブロック図である。FIG. 3 is a block diagram showing a modification of the optical transmission system. マルチバンドネットワーキング技術における光通信リンクと波長帯との関係の例を示す模式図である。FIG. 2 is a schematic diagram showing an example of the relationship between optical communication links and wavelength bands in multiband networking technology. 本発明の実施形態における光伝送システムの構成例を示すブロック図である。1 is a block diagram showing a configuration example of an optical transmission system in an embodiment of the present invention. 図6の光伝送システムに含まれる全光波長変換部の構成例を示すブロック図である。7 is a block diagram showing a configuration example of an all-optical wavelength conversion section included in the optical transmission system of FIG. 6. FIG. 図7の全光波長変換部の各部における光信号波長分布の一覧を表すグラフである。8 is a graph showing a list of optical signal wavelength distributions in each part of the all-optical wavelength conversion section in FIG. 7. FIG. 図6の変形例の構成を示すブロック図である。7 is a block diagram showing the configuration of a modification example of FIG. 6. FIG. 図9の光伝送システムに含まれる全光波長変換部の第1構成例を示すブロック図である。10 is a block diagram showing a first configuration example of an all-optical wavelength conversion section included in the optical transmission system of FIG. 9. FIG. 図10の全光波長変換部の各部における光信号波長分布の一覧を表すグラフである。11 is a graph showing a list of optical signal wavelength distributions in each part of the all-optical wavelength conversion section in FIG. 10; 図9の光伝送システムに含まれる全光波長変換部の第2構成例を示すブロック図である。10 is a block diagram showing a second configuration example of an all-optical wavelength conversion section included in the optical transmission system of FIG. 9. FIG. 図12の全光波長変換部の各部における光信号波長分布の一覧を表すグラフである。13 is a graph showing a list of optical signal wavelength distributions in each part of the all-optical wavelength conversion section in FIG. 12. FIG. 本発明の光伝送管理方法の処理手順の例を示すフローチャートである。3 is a flowchart showing an example of a processing procedure of the optical transmission management method of the present invention. 全光波長変換部の構成の変形例を示すブロック図である。FIG. 3 is a block diagram showing a modification of the configuration of the all-optical wavelength conversion section.
<本発明の前提になる技術の説明>
 本発明の理解を容易にするために、その前提となる技術について説明する。
-<光伝送システムの構成>
 一般的な光伝送システム100Aの構成例を図1に示す。一般的な光伝送システム100Bの構成例を図1に示す。また、図1の光伝送システムの変形例を図3と図4に示す。
<Description of the technology that is the premise of the present invention>
In order to facilitate understanding of the present invention, the technology on which it is based will be explained.
-<Optical transmission system configuration>
FIG. 1 shows a configuration example of a general optical transmission system 100A. FIG. 1 shows a configuration example of a general optical transmission system 100B. Further, modified examples of the optical transmission system shown in FIG. 1 are shown in FIGS. 3 and 4.
 図1に示した光伝送システム100Aにおいては、7つの光伝送装置10-1、10-2、10-3、10-4、10-5、10-6、及び10-7が一例に並び、共通の光ファイバケーブル15を経由して互いに直列に接続されている。また、これらの光伝送装置10-1~10-7を含む通信ネットワークを管理するためにネットワークコントローラ20が各光伝送装置10-1~10-7に接続されている。 In the optical transmission system 100A shown in FIG. 1, seven optical transmission devices 10-1, 10-2, 10-3, 10-4, 10-5, 10-6, and 10-7 are arranged in an example, They are connected to each other in series via a common optical fiber cable 15. Further, a network controller 20 is connected to each of the optical transmission devices 10-1 to 10-7 to manage a communication network including these optical transmission devices 10-1 to 10-7.
 例えば、この通信ネットワークの一端側の光伝送装置10-1から他端側の光伝送装置10-7に対してデータを伝送する場合、光伝送装置10-1が送信ノードとなり、光伝送装置10-7が受信ノードとなる。また、これらの送信ノード、受信ノードの間にある光伝送装置10-2~10-6は、それぞれ中継ノードとして使用される。 For example, when transmitting data from the optical transmission device 10-1 at one end of this communication network to the optical transmission device 10-7 at the other end, the optical transmission device 10-1 becomes a transmission node, and the optical transmission device 10-1 -7 becomes the receiving node. Further, optical transmission devices 10-2 to 10-6 located between these transmitting nodes and receiving nodes are respectively used as relay nodes.
 送信ノードの光伝送装置10-1は、送信するデータをトランスポンダ(TPD: Transponder)11の内部で電気信号から所定波長の光信号に変換し、この光信号を光ファイバケーブル15に送出する。受信ノードの光伝送装置10-7は、光ファイバケーブル15から光信号を受け取り、光伝送装置10-7内のトランスポンダ11で光信号を電気信号に変換して受信データを取得する。 The optical transmission device 10-1 of the transmitting node converts the data to be transmitted from an electrical signal into an optical signal of a predetermined wavelength inside a transponder (TPD) 11, and sends this optical signal to the optical fiber cable 15. The optical transmission device 10-7 of the receiving node receives the optical signal from the optical fiber cable 15, converts the optical signal into an electrical signal with the transponder 11 in the optical transmission device 10-7, and obtains received data.
 一方、光信号伝送の距離が長くなると、光強度が低下したり、ビットエラーレート(BER)などの伝送品質の劣化が発生する。また、光強度が著しく低下したり、ビットエラーレートが著しく増大すると、受信ノードの光伝送装置10-7が送信されたデータを正しく受信できない状態になる。 On the other hand, as the distance of optical signal transmission increases, the optical intensity decreases and transmission quality such as bit error rate (BER) deteriorates. Furthermore, if the optical intensity decreases significantly or the bit error rate increases significantly, the optical transmission device 10-7 of the receiving node will be unable to correctly receive the transmitted data.
 そのため、各中継ノードの光伝送装置10-2~10-6が所定の中継処理を実施する。すなわち、各中継ノードがそれぞれの中継位置で受信した光信号の光強度を増幅したり、所定のエラー訂正処理によりビットエラーのない元のデータを復元する。 Therefore, the optical transmission devices 10-2 to 10-6 of each relay node perform predetermined relay processing. That is, each relay node amplifies the optical intensity of the optical signal received at its respective relay position, and restores the original data free of bit errors through predetermined error correction processing.
 但し、エラー訂正処理などを行うためには、伝送する光信号の電気終端処理を行う必要がある。すなわち、光伝送装置10-2~10-6は、トランスポンダ11内で光信号を電気信号に変換し、得られた電気信号のデータを処理してエラー訂正処理などを行う。更に、光伝送装置10-2~10-6は、処理の終了した電気信号を再び光信号に変換し、中継出力として下流側の光ファイバケーブル15へ送出する。 However, in order to perform error correction processing, etc., it is necessary to perform electrical termination processing of the optical signal to be transmitted. That is, the optical transmission devices 10-2 to 10-6 convert optical signals into electrical signals within the transponder 11, process data of the obtained electrical signals, and perform error correction processing and the like. Further, the optical transmission devices 10-2 to 10-6 convert the processed electrical signals into optical signals again, and send them as relay outputs to the optical fiber cable 15 on the downstream side.
 上記のような電気終端処理を行うと、伝送中に発生したエラーを確実に訂正すると共に光強度を回復することができる。また、伝送品質データを得ることもできる。しかし、電気信号の処理に伴ってトランスポンダ11の内部で信号に比較的大きな遅延が発生する。また、伝送距離が長くなると中継回数が増えるので、遅延時間が増大する。光伝送システム100Aの例では、送信ノードと受信ノードの間に中継ノードとしてトランスポンダ11を含む光伝送装置10-3、及び10-5が存在するので、電気終端処理を含む中継処理が1回だけの場合に比べて遅延時間が2倍になる。 By performing electrical termination processing as described above, it is possible to reliably correct errors that occur during transmission and restore optical intensity. It is also possible to obtain transmission quality data. However, as the electrical signals are processed, a relatively large delay occurs in the signals inside the transponder 11. Furthermore, as the transmission distance increases, the number of relays increases, resulting in an increase in delay time. In the example of the optical transmission system 100A, since the optical transmission devices 10-3 and 10-5 including the transponder 11 are present as relay nodes between the transmitting node and the receiving node, the relay processing including electrical termination processing is performed only once. The delay time is doubled compared to the case of .
 一方、近年では光ファイバケーブル15や光信号を送信する送信機の機能が向上しているので、比較的長距離の光伝送を行う場合でも、電気終端処理を含む中継ノードの中継数を減らすことが可能である。したがって、図1に示した光伝送システム100Aの構成を同じ図1中の光伝送システム100Bのように改良することができる。 On the other hand, in recent years, the functions of optical fiber cables 15 and transmitters that transmit optical signals have improved, so even when performing relatively long-distance optical transmission, it is possible to reduce the number of relay nodes including electrical termination. is possible. Therefore, the configuration of the optical transmission system 100A shown in FIG. 1 can be improved like the optical transmission system 100B shown in FIG.
 図2に示した光伝送システム100Bにおいては、トランスポンダ11が光伝送装置10-1及び10-7に存在するが、他の光伝送装置10-2~10-6にはトランスポンダ11がない。つまり、送信ノードの光伝送装置10-1から受信ノードの光伝送装置10-7に光信号を伝送する場合に、途中で電気終端処理を含む中継を1回も行わない。したがって、光伝送システム100Bの光信号伝送に伴う遅延時間は、光伝送システム100Aと比べて大幅に削減される。 In the optical transmission system 100B shown in FIG. 2, the transponders 11 are present in the optical transmission devices 10-1 and 10-7, but the transponders 11 are not present in the other optical transmission devices 10-2 to 10-6. That is, when transmitting an optical signal from the optical transmission device 10-1 of the transmitting node to the optical transmission device 10-7 of the receiving node, relaying including electrical termination processing is not performed even once. Therefore, the delay time associated with optical signal transmission in optical transmission system 100B is significantly reduced compared to optical transmission system 100A.
 一方、光伝送システム100Bの場合は光伝送装置10-2~10-6の各々にトランスポンダ11がなく、電気終端処理を行わないので、各光伝送装置10-2~10-6の中継ノードの位置で伝送品質データを得ることができない。 On the other hand, in the case of the optical transmission system 100B, each of the optical transmission devices 10-2 to 10-6 does not have a transponder 11 and does not perform electrical termination processing, so the relay nodes of each optical transmission device 10-2 to 10-6 Transmission quality data cannot be obtained at the location.
 一方、通信の障害が発生すると、通常、ネットワークコントローラ20は光信号の伝送に使用している各ノードの位置で検出された伝送品質データに基づいて障害が発生した場所の候補を絞り込むために伝送区間の切り分けを行う。しかし、光伝送システム100Bの場合は各光伝送装置10-2~10-6の中継位置における伝送品質データが得られないので、光伝送装置10-1の出力と光伝送装置10-7の入力との間のどの区間で障害が発生しているのかを切り分けることができない。その結果、障害が発生している場所の特定が困難になり、障害の復旧に長い時間が必要になる。特に、光ファイバケーブル15の距離が非常に長い場合には、障害発生の場所を探すことが難しい。 On the other hand, when a communication failure occurs, the network controller 20 normally transmits optical signals to narrow down candidates for the location where the failure has occurred based on transmission quality data detected at the location of each node used for optical signal transmission. Divide into sections. However, in the case of the optical transmission system 100B, transmission quality data at the relay positions of each optical transmission device 10-2 to 10-6 cannot be obtained, so the output of the optical transmission device 10-1 and the input of the optical transmission device 10-7 are It is not possible to isolate in which section the failure is occurring. As a result, it becomes difficult to identify the location where the failure has occurred, and it takes a long time to recover from the failure. In particular, when the distance of the optical fiber cable 15 is very long, it is difficult to find the location where the fault has occurred.
 一方、図3中の光伝送システム100Cの場合は、中継ノードとして使用される光伝送装置10-4にトランスポンダ11が備わっているので、この中継位置における伝送品質データをネットワークコントローラ20は取得できる。そのため、障害が発生した場合に、その障害箇所が光伝送装置10-1の出力から光伝送装置10-4の入力までの区間と、光伝送装置10-4の中継出力から光伝送装置10-7の入力までの区間とのいずれに含まれるのかを光伝送装置10-4が検出した伝送品質データに基づいて特定できる。 On the other hand, in the case of the optical transmission system 100C in FIG. 3, the optical transmission device 10-4 used as a relay node is equipped with a transponder 11, so the network controller 20 can acquire transmission quality data at this relay position. Therefore, when a failure occurs, the failure location is located in the section from the output of the optical transmission device 10-1 to the input of the optical transmission device 10-4, and from the relay output of the optical transmission device 10-4 to the optical transmission device 10-4. Based on the transmission quality data detected by the optical transmission device 10-4, it can be determined which of the sections up to the input of No. 7 is included.
 つまり、光伝送システム100Cのように中継ノードの光伝送装置10-4に電気終端処理の機能を有するトランスポンダ11を配置することで、図2中の光伝送システム100Bと比べて障害発生箇所を特定するための区間の切り分けが容易になる。但し、光伝送システム100Cの場合は中継ノードの光伝送装置10-4に電気終端処理の機能があるので、これによって伝送遅延が発生する。 In other words, by arranging the transponder 11 having an electrical termination function in the optical transmission device 10-4 of the relay node as in the optical transmission system 100C, the location of the failure can be identified compared to the optical transmission system 100B in FIG. This makes it easier to divide sections for However, in the case of the optical transmission system 100C, the optical transmission device 10-4 of the relay node has an electrical termination function, which causes a transmission delay.
 一方、図4中に示した光伝送システム100Dにおいては、中継ノードの光伝送装置10-4に光スプリッタ12が備わっている。光スプリッタ12は、光ファイバケーブル15から入力された光信号を光のまま2つの経路に分岐して光出力端12a、及び12bにそれぞれ出力する。光スプリッタ12の光出力端12aは中継出力側の光ファイバケーブル15と接続されている。また、光スプリッタ12の光出力端12bは、光伝送装置10-4内のトランスポンダ11の入力と接続されている。 On the other hand, in the optical transmission system 100D shown in FIG. 4, the optical transmission device 10-4 of the relay node is equipped with an optical splitter 12. The optical splitter 12 branches the optical signal inputted from the optical fiber cable 15 into two paths in the form of light, and outputs them to optical output ends 12a and 12b, respectively. An optical output end 12a of the optical splitter 12 is connected to an optical fiber cable 15 on the relay output side. Further, the optical output end 12b of the optical splitter 12 is connected to the input of the transponder 11 in the optical transmission device 10-4.
 光伝送システム100Dの場合は、光伝送装置10-4が電気終端処理していない光信号をそのまま中継して出力するので、このノード位置で伝送遅延が発生するのを防止できる。また、光伝送装置10-4内のトランスポンダ11がこのノード位置における伝送品質データを検出するので、光伝送システム100Cの場合と同様に障害発生区間の切り分けが容易になる。 In the case of the optical transmission system 100D, since the optical transmission device 10-4 relays and outputs the optical signal without electrical termination processing as it is, it is possible to prevent transmission delays from occurring at this node position. Furthermore, since the transponder 11 in the optical transmission device 10-4 detects the transmission quality data at this node position, it becomes easy to isolate the faulty section as in the case of the optical transmission system 100C.
 しかし、光伝送システム100Dのように光伝送装置10-4の内部に光スプリッタ12を配置すると、中継する光信号(主信号)が光スプリッタ12を通過する際に発生する損失によりこの光信号の光強度が低下する。したがって、光伝送装置10-4のノード位置で伝送品質の劣化が発生する。 However, when the optical splitter 12 is placed inside the optical transmission device 10-4 as in the optical transmission system 100D, the optical signal to be relayed (main signal) is lost due to the loss that occurs when it passes through the optical splitter 12. Light intensity decreases. Therefore, deterioration in transmission quality occurs at the node position of the optical transmission device 10-4.
-<マルチバンドネットワーキング技術>
 マルチバンドネットワーキング技術(非特許文献1参照)における光通信リンクと波長帯との関係の例を図5に示す。
-<Multi-band networking technology>
FIG. 5 shows an example of the relationship between optical communication links and wavelength bands in multiband networking technology (see Non-Patent Document 1).
 図5に示した例では、通信に利用する光の波長帯として、Lバンド、Cバンド、及びSバンドの3種類がある場合を想定している。Lバンドとは、1565~1625 nmの波長帯域である。Cバンドとは、1530~1565 nmの波長帯域である。Sバンドとは、1460~1530 nmの波長帯域である。
 また、Lバンド、Cバンド、及びSバンドのそれぞれは互いに独立した光路(Optical path)を有している。また、図5の例では、互いに独立した2つの光通信リンク31、及び32がある場合を想定している。
In the example shown in FIG. 5, it is assumed that there are three types of wavelength bands of light used for communication: L band, C band, and S band. The L band is a wavelength band of 1565 to 1625 nm. The C-band is a wavelength band from 1530 to 1565 nm. The S-band is a wavelength band from 1460 to 1530 nm.
Further, each of the L band, C band, and S band has a mutually independent optical path. Furthermore, in the example of FIG. 5, it is assumed that there are two mutually independent optical communication links 31 and 32.
 各光通信リンク31、32の光信号は、状況に応じてアダプティブにバンド切り替えされ、複数バンドの光路を跨ぐようにスイッチングされる。すなわち、図5中に示した光通信リンク31の光信号は、Lバンドの光路を通過した後、波長変換によりCバンドの光信号に変換されてCバンドの光路に入り、更に波長変換によりSバンドの光信号に変換されてSバンドの光路に入る。この光は、次に波長変換によりLバンドの光信号に変換されてLバンドの光路に入り、Ph-EX(Photonic Exchange)で電気信号に変換されて処理されて出力される。Ph-EXは、交換、多重、スイッチングといった電気処理を極小化した構成要素である。 The optical signals of each optical communication link 31, 32 are adaptively band-switched depending on the situation, and are switched so as to straddle the optical path of multiple bands. That is, after the optical signal of the optical communication link 31 shown in FIG. It is converted into a band optical signal and enters the S-band optical path. This light is then converted into an L-band optical signal by wavelength conversion, enters the L-band optical path, is converted into an electrical signal by Ph-EX (Photonic Exchange), is processed, and is output. Ph-EX is a component that minimizes electrical processing such as exchange, multiplexing, and switching.
 また、Cバンドの波長の光通信リンク32の光信号は、Cバンドの光路を通過した後、波長変換によりSバンドの光信号に変換されてSバンドの光路に入り、Ph-EXで電気信号に変換されて処理される。 Further, the optical signal of the optical communication link 32 having a C-band wavelength passes through the C-band optical path, is converted into an S-band optical signal by wavelength conversion, enters the S-band optical path, and is converted into an electrical signal by Ph-EX. converted and processed.
 図5に示したような技術を利用することで、光伝送システムは、限られた波長リソースを効率的に使用できる。具体的には、伝送路の収容トラヒック量を30%程度増やすことができる。また、各通信ノードの位置で電気終端処理を省略して、光信号のまま処理できるので、ネットワークの省電力化、大容量化、低遅延化などの効果が期待できる。但し、各ノード位置の光伝送装置は、光信号を波長変換する機能を実装する必要がある。 By using the technology shown in FIG. 5, the optical transmission system can efficiently use limited wavelength resources. Specifically, the amount of traffic that can be accommodated on the transmission line can be increased by about 30%. Furthermore, since electrical termination processing can be omitted at each communication node and optical signals can be processed as they are, effects such as power savings, increased capacity, and reduced delay in the network can be expected. However, the optical transmission equipment at each node position needs to be equipped with a function to convert the wavelength of the optical signal.
 本発明の実施形態について各図を参照しながら以下に説明する。
<実施形態の説明>
 本発明の実施形態における光伝送システム100の構成例を図6に示す。
Embodiments of the present invention will be described below with reference to each figure.
<Description of embodiment>
FIG. 6 shows a configuration example of an optical transmission system 100 in an embodiment of the present invention.
 図6に示した光伝送システム100は、5つの光伝送装置41、42、43、44、及び45とネットワークコントローラ20とを備えている。5つの光伝送装置41~45は、例えば一定の距離だけ互いに離れた場所に一列に並べて設置されている。また、光伝送装置41~45は光信号の伝送路として利用される1つの光ファイバケーブル15を介して互いに直列に接続されている。 The optical transmission system 100 shown in FIG. 6 includes five optical transmission devices 41, 42, 43, 44, and 45 and a network controller 20. The five optical transmission devices 41 to 45 are installed, for example, in a line at locations separated from each other by a certain distance. Further, the optical transmission devices 41 to 45 are connected in series to each other via one optical fiber cable 15 used as a transmission path for optical signals.
 ネットワークコントローラ20は、光伝送装置41~45、及び光ファイバケーブル15で構成される光通信ネットワークの全体を管理している。ネットワークコントローラ20は、例えば光通信ネットワーク上で何らかの障害が発生した場合に、障害の発生場所を特定するために役立つ情報を生成できる。 The network controller 20 manages the entire optical communication network composed of the optical transmission devices 41 to 45 and the optical fiber cable 15. For example, when a failure occurs on the optical communication network, the network controller 20 can generate information useful for identifying the location of the failure.
 例えば、この通信ネットワークの一端側の光伝送装置41から他端側の光伝送装置45に対してデータを伝送する場合、光伝送装置41が送信ノードとなり、光伝送装置45が受信ノードとなる。また、これらの送信ノード、受信ノードの間にある光伝送装置42~44は、それぞれ中継ノードとして使用される。 For example, when transmitting data from an optical transmission device 41 at one end of this communication network to an optical transmission device 45 at the other end, the optical transmission device 41 becomes a transmitting node and the optical transmission device 45 becomes a receiving node. Further, optical transmission devices 42 to 44 located between these transmitting nodes and receiving nodes are respectively used as relay nodes.
 送信ノードの光伝送装置41は、送信するデータをトランスポンダ11の内部で電気信号から所定波長の光信号に変換し、この光信号を光ファイバケーブル15に送出する。受信ノードの光伝送装置45は、光ファイバケーブル15から光信号を受け取り、光伝送装置45内のトランスポンダ11で光信号を電気信号に変換して受信データを取得する。 The optical transmission device 41 of the transmitting node converts the data to be transmitted from an electrical signal into an optical signal of a predetermined wavelength inside the transponder 11, and sends this optical signal to the optical fiber cable 15. The optical transmission device 45 of the receiving node receives the optical signal from the optical fiber cable 15, converts the optical signal into an electrical signal with the transponder 11 in the optical transmission device 45, and obtains received data.
 図6に示した構成においては、1つの中継ノードとして使用される光伝送装置43の内部にAO-WC(All Optical Wavelength Conversion:全光波長変換)の機能を実装した全光波長変換部13を備えている。 In the configuration shown in FIG. 6, an all-optical wavelength conversion unit 13 that implements an AO-WC (All Optical Wavelength Conversion) function is installed inside an optical transmission device 43 used as one relay node. We are prepared.
 光伝送装置43内の全光波長変換部13は、光ファイバケーブル15から光伝送装置43に入力された波長がλ1の入力光信号Oinを光信号のままで波長変換処理して、入力と異なる波長λ2の光信号を生成し、波長λ2の送出光信号Oo2として下流側の光ファイバケーブル15に送出することができる。また、図6中に示した全光波長変換部13は光伝送装置43の内部で中継する光主信号とは別の不要光成分を抽出して光伝送装置43内の検出器11Aに入力することができる。検出器11Aは、トランスポンダ11と同様に電気終端処理の機能を有しているが、光信号を送出する機能はない。すなわち、検出器11Aは入力された光信号を電気信号に変換する機能と、この電気信号を処理して伝送品質データを検出する機能とを有している。 The all-optical wavelength conversion unit 13 in the optical transmission device 43 performs wavelength conversion processing on the input optical signal Oin, which is inputted to the optical transmission device 43 from the optical fiber cable 15 and has a wavelength of λ1, as an optical signal, and converts it into a signal different from the input. An optical signal with a wavelength λ2 can be generated and sent to the optical fiber cable 15 on the downstream side as an output optical signal Oo2 with a wavelength λ2. Further, the all-optical wavelength converter 13 shown in FIG. 6 extracts an unnecessary optical component different from the optical main signal relayed inside the optical transmission device 43 and inputs it to the detector 11A inside the optical transmission device 43. be able to. The detector 11A has the same electrical termination function as the transponder 11, but does not have the function of transmitting an optical signal. That is, the detector 11A has a function of converting an input optical signal into an electrical signal, and a function of processing this electrical signal to detect transmission quality data.
 つまり、光伝送装置43は中継する光主信号を電気終端処理することなく、光信号のまま中継して下流側の光ファイバケーブル15に送出するので、中継処理に伴う遅延の増大を防止できる。また、後述するように検出器11Aに入力する光信号を抽出するために光スプリッタを使う必要がないので、光主信号の光強度の低下を防止できる。 In other words, the optical transmission device 43 relays the optical main signal to be relayed without electrical termination processing, and transmits the optical signal as it is to the downstream optical fiber cable 15, so it is possible to prevent an increase in delay due to the relay processing. Furthermore, as will be described later, since there is no need to use an optical splitter to extract the optical signal input to the detector 11A, it is possible to prevent the optical main signal from decreasing in optical intensity.
 また、全光波長変換部13は中継する光主信号とは別の不要光成分を抽出して光伝送装置43内の検出器11Aに入力するので、検出器11Aは光伝送装置43のノード位置における伝送品質データを検出できる。 In addition, the all-optical wavelength converter 13 extracts an unnecessary optical component different from the optical main signal to be relayed and inputs it to the detector 11A in the optical transmission device 43, so the detector 11A is located at the node position of the optical transmission device 43 transmission quality data can be detected.
 したがって、ネットワークコントローラ20は電気終端処理を行わない光伝送装置43などの中継ノードの伝送品質データを取得できる。例えば障害が発生した場合に、ネットワークコントローラ20は各中継ノードの位置における伝送品質データに基づいて、区間毎に障害発生の有無を切り分けることができる。 Therefore, the network controller 20 can acquire transmission quality data of relay nodes such as the optical transmission equipment 43 that do not perform electrical termination processing. For example, when a failure occurs, the network controller 20 can determine whether or not a failure has occurred for each section based on transmission quality data at the location of each relay node.
<全光波長変換部の構成>
 図6の光伝送システム100に含まれる全光波長変換部13の構成例を図7に示す。
 図7に示した全光波長変換部13は、励起光光源14、光ファイバ15A、光合波器16、非線形光学媒質17、光分波器18、及び光ファイバ15Bを備えている。全光波長変換部13は、中継する光主信号、及び、励起光光源14から出射される励起光の両方の光が同時に入射可能な非線形光学媒質17を含んだ全光波長変換デバイスである。
<Configuration of all-optical wavelength conversion section>
FIG. 7 shows a configuration example of the all-optical wavelength conversion section 13 included in the optical transmission system 100 of FIG. 6.
The all-optical wavelength conversion unit 13 shown in FIG. 7 includes an excitation light source 14, an optical fiber 15A, an optical multiplexer 16, a nonlinear optical medium 17, an optical demultiplexer 18, and an optical fiber 15B. The all-optical wavelength conversion unit 13 is an all-optical wavelength conversion device that includes a nonlinear optical medium 17 into which both the main optical signal to be relayed and the excitation light emitted from the excitation light source 14 can be input simultaneously.
 励起光光源14は、所定の波長λeの励起光Oeを生成する。励起光光源14が生成した励起光Oeは、光ファイバ15Aを通って光合波器16に入射する。励起光Oeの波長λeは入力光信号Oinの波長λ1とは異なる。また、励起光Oeの光強度は入力光信号Oinと比べて十分に大きい。 The excitation light source 14 generates excitation light Oe with a predetermined wavelength λe. The excitation light Oe generated by the excitation light source 14 passes through the optical fiber 15A and enters the optical multiplexer 16. The wavelength λe of the excitation light Oe is different from the wavelength λ1 of the input optical signal Oin. Furthermore, the optical intensity of the excitation light Oe is sufficiently large compared to the input optical signal Oin.
 光合波器16は、光ファイバケーブル15から入力される入力光信号Oinと光ファイバ15Aから入力される励起光Oeとを合波した光を生成して非線形光学媒質17の入射端に送出する。 The optical multiplexer 16 generates light by combining the input optical signal Oin input from the optical fiber cable 15 and the excitation light Oe input from the optical fiber 15A, and sends it to the input end of the nonlinear optical medium 17.
 非線形光学媒質17は、非線形光学特性を有し、入射光と異なる波長の光信号を生成することができる。代表例としては、高非線形ファイバ(HNLF)、周期分極反転ニオブ酸リチウム(PPLN)、及び半導体光増幅器(SOA)のいずれか1つを非線形光学媒質17として利用できる。 The nonlinear optical medium 17 has nonlinear optical characteristics and can generate an optical signal with a wavelength different from that of the incident light. As a typical example, any one of a highly nonlinear fiber (HNLF), a periodically poled lithium niobate (PPLN), and a semiconductor optical amplifier (SOA) can be used as the nonlinear optical medium 17.
 光分波器18は、全光波■変換デバイスである非線形光学媒質17の光出射側に接続されている。非線形光学媒質17の出力端から出射される出射光Ooutは光分波器18に入力される。光分波器18は、その波長選択特性により入射光を分波して、2種類の光信号をそれぞれ抽出する。すなわち、波長λ2の送出光信号Oo2と、波長λ1の出射光Oo1とが光分波器18の互いに異なる出力端子から出射される。 The optical demultiplexer 18 is connected to the light output side of the nonlinear optical medium 17, which is a total light wave conversion device. The output light Oout output from the output end of the nonlinear optical medium 17 is input to the optical demultiplexer 18 . The optical demultiplexer 18 demultiplexes the incident light according to its wavelength selection characteristics, and extracts two types of optical signals. That is, the output optical signal Oo2 with the wavelength λ2 and the output light Oo1 with the wavelength λ1 are output from different output terminals of the optical demultiplexer 18.
 送出光信号Oo2の波長λ2は、入力光信号Oinの波長と、励起光Oeの波長λeと、非線形光学媒質17の非線形光学特性とに基づいて生成される。つまり、波長λ1の入力光信号Oinが励起光Oeと共に非線形光学媒質17を通過することで、波長変換された送出光信号Oo2の波長λ2が生成される。また、非線形光学媒質17の出射光の中には、波長変換前と同じ波長λ1の光成分も含まれている。 The wavelength λ2 of the outgoing optical signal Oo2 is generated based on the wavelength of the input optical signal Oin, the wavelength λe of the excitation light Oe, and the nonlinear optical characteristics of the nonlinear optical medium 17. That is, by passing the input optical signal Oin with the wavelength λ1 through the nonlinear optical medium 17 together with the excitation light Oe, the wavelength λ2 of the wavelength-converted output optical signal Oo2 is generated. Furthermore, the light emitted from the nonlinear optical medium 17 also contains a light component having the same wavelength λ1 as before wavelength conversion.
 光分波器18から出力される波長λ2の送出光信号Oo2は、中継出力として光伝送装置43の出力から下流側の光ファイバケーブル15に送出される。また、光分波器18から出力される波長λ1の出射光Oo1は、光ファイバ15Bを介して光伝送装置43内の検出器11Aに入力される。 The output optical signal Oo2 of wavelength λ2 outputted from the optical demultiplexer 18 is sent out from the output of the optical transmission device 43 to the downstream optical fiber cable 15 as a relay output. Further, the output light Oo1 having the wavelength λ1 output from the optical demultiplexer 18 is input to the detector 11A in the optical transmission device 43 via the optical fiber 15B.
 したがって、図7に示した全光波長変換部13を利用することで、光伝送装置43が中継する光主信号を電気終端処理することなく、光信号のままでその波長をλ1からλ2に変換し、遅延の増大を防止できる。また、全光波長変換部13から出力される波長変換前と同じ波長λ1の出射光Oo1、つまり主信号以外の不要な光成分を検出器11Aに入力することができる。検出器11Aは、入力される波長λ1の出射光Oo1を内部で電気信号に変換し、電気信号の形態で各種処理を行うことができる。これにより、光伝送装置43の中継ノード位置における伝送品質データが得られる。但し、中継ノードが送出する光主信号の波長λ2と検出器11Aに入力される主信号以外の光の波長λ1とは異なっている。そこで、波長λ1に対して検出される伝送品質と波長λ2に対して検出される伝送品質との相関関係を事前に特定しておき、検出器11Aが検出した伝送品質データを、相関関係に基づいて中継する光信号の伝送品質データに変換する。この変換処理は、検出器11Aの内部で行ってもよいし、ネットワークコントローラ20側で行ってもよい。 Therefore, by using the all-optical wavelength converter 13 shown in FIG. 7, the wavelength of the optical main signal relayed by the optical transmission device 43 is converted from λ1 to λ2 without electrical termination processing. This can prevent an increase in delay. Further, the output light Oo1 having the same wavelength λ1 as before wavelength conversion, which is output from the all-optical wavelength conversion unit 13, that is, unnecessary light components other than the main signal, can be input to the detector 11A. The detector 11A can internally convert the input output light Oo1 of wavelength λ1 into an electrical signal, and perform various processing on the electrical signal. Thereby, transmission quality data at the relay node position of the optical transmission device 43 is obtained. However, the wavelength λ2 of the main optical signal transmitted by the relay node is different from the wavelength λ1 of light other than the main signal input to the detector 11A. Therefore, the correlation between the transmission quality detected for the wavelength λ1 and the transmission quality detected for the wavelength λ2 is specified in advance, and the transmission quality data detected by the detector 11A is determined based on the correlation. and converts it into transmission quality data for the optical signal to be relayed. This conversion process may be performed inside the detector 11A or may be performed on the network controller 20 side.
<各部の光信号の波長分布>
 図7の全光波長変換部13の各部における光信号波長分布の一覧を図8に示す。図8中の横軸は波長を表し、縦軸は光強度を表している。
<Wavelength distribution of optical signals in each part>
FIG. 8 shows a list of optical signal wavelength distributions in each part of the all-optical wavelength conversion section 13 in FIG. 7. The horizontal axis in FIG. 8 represents wavelength, and the vertical axis represents light intensity.
 図8の最上段のグラフに示すように、上流側の光ファイバケーブル15から光伝送装置43に入力される入力光信号Oinは、単一の波長λ1の成分だけを含んでいる。また、励起光光源14が生成する励起光Oeは、単一の波長λeの成分だけを含んでいる。また、2段目のグラフに示すように、励起光Oeの光強度は入力光信号Oinよりも十分に大きい。 As shown in the graph at the top of FIG. 8, the input optical signal Oin input from the upstream optical fiber cable 15 to the optical transmission device 43 includes only a component of a single wavelength λ1. Furthermore, the excitation light Oe generated by the excitation light source 14 includes only a component of a single wavelength λe. Further, as shown in the second graph, the optical intensity of the excitation light Oe is sufficiently larger than the input optical signal Oin.
 一方、非線形光学媒質17から出射される出射光Ooutの中には、図8の3段目のグラフに示すように3種類の波長λ1、λe、λ2の各成分が含まれている。波長λ2の成分は、非線形光学媒質17の通過に伴う入力光信号Oinの波長変換によって生じた成分である。出射光Ooutに含まれる波長λ2の成分の光強度は、非線型光学媒質および励起光強度に依存し、入力光信号Oinと同等とすることができる。つまり、光強度を減衰させることなく波長変換を行うこともできる。 On the other hand, the output light Oout output from the nonlinear optical medium 17 includes components of three types of wavelengths λ1, λe, and λ2, as shown in the third graph in FIG. The component of wavelength λ2 is a component generated by wavelength conversion of the input optical signal Oin as it passes through the nonlinear optical medium 17. The light intensity of the wavelength λ2 component included in the output light Oout depends on the nonlinear optical medium and the excitation light intensity, and can be made equal to the input optical signal Oin. In other words, wavelength conversion can be performed without attenuating the light intensity.
 また、出射光Ooutに含まれる波長λ1の成分の光強度は、入力光信号Oinと同等である。つまり、波長変換前と同じ波長λ1で且つ主信号以外の光信号を非線形光学媒質17の出力から十分に大きい光強度で取り出すことができる。 Furthermore, the light intensity of the component of wavelength λ1 included in the output light Oout is equivalent to the input optical signal Oin. In other words, an optical signal other than the main signal having the same wavelength λ1 as before wavelength conversion and having a sufficiently high optical intensity can be extracted from the output of the nonlinear optical medium 17.
 光分波器18における分波により、光分波器18の一方の出力に波長λ2の成分だけを含む送出光信号Oo2が抽出される。図8の4段目のグラフに、送出光信号Oo2を示す。この送出光信号Oo2が中継出力の光主信号として下流側の光ファイバケーブル15に送出される。 By the demultiplexing in the optical demultiplexer 18, a transmitted optical signal Oo2 containing only the component of wavelength λ2 is extracted from one output of the optical demultiplexer 18. The fourth graph in FIG. 8 shows the transmitted optical signal Oo2. This outgoing optical signal Oo2 is sent out to the optical fiber cable 15 on the downstream side as a relay output optical main signal.
 また、光分波器18の分波により、光分波器18の他方の出力に波長変換前と同じ波長λ1の成分だけを含む出射光Oo1が抽出され、この出射光Oo1が光ファイバ15Bを介して検出器11Aに入力される。図8の5段目のグラフに、出射光Oo1を示す。
 ここで、十分に光強度の大きい出射光Oo1が検出器11Aに入力されるので、検出器11Aは該当する中継ノードの位置における伝送品質データを容易に検出できる。勿論、検出器11Aは入力される光信号を内部で電気信号に変換し、電気信号の処理により伝送品質データを検出する。
Furthermore, by the demultiplexing of the optical demultiplexer 18, the output light Oo1 containing only the component of the same wavelength λ1 as that before wavelength conversion is extracted from the other output of the optical demultiplexer 18, and this output light Oo1 passes through the optical fiber 15B. The signal is input to the detector 11A via the sensor. The fifth graph in FIG. 8 shows the output light Oo1.
Here, since the emitted light Oo1 with sufficiently high light intensity is input to the detector 11A, the detector 11A can easily detect transmission quality data at the position of the corresponding relay node. Of course, the detector 11A internally converts the input optical signal into an electrical signal, and detects transmission quality data by processing the electrical signal.
<光伝送システムの変形例>
-<変形例の構成>
 図6の構成の変形例である光伝送システム200の構成を図9に示す。
<Modified example of optical transmission system>
-<Configuration of modified example>
FIG. 9 shows a configuration of an optical transmission system 200 that is a modification of the configuration in FIG. 6.
 図9に示した光伝送システム200は、5つの光伝送装置51、52、53、54、及び55とネットワークコントローラ20とを備えている。5つの光伝送装置51~55は、例えば一定の距離だけ互いに離れた場所に一列に並べて設置されている。また、図9に示した各光伝送装置51~55は複数波長の光信号が多重化されたWDM(Wavelength Division Multiplexing:波長分割多重)光信号を伝送する機能を有している。 The optical transmission system 200 shown in FIG. 9 includes five optical transmission devices 51, 52, 53, 54, and 55 and a network controller 20. The five optical transmission devices 51 to 55 are installed, for example, in a line at locations separated from each other by a certain distance. Further, each of the optical transmission devices 51 to 55 shown in FIG. 9 has a function of transmitting a WDM (Wavelength Division Multiplexing) optical signal in which optical signals of multiple wavelengths are multiplexed.
 5つの光伝送装置51~55は、WDM光信号の伝送路として利用される1つ又は複数の光ファイバケーブル15を介して互いに直列に接続されている。送信ノード又は受信ノードとして機能するネットワークの端部位置にある光伝送装置51及び55は、それぞれWDM光信号の処理に対応した複数のトランスポンダ11a~11nを実装している。 The five optical transmission devices 51 to 55 are connected in series to each other via one or more optical fiber cables 15 used as transmission paths for WDM optical signals. Optical transmission devices 51 and 55 located at the end of the network that function as transmitting nodes or receiving nodes are each equipped with a plurality of transponders 11a to 11n that are capable of processing WDM optical signals.
 ネットワークコントローラ20は、光伝送装置51~55、及び光ファイバケーブル15で構成される光通信ネットワークの全体を管理している。ネットワークコントローラ20は、例えば光通信ネットワーク上で何らかの障害が発生した場合に、障害の発生場所を特定するために役立つ情報を生成できる。 The network controller 20 manages the entire optical communication network composed of the optical transmission devices 51 to 55 and the optical fiber cable 15. For example, when a failure occurs on the optical communication network, the network controller 20 can generate information useful for identifying the location of the failure.
 例えば、この通信ネットワークの一端側の光伝送装置51から他端側の光伝送装置55に対してデータを伝送する場合、光伝送装置51が送信ノードとなり、光伝送装置55が受信ノードとなる。また、これらの送信ノード、受信ノードの間にある光伝送装置52~54は、それぞれ中継ノードとして使用される。 For example, when transmitting data from an optical transmission device 51 at one end of this communication network to an optical transmission device 55 at the other end, the optical transmission device 51 becomes a transmitting node and the optical transmission device 55 becomes a receiving node. Furthermore, optical transmission devices 52 to 54 located between these transmitting nodes and receiving nodes are used as relay nodes, respectively.
 送信ノードの光伝送装置51は、送信するデータを各トランスポンダ11a~11nの内部で電気信号からそれぞれ所定波長の光信号に変換し、複数波長を多重化したWDM光信号を光ファイバケーブル15に送出する。受信ノードの光伝送装置55は、光ファイバケーブル15からWDM光信号を受け取る。光伝送装置55は受け取ったWDM光信号を波長毎に分離して、各トランスポンダ11a~11nで光信号から電気信号に変換し、電気信号の処理により受信データを取得する。 The optical transmission device 51 of the transmission node converts the data to be transmitted from an electrical signal into an optical signal of a predetermined wavelength inside each transponder 11a to 11n, and sends out a WDM optical signal multiplexed with multiple wavelengths to the optical fiber cable 15. do. The optical transmission device 55 of the receiving node receives the WDM optical signal from the optical fiber cable 15. The optical transmission device 55 separates the received WDM optical signal for each wavelength, converts the optical signal into an electrical signal in each transponder 11a to 11n, and obtains received data by processing the electrical signal.
 図9に示した構成の光伝送システム200においては、1つの中継ノードとして使用される光伝送装置53の内部にAO-WCの機能を実装した全光波長変換部13Aを備えている。また、WDM光信号に対応した複数のトランスポンダ11a~11nが光伝送装置53に実装されている。 In the optical transmission system 200 having the configuration shown in FIG. 9, the optical transmission device 53 used as one relay node includes an all-optical wavelength conversion section 13A that implements the AO-WC function. Further, a plurality of transponders 11a to 11n compatible with WDM optical signals are mounted on the optical transmission device 53.
 光伝送装置53内の全光波長変換部13Aは、上流側の光ファイバケーブル15から光伝送装置53に入力されたWDM光信号を光信号のままで波長変換処理して、入力と波長が異なるWDM光信号を生成し、下流側の光ファイバケーブル15に送出することができる。また、全光波長変換部13Aは光伝送装置53が中継するWDM光主信号から分離した不要光成分を抽出して光伝送装置53内の検出器11Aa~11Anに入力することができる。 The all-optical wavelength conversion unit 13A in the optical transmission device 53 performs wavelength conversion processing on the WDM optical signal inputted to the optical transmission device 53 from the upstream optical fiber cable 15 as an optical signal, so that the wavelength is different from the input one. A WDM optical signal can be generated and sent to the downstream optical fiber cable 15. Further, the all-optical wavelength conversion section 13A can extract unnecessary optical components separated from the WDM optical main signal relayed by the optical transmission device 53 and input them to the detectors 11Aa to 11An in the optical transmission device 53.
 つまり、光伝送装置53は中継するWDM光主信号を電気終端処理することなく、光信号のまま中継して下流側の光ファイバケーブル15に送出するので、中継処理に伴う遅延の増大を防止できる。また、検出器11Aa~11Anに入力する光信号を抽出するために光スプリッタを使う必要がないので、WDM光主信号の光強度の低下を抑制できる。 In other words, the optical transmission device 53 relays the WDM optical main signal to be relayed without electrical termination processing, and relays the optical signal as it is and sends it to the downstream optical fiber cable 15, so it is possible to prevent an increase in delay due to relay processing. . Further, since it is not necessary to use an optical splitter to extract the optical signals input to the detectors 11Aa to 11An, it is possible to suppress a decrease in the optical intensity of the WDM optical main signal.
 また、全光波長変換部13Aは中継するWDM光主信号から分離した不要光成分を抽出して光伝送装置53内の検出器11Aa~11Anに入力するので、検出器11Aa~11Anは光伝送装置53のノード位置における伝送品質データを検出できる。 In addition, the all-optical wavelength converter 13A extracts unnecessary optical components separated from the WDM optical main signal to be relayed and inputs them to the detectors 11Aa to 11An in the optical transmission device 53. Transmission quality data at 53 node locations can be detected.
 したがって、ネットワークコントローラ20は電気終端処理を行わない光伝送装置53などの中継ノードの伝送品質データを取得できる。例えば障害が発生した場合に、ネットワークコントローラ20は各中継ノードの位置における伝送品質データに基づいて、区間毎の障害発生の有無を切り分けることができる。
 また、光伝送装置53は、伝送信号と抽出信号を入れ替えることも可能である。この場合、光伝送装置53は、波長λ11~λ1nの各光成分を伝送し、波長λ21~λ2nの各光成分を抽出信号として検出して、伝送品質データを取得する。これより、光伝送装置53は、波長変換を行わない場合にも伝送品質データを取得することができる。
Therefore, the network controller 20 can acquire transmission quality data of a relay node such as the optical transmission device 53 that does not perform electrical termination processing. For example, when a failure occurs, the network controller 20 can determine whether the failure has occurred in each section based on transmission quality data at the location of each relay node.
Furthermore, the optical transmission device 53 can also replace the transmission signal and the extraction signal. In this case, the optical transmission device 53 transmits each optical component with wavelengths λ11 to λ1n, detects each optical component with wavelengths λ21 to λ2n as an extraction signal, and obtains transmission quality data. As a result, the optical transmission device 53 can acquire transmission quality data even when wavelength conversion is not performed.
-<全光波長変換部の第1構成例>
 図9の光伝送システム200に含まれる全光波長変換部13Aの第1構成例を図10に示す。
-<First configuration example of all-optical wavelength conversion section>
A first configuration example of the all-optical wavelength converter 13A included in the optical transmission system 200 of FIG. 9 is shown in FIG.
 図10に示した全光波長変換部13Aは、励起光光源14、光ファイバ15A、光合波器16、非線形光学媒質17、光分波器18、及び光ファイバ15Bを備えている。 The all-optical wavelength conversion section 13A shown in FIG. 10 includes an excitation light source 14, an optical fiber 15A, an optical multiplexer 16, a nonlinear optical medium 17, an optical demultiplexer 18, and an optical fiber 15B.
 励起光光源14は、所定の波長λeの励起光Oeを生成する。励起光光源14が生成した励起光Oeは、光ファイバ15Aを通って光合波器16に入射する。励起光Oeの波長λeはWDMの入力光信号Oinに含まれる各波長λ1~λnとは異なる。また、励起光Oeの光強度はWDMの入力光信号Oinと比べて十分に大きい。 The excitation light source 14 generates excitation light Oe with a predetermined wavelength λe. The excitation light Oe generated by the excitation light source 14 passes through the optical fiber 15A and enters the optical multiplexer 16. The wavelength λe of the excitation light Oe is different from each of the wavelengths λ1 to λn included in the WDM input optical signal Oin. Further, the optical intensity of the excitation light Oe is sufficiently large compared to the WDM input optical signal Oin.
 光合波器16は、光ファイバケーブル15から入力されるWDMの入力光信号Oinと光ファイバ15Aから入力される励起光Oeとを合波した光を生成して非線形光学媒質17の入射端に送出する。 The optical multiplexer 16 generates light by combining the WDM input optical signal Oin input from the optical fiber cable 15 and the excitation light Oe input from the optical fiber 15A, and sends it to the input end of the nonlinear optical medium 17. do.
 非線形光学媒質17の出力端から出射される出射光Ooutは光分波器18に入力される。この出射光Ooutは、波長変換された後のWDM光信号を含んでいる。光分波器18は、その波長選択特性により入射光を分波して、中継対象のWDM光主信号である送出光信号Oo2と、WDM光主信号以外の出射光Oo11~Oo1nとをそれぞれ抽出する。 The output light Oout output from the output end of the nonlinear optical medium 17 is input to the optical demultiplexer 18. This emitted light Oout includes a WDM optical signal after wavelength conversion. The optical demultiplexer 18 demultiplexes the incident light according to its wavelength selection characteristics, and extracts the outgoing optical signal Oo2, which is the WDM optical main signal to be relayed, and the output lights Oo11 to Oo1n, which are other than the WDM optical main signal. do.
 WDM光信号である送出光信号Oo2の波長は、WDMの入力光信号Oinに含まれる各波長と、励起光Oeの波長λeと、非線形光学媒質17の非線形光学特性とにより生成される。つまり、複数波長λ1~λnを含む入力光信号Oinが励起光Oeと共に非線形光学媒質17を通過することで、WDMの波長毎に波長変換された送出光信号Oo2が生成される。また、非線形光学媒質17の出射光の中には、波長変換前と同じ複数波長λ1~λnの光成分も含まれている。 The wavelength of the output optical signal Oo2, which is a WDM optical signal, is generated from each wavelength included in the WDM input optical signal Oin, the wavelength λe of the excitation light Oe, and the nonlinear optical characteristics of the nonlinear optical medium 17. That is, the input optical signal Oin including a plurality of wavelengths λ1 to λn passes through the nonlinear optical medium 17 together with the excitation light Oe, thereby generating an output optical signal Oo2 that is wavelength-converted for each WDM wavelength. Furthermore, the light emitted from the nonlinear optical medium 17 also contains light components having the same plurality of wavelengths λ1 to λn as before wavelength conversion.
 光分波器18から出力される波長変換後の送出光信号Oo2は、中継出力として光伝送装置53の出力から下流側の光ファイバケーブル15に送出される。また、光分波器18から出力される波長変換前と同じ複数波長λ1~λnを含むWDMの出射光Oo1は、光ファイバ15Bを介して光伝送装置53内の複数の検出器11Aa~11Anに波長毎に分離された出射光Oo11~Oo1nとしてそれぞれ入力される。 The wavelength-converted transmission optical signal Oo2 output from the optical demultiplexer 18 is transmitted from the output of the optical transmission device 53 to the downstream optical fiber cable 15 as a relay output. Furthermore, the WDM output light Oo1 containing the same plurality of wavelengths λ1 to λn as before wavelength conversion, which is output from the optical demultiplexer 18, is sent to the plurality of detectors 11Aa to 11An in the optical transmission device 53 via the optical fiber 15B. The output lights are inputted as output lights Oo11 to Oo1n separated for each wavelength.
 したがって、図10に示した全光波長変換部13Aを利用することで、光伝送装置53が中継するWDM光主信号を電気終端処理することなく、光信号のままでその波長を変換し、遅延の増大を防止できる。また、全光波長変換部13Aから出力される波長変換前と同じ波長λ1~λnの出射光Oo11~Oo1n、つまり中継する主信号以外の不要な光成分を複数の検出器11Aa~11Anに波長毎に入力することができる。 Therefore, by using the all-optical wavelength converter 13A shown in FIG. 10, the wavelength of the WDM optical main signal relayed by the optical transmission device 53 can be converted as it is without electrical termination processing, and the wavelength can be delayed. can prevent an increase in Further, the output lights Oo11 to Oo1n of the same wavelengths λ1 to λn as before wavelength conversion outputted from the all-optical wavelength conversion unit 13A, that is, unnecessary light components other than the main signal to be relayed, are sent to the plurality of detectors 11Aa to 11An for each wavelength. can be entered.
 各検出器11Aa~11Anは、波長毎に分離された出射光Oo11~Oo1nのいずれかを内部で電気信号に変換し、電気信号の形態で各種処理を行うことができる。これにより、光伝送装置53の中継ノード位置における波長毎の伝送品質データが得られる。 Each of the detectors 11Aa to 11An internally converts any of the output lights Oo11 to Oo1n separated for each wavelength into an electrical signal, and can perform various processing in the form of the electrical signal. As a result, transmission quality data for each wavelength at the relay node position of the optical transmission device 53 can be obtained.
-<図10の各部の光信号の波長分布>
 図10の全光波長変換部13Aの各部における光信号波長分布の一覧を図11に示す。図11中の横軸は波長を表し、縦軸は光強度を表している。
-<Wavelength distribution of optical signals in each part of Figure 10>
FIG. 11 shows a list of optical signal wavelength distributions in each part of the all-optical wavelength conversion section 13A in FIG. 10. The horizontal axis in FIG. 11 represents wavelength, and the vertical axis represents light intensity.
 図11の最上段のグラフに示すように、上流側の光ファイバケーブル15から光伝送装置53に入力される入力光信号Oinは、多重化された複数波長λ11~λ1nの各成分を含んでいる。また、2段目のグラフに示すように、励起光光源14が生成する励起光Oeは、単一の波長λeの成分だけを含んでいる。また、励起光Oeの光強度は入力光信号Oinよりも十分に大きい。 As shown in the graph at the top of FIG. 11, the input optical signal Oin input from the upstream optical fiber cable 15 to the optical transmission device 53 includes multiplexed components of multiple wavelengths λ11 to λ1n. . Furthermore, as shown in the second graph, the excitation light Oe generated by the excitation light source 14 includes only a component of a single wavelength λe. Further, the optical intensity of the excitation light Oe is sufficiently larger than the input optical signal Oin.
 一方、非線形光学媒質17から出射される出射光Ooutの中には、図11の3段目のグラフに示すように、に示すように波長λ11~λ1n、λe、λ21~λ2nの各光成分が含まれている。 On the other hand, in the output light Oout emitted from the nonlinear optical medium 17, as shown in the third graph of FIG. include.
 波長λ21~λ2nの光成分は、非線形光学媒質17の通過に伴う入力光信号Oinの波長変換によって生じた光成分である。また、出射光Ooutに含まれる波長λ21~λ2nの成分の光強度は、入力光信号Oinと同等である。つまり、光強度を減衰させることなく波長変換を行うことができる。 The optical components with wavelengths λ21 to λ2n are optical components generated by wavelength conversion of the input optical signal Oin as it passes through the nonlinear optical medium 17. Furthermore, the light intensity of the components of wavelengths λ21 to λ2n included in the output light Oout is equal to that of the input optical signal Oin. In other words, wavelength conversion can be performed without attenuating the light intensity.
 また、出射光Ooutに含まれる波長λ11~λ1nの成分の光強度は、入力光信号Oinと同等である。つまり、波長変換前と同じ波長λ11~λ1nで且つ主信号以外の光信号を非線形光学媒質17の出力から十分に大きい光強度で取り出すことができる。 Furthermore, the light intensity of the components of wavelengths λ11 to λ1n included in the output light Oout is equal to that of the input optical signal Oin. In other words, optical signals other than the main signal having the same wavelengths λ11 to λ1n as before wavelength conversion can be extracted from the output of the nonlinear optical medium 17 with sufficiently high optical intensity.
 光分波器18における分波により、光分波器18の一方の出力に波長λ21~λ2nの光成分を含む送出光信号Oo2が抽出され、この送出光信号Oo2が中継出力のWDM光主信号として下流側の光ファイバケーブル15に送出される。4段目のグラフに、送出光信号Oo2を示す。 By the demultiplexing in the optical demultiplexer 18, an output optical signal Oo2 containing optical components with wavelengths λ21 to λ2n is extracted from one output of the optical demultiplexer 18, and this output optical signal Oo2 becomes the WDM optical main signal of the relay output. The signal is sent out to the optical fiber cable 15 on the downstream side. The fourth graph shows the transmitted optical signal Oo2.
 また、光分波器18の分波により、光分波器18の他方の出力に波長変換前と同じ波長λ11~λ1nの光成分を含む出射光Oo11~Oo1nが抽出され、この出射光Oo11~oO1nが光ファイバ15Bを介して複数の検出器11Aa~11Anに波長毎に入力される。5段目のグラフに、出射光Oo11を示す。6段目のグラフに、出射光Oo1nを示す。
 ここで、十分に光強度の大きい出射光Oo11~Oo1nが検出器11Aa~11Anに入力されるので、検出器11Aa~11Anは該当する中継ノードの位置における波長毎の伝送品質データを容易に検出できる。勿論、各検出器11Aa~11Anは入力される光信号を内部で電気信号に変換し、電気信号の処理により伝送品質データを検出する。
Further, by the demultiplexing of the optical demultiplexer 18, output lights Oo11 to Oo1n containing light components of the same wavelengths λ11 to λ1n as before wavelength conversion are extracted to the other output of the optical demultiplexer 18, and these output lights Oo11 to Oo1n are extracted. oO1n is input to a plurality of detectors 11Aa to 11An for each wavelength via an optical fiber 15B. The fifth graph shows the emitted light Oo11. The sixth graph shows the output light Oo1n.
Here, since the emitted lights Oo11 to Oo1n with sufficiently high light intensity are input to the detectors 11Aa to 11An, the detectors 11Aa to 11An can easily detect transmission quality data for each wavelength at the position of the corresponding relay node. . Of course, each of the detectors 11Aa to 11An internally converts an input optical signal into an electrical signal, and detects transmission quality data by processing the electrical signal.
-<全光波長変換部の第2構成例>
 図9の光伝送システム200に実装可能な全光波長変換部13Bの第2構成例を図12に示す。
-<Second configuration example of all-optical wavelength conversion section>
FIG. 12 shows a second configuration example of the all-optical wavelength conversion section 13B that can be implemented in the optical transmission system 200 of FIG. 9.
 図12に示した全光波長変換部13Bにおいては、光ファイバ15Bの下流側に波長フィルタ19が接続され、波長フィルタ19の出力側に単一の検出器11Aが接続されている。 In the all-optical wavelength conversion section 13B shown in FIG. 12, a wavelength filter 19 is connected to the downstream side of the optical fiber 15B, and a single detector 11A is connected to the output side of the wavelength filter 19.
 波長フィルタ19は、複数波長λ11~λ1nの光成分が多重化されている出射光Oo1の中から特定波長の光信号Oo1xの成分を選択的に抽出し、検出器11Aに入力することができる。 The wavelength filter 19 can selectively extract the component of the optical signal Oo1x of a specific wavelength from the output light Oo1 in which optical components of multiple wavelengths λ11 to λ1n are multiplexed, and input it to the detector 11A.
 波長フィルタ19の代表例として、例えば以下の(1)~(3)のいずれか1つを採用することが想定される。
(1)1×nの波長選択スイッチ(WSS:Wavelength. Selective Switch)を使用する。その場合、各ポートを通過する光信号の波長を電気的に制御できる。
(2)カプラで光信号を複数ポートに分岐し、各ポートにチューナブルフィルタを設置する。各チューナブルフィルタを電気的に制御することで、透過する波長をポート毎に選択できる。
(3)検出器11Aがコヒーレント検波を行う場合には、検出器11A内の局発光の光波長を設定することで検出する光信号の波長を選択できる。この場合は、波長フィルタ19の設置を省略し、出射光Oo1をWDM信号のまま検出器11Aに入射させて、検出器11Aの内部で処理対象の波長を選択する。
 上記以外の全光波長変換部13Bの構成は全光波長変換部13Aと同様である。
As a representative example of the wavelength filter 19, it is assumed that one of the following (1) to (3) is adopted, for example.
(1) A 1×n wavelength selective switch (WSS) is used. In that case, the wavelength of the optical signal passing through each port can be electrically controlled.
(2) Branch the optical signal into multiple ports using a coupler, and install a tunable filter at each port. By electrically controlling each tunable filter, the wavelength to be transmitted can be selected for each port.
(3) When the detector 11A performs coherent detection, the wavelength of the optical signal to be detected can be selected by setting the optical wavelength of the local light within the detector 11A. In this case, the installation of the wavelength filter 19 is omitted, the output light Oo1 is made to enter the detector 11A as a WDM signal, and the wavelength to be processed is selected inside the detector 11A.
The configuration of the all-optical wavelength converter 13B other than the above is the same as that of the all-optical wavelength converter 13A.
-<図12の各部の光信号の波長分布>
 図12の全光波長変換部13Bの各部における光信号波長分布の一覧を図13に示す。図13中の横軸は波長を表し、縦軸は光強度を表している。
-<Wavelength distribution of optical signals in each part of Fig. 12>
FIG. 13 shows a list of optical signal wavelength distributions in each part of the all-optical wavelength conversion section 13B in FIG. 12. The horizontal axis in FIG. 13 represents wavelength, and the vertical axis represents light intensity.
 図13に示すように、上流側の光ファイバケーブル15から光伝送装置53に入力される入力光信号Oinは、多重化された複数波長λ11~λ1nの各成分を含んでいる。また、励起光光源14が生成する励起光Oeは、単一の波長λeの成分だけを含んでいる。また、励起光Oeの光強度は入力光信号Oinよりも十分に大きい。 As shown in FIG. 13, the input optical signal Oin input from the upstream optical fiber cable 15 to the optical transmission device 53 includes multiplexed components of multiple wavelengths λ11 to λ1n. Furthermore, the excitation light Oe generated by the excitation light source 14 includes only a component of a single wavelength λe. Further, the optical intensity of the excitation light Oe is sufficiently larger than the input optical signal Oin.
 一方、非線形光学媒質17から出射される出射光Ooutの中には、図13に示すように波長λ11~λ1n、λe、λ21~λ2nの各光成分が含まれている。 On the other hand, the output light Oout output from the nonlinear optical medium 17 includes light components with wavelengths λ11 to λ1n, λe, and λ21 to λ2n, as shown in FIG.
 波長λ21~λ2nの光成分は、非線形光学媒質17の通過に伴う入力光信号Oinの波長変換によって生じた光成分である。また、出射光Ooutに含まれる波長λ21~λ2nの成分の光強度は、入力光信号Oinと同等である。つまり、光強度を減衰させることなく波長変換を行うことができる。 The optical components with wavelengths λ21 to λ2n are optical components generated by wavelength conversion of the input optical signal Oin as it passes through the nonlinear optical medium 17. Furthermore, the light intensity of the components of wavelengths λ21 to λ2n included in the output light Oout is equal to that of the input optical signal Oin. In other words, wavelength conversion can be performed without attenuating the light intensity.
 また、出射光Ooutに含まれる波長λ11~λ1nの成分の光強度は、入力光信号Oinと同等である。つまり、波長変換前と同じ波長λ11~λ1nで且つ主信号以外の光信号を非線形光学媒質17の出力から十分に大きい光強度で取り出すことができる。 Furthermore, the light intensity of the components of wavelengths λ11 to λ1n included in the output light Oout is equal to that of the input optical signal Oin. In other words, optical signals other than the main signal having the same wavelengths λ11 to λ1n as before wavelength conversion can be extracted from the output of the nonlinear optical medium 17 with sufficiently high optical intensity.
 光分波器18における分波により、光分波器18の一方の出力に波長λ21~λ2nの光成分を含む送出光信号Oo2が抽出され、この送出光信号Oo2が中継出力のWDM光主信号として下流側の光ファイバケーブル15に送出される。 By the demultiplexing in the optical demultiplexer 18, an output optical signal Oo2 containing optical components with wavelengths λ21 to λ2n is extracted from one output of the optical demultiplexer 18, and this output optical signal Oo2 becomes the WDM optical main signal of the relay output. The signal is sent out to the optical fiber cable 15 on the downstream side.
 また、光分波器18の分波により、光分波器18の他方の出力に波長変換前と同じ波長λ11~λ1nの光成分を含む出射光Oo1が抽出され、この出射光Oo1が波長フィルタ19に入力される。波長フィルタ19は、波長λ11~λ1nの中から1つの波長λ1aの光成分を選択的に抽出して検出器11Aに入力する。 Further, by the demultiplexing of the optical demultiplexer 18, the output light Oo1 containing the light components of the same wavelengths λ11 to λ1n as before wavelength conversion is extracted to the other output of the optical demultiplexer 18, and this output light Oo1 is filtered by the wavelength filter. 19 is input. The wavelength filter 19 selectively extracts a light component of one wavelength λ1a from the wavelengths λ11 to λ1n and inputs it to the detector 11A.
 したがって、光伝送装置53の内部に複数の検出器11Aを設置する必要がない。この場合、単一の検出器11Aが出射光Oo1のWDM光信号に含まれる各波長λ11~λ1nを順次に選択し、波長毎に順番に電気信号に変換して処理することで、中継ノードの位置における伝送品質データを波長毎に検出できる。 Therefore, there is no need to install multiple detectors 11A inside the optical transmission device 53. In this case, the single detector 11A sequentially selects each of the wavelengths λ11 to λ1n included in the WDM optical signal of the emitted light Oo1, converts each wavelength into an electrical signal, and processes it. Transmission quality data at each location can be detected for each wavelength.
<光伝送管理方法の処理手順>
 本発明の光伝送管理方法の処理手順の例を図14に示す。図14の処理手順について以下に説明する。
<Processing procedure of optical transmission management method>
FIG. 14 shows an example of the processing procedure of the optical transmission management method of the present invention. The processing procedure of FIG. 14 will be explained below.
 この処理手順は、例えば図6のような光伝送システム100を管理するために利用できる。この光伝送システム100において、通信の中継を行う光伝送装置43のノード位置では、光伝送装置43がステップS11で上流側の光ファイバケーブル15から入力光信号Oinを受信し、全光波長変換部13がステップS12で入力光信号Oinの波長変換を実施する。 This processing procedure can be used, for example, to manage the optical transmission system 100 as shown in FIG. In this optical transmission system 100, at the node position of the optical transmission device 43 that relays communication, the optical transmission device 43 receives the input optical signal Oin from the upstream optical fiber cable 15 in step S11, and 13 performs wavelength conversion of the input optical signal Oin in step S12.
 全光波長変換部13内の光分波器18は、波長変換後の送出光信号Oo2をステップS13で中継出力として下流側の光ファイバケーブル15に送出する。また、全光波長変換部13内の光分波器18は、波長変換前と波長が同じ出射光Oo1、すなわち通信の中継に利用されない不要光をステップS14で抽出する。 The optical demultiplexer 18 in the all-optical wavelength converter 13 sends out the wavelength-converted outgoing optical signal Oo2 to the downstream optical fiber cable 15 as a relay output in step S13. Further, the optical demultiplexer 18 in the all-optical wavelength converter 13 extracts the output light Oo1 having the same wavelength as before wavelength conversion, that is, unnecessary light that is not used for relaying communication, in step S14.
 光伝送装置43内の検出器11Aは、光分波器18が抽出した不要光をステップS15で入力して電気信号に変換する。
 検出器11Aとして、トランスポンダの受信部相当のものや、スペクトラムアナライザ、偏波モニター、パワーメーター等が考えられる。トランスポンダ受信部相当のものでは、不要光を電気信号に変換して処理することで伝送品質データをステップS16で取得する。スペクトラムアナライザの場合は、信号対雑音比を取得する。偏波モニターの場合は光信号の偏波状態を取得し、パワーメーターの場合は光強度を取得する。
The detector 11A in the optical transmission device 43 receives the unnecessary light extracted by the optical demultiplexer 18 in step S15 and converts it into an electrical signal.
The detector 11A may be a receiver equivalent to a transponder, a spectrum analyzer, a polarization monitor, a power meter, or the like. The transponder receiving unit converts unnecessary light into an electrical signal and processes it to obtain transmission quality data in step S16. For spectrum analyzers, obtain the signal-to-noise ratio. In the case of a polarization monitor, the polarization state of the optical signal is obtained, and in the case of a power meter, the optical intensity is obtained.
 光伝送装置43は、内部の検出器11Aが検出した伝送品質データをその中継ノード位置に対応付けてステップS17でネットワークコントローラ20へ通知する。
 したがって、図14の中継処理を行うことにより、伝送する光信号の電気終端処理を省略した中継ノードについても、ネットワークコントローラ20は伝送品質データを得ることができる。
The optical transmission device 43 associates the transmission quality data detected by the internal detector 11A with the relay node position and notifies the network controller 20 in step S17.
Therefore, by performing the relay processing shown in FIG. 14, the network controller 20 can obtain transmission quality data even for relay nodes that omit electrical termination processing of optical signals to be transmitted.
<変形例の説明>
 全光波長変換部13Cの構成を図15に示す。この全光波長変換部13Cは図7に示した全光波長変換部13の変形例である。
<Explanation of modification example>
FIG. 15 shows the configuration of the all-optical wavelength conversion section 13C. This all-optical wavelength converter 13C is a modification of the all-optical wavelength converter 13 shown in FIG.
 図15の全光波長変換部13Cにおいては、非線形光学媒質17の出射光Ooutに含まれる波長λ1、λ2の各光成分のうち、波長λ1の出射光Oo1が光分波器18で抽出され、中継出力として光ファイバケーブル15に送出される。また、非線形光学媒質17の出射光Ooutに含まれる波長λ1、λ2の各光成分のうち、波長λ2の送出光信号Oo2が光分波器18で抽出され、光ファイバ15Bを介して検出器11Aに入力される。
 上記以外の全光波長変換部13Cの構成は図7の全光波長変換部13と同様である。
In the total optical wavelength conversion unit 13C in FIG. 15, out of the optical components of wavelengths λ1 and λ2 included in the output light Oout of the nonlinear optical medium 17, the output light Oo1 with the wavelength λ1 is extracted by the optical demultiplexer 18, It is sent out to the optical fiber cable 15 as a relay output. Furthermore, among the optical components of wavelengths λ1 and λ2 included in the output light Oout of the nonlinear optical medium 17, the output optical signal Oo2 of wavelength λ2 is extracted by the optical demultiplexer 18 and sent to the detector 11A via the optical fiber 15B. is input.
The configuration of the all-optical wavelength converter 13C other than the above is the same as that of the all-optical wavelength converter 13 shown in FIG.
 つまり、図15の全光波長変換部13Cを使用する中継ノードにおいては、中継する光信号の波長変換は行わない。しかし、全光波長変換部13Cを用いることで、中継する光主信号の光強度を減衰させることなく、光主信号以外の不要光を抽出して検出器11Aに入力することができる。 In other words, in the relay node using the all-optical wavelength converter 13C in FIG. 15, the wavelength of the optical signal to be relayed is not converted. However, by using the all-optical wavelength converter 13C, unnecessary light other than the optical main signal can be extracted and input to the detector 11A without attenuating the optical intensity of the optical main signal to be relayed.
 図15の全光波長変換部13Cを使用する場合には、中継する光主信号の波長λ1と検出器11Aが検出する伝送品質データの波長λ2とが異なっている。したがって、波長λ1に対する伝送品質データと、波長λ2に対する伝送品質データとの相関関係を予め把握しておく。そして、検出器11Aが検出した伝送品質データを、相関関係に基づき中継する光主信号の波長λ1の伝送品質データに変換する。この変換処理は検出器11Aの内部で行ってもよいし、ネットワークコントローラ20側で行ってもよい。 When using the all-optical wavelength converter 13C in FIG. 15, the wavelength λ1 of the optical main signal to be relayed is different from the wavelength λ2 of the transmission quality data detected by the detector 11A. Therefore, the correlation between the transmission quality data for the wavelength λ1 and the transmission quality data for the wavelength λ2 is grasped in advance. Then, the transmission quality data detected by the detector 11A is converted into transmission quality data of the wavelength λ1 of the optical main signal to be relayed based on the correlation. This conversion process may be performed inside the detector 11A or may be performed on the network controller 20 side.
 また、現実的な光伝送装置43の構成としては、光分波器18が各出力ポートに出力する光の波長を選択的に制御できるように構成することが考えられる。これにより、図7に示した全光波長変換部13の構成と、図15に示した全光波長変換部13Cの構成とを必要に応じて切り替えることができる。これにより、ネットワークコントローラ20は各中継ノードにおける波長変換の有無を状況に応じて動的に切り替えることが可能になる。 Further, as a practical configuration of the optical transmission device 43, it is conceivable to configure it so that the optical demultiplexer 18 can selectively control the wavelength of the light outputted to each output port. Thereby, the configuration of the all-optical wavelength converter 13 shown in FIG. 7 and the configuration of the all-optical wavelength converter 13C shown in FIG. 15 can be switched as necessary. This allows the network controller 20 to dynamically switch whether wavelength conversion is to be performed at each relay node depending on the situation.
<上記以外の変形の可能性>
 図7に示した全光波長変換部13は、非線形光学媒質17の光出射側に現れる出射光Ooutの中から非線形光学媒質17を通過した光主信号以外の不要光成分、つまり入力光信号Oinと同じ波長λ1の出射光Oo1を光分波器18で抽出して検出器11Aに入力している。一方、非線形光学媒質17の光入射側で入力光信号Oinの反射や散乱などが生じる場合に、反射光や散乱光を非線形光学媒質17の入射側で抽出できる可能性もある。その場合は、非線形光学媒質17の光入射側に光分波器(不要光抽出部)を接続して、中継する光主信号の波長変換前と波長が同じ光成分を不要光として抽出し、抽出した不要光を検出器11Aに入力してもよい。これにより光分波器の接続の自由度を向上させることができる。
<Possibility of deformation other than the above>
The total optical wavelength conversion unit 13 shown in FIG. The output light Oo1 having the same wavelength λ1 is extracted by the optical demultiplexer 18 and input to the detector 11A. On the other hand, when reflection or scattering of the input optical signal Oin occurs on the light incidence side of the nonlinear optical medium 17, there is a possibility that reflected light or scattered light can be extracted on the incidence side of the nonlinear optical medium 17. In that case, an optical demultiplexer (unnecessary light extraction section) is connected to the light incidence side of the nonlinear optical medium 17 to extract the light component having the same wavelength as the wavelength of the main optical signal to be relayed before wavelength conversion as unnecessary light. The extracted unnecessary light may be input to the detector 11A. Thereby, the degree of freedom in connecting the optical demultiplexer can be improved.
 更に非線形光学媒質17の光出射側に光分波器(不要光抽出部)を接続して、この非線形光学媒質17から出射される光の中から、中継する光主信号の波■変換後の波■の光成分を不要光として抽出してもよい。 Furthermore, an optical demultiplexer (unnecessary light extraction section) is connected to the light output side of the nonlinear optical medium 17, and from the light output from the nonlinear optical medium 17, the wave of the optical main signal to be relayed is converted. The light component of wave (2) may be extracted as unnecessary light.
 光伝送システム100のネットワークコントローラ20においては、各光中継ノードのトランスポンダ11が検出した伝送品質データとして「Pre-FEC BER」を使うことが一般的に想定される。一方、検出器11Aやトランスポンダ11は通信データの電気信号処理により「Pre-FEC BER」の他に、波長分散補償量、偏波モード分散、偏波依存損失等のデータも取得できる。したがって、ネットワークコントローラ20は、検出器11A又はトランスポンダ11を実装している各光中継ノードから波長分散補償量、偏波モード分散、偏波依存損失等のデータも収集し、機械学習の学習データとして活用できる。これにより、電気終端処理のない光ネットワークにおける故障予知の実現に役立つ。 It is generally assumed that the network controller 20 of the optical transmission system 100 uses "Pre-FEC BER" as transmission quality data detected by the transponder 11 of each optical relay node. On the other hand, the detector 11A and the transponder 11 can obtain data such as chromatic dispersion compensation amount, polarization mode dispersion, polarization dependent loss, etc. in addition to "Pre-FEC BER" by electrical signal processing of communication data. Therefore, the network controller 20 also collects data such as the amount of chromatic dispersion compensation, polarization mode dispersion, and polarization dependent loss from each optical relay node that implements the detector 11A or the transponder 11, and uses the data as learning data for machine learning. Can be used. This helps in predicting failures in optical networks without electrical termination.
<光伝送装置の特徴>
 本発明の光伝送装置および光伝送管理方法に関する特徴的な事項について以下の[1]~[8]に列挙する。
[1]光信号の送信が可能な光送信ノードと、光信号の受信が可能な光受信ノードとの間が光伝送路を介して接続され、前記光伝送路の中間位置に1つ以上の光中継ノードが接続された光伝送システム(100)の少なくとも1つの前記光中継ノードに装備可能な光伝送装置であって、
 少なくとも1つの前記光中継ノードが中継する光信号の波長を変換する全光波長変換デバイス(全光波長変換部13)と、
 中継する光主信号の波長変換前と波長が同じ前記光主信号以外の不要光成分(出射光Oo1)を抽出する不要光抽出部(光分波器18)と、
 前記不要光抽出部が抽出した前記不要光成分の光を電気信号に変換する光電気信号変換部(検出器11A)と、
 を備える光伝送装置(43)。
<Characteristics of optical transmission equipment>
Characteristic matters regarding the optical transmission device and optical transmission management method of the present invention are listed in [1] to [8] below.
[1] An optical transmission node capable of transmitting optical signals and an optical reception node capable of receiving optical signals are connected via an optical transmission line, and one or more An optical transmission device that can be installed in at least one optical relay node of an optical transmission system (100) to which optical relay nodes are connected,
an all-optical wavelength conversion device (all-optical wavelength conversion unit 13) that converts the wavelength of an optical signal relayed by at least one of the optical relay nodes;
an unnecessary light extraction unit (optical demultiplexer 18) that extracts an unnecessary light component (output light Oo1) other than the optical main signal having the same wavelength as the optical main signal to be relayed before wavelength conversion;
a photoelectric signal converter (detector 11A) that converts the unnecessary light component light extracted by the unnecessary light extractor into an electrical signal;
An optical transmission device (43) comprising:
 上記[1]の構成の光伝送装置によれば、前記光中継ノードが中継する光主信号以外の不要光成分を抽出して電気信号に変換するので、前記光主信号を電気終端処理する必要がなく、前記光主信号の遅延、光強度、伝送品質などの劣化に影響を及ぼすことなく前記不要光成分を取り出して電気信号に変換できる。したがって、各中継ノードの位置における伝送品質データの検出が可能になり、障害発生区間の特定などが容易になる。また、光中継ノード内に光信号の波長変換機能を装備することで、限られた波長リソースを有効活用することが可能になり、収容トラヒック量を増やす効果が得られる。 According to the optical transmission device configured in [1] above, unnecessary optical components other than the optical main signal relayed by the optical relay node are extracted and converted into electrical signals, so it is necessary to electrically terminate the optical main signal. Therefore, the unnecessary optical component can be extracted and converted into an electrical signal without affecting the delay, optical intensity, transmission quality, etc. of the optical main signal. Therefore, it becomes possible to detect transmission quality data at the position of each relay node, and it becomes easy to identify the section where a fault has occurred. Furthermore, by equipping an optical relay node with a wavelength conversion function for optical signals, it becomes possible to effectively utilize limited wavelength resources, and the effect of increasing the amount of accommodated traffic can be obtained.
[2]前記不要光抽出部は、前記全光波長変換デバイスの光出射側に接続され、前記全光波長変換デバイスから出射される光の中から、中継する光主信号の波長変換前の波長と同じ波長の光成分を抽出する。 [2] The unnecessary light extraction section is connected to the light output side of the all-optical wavelength conversion device, and extracts a wavelength of a main optical signal to be relayed before wavelength conversion from among the light emitted from the all-optical wavelength conversion device. Extracts the light component with the same wavelength.
 上記[2]の構成の光伝送装置によれば、前記全光波長変換デバイスを通過した光の中に含まれている不要光成分を抽出して活用するので、光強度が十分に大きい不要光成分を抽出できる。したがって、前記光電気信号変換部は前記不要光成分を劣化の少ない電気信号に容易に変換できる。 According to the optical transmission device having the configuration [2] above, since the unnecessary light component contained in the light that has passed through the all-optical wavelength conversion device is extracted and utilized, the unnecessary light with a sufficiently high light intensity is Components can be extracted. Therefore, the opto-electrical signal converter can easily convert the unnecessary optical component into an electrical signal with less deterioration.
[3]光伝送装置は、中継する光主信号の波長変換前の波長とは異なる波長の励起光を出射する励起光源(励起光光源14)を備え、
 前記全光波長変換デバイスは、中継する光主信号、および前記励起光源から出射される励起光の両方の光が同時に入射可能な非線形光学媒質であり、
 前記不要光抽出部は、前記非線形光学媒質からの出射光を波長変換後の波長の光成分と波長変換前の波長の光成分とのそれぞれに分離する。
[3] The optical transmission device includes a pumping light source (pumping light source 14) that emits pumping light of a different wavelength from the wavelength of the optical main signal to be relayed before wavelength conversion,
The all-optical wavelength conversion device is a nonlinear optical medium into which both the optical main signal to be relayed and the excitation light emitted from the excitation light source can enter simultaneously,
The unnecessary light extraction section separates the light emitted from the nonlinear optical medium into a light component having a wavelength after wavelength conversion and a light component having a wavelength before wavelength conversion.
 上記[3]の構成の光伝送装置によれば、中継する光主信号の光強度などを劣化させることなく波長変換を行うことができる。また、前記不要光抽出部が抽出する不要光成分についても、十分に光強度が大きい光信号が得られる。 According to the optical transmission device having the configuration described in [3] above, wavelength conversion can be performed without deteriorating the optical intensity of the optical main signal to be relayed. Furthermore, an optical signal having a sufficiently high light intensity can be obtained from the unnecessary light component extracted by the unnecessary light extraction section.
[4]光伝送装置は、前記非線形光学媒質として、高非線形ファイバ、周期分極反転ニオブ酸リチウム、及び半導体光増幅器の少なくとも1つを備える。 [4] The optical transmission device includes at least one of a highly nonlinear fiber, periodically poled lithium niobate, and a semiconductor optical amplifier as the nonlinear optical medium.
 上記[4]の構成の光伝送装置によれば、前記非線形光学媒質を利用して効率よく光信号の波長変換を行うことができる。 According to the optical transmission device having the configuration described in [4] above, it is possible to efficiently perform wavelength conversion of an optical signal using the nonlinear optical medium.
[5]光伝送装置は、前記光電気信号変換部から出力される電気信号に基づいて伝送品質データを生成する伝送品質検出部(検出器11A)を備える。 [5] The optical transmission device includes a transmission quality detection section (detector 11A) that generates transmission quality data based on the electrical signal output from the opto-electrical signal conversion section.
 上記[5]の構成の光伝送装置によれば、前記伝送品質検出部が生成する伝送品質データを活用することで、中継ノードの位置の違いによる伝送品質の劣化を検出できる。したがって、障害が発生した場合の区間毎の障害有無の切り分けや、故障の予知などが可能になる。 According to the optical transmission device having the configuration described in [5] above, by utilizing the transmission quality data generated by the transmission quality detection section, it is possible to detect deterioration in transmission quality due to differences in the positions of relay nodes. Therefore, when a failure occurs, it is possible to determine whether or not there is a failure in each section, and to predict failure.
[6]光伝送装置において、波長が互いに異なる複数波長(λ11~λ1n)の光主信号を含むWDM信号光と、波長変換に用いる励起光とを合波する光合波器が前記全光波長変換デバイスの光入射側に接続され、
 前記WDM信号光に含まれる複数の光主信号の波長変換前の波長と同じ波長毎にそれぞれ分割した不要光成分を抽出する光分波器が前記全光波長変換デバイスの光出射側に接続され、
 複数の前記光電気信号変換部(複数の検出器11Aa~11An)が前記光分波器の出力に接続され、複数の前記光電気信号変換部は、互いに波長が異なる複数の前記不要光成分の光(出射光Oo11~Oo1n)を個別に電気信号に変換する。
[6] In an optical transmission device, an optical multiplexer that multiplexes WDM signal light including optical main signals of multiple wavelengths (λ11 to λ1n) having different wavelengths and pump light used for wavelength conversion is the all-optical wavelength converter. connected to the light input side of the device,
An optical demultiplexer is connected to the light output side of the all-optical wavelength conversion device, and extracts unnecessary optical components divided into wavelengths that are the same as wavelengths before wavelength conversion of a plurality of optical main signals included in the WDM signal light. ,
A plurality of the photoelectric signal converters (a plurality of detectors 11Aa to 11An) are connected to the output of the optical demultiplexer, and the plurality of photoelectric signal converters convert the plurality of unnecessary light components having different wavelengths from each other. The light (outgoing light Oo11 to Oo1n) is individually converted into electrical signals.
 上記[6]の構成の光伝送装置によれば、各光中継ノードでWDM信号光を中継する場合に、WDM信号光に含まれる光主信号の波長毎に、該当する中継ノード位置における伝送品質データを常時検出できる。 According to the optical transmission device having the configuration [6] above, when the WDM signal light is relayed at each optical relay node, the transmission quality at the corresponding relay node position is determined for each wavelength of the optical main signal included in the WDM signal light. Data can be detected at all times.
[7]光伝送装置において、波長が互いに異なる複数波長(λ11~λ1n)の光主信号を含むWDM信号光と、波長変換に用いる励起光とを合波する光合波器が前記全光波長変換デバイスの光入射側に接続され、
 前記不要光抽出部が前記全光波長変換デバイスの光出射側に接続され、前記不要光抽出部は前記WDM信号光に含まれる複数の光主信号の波長変換前の波長と同じ波長(λ11~λ1n)の不要光成分を抽出する機能を有し、
 前記不要光抽出部の出力と1つの前記光電気信号変換部(検出器11A)の入力との間に光波長選択部(波長フィルタ19)が配置されている。
[7] In an optical transmission device, an optical multiplexer that combines WDM signal light including optical main signals of multiple wavelengths (λ11 to λ1n) with different wavelengths and pump light used for wavelength conversion is the all-optical wavelength converter. connected to the light input side of the device,
The unnecessary light extractor is connected to the light output side of the all-optical wavelength conversion device, and the unnecessary light extractor extracts the same wavelength (λ11 to It has the function of extracting unnecessary light components of λ1n),
An optical wavelength selection section (wavelength filter 19) is arranged between the output of the unnecessary light extraction section and the input of one of the photoelectric signal conversion sections (detector 11A).
 上記[7]の構成の光伝送装置によれば、各光中継ノードでWDM信号光を中継する場合に、WDM信号光に含まれる光主信号の波長毎の伝送品質データを順次に検出できる。また、各光中継ノードに実装される前記光電気信号変換部の数を削減できる。これにより、消費電力の低減やコストの削減が可能になる。 According to the optical transmission device having the configuration [7] above, when the WDM signal light is relayed at each optical relay node, transmission quality data for each wavelength of the optical main signal included in the WDM signal light can be sequentially detected. Furthermore, the number of opto-electrical signal converters mounted on each optical relay node can be reduced. This makes it possible to reduce power consumption and cost.
[8]光伝送装置において、前記不要光抽出部は、前記全光波長変換デバイスの光出射側に接続され、前記全光波長変換デバイスから出射される光の中から、中継する光主信号の波■変換後の波■の光成分を不要光として抽出する。 [8] In the optical transmission device, the unnecessary light extraction section is connected to the light output side of the all-optical wavelength conversion device, and extracts a main optical signal to be relayed from the light emitted from the all-optical wavelength conversion device. The light component of the wave ■ after the wave ■ conversion is extracted as unnecessary light.
[9]光信号の送信が可能な光送信ノードと、光信号の受信が可能な光受信ノードとの間が光伝送路を介して接続され、前記光伝送路の中間位置に1つ以上の光中継ノードが接続された光伝送システム(100)を管理するための光伝送管理方法であって、
 前記光伝送システムの少なくとも1つの前記光中継ノード(光伝送装置43、又は53)において、
 受信した光信号の波長変換を実施すると共に、波長変換された後の前記光信号を中継出力として送出する手順(ステップS13)と、
 受信した前記光信号の中から、中継する光主信号の波長変換前と波長が同じ前記光主信号以外の不要光成分を抽出する手順(ステップS14)と、
 抽出された前記不要光成分の光を電気信号に変換する手順(ステップS15)と、
 前記電気信号に基づいて伝送品質データを生成する手順(ステップS16)と、
 を実施する光伝送管理方法。
[9] An optical transmission node capable of transmitting optical signals and an optical reception node capable of receiving optical signals are connected via an optical transmission line, and one or more An optical transmission management method for managing an optical transmission system (100) to which optical relay nodes are connected, the method comprising:
In at least one of the optical relay nodes (optical transmission device 43 or 53) of the optical transmission system,
a step of converting the wavelength of the received optical signal and transmitting the wavelength-converted optical signal as a relay output (step S13);
a step of extracting, from the received optical signal, unnecessary optical components other than the optical main signal having the same wavelength as the optical main signal to be relayed before wavelength conversion (step S14);
a step of converting the extracted unnecessary light component into an electrical signal (step S15);
a step of generating transmission quality data based on the electrical signal (step S16);
Optical transmission management method to implement.
 上記[9]の光伝送管理方法によれば、前記光中継ノードが中継する光主信号以外の不要光成分を抽出して電気信号に変換するので、前記光主信号を電気終端処理する必要がなく、前記光主信号の遅延、光強度、伝送品質などの劣化に影響を及ぼすことなく前記不要光成分を取り出して電気信号に変換できる。したがって、各中継ノードの位置における伝送品質データの検出が可能になり、障害発生区間の特定などが容易になる。また、光中継ノード内で光信号の波長変換を実施することで、限られた波長リソースを有効活用することが可能になり、収容トラヒック量を増やす効果が得られる。 According to the optical transmission management method of [9] above, unnecessary optical components other than the optical main signal relayed by the optical relay node are extracted and converted into electrical signals, so there is no need to electrically terminate the optical main signal. Therefore, the unnecessary optical component can be extracted and converted into an electrical signal without affecting the delay, optical intensity, transmission quality, etc. of the optical main signal. Therefore, it becomes possible to detect transmission quality data at the position of each relay node, and it becomes easy to identify the section where a fault has occurred. Further, by performing wavelength conversion of optical signals within the optical relay node, it becomes possible to effectively utilize limited wavelength resources, and the effect of increasing the amount of accommodated traffic can be obtained.
 10-1,10-2,10-3,10-4,10-5 光伝送装置
 11 トランスポンダ
 11A,11Aa~11An 検出器
 12 光スプリッタ
 12a,12b 光出力端
 13,13A,13B,13C 全光波長変換部 (全光波長変換デバイス)
 14 励起光光源
 15 光ファイバケーブル
 15A,15B 光ファイバ
 16 光合波器
 17 非線形光学媒質
 18 光分波器 (不要光抽出部)
 19 波長フィルタ
 20 ネットワークコントローラ
 31,32 光通信リンク
 41,42,43,44,45 光伝送装置
 51,52,53,54,55 光伝送装置
 100,100A,100B,100C,100D,200 光伝送システム
 Oe 励起光
 Oin 入力光信号
 Oo2 送出光信号
 Oo1,Oo11~Oo1n,Oout 出射光
 Oo1x 光信号
 λ1,λ11,λ1n,λ2,λ21,λ2n,λe 波長
10-1, 10-2, 10-3, 10-4, 10-5 Optical transmission device 11 Transponder 11A, 11Aa to 11An Detector 12 Optical splitter 12a, 12b Optical output end 13, 13A, 13B, 13C All optical wavelengths Conversion section (all-optical wavelength conversion device)
14 Excitation light source 15 Optical fiber cable 15A, 15B Optical fiber 16 Optical multiplexer 17 Nonlinear optical medium 18 Optical demultiplexer (unnecessary light extraction section)
19 Wavelength filter 20 Network controller 31, 32 Optical communication link 41, 42, 43, 44, 45 Optical transmission device 51, 52, 53, 54, 55 Optical transmission device 100, 100A, 100B, 100C, 100D, 200 Optical transmission system Oe Pumping light Oin Input optical signal Oo2 Outgoing optical signal Oo1, Oo11 to Oo1n, Oout Outgoing light Oo1x Optical signal λ1, λ11, λ1n, λ2, λ21, λ2n, λe Wavelength

Claims (9)

  1.  光信号の送信が可能な光送信ノードと、光信号の受信が可能な光受信ノードとの間が光伝送路を介して接続され、前記光伝送路の中間位置に1つ以上の光中継ノードが接続された光伝送システムの少なくとも1つの前記光中継ノードに装備可能な光伝送装置であって、
     少なくとも1つの前記光中継ノードが中継する光信号の波長を変換する全光波長変換デバイスと、
     中継する光主信号の波長変換前と波長が同じ前記光主信号以外の不要光成分を抽出する不要光抽出部と、
     前記不要光抽出部が抽出した前記不要光成分の光を電気信号に変換する光電気信号変換部と、
     を備える光伝送装置。
    An optical transmitting node capable of transmitting optical signals and an optical receiving node capable of receiving optical signals are connected via an optical transmission line, and one or more optical relay nodes are provided at an intermediate position of the optical transmission line. An optical transmission device that can be installed in at least one optical relay node of an optical transmission system connected to
    an all-optical wavelength conversion device that converts the wavelength of an optical signal relayed by at least one optical relay node;
    an unnecessary light extraction unit that extracts unnecessary light components other than the optical main signal having the same wavelength as the optical main signal to be relayed before wavelength conversion;
    a photoelectrical signal converter that converts the unnecessary light component light extracted by the unnecessary light extractor into an electrical signal;
    An optical transmission device comprising:
  2.  前記不要光抽出部は、前記全光波長変換デバイスの光出射側に接続され、前記全光波長変換デバイスから出射される光の中から、中継する光主信号の波長変換前の波長と同じ波長の光成分を抽出する、
     請求項1に記載の光伝送装置。
    The unnecessary light extractor is connected to the light output side of the all-optical wavelength conversion device, and extracts a wavelength same as the wavelength of the optical main signal to be relayed before wavelength conversion from among the light emitted from the all-optical wavelength conversion device. extracting the light components of
    The optical transmission device according to claim 1.
  3.  中継する光主信号の波長変換前の波長とは異なる波長の励起光を出射する励起光源を備え、
     前記全光波長変換デバイスは、中継する光主信号、および前記励起光源から出射される励起光の両方の光が同時に入射可能な非線形光学媒質であり、
     前記不要光抽出部は、前記非線形光学媒質からの出射光を波長変換後の波長の光成分と波長変換前の波長の光成分とのそれぞれに分離する、
     請求項1に記載の光伝送装置。
    Equipped with a pumping light source that emits pumping light of a different wavelength from the wavelength of the optical main signal to be relayed before wavelength conversion,
    The all-optical wavelength conversion device is a nonlinear optical medium into which both the optical main signal to be relayed and the excitation light emitted from the excitation light source can enter simultaneously,
    The unnecessary light extraction unit separates the light emitted from the nonlinear optical medium into a light component with a wavelength after wavelength conversion and a light component with a wavelength before wavelength conversion.
    The optical transmission device according to claim 1.
  4.  前記非線形光学媒質として、高非線形ファイバ、周期分極反転ニオブ酸リチウム、及び半導体光増幅器の少なくとも1つを備える、
     請求項3に記載の光伝送装置。
    The nonlinear optical medium includes at least one of a highly nonlinear fiber, periodically poled lithium niobate, and a semiconductor optical amplifier.
    The optical transmission device according to claim 3.
  5.  前記光電気信号変換部から出力される電気信号に基づいて伝送品質データを生成する伝送品質検出部を備える、
     請求項1に記載の光伝送装置。
    comprising a transmission quality detection unit that generates transmission quality data based on the electrical signal output from the opto-electrical signal conversion unit;
    The optical transmission device according to claim 1.
  6.  波長が互いに異なる複数波長の光主信号を含むWDM信号光と、波長変換に用いる励起光とを合波する光合波器が前記全光波長変換デバイスの光入射側に接続され、
     前記WDM信号光に含まれる複数の光主信号の波長変換前の波長と同じ波長毎にそれぞれ分割した不要光成分を抽出する光分波器が前記全光波長変換デバイスの光出射側に接続され、
     複数の前記光電気信号変換部が前記光分波器の出力に接続され、複数の前記光電気信号変換部は、互いに波長が異なる複数の前記不要光成分の光を個別に電気信号に変換する、
     請求項1に記載の光伝送装置。
    An optical multiplexer that multiplexes WDM signal light including optical main signals of multiple wavelengths different from each other and excitation light used for wavelength conversion is connected to the light incidence side of the all-optical wavelength conversion device,
    An optical demultiplexer is connected to the light output side of the all-optical wavelength conversion device, and extracts unnecessary optical components divided into wavelengths that are the same as wavelengths before wavelength conversion of a plurality of optical main signals included in the WDM signal light. ,
    A plurality of the photoelectric signal converters are connected to the output of the optical demultiplexer, and the plurality of photoelectric signal converters individually convert the plurality of unnecessary light components having different wavelengths into electrical signals. ,
    The optical transmission device according to claim 1.
  7.  波長が互いに異なる複数波長の光主信号を含むWDM信号光と、波長変換に用いる励起光とを合波する光合波器が前記全光波長変換デバイスの光入射側に接続され、
     前記不要光抽出部が前記全光波長変換デバイスの光出射側に接続され、前記不要光抽出部は前記WDM信号光に含まれる複数の光主信号の波長変換前の波長と同じ波長の不要光成分を抽出する機能を有し、
     前記不要光抽出部の出力と1つの前記光電気信号変換部の入力との間に光波長選択部が配置されている、
     請求項1に記載の光伝送装置。
    An optical multiplexer that multiplexes WDM signal light including optical main signals of multiple wavelengths different from each other and excitation light used for wavelength conversion is connected to the light incidence side of the all-optical wavelength conversion device,
    The unnecessary light extraction section is connected to the light output side of the all-optical wavelength conversion device, and the unnecessary light extraction section extracts unnecessary light having the same wavelength as the wavelength of a plurality of optical main signals included in the WDM signal light before wavelength conversion. It has the function of extracting ingredients,
    an optical wavelength selection section is disposed between the output of the unnecessary light extraction section and the input of one of the photoelectric signal conversion sections;
    The optical transmission device according to claim 1.
  8.  前記不要光抽出部は、前記全光波長変換デバイスの光出射側に接続され、
     前記全光波長変換デバイスから出射される光の中から、中継する光主信号の波■変換後の波■の光成分を不要光として抽出する、
     請求項1に記載の光伝送装置。
    The unnecessary light extraction section is connected to the light output side of the all-light wavelength conversion device,
    Extracting the optical components of the wave of the optical main signal to be relayed and the converted wave from among the light emitted from the all-optical wavelength conversion device as unnecessary light;
    The optical transmission device according to claim 1.
  9.  光信号の送信が可能な光送信ノードと、光信号の受信が可能な光受信ノードとの間が光伝送路を介して接続され、前記光伝送路の中間位置に1つ以上の光中継ノードが接続された光伝送システムを管理するための光伝送管理方法であって、
     前記光伝送システムの少なくとも1つの前記光中継ノードにおいて、
     受信した光信号の波長変換を実施すると共に、波長変換された後の前記光信号を中継出力として送出する手順と、
     受信した前記光信号の中から、中継する光主信号の波長変換前と波長が同じ前記光主信号以外の不要光成分を抽出する手順と、
     抽出された前記不要光成分の光を電気信号に変換する手順と、
     前記電気信号に基づいて伝送品質データを生成する手順と、
     を実施する光伝送管理方法。
    An optical transmitting node capable of transmitting optical signals and an optical receiving node capable of receiving optical signals are connected via an optical transmission line, and one or more optical relay nodes are provided at an intermediate position of the optical transmission line. An optical transmission management method for managing an optical transmission system connected to
    In at least one of the optical relay nodes of the optical transmission system,
    a step of converting the wavelength of the received optical signal and transmitting the wavelength-converted optical signal as a relay output;
    a step of extracting, from the received optical signal, unnecessary optical components other than the optical main signal having the same wavelength as the optical main signal to be relayed before wavelength conversion;
    a step of converting the extracted unnecessary light component light into an electrical signal;
    generating transmission quality data based on the electrical signal;
    Optical transmission management method to implement.
PCT/JP2022/023256 2022-06-09 2022-06-09 Optical transmission device and optical transmission management method WO2023238317A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023256 WO2023238317A1 (en) 2022-06-09 2022-06-09 Optical transmission device and optical transmission management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/023256 WO2023238317A1 (en) 2022-06-09 2022-06-09 Optical transmission device and optical transmission management method

Publications (1)

Publication Number Publication Date
WO2023238317A1 true WO2023238317A1 (en) 2023-12-14

Family

ID=89117781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/023256 WO2023238317A1 (en) 2022-06-09 2022-06-09 Optical transmission device and optical transmission management method

Country Status (1)

Country Link
WO (1) WO2023238317A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240697A1 (en) * 2019-05-28 2020-12-03 日本電信電話株式会社 Optical signal processing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020240697A1 (en) * 2019-05-28 2020-12-03 日本電信電話株式会社 Optical signal processing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAKAGAWA MASAHIRO; KAWAHARA HIROKI; SEKI TAKESHI; MIYAMURA TAKASHI: "Adaptive Link-by-Link Band Allocation: A Novel Adaptation Scheme in Multi-Band Optical Networks", 2021 INTERNATIONAL CONFERENCE ON OPTICAL NETWORK DESIGN AND MODELING (ONDM), IFIP TC6 WG6.10, 28 June 2021 (2021-06-28), pages 1 - 6, XP033948512, DOI: 10.23919/ONDM51796.2021.9492502 *

Similar Documents

Publication Publication Date Title
US7957644B2 (en) Flexible open ring optical network and method
US7321729B2 (en) Optical ring network with selective signal regeneration and wavelength conversion
US6317231B1 (en) Optical monitoring apparatus and method for network provisioning and maintenance
US7116905B2 (en) Method and system for control signaling in an open ring optical network
EP1569494A2 (en) Optical network with selective mode switching
JP4545349B2 (en) Photonic network node
US20030058497A1 (en) All-optical switching sites for an agile optical network
US7085496B2 (en) Passive add/drop amplifier for optical networks and method
US7483637B2 (en) Optical ring network with optical subnets and method
US6839164B2 (en) Optical transmission equipment and supervisory system thereof
US6816680B2 (en) Optical communications network and nodes for forming such a network
US7120360B2 (en) System and method for protecting traffic in a hubbed optical ring network
US20050286896A1 (en) Hybrid optical ring network
US7076163B2 (en) Method and system for testing during operation of an open ring optical network
US20050175346A1 (en) Upgraded flexible open ring optical network and method
US10750256B1 (en) Wavelength conversion for optical path protection
WO2023238317A1 (en) Optical transmission device and optical transmission management method
JP4524075B2 (en) Flexible ring optical network and method
JP6155803B2 (en) Optical wavelength division multiplexing communication system, optical wavelength division multiplexing communication method, and optical multiplexing / demultiplexing device
JP5287956B2 (en) Passive optical network communication method and passive optical network communication system
US8355631B2 (en) Reducing optical service channel interference in phase modulated wavelength division multiplexed (WDM) communication systems
US11979226B2 (en) Wavelength cross connect device and wavelength cross connect method
US20050095001A1 (en) Method and system for increasing network capacity in an optical network
WO2004077701A1 (en) Method and device for switching between active and auxiliary circuits for optical transmission
JP2003087205A (en) Optical transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22945819

Country of ref document: EP

Kind code of ref document: A1