WO2002101307B1 - Natural gas liquefaction - Google Patents

Natural gas liquefaction

Info

Publication number
WO2002101307B1
WO2002101307B1 PCT/US2002/017675 US0217675W WO02101307B1 WO 2002101307 B1 WO2002101307 B1 WO 2002101307B1 US 0217675 W US0217675 W US 0217675W WO 02101307 B1 WO02101307 B1 WO 02101307B1
Authority
WO
WIPO (PCT)
Prior art keywords
gas fraction
residue gas
volatile residue
receive
components
Prior art date
Application number
PCT/US2002/017675
Other languages
French (fr)
Other versions
WO2002101307A1 (en
Inventor
John D Wilkinson
Hank M Hudson
Kyle T Cuellar
Original Assignee
Elcor Corp
John D Wilkinson
Hank M Hudson
Kyle T Cuellar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to UA20031211096A priority Critical patent/UA76750C2/en
Priority to NZ529941A priority patent/NZ529941A/en
Priority to CA2448884A priority patent/CA2448884C/en
Priority to EA200400014A priority patent/EA005326B1/en
Priority to EP02778941A priority patent/EP1397629A1/en
Priority to JP2003504027A priority patent/JP5041650B2/en
Application filed by Elcor Corp, John D Wilkinson, Hank M Hudson, Kyle T Cuellar filed Critical Elcor Corp
Priority to BRPI0210928-0A priority patent/BR0210928B1/en
Priority to MXPA03011267A priority patent/MXPA03011267A/en
Priority to KR1020037016093A priority patent/KR100877029B1/en
Publication of WO2002101307A1 publication Critical patent/WO2002101307A1/en
Publication of WO2002101307B1 publication Critical patent/WO2002101307B1/en
Priority to NO20035423A priority patent/NO20035423D0/en
Priority to HK05104005.0A priority patent/HK1071423A1/en
Priority to AU2008200409A priority patent/AU2008200409B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0247Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 4 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0057Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream after expansion of the liquid refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0239Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0239Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
    • F25J1/0241Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling wherein the overhead cooling comprises providing reflux for a fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0242Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/30Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/66Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/40Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

A process for liquefying natural gas (50) in conjunction with producing a liquid stream containing predominantly hydrocarbons heavier than methane (41) is disclosed. In the process, the natural gas stream to be liquefied (31) is partially cooled, expanded to an intermediate pressure (14,15), and supplied to a distillation column (19). The bottom product (41) from this distillation column preferentially contains the majority of any hydrocarbons heavier than methane that would otherwise reduce the purity of the liquefied natural gas (50). The residual gas stream (37) from the distillation column (19) is compressed (16) to a higher intermediate pressure, cooled under pressure (60) to condense it, and then expanded (61) to low pressure to form the liquefied natural gas stream.

Claims

AMENDED CLAIMS
[received by the International Bureau on 26 December 2002 (26.12.02); original claims 1-108 replaced by new claims 1-116 (11 pages)]
(6) said volatile residue gas fraction is cooled under pressure to condense at least a portion of it and form thereby said condensed stream.
29. The improvement according to claim 3, 4, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 wherein said volatile residue gas fraction is compressed and thereafter cooled under pressure to condense at least a portion of it and form thereby said condensed stream.
30. The improvement according to claim 1 or 6 wherein
(1) said volatile residue gas fraction is compressed and thereafter cooled under pressure to condense at least a portion of it; and
(2) said condensed portion is divided into at least two portions to form thereby said condensed stream and said liquid stream.
31. (Amended) The improvement according to claim 2, 7, or 8 wherein (1) said volatile residue gas fraction is compressed and thereafter cooled under pressure to condense at least a portion of it; and
(2) said condensed portion is divided into at least two portions to form thereby said condensed stream and said second liquid stream.
32. The improvement according to claim 9 wherein said more volatile vapor distillation stream is compressed and thereafter combined with said vapor stream to form said volatile residue gas fraction containing a major portion of said methane and lighter components.
33. The improvement according to claim 10 wherein said more volatile vapor distillation stream is compressed and thereafter combined with said second vapor stream to foπn said volatile residue gas fraction containing a major portion of said methane and lighter components.
34. The improvement according to claim 3, 4, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 wherein said volatile residue gas fraction is heated, compressed, and thereafter cooled under pressure to condense at least a portion of it and form thereby said condensed stream.
35. The improvement according to claim 1 or 6 wherein (1) said volatile residue gas fraction is heated, compressed, and thereafter cooled under pressure to condense at least a portion of it; and
(2) said condensed portion is divided into at least two portions to form thereby said condensed stream and said liquid stream. 36. The improvement according to claim 2, 7, or 8 wherein
(1) said volatile residue gas fraction is heated, compressed, and thereafter cooled under pressure to condense at least a portion of it; and
(2) said condensed portion is divided into at least two portions to form thereby said condensed stream and said second liquid stream. 37. The improvement according to claim 9 wherein said more volatile vapor distillation stream is heated, compressed, cooled, and thereafter combined with said vapor stream to form said volatile residue gas fraction containing a major portion of said methane and lighter components.
38. The improvement according to claim 10 wherein said more volatile vapor distillation stream is heated, compressed, cooled, and thereafter combined with said second vapor stream to form said volatile residue gas fraction containing a major portion of said methane and lighter components.
39. The improvement according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 32, 33, 37, or 38 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C components.
40. The improvement according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 32, 33, 37, or 38 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
41. hi an apparatus for the liquefaction of a natural gas stream containing methane and heavier hydrocarbon components, in said apparatus there being
(a) one or more first heat exchange means cooperatively connected to receive said natural gas stream and cool it under pressure to condense at least a portion of it and form a condensed stream; and
161 (3) second expansion means connected to said separation means to receive said vapor stream and expand it to an intermediate pressure;
(4) third expansion means connected to said separation means to receive said liquid stream and expand it to said intermediate pressure; (5) a distillation column connected to receive said expanded vapor stream and said expanded liquid stream, with said distillation column adapted to separate said streams into a volatile residue gas fraction containing a major portion of said methane and lighter components and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components; (6) said first heat exchange means connected to said distillation column to receive said volatile residue gas fraction, with said first heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream; and
(7) control means adapted to regulate the quantities and temperatures of said feed streams to said distillation column to maintain the overhead temperature of said distillation column at a temperature whereby the major portion of said heavier hydrocarbon components is recovered in said relatively less volatile fraction.
69. The improvement according to claim 43, 44, 45, 67, or 68 wherein said apparatus includes
(1) compressing means connected to said distillation column to receive said volatile residue gas fraction and compress it; and
(2) said first heat exchange means connected to said compressing means to receive said compressed volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
70. The improvement according to claim 41 wherein said apparatus includes (1) compressing means connected to said distillation column to receive said volatile residue gas fraction and compress it;
162 (3) said second dividing means connected to said first heat exchange means to receive said condensed portion and divide it into at least two portions, forming thereby said condensed stream and said liquid stream, said second dividing means being further connected to said distillation column to direct said liquid stream into said distillation column as a top feed thereto.
73. The improvement according to claim 47 or 48 wherein said apparatus includes
(1) compressing means connected to said distillation column to receive said volatile residue gas fraction and compress it; (2) said first heat exchange means connected to said compressing means to receive said compressed volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed volatile residue gas fraction under pressure to condense at least a portion of it; and
(3) said second dividing means connected to said first heat exchange means to receive said condensed portion and divide it into at least two portions, forming thereby said condensed stream and said second liquid stream, said second dividing means being further connected to said distillation column to direct said second liquid stream into said distillation column as a top feed thereto.
74. The improvement according to claim 49 wherein said apparatus includes
(1) compressing means connected to said distillation column to receive said more volatile vapor distillation stream and compress it; and
(2) said combining means connected to said separation means and said compressing means to receive said vapor stream and said compressed more volatile vapor distillation stream and combine them to form said volatile residue gas fraction containing a major portion of said methane and lighter components.
75. The improvement according to claim 50 wherein said apparatus includes
(1) compressing means connected to said distillation column to receive said more volatile vapor distillation stream and compress it; and
163 (2) said combining means connected to said second separation means and said compressing means to receive said second vapor stream and said compressed more volatile vapor distillation stream and combine them to form a volatile residue gas fraction containing a major portion of said methane and lighter components.
76. The improvement according to claim 51, 52, 55, or 56 wherein said apparatus includes
(1) compressing means connected to said contacting and separating means to receive said volatile residue gas fraction and compress it; and (2) said first heat exchange means connected to said compressing means to receive said compressed volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream. 77. The improvement according to claim 53, 54, 57, 58, 59, 60, 61, 62,
63, 64, 65, or 66 wherein said apparatus includes
(1) compressing means connected to said combining means to receive said volatile residue gas fraction and compress it; and
(2) said first heat exchange means connected to said compressing means to receive said compressed volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
78. The improvement according to claim 43, 44, 45, 67, or 68 wherein said apparatus includes
(1) heating means connected to said distillation column to receive said volatile residue gas fraction and heat it;
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and (3) said first heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction,
164 with said first heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
79. The improvement according to claim 41 wherein said apparatus includes
(1) heating means connected to said distillation column to receive said volatile residue gas fraction and heat it;
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; (3) said first heat exchange means comiected to said compressing means to receive said compressed heated volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it; and
(4) said dividing means connected to said first heat exchange means to receive said condensed portion and divide it into at least two portions, forming thereby said condensed stream and said liquid stream, said dividing means being further connected to said distillation column to direct said liquid stream into said distillation column as a top feed thereto.
80. The improvement according to claim 42 wherein said apparatus includes
(1) heating means connected to said distillation column to receive said volatile residue gas fraction and heat it;
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; (3) said first heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it; and
(4) said dividing means connected to said first heat exchange means to receive said condensed portion and divide it into at least two portions, forming thereby said condensed stream and said second liquid stream, said dividing means being further connected to said distillation column to direct said second liquid stream into said distillation column as a top feed thereto.
81. The improvement according to claim 46 wherein said apparatus includes (1) heating means connected to said distillation column to receive said volatile residue gas fraction and heat it;
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it;
(3) said first heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it; and
(4) said second dividing means connected to said first heat exchange means to receive said condensed portion and divide it into at least two portions, forming thereby said condensed stream and said liquid stream, said second dividing means being further connected to said distillation column to direct said liquid stream into said distillation column as a top feed thereto.
82. The improvement according to claims 47 or 48 wherein said apparatus includes (1) heating means connected to said distillation column to receive said volatile residue gas fraction and heat it;
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it;
(3) said first heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it; and
(4) said second dividing means connected to said first heat exchange means to receive said condensed portion and divide it into at least two portions, forming thereby said condensed stream and said second liquid stream, said
166 second dividing means being further connected to said distillation column to direct said second liquid stream into said distillation column as a top feed thereto.
83. The improvement according to claim 49 wherein said apparatus includes (1) heating means connected to said distillation column to receive said more volatile vapor distillation stream and heat it;
(2) compressing means connected to said heating means to receive said heated more volatile vapor distillation stream and compress it;
(3) cooling means connected to said compressing means to receive said compressed heated more volatile vapor distillation stream and cool it;
(4) said combining means connected to said separation means and said cooling means to receive said vapor stream and said cooled compressed more volatile vapor distillation stream and combine them to form a volatile residue gas fraction containing a major portion of said methane and lighter components. 84. The improvement according to claim 50 wherein said apparatus includes
(1) heating means connected to said distillation column to receive said more volatile vapor distillation stream and heat it;
(2) compressing means connected to said heating means to receive said heated more volatile vapor distillation sfream and compress it;
(3) cooling means connected to said compressing means to receive said compressed heated more volatile vapor distillation stream and cool it;
(4) said combining means connected to said second separation means and said cooling means to receive said second vapor stream and said cooled compressed more volatile vapor distillation stream and combine them to form a volatile residue gas fraction containing a major portion of said methane and lighter components.
85. The improvement according to claims 51, 52, 55, or 56 wherein said apparatus includes (1) heating means connected to said contacting and separating means to receive said volatile residue gas fraction and heat it;
167 (2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and
(3) said first heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
86. The improvement according to claims 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, or 66 wherein said apparatus includes (1) heating means connected to said combining means to receive said volatile residue gas fraction and heat it;
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and
(3) said first heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
87. The improvement according to claim 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72,
74, 75, 79, 80, 81, 83, or 84, wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
88. The improvement according to claim 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 81, 83, or 84, wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
89. The improvement according to claim 29 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
168
100. The improvement according to claim 36 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
101. The improvement according to claim 69 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
102. The improvement according to claim 73 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components. 103. The improvement according to claim 76 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
104. The improvement according to claim 77 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
105. The improvement according to claim 78 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C components.
106. The improvement according to claim 82 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and
C2 components.
107. The improvement according to claim 85 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components. 108. The improvement according to claim 86 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C components.
109. The improvement according to claim 69 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
169
110. The improvement according to claim 73 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
111. The improvement according to claim 76 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C components, and C3 components.
112. The improvement according to claim 77 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components. 113. The improvement according to claim 78 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C components, and C3 components.
114. The improvement according to claim 82 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
115. The improvement according to claim 85 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
116. The improvement according to claim 86 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
170
PCT/US2002/017675 2001-06-08 2002-06-04 Natural gas liquefaction WO2002101307A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
UA20031211096A UA76750C2 (en) 2001-06-08 2002-04-06 Method for liquefying natural gas (versions)
MXPA03011267A MXPA03011267A (en) 2001-06-08 2002-06-04 Natural gas liquefaction.
EA200400014A EA005326B1 (en) 2001-06-08 2002-06-04 Natural gas liquefaction
EP02778941A EP1397629A1 (en) 2001-06-08 2002-06-04 Natural gas liquefaction
JP2003504027A JP5041650B2 (en) 2001-06-08 2002-06-04 Natural gas liquefaction
NZ529941A NZ529941A (en) 2001-06-08 2002-06-04 Natural gas liquefaction
BRPI0210928-0A BR0210928B1 (en) 2001-06-08 2002-06-04 "Process for the Liquidation of a Natural Gas Chain Containing Methane and Heavier Hydrocarbon Components".
CA2448884A CA2448884C (en) 2001-06-08 2002-06-04 Natural gas liquefaction
KR1020037016093A KR100877029B1 (en) 2001-06-08 2002-06-04 Natural gas liquefaction
NO20035423A NO20035423D0 (en) 2001-06-08 2003-12-05 Natural gas liquefaction
HK05104005.0A HK1071423A1 (en) 2001-06-08 2005-05-13 Natural gas liquefaction
AU2008200409A AU2008200409B2 (en) 2001-06-08 2008-01-25 Natural Gas Liquefaction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29684801P 2001-06-08 2001-06-08
US60/296,848 2001-06-08

Publications (2)

Publication Number Publication Date
WO2002101307A1 WO2002101307A1 (en) 2002-12-19
WO2002101307B1 true WO2002101307B1 (en) 2003-04-03

Family

ID=23143823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/017675 WO2002101307A1 (en) 2001-06-08 2002-06-04 Natural gas liquefaction

Country Status (19)

Country Link
EP (1) EP1397629A1 (en)
JP (4) JP5041650B2 (en)
KR (1) KR100877029B1 (en)
CN (1) CN100449235C (en)
AR (1) AR034457A1 (en)
AU (1) AU2008200409B2 (en)
BR (1) BR0210928B1 (en)
CA (2) CA2448884C (en)
EA (1) EA005326B1 (en)
HK (1) HK1071423A1 (en)
MX (1) MXPA03011267A (en)
MY (1) MY138353A (en)
NO (1) NO20035423D0 (en)
NZ (2) NZ529941A (en)
SA (1) SA02230280B1 (en)
TW (1) TW580554B (en)
UA (1) UA76750C2 (en)
WO (1) WO2002101307A1 (en)
ZA (1) ZA200309504B (en)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526777B1 (en) * 2001-04-20 2003-03-04 Elcor Corporation LNG production in cryogenic natural gas processing plants
DE10226596A1 (en) * 2002-06-14 2004-01-15 Linde Ag Process for liquefying a hydrocarbon-rich stream with simultaneous recovery of a C3 + -rich fraction with high yield
US7069744B2 (en) * 2002-12-19 2006-07-04 Abb Lummus Global Inc. Lean reflux-high hydrocarbon recovery process
US6889523B2 (en) * 2003-03-07 2005-05-10 Elkcorp LNG production in cryogenic natural gas processing plants
FR2855526B1 (en) 2003-06-02 2007-01-26 Technip France METHOD AND INSTALLATION FOR THE SIMULTANEOUS PRODUCTION OF A NATURAL GAS THAT CAN BE LIQUEFIED AND A CUTTING OF NATURAL GAS LIQUIDS
CA2543195C (en) * 2003-10-30 2009-02-10 Fluor Technologies Corporation Flexible ngl process and methods
US7159417B2 (en) * 2004-03-18 2007-01-09 Abb Lummus Global, Inc. Hydrocarbon recovery process utilizing enhanced reflux streams
MXPA06011644A (en) * 2004-04-26 2007-01-23 Ortloff Engineers Ltd Natural gas liquefaction.
US7204100B2 (en) * 2004-05-04 2007-04-17 Ortloff Engineers, Ltd. Natural gas liquefaction
MX2007009901A (en) * 2005-02-24 2008-03-13 Twister Bv Method and system for cooling a natural gas stream and separating the cooled stream into various fractions.
US20070012072A1 (en) * 2005-07-12 2007-01-18 Wesley Qualls Lng facility with integrated ngl extraction technology for enhanced ngl recovery and product flexibility
CN100392052C (en) * 2005-09-27 2008-06-04 华南理工大学 Natural gas liquefying method for gas peak regulation and light hydrocarbon recovery
EP2005095A2 (en) * 2006-04-12 2008-12-24 Shell Internationale Research Maatschappij B.V. Method and apparatus for liquefying a natural gas stream
US8578734B2 (en) 2006-05-15 2013-11-12 Shell Oil Company Method and apparatus for liquefying a hydrocarbon stream
US8820096B2 (en) 2007-02-12 2014-09-02 Daewoo Shipbuilding & Marine Engineering Co., Ltd. LNG tank and operation of the same
US9869510B2 (en) * 2007-05-17 2018-01-16 Ortloff Engineers, Ltd. Liquefied natural gas processing
US7644676B2 (en) 2008-02-11 2010-01-12 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Storage tank containing liquefied natural gas with butane
US10539363B2 (en) 2008-02-14 2020-01-21 Shell Oil Company Method and apparatus for cooling a hydrocarbon stream
KR20090107805A (en) 2008-04-10 2009-10-14 대우조선해양 주식회사 Method and system for reducing heating value of natural gas
CN102596361B (en) * 2009-06-11 2015-06-03 奥特洛夫工程有限公司 Hydrocarbon gas processing
CN102803880B (en) * 2009-06-11 2015-05-13 奥特洛夫工程有限公司 Hydrocarbon gas processing
BRPI1011526A2 (en) * 2009-06-11 2016-03-29 Ortloff Engineers Ltd hydrocarbon gas processing.
AR076506A1 (en) * 2009-06-11 2011-06-15 Sme Products Lp HYDROCARBON GAS PROCESSING
MY161443A (en) * 2009-06-11 2017-04-14 Ortloff Engineers Ltd Hydrocarbon gas processing
DE102009038458A1 (en) * 2009-08-21 2011-02-24 Linde Ag Process for separating nitrogen from natural gas
US20110067441A1 (en) * 2009-09-21 2011-03-24 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
US9441877B2 (en) 2010-03-17 2016-09-13 Chart Inc. Integrated pre-cooled mixed refrigerant system and method
US10852060B2 (en) * 2011-04-08 2020-12-01 Pilot Energy Solutions, Llc Single-unit gas separation process having expanded, post-separation vent stream
AP2014007424A0 (en) 2011-08-10 2014-02-28 Conocophillips Co Liquefied natural gas plant with ethylene independent heavies recovery system
MY190894A (en) 2013-03-15 2022-05-18 Chart Energy & Chemicals Inc Mixed refrigerant system and method
US11408673B2 (en) 2013-03-15 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11428463B2 (en) 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
JP6517251B2 (en) * 2013-12-26 2019-05-22 千代田化工建設株式会社 Natural gas liquefaction system and liquefaction method
AR105277A1 (en) 2015-07-08 2017-09-20 Chart Energy & Chemicals Inc MIXED REFRIGERATION SYSTEM AND METHOD
FR3039080B1 (en) * 2015-07-23 2019-05-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD OF PURIFYING HYDROCARBON-RICH GAS
US10551119B2 (en) 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551118B2 (en) * 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10533794B2 (en) * 2016-08-26 2020-01-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US11402155B2 (en) 2016-09-06 2022-08-02 Lummus Technology Inc. Pretreatment of natural gas prior to liquefaction
US11543180B2 (en) 2017-06-01 2023-01-03 Uop Llc Hydrocarbon gas processing
US11428465B2 (en) 2017-06-01 2022-08-30 Uop Llc Hydrocarbon gas processing
KR102642311B1 (en) * 2018-07-24 2024-03-05 닛키 글로벌 가부시키가이샤 Natural gas processing device and natural gas processing method

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1501013A (en) * 1966-09-13 1967-11-10 Air Liquide Process for the production of a gas rich in methane under high pressure from liquid natural gas under low pressure
JPS5472203A (en) * 1977-11-21 1979-06-09 Air Prod & Chem Production of liquefied methane
US4445916A (en) * 1982-08-30 1984-05-01 Newton Charles L Process for liquefying methane
DE3414749A1 (en) * 1984-04-18 1985-10-31 Linde Ag, 6200 Wiesbaden METHOD FOR SEPARATING HIGHER HYDROCARBONS FROM A HYDROCARBONED RAW GAS
FR2571129B1 (en) * 1984-09-28 1988-01-29 Technip Cie PROCESS AND PLANT FOR CRYOGENIC FRACTIONATION OF GASEOUS LOADS
US4851020A (en) * 1988-11-21 1989-07-25 Mcdermott International, Inc. Ethane recovery system
US4895584A (en) * 1989-01-12 1990-01-23 Pro-Quip Corporation Process for C2 recovery
US5114451A (en) * 1990-03-12 1992-05-19 Elcor Corporation Liquefied natural gas processing
FR2681859B1 (en) * 1991-09-30 1994-02-11 Technip Cie Fse Etudes Const NATURAL GAS LIQUEFACTION PROCESS.
US5615561A (en) * 1994-11-08 1997-04-01 Williams Field Services Company LNG production in cryogenic natural gas processing plants
RU2144556C1 (en) * 1995-06-07 2000-01-20 Элкор Корпорейшн Method of gas flow separation and device for its embodiment
CN1145001C (en) * 1996-02-29 2004-04-07 国际壳牌研究有限公司 Method of reducing amount of components having low boiling points in liquefied natural gas
US5659109A (en) * 1996-06-04 1997-08-19 The M. W. Kellogg Company Method for removing mercaptans from LNG
US5799507A (en) * 1996-10-25 1998-09-01 Elcor Corporation Hydrocarbon gas processing
US5983664A (en) * 1997-04-09 1999-11-16 Elcor Corporation Hydrocarbon gas processing
US5890378A (en) * 1997-04-21 1999-04-06 Elcor Corporation Hydrocarbon gas processing
TW366410B (en) * 1997-06-20 1999-08-11 Exxon Production Research Co Improved cascade refrigeration process for liquefaction of natural gas
TW366409B (en) * 1997-07-01 1999-08-11 Exxon Production Research Co Process for liquefying a natural gas stream containing at least one freezable component
WO1999001707A1 (en) * 1997-07-01 1999-01-14 Exxon Production Research Company Process for separating a multi-component gas stream containing at least one freezable component
US6182469B1 (en) * 1998-12-01 2001-02-06 Elcor Corporation Hydrocarbon gas processing
GB0000327D0 (en) * 2000-01-07 2000-03-01 Costain Oil Gas & Process Limi Hydrocarbon separation process and apparatus
WO2001088447A1 (en) * 2000-05-18 2001-11-22 Phillips Petroleum Company Enhanced ngl recovery utilizing refrigeration and reflux from lng plants

Also Published As

Publication number Publication date
CN100449235C (en) 2009-01-07
CN1592836A (en) 2005-03-09
HK1071423A1 (en) 2005-07-15
NO20035423D0 (en) 2003-12-05
NZ529941A (en) 2006-04-28
CA2448884C (en) 2012-05-15
EA005326B1 (en) 2005-02-24
AR034457A1 (en) 2004-02-25
ZA200309504B (en) 2004-08-02
CA2448884A1 (en) 2002-12-19
EA200400014A1 (en) 2004-08-26
KR20040018265A (en) 2004-03-02
CA2746624A1 (en) 2002-12-19
NZ542045A (en) 2007-03-30
BR0210928A (en) 2004-10-05
JP5847371B2 (en) 2016-01-20
TW580554B (en) 2004-03-21
JP2009174849A (en) 2009-08-06
AU2008200409B2 (en) 2009-08-20
WO2002101307A1 (en) 2002-12-19
JP2012189315A (en) 2012-10-04
MY138353A (en) 2009-05-29
JP2004530858A (en) 2004-10-07
BR0210928B1 (en) 2014-10-21
UA76750C2 (en) 2006-09-15
EP1397629A1 (en) 2004-03-17
CA2746624C (en) 2013-05-28
JP5041650B2 (en) 2012-10-03
JP2015166670A (en) 2015-09-24
SA02230280B1 (en) 2008-05-21
KR100877029B1 (en) 2009-01-07
AU2008200409A1 (en) 2008-02-21
MXPA03011267A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
WO2002101307B1 (en) Natural gas liquefaction
CA2562907A1 (en) Natural gas liquefaction
WO2004080936B1 (en) Residue recycle-high ethane recovery process
USRE33408E (en) Process for LPG recovery
US4507133A (en) Process for LPG recovery
CA2805272C (en) Methods and systems for recovering liquified petroleum gas from natural gas
JP4498360B2 (en) Treatment of liquefied natural gas
EP1373815B1 (en) Cryogenic process utilizing high pressure absorber column
US4710214A (en) Process for separation of hydrocarbon gases
CA2562323A1 (en) Natural gas liquefaction
KR101172087B1 (en) Hydrocarbon gas processing for rich gas streams
CA2513677A1 (en) Multiple reflux stream hydrocarbon recovery process
CA2560554A1 (en) Hydrocarbon recovery process utilizing enhanced reflux streams
US8959952B2 (en) Method for separating a mixture of carbon monoxide, methane, hydrogen and optionally nitrogen by cryogenic distillation
WO2000034724B1 (en) Improved propane recovery methods
AU2002338248A1 (en) Cryogenic process utilizing high pressure absorber column
WO1999023428A1 (en) Hydrocarbon gas separation process
US5509271A (en) Process and installation for the separation of a gaseous mixture
US20120304690A1 (en) ISO-Pressure Open Refrigeration NGL Recovery
CA3034863C (en) Process and apparatus for producing carbon monoxide
CA2388266A1 (en) System and method for liquefied petroleum gas recovery
JPS63166402A (en) Method of separating hydrocarbon
US5588308A (en) Recompression cycle for recovery of natural gas liquids
US20040255618A1 (en) Method and installation for helium production
US6931889B1 (en) Cryogenic process for increased recovery of hydrogen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
B Later publication of amended claims
WWE Wipo information: entry into national phase

Ref document number: 2448884

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 529941

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2002349087

Country of ref document: AU

Ref document number: PA/a/2003/011267

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2003/09504

Country of ref document: ZA

Ref document number: 1948/CHENP/2003

Country of ref document: IN

Ref document number: 200309504

Country of ref document: ZA

Ref document number: 2003504027

Country of ref document: JP

Ref document number: 1020037016093

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002778941

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: DZP2003000315

Country of ref document: DZ

WWE Wipo information: entry into national phase

Ref document number: 200400014

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 20028142942

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002778941

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642