CA2448884A1 - Natural gas liquefaction - Google Patents

Natural gas liquefaction Download PDF

Info

Publication number
CA2448884A1
CA2448884A1 CA002448884A CA2448884A CA2448884A1 CA 2448884 A1 CA2448884 A1 CA 2448884A1 CA 002448884 A CA002448884 A CA 002448884A CA 2448884 A CA2448884 A CA 2448884A CA 2448884 A1 CA2448884 A1 CA 2448884A1
Authority
CA
Canada
Prior art keywords
gas fraction
residue gas
volatile residue
receive
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002448884A
Other languages
French (fr)
Other versions
CA2448884C (en
Inventor
John D. Wilkinson
Hank M. Hudson
Kyle T. Cuellar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ortloff Engineers Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CA2746624A priority Critical patent/CA2746624C/en
Publication of CA2448884A1 publication Critical patent/CA2448884A1/en
Application granted granted Critical
Publication of CA2448884C publication Critical patent/CA2448884C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0247Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 4 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0057Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream after expansion of the liquid refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0239Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0239Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
    • F25J1/0241Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling wherein the overhead cooling comprises providing reflux for a fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0242Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/72Refluxing the column with at least a part of the totally condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/30Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/66Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/40Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

A process for liquefying natural gas (50) in conjunction with producing a liquid stream containing predominantly hydrocarbons heavier than methane (41 ) is disclosed. In the process, the natural gas stream to be liquefied (31) is partially cooled, expanded to an intermediate pressure (14,15), and supplied to a distillation column (19). The bottom product (41) from this distillatio n column preferentially contains the majority of any hydrocarbons heavier than methane that would otherwise reduce the purity of the liquefied natural gas (50). The residual gas stream (37) from the distillation column (19) is compressed (16) to a higher intermediate pressure, cooled under pressure (60 ) to condense it, and then expanded (61) to low pressure to form the liquefied natural gas stream.

Claims

(6) said volatile residue gas fraction is cooled under pressure to condense at least a portion of it and form thereby said condensed stream.
29. The improvement according to claim 3, 4, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 wherein said volatile residue gas fraction is compressed and thereafter cooled under pressure to condense at least a portion of it and form thereby said condensed stream.
30. The improvement according to claim 1 or 6 wherein (1) said volatile residue gas fraction is compressed and thereafter cooled under pressure to condense at least a portion of it; and (2) said condensed portion is divided into at least two portions to form thereby said condensed stream and said liquid stream.
31. The improvement according to claim 2, 7, or 8 wherein (1) said volatile residue gas fraction is compressed and thereafter cooled under pressure to condense at least a portion of it; and (2) said condensed portion is divided into at least two portions to form thereby said condensed stream and said second liquid stream.
32. The improvement according to claim 9 wherein said more volatile vapor distillation stream is compressed and thereafter combined with said vapor stream to form said volatile residue gas fraction containing a major portion of said methane and lighter components.
33. The improvement according to claim 10 wherein said more volatile vapor distillation stream is compressed and thereafter combined with said second vapor stream to form said volatile residue gas fraction containing a major portion of said methane and lighter components.
34. The improvement according to claim 3, 4, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, or 28 wherein said volatile residue gas fraction is heated, compressed, and thereafter cooled under pressure to condense at least a portion of it and form thereby said condensed stream.
35. The improvement according to claim 1 or 6 wherein (1) said volatile residue gas fraction is heated, compressed, and thereafter cooled under pressure to condense at least a portion of it; and (2) said condensed portion is divided into at least two portions to form thereby said condensed stream and said liquid stream.
36. The improvement according to claim 2, 7, or 8 wherein (1) said volatile residue gas fraction is heated, compressed, and thereafter cooled under pressure to condense at least a portion of it; and (2) said condensed portion is divided into at least two portions to form thereby said condensed stream and said second liquid stream.
37. The improvement according to claim 9 wherein said more volatile vapor distillation stream is heated, compressed, cooled, and thereafter combined with said vapor stream to form said volatile residue gas fraction containing a major portion of said methane and lighter components.
38. The improvement according to claim 10 wherein said more volatile vapor distillation stream is heated, compressed, cooled, and thereafter combined with said second vapor stream to form said volatile residue gas fraction containing a major portion of said methane and lighter components.
39. The improvement according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 32, 33, 37, or 38 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
40. The improvement according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 32, 33, 37, or 38 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
41. In an apparatus for the liquefaction of a natural gas stream containing methane and heavier hydrocarbon components, in said apparatus there being (a) one or more first heat exchange means cooperatively connected to receive said natural gas stream and cool it under pressure to condense at least a portion of it and form a condensed stream; and (3) second expansion means connected to said separation means to receive said vapor stream and expand it to an intermediate pressure;
(4) third expansion means connected to said separation means to receive said liquid stream and expand it to said intermediate pressure;
(5) a distillation column connected to receive said expanded vapor stream and said expanded liquid stream, with said distillation column adapted to separate said streams into a volatile residue gas fraction containing a major portion of said methane and lighter components and a relatively less volatile fraction containing a major portion of said heavier hydrocarbon components;
(6) said first heat exchange means connected to said distillation column to receive said volatile residue gas fraction, with said first heat exchange means adapted to cool said volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream; and (7) control means adapted to regulate the quantities and temperatures of said feed streams to said distillation column to maintain the overhead temperature of said distillation column at a temperature whereby the major portion of said heavier hydrocarbon components is recovered in said relatively less volatile fraction.
69. The improvement according to claim 43, 44, 45, 67, or 68 wherein said apparatus includes (1) compressing means connected to said distillation column to receive said volatile residue gas fraction and compress it; and (2) said first heat exchange means connected to said compressing means to receive said compressed volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
70. The improvement according to claim 41 wherein said apparatus includes (1) compressing means connected to said distillation column to receive said volatile residue gas fraction and compress it;

(3) said second dividing means connected to said first heat exchange means to receive said condensed portion and divide it into at least two portions, forming thereby said condensed stream and said liquid stream, said second dividing means being further connected to said distillation column to direct said liquid stream into said distillation column as a top feed thereto.
73. The improvement according to claim 47 or 48 wherein said apparatus includes (1) compressing means connected to said distillation column to receive said volatile residue gas fraction and compress it;
(2) said first heat exchange means connected to said compressing means to receive said compressed volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed volatile residue gas fraction under pressure to condense at least a portion of it; and (3) said second dividing means connected to said first heat exchange means to receive said condensed portion and divide it into at least two portions, forming thereby said condensed stream and said second liquid stream, said second dividing means being further connected to said distillation column to direct said second liquid stream into said distillation column as a top feed thereto.
74. The improvement according to claim 49 wherein said apparatus includes (1) compressing means connected to said distillation column to receive said more volatile vapor distillation stream and compress it; and (2) said combining means connected to said separation means and said compressing means to receive said vapor stream and said compressed more volatile vapor distillation stream and combine them to form said volatile residue gas fraction containing a major portion of said methane and lighter components.
75. The improvement according to claim 50 wherein said apparatus includes (1) compressing means connected to said distillation column to receive said more volatile vapor distillation stream and compress it; and (2) said combining means connected to said second separation means and said compressing means to receive said second vapor stream and said compressed more volatile vapor distillation stream and combine them to form a volatile residue gas fraction containing a major portion of said methane and lighter components.
76. The improvement according to claim 51, 52, 55, or 56 wherein said apparatus includes (1) compressing means connected to said contacting and separating means to receive said volatile residue gas fraction and compress it; and (2) said first heat exchange means connected to said compressing means to receive said compressed volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
77. The improvement according to claim 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, or 66 wherein said apparatus includes (1) compressing means connected to said combining means to receive said volatile residue gas fraction and compress it; and (2) said first heat exchange means connected to said compressing means to receive said compressed volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
78. The improvement according to claim 43, 44, 45, 67, or 68 wherein said apparatus includes (1) heating means connected to said distillation column to receive said volatile residue gas fraction and heat it;
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and (3) said first heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
79. The improvement according to claim 41 wherein said apparatus includes (1) heating means connected to said distillation column to receive said volatile residue gas fraction and heat it;
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it;
(3) said first heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it; and (4) said dividing means connected to said first heat exchange means to receive said condensed portion and divide it into at least two portions, forming thereby said condensed stream and said liquid stream, said dividing means being further connected to said distillation column to direct said liquid stream into said distillation column as a top feed thereto.
80. The improvement according to claim 42 wherein said apparatus includes (1) heating means connected to said distillation column to receive said volatile residue gas fraction and heat it;
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it;
(3) said first heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it; and (4) said dividing means connected to said first heat exchange means to receive said condensed portion and divide it into at least two portions, forming thereby said condensed stream and said second liquid stream, said dividing means being further connected to said distillation column to direct said second liquid stream into said distillation column as a top feed thereto.
81. The improvement according to claim 46 wherein said apparatus includes (1) heating means connected to said distillation column to receive said volatile residue gas fraction and heat it;
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it;
(3) said first heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it; and (4) said second dividing means connected to said first heat exchange means to receive said condensed portion and divide it into at least two portions, forming thereby said condensed stream and said liquid stream, said second dividing means being further connected to said distillation column to direct said liquid stream into said distillation column as a top feed thereto.
82. The improvement according to claims 47 or 48 wherein said apparatus includes (1) heating means connected to said distillation column to receive said volatile residue gas fraction and heat it;
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it;
(3) said first heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it; and (4) said second dividing means connected to said first heat exchange means to receive said condensed portion and divide it into at least two portions, forming thereby said condensed stream and said second liquid stream, said second dividing means being further connected to said distillation column to direct said second liquid stream into said distillation column as a top feed thereto.
83. The improvement according to claim 49 wherein said apparatus includes (1) heating means connected to said distillation column to receive said more volatile vapor distillation stream and heat it;
(2) compressing means connected to said heating means to receive said heated more volatile vapor distillation stream and compress it;
(3) cooling means connected to said compressing means to receive said compressed heated more volatile vapor distillation stream and cool it;
(4) said combining means connected to said separation means and said cooling means to receive said vapor stream and said cooled compressed more volatile vapor distillation stream and combine them to form a volatile residue gas fraction containing a major portion of said methane and lighter components.
84. The improvement according to claim 50 wherein said apparatus includes (1) heating means connected to said distillation column to receive said more volatile vapor distillation stream and heat it;
(2) compressing means connected to said heating means to receive said heated more volatile vapor distillation stream and compress it;
(3) cooling means connected to said compressing means to receive said compressed heated more volatile vapor distillation stream and cool it;
(4) said combining means connected to said second separation means and said cooling means to receive said second vapor stream and said cooled compressed more volatile vapor distillation stream and combine them to form a volatile residue gas fraction containing a major portion of said methane and lighter components.
85. The improvement according to claims 51, 52, 55, or 56 wherein said apparatus includes (1) heating means connected to said contacting and separating means to receive said volatile residue gas fraction and heat it;

(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and (3) said first heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
86. The improvement according to claims 53, 54, 57, 58, 59, 60, 61, 62, 63, 64, 65, or 66 wherein said apparatus includes (1) heating means connected to said combining means to receive said volatile residue gas fraction and heat it;
(2) compressing means connected to said heating means to receive said heated volatile residue gas fraction and compress it; and (3) said first heat exchange means connected to said compressing means to receive said compressed heated volatile residue gas fraction, with said first heat exchange means adapted to cool said compressed heated volatile residue gas fraction under pressure to condense at least a portion of it and form thereby said condensed stream.
87. The improvement according to claim 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 81, 83, or 84, wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
88. The improvement according to claim 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 74, 75, 79, 80, 81, 83, or 84, wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
89. The improvement according to claim 29 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.

100. The improvement according to claim 36 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
101. The improvement according to claim 69 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
102. The improvement according to claim 73 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
103. The improvement according to claim 76 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
104. The improvement according to claim 77 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
105. The improvement according to claim 78 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
106. The improvement according to claim 82 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
107. The improvement according to claim 85 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
108. The improvement according to claim 86 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, and C2 components.
109. The improvement according to claim 69 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.

110. The improvement according to claim 73 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
111. The improvement according to claim 76 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
112. The improvement according to claim 77 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
113. The improvement according to claim 78 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
114. The improvement according to claim 82 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
115. The improvement according to claim 85 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
116. The improvement according to claim 86 wherein said volatile residue gas fraction contains a major portion of said methane, lighter components, C2 components, and C3 components.
CA2448884A 2001-06-08 2002-06-04 Natural gas liquefaction Expired - Lifetime CA2448884C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2746624A CA2746624C (en) 2001-06-08 2002-06-04 Natural gas liquefaction

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US29684801P 2001-06-08 2001-06-08
US60/296,848 2001-06-08
PCT/US2002/017675 WO2002101307A1 (en) 2001-06-08 2002-06-04 Natural gas liquefaction

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA2746624A Division CA2746624C (en) 2001-06-08 2002-06-04 Natural gas liquefaction

Publications (2)

Publication Number Publication Date
CA2448884A1 true CA2448884A1 (en) 2002-12-19
CA2448884C CA2448884C (en) 2012-05-15

Family

ID=23143823

Family Applications (2)

Application Number Title Priority Date Filing Date
CA2746624A Expired - Fee Related CA2746624C (en) 2001-06-08 2002-06-04 Natural gas liquefaction
CA2448884A Expired - Lifetime CA2448884C (en) 2001-06-08 2002-06-04 Natural gas liquefaction

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA2746624A Expired - Fee Related CA2746624C (en) 2001-06-08 2002-06-04 Natural gas liquefaction

Country Status (19)

Country Link
EP (1) EP1397629A1 (en)
JP (4) JP5041650B2 (en)
KR (1) KR100877029B1 (en)
CN (1) CN100449235C (en)
AR (1) AR034457A1 (en)
AU (1) AU2008200409B2 (en)
BR (1) BR0210928B1 (en)
CA (2) CA2746624C (en)
EA (1) EA005326B1 (en)
HK (1) HK1071423A1 (en)
MX (1) MXPA03011267A (en)
MY (1) MY138353A (en)
NO (1) NO20035423D0 (en)
NZ (2) NZ529941A (en)
SA (1) SA02230280B1 (en)
TW (1) TW580554B (en)
UA (1) UA76750C2 (en)
WO (1) WO2002101307A1 (en)
ZA (1) ZA200309504B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180208855A1 (en) * 2015-07-23 2018-07-26 L'Air Liquide, Société Anonyme pour I'Etude et I'Exploitation des Procédés Georges Claude Method for purifying a gas rich in hydrocarbons
US10852060B2 (en) 2011-04-08 2020-12-01 Pilot Energy Solutions, Llc Single-unit gas separation process having expanded, post-separation vent stream

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6526777B1 (en) * 2001-04-20 2003-03-04 Elcor Corporation LNG production in cryogenic natural gas processing plants
DE10226596A1 (en) * 2002-06-14 2004-01-15 Linde Ag Process for liquefying a hydrocarbon-rich stream with simultaneous recovery of a C3 + -rich fraction with high yield
US7069744B2 (en) * 2002-12-19 2006-07-04 Abb Lummus Global Inc. Lean reflux-high hydrocarbon recovery process
US6889523B2 (en) * 2003-03-07 2005-05-10 Elkcorp LNG production in cryogenic natural gas processing plants
FR2855526B1 (en) * 2003-06-02 2007-01-26 Technip France METHOD AND INSTALLATION FOR THE SIMULTANEOUS PRODUCTION OF A NATURAL GAS THAT CAN BE LIQUEFIED AND A CUTTING OF NATURAL GAS LIQUIDS
CA2543195C (en) * 2003-10-30 2009-02-10 Fluor Technologies Corporation Flexible ngl process and methods
US7159417B2 (en) * 2004-03-18 2007-01-09 Abb Lummus Global, Inc. Hydrocarbon recovery process utilizing enhanced reflux streams
MXPA06011644A (en) * 2004-04-26 2007-01-23 Ortloff Engineers Ltd Natural gas liquefaction.
US7204100B2 (en) * 2004-05-04 2007-04-17 Ortloff Engineers, Ltd. Natural gas liquefaction
KR20070114192A (en) * 2005-02-24 2007-11-29 트위스터 비.브이. Method and system for cooling a natural gas stream and separating the cooled stream into various fractions
US20070012072A1 (en) * 2005-07-12 2007-01-18 Wesley Qualls Lng facility with integrated ngl extraction technology for enhanced ngl recovery and product flexibility
CN100392052C (en) * 2005-09-27 2008-06-04 华南理工大学 Natural gas liquefying method for gas peak regulation and light hydrocarbon recovery
EP2005095A2 (en) * 2006-04-12 2008-12-24 Shell Internationale Research Maatschappij B.V. Method and apparatus for liquefying a natural gas stream
US8578734B2 (en) 2006-05-15 2013-11-12 Shell Oil Company Method and apparatus for liquefying a hydrocarbon stream
US20080190352A1 (en) 2007-02-12 2008-08-14 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Lng tank ship and operation thereof
US9869510B2 (en) * 2007-05-17 2018-01-16 Ortloff Engineers, Ltd. Liquefied natural gas processing
US7644676B2 (en) 2008-02-11 2010-01-12 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Storage tank containing liquefied natural gas with butane
JP5683277B2 (en) 2008-02-14 2015-03-11 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Beslotenvennootshap Method and apparatus for cooling hydrocarbon streams
KR20090107805A (en) 2008-04-10 2009-10-14 대우조선해양 주식회사 Method and system for reducing heating value of natural gas
WO2010144172A1 (en) * 2009-06-11 2010-12-16 Ortloff Engineers, Ltd. Hydrocarbon gas processing
AR076506A1 (en) * 2009-06-11 2011-06-15 Sme Products Lp HYDROCARBON GAS PROCESSING
CN102483299B (en) * 2009-06-11 2015-10-21 奥特洛夫工程有限公司 Appropriate hydrocarbon gas process
CA2764636C (en) * 2009-06-11 2018-12-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing including a single equipment item processing assembly
MX2011013079A (en) * 2009-06-11 2012-02-01 Ortloff Engineers Ltd Hydrocarbon gas processing.
DE102009038458A1 (en) * 2009-08-21 2011-02-24 Linde Ag Process for separating nitrogen from natural gas
US9476639B2 (en) * 2009-09-21 2016-10-25 Ortloff Engineers, Ltd. Hydrocarbon gas processing featuring a compressed reflux stream formed by combining a portion of column residue gas with a distillation vapor stream withdrawn from the side of the column
US9441877B2 (en) 2010-03-17 2016-09-13 Chart Inc. Integrated pre-cooled mixed refrigerant system and method
AP2014007424A0 (en) 2011-08-10 2014-02-28 Conocophillips Co Liquefied natural gas plant with ethylene independent heavies recovery system
US11428463B2 (en) 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
EP2972028B1 (en) 2013-03-15 2020-01-22 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11408673B2 (en) 2013-03-15 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
JP6517251B2 (en) * 2013-12-26 2019-05-22 千代田化工建設株式会社 Natural gas liquefaction system and liquefaction method
AR105277A1 (en) 2015-07-08 2017-09-20 Chart Energy & Chemicals Inc MIXED REFRIGERATION SYSTEM AND METHOD
US10551119B2 (en) * 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10551118B2 (en) * 2016-08-26 2020-02-04 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10533794B2 (en) * 2016-08-26 2020-01-14 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US11402155B2 (en) * 2016-09-06 2022-08-02 Lummus Technology Inc. Pretreatment of natural gas prior to liquefaction
US11428465B2 (en) 2017-06-01 2022-08-30 Uop Llc Hydrocarbon gas processing
US11543180B2 (en) 2017-06-01 2023-01-03 Uop Llc Hydrocarbon gas processing
KR102642311B1 (en) * 2018-07-24 2024-03-05 닛키 글로벌 가부시키가이샤 Natural gas processing device and natural gas processing method

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1501013A (en) * 1966-09-13 1967-11-10 Air Liquide Process for the production of a gas rich in methane under high pressure from liquid natural gas under low pressure
JPS5472203A (en) * 1977-11-21 1979-06-09 Air Prod & Chem Production of liquefied methane
US4445916A (en) * 1982-08-30 1984-05-01 Newton Charles L Process for liquefying methane
DE3414749A1 (en) * 1984-04-18 1985-10-31 Linde Ag, 6200 Wiesbaden METHOD FOR SEPARATING HIGHER HYDROCARBONS FROM A HYDROCARBONED RAW GAS
FR2571129B1 (en) * 1984-09-28 1988-01-29 Technip Cie PROCESS AND PLANT FOR CRYOGENIC FRACTIONATION OF GASEOUS LOADS
US4851020A (en) * 1988-11-21 1989-07-25 Mcdermott International, Inc. Ethane recovery system
US4895584A (en) * 1989-01-12 1990-01-23 Pro-Quip Corporation Process for C2 recovery
US5114451A (en) * 1990-03-12 1992-05-19 Elcor Corporation Liquefied natural gas processing
FR2681859B1 (en) * 1991-09-30 1994-02-11 Technip Cie Fse Etudes Const NATURAL GAS LIQUEFACTION PROCESS.
US5615561A (en) * 1994-11-08 1997-04-01 Williams Field Services Company LNG production in cryogenic natural gas processing plants
WO1996040604A1 (en) * 1995-06-07 1996-12-19 Elcor Corporation Hydrocarbon gas processing
CN1145001C (en) * 1996-02-29 2004-04-07 国际壳牌研究有限公司 Method of reducing amount of components having low boiling points in liquefied natural gas
US5659109A (en) * 1996-06-04 1997-08-19 The M. W. Kellogg Company Method for removing mercaptans from LNG
US5799507A (en) * 1996-10-25 1998-09-01 Elcor Corporation Hydrocarbon gas processing
US5983664A (en) * 1997-04-09 1999-11-16 Elcor Corporation Hydrocarbon gas processing
US5890378A (en) * 1997-04-21 1999-04-06 Elcor Corporation Hydrocarbon gas processing
DZ2534A1 (en) * 1997-06-20 2003-02-08 Exxon Production Research Co Improved cascade refrigeration process for liquefying natural gas.
CA2294742C (en) * 1997-07-01 2005-04-05 Exxon Production Research Company Process for separating a multi-component gas stream containing at least one freezable component
TW366409B (en) * 1997-07-01 1999-08-11 Exxon Production Research Co Process for liquefying a natural gas stream containing at least one freezable component
US6182469B1 (en) * 1998-12-01 2001-02-06 Elcor Corporation Hydrocarbon gas processing
GB0000327D0 (en) * 2000-01-07 2000-03-01 Costain Oil Gas & Process Limi Hydrocarbon separation process and apparatus
WO2001088447A1 (en) * 2000-05-18 2001-11-22 Phillips Petroleum Company Enhanced ngl recovery utilizing refrigeration and reflux from lng plants

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10852060B2 (en) 2011-04-08 2020-12-01 Pilot Energy Solutions, Llc Single-unit gas separation process having expanded, post-separation vent stream
US20180208855A1 (en) * 2015-07-23 2018-07-26 L'Air Liquide, Société Anonyme pour I'Etude et I'Exploitation des Procédés Georges Claude Method for purifying a gas rich in hydrocarbons
US11060037B2 (en) * 2015-07-23 2021-07-13 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for purifying a gas rich in hydrocarbons

Also Published As

Publication number Publication date
HK1071423A1 (en) 2005-07-15
CN1592836A (en) 2005-03-09
MY138353A (en) 2009-05-29
ZA200309504B (en) 2004-08-02
JP2004530858A (en) 2004-10-07
JP5041650B2 (en) 2012-10-03
CA2746624A1 (en) 2002-12-19
AR034457A1 (en) 2004-02-25
MXPA03011267A (en) 2004-10-28
JP2012189315A (en) 2012-10-04
BR0210928A (en) 2004-10-05
NO20035423D0 (en) 2003-12-05
UA76750C2 (en) 2006-09-15
NZ529941A (en) 2006-04-28
JP2015166670A (en) 2015-09-24
EA200400014A1 (en) 2004-08-26
SA02230280B1 (en) 2008-05-21
WO2002101307A1 (en) 2002-12-19
EA005326B1 (en) 2005-02-24
KR100877029B1 (en) 2009-01-07
KR20040018265A (en) 2004-03-02
JP5847371B2 (en) 2016-01-20
NZ542045A (en) 2007-03-30
EP1397629A1 (en) 2004-03-17
CN100449235C (en) 2009-01-07
AU2008200409A1 (en) 2008-02-21
TW580554B (en) 2004-03-21
JP2009174849A (en) 2009-08-06
CA2746624C (en) 2013-05-28
CA2448884C (en) 2012-05-15
WO2002101307B1 (en) 2003-04-03
AU2008200409B2 (en) 2009-08-20
BR0210928B1 (en) 2014-10-21

Similar Documents

Publication Publication Date Title
CA2448884A1 (en) Natural gas liquefaction
CA2562907A1 (en) Natural gas liquefaction
CA2805272C (en) Methods and systems for recovering liquified petroleum gas from natural gas
USRE33408E (en) Process for LPG recovery
US4507133A (en) Process for LPG recovery
CA2562323A1 (en) Natural gas liquefaction
US9541329B2 (en) Cryogenic process utilizing high pressure absorber column
JP4777976B2 (en) Hydrocarbon gas treatment for rich gas streams.
CA2513677A1 (en) Multiple reflux stream hydrocarbon recovery process
JP4498360B2 (en) Treatment of liquefied natural gas
WO2004080936B1 (en) Residue recycle-high ethane recovery process
EP1373815B1 (en) Cryogenic process utilizing high pressure absorber column
CA2560554A1 (en) Hydrocarbon recovery process utilizing enhanced reflux streams
US8959952B2 (en) Method for separating a mixture of carbon monoxide, methane, hydrogen and optionally nitrogen by cryogenic distillation
EP1114808A1 (en) Hydrocarbon separation process and apparatus
CA2515999A1 (en) Hydrocarbon gas processing
WO1999023428A1 (en) Hydrocarbon gas separation process
CA2516785A1 (en) Lng production in cryogenic natural gas processing plants
RU99127334A (en) IMPROVED NATURAL GAS LIQUIDATION METHOD
JP2013505422A (en) Hydrocarbon gas treatment
CA2653610A1 (en) Liquefied natural gas processing
US5509271A (en) Process and installation for the separation of a gaseous mixture
CA3034863C (en) Process and apparatus for producing carbon monoxide
WO2009140070A1 (en) Iso-pressure open refrigeration ngl recovery
JPS63166402A (en) Method of separating hydrocarbon

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20220606