WO2002099793A1 - Multi-level optical recording medium - Google Patents

Multi-level optical recording medium Download PDF

Info

Publication number
WO2002099793A1
WO2002099793A1 PCT/JP2002/005520 JP0205520W WO02099793A1 WO 2002099793 A1 WO2002099793 A1 WO 2002099793A1 JP 0205520 W JP0205520 W JP 0205520W WO 02099793 A1 WO02099793 A1 WO 02099793A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
laser beam
layer
recording medium
level
Prior art date
Application number
PCT/JP2002/005520
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Arioka
Syuji Tsukamoto
Takashi Horai
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Publication of WO2002099793A1 publication Critical patent/WO2002099793A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24085Pits

Definitions

  • the present invention relates to a multi-level optical recording medium capable of performing multi-level recording on one virtual recording cell.
  • an optical recording medium binary data is recorded by irradiating a recording laser beam to form pits, and the binary data can be reproduced based on the presence or absence of the pits.
  • Optical recording media are widely used.
  • a study for adjusting the focused beam diameter of a recording laser beam to perform high-density recording has been advanced.
  • the development of a multi-level optical recording medium that can record one of a plurality of different meaningful marks in one virtual recording cell is underway.
  • this multi-level optical recording medium for example, by changing the irradiation amount of the recording laser beam to multiple stages, the deterioration of light transmittance of a part of one virtual recording cell to be recorded in the optical recording medium is reduced.
  • a part hereinafter, also referred to as a “recording mark” appears, and the characteristic that the ratio of one recording mark to the entire virtual recording cell varies depending on the irradiation amount of one recording laser beam.
  • the reproduction laser beam is irradiated, the light transmittance of the virtual recording cell where the recording mark is formed is affected, and as a result, the light of the reproduction laser beam is irradiated.
  • the reflectance is multi-step (for example, 5 steps or more). Therefore, by associating each of the plurality of data contents with each of the multi-stage light reflectivities, one of the plurality of data is recorded in one virtual recording cell.
  • the light transmittance refers to the ratio of the laser beam that has passed through the virtual recording cell to the reproduction laser beam irradiated to the virtual recording cell.
  • the reproduction laser beam applied to the virtual recording cell passes through the portion including the virtual recording cell, is reflected by the reflective layer of the multi-level optical recording medium, and then passes through the portion including the virtual recording cell again.
  • the ratio of one laser beam emitted to the outside of the multi-level optical recording medium is determined.
  • the multi-level optical recording medium controls the light reflectivity of each virtual recording cell in multiple steps.
  • the light reflectivity of the unrecorded portion and the recording laser beam If the light reflectivity dynamic range corresponding to the difference from the light reflectivity of the recording portion where the irradiation amount is the largest is large to some extent, multi-level recording becomes difficult.
  • the unrecorded portion means a portion including the unrecorded virtual recording cell and irradiated with the reproducing laser beam, and the recorded portion includes the recorded virtual recording cell and irradiated with the reproducing laser beam. Means the part to be done.
  • the bit error rate fluctuates due to various factors, and the influence between adjacent virtual recording cells is one of the factors.
  • the peripheral portion of the reproducing laser beam is moved to the adjacent virtual recording cell. It is also irradiated to the other side.
  • the reflected light of one virtual recording cell includes the reflected light of the other virtual recording cell, so that the light reflectance of one virtual recording cell is affected by the other virtual recording cell. .
  • the components of a multi-level optical recording medium that are considered to affect light reflectance specifically, the material and thickness of the recording layer, the material of the reflective layer, the material and thickness of the light transmitting layer, and Specific criteria are set for components such as group structure (groove depth, width or shape), and when manufacturing multi-level optical recording media, the characteristics of multi-level optical recording media can be obtained by manufacturing according to these standards. To meet the above conditions You need to take care. Disclosure of the invention
  • the recording layer, the reflective layer and the light transmitting layer described above may be made of a very large number of materials, and the thickness of the recording layer and the light transmitting layer and the structure of the groove are variously defined. could be done.
  • the inventor has asked whether a multi-level optical recording medium capable of performing stable multi-level recording and multi-level reproduction as a whole can be manufactured only by setting standards for specific characteristics of specific components. We worked hard on the issues. At the same time, the inventor has performed multi-level recording and multi-level reproduction in a stable manner as a whole by using another manufacturing method instead of a manufacturing method in which a specific standard is set for each of these components. We also conducted intensive research on the issue of whether media could be manufactured.
  • the present invention has been made to solve the above-described problem, and has as its main object to provide a multi-level optical recording medium capable of reliably performing multi-level recording of five or more steps.
  • the multi-level optical recording medium according to the present invention is provided with a group for guiding a recording or reproducing laser beam along a recording layer mainly composed of an organic dye, so that multi-level recording of five or more levels is possible.
  • a plurality of virtual recording cells defined in a fixed unit width are continuously imagined, and the light reflectance for the laser beam in a portion including the virtual recording cell in an unrecorded state becomes 40% or more and 80% or less. It is configured as follows.
  • the multi-level optical recording medium is configured so that the light reflectance of the laser beam in the portion including the virtual recording cell in the unrecorded state becomes 40% or more and 80% or less.
  • a sufficient difference between the absolute light reflectance of the virtual recording cell in each recording step can be ensured, and the density of five or more steps is high regardless of the type of element that defines the light reflectance for the reproducing laser beam.
  • the bit error rate at the time of performing multi-level recording is extremely low, and a multi-level optical recording medium can be manufactured.
  • the unit width of the virtual recording cell is set to be the same as the width of the group.
  • virtual recording cells can be efficiently arranged in the radial direction of the multi-level optical recording medium.
  • the multi-level optical recording medium according to the present invention is provided with a group for guiding a recording or reproducing laser beam along a recording layer mainly composed of an organic dye, so that multi-level recording of five or more levels is possible.
  • the multi-level optical recording medium With the recording or reproducing laser beam focused on the group, the multi-level optical recording medium is adjusted so that the light reflectance for the laser beam is 40% or more and 80% or less. With this configuration, it is possible to sufficiently secure the difference between the absolute light reflectivities of the virtual recording cells in each recording stage, and regardless of the type of element that defines the light reflectivity for the reproduction laser beam. It is possible to manufacture a multi-level optical recording medium with an extremely low bit error rate when performing high-density multi-level recording of five or more steps.
  • the factors that define the light reflectivity to the laser beam include a material and a thickness of the recording layer, a material of a reflection layer that reflects the laser beam for reproduction irradiated through the recording layer, It is preferable that the material is at least one of the material and thickness of the light transmitting layer through which the reproducing laser beam passes before reaching the recording layer, and the structure of the group. With such a configuration, the light reflectance in the unrecorded state in the portion including the virtual recording cell can be reliably satisfied from 40% to 80%.
  • FIG. 1 is a partially cutaway perspective view showing the configuration of an optical recording medium 1 according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram conceptually showing the recording marks M a to M g recorded on the optical recording medium 1.
  • FIG. 3 is a characteristic diagram showing a characteristic of a light reflectance dynamic range with respect to a film thickness of the recording layer 12.
  • FIG. 4 is a characteristic diagram showing the influence of adjacent cells on the thickness of the recording layer 12.
  • FIG. 5 is a characteristic diagram showing the characteristic of the bit error rate with respect to the film thickness of the recording layer 12 in the upper part, and the absolute light in the unrecorded part of the optical recording medium 1 with respect to the film thickness of the recording layer 12 in the lower part.
  • FIG. 4 is a characteristic diagram showing a characteristic of a reflectance. BEST MODE FOR CARRYING OUT THE INVENTION
  • optical recording medium 1 the configuration of the multi-level optical recording medium 1 (hereinafter, also referred to as “optical recording medium 1”) will be described with reference to FIG.
  • the optical recording medium 1 is a CD-R type optical recording medium (write-once optical recording medium).
  • the substrate 11 is formed in a disk shape using a transparent resin as a base material, and transmits one laser beam for reproduction before the laser beam for reproduction reaches the recording layer 12.
  • the recording layer 12 is composed of cyanine, merocyanine, methine dye and its derivative, benzenethiol metal complex
  • the recording layer 12 is decomposed and deteriorated by irradiating a recording laser beam with a recording device, and its absolute light reflectance changes according to the irradiation amount of the laser beam.
  • the absolute light reflectance is obtained by replacing the value of the light reflectance of a disk having a thin surface made of gold or the like by a sputtering method or the like with a reference light reflectance (100%).
  • the reflective film 13 is a thin film layer for reflecting a reproducing laser beam that has passed through the substrate 11 and the recording layer 12 when reproducing the recorded data recorded on the optical recording medium 1. It is formed by, for example, sputtering on the recording layer 12 using a metal as a main raw material.
  • the protective layer 14 is a layer that protects the reflective film 13 and the recording layer 12 and is formed so as to cover the outer surface of the reflective film 13.
  • the virtual recording cells S 1, S 2 ⁇ that are obtained by virtually dividing the group 11 a are defined as recording units (virtual).
  • the length along the groove 11a of the virtual recording cell S (the circumferential direction of the optical recording medium 1, the direction of relative movement with respect to the laser beam in the present invention) ( The unit length, for example, 0.6 111) is specified to be shorter than the focused beam diameter (beam waist diameter) D (for example, 1.5 ⁇ ).
  • the length (unit width) in the direction (radial direction of the optical recording medium 1) orthogonal to the direction along the group 11a of the virtual recording cell S is also specified to be equal to or smaller than the beam waist diameter D of the laser beam. .
  • the track pitch of the optical recording medium 1 and the width of the group 11a can be arbitrarily selected.
  • the unit width of the virtual recording cell S is, as shown in FIG. It is defined to be the same as the width of a (for example, 0.6 ⁇ ). Therefore, the virtual recording cells S are efficiently arranged in the radial direction of the optical recording medium 1.
  • the virtual recording cell s is merely a virtual one, and does not have an entity like the rectangle shown in the figure, but is used by the multi-level recording / reproducing apparatus during signal processing during multi-level recording / reproducing. is assumed.
  • the irradiation time of the recording laser beam emitted from the pickup of the recording device that is, the irradiation amount of the laser beam
  • the irradiation amount of the laser beam in multiple stages according to the value of the recording data, as shown in FIG.
  • recording marks M a to M g hereinafter, also referred to as “recording marks M” when no distinction is made
  • the degree of decomposition and deterioration is conceptually shown by the size of the recording mark M.
  • the virtual recording cell S in which the recording mark M is formed becomes a recording portion in the recording layer 12.
  • the virtual recording cell S When multi-level recording is performed on the optical recording medium 1, the virtual recording cell S is included.
  • the degree of degradation of each of the recorded marks Ma to Mg is adjusted so that the absolute light reflectance when the reproduction laser beam is irradiated to the recorded area is, for example, 7 steps (8 steps including the unrecorded area). Light transmittance change).
  • the absolute light reflectance increases as the degree of degradation of the recording layer 12 decreases. Therefore, the portion including the virtual recording cell S where the recording mark M is not recorded has the characteristic of the maximum absolute light reflectance, and the portion including the virtual recording cell S where the largest recording mark Mg is formed is the smallest. It has the characteristic of absolute light reflectance.
  • the “portion including the virtual recording cell S” means an irradiated portion on the surface of the optical recording medium 1 where a recording or reproducing laser beam is focused. Therefore, this does not mean the number of virtual recording cells S.
  • the irradiated portion of the focused recording or reproduction laser beam has a specific portion in one virtual recording cell S and one or more virtual portions in accordance with the focused beam diameter of the laser beam. This is a concept that includes a part including the recording cell S.
  • the characteristic of the light reflectivity dynamic range with respect to the film thickness of the recording layer 12 is, as shown in FIG. 3, as the film thickness of the recording layer 12 becomes thinner, the dynamic range becomes narrower (poor). Become. In this case, the smaller the dynamic range of the light reflectivity, the smaller the light reflectivity difference between the stages, and the lower the bit error rate. Further, as shown in FIG. 4, the influence between adjacent virtual recording cells S on the film thickness of the recording layer 12 (the degree of influence of the adjacent cells) decreases as the film thickness of the recording layer 12 decreases.
  • the recording laser beam The amount of organic dye that decomposes and changes can be accurately controlled by the irradiation amount of the recording laser beam because the heat radiation effect of the heat generated in the recording layer 12 when receiving Decomposition and deterioration of the organic dye can be avoided. Accordingly, when the recording laser beam is focused on one of the adjacent virtual recording cells S, the decomposition and alteration of the other adjacent virtual recording cell S can be prevented, and as a result, the film thickness of the recording layer 1 2 The thinner the bit error rate, the better the bit error rate. For this reason, based on the above two characteristics of the recording layer 12, the inventor has set the recording layer 12 between the film thickness and the bit error rate as shown in the upper part of FIG.
  • the film thickness of 1 2 is somewhat thick, the bit error rate is large, and as the film thickness of the recording layer 12 decreases, the bit error rate gradually decreases.
  • the organic dye constituting the recording layer 12 has an optical dependency on the wavelength of the laser beam, and the other components (the group 11a and the reflection film 13 except for the recording layer 12) In the state where the material and the structure of) are constant, the absolute light reflectance in the unrecorded portion shows a predetermined characteristic with respect to the film thickness of the recording layer 12.
  • the bit error rate As described above, since there is a correlation between the film thickness of the recording layer 12 and the bit error rate as shown in the upper part of FIG.
  • the film thickness itself is controlled. (Management) to keep the bit error rate low, that is, a method in which the film thickness of the recording layer 12 is specified to be within a predetermined range A, and a method of manufacturing so as to satisfy this specification is also considered. It is. According to this method, the bit error rate of the optical recording medium 1 can be suppressed to the reference value B or less.
  • the inventors focused on the optical dependence of the organic dye constituting the recording layer 12 on the wavelength of the laser beam, and focused on the absolute light reflectance (specific characteristics) of the laser beam. It has been found that a predetermined correlation exists between the bit error rate and the bit error rate.
  • the film thickness of the recording layer 12 As described above, there is a correlation between the film thickness of the recording layer 12 and the bit error rate as shown in the upper part of FIG.
  • a predetermined correlation exists between the film thickness of the recording layer 12 and the absolute light reflectance.
  • the correlation is represented by a solid line or a broken line in the lower part of the figure, based on the material of the organic dye constituting the recording layer 12 and the structure and material of the components other than the recording layer 12 constituting the optical recording medium 1. It changes variously as shown. However, if the structures and materials of these components are determined, the absolute light reflectance of the recording layer 12 is uniquely determined.
  • the inventor conducted experiments and studies on various materials and found the following facts. I have. In other words, in order to use the absolute reflectance in multiple stages during multi-level recording / reproduction, a certain level of reflectance is required. When an experiment supporting this was performed, the recording / reproducing characteristics of the optical recording medium 1 having a reflectance of 40% or less were deteriorated. Conversely, in the optical recording medium 1 having a reflectance of 80% or more, the recording layer 12 has an insufficient absorptivity of the recording laser beam, and the recording sensitivity is reduced. Was.
  • the absolute light reflectance within the range of 40% or more and 80% or less is preferable.
  • the optical recording medium 1 does not need to consider compatibility with an optical recording medium for general-purpose binary recording / reproduction, and the recording / reproduction method is different from the optical recording medium for general-purpose binary recording / reproduction.
  • the fact that the inventor has found that the use with an absolute light reflectance within the range of 40% or more and 80% or less is optimal for the optical recording medium 1 is due to the fact that the optical recording medium for general-purpose It is not easily derived based on the absolute light reflectance values already used in the recording medium.
  • the absolute light reflectance of the optical recording medium 1 should be 40% or more and 80% It is preferable to define the following.
  • the measurement of the absolute light reflectance is easy, by manufacturing the optical recording medium 1 with the above-described specification, the inspection of the production lot becomes extremely easy.
  • the absolute light reflectance of the optical recording medium 1 is in the range of 40% or more and 80% or less, the structure and material type of the above-described components can be appropriately selected. This can further improve the bit error rate of the optical recording medium 1, that is, the recording / reproducing performance of the optical recording medium 1.
  • the optical recording medium 1 As described above, by manufacturing the optical recording medium 1 with the absolute light reflectance specified to be 40% or more and 80% or less, the optical recording medium 1 capable of performing stable multi-level recording and multi-level reproduction can be obtained. Mass production is now possible.
  • a non-defective inspection of the optical recording medium 1 it is possible to use a conventionally used binary evaluation device. In this case, since the binary evaluation device can be used, it is not necessary to newly purchase or manufacture an evaluation device dedicated to multi-level recording, so that the manufacturing cost can be reduced. Further, since the measurement of the absolute light reflectance is easy, it is possible to accurately and easily perform the quality inspection for each production lot in the production of the optical recording medium 1,
  • the optical recording medium 1 is a CD-R type optical recording medium.
  • the present invention is not limited to this, but is generally applied to other optical recording media, and is limited to a disk-shaped rotating body. is not.
  • the optical recording medium 1 is configured to irradiate the recording and reproducing laser beams from the substrate 11 side, but the reflection layer, the recording layer, and the recording layer are formed on the substrate.
  • the present invention can also be applied to an optical recording medium having a structure in which a protective layer as a light transmitting layer in the invention is sequentially laminated, and a recording and reproducing laser beam is irradiated from the protective layer side.
  • the recording layer 12 using an organic dye such as cyanine is exemplified.
  • the present invention is not limited to this, and has a characteristic satisfying the above light reflectance. Any organic dye or inorganic material other than those described above may be used, and other materials may be used as appropriate.
  • the recording mark M can be recorded with the light transmittance changed in accordance with the irradiation time of the recording laser beam in seven or more steps, and extremely high accuracy is achieved.
  • the unit length and unit width of the virtual recording cell S are not limited to the above-described example, and can be appropriately changed.
  • the unit length H when the numerical aperture of the objective lens in the reproduction laser is NA and the wavelength of the reproduction laser beam is given, it is appropriate to change the unit length appropriately within the range expressed by the following formula. It is good.
  • the unit length ⁇ is 0.15 7 / in! It is preferable to change within the range of ⁇ 1.57; um. In this case, when changing the wavelength ⁇ of the reproducing laser beam, it is preferable to change the unit length ⁇ within the above range according to the wavelength ⁇ .
  • the optical recording medium 1 that can be recorded in eight steps including an unrecorded portion where no information is recorded is exemplified, but the present invention includes an unrecorded portion, or It is also applied to optical recording media on which information is recorded in multi-levels in five or more levels without being included. Industrial Available Individuals
  • the multi-level optical recording medium is configured such that the light reflectance with respect to the laser beam in the portion including the unrecorded virtual recording cell is 40% or more and 80% or less.
  • the level optical recording medium it is possible to sufficiently secure a difference between the absolute light reflectances of the virtual recording cells in each recording stage. Therefore, the bit error rate when performing high-density multi-level recording of five or more steps can be extremely reduced, regardless of the type of element that defines the light reflectance for the reproduction laser beam. As a result, a multi-level optical recording medium in which multi-level recording of five or more steps can be reliably performed and obtained is realized.

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

A multi-level optical recording medium (1) having a groove (11a) provided along a recording layer (12) mainly composed of an organic coloring matter for guiding recording or reproducing laser beam and enabling multi-level recording in five or more stages. In the groove (11a), during recording and reproduction, there are virtually provided a plurality of virtual record cells (S) having a predetermined unit length in the moving direction relative to the laser beam and a predetermined unit width in the direction orthogonally intersecting that direction, and the light reflection ratio of the laser beam in the portion including a virtual record cell (S) not yet recorded is adjusted to be not smaller than 40% and not greater than 80%. Thus, it is possible to produce the multi-level optical recording medium (1) which assures a sufficient difference of absolute light reflection ratios of the virtual record cells (S) in each of the recording stages and has a significantly small bit error rate when performing multi-level recording of high density in five or more stages.

Description

明糸田書  Akitoda
マルチレベル光記録媒体  Multi-level optical recording medium
技術分野 Technical field
この発明は、 1の仮想記録セルにマルチレベル記録が可能なマルチレベル光記 録媒体に関するものである。 背景技術  The present invention relates to a multi-level optical recording medium capable of performing multi-level recording on one virtual recording cell. Background art
現在、 光記録媒体として、 記録用レーザービームを照射してピットを形成する ことにより 2値データが記録され、 かつそのピットの有無に基づいてその 2値デ タを再生可能に構成された 2値光記録媒体が広く使用されている。 また、 近年 、 光記録媒体の記録密度向上の要請により、 記録用レーザービームの集光ビーム 径を調節して高密度に記録する研究も進められている。 その一方、 集光ビーム径 を調節する方式とは異なり、 複数の意味を持つ異なるマークのうちの一つを 1の 仮想記録セルに記録可能なマルチレベル光記録媒体の開発が進められている。 こ のマルチレベル光記録媒体では、 例えば、 記録用レーザービームの照射量を多段 階に切り替えることによつて光記録媒体における記録対象の 1の仮想記録セルの 一部に光透過率を低下させる変質部分 (以下、 「記録マーク」 ともいう) が出現 し、 かつ、 この記録マークの 1の仮想記録セル全体に占める割合が記録用レーザ 一ビームの照射量によって異なるという特性が利用されている。 つまり、 このマ ルチレベル光記録媒体では、 再生用レーザービームが照射された際に、 この記録 マークが形成されている仮想記録セルにおける光透過率の影響を受け、 その結果 として再生用レーザービームの光反射率が多段階 (例えば 5段階以上) になる。 したがって、 多段階の光反射率の各々に複数のデータ内容の各々を対応させるこ とにより、 1の仮想記録セルに複数のデータのいずれかが記録されることになる 。 この場合、 光透過率とは、 仮想記録セルに照射した再生用レーザービームに対 して、 仮想記録セルを通過したレーザービームの割合をいい、 光反射率とは、 仮 想記録セルに照射した再生用レーザービームに対して、 この仮想記録セルを含む 部分を通過してマルチレベル光記録媒体の反射層で反射された後にその仮想記録 セルを含む部分を再度通過してマルチレベル光記録媒体の外部に出射されるレー ザ一ビームの割合をレ、う。 At present, as an optical recording medium, binary data is recorded by irradiating a recording laser beam to form pits, and the binary data can be reproduced based on the presence or absence of the pits. Optical recording media are widely used. In recent years, in response to a request for an increase in the recording density of an optical recording medium, a study for adjusting the focused beam diameter of a recording laser beam to perform high-density recording has been advanced. On the other hand, unlike the method of adjusting the focused beam diameter, the development of a multi-level optical recording medium that can record one of a plurality of different meaningful marks in one virtual recording cell is underway. In this multi-level optical recording medium, for example, by changing the irradiation amount of the recording laser beam to multiple stages, the deterioration of light transmittance of a part of one virtual recording cell to be recorded in the optical recording medium is reduced. A part (hereinafter, also referred to as a “recording mark”) appears, and the characteristic that the ratio of one recording mark to the entire virtual recording cell varies depending on the irradiation amount of one recording laser beam. In other words, in this multilevel optical recording medium, when the reproduction laser beam is irradiated, the light transmittance of the virtual recording cell where the recording mark is formed is affected, and as a result, the light of the reproduction laser beam is irradiated. The reflectance is multi-step (for example, 5 steps or more). Therefore, by associating each of the plurality of data contents with each of the multi-stage light reflectivities, one of the plurality of data is recorded in one virtual recording cell. In this case, the light transmittance refers to the ratio of the laser beam that has passed through the virtual recording cell to the reproduction laser beam irradiated to the virtual recording cell. The reproduction laser beam applied to the virtual recording cell passes through the portion including the virtual recording cell, is reflected by the reflective layer of the multi-level optical recording medium, and then passes through the portion including the virtual recording cell again. The ratio of one laser beam emitted to the outside of the multi-level optical recording medium is determined.
その一方、 マルチレベル光記録媒体が各仮想記録セル毎の光反射率を多段階で 制御されて初めてマルチレベル記録が可能となる以上、 例えば、 未記録部分の光 反射率と、 記録用レーザービームの照射量が最も多い記録部分の光反射率との差 分に相当する光反射率ダイナミックレンジがある程度広くなければ、 マルチレべ ル記録が困難となる。 この場合、 未記録部分とは、 未記録の仮想記録セルを含み 再生用レーザービームが照射される部分を意味し、 記録部分とは、 記録された仮 想記録セルを含み再生用レーザービームが照射される部分を意味する。 また、 こ の光反射率ダイナミックレンジを確保でき、 マルチレベル記録が行えたとしても 、 ビットエラーレートが良好でなければデータを正確に再生することができない 。 この場合、 ビットエラーレートは様々な要因で変動し、 隣接する仮想記録セル 同士相互間の影響もその要因の一つである。 つまり、 隣接する仮想記録セルの一 方に再生用レーザービームを照射してその光反射率に基づいて記録データを再生 する際に、 この再生用レーザービームの周縁部分が、 隣接する仮想記録セルの他 方にも照射される。 このため、 一方の仮想記録セルの反射光にこの他方の仮想記 録セルの反射光が含まれる結果、 一方の仮想記録セルの光反射率が他方の仮想記 録セルの影響を受けることになる。 この隣接する仮想記録セル同士相互間の影響 に関しては、 その影響が所定レベルを超えると、 ビットエラーレートが悪化する 。 このため、 光反射率に影響を与えると考えられるマルチレベル光記録媒体の構 成要素、 具体的には、 記録層の材質や厚み、 反射層の材質、 光透過層の材質や厚 み、 およびグループの構造 (溝の深さや幅あるいは形状) 等の構成要素に具体的 な基準を設け、 マルチレベル光記録媒体の製造に際しては、 この基準に従って製 造することにより、 マルチレベル光記録媒体の特性が上記条件を満たすように考 慮する必要がある。 発明の開示 On the other hand, multi-level recording is possible only after the multi-level optical recording medium controls the light reflectivity of each virtual recording cell in multiple steps. For example, the light reflectivity of the unrecorded portion and the recording laser beam If the light reflectivity dynamic range corresponding to the difference from the light reflectivity of the recording portion where the irradiation amount is the largest is large to some extent, multi-level recording becomes difficult. In this case, the unrecorded portion means a portion including the unrecorded virtual recording cell and irradiated with the reproducing laser beam, and the recorded portion includes the recorded virtual recording cell and irradiated with the reproducing laser beam. Means the part to be done. Further, even if this dynamic range of light reflectance can be secured and multi-level recording can be performed, data cannot be accurately reproduced unless the bit error rate is good. In this case, the bit error rate fluctuates due to various factors, and the influence between adjacent virtual recording cells is one of the factors. In other words, when a reproducing laser beam is irradiated to one of the adjacent virtual recording cells to reproduce the recorded data based on the light reflectance, the peripheral portion of the reproducing laser beam is moved to the adjacent virtual recording cell. It is also irradiated to the other side. As a result, the reflected light of one virtual recording cell includes the reflected light of the other virtual recording cell, so that the light reflectance of one virtual recording cell is affected by the other virtual recording cell. . Regarding the influence between the adjacent virtual recording cells, if the influence exceeds a predetermined level, the bit error rate deteriorates. For this reason, the components of a multi-level optical recording medium that are considered to affect light reflectance, specifically, the material and thickness of the recording layer, the material of the reflective layer, the material and thickness of the light transmitting layer, and Specific criteria are set for components such as group structure (groove depth, width or shape), and when manufacturing multi-level optical recording media, the characteristics of multi-level optical recording media can be obtained by manufacturing according to these standards. To meet the above conditions You need to take care. Disclosure of the invention
しかしながら、 例えば上述した記録層、 反射層および光透過層は、 非常に多く の材質が採用される可能性があり、 また、 記録層および光透過層の厚みやグルー ブの構造についても様々に規定される可能性がある。 しかも、 これらの構成要素 以外にも光反射率に影響を与えると考えられる構成要素も存在する。 このため、 これらのすベての構成要素の材質、 厚みおよび構造などの組み合わせは膨大な数 になる。 したがって、 個々の基準を具体的かつ一義的に設けてしまうのは、 より 安定してマルチレベル記録およびマルチレベル再生を行い得るマルチレベル光記 録媒体の特性向上を却って妨げるおそれもあり、 得策ではない。 そこで、 発明者 は、 特定の構成要素における特定の特性に対して基準を設けるだけで、 全体とし て安定したマルチレベル記録おょぴマルチレベル再生を行い得るマルチレベル光 記録媒体を製造できないかという課題について鋭意研究を重ねた。 同時に、 発明 者は、 これらの各構成要素に具体的な基準を設ける製造手法に代わる他の製造手 法によつて全体として安定したマルチレベル記録およびマルチレベル再生を行レ、 得るマルチレベル光記録媒体を製造できないかという課題についても鋭意研究を 重ねた。  However, for example, the recording layer, the reflective layer and the light transmitting layer described above may be made of a very large number of materials, and the thickness of the recording layer and the light transmitting layer and the structure of the groove are variously defined. Could be done. In addition, there are components other than these components that are considered to affect the light reflectance. For this reason, the number of combinations of materials, thicknesses, structures, and the like of all these components is enormous. Therefore, setting individual standards specifically and unambiguously may hinder improvement of the characteristics of a multi-level optical recording medium capable of performing multi-level recording and multi-level reproduction more stably. Absent. Therefore, the inventor has asked whether a multi-level optical recording medium capable of performing stable multi-level recording and multi-level reproduction as a whole can be manufactured only by setting standards for specific characteristics of specific components. We worked hard on the issues. At the same time, the inventor has performed multi-level recording and multi-level reproduction in a stable manner as a whole by using another manufacturing method instead of a manufacturing method in which a specific standard is set for each of these components. We also conducted intensive research on the issue of whether media could be manufactured.
本発明は、 上述のような課題を解決すべくなされたものであり、 5段階以上の マルチレベル記録を確実に行い得るマルチレベル光記録媒体を提供することを主 目的とする。  The present invention has been made to solve the above-described problem, and has as its main object to provide a multi-level optical recording medium capable of reliably performing multi-level recording of five or more steps.
この発明に係るマルチレベル光記録媒体は、 主として有機色素で構成される記 録層に沿って記録または再生用のレーザービームをガイドするためのグループが 設けられて 5段階以上のマルチレベル記録が可能に製造されたマルチレベル光記 録媒体であって、 前記グループには、 記録時および再生時に前記レーザービーム との相対移動方向に対して所定の単位長さおよびこれと直交する方向に対して所 定の単位幅に規定された仮想記録セルが複数連続的に仮想され、 未記録状態の前 記仮想記録セルを含む部分における前記レーザービームに対する光反射率が 4 0 %以上 8 0 %以下になるように構成されている。 The multi-level optical recording medium according to the present invention is provided with a group for guiding a recording or reproducing laser beam along a recording layer mainly composed of an organic dye, so that multi-level recording of five or more levels is possible. A multi-level optical recording medium manufactured in accordance with claim 1, wherein said group includes a predetermined unit length with respect to a direction of relative movement with respect to said laser beam during recording and reproduction and a direction with respect to a direction perpendicular to said unit length. A plurality of virtual recording cells defined in a fixed unit width are continuously imagined, and the light reflectance for the laser beam in a portion including the virtual recording cell in an unrecorded state becomes 40% or more and 80% or less. It is configured as follows.
このマルチレベル光記録媒体では、 未記録状態の仮想記録セルを含む部分にお けるレーザービームに対する光反射率が 4 0 %以上 8 0 %以下になるようにマル チレベル光記録媒体を構成することにより、 各記録段階における仮想記録セルの 絶対光反射率の差を十分に確保することができ、 しかも、 再生用レーザービーム に対する光反射率を規定する要素の種類に拘わらず、 5段階以上の高密度のマル チレベル記録を行う際のビッ トエラーレートが極めて小さレ、マルチレベル光記録 媒体を製造することができる。  In this multi-level optical recording medium, the multi-level optical recording medium is configured so that the light reflectance of the laser beam in the portion including the virtual recording cell in the unrecorded state becomes 40% or more and 80% or less. However, a sufficient difference between the absolute light reflectance of the virtual recording cell in each recording step can be ensured, and the density of five or more steps is high regardless of the type of element that defines the light reflectance for the reproducing laser beam. The bit error rate at the time of performing multi-level recording is extremely low, and a multi-level optical recording medium can be manufactured.
この場合、 前記仮想記録セルは、 その前記単位幅が前記グループの幅と同一に 設定されていることが好ましい。 このように構成することにより、 マルチレベル 光記録媒体の半径方向に対して仮想記録セルを効率よく配置することができる。 この発明に係るマルチレベル光記録媒体は、 主として有機色素で構成される記 録層に沿って記録または再生用のレーザービームをガイドするためのグループが 設けられて 5段階以上のマルチレベル記録が可能に製造されたマルチレベル光記 録媒体であって、 前記記録または再生用のレーザービームの焦点を前記グループ に合わせた状態で、 当該レーザービームに対する光反射率が 4 0 %以上 8 0 %以 下になるように構成されている。  In this case, it is preferable that the unit width of the virtual recording cell is set to be the same as the width of the group. With this configuration, virtual recording cells can be efficiently arranged in the radial direction of the multi-level optical recording medium. The multi-level optical recording medium according to the present invention is provided with a group for guiding a recording or reproducing laser beam along a recording layer mainly composed of an organic dye, so that multi-level recording of five or more levels is possible. A multi-level optical recording medium manufactured in accordance with claim 1, wherein the light reflectance for the laser beam for recording or reproduction is 40% or more and 80% or less in a state where the laser beam for recording or reproduction is focused on the group. It is configured to be.
このマルチレベル光記録媒体では、 記録または再生用のレーザービームの焦点 をグループに合わせた状態で、 レーザービームに対する光反射率が 4 0 %以上 8 0 %以下になるようにマルチレベル光記録媒体を構成することにより、 各記録段 階における仮想記録セルの絶対光反射率の差を十分に確保することができ、 しか も、 再生用レーザービームに対する光反射率を規定する要素の種類に拘わらず、 5段階以上の高密度のマルチレベル記録を行う際のビットエラーレートが極めて 小さレ、マルチレベル光記録媒体を製造することができる。 また、 前記レーザービームに対する前記光反射率を規定する要素が、 前記記録 層の材質およぴ厚み、 前記記録層を介して照射された前記再生用のレーザービー ムを反射させる反射層の材質、 前記再生用のレーザービームが前記記録層に到達 するのに先立って透過する光透過層の材質おょぴ厚み、 並びに前記グループの構 造の少なくとも 1つであることが好ましい。 このように構成することで、 仮想記 録セルを含む部分における未記録状態の光反射率を確実に 4 0 %以上 8 0 %以下 に満たすことができる。 In this multi-level optical recording medium, with the recording or reproducing laser beam focused on the group, the multi-level optical recording medium is adjusted so that the light reflectance for the laser beam is 40% or more and 80% or less. With this configuration, it is possible to sufficiently secure the difference between the absolute light reflectivities of the virtual recording cells in each recording stage, and regardless of the type of element that defines the light reflectivity for the reproduction laser beam. It is possible to manufacture a multi-level optical recording medium with an extremely low bit error rate when performing high-density multi-level recording of five or more steps. Further, the factors that define the light reflectivity to the laser beam include a material and a thickness of the recording layer, a material of a reflection layer that reflects the laser beam for reproduction irradiated through the recording layer, It is preferable that the material is at least one of the material and thickness of the light transmitting layer through which the reproducing laser beam passes before reaching the recording layer, and the structure of the group. With such a configuration, the light reflectance in the unrecorded state in the portion including the virtual recording cell can be reliably satisfied from 40% to 80%.
なお、 本開示は、 2 0 0 1年 6月 5日に出願された日本特許出願である特願 2 0 0 1— 1 6 9 9 1 8に含まれた主題に関連し、 これらの開示の全てはここに参 照事項として明白に組み込まれる。 図面の簡単な説明  This disclosure is related to the subject matter included in Japanese Patent Application No. 2001-169699, filed on June 5, 2001, All are expressly incorporated herein by reference. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態に係る光記録媒体 1の構成を示すために一部を切 り欠いた斜視図である。  FIG. 1 is a partially cutaway perspective view showing the configuration of an optical recording medium 1 according to an embodiment of the present invention.
図 2は、 光記録媒体 1に記録された記録マーク M a〜M gを概念的に示す概念 図である。  FIG. 2 is a conceptual diagram conceptually showing the recording marks M a to M g recorded on the optical recording medium 1.
図 3は、 記録層 1 2の膜厚に対する光反射率ダイナミックレンジの特性を示す 特性図である。  FIG. 3 is a characteristic diagram showing a characteristic of a light reflectance dynamic range with respect to a film thickness of the recording layer 12.
図 4は、 記録層 1 2の膜厚に対する隣接セルの影響を示す特性図である。 図 5は、 上段は、 記録層 1 2の膜厚に対するビットエラーレートの特性を示す 特性図であり、 下段は、 記録層 1 2の膜厚に対する光記録媒体 1の未記録部分に おける絶対光反射率の特性を示す特性図である。 発明を実施するための最良の形態  FIG. 4 is a characteristic diagram showing the influence of adjacent cells on the thickness of the recording layer 12. FIG. 5 is a characteristic diagram showing the characteristic of the bit error rate with respect to the film thickness of the recording layer 12 in the upper part, and the absolute light in the unrecorded part of the optical recording medium 1 with respect to the film thickness of the recording layer 12 in the lower part. FIG. 4 is a characteristic diagram showing a characteristic of a reflectance. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照して、 本発明に係るマルチレベル光記録媒体の好適な実 施の形態について説明する。 最初に、 マルチレベル光記録媒体 1 (以下、 「光記録媒体 1」 ともいう) の構 成について、 図 1を参照して説明する。 Hereinafter, preferred embodiments of a multilevel optical recording medium according to the present invention will be described with reference to the accompanying drawings. First, the configuration of the multi-level optical recording medium 1 (hereinafter, also referred to as “optical recording medium 1”) will be described with reference to FIG.
光記録媒体 1は、 C D— R型の光記録媒体 (追記型光記録媒体) であって、 図 1に示すように、 基板 (光透過層) 1 1、 記録層 1 2、 反射膜 1 3および保護層 1 4を備えて構成されている。 基板 1 1は、 透明な樹脂を基材として円盤状に形 成され、 再生用のレーザービームが記録層 1 2に到達するのに先立ち、 そのレー ザ一ビームを透過する。 また、 基板 1 1における一方の面 (図 1における上面) には、 その中心部近傍から外縁部に向けて、 レーザービームガイド用のグループ 1 1 a , およびランド 1 1 bが螺旋状に形成されている。 記録層 1 2は、 シァ- ン、 メロシアニン、 メチン系色素およびその誘導体、 ベンゼンチオール金属錯体 The optical recording medium 1 is a CD-R type optical recording medium (write-once optical recording medium). As shown in FIG. 1, a substrate (light transmitting layer) 11, a recording layer 12, a reflective film 13 And a protective layer 14. The substrate 11 is formed in a disk shape using a transparent resin as a base material, and transmits one laser beam for reproduction before the laser beam for reproduction reaches the recording layer 12. On one surface (upper surface in FIG. 1) of the substrate 11, a group 11 a for laser beam guide and a land 11 b are spirally formed from near the center to the outer edge. ing. The recording layer 12 is composed of cyanine, merocyanine, methine dye and its derivative, benzenethiol metal complex
、 フタロシアニン色素、 ナフタロシアニン色素、 ァゾ色素などの有機色素が用い られて形成され、 この有機色素がグループ 1 1 aおよびランド 1 1 bを覆うよう に塗布して形成されている。 この記録層 1 2は、 記録装置によって記録用レーザ 一ビームが照射されることで分解変質し、 そのレーザービームの照射量に応じて 、 その絶対光反射率が変化する。 この場合、 絶対光反射率は、 平滑な表面に例え ばスパッタリングなどによって金などの薄膜が施された円盤体についての光反射 率の値を基準光反射率 (1 0 0 %) に置き換えて、 その基準光反射率と比較した 各光記録媒体 1についての記録層 1 2における未記録部分 (未記録の仮想記録セ ル S ) での光反射率を意味する。 反射膜 1 3は、 光記録媒体 1に記録された記録 データの再生時に基板 1 1および記録層 1 2を通過した再生用レーザービームを 反射するための薄膜層であって、 金や銀などの金属を主原料として記録層 1 2の 上に例えばスパッタリングによって形成されている。 保護層 1 4は、 反射膜 1 3 および記録層 1 2を保護する層であって、 反射膜 1 3の外面を覆うように形成さ れている。 It is formed by using an organic dye such as a phthalocyanine dye, a naphthalocyanine dye, or an azo dye, and is formed by applying the organic dye so as to cover the group 11a and the land 11b. The recording layer 12 is decomposed and deteriorated by irradiating a recording laser beam with a recording device, and its absolute light reflectance changes according to the irradiation amount of the laser beam. In this case, the absolute light reflectance is obtained by replacing the value of the light reflectance of a disk having a thin surface made of gold or the like by a sputtering method or the like with a reference light reflectance (100%). It means the light reflectance at an unrecorded portion (unrecorded virtual recording cell S) in the recording layer 12 of each optical recording medium 1 compared to the reference light reflectance. The reflective film 13 is a thin film layer for reflecting a reproducing laser beam that has passed through the substrate 11 and the recording layer 12 when reproducing the recorded data recorded on the optical recording medium 1. It is formed by, for example, sputtering on the recording layer 12 using a metal as a main raw material. The protective layer 14 is a layer that protects the reflective film 13 and the recording layer 12 and is formed so as to cover the outer surface of the reflective film 13.
次に、 光記録媒体 1の記録原理について、 図面を参照して説明する。  Next, the recording principle of the optical recording medium 1 will be described with reference to the drawings.
この光記録媒体 1では、 図 1に示すように、 その回転方向 (円周方向) に沿つ てグループ 1 1 aを仮想的に分割した仮想記録セル S , S · ·が記録単位として 規定 (仮想) されている。 ここで、 図 2に示すように、 仮想記録セル Sのグルー ブ 1 1 aに沿った方向 (光記録媒体 1の円周方向、 本発明におけるレーザービー ムとの相対移動方向) の長さ (単位長さ、 例えば、 0 . 6 111) は、 集光ビーム 径 (ビームウェストの直径) D (例えば、 1 . 5 μ ΐη) よりも短く規定される。 一方、 仮想記録セル Sのグループ 1 1 aに沿った方向と直交する方向 (光記録媒 体 1の半径方向) の長さ (単位幅) も、 レーザービームのビームウェスト直径 D 以下に規定される。 この場合、 光記録媒体 1のトラックピッチやグループ 1 1 a の幅は任意に選択できるが、 この光記録媒体 1では、 仮想記録セル Sの単位幅は 、 図 2に示すように、 グループ 1 1 aの幅と同一 (例えば、 0 . 6 μ πι) となる ように規定する。 したがって、 光記録媒体 1の半径方向に対して仮想記録セル S が効率よく配置されている。 なお、 仮想記録セル sは、 あくまでも仮想されるも のであり、 同図に示す四角形のように実体が存在するのではなく、 マルチレベル 記録再生の際の信号処理時において、 マルチレベル記録再生装置によって想定さ れる。 In this optical recording medium 1, as shown in FIG. 1, along the rotation direction (circumferential direction). The virtual recording cells S 1, S 2 ··· that are obtained by virtually dividing the group 11 a are defined as recording units (virtual). Here, as shown in FIG. 2, the length along the groove 11a of the virtual recording cell S (the circumferential direction of the optical recording medium 1, the direction of relative movement with respect to the laser beam in the present invention) ( The unit length, for example, 0.6 111) is specified to be shorter than the focused beam diameter (beam waist diameter) D (for example, 1.5 μΐη). On the other hand, the length (unit width) in the direction (radial direction of the optical recording medium 1) orthogonal to the direction along the group 11a of the virtual recording cell S is also specified to be equal to or smaller than the beam waist diameter D of the laser beam. . In this case, the track pitch of the optical recording medium 1 and the width of the group 11a can be arbitrarily selected. In this optical recording medium 1, the unit width of the virtual recording cell S is, as shown in FIG. It is defined to be the same as the width of a (for example, 0.6 μπι). Therefore, the virtual recording cells S are efficiently arranged in the radial direction of the optical recording medium 1. It should be noted that the virtual recording cell s is merely a virtual one, and does not have an entity like the rectangle shown in the figure, but is used by the multi-level recording / reproducing apparatus during signal processing during multi-level recording / reproducing. is assumed.
この場合、 記録装置のピックァップから出射される記録用レーザービームの照 射時間 (すなわち、 レーザービームの照射量) を記録データの値に応じて多段階 に制御することで、 図 2に示すように、 記録層 1 2 (主として有機色素) の分解 変質の度合いが異なる記録マーク M a〜M g (以下、 区別しないときには 「記録 マーク M」 ともいう) が仮想記録セル S内に形成される。 なお、 同図では、 分解 変質の度合いを記録マーク Mの大きさで概念的に図示している。 また、 記録マー ク Mの形成された仮想記録セル Sが、 記録層 1 2における記録部分となる。 また 、 記録用レーザービームによって記録データを記録する際には、 光記録媒体 1を 回転させつつ記録用レーザービームを照射するため、 記録マーク Mは、 照射時間 に応じた長さの長円形となる。  In this case, by controlling the irradiation time of the recording laser beam emitted from the pickup of the recording device (that is, the irradiation amount of the laser beam) in multiple stages according to the value of the recording data, as shown in FIG. In the virtual recording cell S, recording marks M a to M g (hereinafter, also referred to as “recording marks M” when no distinction is made) with different degrees of decomposition and alteration of the recording layer 12 (mainly organic dye) are formed. In the figure, the degree of decomposition and deterioration is conceptually shown by the size of the recording mark M. Further, the virtual recording cell S in which the recording mark M is formed becomes a recording portion in the recording layer 12. When recording data is recorded by the recording laser beam, the recording laser beam is irradiated while rotating the optical recording medium 1, so that the recording mark M has an oval length according to the irradiation time. .
また、 この光記録媒体 1にマルチレベル記録する際には、 仮想記録セル Sを含 む部分に再生用レーザービームを照射した際の絶対光反射率が例えば 7段階 (未 記録部分を含めて 8段階) となるように、 記録マーク M a〜M gのそれぞれの分 解変質度合い (光透過率の変化量) を規定する。 この場合、 絶対光反射率は、 記 録層 1 2の分解変質度合いが小さいほど大きくなる。 このため、 記録マーク Mが 記録されていない仮想記録セル Sを含む部分が最大絶対光反射率の特性を有し、 最も大きな記録マーク M gが形成されている仮想記録セル Sを含む部分が最小絶 対光反射率の特性を有する。 なお、 本発明において、 「仮想記録セル Sを含む部 分」 とは、 光記録媒体 1の表面において記録用または再生用のレーザービームの 焦点が合わされた照射部分を意味する。 したがって、 仮想記録セル Sの個数を意 味するものではない。 つまり、 この焦点が合った記録用または再生用のレーザー ビームの照射部分には、 そのレーザービームの集光ビーム径に応じて、 1つの仮 想記録セル Sにおける特定の部分、 および 1以上の仮想記録セル Sを含む部分が 含まれる概念である。 このため、 この仮想記録セル Sを含む部分に対する記録用 レーザービームの照射量を制御して分解変質部位の面積比 (つまり記録層 1 2の 光透過率) を適宜設定することにより、 再生用のレーザービームが照射された際 の絶対光反射率が 7段階となる記録マーク M a〜M gを形成することが可能とな る。 When multi-level recording is performed on the optical recording medium 1, the virtual recording cell S is included. The degree of degradation of each of the recorded marks Ma to Mg is adjusted so that the absolute light reflectance when the reproduction laser beam is irradiated to the recorded area is, for example, 7 steps (8 steps including the unrecorded area). Light transmittance change). In this case, the absolute light reflectance increases as the degree of degradation of the recording layer 12 decreases. Therefore, the portion including the virtual recording cell S where the recording mark M is not recorded has the characteristic of the maximum absolute light reflectance, and the portion including the virtual recording cell S where the largest recording mark Mg is formed is the smallest. It has the characteristic of absolute light reflectance. In the present invention, the “portion including the virtual recording cell S” means an irradiated portion on the surface of the optical recording medium 1 where a recording or reproducing laser beam is focused. Therefore, this does not mean the number of virtual recording cells S. In other words, the irradiated portion of the focused recording or reproduction laser beam has a specific portion in one virtual recording cell S and one or more virtual portions in accordance with the focused beam diameter of the laser beam. This is a concept that includes a part including the recording cell S. Therefore, by controlling the irradiation amount of the recording laser beam to the portion including the virtual recording cell S and appropriately setting the area ratio of the degraded and deteriorated portions (that is, the light transmittance of the recording layer 12), This makes it possible to form recording marks Ma to Mg having an absolute light reflectance of seven levels when irradiated with a laser beam.
次に、 有機色素を使用した記録層 1 2の特性について、 図面を参照して説明す る。  Next, the characteristics of the recording layer 12 using an organic dye will be described with reference to the drawings.
記録層 1 2の膜厚に対する光反射率ダイナミックレンジの特性は、 上記した通 り、 図 3に示すように、 記録層 1 2の膜厚が薄くなればなるほどダイナミックレ ンジが次第に狭く (悪く) なる。 この場合、 光反射率ダイナミックレンジが狭い ほど、 各段階相互間の光反射率差が少なくなるため、 ビットエラーレートが劣化 する。 また、 図 4に示すように、 記録層 1 2の膜厚に対する隣接仮想記録セル S 相互間の影響 (隣接セルの影響度) は、 記録層 1 2の膜厚が薄くなればなるほど 小さくなる。 詳細には、 記録層 1 2の膜厚が薄くなれば、 記録用レーザービーム を受けた際に記録層 1 2内に生ずる熱の放熱効果が高まる等の理由により、 分解 変質する有機色素の量を記録用レーザービームの照射量で正確に制御することが でき、 必要以上の有機色素の分解変質を回避することができる。 したがって、 隣 接する仮想記録セル Sの一方に記録用レーザービームを集光させた際に、 隣接す る他方の仮想記録セル Sの分解変質を防止することができる結果、 記録層 1 2の 膜厚が薄くなればなるほど、 ビットエラーレートが良好となる。 このため、 発明 者は、 これらの記録層 1 2についての上記 2つの特性に基づき、 記録層 1 2の膜 厚とビットエラーレートとの間には、 図 5の上段に示すように、 記録層 1 2の膜 厚がある程度厚いときにはビットエラーレートが大きく、 記録層 1 2の膜厚を薄 くするに従いビットエラーレートが徐々に小さくなり、 記録層 1 2が所定の厚み 以下となれば、 ビットエラーレートが再ぴ大きくなるという相関関係が存在する ことを見いだした。 その一方、 記録層 1 2を構成する有機色素には、 レーザービ ームの波長に対する光学的な依存性があり、 記録層 1 2を除く他の構成要素 (グ ループ 1 1 aおよび反射膜 1 3 ) の材質や構造が一定の状態下においては、 未記 録部分における絶対光反射率は、 記録層 1 2の膜厚に対して所定の特性を示す。 このように、 記録層 1 2の膜厚とビットエラーレートとの間に図 5の上段に示 すような相関関係が存在することから、 光記録媒体 1を製造するに際して、 膜厚 そのものをコントロール (管理) することによってビットエラーレートを低く維 持する方法、 すなわち、 記録層 1 2の膜厚を所定範囲 A内となるように規定し、 かつ、 この規定を満たすように製造する手法も考えられる。 この手法によれば、 光記録媒体 1のビットエラーレートを基準値 B以下に抑えることが可能となる。 しかしながら、 光記録媒体 1に形成された記録層 1 2の膜厚を精度良く製造する のは容易ではなく、 しかも、 製造した光記録媒体 1の製造ロット毎の良否検査の 際に記録層 1 2の膜厚による評価を適用することも困難である。 そこで、 発明者 は、 上述した記録層 1 2を構成する有機色素が有するレーザービームの波長に対 する光学的な依存性に着目して、 レーザービームの絶対光反射率 (特定の特性) とビットエラーレートとの間にも所定の相関関係が存在することを見いだした。 以下、 光記録媒体 1における再生用レーザービームについての絶対光反射率とAs described above, the characteristic of the light reflectivity dynamic range with respect to the film thickness of the recording layer 12 is, as shown in FIG. 3, as the film thickness of the recording layer 12 becomes thinner, the dynamic range becomes narrower (poor). Become. In this case, the smaller the dynamic range of the light reflectivity, the smaller the light reflectivity difference between the stages, and the lower the bit error rate. Further, as shown in FIG. 4, the influence between adjacent virtual recording cells S on the film thickness of the recording layer 12 (the degree of influence of the adjacent cells) decreases as the film thickness of the recording layer 12 decreases. Specifically, if the film thickness of the recording layer 12 is reduced, the recording laser beam The amount of organic dye that decomposes and changes can be accurately controlled by the irradiation amount of the recording laser beam because the heat radiation effect of the heat generated in the recording layer 12 when receiving Decomposition and deterioration of the organic dye can be avoided. Accordingly, when the recording laser beam is focused on one of the adjacent virtual recording cells S, the decomposition and alteration of the other adjacent virtual recording cell S can be prevented, and as a result, the film thickness of the recording layer 1 2 The thinner the bit error rate, the better the bit error rate. For this reason, based on the above two characteristics of the recording layer 12, the inventor has set the recording layer 12 between the film thickness and the bit error rate as shown in the upper part of FIG. When the film thickness of 1 2 is somewhat thick, the bit error rate is large, and as the film thickness of the recording layer 12 decreases, the bit error rate gradually decreases. We found that there is a correlation that the error rate increases again. On the other hand, the organic dye constituting the recording layer 12 has an optical dependency on the wavelength of the laser beam, and the other components (the group 11a and the reflection film 13 except for the recording layer 12) In the state where the material and the structure of) are constant, the absolute light reflectance in the unrecorded portion shows a predetermined characteristic with respect to the film thickness of the recording layer 12. As described above, since there is a correlation between the film thickness of the recording layer 12 and the bit error rate as shown in the upper part of FIG. 5, when manufacturing the optical recording medium 1, the film thickness itself is controlled. (Management) to keep the bit error rate low, that is, a method in which the film thickness of the recording layer 12 is specified to be within a predetermined range A, and a method of manufacturing so as to satisfy this specification is also considered. It is. According to this method, the bit error rate of the optical recording medium 1 can be suppressed to the reference value B or less. However, it is not easy to manufacture the film thickness of the recording layer 12 formed on the optical recording medium 1 with high accuracy, and moreover, the quality of the recording layer 12 is determined at the time of quality inspection for each production lot of the manufactured optical recording medium 1. It is also difficult to apply the evaluation based on the film thickness. Therefore, the inventors focused on the optical dependence of the organic dye constituting the recording layer 12 on the wavelength of the laser beam, and focused on the absolute light reflectance (specific characteristics) of the laser beam. It has been found that a predetermined correlation exists between the bit error rate and the bit error rate. Hereinafter, the absolute light reflectance of the reproducing laser beam in the optical recording medium 1 and
、 ビットエラーレートとの間の相関関係について説明する。 , The bit error rate will be described.
上述したように、 記録層 1 2の膜厚とビットエラーレートとの間には、 図 5の 上段に示すような相関関係が存在する。 その一方、 同図の下段に示すように、 記 録層 1 2の膜厚と絶対光反射率との間にも所定の相関関係が存在する。 この相関 関係は、 記録層 1 2を構成する有機色素の材質や光記録媒体 1を構成する記録層 1 2以外の構成要素の構造や材質に基づいて、 同図の下段において実線または破 線で示すように種々変化する。 しかしながら、 これらの構成要素の構造や材質が 決まれば、 記録層 1 2の絶対光反射率は一義的に決定される。 また、 同図の上段 および下段から明らかなように、 ビットエラーレートと絶対光反射率との間にも 、 一義的に決まる相関関係が存在する。 つまり、 絶対光反射率が所定の範囲内の ときには、 ビッ トエラーレートが基準値 B以下となる相関関係が存在する。 発明 者の実験によれば、 この光記録媒体 1では、 絶対光反射率を 4 0 %以上 8 0 %以 下の範囲内に収める限り、 最終的には、 上述した構成要素の構造や材質の種類に 拘わらず、 光記録媒体 1のビットエラーレートが基準値 B以下となることが確認 されている。 また、 この光記録媒体 1に 7段階以上のマルチレベル記録を行った 場合、 各記録段階の仮想記録セル Sにおける絶対光反射率の差を十分に確保する ことができ、 各記録段階を確実に識別できることが確認されている。  As described above, there is a correlation between the film thickness of the recording layer 12 and the bit error rate as shown in the upper part of FIG. On the other hand, as shown in the lower part of the figure, a predetermined correlation exists between the film thickness of the recording layer 12 and the absolute light reflectance. The correlation is represented by a solid line or a broken line in the lower part of the figure, based on the material of the organic dye constituting the recording layer 12 and the structure and material of the components other than the recording layer 12 constituting the optical recording medium 1. It changes variously as shown. However, if the structures and materials of these components are determined, the absolute light reflectance of the recording layer 12 is uniquely determined. Further, as is clear from the upper and lower parts of the figure, there is a uniquely determined correlation between the bit error rate and the absolute light reflectance. That is, when the absolute light reflectance is within the predetermined range, there is a correlation in which the bit error rate is equal to or less than the reference value B. According to the experiment of the inventor, in the optical recording medium 1, as long as the absolute light reflectance falls within a range of 40% or more and 80% or less, finally, the structure and material of the above-mentioned constituent elements are finally determined. Regardless of the type, it has been confirmed that the bit error rate of the optical recording medium 1 is equal to or lower than the reference value B. Further, when multi-level recording of seven or more levels is performed on the optical recording medium 1, a sufficient difference in absolute light reflectance in the virtual recording cell S in each recording step can be sufficiently ensured, and each recording step can be reliably performed. It has been confirmed that it can be identified.
この場合、 4 0 %以上 8 0 %以下の範囲内の絶対光反射率が好ましいという他 の理由として、 発明者は、 各種材質を対象として実験および検討を行った結果、 以下の事実を見いだしている。 つまり、 マルチレベル記録再生の際に絶対反射率 を多段階で利用するためには、 ある程度以上の反射率が必要である。 これを裏付 ける実験を行った際に、 反射率が 4 0 %以下の光記録媒体 1では、 記録再生特性 の悪化が見られた。 逆に、 反射率が 8 0 %以上の光記録媒体 1では、 記録層 1 2 による記録用のレーザービームの吸収率が不十分となり、 記録感度の低下が見ら れた。 このため、 記録再生特性を高めるためには、 上記したように、 4 0 %以上 8 0 %以下の範囲内の絶対光反射率が好ましい。 なお、 光記録媒体 1は、 汎用 2 値記録再生用の光記録媒体との間で互換性を考慮する必要もなく、 しかも、 汎用 2値記録再生用の光記録媒体とは、 記録再生方式が明確に相違する。 このため、 4 0 %以上 8 0 %以下の範囲内の絶対光反射率での使用が光記録媒体 1にとつて 最適であるという発明者が見いだした事実は、 汎用 2値記録再生用の光記録媒体 において既に使用されている絶対光反射率の値に基づいて容易に導き出されるも のではない。 In this case, as another reason that the absolute light reflectance within the range of 40% or more and 80% or less is preferable, the inventor conducted experiments and studies on various materials and found the following facts. I have. In other words, in order to use the absolute reflectance in multiple stages during multi-level recording / reproduction, a certain level of reflectance is required. When an experiment supporting this was performed, the recording / reproducing characteristics of the optical recording medium 1 having a reflectance of 40% or less were deteriorated. Conversely, in the optical recording medium 1 having a reflectance of 80% or more, the recording layer 12 has an insufficient absorptivity of the recording laser beam, and the recording sensitivity is reduced. Was. Therefore, in order to enhance the recording / reproducing characteristics, as described above, the absolute light reflectance within the range of 40% or more and 80% or less is preferable. The optical recording medium 1 does not need to consider compatibility with an optical recording medium for general-purpose binary recording / reproduction, and the recording / reproduction method is different from the optical recording medium for general-purpose binary recording / reproduction. Clearly different. For this reason, the fact that the inventor has found that the use with an absolute light reflectance within the range of 40% or more and 80% or less is optimal for the optical recording medium 1 is due to the fact that the optical recording medium for general-purpose It is not easily derived based on the absolute light reflectance values already used in the recording medium.
したがって、 5段階以上の高密度のマルチレベル記録が可能な光記録媒体 1を 製造するためには、 以上の理由を踏まえて、 光記録媒体 1の絶対光反射率を 4 0 %以上 8 0 %以下に規定することが好ましい。 また、 絶対光反射率の測定が容易 なため、 このように規定して光記録媒体 1を製造することにより、 製造ロットの 検查も極めて容易となる。 さらに、 光記録媒体 1の絶対光反射率が 4 0 %以上 8 0 %以下の範囲内である限り、 上述した構成要素の構造や材質の種類を適宜選択 することができ、 しかも、 その選択によっては、 光記録媒体 1のビットエラーレ ート、 つまり光記録媒体 1の記録再生性能を一層高めることもできる。  Therefore, in order to manufacture the optical recording medium 1 capable of multi-level recording at five or more levels of high density, the absolute light reflectance of the optical recording medium 1 should be 40% or more and 80% It is preferable to define the following. In addition, since the measurement of the absolute light reflectance is easy, by manufacturing the optical recording medium 1 with the above-described specification, the inspection of the production lot becomes extremely easy. Furthermore, as long as the absolute light reflectance of the optical recording medium 1 is in the range of 40% or more and 80% or less, the structure and material type of the above-described components can be appropriately selected. This can further improve the bit error rate of the optical recording medium 1, that is, the recording / reproducing performance of the optical recording medium 1.
このように、 光記録媒体 1の絶対光反射率を 4 0 %以上 8 0 %以下に規定して 製造することにより、 安定したマルチレベル記録おょぴマルチレベル再生を行い 得る光記録媒体 1の量産が可能となつた。 また、 光記録媒体 1の良品検査を行う 際には、 従来から使用されている 2値評価装置を使用して行うことが可能である 。 この場合、 2値評価装置を使用できる結果、 マルチレベル記録専用の評価装置 を新たに購入または製造する必要がなくなるため、 製造コストを低減することが できる。 さらに、 絶対光反射率の測定が容易なため、 光記録媒体 1の製造時にお ける製造ロット毎の良否検查を正確かつ容易に行うことができるため、  As described above, by manufacturing the optical recording medium 1 with the absolute light reflectance specified to be 40% or more and 80% or less, the optical recording medium 1 capable of performing stable multi-level recording and multi-level reproduction can be obtained. Mass production is now possible. In addition, when performing a non-defective inspection of the optical recording medium 1, it is possible to use a conventionally used binary evaluation device. In this case, since the binary evaluation device can be used, it is not necessary to newly purchase or manufacture an evaluation device dedicated to multi-level recording, so that the manufacturing cost can be reduced. Further, since the measurement of the absolute light reflectance is easy, it is possible to accurately and easily perform the quality inspection for each production lot in the production of the optical recording medium 1,
なお、 本発明は、 上記した発明の実施の形態に限らず、 適宜変更が可能である 。 例えば、 本発明の実施の形態では、 光記録媒体 1を C D— R型の光記録媒体と して構成した例を示したが、 本発明は、 これに限定されるものでなく、 他の光記 録媒体に一般に適用されるものであり、 またディスク状の回転体に限定されるも のではない。 また、 本発明の実施 P形態では、 光記録媒体 1は、 基板 1 1側から 記録用および再生用のレーザービームを照射する構成としたが、 基板上に反射層 、 記録層、 およぴ本発明における光透過層としての保護層が順次積層され、 この 保護層側から記録用および再生用のレーザービームを照射する構成の光記録媒体 に対しても適用することができる。 It should be noted that the present invention is not limited to the above-described embodiment of the invention, and can be appropriately modified. For example, in the embodiment of the present invention, the optical recording medium 1 is a CD-R type optical recording medium. The present invention is not limited to this, but is generally applied to other optical recording media, and is limited to a disk-shaped rotating body. is not. Further, in the embodiment P of the present invention, the optical recording medium 1 is configured to irradiate the recording and reproducing laser beams from the substrate 11 side, but the reflection layer, the recording layer, and the recording layer are formed on the substrate. The present invention can also be applied to an optical recording medium having a structure in which a protective layer as a light transmitting layer in the invention is sequentially laminated, and a recording and reproducing laser beam is irradiated from the protective layer side.
また、 上記発明の実施の形態では、 シァニン等の有機色素を用いた記録層 1 2 を例示したが、 本発明は、 これに限定されるものでなく、 上記の光反射率を満た す特性のものであれば十分であり、 上記以外の有機色素あるいは無機材料であつ てもよく、 また、 その他の材料を適宜用いてもよい。 ただし、 上記の有機色素を 用いた光記録媒体 1では、 記録用レーザービームの 7段階以上の照射時間に対応 して、 確実に記録マーク Mの光透過率を変化させて記録でき、 極めて高い精度で 再生することができた。 さらに、 仮想記録セル Sの単位長さや単位幅についても 上記した例に限定されず、 適宜変更が可能である。 例えば、 単位長さ Hについて は、 再生用レーザーにおける対物レンズの開口数を NAとし、 再生用レーザービ ームの波長をえとしたときに、 下記の式で表される範囲内で適宜変更するのが好 ましい。  Further, in the embodiment of the present invention, the recording layer 12 using an organic dye such as cyanine is exemplified. However, the present invention is not limited to this, and has a characteristic satisfying the above light reflectance. Any organic dye or inorganic material other than those described above may be used, and other materials may be used as appropriate. However, in the optical recording medium 1 using the above-mentioned organic dye, the recording mark M can be recorded with the light transmittance changed in accordance with the irradiation time of the recording laser beam in seven or more steps, and extremely high accuracy is achieved. Could be played. Further, the unit length and unit width of the virtual recording cell S are not limited to the above-described example, and can be appropriately changed. For example, for the unit length H, when the numerical aperture of the objective lens in the reproduction laser is NA and the wavelength of the reproduction laser beam is given, it is appropriate to change the unit length appropriately within the range expressed by the following formula. It is good.
0 . 1 0 X ( λ /ΝΑ) < H < 1 . 0 0 X ( λ /ΝΑ)  0.10 X (λ / ΝΑ) <H <1.0 0 X (λ / ΝΑ)
—例を挙げて具体的に説明すると、 ぇ= 0 . 7 8 5 μ πι, NA= 0 . 5のとき には、 単位長さ Ηを 0 . 1 5 7 /i n!〜 1 . 5 7 ;u mの範囲内で変更するのが好ま しい。 この場合、 再生用レーザービームの波長 λを変更するときには、 その波長 λに応じて単位長さ Ηも上記の範囲内で変更するのが好ましい。 また、 上記発明 の実施の形態では、 情報が記録されていない未記録部分を含んで 8段階で記録可 能な光記録媒体 1を例示したが、 本発明は、 未記録部分を含んで、 または含まな いで 5段階以上に情報がマルチレベル記録される光記録媒体にも適用される。 産業上の利用可能个生 —Specifically, using an example, when ぇ = 0.785 μππ, NA = 0.5, the unit length Η is 0.15 7 / in! It is preferable to change within the range of ~ 1.57; um. In this case, when changing the wavelength λ of the reproducing laser beam, it is preferable to change the unit length Η within the above range according to the wavelength λ. Further, in the embodiment of the present invention, the optical recording medium 1 that can be recorded in eight steps including an unrecorded portion where no information is recorded is exemplified, but the present invention includes an unrecorded portion, or It is also applied to optical recording media on which information is recorded in multi-levels in five or more levels without being included. Industrial Available Individuals
以上のように、 この発明に係るマルチレベル光記録媒体によれば、 未記録状態 の仮想記録セルを含む部分におけるレーザービームに対する光反射率が 4 0 %以 上 8 0 %以下になるようにマルチレベル光記録媒体を構成することにより、 各記 録段階における仮想記録セルの絶対光反射率の差を十分に確保することができる 。 したがって、 再生用レーザービームに対する光反射率を規定する要素の種類に 拘わらず、 5段階以上の高密度のマルチレベル記録を行う際のビットエラーレー トを極めて小さくすることができる。 これにより、 5段階以上のマルチレベル記 録を確実に行レ、得るマルチレベル光記録媒体が実現される。  As described above, according to the multi-level optical recording medium of the present invention, the multi-level optical recording medium is configured such that the light reflectance with respect to the laser beam in the portion including the unrecorded virtual recording cell is 40% or more and 80% or less. By configuring the level optical recording medium, it is possible to sufficiently secure a difference between the absolute light reflectances of the virtual recording cells in each recording stage. Therefore, the bit error rate when performing high-density multi-level recording of five or more steps can be extremely reduced, regardless of the type of element that defines the light reflectance for the reproduction laser beam. As a result, a multi-level optical recording medium in which multi-level recording of five or more steps can be reliably performed and obtained is realized.

Claims

請求の範囲 The scope of the claims
1 . 主として有機色素で構成される記録層に沿って記録または再生用のレー ザ一ビームをガイドするためのグループが設けられて 5段階以上のマルチレベル 記録が可能に製造されたマルチレベル光記録媒体であつて、  1. Multi-level optical recording manufactured with a group for guiding a laser beam for recording or reproduction along a recording layer mainly composed of organic dyes, and capable of multi-level recording of five or more stages Medium,
前記グループには、 記録時おょぴ再生時に前記レーザービームとの相対移動方 向に対して所定の単位長さおよびこれと直交する方向に対して所定の単位幅に規 定された仮想記録セルが複数連続的に仮想され、 未記録状態の前記仮想記録セル を含む部分における前記レーザービームに対する光反射率が 4 0 %以上 8 0 %以 下になるように構成されていることを特徴とするマルチレベル光記録媒体。  The group includes a virtual recording cell defined to have a predetermined unit length in the direction of relative movement with respect to the laser beam and a predetermined unit width in the direction orthogonal to the direction of the laser beam during recording and reproduction. Are continuously imagined, and a portion including the virtual recording cell in an unrecorded state has a light reflectance for the laser beam of 40% or more and 80% or less. Multi-level optical recording medium.
2 . 主として有機色素で構成される記録層に沿って記録または再生用のレー ザ一ビームをガイドするためのグループが設けられて 5段階以上のマルチレベル 記録が可能に製造されたマルチレベル光記録媒体であって、  2. Multi-level optical recording manufactured with a group for guiding a laser beam for recording or reproduction along a recording layer mainly composed of organic dyes, and capable of multi-level recording of 5 or more stages A medium,
前記記録または再生用のレーザービームの焦点を前記グループに合わせた状態 で、 当該レーザービームに対する光反射率が 4 0 %以上 8 0 %以下になるように 構成されていることを特徴とするマルチレベル光記録媒体。  A multi-level structure in which the light reflectance for the laser beam for recording or reproduction is 40% or more and 80% or less when the focus of the laser beam for recording or reproduction is adjusted to the group. Optical recording medium.
3 . 前記仮想記録セルは、 その前記単位幅が前記グループの幅と同一に設定 されていることを特徴とする請求項 1記載のマルチレベル光記録媒体。  3. The multi-level optical recording medium according to claim 1, wherein the unit width of the virtual recording cell is set to be the same as the width of the group.
4 . 前記レーザービームに対する前記光反射率を規定する要素が、 前記記録 層の材質およぴ厚み、 前記記録層を介して照射された前記再生用のレーザービー ムを反射させる反射層の材質、 前記再生用のレーザービームが前記記録層に到達 するのに先立つて透過する光透過層の材質および厚み、 並びに前記グループの構 造の少なくとも 1つであることを特徴とする請求項 1記載のマルチレベル光記録 媒体。  4. The factors that define the light reflectivity to the laser beam are the material and thickness of the recording layer, the material of the reflective layer that reflects the laser beam for reproduction irradiated through the recording layer, 2. The multi-layer optical system according to claim 1, wherein the reproducing laser beam is at least one of a material and a thickness of a light transmitting layer that transmits before reaching the recording layer, and a structure of the group. 3. Level optical recording medium.
5 . 前記レーザービームに対する前記光反射率を規定する要素が、 前記記録 層の材質および厚み、 前記記録層を介して照射された前記再生用のレーザービー ムを反射させる反射層の材質、 前記再生用のレーザービームが前記記録層に到達 するのに先立つて透過する光透過層の材質おょぴ厚み、 並びに前記グループの構 造の少なくとも 1つであることを特徴とする請求項 2記載のマルチレベル光記録 媒体。 5. The factors that define the light reflectivity to the laser beam include the material and thickness of the recording layer, the material of the reflective layer that reflects the laser beam for reproduction irradiated through the recording layer, and the reproduction. Laser beam reaches the recording layer 3. The multi-level optical recording medium according to claim 2, wherein the medium has at least one of a material and a thickness of a light transmitting layer which is transmitted prior to the formation, and a structure of the group.
6 . 前記レーザービームに対する前記光反射率を規定する要素が、 前記記録 層の材質およぴ厚み、 前記記録層を介して照射された前記再生用のレーザービー ムを反射させる反射層の材質、 前記再生用のレーザービームが前記記録層に到達 するのに先立って透過する光透過層の材質および厚み、 並びに前記グループの構 造の少なくとも 1つであることを特徴とする請求項 3記載のマルチレベル光記録 媒体。  6. The factors that define the light reflectivity to the laser beam are the material and thickness of the recording layer, the material of the reflective layer that reflects the laser beam for reproduction irradiated through the recording layer, 4. The multi-layer optical system according to claim 3, wherein the reproducing laser beam is at least one of a material and a thickness of a light transmitting layer transmitted before reaching the recording layer, and a structure of the group. Level optical recording medium.
PCT/JP2002/005520 2001-06-05 2002-06-04 Multi-level optical recording medium WO2002099793A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001169918A JP2002367182A (en) 2001-06-05 2001-06-05 Multilevel optical recording medium
JP2001-169918 2001-06-05

Publications (1)

Publication Number Publication Date
WO2002099793A1 true WO2002099793A1 (en) 2002-12-12

Family

ID=19011933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005520 WO2002099793A1 (en) 2001-06-05 2002-06-04 Multi-level optical recording medium

Country Status (3)

Country Link
JP (1) JP2002367182A (en)
TW (1) TW588342B (en)
WO (1) WO2002099793A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1475793B1 (en) 2003-04-15 2007-12-05 Ricoh Company, Ltd. Write-once-read-many optical recording medium and process for recording and reproducing of the optical medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319134A (en) * 1988-06-21 1989-12-25 Toshiba Corp Multiplex recording method and multiplex recording device
JPH0214427A (en) * 1988-06-30 1990-01-18 Toshiba Corp Information recorder, method for recording information and information reproducing device
JPH04111233A (en) * 1990-08-31 1992-04-13 Toshiba Corp Information processor
JP2001084591A (en) * 1998-10-26 2001-03-30 Mitsubishi Chemicals Corp Multi-valued recording and reproducing method and phase transition type medium for multi-valued recording
WO2001027917A1 (en) * 1999-10-14 2001-04-19 Tdk Corporation Optical recording medium, optical recording method, optical recorded medium reproducing method
JP2002083426A (en) * 2000-06-27 2002-03-22 Tdk Corp Optical recording medium
JP2002157734A (en) * 2000-11-17 2002-05-31 Ricoh Co Ltd Optical information recording medium on/from which multi-value recording and reproduction are enabled, recording and reproducing method and recording and reproducing device using the medium

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319134A (en) * 1988-06-21 1989-12-25 Toshiba Corp Multiplex recording method and multiplex recording device
JPH0214427A (en) * 1988-06-30 1990-01-18 Toshiba Corp Information recorder, method for recording information and information reproducing device
JPH04111233A (en) * 1990-08-31 1992-04-13 Toshiba Corp Information processor
JP2001084591A (en) * 1998-10-26 2001-03-30 Mitsubishi Chemicals Corp Multi-valued recording and reproducing method and phase transition type medium for multi-valued recording
WO2001027917A1 (en) * 1999-10-14 2001-04-19 Tdk Corporation Optical recording medium, optical recording method, optical recorded medium reproducing method
JP2002083426A (en) * 2000-06-27 2002-03-22 Tdk Corp Optical recording medium
JP2002157734A (en) * 2000-11-17 2002-05-31 Ricoh Co Ltd Optical information recording medium on/from which multi-value recording and reproduction are enabled, recording and reproducing method and recording and reproducing device using the medium

Also Published As

Publication number Publication date
TW588342B (en) 2004-05-21
JP2002367182A (en) 2002-12-20

Similar Documents

Publication Publication Date Title
EP1246177A2 (en) Optical recording medium and optical recording method
EP1324327B1 (en) Optical recording medium
US7042824B2 (en) Optical multi-level recording medium and optical multi-level recording method
US7221637B2 (en) Multi-level optical recording medium, multi-level recording method, and multi-level reproduction method
US7102969B2 (en) Multi-level optical recording medium reproducing method and reproducing device
WO2003085658A1 (en) Optical information recording medium, and method and device for optical information recording/reproduction using same
WO2002099793A1 (en) Multi-level optical recording medium
US7280462B2 (en) Method and apparatus for recording/reproducing optical information
US6956804B2 (en) Optical recording medium with recording marks having different states, and method of recording using the optical recording medium
JP2002083426A (en) Optical recording medium
JPH03241538A (en) Optical recording medium disk
JPH01208737A (en) Novel optical recording medium and production thereof
JP2596477B2 (en) Optical information recording medium
US5448541A (en) Method of use for an optical recording disk with a dye-containing recording layer and a tracking guide groove
WO2003050805A1 (en) Multi-level optical recording medium
JP2004327016A (en) Optical recording disk
JP2002083427A (en) Optical recording medium
TW569197B (en) Optical recording medium and optical recording method
JPH02201748A (en) Optical recording medium
WO2002099791A1 (en) Method of measuring chracteristic data for multilevel optical recording medium, and evaluation method for multilevel optical recording medium
JP2003067933A (en) Multilevel optical data-storage medium
JP2003151172A (en) Multilevel optical recording medium
JP2003242681A (en) Multilevel optical recording medium
JP2002352428A (en) Optical recording medium
WO2003028013A1 (en) Multi-level optical recording medium, multi-level reproducing method and reproducing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase