WO2002103453A1 - Image display screen and image display unit - Google Patents

Image display screen and image display unit Download PDF

Info

Publication number
WO2002103453A1
WO2002103453A1 PCT/JP2002/006002 JP0206002W WO02103453A1 WO 2002103453 A1 WO2002103453 A1 WO 2002103453A1 JP 0206002 W JP0206002 W JP 0206002W WO 02103453 A1 WO02103453 A1 WO 02103453A1
Authority
WO
WIPO (PCT)
Prior art keywords
image display
display screen
layer
thermoplastic resin
reflectance
Prior art date
Application number
PCT/JP2002/006002
Other languages
French (fr)
Japanese (ja)
Inventor
Taro Oya
Tadashi Shingu
Original Assignee
Teijin Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Limited filed Critical Teijin Limited
Priority to KR1020037002404A priority Critical patent/KR100893841B1/en
Priority to EP02738731A priority patent/EP1398660B1/en
Priority to DE60232146T priority patent/DE60232146D1/en
Priority to US10/344,522 priority patent/US7031058B2/en
Publication of WO2002103453A1 publication Critical patent/WO2002103453A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/287Interference filters comprising deposited thin solid films comprising at least one layer of organic material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens

Definitions

  • the present invention relates to an image display screen and an image display device. More specifically, a transparent image display screen that reflects an image on both the incident side and the transmission side of visible light by reflecting at least a part of the visible light emitted from the projector and a transparent image display screen using the same.
  • the present invention relates to an image display device.
  • a projector such as a liquid crystal projector.
  • a transparent base material such as glass is used as an image display surface.
  • the image projected on the transparent base material shows the other side of the image display surface, and expresses a new design.
  • irregularities for irregularly reflecting light may be provided on the surface of the transparent substrate, or as disclosed in JP-A-2000-122181.
  • a translucent so-called hologram screen is used.
  • the transparency of the image display surface must be reduced in order to clearly display the image, and the sharpness of the displayed image and the design are in conflict with each other. there were.
  • the latter method requires the use of a very special polymer, and can increase the transparency while maintaining the sharpness of the image.However, the design obtained is the same as that of the former method. It was nothing but the same thing.
  • the latter method can display the image on the transmission side more clearly than the former method, but cannot display the image on the reflection side clearly.
  • Still another object of the present invention is to provide a film for the image display screen of the present invention.
  • Still another object of the present invention is to provide an image display device using the image display screen of the present invention.
  • thermoplastic resin layer having a thickness in the range of 0.05 to 0.3 and the second thermoplastic resin layer having a thickness in the range of 0.05 to 0.3 m are alternately laminated. Consists of a multilayer film consisting of at least 11 layers,
  • thermoplastic resin layer whose thickness is in the range of 0.05 to 0.3 m and the second thermoplastic resin layer whose thickness is in the range of 0.05 to 0.3 are alternately laminated. Made up of at least 11 layers,
  • the parallel light transmittance is 50% or more
  • an image display device comprising a combination of the image display screen of the present invention and a projector that emits visible light having a wavelength of 380 to 780 nm.
  • FIG. 1 is an example of a graph of the reflectance with respect to the wavelength of light of the image display screen of the present invention.
  • FIG. 2 is another example of a graph of the reflectance with respect to the wavelength of light of the image display screen of the present invention.
  • FIG. 3 shows still another example of the Daraph of the reflectance of the image display screen of the present invention with respect to the wavelength of light.
  • FIG. 4 is still another example of a graph of the reflectance with respect to the wavelength of light of the image display screen of the present invention.
  • the image display screen of the present invention includes a first thermoplastic resin layer (hereinafter, referred to as a first layer) and a second thermoplastic resin layer having a different composition from the thermoplastic resin constituting the first thermoplastic resin layer.
  • This is a film in which thermoplastic resin layers (hereinafter, referred to as second layers) are alternately laminated.
  • the thickness of each of the first layer and the second layer in the range of 0.05 to 0.3 nm is necessary for selectively reflecting light due to light interference between the layers. .
  • the preferred thickness of each of the first layer and the second layer is in the range of 0.06 to 0.25 m.
  • the variation in the thickness of each of the first layer and the second layer is preferably at most 0.15 in relative standard deviation. When the relative standard deviation exceeds 0.15, the peak of the reflected light becomes broad, and it is difficult to obtain a clear hue. Note that the relative standard deviation of the thickness of the first layer (or the second layer) is obtained from the following equation.
  • ti is the thickness (m) of each layer of the first layer (or the second layer)
  • t Average value of the thickness of each one layer of the first layer (or the second layer)
  • m 11: Number of layers of the first layer (or the second layer)
  • the first layer and the second layer are alternately stacked in at least 11 layers.
  • the number of layers is less than 10, the reflection of a specific wavelength due to light interference is not sufficient, and it is difficult to obtain sufficient visibility of a projected image to be used as an image display surface.
  • a preferred lower limit of the number of layers of the first layer and the second layer is 31 or more, particularly 51 or more.
  • the upper limit of the number of layers of the first layer and the second layer is not particularly limited. However, since the production process is not excessively complicated, the number of layers is preferably 501 or less, particularly preferably 301 or less.
  • the image display screen of the present invention has a parallel light transmittance of 50% or more.
  • the parallel light transmittance is a value measured based on a method defined by JIS K6714-1958, and means a ratio of light transmitted straight through a film. If the parallel light transmittance is less than 50%, an opaque image display surface is obtained, and the intended design cannot be obtained.
  • the preferred parallel light transmittance is at least 60%, particularly preferably at least 75%.
  • the reflectance curve for each wavelength when a wavelength of 380 to 78 Onm is irradiated has a reflection peak having a specific shape.
  • the maximum reflectance at the peak of the reflection peak is in the range of 5 to 80% higher than the reflectance of the base line of the reflectance curve, and the half width is in the range of 20 to 20 Onm. It is necessary to have at least one reflection peak at Note that, for convenience of explanation, (maximum reflectance minus reflectance at the baseline) is hereinafter referred to as a reflection peak height.
  • the half width here means the wavelength range of the outline from the long wavelength side to the short wavelength side of the reflection peak in the reflectance located at the midpoint between the maximum reflectance and the baseline reflectance. If there is no reflection peak with a reflection peak height of 5 to 80% and a half width of 20 to 200 nm in the visible light region with a wavelength of 380 to 780 nm, the reflection side of the target image display surface An image with excellent color cannot be projected on the transmission side with good visibility. Specifically, if the reflection peak height is less than 5%, the difference in hue between the transmission side and the reflection side becomes unclear, while if it exceeds 80%, the film itself becomes colored. It is clearly colored even when not projected.
  • the half-value width is less than 200 nm, visible light of a specific wavelength cannot be reflected sufficiently, so that only an image with poor visibility can be displayed. Since it reflects even visible light, high-contrast images cannot be projected on both the transmission side and the reflection side image display surfaces.
  • the preferred height of the reflection peak is 15% to 60%, and the half width of the preferred reflection peak is in the range of 30 to: L50 nm, particularly 50 to L0 nm.
  • FIG. 1 is a reflectance curve of the screen reflecting blue light of the present invention.
  • FIG. 2 is a reflectance curve of the screen reflecting green light of the present invention.
  • FIG. 3 is a reflectance curve of the screen reflecting red light of the present invention.
  • FIG. 4 shows a reflectance curve of a screen that reflects blue light, green light and red light of the present invention.
  • 1 indicates the height of the reflection peak, 2 indicates the half width, and 3 indicates the baseline.
  • the image display screen of the present invention may be formed by further laminating another layer on one or both sides for the purpose of adjusting the overall thickness or providing other functions within a range where the optical characteristics are not deteriorated.
  • Another layer as used herein includes a transparent polyester film, an antireflection layer, a metal thin film and a hard coat layer. Is also good.
  • a projector that emits visible light emits visible light of three primary colors of light, R (red), G (green), and B (blue), when projecting an image.
  • the wavelengths of these visible rays are 450 nm for R (red), 550 nm for G (green), and 620 nm for ⁇ (blue).
  • the image display screen of the present invention requires a wavelength of 420 to 480 nm and a wavelength of 520 to 58 It is preferable that a wavelength having a maximum reflectance exists in any of the ranges of 0 nm and 590 to 65 nm, and a reflection peak has a reflection peak height of 5% to 70%.
  • the half width of the reflection peak is preferably in the range of 20 to 200 nm. It should be noted that even one of the reflection peaks can provide a reflection color or a transmission color and achieve sufficient visibility to be used as an image display surface. It is preferable to use one having a plurality of reflection peaks because it can express color.
  • the wavelength of maximum reflectance exists and the reflection peak height is high.
  • it has a reflection peak of 5% to 70%.
  • two or more image display screens of the present invention having different reflection peaks may be bonded together, and the thickness of each layer of the image display screen of the present invention may be changed. You may.
  • the half width of the reflection peak is preferably in the range of 20 to 100 nm.
  • the half width of the reflection peak is less than 20 nm, the reflection of the primary colors (red, green or blue) is insufficient, and it is difficult to obtain a reflected image with high visibility.
  • the primary colors red , Green or blue
  • the colors are mixed because they are reflected, and it is difficult to obtain a high-contrast image.
  • Such optical characteristics are caused by a difference in the refractive index between the first layer and the second layer.
  • a layer having a high refractive index is replaced with a layer having a low refractive index.
  • the layer may be referred to as a second layer. That is, in the image display screen of the present invention, the refractive index of the first layer is preferably larger than that of the second layer in at least one direction along the surface of the screen.
  • a difference in refractive index is caused by using thermoplastic resins having different refractive indexes for the first layer and the second layer, or using thermoplastic resins having the same refractive index for the first layer and the second layer.
  • refractive index differences range from 0.02 to 0.10 in at least one direction along the plane of the screen.
  • the refractive index difference is smaller than 0.02, the reflectance is reduced, and it is difficult to obtain sufficient visibility of a projected image for use as an image display screen.
  • the refractive index difference exceeds 0.10, the reflection is too strong, and the transparency of the image display surface is impaired, and the visibility of the image projected on the transmission side is impaired.
  • the difference in the refractive index in at least one direction along the film plane between the first layer and the second layer is from 0.03 to 0.90, particularly preferably from 0.04 to 0.90. 80.
  • the reflection wavelength varies depending on the incident angle of the light beam because the reflection wavelength varies depending on the optical path length. Then, of such a ray
  • a polyester with a positive refractive index anisotropy as the thermoplastic resin constituting the first layer or the second layer, and stretch the film surface by stretching. It is preferable that at least one refractive index in the along direction is larger than the refractive index in the thickness direction.
  • Particularly preferred is at least one of the first and second layers, and in particular both layers, wherein at least one refractive index in the direction along the film plane is less than the refractive index in the thickness direction. . 10 or more. By satisfying such a refractive index, the dependence on the incident angle of the light beam is reduced.
  • Particularly preferred polyester is the main repeating unit due to its mechanical properties and film formation.
  • ethylene terephthalate Preferably 80 mol% or more is occupied by ethylene terephthalate and ethylene-1,2,6-naphthalenedicarboxylate.
  • polyesters containing ethylene-1,2,6-naphthylene dicarboxylate as the main repeating unit exhibit a relatively high refractive index, so that the first layer has a higher refractive index than the second layer.
  • most of the repeating units are occupied by ethylene-1,2,6-naphthalenedicarboxylate, and that the second layer has a higher proportion of ethylene terephthalate than the first layer. preferable.
  • the thermoplastic resin constituting the first layer and the second layer is not particularly limited as long as it is transparent, and can be arbitrarily employed such as polyester, polyamide, polyacryl, and polystyrene.
  • polyester is preferable for the above-mentioned reason, and particularly, ethylene rephthalate (hereinafter, sometimes referred to as ET) component or ethylene-1,2,6-naphthalenedicarboxylate (hereinafter, referred to as EN).
  • ET ethylene rephthalate
  • EN ethylene-1,2,6-naphthalenedicarboxylate
  • Polyesters having a component as a main repeating unit are preferred.
  • a polyester in which 80 mol% or more of the total repeating unit of the first layer and the second layer is an ET component or an EN component is preferable because the adhesion between layers is easily increased.
  • the first layer and the second layer are formed.
  • the composition of the polyester is greatly different, and the adhesion between the layers is poor, and the polyester may be peeled off.
  • Polyester containing ET component or EN component as the main repeating unit that is, polyethylene terephthalate (hereinafter sometimes referred to as PET) or polyethylene-1,2-naphthalenedicarboxylate (hereinafter referred to as PEN)
  • PET polyethylene terephthalate
  • PEN polyethylene-1,2-naphthalenedicarboxylate
  • the copolymerization component other than the ET component or EN component in) include terephthalic acid (only for PEN), isophthalic acid, 2,6-naphthalenedicarboxylic acid (only for PET), 2, Aromatic dicarboxylic acids such as 7-naphthalenedicarboxylic acid, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, and decane dicarboxylic acid; alicyclic dicarboxylic acids such as cyclohexic acid dicarboxylic acid; butanediol; Examples include aliphatic diols
  • thermoplastic resin of first layer By appropriately selecting the thermoplastic resin of each layer so that the refractive index of the first layer is larger than the refractive index of the second layer, the image display screen of the present invention can be used. Is obtained. Hereinafter, preferred combinations of thermoplastic resins will be described. Combination of thermoplastic resin of first layer and second layer (1)
  • thermoplastic resin constituting the first layer PEN in which 95% by mole or more of all the repeating units are occupied by ethylene 1,2,6-naphthalenedicarboxylate is used, and the thermoplastic resin constituting the second layer is used.
  • the resin 60 to 97 mol% of the total repeating units are occupied by ethylene-1,2,6-naphthylenedicarboxylate, and have a lower refractive index or melting point than PEN constituting the first layer.
  • Low PEN it is preferable to increase the amount of the copolymer component compared to the first layer in order to make the difference in the refractive index and the difference in the melting point.
  • the means for increasing the amount of the copolymer component is not limited to a method using PEN with an increased amount of the copolymer component from the beginning.
  • a homo-PEN and a homo-PET are prepared and used in the film forming process. Transesterification by melt kneading to obtain a copolymer PEN having the desired composition may be used.
  • Such a combination provides a high reflectance due to the use of PEN having a high refractive index as the first layer, and also has excellent adhesion between the layers due to the close composition of the two.
  • thermoplastic resin constituting the first layer 95% by mole or more of all repeating units Adopt PET occupied by ethylene terephthalate, and as the thermoplastic resin constituting the second layer, 60 to 97 mol% of all repeating units are occupied by ethylene terephthalate and constitute the first layer
  • PET having a lower refractive index or a lower melting point than PET is mentioned. In this case, it is preferable to use more copolymer components than in the first layer in order to develop a difference in refractive index and difference in melting point.
  • the means for increasing the amount of the copolymer component is not limited to a method using PET with an increased amount of the copolymer component from the beginning.
  • homo-PEN and homo-PET are prepared and melt-kneaded in the film forming process. May be used to form a copolymerized PET having a desired composition.
  • Such a combination is easy to increase the reflectance because PET having a high refractive index is used as the first layer, and also has excellent adhesion between the layers due to the close composition of the two.
  • the whitening phenomenon (delamination) that occurs when bending is less likely to occur, so that handling is excellent.
  • thermoplastic resin constituting the first layer PET in which 85% by mole or more of the total repeating units is occupied by ET is used.
  • thermoplastic resin constituting the second layer 20 to 40% of the total repeating units is used.
  • PEN which has a molar percentage of ET and 60 to 80 mol% of EN and has a lower refractive index or a lower melting point than the PET constituting the first layer, may be used. Also in this case, it is preferable to make the copolymer component more than that of the first layer in order to develop a difference in refractive index and difference in melting point.
  • the means for increasing the amount of the copolymer component is not limited to the method using PET in which the amount of the copolymer component is increased from the beginning.
  • a homo-PEN and a homo-PET are prepared, and this is melted in the film forming process. It may be transesterified by kneading to obtain a copolymerized PET having a desired composition.
  • the melting point of the thermoplastic resin constituting the second layer is 210
  • a copolymerized polyester having a melting point of 210 to 245 ° C is preferred, and a copolymerized PEN or PET having a melting point of 210 to 245 ° C is particularly preferred. If the melting point of the copolymerized polyester is less than 210 ° C., the crystallinity of the polymer becomes too low to form a film, and the heat resistance of the second layer may be excessively reduced.
  • the melting point of the ester exceeds 245 ° C, oriented crystallization of the second layer tends to proceed when the first layer and the second layer are laminated and stretched, and a screen having a large difference in refractive index is required. It will be difficult to obtain. Further, it is preferable that the difference in melting point between the first layer and the second layer is at least 15 ° C. or more, because only the refractive index of the second layer can be selectively reduced by the heat setting treatment.
  • the melting point and T of the copolymerized polyester can be adjusted by appropriately selecting the types and amounts of the above-mentioned copolymerized components. Of these, isofluoric acid is preferred, and the copolymerization amount is preferably in the range of 4 to 18 mol%, more preferably 8 to 15 mol%.
  • the intrinsic viscosity (orthochlorophenol, 35 ° C.) of the copolymerized polyester is preferably 0.45 to 0.8, more preferably 0.5 to 0.7.
  • At least one of the thermoplastic resins constituting the first layer and the second layer has an average particle diameter of preferably 0.01 to 5 ⁇ m, more preferably 0.1 to improve the winding property of the film.
  • the inert particles include inorganic inert particles such as silica, alumina, calcium carbonate, calcium phosphate, kaolin, and talc; and organic inert particles such as silicone, cross-linked polystyrene, and styrene-divinylbenzene copolymer. Can be mentioned.
  • the inert particles may be spherical particles having a ratio of major axis to minor axis of preferably 1.2 or less, more preferably 1.1 or less (hereinafter, may be referred to as true spherical particles). This is desirable because it balances the slipperiness and optical properties of the material. Further, the inert particles preferably have a sharp particle size distribution, for example, the relative standard deviation is preferably less than 0.3, more preferably less than 0.2. New If particles with a large relative standard deviation are used, the frequency of coarse particles increases, which may cause optical defects.
  • the average particle size, the particle size ratio, and the relative standard deviation of the inert particles were determined by first sprinkling a very thin metal on the particle surface to impart conductivity, and using an electron microscope to measure 10,000 to 30,000. From the magnified image, the major axis, minor axis, and area circle equivalent diameter are determined, and then calculated by applying the following equation.
  • Average particle size Sum of equivalent circle diameters of measured particles / Number of measured particles
  • Particle size ratio average major axis of particle Z average minor axis of the particle
  • the inert particles particles that act as pigments, such as titanium oxide and zinc sulfide, and particles that are colored deteriorate the optical characteristics. Therefore, it is preferable to avoid using such particles as much as possible. . It is particularly preferable that the above-mentioned inert particles are contained in the first layer and the second layer contains substantially no inert particles.
  • inert particles By the way, the inclusion of inert particles is preferable because the light selectively reflected by the screen is appropriately scattered, and the images on the projection side and the transmission side can be made clearer. If there are no inert particles in either the first layer or the second layer, almost all the light from the light source will be specularly reflected, making it difficult to see the displayed image depending on the angle, and the winding property of the screen. Is poor, and handling may be reduced.
  • Preferred inert particles from the viewpoint of visibility include, for example, inorganic inert particles such as silica, alumina, calcium carbonate, calcium phosphate, kaolin, and talc, silicone, cross-linked polystyrene, and styrene-divinylbenzene copolymer.
  • Organic inactive particles From the viewpoint of visibility, the average particle size of the inert particles is preferably 0.1 to 5 m, more preferably 0.3 to 3 m, and particularly preferably 1 to 3 m.
  • the content of the inactive particles, which is preferable from the viewpoint of visibility is preferably from 0.01 to 0.5% by weight, more preferably from 0.1 to 0.5% by weight, based on the weight of the first layer or the second layer.
  • the average particle size of the inert particles is less than the lower limit or the content is less than the lower limit, the obtained sharpness improving effect may be poor.
  • the average particle size of the inert particles exceeds the upper limit, Or, when the content exceeds the upper limit, deterioration of optical properties due to particles becomes remarkable, and the parallel light transmittance of the entire film tends to be less than 60%.
  • a laminated unstretched film is produced by a simultaneous multilayer extrusion method using a feed block. That is, a melt of a thermoplastic resin (for example, a mixture of PET containing inert particles) forming the first layer and a melt of a polymer (for example, copolymerized PET) forming the second layer are Using a feed block, two layers are laminated alternately so that the first layer is formed on both end layers, and are spread on a die and extruded. At this time, the polymer laminated by the feed block maintains the laminated form. The sheet extruded from the die is cooled and solidified by a casting drum to form a multilayer laminated unstretched film.
  • a feed block for example, a melt of a thermoplastic resin (for example, a mixture of PET containing inert particles) forming the first layer and a melt of a polymer (for example, copolymerized PET) forming the second layer are Using a feed block, two layers are
  • the unstretched multilayer laminated film is stretched in at least one direction, preferably biaxially, to form a screen.
  • the stretching temperature at this time is preferably in the range of T g of the polymer of the first layer to T g + 50 ° C.
  • the stretching ratio is preferably from 2 to 10 in the case of uniaxial stretching, and the stretching direction may be the film forming direction (in the present invention, sometimes referred to as the longitudinal direction or the machine direction). It may be a direction perpendicular to the film direction (in the present invention, it may be referred to as a lateral direction or a width direction).
  • the stretching ratio in the machine direction and the transverse direction is preferably 1.2 times or more, more preferably 1.5 times or more, and the area magnification is, for example, 5 times to 25 times. If the stretching ratio is large, the thickness before stretching can be increased, and if the variation in the thickness of the layers in the multilayer laminated film before stretching is the same, the greater the stretching ratio, the smaller the thickness variation after stretching. As a result, light interference in each layer is expanded, and the reflectance can be increased, which is preferable. From such a point, the area magnification is preferably 8 times or more, and more preferably 10 times or more.
  • known stretching methods such as sequential biaxial stretching, simultaneous biaxial stretching, tubular stretching, and inflation stretching can be used.
  • the stretched film is preferably subjected to a heat treatment (heat setting treatment) for thermal stabilization.
  • heat treatment temperature is based on the melting point (TmA) of the polymer of the first layer, (TmA—6 0) ° C ⁇ (TmA-10).
  • TmA—6 0 melting point
  • TmB melting point of the polymer of the second layer
  • the heat treatment is preferably performed in the range of 0) ° C to (TmA-10) ° C.
  • the above-mentioned screen may be provided with an adhesive layer (preferably a slippery adhesive layer) on at least one surface thereof.
  • the purpose of the adhesive layer provided in this way is to provide a film with a slipperiness in addition to a hard coat layer formed thereon and an adhesive property to the pressure-sensitive adhesive layer, and to provide a film with a hard coat layer and an adhesive layer. Prevention of interfacial reflection with the surface can be achieved, and a known one may be selected.
  • the image projection screen of the present invention is preferably used as a transparent image display by sticking it to a transparent support such as glass for projecting with a liquid crystal projector or the like.
  • an adhesive layer is formed on both surfaces, an adhesive layer is laminated on one surface, a hard coat layer is laminated on the other surface, and the eighteenth layer is laminated.
  • the hard coat layer and the pressure-sensitive adhesive layer may be appropriately selected from those known per se.
  • the image display screen of the present invention can be formed by bonding a plurality of image display screens of the present invention having different reflection peaks or by changing the thickness of each layer of the image display screen of the present invention, It is preferable that the reflection peak has a multiple number.
  • the present invention has a reflection peak in which the wavelength of the maximum reflectance exists in any of the wavelength ranges of 420 to 480 nm, 52 to 580 nm, and 590 to 65 nm.
  • the image display screen can reflect all three primary colors of red, green and blue emitted from the projector, and can display a full-color image clearly.
  • the image display screen of the present invention thus obtained is, for example, attached to a transparent support such as glass as described above, and is applied to a liquid crystal projector or the like which emits light having a wavelength of 380 to 780 nm.
  • a liquid crystal projector or the like which emits light having a wavelength of 380 to 780 nm.
  • Haze (%) was calculated from the following equation from the measured total light transmittance Tt (%) and scattered light transmittance Td (%).
  • the relative specular reflectance with the aluminum-deposited mirror at each wavelength is measured in the wavelength range of 380-780 nm.
  • the largest of the measured reflectivities is the maximum reflection peak, and the height from the tail of the peak is the reflection peak height.
  • Peak half width The same measurement as the maximum reflectance is performed. The peak half width was set.
  • a sample is sampled at 2 Omg, and the glass transition degree and the melting point are measured using a DSC (manufactured by TA Instruments, Inc., trade name: DSC 2920) at a heating rate of 20 ° C / min.
  • DSC manufactured by TA Instruments, Inc., trade name: DSC 2920
  • the sample was pasted on 1 Omm glass, and a liquid crystal projector projected red, green, blue, and full-color images.
  • the projected images were observed from the reflection side and the transmission side under the fluorescent lamp lighting of 30 lux, and the visibility of the images was evaluated. :: The hue contrast is high, and the image can be clearly seen.
  • the sample was affixed on a 1 Omm glass, and the visibility of the opposite scene was evaluated in three levels under fluorescent lighting of 30 lux.
  • Spherical silica particles (average particle diameter: 1.5 m, ratio of major axis to minor axis; 1.02, average deviation of particle diameter; 0.1) containing 0.1 Owt% (Polyol, 35 ° C)
  • PET Polyethylene terephthalate
  • Tallate Intrinsic viscosity 0 ⁇ 68, orthochlorophenol, 35 was prepared as the resin for the second layer.
  • the stacking state is obtained by using a multilayer feedblock device in which the first layer and the second layer are alternately stacked. While holding the sheet, the sheet was guided to a die, and cast on a casting drum, to prepare a total of 201 layers of unstretched sheets in which the first layer and the second layer were alternately stacked.
  • the extrusion amount of the second layer and the first layer was adjusted to be 1: 0.8, and the layers were laminated such that both end layers became the second layer.
  • the laminated unstretched sheet is stretched 3.6 times in the machine direction at a temperature of 85, further stretched 3.9 times in the transverse direction at a stretching temperature of 9, and heat-set at 205 for 3 seconds.
  • the image display screen was obtained.
  • the manufacturing conditions are shown in Table 1, the characteristics of the obtained image display screen are shown in Table 2, and the reflectance with respect to the wavelength of light is shown in FIG.
  • the obtained image display screen was attached to a 10-mm glass plate using an adhesive sheet (double-sided adhesive tape HJ-3160 W manufactured by Nitto Denko Corporation) to obtain a fluorescent light of 30 lux.
  • an adhesive sheet double-sided adhesive tape HJ-3160 W manufactured by Nitto Denko Corporation
  • the LCD projector projects white light (red, green, and blue light) on a screen on a glass plate under lamp lighting, the image is blue-based from the reflective surface and yellow-based from the transmissive surface. could be displayed with good contrast, and the transparency was very high.
  • Table 3 shows the characteristics of the obtained image display surface.
  • Example 2 The same operation as in Example 1 was repeated, except that the manufacturing conditions were changed as shown in Table 1.
  • Table 2 shows the characteristics of the obtained image display screen, and FIG. 2 shows the reflectance with respect to the wavelength of light.
  • the obtained image display screen was attached to a 10 mm glass plate using the above-mentioned adhesive sheet, and white light (red, green, and green light) was irradiated with a liquid crystal projector under a fluorescent light of 30 lux. (Blue light) is projected onto a screen on a glass plate. From the reflective surface side, a blue tone image is displayed, and from the transmissive surface side, a purple tone image is displayed with good contrast. It was possible and the transparency was very high. Table 3 shows the characteristics of the obtained image display surface.
  • Example 2 The same operation as in Example 1 was repeated, except that the manufacturing conditions were changed as shown in Table 1.
  • Table 2 shows the characteristics of the obtained image display screen, and Fig. 3 shows the reflectance with respect to the wavelength of light.
  • the obtained image display screen was attached to a 10 mm glass plate using the above-mentioned adhesive sheet, and white light (red, green, and blue) was obtained with a liquid crystal projector under a fluorescent light of 30 lux.
  • white light red, green, and blue
  • Table 3 shows the characteristics of the obtained image display surface.
  • Example 10 The same operation as in Example 1 was repeated, except that the resin and inert particles of the first layer and the second layer and the production conditions were changed as shown in Table 1.
  • Table 2 shows the characteristics of the obtained image display screen.
  • Table 3 shows the characteristics of the obtained image display surface.
  • Three image display screens manufactured in Examples 1 to 3 were stacked using an adhesive sheet, and attached to a glass plate having a thickness of 1 Omm using the adhesive sheet.
  • a screen on a glass plate with a liquid crystal projector under a 30-lux fluorescent light full-color images could be displayed with good contrast from either the reflective side or the transmissive side.
  • Table 3 shows the characteristics of the obtained image display surface
  • Fig. 4 shows the reflectance of the image display screen with respect to the wavelength of light.
  • a sticky film (TW-75) manufactured by Teijin Dupont Film Co., Ltd. is attached to a 10 mm glass plate using the above-mentioned adhesive sheet.
  • TW-75 Teijin Dupont Film Co., Ltd.
  • Table 3 shows the characteristics of the image display surface.
  • a hologram screen (Glass Vision Sheet 40) manufactured by Canon Inc. is attached to a 10 mm glass plate using the above-mentioned adhesive sheet, and the film on the glass plate is illuminated with a liquid crystal projector under a 30 lux fluorescent light.
  • a liquid crystal projector under a 30 lux fluorescent light.
  • Transparency I was much more transparent than Comparative Example 1, but was slightly cloudy.
  • Table 3 shows the characteristics of the image display surface.
  • Example 1 101 H ⁇ (0.05) 100 I None Example 2 101 HA (0.05) 100 I None Example 3 101 HA (0.05) 100 I None Example 4 101 J BC0.05) 100 K None Example 5 101 JB (0.05) 100 K None Example 6 101 JB (0.05) 100 K None Example 7 101 MC (0.05) 100 L None Example 8 101 MC (0.05) 100 L None Example 9 101 MC (0.05) 100 L None Manufacturing conditions Film thickness Longitudinal stretching Lateral stretching Heat setting temperature
  • the inert particles shown in Table 1 are as follows.
  • Inert particles A true spherical silica particles (average particle diameter: 1.5 m, ratio of major axis to minor axis; 1.02, average deviation of particle diameter; 0.1)
  • Inert particles B lumpy calcium carbonate (Average particle size: 1. ⁇ , ratio of major axis to minor axis; 1.4, average deviation of particle diameter; 0.25)
  • Inert particles C spherical silicone (average particle size: 1.5 im, ratio of major axis to minor axis; 1.1, average deviation of particle diameter; 0.30)
  • the resin type of the first layer or the second layer shown in Table 1 is as follows.
  • Resin type H Polyethylene terephthalate (Intrinsic viscosity 0.64, Orthochlorophenol, 35 ° C)
  • Resin type I Copolymerized polyethylene terephthalate obtained by copolymerizing isophthalic acid with 1% Omo 1% (intrinsic viscosity 0.68, phenol phenol, 35)
  • Resin type J Polyethylene 2,6-naphthalate (intrinsic viscosity 0.62, orthophenol phenol, 35 ° C)
  • Resin type K Copolymerized polyethylene 2,6-naphthalate obtained by copolymerizing isophthalic acid with 1% Omo 1% (intrinsic viscosity 0.64, orthochlorophenol, 35)
  • Resin type L Polyethylene 2,6-naphthalate (intrinsic viscosity 0.
  • the image display screen of the present invention is formed under the film forming conditions shown in Table 1. As shown in Table 2, it selectively reflects the wavelength without losing transparency. By pasting such a multilayer stretched film on glass, as shown in Table 3, images are not obtained in Comparative Examples 1 and 2, and images are displayed on both the transmission side and the reflection side while maintaining transparency. can do.
  • the image display screen of the present invention reflects at least a part of visible light within a range that does not lose transparency, and thus has high transparency while maintaining sharpness of the image.
  • a new design that has never existed before, that is, images having different color tones can be simultaneously displayed on the reflection side and the transmission side. Therefore, when the screen of the present invention is pasted on, for example, a window glass of a store that is open late at night, and an image is displayed by a liquid crystal projector, it is possible to obtain image information while checking the outdoor scenery from indoors. You can check video information from outside from outside. Therefore, the use of the image display device of the present invention can reduce the discomfort given to the surrounding residents even when an advertisement or the like is displayed at midnight, and can carry out efficient advertising activities.

Abstract

An image display screen which is a multilayer film formed by alternately laminating in at least 11 layers a first thermoplastic resin layer (first layer) 0.05-03 μm in thickness and a second thermoplastic resin layer (second layer) 0.05-03 μm in thickness and having a parallel beam transmittance of at least 50%, and which has, on a reflectance curve with respect to a visible light with a wavelength of 380-780 nm, at least one reflection peak having a maximum reflectance 5-80% higher than the base line of a reflectance and a half width ranging from 20 to 200 nm; and an image display unit using the screen as an image display surface. The screen is characterized by being enhanced in transparency with the sharpness of an image retained.

Description

画像表示スクリーンおよび画像表示装置 技術分野  Image display screen and image display device
本発明は、画像表示スクリ一ンおよび画 ί«示装置に関する。さらに詳しくは、 プロジェクターから照射される可視光線の少なくとも一部を反射することで、 画 像を可視光線の入射側と透過側の両面に映し出す、 透明な画像表示スクリ一ンぉ よびそれを用いた画像表示装置に関明する。  The present invention relates to an image display screen and an image display device. More specifically, a transparent image display screen that reflects an image on both the incident side and the transmission side of visible light by reflecting at least a part of the visible light emitted from the projector and a transparent image display screen using the same. The present invention relates to an image display device.
従来の技術 細  Conventional technology
大画面の映像は、 液晶プロジェクターに代表されるプロジェクターによって映 し出すのが一般的である。 そして、 このプロジェクタ一によって映し出される画 像に、 さらなる意匠性を付与するため、 ガラスなどの透明基材を画像表示面とす ることが行われてきている。 透明基材に映し出した画像は、 画像表示面の向こう 側が見えたりして、 従来にない意匠性が発現される。  In general, large-screen images are projected by a projector such as a liquid crystal projector. Then, in order to impart further design properties to the image projected by the projector 1, a transparent base material such as glass is used as an image display surface. The image projected on the transparent base material shows the other side of the image display surface, and expresses a new design.
このような透明な基材上に画像を表示する方法としては、 透明基材の表面に光 を乱反射させる凹凸をつけたり、 特開 2 0 0 0— 1 2 2 1 8 1号公報に示される ような、 半透明ないわゆるホログラムスクリーンを用いるのが一般的である。 し かしながら、 前者の方法では、 画像をはっきり映し出すには画像表示面の透明性 を低下させなくてはならず、 表示される画像の鮮明性と意匠性とは 2律背反の関 係にあった。 また、 後者の方法は、 極めて特殊なポリマ一を使用しなければなら ず、前者の方法よりも画像の鮮映性を維持しつつ透明性を高めることはできるが、 得られる意匠性は前者のものと同様なものでしかなかつた。また、後者の方法は、 前者の方法よりも透過側の映像を鮮明に表示することができるが、 反射側の映像 まで鮮明に表示できるものではなかった。  As a method of displaying an image on such a transparent substrate, irregularities for irregularly reflecting light may be provided on the surface of the transparent substrate, or as disclosed in JP-A-2000-122181. Generally, a translucent so-called hologram screen is used. However, in the former method, the transparency of the image display surface must be reduced in order to clearly display the image, and the sharpness of the displayed image and the design are in conflict with each other. there were. In addition, the latter method requires the use of a very special polymer, and can increase the transparency while maintaining the sharpness of the image.However, the design obtained is the same as that of the former method. It was nothing but the same thing. The latter method can display the image on the transmission side more clearly than the former method, but cannot display the image on the reflection side clearly.
発明の開示  Disclosure of the invention
本発明の目的は、 上述の問題を解消し、 画像の鮮映性を維持しつつ透明性を高 めた画像表示スクリーンを提供することにある。 本発明の他の目的は、 プロジェクタ一から照射される光を反射するスクリ一ン として、 従来の拡散光を利用した方法とは全く異なる眉間の光干渉を利用する方 法で画像の鮮映性を維持しつつ透明性をも高めた画像表示スクリーンを提供する ことにある。 An object of the present invention is to solve the above-mentioned problems and to provide an image display screen which has improved transparency while maintaining sharpness of an image. Another object of the present invention is to provide a screen that reflects light emitted from a projector as a screen that reflects light interference between eyebrows, which is completely different from the conventional method using diffused light, to achieve sharpness of images. It is an object of the present invention to provide an image display screen that has improved transparency while maintaining the image quality.
本発明のさらに他の目的は、 本発明の上記画像表示スクリーンのためのフィル ムを提供することにある。  Still another object of the present invention is to provide a film for the image display screen of the present invention.
本発明のさらに他の目的は、 本発明の上記画像表示スクリーンを用いた画像表 示装置を提供することにある。  Still another object of the present invention is to provide an image display device using the image display screen of the present invention.
本発明のさらに他の目的および利点は以下の説明から明らかになろう。  Still other objects and advantages of the present invention will become apparent from the following description.
本発明によれば、 本発明の上記目的および 点は、 第 1に、  According to the present invention, the above objects and points of the present invention are, firstly,
(1) 厚みが 0. 05〜0. 3 の範囲にある第 1の熱可塑性樹脂層と厚みが 0. 05〜0. 3 mの範囲にある第 2の熱可塑性樹脂層とが交互に積層された 少なくとも 11層からなる多層フィルムからなり、  (1) The first thermoplastic resin layer having a thickness in the range of 0.05 to 0.3 and the second thermoplastic resin layer having a thickness in the range of 0.05 to 0.3 m are alternately laminated. Consists of a multilayer film consisting of at least 11 layers,
(2) 波長 380〜 780 nmの可視光線に対する反射曲線において、 最大反射 率が反射率のベースラインよりも 5〜 80%高くかつ半値幅が 20〜200nm の範囲にある反射ピークを有しそして  (2) In a reflection curve for visible light having a wavelength of 380 to 780 nm, a reflection peak having a maximum reflectance of 5 to 80% higher than the baseline of the reflectance and a half width in the range of 20 to 200 nm, and
( 3 ) 平行光線透過率が 50 %以上である、  (3) The parallel light transmittance is 50% or more,
ことを特徴とする画像表示スクリーンよって達成される。 This is achieved by an image display screen characterized in that:
本発明によれば、 本発明の上記目的および利点は、 第 2に、 .  According to the present invention, the above objects and advantages of the present invention are:
(1) 厚みが 0. 05〜0. 3 mの範囲にある第 1の熱可塑性樹脂層と厚みが 0. 05〜0. 3 の範囲にある第 2の熱可塑性樹脂層とが交互に積層された 少なくとも 11層からなり、  (1) The first thermoplastic resin layer whose thickness is in the range of 0.05 to 0.3 m and the second thermoplastic resin layer whose thickness is in the range of 0.05 to 0.3 are alternately laminated. Made up of at least 11 layers,
(2) 波長 380〜 780 nmの可視光線に対する反射曲線において、 最大反射 率が反射率のベースラインよりも 5〜 80%高くかつ半値幅が 20〜200nm の範囲にある反射ピークを有し、  (2) In a reflection curve for visible light having a wavelength of 380 to 780 nm, a reflection peak having a maximum reflectance of 5 to 80% higher than the baseline of the reflectance and a half-value width in a range of 20 to 200 nm,
(3) 平行光線透過率が 50%以上であり、 そして  (3) The parallel light transmittance is 50% or more, and
(4) 画像表示スクリーン用である、  (4) For image display screen,
ことを特徴とする多層フィルムよって達成される。 また、 本発明によれば、 本発明の上記目的および利点は、 第 3に、 This is achieved by a multilayer film characterized in that: Further, according to the present invention, the above objects and advantages of the present invention are:
本発明の画像表示スクリーンと、 波長 3 8 0〜 7 8 0 nmの可視光線を照射する プロジェクタ一との組合せからなる画像表示装置によって達成される。 This is achieved by an image display device comprising a combination of the image display screen of the present invention and a projector that emits visible light having a wavelength of 380 to 780 nm.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の画像表示スクリーンの光の波長に対する反射率のグラフの一 例である。  FIG. 1 is an example of a graph of the reflectance with respect to the wavelength of light of the image display screen of the present invention.
図 2は、 本発明の画像表示スクリーンの光の波長に対する反射率のグラフの他 の例である。  FIG. 2 is another example of a graph of the reflectance with respect to the wavelength of light of the image display screen of the present invention.
図 3は、 本発明の画像表示スクリ一ンの光の波長に対する反射率のダラフのさ らに他の例である。  FIG. 3 shows still another example of the Daraph of the reflectance of the image display screen of the present invention with respect to the wavelength of light.
図 4は、 本発明の画像表示スクリーンの光の波長に対する反射率のグラフのさ らに他の例である。  FIG. 4 is still another example of a graph of the reflectance with respect to the wavelength of light of the image display screen of the present invention.
発明の実施の形態  Embodiment of the Invention
本発明の画像表示スクリーンは、 第 1の熱可塑性樹脂層 (以下、 第 1の層と称 する。)と該第 1の熱可塑性樹脂層を構成する熱可塑性樹脂と組成を異にする第 2 の熱可塑性樹脂層(以下、第 2の層と称する。)が交互に多層積層されたフィルム である。 第 1の層と第 2の層のそれぞれ 1層当りの厚みは 0. 0 5〜0. 3 n m の範囲にあることが、 層間の光干渉によって選択的に光を反射させるのに必要で ある。 好ましい第 1の層と第 2の層のそれぞれ 1層当りの厚みは 0. 0 6〜0. 2 5 mの範囲である。 また、 第 1の層と第 2の層のそれぞれの厚みのパラツキ は、相対標準偏差で高々 0. 1 5であることが好ましい。この相対標準偏差が 0. 1 5を超えると、 反射光のピークがブロードなものとなり、 はっきりとした色相 が得難い。 なお、 第 1の層 (または第 2の層) の厚みの相対標準偏差は下記式か ら求められる。
Figure imgf000005_0001
The image display screen of the present invention includes a first thermoplastic resin layer (hereinafter, referred to as a first layer) and a second thermoplastic resin layer having a different composition from the thermoplastic resin constituting the first thermoplastic resin layer. This is a film in which thermoplastic resin layers (hereinafter, referred to as second layers) are alternately laminated. The thickness of each of the first layer and the second layer in the range of 0.05 to 0.3 nm is necessary for selectively reflecting light due to light interference between the layers. . The preferred thickness of each of the first layer and the second layer is in the range of 0.06 to 0.25 m. Further, the variation in the thickness of each of the first layer and the second layer is preferably at most 0.15 in relative standard deviation. When the relative standard deviation exceeds 0.15, the peak of the reflected light becomes broad, and it is difficult to obtain a clear hue. Note that the relative standard deviation of the thickness of the first layer (or the second layer) is obtained from the following equation.
Figure imgf000005_0001
ただし、 t i :第 1の層 (または第 2の層) の各 1層の厚み ( m) t :第 1の層 (または第 2の層) の各 1層の厚みの平均値 ( m) 11 :第1の層 (または第 2の層) の積層数 Where ti is the thickness (m) of each layer of the first layer (or the second layer) t: Average value of the thickness of each one layer of the first layer (or the second layer) (m) 11: Number of layers of the first layer (or the second layer)
本発明の画像表示スクリーンは、 第 1の層と第 2の層とが、 交互に 11層以上 積層されたものである。 積層数が 10層以下では光の干渉による特定波長の反射 が十分でなく、 画像表示面として用いるのに十分な投影画像の視認性が得られ難 い。 好ましい第 1の層と第 2の層の積層数の下限は、 31以上、 特に 51以上で ある。 なお、 第 1の層と第 2の層の積層数の上限は、 特に限定されないが、 生産' 工程が過度に煩雑にならないことから、 501層以下、 特に 301層以下が好ま しい。  In the image display screen of the present invention, the first layer and the second layer are alternately stacked in at least 11 layers. When the number of layers is less than 10, the reflection of a specific wavelength due to light interference is not sufficient, and it is difficult to obtain sufficient visibility of a projected image to be used as an image display surface. A preferred lower limit of the number of layers of the first layer and the second layer is 31 or more, particularly 51 or more. The upper limit of the number of layers of the first layer and the second layer is not particularly limited. However, since the production process is not excessively complicated, the number of layers is preferably 501 or less, particularly preferably 301 or less.
本発明の画像表示スクリーンは、 平行光線透過率が 50%以上である。 ここで いう平行光線透過率とは、 J IS K6714- 1958によって定められた方 法に基づいて測定される値で、フィルムをまっすぐ透過した光の割合を意味する。 平行光線透過率が 50%未満だと、 不透明な画像表示面となり、 目的とする意匠 性が得られない。 好ましい平行光線透過率は 60%以上、 特に好ましくは 75% 以上である。  The image display screen of the present invention has a parallel light transmittance of 50% or more. Here, the parallel light transmittance is a value measured based on a method defined by JIS K6714-1958, and means a ratio of light transmitted straight through a film. If the parallel light transmittance is less than 50%, an opaque image display surface is obtained, and the intended design cannot be obtained. The preferred parallel light transmittance is at least 60%, particularly preferably at least 75%.
本発明の画像表示スクリーンは、 波長 380〜78 Onmを照射したときの各 波長に対する反射率曲線に、 特定の形状をした反射ピークがあることが必要であ る。 具体的には、 反射ピークの頂点に位置する最大反射率が、 反射率曲線のベー スラインの反射率に対して、 5〜80%高い範囲にあり、 かつ、 半値幅が 20〜 20 Onmの範囲にある反射ピークを少なくとも 1つ有することが必要である。 なお、説明の便宜上、 (最大反射率一ベースラインの反射率) を反射ピーク高さと 以下称する。 また、 ここでいう半値幅とは、 最大反射率とベースラインの反射率 の中点に位置する反射率における反射ピークの長波長側から短波長側までの外郭 線の波長範囲を意味する。 波長 380〜 780 nmの可視光線の領域に、 反射ピ ーク高さが 5〜 80%で、 半値幅が 20〜200 nmの反射ピークがないと、 目 的とする画像表示面の反射側と透過側とに色彩優れた画像を視認性良く映し出す ことができない。 具体的には、 反射ピーク高さが 5%未満だと、 透過側と反射側 での色相の違いが不明瞭になり、 他方、 80%を超えるとフィルム自体が着色し てしまい、 非投影時にも明らかに色づいてしまう。 また、 半値幅が 2 0 nm未満 だと、 特定波長の可視光線を十分に反射できないことから視認性の乏しい画像し か映し出せず、 他方、 2 0 0 nmを超えると、 透過させたい波長の可視光線まで 反射してしまうため、 透過側および反射側の両方の画像表示面にコントラストの 高い映像を映し出すことができない。 好ましい反射ピーク高さは 1 5 %〜6 0 % であり、 好ましい反射ピークの半値幅は、 3 0〜: L 5 0 nm特に 5 0〜; L 0 0 n mの範囲である。 In the image display screen of the present invention, it is necessary that the reflectance curve for each wavelength when a wavelength of 380 to 78 Onm is irradiated has a reflection peak having a specific shape. Specifically, the maximum reflectance at the peak of the reflection peak is in the range of 5 to 80% higher than the reflectance of the base line of the reflectance curve, and the half width is in the range of 20 to 20 Onm. It is necessary to have at least one reflection peak at Note that, for convenience of explanation, (maximum reflectance minus reflectance at the baseline) is hereinafter referred to as a reflection peak height. In addition, the half width here means the wavelength range of the outline from the long wavelength side to the short wavelength side of the reflection peak in the reflectance located at the midpoint between the maximum reflectance and the baseline reflectance. If there is no reflection peak with a reflection peak height of 5 to 80% and a half width of 20 to 200 nm in the visible light region with a wavelength of 380 to 780 nm, the reflection side of the target image display surface An image with excellent color cannot be projected on the transmission side with good visibility. Specifically, if the reflection peak height is less than 5%, the difference in hue between the transmission side and the reflection side becomes unclear, while if it exceeds 80%, the film itself becomes colored. It is clearly colored even when not projected. If the half-value width is less than 200 nm, visible light of a specific wavelength cannot be reflected sufficiently, so that only an image with poor visibility can be displayed. Since it reflects even visible light, high-contrast images cannot be projected on both the transmission side and the reflection side image display surfaces. The preferred height of the reflection peak is 15% to 60%, and the half width of the preferred reflection peak is in the range of 30 to: L50 nm, particularly 50 to L0 nm.
添付図面の図 1〜4は、 本発明のスクリーンの反射率曲線の一例である。 図 1 は、 本発明の青色光を反射するスクリーンの反射率曲線である。 図 2は本発明の 緑色光を反射するスクリーンの反射率曲線である。 図 3は本発明の赤色光を反射 するスクリーンの反射率曲線である。 そして図 4は本発明の青色光、 緑色光およ び赤色光を反射するスクリーンの反射率曲線を示す。 図 1〜4中の 1は反射ピー ク高さ、 2は半値幅、 3はベースラインを示す。  1 to 4 of the accompanying drawings are examples of the reflectance curves of the screen of the present invention. FIG. 1 is a reflectance curve of the screen reflecting blue light of the present invention. FIG. 2 is a reflectance curve of the screen reflecting green light of the present invention. FIG. 3 is a reflectance curve of the screen reflecting red light of the present invention. FIG. 4 shows a reflectance curve of a screen that reflects blue light, green light and red light of the present invention. In Figs. 1 to 4, 1 indicates the height of the reflection peak, 2 indicates the half width, and 3 indicates the baseline.
本発明の画像表示スクリーンは、 その片面または両面に、 光学的特性が悪化し ない範囲で、 全体厚みの調整や他の機能を付与することを目的に、 他の層をさら に積層してもよい。 ここでいう他の層とは、 透明なポリエステルフィルム、 反射 防止層、 金属薄膜やハードコート層が挙げられ、 反射率や反射する波長などが異 なる他の本発明の画像表示スクリーンを積層してもよい。  The image display screen of the present invention may be formed by further laminating another layer on one or both sides for the purpose of adjusting the overall thickness or providing other functions within a range where the optical characteristics are not deteriorated. Good. The term "other layer" as used herein includes a transparent polyester film, an antireflection layer, a metal thin film and a hard coat layer. Is also good.
ところで、 一般に可視光線を照射するプロジェクタ一は、 映像を投射する際、 光の 3原色である R (赤)、 G (緑)、 B (青) の可視光線を照射する。 これらの 可視光線の波長は、 それぞれ R (赤) が 4 5 0 nm、 G (緑) が 5 5 0 nm、 Β (青) が 6 2 0 nmである。 そのため、 このような光の 3原色を照射するプロジ ェクタ一を用いて、 画像を表示するには、 本発明の画像表示スクリーンは、 波長 4 2 0〜4 8 0 nm、 5 2 0〜5 8 0 nm、 5 9 0〜6 5 0 nmのいずれかの範 囲に、 最大反射率の波長が存在しかつ反射ピーク高さが 5 %〜 7 0 %の反射ピー クを有することが好ましい。 なお、 該反射ピークの半値幅は 2 0〜2 0 0 nmの 範囲にあることが好ましい。 なお、 該反射ピークは 1つでも反射色や透過色を着 色でき、 画像表示面として用いるのに十分な視認性を達成できるが、 より多くの 色を表現できることから、 複数の反射ピークを持つものが好ましい。 特に波長 4 2 0〜4 8 0 nm、 5 2 0〜5 8 0 nm、 5 9 0〜 6 5 0 nmのいずれの範囲に も、 最大反射率の波長が存在し、 かつ反射ピーク高さが 5 %〜7 0 %の反射ピー クを有することが好ましい。 複数の反射ピークを本発明の画像表示スクリーンに 持たせるには、 反射ピークの異なる本発明の画像表示スクリーンを 2つ以上貼り 合せてもよく、 本発明の画像表示スクリーンの各層の厚みを変化させてもよい。 このように複数の光を反射する場合には、 特に、 反射ピークの半値幅は 2 0〜1 0 0 nmの範囲であることが好ましい。 反射ピークの半値幅が 2 0 nm未満だと 原色 (赤、 緑または青) の反射が十分でなく、 視認性の高い反射映像が得られが たく、 他方、 l O O nmを超えると原色 (赤、 緑または青) の中間色まで反射し てしまうため混色してしまい、 コントラストの高い映像が得られ難い。 In general, a projector that emits visible light emits visible light of three primary colors of light, R (red), G (green), and B (blue), when projecting an image. The wavelengths of these visible rays are 450 nm for R (red), 550 nm for G (green), and 620 nm for Β (blue). Therefore, in order to display an image using such a projector that irradiates the three primary colors of light, the image display screen of the present invention requires a wavelength of 420 to 480 nm and a wavelength of 520 to 58 It is preferable that a wavelength having a maximum reflectance exists in any of the ranges of 0 nm and 590 to 65 nm, and a reflection peak has a reflection peak height of 5% to 70%. The half width of the reflection peak is preferably in the range of 20 to 200 nm. It should be noted that even one of the reflection peaks can provide a reflection color or a transmission color and achieve sufficient visibility to be used as an image display surface. It is preferable to use one having a plurality of reflection peaks because it can express color. In particular, in any of the wavelength ranges of 420 to 480 nm, 52 to 580 nm, and 590 to 650 nm, the wavelength of maximum reflectance exists and the reflection peak height is high. Preferably, it has a reflection peak of 5% to 70%. In order to provide the image display screen of the present invention with a plurality of reflection peaks, two or more image display screens of the present invention having different reflection peaks may be bonded together, and the thickness of each layer of the image display screen of the present invention may be changed. You may. When a plurality of lights are reflected as described above, the half width of the reflection peak is preferably in the range of 20 to 100 nm. If the half width of the reflection peak is less than 20 nm, the reflection of the primary colors (red, green or blue) is insufficient, and it is difficult to obtain a reflected image with high visibility. On the other hand, if it exceeds 100 nm, the primary colors (red , Green or blue), the colors are mixed because they are reflected, and it is difficult to obtain a high-contrast image.
このような光学特性は、 第 1の層と第 2の層の屈折率差によつて生じるもので あり、 本発明では説明の便宜上、 屈折率の高い層を第 1の層、 屈折率の低い層を 第 2の層として、 以下、 称することがある。 すなわち、 本発明の画像表示スクリ ーンは、 スクリーンの面に沿った少なくとも 1方向において、 好ましくは、 第 1 の層の屈折率が第 2の層のそれよりも大きい。 このような屈折率差は、 第 1の層 と第 2の層に屈折率の異なる熱可塑性榭脂を用いたり、 第 1の層と第 2の層に屈 折率の等しい熱可塑性樹脂を用いて、 延伸条件によってフィルム面に沿った少な くとも 1方向の屈折率に差を持たせたり、 両者の方法を併用したりすることで得 られる。 好ましい屈折率差は、 スクリーンの面に沿った少なくとも 1方向におい て、 0 . 0 2〜0 . 1 0の範囲である。 該屈折率差が 0. 0 2より小さいと反射 率が低下し、 画像表示スクリーンとして用いるのに十分な投影画像の視認性が得 られ難い。 該屈折率差が 0 . 1 0を超えると、 反射が強すぎ、 画像表示面の透明 性が損われたり、 透過側に映し出される画像の視認性が損われたりする。 より好 ましい第 1の層と第 2の層のフィルム面に沿った少なくとも 1方向の屈折率の差 は、 0 . 0 3〜0 . 9 0、 特に好ましくは、 0 . 0 4〜0. 8 0である。  Such optical characteristics are caused by a difference in the refractive index between the first layer and the second layer. In the present invention, for convenience of explanation, a layer having a high refractive index is replaced with a layer having a low refractive index. Hereinafter, the layer may be referred to as a second layer. That is, in the image display screen of the present invention, the refractive index of the first layer is preferably larger than that of the second layer in at least one direction along the surface of the screen. Such a difference in refractive index is caused by using thermoplastic resins having different refractive indexes for the first layer and the second layer, or using thermoplastic resins having the same refractive index for the first layer and the second layer. It can be obtained by giving a difference in the refractive index in at least one direction along the film surface depending on the stretching conditions, or by using both methods together. Preferred refractive index differences range from 0.02 to 0.10 in at least one direction along the plane of the screen. When the refractive index difference is smaller than 0.02, the reflectance is reduced, and it is difficult to obtain sufficient visibility of a projected image for use as an image display screen. When the refractive index difference exceeds 0.10, the reflection is too strong, and the transparency of the image display surface is impaired, and the visibility of the image projected on the transmission side is impaired. More preferably, the difference in the refractive index in at least one direction along the film plane between the first layer and the second layer is from 0.03 to 0.90, particularly preferably from 0.04 to 0.90. 80.
また、 異なる樹脂を用いたスクリーンは、 反射波長がその光路長によってかわ るため、 光線の入射角度によって反射波長がずれる。 そこで、 このような光線の 入射角度による反射波長のずれを抑えるには、 第 1の層または第 2の層を構成す る熱可塑性樹脂として、 正の屈折率異方性をもつポリエステルを用い、 延伸によ つてフィルム面に沿った方向の少なくとも 1つの屈折率を厚み方向の屈折率より 大きくするのが好ましい。 特に好ましいのは第 1の層または第 2の層の少なくと も一方の層で、 特に両方の層で、 フィルム面に沿った方向の少なくとも 1つの屈 折率が厚み方向の屈折率よりも 0. 1 0以上大きいものである。 このような屈折 率を満足させることで、 光線の入射角度に対する依存性が少なくなる。 特に好ま しいポリエステルは、 機械的特性や製膜のしゃすさなどから、 主たる繰返し単位In the case of a screen using a different resin, the reflection wavelength varies depending on the incident angle of the light beam because the reflection wavelength varies depending on the optical path length. Then, of such a ray To suppress the shift of the reflection wavelength due to the incident angle, use a polyester with a positive refractive index anisotropy as the thermoplastic resin constituting the first layer or the second layer, and stretch the film surface by stretching. It is preferable that at least one refractive index in the along direction is larger than the refractive index in the thickness direction. Particularly preferred is at least one of the first and second layers, and in particular both layers, wherein at least one refractive index in the direction along the film plane is less than the refractive index in the thickness direction. . 10 or more. By satisfying such a refractive index, the dependence on the incident angle of the light beam is reduced. Particularly preferred polyester is the main repeating unit due to its mechanical properties and film formation.
(好ましくは 8 0モル%以上)が、エチレンテレフタレートおよびエチレン一 2 , 6—ナフタレンジカルボキシレートで占められたものである。 ちなみに、 ェチレ ンテレフタレ一卜に比べエチレン一 2 , 6—ナフ夕レンジカルポキシレートを主 たる繰返し単位とするポリエステルは、 比較的高い屈折率を示すことから、 第 1 の層は第 2の層よりも繰返し単位の多くがエチレン一 2, 6—ナフタレンジカル ポキシレートで占められたものが好ましく、 第 2の層は第 1の層よりも繰返し単 位の多くがエチレンテレフ夕レートで占められたものが好ましい。 (Preferably 80 mol% or more) is occupied by ethylene terephthalate and ethylene-1,2,6-naphthalenedicarboxylate. By the way, compared to ethylene terephthalate, polyesters containing ethylene-1,2,6-naphthylene dicarboxylate as the main repeating unit exhibit a relatively high refractive index, so that the first layer has a higher refractive index than the second layer. It is also preferred that most of the repeating units are occupied by ethylene-1,2,6-naphthalenedicarboxylate, and that the second layer has a higher proportion of ethylene terephthalate than the first layer. preferable.
次に、本発明の画像表示スクリーンにおける第 1の層および第 2の層について、 以下に詳述する。  Next, the first layer and the second layer in the image display screen of the present invention will be described in detail below.
第 1の層および第 2の層を構成する熱可塑性樹脂は、 透明なものであれば特に 限定はされず、 ポリエステル、 ポリアミド、 ポリアクリル、 ポリスチレンなど任 意に採用できる。 これらの中でも、 前述の理由から、 ポリエステルが好ましく、 特にエチレンレテフタレ一ト (以下、 E Tと称することがある。)成分またはェチ レン一 2 , 6—ナフタレンジカルボキシレート (以下、 ENと称することがある。) 成分を主たる繰返し単位とするポリエステルが好ましい。 特に、 層間の密着性を 高めやすいことから、 第 1の層および第 2の層を合わせての全繰返し単位の 8 0 モル%以上が、 E T成分または EN成分であるポリエステルが好ましい。 E T成 分または EN成分が、 第 1の層および第 2の層を合わせての全繰返し単位に対し て、 8 0モル%未満であると、 第 1の層と第 2の層とを構成するポリエステルの 組成が大きく異なり、層間の密着性が乏しくなつて、剥がれてしまうことがある。 E T成分または E N成分を主たる繰返し単位とするポリエステル、 すなわち、 ポリエチレンテレフ夕レート (以下、 P E Tと称することがある。)またはポリエ チレン一 2, 6—ナフタレンジカルボキシレー卜 (以下、 P E Nと称することが ある。)中の E T成分または E N成分以外の共重合成分としては、例えばテレフ夕 ル酸(P E Nの場合のみ)、 イソフタル酸、 2 , 6—ナフタレンジカルボン酸(P E Tの場合のみ)、 2, 7—ナフタレンジカルボン酸などの芳香族ジカルボン酸、 アジピン酸、 ァゼライン酸、 セバシン酸、 デカンジカルボン酸などの脂肪族ジカ ルボン酸、 シクロへキ酸ジカルボン酸などの脂環族ジカルボン酸、 ブタンジォ一 ル、 へキサンジオールなどの脂肪族ジオールおよびシク口へキサンジメタノール などの脂環族ジオールが挙げられる。 The thermoplastic resin constituting the first layer and the second layer is not particularly limited as long as it is transparent, and can be arbitrarily employed such as polyester, polyamide, polyacryl, and polystyrene. Among these, polyester is preferable for the above-mentioned reason, and particularly, ethylene rephthalate (hereinafter, sometimes referred to as ET) component or ethylene-1,2,6-naphthalenedicarboxylate (hereinafter, referred to as EN). Polyesters having a component as a main repeating unit are preferred. In particular, a polyester in which 80 mol% or more of the total repeating unit of the first layer and the second layer is an ET component or an EN component is preferable because the adhesion between layers is easily increased. When the ET component or the EN component is less than 80 mol% with respect to all the repeating units including the first layer and the second layer, the first layer and the second layer are formed. The composition of the polyester is greatly different, and the adhesion between the layers is poor, and the polyester may be peeled off. Polyester containing ET component or EN component as the main repeating unit, that is, polyethylene terephthalate (hereinafter sometimes referred to as PET) or polyethylene-1,2-naphthalenedicarboxylate (hereinafter referred to as PEN) Examples of the copolymerization component other than the ET component or EN component in) include terephthalic acid (only for PEN), isophthalic acid, 2,6-naphthalenedicarboxylic acid (only for PET), 2, Aromatic dicarboxylic acids such as 7-naphthalenedicarboxylic acid, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, sebacic acid, and decane dicarboxylic acid; alicyclic dicarboxylic acids such as cyclohexic acid dicarboxylic acid; butanediol; Examples include aliphatic diols such as hexanediol and alicyclic diols such as heximimethanol.
上述の熱可塑性樹脂の中から、 第 1の層の屈折率が第 2の層の屈折率よりも大 きくなるように、 各層の熱可塑性樹脂を適宜選択することで、 本発明の画像表示 スクリーンは得られる。 以下に、 好ましい熱可塑性樹脂の組合せを説明する。 第 1の層と第 2の層の熱可塑性樹脂の組合せ ( 1 )  By appropriately selecting the thermoplastic resin of each layer so that the refractive index of the first layer is larger than the refractive index of the second layer, the image display screen of the present invention can be used. Is obtained. Hereinafter, preferred combinations of thermoplastic resins will be described. Combination of thermoplastic resin of first layer and second layer (1)
第 1の層を構成する熱可塑性樹脂として、 全繰返し単位の 9 5モル%以上がェ チレン一 2 , 6—ナフタレンジカルポキシレートで占められる P E Nを採用し、 第 2の層を構成する熱可塑性樹脂として、 全繰返し単位の 6 0〜9 7モル%がェ チレン一 2 , 6—ナフ夕レンジカルポキシレートで占められかつ第 1の層を構成 する P ENよりも屈折率が低いかあるいは融点が低い P ENを採用することが挙 げられる。 この場合、 屈折率差や融点差を発現させるには、 第 1の層よりも共重 合成分を多くするのが好ましい。 なお、 共重合成分の量を多くする手段は、 初め から、 共重合成分の量を多くした P ENを用いる方法に限定されず、 例えばホモ P E Nとホモ P E Tを用意し、 これを製膜工程における溶融混練でエステル交換 し、 目的とする組成の共重合 P ENとしたものでもよい。 このような組合せは、 屈折率の高い P ENを第 1の層として採用していることから反射率を挙げやすぐ また両者の組成が近いことから層間の密着性も優れたものである。  As the thermoplastic resin constituting the first layer, PEN in which 95% by mole or more of all the repeating units are occupied by ethylene 1,2,6-naphthalenedicarboxylate is used, and the thermoplastic resin constituting the second layer is used. As the resin, 60 to 97 mol% of the total repeating units are occupied by ethylene-1,2,6-naphthylenedicarboxylate, and have a lower refractive index or melting point than PEN constituting the first layer. Low PEN. In this case, it is preferable to increase the amount of the copolymer component compared to the first layer in order to make the difference in the refractive index and the difference in the melting point. The means for increasing the amount of the copolymer component is not limited to a method using PEN with an increased amount of the copolymer component from the beginning.For example, a homo-PEN and a homo-PET are prepared and used in the film forming process. Transesterification by melt kneading to obtain a copolymer PEN having the desired composition may be used. Such a combination provides a high reflectance due to the use of PEN having a high refractive index as the first layer, and also has excellent adhesion between the layers due to the close composition of the two.
第 1の層と第 2の層の熱可塑性測旨の組合せ ( 2 ) Combination of thermoplastic measurements of the first and second layers (2)
第 1の層を構成する熱可塑性樹脂として、 全繰返し単位の 9 5モル%以上がェ チレンテレフ夕レートで占められる PETを採用し、 第 2の層を構成する熱可塑 性樹脂として、 全繰返し単位の 60〜97モル%がエチレンテレフ夕レートで占 められかつ第 1の層を構成する P E Tよりも屈折率が低いかあるいは融点が低い PETを採用することが挙げられる。 この場合、 屈折率差や融点差を発現させる には、 第 1の層よりも共重合成分を多くするのが好ましい。 なお、 共重合成分の 量を多くする手段は、 初めから共重合成分の量を多くした PETを用いる方法に 限定されず、 例えばホモ PENとホモ PETを用意し、 これを製膜工程における 溶融混練でエステル交換し、目的とする組成の共重合 PETとしたものでもよい。 このような組合せは、 屈折率の高い P E Tを第 1の層として採用していることか ら反射率を挙げやすく、 また両者の組成が近いことから層間の密着性も優れたも のである。 しかも、 PENに比べて、 折り曲げた際などに発生する白化現象 (デ ラミネ一シヨン) が起きにくいことから、 取扱い性も優れる。 As the thermoplastic resin constituting the first layer, 95% by mole or more of all repeating units Adopt PET occupied by ethylene terephthalate, and as the thermoplastic resin constituting the second layer, 60 to 97 mol% of all repeating units are occupied by ethylene terephthalate and constitute the first layer The use of PET having a lower refractive index or a lower melting point than PET is mentioned. In this case, it is preferable to use more copolymer components than in the first layer in order to develop a difference in refractive index and difference in melting point. The means for increasing the amount of the copolymer component is not limited to a method using PET with an increased amount of the copolymer component from the beginning.For example, homo-PEN and homo-PET are prepared and melt-kneaded in the film forming process. May be used to form a copolymerized PET having a desired composition. Such a combination is easy to increase the reflectance because PET having a high refractive index is used as the first layer, and also has excellent adhesion between the layers due to the close composition of the two. Moreover, compared to PEN, the whitening phenomenon (delamination) that occurs when bending is less likely to occur, so that handling is excellent.
第 1の層と第 2の層の熱可塑性樹脂の組合せ ( 3 ) Combination of thermoplastic resin of first layer and second layer (3)
第 1の層を構成する熱可塑性樹脂として、 全繰返し単位の 85モル%以上が E Tで占められる PETを採用し、 第 2の層を構成する熱可塑性樹脂として、 全繰 返し単位の 20〜40モル%が ETそして 60〜80モル%が ENで占められか つ第 1の層を構成する P E Tよりも屈折率が低いかあるいは融点が低い P E Nを 採用することが挙げられる。 この場合も、 屈折率差や融点差を発現させるには、 第 1の層よりも共重合成分を多くするのが好ましい。 なお、 共重合成分の量を多 くする手段は、 初めから共重合成分の量を多くした PETを用いる方法に限定さ れず、 例えばホモ PENとホモ PETを用意し、 これを製膜工程における溶融混 練でエステル交換し、 目的とする組成の共重合 PETとしたものでもよい。 ところで、 第 1の層と第 2の層に屈折率差をもたせる方法が、 それぞれの層を 構成する iT脂の融点差による場合、 第 2の層を構成する熱可塑性樹脂としては、 融点が 210°C〜245°Cの共重合ポリエステルが好ましく、 特に融点が 21 0 〜 245°Cの共重合 PENまたは共重合 PETが好ましい。 共重合ポリエス テルの融点が 210 °C未満では、 ポリマーの結晶性が低くなりすぎて製膜が難し く、 また、 第 2の層の耐熱性を過度に低下させることがある。 一方、 共重合ポリ エステルの融点が 245 °Cを超えると、 第 1の層と第 2の層とを積層して延伸す る際に、 第 2の層の配向結晶化が進みやすく、 大きな屈折率差のスクリーンを得 難くなる。 また、 第 1の層と第 2の層の融点差は、 少なくとも 15°C以上あるこ とが、 熱固定処理によって、 第 2の層の屈折率だけを選択的に低下させることが できるので好ましい。 As the thermoplastic resin constituting the first layer, PET in which 85% by mole or more of the total repeating units is occupied by ET is used. As the thermoplastic resin constituting the second layer, 20 to 40% of the total repeating units is used. The use of PEN, which has a molar percentage of ET and 60 to 80 mol% of EN and has a lower refractive index or a lower melting point than the PET constituting the first layer, may be used. Also in this case, it is preferable to make the copolymer component more than that of the first layer in order to develop a difference in refractive index and difference in melting point. The means for increasing the amount of the copolymer component is not limited to the method using PET in which the amount of the copolymer component is increased from the beginning.For example, a homo-PEN and a homo-PET are prepared, and this is melted in the film forming process. It may be transesterified by kneading to obtain a copolymerized PET having a desired composition. By the way, when the method of giving the refractive index difference between the first layer and the second layer is based on the difference in melting point of the iT resin constituting each layer, the melting point of the thermoplastic resin constituting the second layer is 210 A copolymerized polyester having a melting point of 210 to 245 ° C is preferred, and a copolymerized PEN or PET having a melting point of 210 to 245 ° C is particularly preferred. If the melting point of the copolymerized polyester is less than 210 ° C., the crystallinity of the polymer becomes too low to form a film, and the heat resistance of the second layer may be excessively reduced. On the other hand, copolymerized poly If the melting point of the ester exceeds 245 ° C, oriented crystallization of the second layer tends to proceed when the first layer and the second layer are laminated and stretched, and a screen having a large difference in refractive index is required. It will be difficult to obtain. Further, it is preferable that the difference in melting point between the first layer and the second layer is at least 15 ° C. or more, because only the refractive index of the second layer can be selectively reduced by the heat setting treatment.
前記共重合ポリエステルの融点や T は、 前述の共重合成分の種類と量を適宜 選択することで調整できる。 これらの中でもイソフ夕ル酸が好ましく、 その共重 合量は、 好ましくは 4〜18モル%、 より好ましくは 8〜15モル%の範囲であ る。前記共重合ポリエステルの固有粘度 (オルソクロロフエノール、 35°C)は、 好ましくは 0. 45〜0. 8、 さらに好ましくは 0. 5〜0. 7である。  The melting point and T of the copolymerized polyester can be adjusted by appropriately selecting the types and amounts of the above-mentioned copolymerized components. Of these, isofluoric acid is preferred, and the copolymerization amount is preferably in the range of 4 to 18 mol%, more preferably 8 to 15 mol%. The intrinsic viscosity (orthochlorophenol, 35 ° C.) of the copolymerized polyester is preferably 0.45 to 0.8, more preferably 0.5 to 0.7.
本発明における画像表示スクリーンの好ましい態様について、 次に詳述する。 第 1の層と第 2の層を構成する熱可塑性樹脂の少なくとも一方は、 フィルムの 巻取り性を向上させるため、 平均粒径が好ましくは 0. 01〜5 ^m、 より好ま しくは 0. 01〜2 m、 さらに好ましくは 0. 05〜1 m、 特に好ましくは 0.1〜0.3 mの範囲にある不活性粒子を、好ましくは 0.001〜5重量%、 より好ましくは 0. 001〜0. 5重量%、 さらに好ましくは 0. 005〜0. 2重量%の割合で含有する。 不活性粒子の平均粒径が 0. 01 m未満または含 有量が 0. 001重量%未満ではフィルムの巻取り性向上が不十分となったり、 他方、 平均粒径が 5 mを超える不活性粒子を添加したり、 または不活性粒子の 含有量を 5重量%を超えて添加しても、巻取り性の向上効果はあまり得られない。 該不活性粒子としては、 例えばシリカ、 アルミナ、 炭酸カルシウム、 燐酸カル シゥム、 カオリン、 タルクのような無機不活性粒子、 シリコーン、 架橋ポリスチ レン、 スチレン—ジビニルベンゼン共重合体のような有機不活性粒子を挙げるこ とができる。 前記不活性粒子は、 その長径と短径の比が好ましくは 1. 2以下、 さらに好ましくは 1. 1以下である球状粒子 (以下、 真球状粒子ということがあ る) であることが、 フィルムの滑り性と光学特性をバランスさせる点から望まし い。 また、 該不活性粒子は、 粒度分布がシャープであることが好ましく、 例えば 相対標準偏差が 0. 3未満であるのが好ましく 0. 2未満であるのがさらに好ま しい。 相対標準偏差が大きい粒子を使用すると、 粗大粒子の頻度が大きくなり、 光学的な欠陥を生ずる場合がある。 Next, preferred embodiments of the image display screen of the present invention will be described in detail. At least one of the thermoplastic resins constituting the first layer and the second layer has an average particle diameter of preferably 0.01 to 5 ^ m, more preferably 0.1 to improve the winding property of the film. Inert particles in the range of from 01 to 2 m, more preferably from 0.05 to 1 m, particularly preferably from 0.1 to 0.3 m, preferably from 0.001 to 5% by weight, more preferably from 0.001 to 0.5% by weight. %, More preferably 0.005 to 0.2% by weight. If the average particle size of the inert particles is less than 0.01 m or the content is less than 0.001% by weight, the winding property of the film becomes insufficiently improved, while the average particle size of the inert particles exceeds 5 m Even if the particles are added or the content of the inert particles exceeds 5% by weight, the effect of improving the winding property is hardly obtained. Examples of the inert particles include inorganic inert particles such as silica, alumina, calcium carbonate, calcium phosphate, kaolin, and talc; and organic inert particles such as silicone, cross-linked polystyrene, and styrene-divinylbenzene copolymer. Can be mentioned. The inert particles may be spherical particles having a ratio of major axis to minor axis of preferably 1.2 or less, more preferably 1.1 or less (hereinafter, may be referred to as true spherical particles). This is desirable because it balances the slipperiness and optical properties of the material. Further, the inert particles preferably have a sharp particle size distribution, for example, the relative standard deviation is preferably less than 0.3, more preferably less than 0.2. New If particles with a large relative standard deviation are used, the frequency of coarse particles increases, which may cause optical defects.
ここで、 不活性粒子の平均粒径、 粒径比および相対標準偏差は、 まず粒子表面 に導電性付与のための金属を極く薄くスパッ夕一し、 電子顕微鏡にて、 1万〜 3 万倍に拡大した像から、 長径、 短径および面積円相当径を求め、 次いでこれらを 次式の当てはめることで算出される。  Here, the average particle size, the particle size ratio, and the relative standard deviation of the inert particles were determined by first sprinkling a very thin metal on the particle surface to impart conductivity, and using an electron microscope to measure 10,000 to 30,000. From the magnified image, the major axis, minor axis, and area circle equivalent diameter are determined, and then calculated by applying the following equation.
平均粒径 =測定粒子の面積円相当径の総和/測定粒子数  Average particle size = Sum of equivalent circle diameters of measured particles / Number of measured particles
粒径比 =粒子の平均長径 Z該粒子の平均短径  Particle size ratio = average major axis of particle Z average minor axis of the particle
なお、 不活性粒子としては、 酸化チタンや硫化亜鉛のような顔料として作用す るような粒子や着色している粒子は、 光学的な特性を劣化させるので、 その使用 をできるだけ避けた方が好ましい。 特に好ましいのは、 上記のような不活性粒子 を、 第 1の層に含有させ、 第 2の層には実質的に不活性粒子を含有させないもの である。  As the inert particles, particles that act as pigments, such as titanium oxide and zinc sulfide, and particles that are colored deteriorate the optical characteristics. Therefore, it is preferable to avoid using such particles as much as possible. . It is particularly preferable that the above-mentioned inert particles are contained in the first layer and the second layer contains substantially no inert particles.
ところで、 不活性粒子を含有していることは、 スクリーンが選択的に反射した 光を適度に散乱させ、 投影側および透過側の画像をより鮮明にできることからも 好ましい。 第 1層および第 2層のいずれにも不活性粒子がないと、 光源からの光 がほぼ全て正反射してしまうので、表示画像が角度によつて視認し難くなつたり、 スクリーンの巻取り性が悪く、 取扱い性が低下する場合がある。  By the way, the inclusion of inert particles is preferable because the light selectively reflected by the screen is appropriately scattered, and the images on the projection side and the transmission side can be made clearer. If there are no inert particles in either the first layer or the second layer, almost all the light from the light source will be specularly reflected, making it difficult to see the displayed image depending on the angle, and the winding property of the screen. Is poor, and handling may be reduced.
視認性の観点から好ましい不活性粒子としては、 例えばシリカ、 アルミナ、 炭 酸カルシウム、 燐酸カルシウム、 カオリン、 タルクのような無機不活性粒子、 シ リコーン、 架橋ポリスチレン、 スチレン—ジビニルベンゼン共重合体のような有 機不活粒子を挙げることができる。 また、 視認性の観点から好ましい不活性粒子 の平均粒径は、 好ましくは 0 . l〜5 m、 さらに好ましくは 0. 3〜3 m、 特に好ましくは l〜3 mの範囲にある。 また、 視認性の観点から好ましい不活 性粒子の含有量は、第 1の層または第 2の層の重量を基準として、好ましくは 0 . 0 1〜0 . 5重量%、 さらに好ましくは 0 . 0 5〜0 . 2重量%の範囲にある。 不活性粒子の平均粒径が下限未満または含有量が下限未満では、 得られる鮮明性 向上効果が乏しかったりする。 他方、 不活性粒子の平均粒径が上限を超えるか、 または、 含有量が上限を超えると、 粒子による光学特性の悪化が顕著になり、 フ ィルム全体の平行光線透過率が 6 0 %未満になりやすい。 Preferred inert particles from the viewpoint of visibility include, for example, inorganic inert particles such as silica, alumina, calcium carbonate, calcium phosphate, kaolin, and talc, silicone, cross-linked polystyrene, and styrene-divinylbenzene copolymer. Organic inactive particles. From the viewpoint of visibility, the average particle size of the inert particles is preferably 0.1 to 5 m, more preferably 0.3 to 3 m, and particularly preferably 1 to 3 m. Further, the content of the inactive particles, which is preferable from the viewpoint of visibility, is preferably from 0.01 to 0.5% by weight, more preferably from 0.1 to 0.5% by weight, based on the weight of the first layer or the second layer. It is in the range of 0.5-0.2% by weight. If the average particle size of the inert particles is less than the lower limit or the content is less than the lower limit, the obtained sharpness improving effect may be poor. On the other hand, if the average particle size of the inert particles exceeds the upper limit, Or, when the content exceeds the upper limit, deterioration of optical properties due to particles becomes remarkable, and the parallel light transmittance of the entire film tends to be less than 60%.
続いて、 本発明のスクリーンを製造する方法の一例を説明する。  Subsequently, an example of a method for producing the screen of the present invention will be described.
本発明のスクリーンの製造は、 フィードブロックを用いた同時多層押出し法に より、 まず積層未延伸フィルムを製造する。 すなわち、 第 1の層を形成する熱可 塑性樹脂 (例えば、 不活性粒子を含有する P E Tの混合物) の溶融物と第 2の層 を形成するポリマー (例えば、 共重合 P E T) の溶融物を、 フィードブロックを 用いて 2層が交互にかつ両端層に第 1の層が形成されるように積層し、 ダイに展 開して押出す。 このとき、 フィードブロックで積層されたポリマーは積層された 形態を維持している。 ダイより押し出されたシートは、 キャスティングドラムで 冷却固化され、 多層積層未延伸フィルムとなる。 次いで、 この未延伸状態の多層 積層フィルムは、 少なくとも 1方向に、 好ましくは 2軸方向に延伸され、 スクリ —ンとなる。 この際の延伸温度は、 第 1の層のポリマーの T gから T g + 5 0 °C の範囲で行うことが好ましい。 延伸倍率としては、 1軸延伸の場合、 好ましくは 2倍から 1 0倍で、 延伸方向は、 製膜方向 (本発明では、 縦方向または機械方向 と称することがある。)であっても製膜方向に直交する方向(本発明では、横方向 または幅方向と称することがある。)であっても構わない。 2軸延伸の場合は、縦 方向および横方向の延伸倍率が好ましくは 1. 2倍以上、 さらに好ましくは 1 . 5倍以上であって、 面積倍率として例えば 5倍から 2 5倍である。 延伸倍率が大 きい程、 延伸前の厚みを大きくでき、 しかも、 延伸前の多層積層フィルム内の層 の厚みのバラツキが同じ場合、 高倍率で延伸したものほど延伸後の厚みのバラッ キを縮小でき、 結果として、 各層での光干渉が拡大され、 反射率を増大できるの で好ましい。 かかる点から、 面積倍率は好ましくは 8倍以上、 さらに好ましくは 1 0倍以上である。 延伸方法としては、 逐次 2軸延伸、 同時 2軸延伸、 チューブ ラー延伸、 インフレーション延伸等の公知の延伸方法が可能である。 これらのう ち、 逐次 2軸延伸が生産性、 品質の面から好ましい。 延伸されたフィルムは、 熱 的な安定化のために、 熱処理 (熱固定処理) をするのが好ましい。 熱処理の温度 としては、第 1の層のポリマーの融点(TmA) を基準としたとき、 (TmA— 6 0 ) °C〜 (TmA— 1 0 ) 。(:の範囲が好ましい。 また、 該熱処理によって、 第 2 の層の屈折率を選択的に低下させる場合は、第 2の層のポリマーの融点(TmB) を基準としたとき、 (TmB— 1 0 ) °C〜(TmA— 1 0 ) °Cの範囲で熱処理を行 うのが好ましい。 In the production of the screen of the present invention, first, a laminated unstretched film is produced by a simultaneous multilayer extrusion method using a feed block. That is, a melt of a thermoplastic resin (for example, a mixture of PET containing inert particles) forming the first layer and a melt of a polymer (for example, copolymerized PET) forming the second layer are Using a feed block, two layers are laminated alternately so that the first layer is formed on both end layers, and are spread on a die and extruded. At this time, the polymer laminated by the feed block maintains the laminated form. The sheet extruded from the die is cooled and solidified by a casting drum to form a multilayer laminated unstretched film. Next, the unstretched multilayer laminated film is stretched in at least one direction, preferably biaxially, to form a screen. The stretching temperature at this time is preferably in the range of T g of the polymer of the first layer to T g + 50 ° C. The stretching ratio is preferably from 2 to 10 in the case of uniaxial stretching, and the stretching direction may be the film forming direction (in the present invention, sometimes referred to as the longitudinal direction or the machine direction). It may be a direction perpendicular to the film direction (in the present invention, it may be referred to as a lateral direction or a width direction). In the case of biaxial stretching, the stretching ratio in the machine direction and the transverse direction is preferably 1.2 times or more, more preferably 1.5 times or more, and the area magnification is, for example, 5 times to 25 times. If the stretching ratio is large, the thickness before stretching can be increased, and if the variation in the thickness of the layers in the multilayer laminated film before stretching is the same, the greater the stretching ratio, the smaller the thickness variation after stretching. As a result, light interference in each layer is expanded, and the reflectance can be increased, which is preferable. From such a point, the area magnification is preferably 8 times or more, and more preferably 10 times or more. As the stretching method, known stretching methods such as sequential biaxial stretching, simultaneous biaxial stretching, tubular stretching, and inflation stretching can be used. Of these, sequential biaxial stretching is preferred in terms of productivity and quality. The stretched film is preferably subjected to a heat treatment (heat setting treatment) for thermal stabilization. When the heat treatment temperature is based on the melting point (TmA) of the polymer of the first layer, (TmA—6 0) ° C ~ (TmA-10). In the case where the heat treatment selectively reduces the refractive index of the second layer, the melting point (TmB) of the polymer of the second layer is expressed as (TmB-1 The heat treatment is preferably performed in the range of 0) ° C to (TmA-10) ° C.
ところで、 上述のスクリーンは、 その少なくとも片面に、 接着層 (好ましくは 易滑易接着層) を設けてもよい。 このように設ける接着層の目的としては、 その 上に形成されるハードコート層ゃ粘着剤層への接着性能に加え、 フィルムへの滑 り性の付与、 および、 フィルムとハードコート層、 粘着層との界面反射の防止が 拳げられ、 それ自体公知のものを 選択すればよい。  Incidentally, the above-mentioned screen may be provided with an adhesive layer (preferably a slippery adhesive layer) on at least one surface thereof. The purpose of the adhesive layer provided in this way is to provide a film with a slipperiness in addition to a hard coat layer formed thereon and an adhesive property to the pressure-sensitive adhesive layer, and to provide a film with a hard coat layer and an adhesive layer. Prevention of interfacial reflection with the surface can be achieved, and a known one may be selected.
また、 本発明の画像投影用スクリーンは、 液晶プロジェクターなどで投影する ために、 ガラスような透明支持体と貼り付けて透明画像表示体として使用するこ とが好ましい。 この際、 本発明の画像投影用スクリーンは、 両面に接着層が形成 して、 一方の面に粘着剤層を、 他方の面にハードコート層を積層し、 該八一ドコ 一ト層を積層するのが好ましい。 なお、 前述の接着層と同じく、 ハードコート層 や粘着剤層も、それ自体公知のものを適宜選択すればよい。また、記述のとおり、 本発明の画像表示スクリーンは、 反射ピークの異なる本発明の画像表示スクリー ンを複数枚貼り合せたり、 本発明の画像表示スクリーンの各層の厚みを変化させ て、 異なる波長の反射ピークを復数持たせることが好ましい。 特に波長 4 2 0〜 4 8 0 nm、 5 2 0〜5 8 0 nm、 5 9 0〜 6 5 0 nmのいずれの範囲にも、 最 大反射率の波長が存在する反射ピークを有する本発明の画像表示スクリーンは、 プロジェクターから発せられる赤、 緑、 青の 3原色をすベて選択的に反射でき、 これによりフルカラーの画像を鮮明に映し出すことができる。  In addition, the image projection screen of the present invention is preferably used as a transparent image display by sticking it to a transparent support such as glass for projecting with a liquid crystal projector or the like. At this time, in the image projection screen of the present invention, an adhesive layer is formed on both surfaces, an adhesive layer is laminated on one surface, a hard coat layer is laminated on the other surface, and the eighteenth layer is laminated. Is preferred. As in the above-mentioned adhesive layer, the hard coat layer and the pressure-sensitive adhesive layer may be appropriately selected from those known per se. Further, as described, the image display screen of the present invention can be formed by bonding a plurality of image display screens of the present invention having different reflection peaks or by changing the thickness of each layer of the image display screen of the present invention, It is preferable that the reflection peak has a multiple number. In particular, the present invention has a reflection peak in which the wavelength of the maximum reflectance exists in any of the wavelength ranges of 420 to 480 nm, 52 to 580 nm, and 590 to 65 nm. The image display screen can reflect all three primary colors of red, green and blue emitted from the projector, and can display a full-color image clearly.
このようにして得られた本発明の画像表示スクリーンは、 例えば、 前述のよう にガラスような透明支持体に貼り付け、 波長 3 8 0〜7 8 0 nmの光を照射する 液晶プロジェクタ一などに代表されるプロジェクターと組合せることで、 従来に ない新規な意匠性を備えつつ、 優れた視認性も有する画像表示装置とすることが できる。 次に実施例をもって、 本発明を説明する。 なお、 例中の物性は下記の方法で測 定した。 The image display screen of the present invention thus obtained is, for example, attached to a transparent support such as glass as described above, and is applied to a liquid crystal projector or the like which emits light having a wavelength of 380 to 780 nm. By combining with a representative projector, it is possible to provide an image display device having an excellent visibility while having a novel design property that has never been seen before. Next, the present invention will be described with reference to examples. The physical properties in the examples were measured by the following methods.
(1) 平行光線透過率およびヘーズ値  (1) Parallel light transmittance and haze value
J I S K6714-1958に準じて、日本電色工業社製のヘーズ測定器 (N DH-20) を使用して、 全光線透過率 T t (%) と散乱光透過率 Td (¾) と を測定した。 ここで平行光線透過率 Tp (%) は、 次の式で求められる。  Measure the total light transmittance Tt (%) and the scattered light transmittance Td (し て) using a haze meter (NDH-20) manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS K6714-1958. did. Here, the parallel light transmittance Tp (%) is obtained by the following equation.
T (p) =T (t) — T (d)  T (p) = T (t) — T (d)
また、 測定された全光線透過率 T t (%) と散乱光透過率 Td (%) とから、 以下の式よりヘーズ (%) を算出した。  Haze (%) was calculated from the following equation from the measured total light transmittance Tt (%) and scattered light transmittance Td (%).
ヘーズ (%) =T (d) ZT (t) X 100  Haze (%) = T (d) ZT (t) X 100
(2) フィルム面に沿った方向の屈折率  (2) Refractive index in the direction along the film surface
アッベ屈折計 (株式会社ァ夕ゴ製、 アッベ屈折計 4 T) の接眼側に偏光板アナ ライザ—を取り付け、マウント液に硫黄ヨウ化メチレンを用いて、測定温度 2 5 にて単色光 N a D線でフィルムの機械方向屈折率(n X)および幅方向屈折率 (n y)を測定した。各方向の屈折率について、サンプルに 2つの境界線が確認でき、 それぞれの測定値を第 1の層の屈折率および第 2の層の屈折率とした。 Attach a polarizing plate analyzer to the eyepiece side of an Abbe refractometer (Abego Co., Ltd., Abbe refractometer 4 T), and use methylene sulfur iodide as the mounting solution and measure monochromatic light Na at a measurement temperature of 25 . The machine direction refractive index (nx) and the width direction refractive index (ny) of the film were measured at line D. Regarding the refractive index in each direction, two boundary lines were confirmed in the sample, and the measured values were taken as the refractive index of the first layer and the refractive index of the second layer.
(3) 各層の厚み (最大厚みおよび最小厚み)  (3) Thickness of each layer (maximum thickness and minimum thickness)
サンプルを三角形に切り出し、 包埋カプセルに固定後、 エポキシ榭脂にて包埋 する。 そして、 包埋されたサンプルをミクロトーム (ライヘルト社製、 ULTR ACUT-S) で縦方向に平行な断面を 5 Onm厚の薄膜切片にした後、 透過型 電子顕微鏡 (日本電子 (株) 製 J EM2010) を用いて、 加速電圧 10 O kv にて観察 '撮影し、 写真から各層の厚みを測定した。  Cut the sample into triangles, fix in an embedding capsule, and embed with epoxy resin. Then, the embedded sample was cut into a thin section of 5 Onm thickness in a section parallel to the longitudinal direction with a microtome (ULTR ACUT-S, manufactured by Reichert), and then a transmission electron microscope (JEM2010, manufactured by JEOL Ltd.) ) Was observed at an accelerating voltage of 10 O kv and photographed, and the thickness of each layer was measured from the photograph.
(4) 反射ピーク高さ  (4) Reflection peak height
島津製作所製分光光度計 UV— 3101を用い、 各波長でのアルミ蒸着したミ ラーとの相対鏡面反射率を波長 380-780 nmの範囲で測定する。 その測定 された反射率の中で最大のものを、 最大反射ピークとし、 そのピークの裾野から 高さを反射ピーク高さとする。  Using a spectrophotometer UV-3101 manufactured by Shimadzu Corporation, the relative specular reflectance with the aluminum-deposited mirror at each wavelength is measured in the wavelength range of 380-780 nm. The largest of the measured reflectivities is the maximum reflection peak, and the height from the tail of the peak is the reflection peak height.
(5) ピーク半値幅 最大反射率と同様の測定を行い、 反射ピーク高さの半値となる波長の短波長側 と長波長側の波長の値をそれぞれ短波長側、 長波長側ピーク半値幅波長とし、 そ の差をピーク半値幅とした。 (5) Peak half width The same measurement as the maximum reflectance is performed. The peak half width was set.
(6) 融点 (Tm) およびガラス転移点 (Tg)  (6) Melting point (Tm) and glass transition point (Tg)
試料を 2 Omgサンプリングし、 DSC (T Aインスツルメンッ社製、商品名: DSC 2920) を用い、 20°C/m i n. の昇温速度で、 ガラス転移度および 融点を測定する。  A sample is sampled at 2 Omg, and the glass transition degree and the melting point are measured using a DSC (manufactured by TA Instruments, Inc., trade name: DSC 2920) at a heating rate of 20 ° C / min.
(7)投影画像の視認性  (7) Visibility of projected image
サンプルを 1 Ommのガラス上に貼り付け、 液晶プロジェクターで赤基調、 緑 基調、 青基調、 およびフルカラーの映像を投影した。 30ルクスの蛍光灯照明の 下反射側および透過側より投影画像を観察し、 その映像の視認性を評価した。 ◎:色相のコントラスト高く、 はっきりと映像が確認できる。  The sample was pasted on 1 Omm glass, and a liquid crystal projector projected red, green, blue, and full-color images. The projected images were observed from the reflection side and the transmission side under the fluorescent lamp lighting of 30 lux, and the visibility of the images was evaluated. :: The hue contrast is high, and the image can be clearly seen.
〇:色相がはっきりとは確認できないが、 投影された文字を読み取ることはでき る。 〇: The hue cannot be confirmed clearly, but the projected characters can be read.
△:画像が表示されていることは確認できるがその内容は判別できない。 Δ: It can be confirmed that the image is displayed, but the content cannot be determined.
X:画像が表示されているかどうかを確認できない。 X: Cannot confirm whether the image is displayed.
(8) 透明性  (8) Transparency
サンプルを 1 Ommのガラス上に貼り付け、 30ルクスの蛍光灯照明の下、 反 対側の風景の見やすさを 3段階で評価した。  The sample was affixed on a 1 Omm glass, and the visibility of the opposite scene was evaluated in three levels under fluorescent lighting of 30 lux.
3:全く曇りを感じることなく、 反対側の映像をくっきりと観察できる。  3: You can clearly see the image on the other side without feeling cloudy at all.
2:反対側の映像を見ることができるが、 コントラストに欠け、 やや曇りを感じ る。  2: The image on the opposite side can be seen, but lacks contrast and is slightly cloudy.
1:反対側の映像は全く見えない。  1: The image on the opposite side is not visible at all.
実施例 1 Example 1
真球状シリカ粒子 (平均粒径: 1. 5 m, 長径と短径の比; 1. 02、 粒径 の平均偏差; 0. 1) を 0. 1 Owt%を含有する固有粘度 (オルトクロ口フエ ノール、 35°C) 0. 63のポリエチレンテレフタレート (PET) を第 1の層 の樹脂とし、 イソフタル酸を 1 Omo 1 %共重合した共重合ポリエチレンテレフ タレート (固有粘度 0 · 6 8、 オルトクロ口フエノール、 3 5 ) を第 2の層の 樹脂として調整した。 Spherical silica particles (average particle diameter: 1.5 m, ratio of major axis to minor axis; 1.02, average deviation of particle diameter; 0.1) containing 0.1 Owt% (Polyol, 35 ° C) Polyethylene terephthalate (PET) of 0.63 was used as the resin for the first layer, and 1% of Ophthalmic acid was copolymerized with 1% of Ophthalmic acid. Tallate (intrinsic viscosity 0 · 68, orthochlorophenol, 35) was prepared as the resin for the second layer.
第 1の層の樹脂を 1 6 0でで 3時間、 第 2の層の混合樹脂を 1 6 0 °Cで 3時間 乾燥後、 押出し機に供給して溶融し、 第 1の層のポリマーを 1 0 1層、 第 2の層 のポリマ一を 1 0 0層に分岐させた後、 第 1の層と第 2の層が交互に積層するよ うな多層フィードブロック装置を使用してその積層状態を保持したままダイへと 導き、 キャスティングドラム上にキャストして、 第 1の層と第 2の層が交互に積 層された総数 2 0 1層の積層未延伸シートを作成した。 このとき第 2の層と第 1 の層の押出し量が 1 : 0. 8になるように調整し、 かつ、 両端層が第 2の層にな るように積層した。 この積層未延伸シートを 8 5での温度で縦方向に 3. 6倍延 伸し、 さらに 9 の延伸温度で横方向に 3. 9倍に延伸し、 2 0 5 で 3秒間 熱固定処理を行い画像表示スクリーンを得た。  After drying the resin of the first layer at 160 ° C for 3 hours and the mixed resin of the second layer at 160 ° C for 3 hours, it is supplied to an extruder and melted, and the polymer of the first layer is polymerized. After the polymer of the 101st layer and the second layer is branched into the 100th layer, the stacking state is obtained by using a multilayer feedblock device in which the first layer and the second layer are alternately stacked. While holding the sheet, the sheet was guided to a die, and cast on a casting drum, to prepare a total of 201 layers of unstretched sheets in which the first layer and the second layer were alternately stacked. At this time, the extrusion amount of the second layer and the first layer was adjusted to be 1: 0.8, and the layers were laminated such that both end layers became the second layer. The laminated unstretched sheet is stretched 3.6 times in the machine direction at a temperature of 85, further stretched 3.9 times in the transverse direction at a stretching temperature of 9, and heat-set at 205 for 3 seconds. The image display screen was obtained.
製造条件を表 1に、 得られた画像表示スクリーンの特性を表 2に、 また光の波 長に対する反射率を図 1に示す。  The manufacturing conditions are shown in Table 1, the characteristics of the obtained image display screen are shown in Table 2, and the reflectance with respect to the wavelength of light is shown in FIG.
また、 得られた画像表示スクリーンを 1 0 mmのガラス板に粘着剤シート (日 東電工 (株) 製両面粘着テープ H J— 3 1 6 0 W) を用いて貼り付け、 3 0ルク スの蛍光灯照明の下、 液晶プロジェクタ一にて白色光 (赤、 緑および青色光) を ガラス板上のスクリーンに投影したところ、 反射面側からは青基調の映像、 透過 面側からは黄色基調の映像がコントラストよく表示でき、 透明性も非常に高いも のであった。 得られた画像表示面の特性を表 3に示す。  The obtained image display screen was attached to a 10-mm glass plate using an adhesive sheet (double-sided adhesive tape HJ-3160 W manufactured by Nitto Denko Corporation) to obtain a fluorescent light of 30 lux. When the LCD projector projects white light (red, green, and blue light) on a screen on a glass plate under lamp lighting, the image is blue-based from the reflective surface and yellow-based from the transmissive surface. Could be displayed with good contrast, and the transparency was very high. Table 3 shows the characteristics of the obtained image display surface.
実施例 2 Example 2
製造条件を表 1に示すように変更した以外は、 実施例 1と同様な操作を繰返し た。 得られた画像表示スクリーンの特性を表 2に、 また光の波長に対する反射率 を図 2に示す。  The same operation as in Example 1 was repeated, except that the manufacturing conditions were changed as shown in Table 1. Table 2 shows the characteristics of the obtained image display screen, and FIG. 2 shows the reflectance with respect to the wavelength of light.
また、 得られた画像表示スクリーンを 1 0 mmのガラス板に前記粘着剤シ一ト を用いて貼り付け、 3 0ルクスの蛍光灯照明の下、 液晶プロジェクタ一にて白色 光 (赤、 緑および青色光) をガラス板上のスクリーンに投影したところ、 反射面 側からは綠基調の映像、 透過面側からは紫色基調の映像がコントラストよく表示 でき、 透明性も非常に高いものであった。 得られた画像表示面の特性を表 3に示 す。 Further, the obtained image display screen was attached to a 10 mm glass plate using the above-mentioned adhesive sheet, and white light (red, green, and green light) was irradiated with a liquid crystal projector under a fluorescent light of 30 lux. (Blue light) is projected onto a screen on a glass plate. From the reflective surface side, a blue tone image is displayed, and from the transmissive surface side, a purple tone image is displayed with good contrast. It was possible and the transparency was very high. Table 3 shows the characteristics of the obtained image display surface.
実施例 3 Example 3
製造条件を表 1に示すように変更した以外は、 実施例 1と同様な操作を繰返し た。 得られた画像表示スクリーンの特性を表 2に、 また光の波長に対する反射率 を図 3に示す。  The same operation as in Example 1 was repeated, except that the manufacturing conditions were changed as shown in Table 1. Table 2 shows the characteristics of the obtained image display screen, and Fig. 3 shows the reflectance with respect to the wavelength of light.
また、 得られた画像表示スクリーンを 1 0 mmのガラス板に前記粘着剤シート を用いて、 貼り付け、 3 0ルクスの蛍光灯照明の下、 液晶プロジェクタ一にて白 色光 (赤、 緑および青色光) をガラス板上のスクリーンに投影したところ、 反射 面側からは赤基調の映像、 透過面側からは水色基調の映像がコントラストよく表 示でき、 透明性も非常に高いものであった。 得られた画像表示面の特性を表 3に 示す。  Also, the obtained image display screen was attached to a 10 mm glass plate using the above-mentioned adhesive sheet, and white light (red, green, and blue) was obtained with a liquid crystal projector under a fluorescent light of 30 lux. When the light was projected onto a screen on a glass plate, a red-based image could be displayed from the reflective surface side and a light blue-based image could be displayed from the transmissive surface side with good contrast, and the transparency was very high. Table 3 shows the characteristics of the obtained image display surface.
実施例 4〜9 Examples 4 to 9
第 1の層および第 2の層の樹脂および不活性粒子並びに製造条件を表 1に示す ように変更した以外は、 実施例 1と同様な操作を繰返した。 得られた画像表示ス クリーンの特性を表 2に示す。 また、 得られた画像表示面の特性を表 3に示す。 実施例 1 0  The same operation as in Example 1 was repeated, except that the resin and inert particles of the first layer and the second layer and the production conditions were changed as shown in Table 1. Table 2 shows the characteristics of the obtained image display screen. Table 3 shows the characteristics of the obtained image display surface. Example 10
実施例 1〜 3で製造した画像表示スクリーンを粘着剤シ一トを用いて 3枚重ね、 厚さ 1 Ommのガラス板に前記粘着剤シートを用いて貼り付けた。 3 0ルクスの 蛍光灯照明の下、 液晶プロジェクタ一にてガラス板上のスクリーンに投影したと ころ、 反射面側、 透過面側のどちら側からもフルカラーの映像がコントラストよ く表示できた。 得られた画像表示面の特性を表 3に、 また画像表示スクリーンの 光の波長に対する反射率を図 4に示す。  Three image display screens manufactured in Examples 1 to 3 were stacked using an adhesive sheet, and attached to a glass plate having a thickness of 1 Omm using the adhesive sheet. When projected on a screen on a glass plate with a liquid crystal projector under a 30-lux fluorescent light, full-color images could be displayed with good contrast from either the reflective side or the transmissive side. Table 3 shows the characteristics of the obtained image display surface, and Fig. 4 shows the reflectance of the image display screen with respect to the wavelength of light.
実施例 1 1 Example 1 1
実施例 7〜 9で製造した画像表示スクリーンを粘着剤シートを用いて 3枚重ね、 厚さ 1 O mmのガラス板に前記粘着剤シートを用いて貼り付けた。 3 0ルクスの 蛍光灯照明の下、 液晶プロジェクタ一にてガラス板上のスクリーンに投影したと ころ、 反射面側、 透過面側のどちら側からもフルカラーの映像がコントラストよ く表示できた。 得られた画像表示面の特性を表 3に示す。 Three image display screens manufactured in Examples 7 to 9 were stacked using an adhesive sheet, and bonded to a glass plate having a thickness of 1 Omm using the adhesive sheet. When projected on a screen on a glass plate with a liquid crystal projector under a 30-lux fluorescent light, full-color images can be seen from both the reflective side and the transmissive side. Could be displayed well. Table 3 shows the characteristics of the obtained image display surface.
比較例 1 Comparative Example 1
帝人デュポンフィルム (株) 製マツ卜フィルム (TW—7 5 ) を 1 0 mmのガ ラス板に前記粘着剤シートを用いて貼り付け、 3 0ルクスの蛍光灯照明の下、 液 晶プロジェクタ一にてガラス板上のフィルムに投影したところ、 B央像がコントラ ストよく表示できたが、 透過側の映像と反射側の映像は同様の色調であつたが、 透明性は全くないものであった。 画像表示面の特性を表 3に示す。  A sticky film (TW-75) manufactured by Teijin Dupont Film Co., Ltd. is attached to a 10 mm glass plate using the above-mentioned adhesive sheet. When projected onto a film on a glass plate, the central image could be displayed with good contrast, but the image on the transmission side and the image on the reflection side had the same color tone, but there was no transparency at all. . Table 3 shows the characteristics of the image display surface.
比較例 2 Comparative Example 2
キャノン販売製ホログラムスクリーン (グラスビジョンシート 4 0 ) を 1 0 m mのガラス板に前記粘着剤シートを用いて貼り付け、 3 0ルクスの蛍光灯照明の 下、 液晶プロジェクタ一にてガラス板上のフィルムに投影したところ、 透過側か らは非常にコントラストよい映像が表示できたが、 反射側からはほとんど映像が 見られなかった。 透明性 Iは比較例 1よりはかなり透明性の高いものであつたが、 やや曇ったものであった。 画像表示面の特性を表 3に示す。 A hologram screen (Glass Vision Sheet 40) manufactured by Canon Inc. is attached to a 10 mm glass plate using the above-mentioned adhesive sheet, and the film on the glass plate is illuminated with a liquid crystal projector under a 30 lux fluorescent light. As a result, an image with very high contrast was displayed from the transmission side, but almost no image was seen from the reflection side. Transparency I was much more transparent than Comparative Example 1, but was slightly cloudy. Table 3 shows the characteristics of the image display surface.
11の層 11 layers
測 fe U曰種 小估 于 JJ ) 欄曰棰 ィヽ估 ffi权亍 JJU )  Fe fe U said kind of small evaluation in JJ)
- ( t%) 実施例 1 101 H Α(0.05) 100 I なし 実施例 2 101 H A (0.05) 100 I なし 実施例 3 101 H A (0.05) 100 I なし 実施例 4 101 J BC0.05) 100 K なし 実施例 5 101 J B(0.05) 100 K なし 実施例 6 101 J B(0.05) 100 K なし 実施例 7 101 M C(0.05) 100 L なし 実施例 8 101 M C(0.05) 100 L なし 実施例 9 101 M C(0.05) 100 L なし 製造条件 フィルム厚み 縦延伸 横延伸 熱固定温度  -(t%) Example 1 101 H Α (0.05) 100 I None Example 2 101 HA (0.05) 100 I None Example 3 101 HA (0.05) 100 I None Example 4 101 J BC0.05) 100 K None Example 5 101 JB (0.05) 100 K None Example 6 101 JB (0.05) 100 K None Example 7 101 MC (0.05) 100 L None Example 8 101 MC (0.05) 100 L None Example 9 101 MC (0.05) 100 L None Manufacturing conditions Film thickness Longitudinal stretching Lateral stretching Heat setting temperature
温度 (。C) 温度 (。C) 倍率 (-) X μΐη 実施例 1 85 3.6 90 3.9 205 13  Temperature (.C) Temperature (.C) Magnification (-) X μΐη Example 1 85 3.6 90 3.9 205 13
実施例 2 85 3.6 90 3.9 205 16 Example 2 85 3.6 90 3.9 205 16
85 3.6 90 3.9 205 18 実施例 4 120 3.6 125 3.9 230 13  85 3.6 90 3.9 205 18 Example 4 120 3.6 125 3.9 230 13
実施例 5 120 3.6 125 3.9 230 16 Example 5 120 3.6 125 3.9 230 16
実施例 6 120 3.6 125 3.9 \ 230 18 Example 6 120 3.6 125 3.9 \ 230 18
実施例 7 120 3.6 115 3.9 200 13 Example 7 120 3.6 115 3.9 200 13
実施例 8 120 3.6 115 3.9 200 16 Example 8 120 3.6 115 3.9 200 16
実施例 9 120 3.6 115 3.9 200 18 Example 9 120 3.6 115 3.9 200 18
表 2 Table 2
Figure imgf000022_0001
Figure imgf000022_0001
t t
DSCによる積層体とする前の融点ピ -ク 反射波長 反射ピ -ク高さ 半値幅 Melting point peak before lamination by DSC Reflection wavelength Reflection peak height Half width
高温側 低温側  High temperature side Low temperature side
[°C] [。c] [Ml] [%] [nm]  [° C] [. c] [Ml] [%] [nm]
実施例 1 254 230 456 17 21  Example 1 254 230 456 17 21
実施例 2 254 230 546 14 23  Example 2 254 230 546 14 23
実施例 3 254 230 622 17 22  Example 3 254 230 622 17 22
実施例 4 265 240 445 51 38  Example 4 265 240 445 51 38
実施例 5 265 240 553 45 42  Example 5 265 240 553 45 42
実施例 6 265 240 621 44 43  Example 6 265 240 621 44 43
実施例 7 230 200 444 51 48  Example 7 230 200 444 51 48
実施例 8 230 200 561 45 53  Example 8 230 200 561 45 53
実施例 9 230 200 630 44 55 Example 9 230 200 630 44 55
表 3 ノし》 聯 飽 八ヽ - Λス' 画像の視認性 (透過側) 画像の視認性 (反射側) 添日勝 孫;咼雍 緑 、 冃 ノ Table 3 ノ し >> 飽 ヽ ヽ Λ Λ Λ 視 認 視 認 Image visibility (transmission side) Image visibility (reflection side)
Γ¾)1」 1 」  Γ¾) 1 '' 1 ''
ま施例 1 on o X X o X X 〇 « 実施例 2 86 81 6 X ◎ X 〇 X ◎ X 〇 3 実施例 3 87 84 4 X X ◎ 〇 X X ◎ 〇 3 実施例 4 89 85 4 ◎ X X 〇 ◎ X X 〇 3 実施例 5 85 81 4 X ◎ X 〇 X ◎ X 〇 3 実施例 6 87 83 4 X X ◎ 〇 X X ◎ 〇 3 実施例 7 89 86 3 ◎ X X 〇 ◎ X X 〇 3 実施例 8 78 74 4 X ◎ X 〇 X ◎ X 〇 3 実施例 9 86 82 4 X X ◎ 〇 X X ◎ 〇 3 実施例 10 78 60 18 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 3 実施例 11 64 54 10 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 3 比較例 1 60 18 70 〇 〇 〇 〇 〇 〇 〇 〇 1 比較例 2 65 40 38 ◎ ◎ ◎ ◎ X X X X 2 Example 1 on o XX o XX «« Example 2 86 81 6 X ◎ X 〇 X ◎ X 〇 3 Example 3 87 84 4 XX ◎ 〇 XX ◎ 〇 3 Example 4 89 85 4 ◎ XX 〇 ◎ XX 〇 3 Example 5 85 81 4 X ◎ X 〇 X ◎ X 〇 3 Example 6 87 83 4 XX ◎ 〇 XX ◎ 〇 3 Example 7 89 86 3 ◎ XX 〇 ◎ XX 〇 3 Example 8 78 74 4 X ◎ X 〇 X ◎ X 〇 3 Example 9 86 82 4 XX ◎ 〇 XX ◎ 〇 3 Example 10 78 60 18 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 3 Example 11 64 54 10 ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ 3 Comparative Example 1 60 18 70 〇 〇 〇 〇 〇 〇 〇 〇 1 Comparative Example 2 65 40 38 ◎ ◎ ◎ ◎ XXXX 2
なお、 表 1に示す不活性粒子は以下のとおりである。 The inert particles shown in Table 1 are as follows.
不活性粒子 A:真球状シリカ粒子(平均粒径: 1. 5 m,長径と短径の比; 1. 02、 粒径の平均偏差; 0. 1) Inert particles A: true spherical silica particles (average particle diameter: 1.5 m, ratio of major axis to minor axis; 1.02, average deviation of particle diameter; 0.1)
不活性粒子 B:塊状炭酸カルシウム (平均粒径: 1. Ο πι, 長径と短径の比; 1. 4、 粒径の平均偏差; 0. 25) Inert particles B: lumpy calcium carbonate (Average particle size: 1. Οπι, ratio of major axis to minor axis; 1.4, average deviation of particle diameter; 0.25)
不活性粒子 C:真球状シリコーン(平均粒径: 1 · 5 im、長径と短径の比; 1. 1、 粒径の平均偏差; 0. 30) Inert particles C: spherical silicone (average particle size: 1.5 im, ratio of major axis to minor axis; 1.1, average deviation of particle diameter; 0.30)
また表 1に示す第 1の層または第 2の層の樹脂種は以下のとおりである。  The resin type of the first layer or the second layer shown in Table 1 is as follows.
樹脂種 H:ポリエチレンテレフタレート (固有粘度 0. 64、 オルトクロ口フエ ノール、 35°C) Resin type H: Polyethylene terephthalate (Intrinsic viscosity 0.64, Orthochlorophenol, 35 ° C)
樹脂種 I :イソフタル酸を 1 Omo 1 %共重合した共重合ポリエチレンテレフ夕 レート (固有粘度 0. 68、 オルトクロ口フエノール、 35 ) Resin type I: Copolymerized polyethylene terephthalate obtained by copolymerizing isophthalic acid with 1% Omo 1% (intrinsic viscosity 0.68, phenol phenol, 35)
樹脂種 J :ポリエチレン 2, 6—ナフタレート (固有粘度 0. 62、 オルトクロ 口フエノール、 35°C) Resin type J: Polyethylene 2,6-naphthalate (intrinsic viscosity 0.62, orthophenol phenol, 35 ° C)
樹脂種 K:イソフタル酸を 1 Omo 1 %共重合した共重合ポリエチレン 2, 6- ナフタレート (固有粘度 0. 64、 オルトクロ口フエノール、 35 ) 樹脂種 L:ポリエチレン 2, 6—ナフタレート (固有粘度 0. 62、 オルトクロ 口フエノール、 35X ) とポリエチレンテレフタレ一ト (固有粘度 0. 64、 ォ ルトクロロフエノール、 35 ) を 70 : 30の重量比で混合したもの 樹脂種 M : 2, 6—ナフタレンジカルボン酸を 12 mo 1 %共重合した共重合ポ リエチレンテレフ夕レート(固有粘度 0. 68、オルトクロ口フエノール、 35°C) 本発明の画像表示スクリーンは表 1に示すような製膜条件で製膜することがで き、 その光学特性は表 2に示す通り、 透明性を失うことなく選択的にその波長を 反射する。 このような多層延伸フィルムをガラス上に貼り付けることにより、 表 3に示すように、 比較例 1、 2では得られない、 透明性を保ちつつ、 透過側と反 射側の両側に画像を表示することができる。 Resin type K: Copolymerized polyethylene 2,6-naphthalate obtained by copolymerizing isophthalic acid with 1% Omo 1% (intrinsic viscosity 0.64, orthochlorophenol, 35) Resin type L: Polyethylene 2,6-naphthalate (intrinsic viscosity 0. A mixture of 62, orthochlorophenol, 35X) and polyethylene terephthalate (intrinsic viscosity 0.64, orthochlorophenol, 35) in a weight ratio of 70:30 Resin type M: 2,6-naphthalenedicarboxylic acid 12 mo 1% copolymerized poly (ethylene terephthalate) (intrinsic viscosity 0.68, phenol with an orthochrome, 35 ° C) The image display screen of the present invention is formed under the film forming conditions shown in Table 1. As shown in Table 2, it selectively reflects the wavelength without losing transparency. By pasting such a multilayer stretched film on glass, as shown in Table 3, images are not obtained in Comparative Examples 1 and 2, and images are displayed on both the transmission side and the reflection side while maintaining transparency. can do.
以上のとおり、 本発明の画像表示スクリーンは、 少なくとも一部の可視光線を 透明性を失わない範囲で反射するため、 画像の鮮映性を維持しつつ透明性が高く しかも従来にない新規な意匠性、 すなわち、 反射側と透過側とに色調の異なる画 像を同時に映し出すことができる。 そのため、 本発明のスクリーンを、 例えば、 深夜営業する商店のウィンドウガラスに貼り付け、 そこに液晶プロジェクターに よって画像を表示すると、 室内からは屋外の風景を確認しながら、 映像の情報を 入手することができ、 室外からは映像の情報が遠方より確認できる。 従って、 本 発明の画像表示装置を用いれば、 深夜に宣伝などを表示しても周囲の住民に与え る不快感を軽減でき、 効率的な宣伝活動を行うことができる。 As described above, the image display screen of the present invention reflects at least a part of visible light within a range that does not lose transparency, and thus has high transparency while maintaining sharpness of the image. In addition, a new design that has never existed before, that is, images having different color tones can be simultaneously displayed on the reflection side and the transmission side. Therefore, when the screen of the present invention is pasted on, for example, a window glass of a store that is open late at night, and an image is displayed by a liquid crystal projector, it is possible to obtain image information while checking the outdoor scenery from indoors. You can check video information from outside from outside. Therefore, the use of the image display device of the present invention can reduce the discomfort given to the surrounding residents even when an advertisement or the like is displayed at midnight, and can carry out efficient advertising activities.

Claims

請求の範囲 The scope of the claims
1. (1)厚みが 0. 05〜0. 3 mの範囲にある第 1の熱可塑性樹脂層と厚み が 0. 05〜0. 3 mの範囲にある第 2の熱可塑性樹脂層とが交互に積層され た少なくとも 11層からなる多層フィルムからなり、 1. (1) The first thermoplastic resin layer having a thickness in the range of 0.05 to 0.3 m and the second thermoplastic resin layer having the thickness in the range of 0.05 to 0.3 m It consists of a multilayer film consisting of at least 11 layers alternately laminated,
(2) 波長 380〜780 nmの可視光線に対する反射率曲線において、 最 大反射率が反射率のベースラインよりも 5〜 80%高くかつ半値幅が 20〜 20 0 nmの範囲にある反射ピークを有しそして  (2) In the reflectance curve for visible light with a wavelength of 380 to 780 nm, the reflection peak whose maximum reflectance is 5 to 80% higher than the baseline of the reflectance and whose half width is in the range of 20 to 200 nm is found. Have and
(3) 平行光線透過率が 50%以上である、  (3) parallel light transmittance is 50% or more,
ことを特徴とする画像表示スクリーン。 An image display screen, characterized in that:
2. 反射ピークの最大反射率を示す波長が、 420〜 480 nm、 520〜 58 0 nmまたは 590〜650 nmのいずれかの範囲にあり、 かつ、 該最大反射率 が反射率のベースラインよりも 5〜 70 %高い範囲にある請求項 1に記載の画像 表示スクリーン。 2. The wavelength showing the maximum reflectance of the reflection peak is in the range of 420 to 480 nm, 520 to 580 nm, or 590 to 650 nm, and the maximum reflectance is higher than the reflectance baseline. The image display screen according to claim 1, which is in a range of 5 to 70% higher.
3. 第 1の熱可塑性観旨層および第 2の熱可塑性樹脂層の少なくともいずれか一 方が不活性粒子を含有する請求項 1に記載の画像表示スクリーン。 3. The image display screen according to claim 1, wherein at least one of the first thermoplastic appearance layer and the second thermoplastic resin layer contains inert particles.
4. 不活性粒子が、 シリカ粒子、 アルミナ粒子、 炭酸カルシウム粒子、 燐酸カル シゥム粒子、 カオリン粒子、 タルク粒子、 シリコーン粒子、 架橋ポリスチレン粒 子およびスチレン—ビニルベンゼン共重合体粒子からなる群より選ばれる少なく とも 1種である請求項 3に記載の画像表示スクリーン。 4. The inert particles are selected from the group consisting of silica particles, alumina particles, calcium carbonate particles, calcium phosphate particles, kaolin particles, talc particles, silicone particles, crosslinked polystyrene particles, and styrene-vinylbenzene copolymer particles. 4. The image display screen according to claim 3, which is at least one kind.
5. 不活性粒子の平均粒径が 0. 01〜 5 mの範囲にある請求項 4に記載の画 像表示スクリーン。 5. The image display screen according to claim 4, wherein the inert particles have an average particle size in a range of 0.01 to 5 m.
6. 不活性粒子が、 多層フィルムの重量を基準として 0. 001〜5重量%の範 囲で含有されている請求項 3に記載の画像表示スクリーン。 6. The inert particles are present in the range of 0.001 to 5% by weight based on the weight of the multilayer film. 4. The image display screen according to claim 3, wherein the image display screen is enclosed in a box.
7. 第 1の熱可塑性樹脂がエチレン一 2, 6—ナフ夕レンジ力ルポキシレ一トを 主たる繰返し単位とするポリエステルまたはエチレンテレフ夕レートを主たる繰 返し単位とするポリエステルである請求項 1に記載の画像表示スクリーン。 7. The method according to claim 1, wherein the first thermoplastic resin is a polyester mainly composed of ethylene-1,2,6-naphthyl propylene oxide or a polyester mainly composed of ethylene terephthalate. Image display screen.
8. 第 2の熱可塑性樹脂がエチレン— 2, 6—ナフ夕レンジカルボキシレートを 主たる繰返し単位とするポリエステルまたはエチレンテレフ夕レートを主たる繰 返し単位とするポリエステルである請求項 1に記載の画像表示スクリーン。 8. The image display according to claim 1, wherein the second thermoplastic resin is a polyester having ethylene-2,6-naphthene dicarboxylate as a main repeating unit or a polyester having ethylene terephthalate as a main repeating unit. screen.
9. 多層フィルムに積層する前の第 1熱可塑性樹脂と第 2熱可塑性樹脂とが D S Cによる融点で少なくとも 1 5 の温度差を有する請求項 1に記載の画像表示ス クリーン。 9. The image display screen according to claim 1, wherein the first thermoplastic resin and the second thermoplastic resin before being laminated on the multilayer film have a temperature difference of at least 15 in melting point by DSC.
1 0 . lの熱可塑性樹脂と第 2の熱可塑性樹脂がいずれもポリエステルであり そして全ポリエステルの全繰返し単位の 8 0モル%以上がェチレンテレフタレー トからなる請求項 1に記載の画像表示スクリーン。 2. The image display according to claim 1, wherein the thermoplastic resin (10.l) and the second thermoplastic resin are both polyester, and at least 80 mol% of all the repeating units of the polyester are composed of ethylene terephthalate. screen.
1 1 . 第 1の熱可塑性樹脂と第 2の熱可塑性樹脂がいずれもポリエステルであり そして全ポリエステルの全繰返し単位の 8 0モル%以上がエチレン— 2, 6—ナ フタレンジカルポキシレートカゝらなる請求項 1に記載の画像表示スクリーン。 11. The first thermoplastic resin and the second thermoplastic resin are both polyesters, and at least 80 mol% of all repeating units of the polyester are ethylene-2,6-naphthalenedicarboxylate. The image display screen according to claim 1, wherein the image display screen comprises:
1 2. 反射ピークが少なくとも 3つあり、 3つの反射ピークの最大反射率を示す 波長が、 それぞれ 4 2 0〜4 8 0 nm、 5 2 0〜 5 8 0 nmおよび 5 9 0〜 6 5 0 nmの範囲にあり、 そしてこれら 3つの反射ピークの最大反射率がいずれも反 射率のベースラインよりも 5〜 7 0 %高い範囲にある請求項 1に記載の画像表示 スクリーン。 1 2. There are at least three reflection peaks, and the wavelengths showing the maximum reflectivity of the three reflection peaks are 420-480 nm, 520-580 nm, and 590-650, respectively. The image display screen according to claim 1, wherein the maximum reflectance of each of the three reflection peaks is in a range of 5 to 70% higher than a baseline of the reflectance.
13. 透明支持体と貼合されている請求項 1に記載の画像表示スクリーン。 13. The image display screen according to claim 1, which is bonded to a transparent support.
14. (1)厚みが 0. 05〜0. 3 mの範囲にある第 1の熱可塑性樹脂層と厚 みが 0. 05〜0. 3 mの範囲にある第 2の熱可塑性樹脂層とが交互に積層さ れた少なくとも 11層からなり、 14. (1) The first thermoplastic resin layer whose thickness is in the range of 0.05 to 0.3 m and the second thermoplastic resin layer whose thickness is in the range of 0.05 to 0.3 m Consists of at least 11 layers that are alternately stacked,
(2) 波長 380〜 780 nmの可視光線に対する反射率曲線において、 最 大反射率が反射率のベースラインよりも 5〜 80%高くかつ半値幅が 20〜 20 0 nmの範囲にある反射ピークを有し、  (2) In the reflectance curve for visible light with a wavelength of 380 to 780 nm, the reflection peak where the maximum reflectance is 5 to 80% higher than the baseline of the reflectance and the half width is in the range of 20 to 200 nm. Have
(3)平行光線透過率が 50%以上であり、 そして  (3) parallel light transmittance is 50% or more, and
(4)画像表示スクリーン用である、  (4) For image display screen,
ことを特徴とする多層フィルム。 A multilayer film characterized by the above-mentioned.
15. 請求項 14に記載の多層フィルムの画像表示スクリーンとしての使用。 15. Use of the multilayer film according to claim 14 as an image display screen.
16. 請求項 1〜13のいずれかに記載の画像表示スクリーンと、 波長 380〜 780 nmの可視光線を照射するプロジェクターとの組合せからなる画像表示装 16. An image display device comprising a combination of the image display screen according to any one of claims 1 to 13 and a projector that emits visible light having a wavelength of 380 to 780 nm.
PCT/JP2002/006002 2001-06-19 2002-06-17 Image display screen and image display unit WO2002103453A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020037002404A KR100893841B1 (en) 2001-06-19 2002-06-17 Image display screen and image display unit
EP02738731A EP1398660B1 (en) 2001-06-19 2002-06-17 Image display screen and image display unit
DE60232146T DE60232146D1 (en) 2001-06-19 2002-06-17 PICTURE DISPLAY AND PICTURE DISPLAY UNIT
US10/344,522 US7031058B2 (en) 2001-06-19 2002-06-17 Image display screen and image display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-184670 2001-06-19
JP2001184670 2001-06-19
JP2002057020A JP2003075920A (en) 2001-06-19 2002-03-04 Image display screen and image display unit
JP2002-57020 2002-03-04

Publications (1)

Publication Number Publication Date
WO2002103453A1 true WO2002103453A1 (en) 2002-12-27

Family

ID=26617181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006002 WO2002103453A1 (en) 2001-06-19 2002-06-17 Image display screen and image display unit

Country Status (7)

Country Link
US (1) US7031058B2 (en)
EP (1) EP1398660B1 (en)
JP (1) JP2003075920A (en)
KR (1) KR100893841B1 (en)
DE (1) DE60232146D1 (en)
TW (1) TW567389B (en)
WO (1) WO2002103453A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079278A1 (en) * 2003-03-06 2004-09-16 Ecole Polytechnique Federale De Lausanne (Epfl) Glazing

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531230B1 (en) * 1998-01-13 2003-03-11 3M Innovative Properties Company Color shifting film
AU2003213418A1 (en) * 2002-03-08 2003-09-22 Takahiko Ueda Screen
US20050180001A1 (en) * 2002-10-11 2005-08-18 Yupo Corporation Screen
JP4916645B2 (en) * 2003-04-21 2012-04-18 東レ株式会社 Optical interference reflection laminated film
JP4527952B2 (en) * 2003-08-11 2010-08-18 帝人株式会社 Biaxially stretched multilayer laminated film
JP4310312B2 (en) * 2003-10-27 2009-08-05 帝人デュポンフィルム株式会社 Near-infrared shielding film
JP4730301B2 (en) * 2004-03-31 2011-07-20 東レ株式会社 Laminated film
JP4534637B2 (en) * 2004-03-31 2010-09-01 東レ株式会社 Laminated film
JP4691910B2 (en) * 2004-06-11 2011-06-01 東レ株式会社 Screen reflector and screen
JP5023486B2 (en) * 2004-12-28 2012-09-12 東レ株式会社 Screen reflector and screen
JP2007003764A (en) * 2005-06-23 2007-01-11 Toray Ind Inc Reflecting film
ES2304104B1 (en) * 2007-02-23 2009-08-25 Consejo Superior De Investigaciones Cientificas MULTI-PAPER STRUCTURE FORMED BY NANOPARTICLE SHEETS WITH UNIDIMENSIONAL PHOTONIC CRYSTAL PROPERTIES, PROCEDURE FOR MANUFACTURING AND APPLICATIONS.
KR20080110090A (en) * 2007-06-14 2008-12-18 삼성전자주식회사 Refractive index decrement film, polarizing member using the same, and display device using the same
EP2193402A1 (en) * 2007-09-24 2010-06-09 François Giry Transparency and backlight for cinema screen
JP5468766B2 (en) * 2008-11-25 2014-04-09 帝人デュポンフィルム株式会社 Stretched film
JP2012514774A (en) 2009-01-08 2012-06-28 スリーエム イノベイティブ プロパティズ カンパニー Dry erasable projection article and system
US20110011854A1 (en) * 2009-02-23 2011-01-20 Middleton Scott W Low crystallinity susceptor films
US9284108B2 (en) 2009-02-23 2016-03-15 Graphic Packaging International, Inc. Plasma treated susceptor films
JP2010201644A (en) * 2009-02-27 2010-09-16 Fujitsu Component Ltd Decorative body and method for producing the same
TWI399611B (en) * 2009-07-03 2013-06-21 Hon Hai Prec Ind Co Ltd Acoustic screen and playing system using the same
CN102667618B (en) 2009-11-23 2015-02-25 3M创新有限公司 Front projection screen with high contrast
KR101073845B1 (en) * 2009-12-22 2011-10-17 에스케이씨 주식회사 Double wavelength-reflective multi-layer film
US20220317514A1 (en) * 2021-04-06 2022-10-06 Skc Co., Ltd. Light reflective resin film and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1115079A (en) * 1997-06-23 1999-01-22 Seiko Epson Corp Display device
JP2000326467A (en) * 1999-05-24 2000-11-28 Teijin Ltd Multilayered laminated stretched film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498683B2 (en) * 1999-11-22 2002-12-24 3M Innovative Properties Company Multilayer optical bodies
US6163402A (en) * 1998-06-11 2000-12-19 3M Innovative Properties Company Rear projection screen
JP3322222B2 (en) 1998-10-14 2002-09-09 株式会社デンソー Hologram screen and manufacturing method thereof
JP3653403B2 (en) * 1998-11-04 2005-05-25 帝人株式会社 Multilayer laminated stretched polyester film
JP3752410B2 (en) * 1999-12-24 2006-03-08 帝人株式会社 Multilayer laminated stretched film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1115079A (en) * 1997-06-23 1999-01-22 Seiko Epson Corp Display device
JP2000326467A (en) * 1999-05-24 2000-11-28 Teijin Ltd Multilayered laminated stretched film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004079278A1 (en) * 2003-03-06 2004-09-16 Ecole Polytechnique Federale De Lausanne (Epfl) Glazing

Also Published As

Publication number Publication date
EP1398660A4 (en) 2006-06-21
US20040004760A1 (en) 2004-01-08
US7031058B2 (en) 2006-04-18
JP2003075920A (en) 2003-03-12
KR100893841B1 (en) 2009-04-17
EP1398660B1 (en) 2009-04-29
DE60232146D1 (en) 2009-06-10
KR20030031164A (en) 2003-04-18
TW567389B (en) 2003-12-21
EP1398660A1 (en) 2004-03-17

Similar Documents

Publication Publication Date Title
WO2002103453A1 (en) Image display screen and image display unit
JP5801898B2 (en) Uniaxially stretched multilayer laminated film
EP1164008B1 (en) Multilayered film, reflection-type polarizing film, and half mirror
JP4624817B2 (en) Reflective polarizing film
JPH11249062A (en) Information display device
WO2002042073A1 (en) Multilayered film and near-infrared-ray reflection film
JP5782302B2 (en) Multilayer stretched film
JP4527952B2 (en) Biaxially stretched multilayer laminated film
JP2000141567A (en) Multilayered laminated stretched polyester film
JP5782303B2 (en) Multilayer stretched film
JP2012088613A (en) Uniaxially stretched multilayer laminate film and uniaxially stretched multilayer laminate film laminate comprising the same
JP5706246B2 (en) Multilayer stretched film
JP2010058366A (en) Heat-shrinkable polyester film
US20220155514A1 (en) Laminated body and manufacturing method thereof, light guide plate unit, light source unit, display device, projection image display member, projection image display device, and display screen filter
JP6259278B2 (en) White reflective film for direct surface light source
JP3658518B2 (en) Light selective reflection film for display
JP6490891B2 (en) White reflective film for direct surface light source
JP4886247B2 (en) Multilayer laminated film
KR20100061713A (en) Thermally shrinkable polyester film
JP2005059331A (en) Biaxially oriented multilayer laminated film, decorative yarn and decorative powder
TWI576244B (en) Uniaxially stretched multilayer laminated film
JP6336308B2 (en) White reflective film for direct surface light source
JP7332057B1 (en) Multilayer laminated film and projection image display member
JP2010100002A (en) Heat-shrinkable polyester-based film
JP2012237853A (en) Uniaxially stretched multilayer laminated film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10344522

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020037002404

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002738731

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020037002404

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002738731

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642