WO2002099791A1 - Method of measuring chracteristic data for multilevel optical recording medium, and evaluation method for multilevel optical recording medium - Google Patents

Method of measuring chracteristic data for multilevel optical recording medium, and evaluation method for multilevel optical recording medium Download PDF

Info

Publication number
WO2002099791A1
WO2002099791A1 PCT/JP2002/005518 JP0205518W WO02099791A1 WO 2002099791 A1 WO2002099791 A1 WO 2002099791A1 JP 0205518 W JP0205518 W JP 0205518W WO 02099791 A1 WO02099791 A1 WO 02099791A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording medium
optical recording
characteristic data
level optical
level
Prior art date
Application number
PCT/JP2002/005518
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Arioka
Syuji Tsukamoto
Takashi Horai
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Publication of WO2002099791A1 publication Critical patent/WO2002099791A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24085Pits

Definitions

  • the present invention relates to a measuring method for measuring characteristic data of a multilevel optical recording medium capable of multilevel recording in one virtual recording cell, and a multilevel optical recording medium based on the characteristic data measured by the measuring method. It is related to the evaluation method for evaluating. -Background technology
  • optical recording medium binary data is recorded by irradiating a recording laser beam to form pits, and the binary data can be reproduced based on the presence or absence of the pits.
  • Value optical recording media are widely used.
  • a study for adjusting the focused beam diameter of a recording laser beam to perform high-density recording has been advanced.
  • the development of a multi-level optical recording medium that can record one of a plurality of different meaningful marks in one virtual recording cell is underway.
  • this multi-level optical recording medium for example, by changing the irradiation amount of the recording laser beam to multiple stages, a part of one virtual recording cell to be recorded in the optical recording medium that has a deteriorated portion (light-transmissive portion) is reduced.
  • this is also called the “recording mark”), and the ratio of the recording mark to the entire virtual recording cell depends on the irradiation amount of the recording laser beam.
  • the reproduction laser beam when the reproduction laser beam is irradiated, the light transmittance of the virtual recording cell where the recording mark is formed is affected, and as a result, the light of the reproduction laser beam is irradiated.
  • the reflectivity is multi-step (for example, 5 steps or more),. Therefore, it is necessary to associate each of a plurality of data contents with each of the multi-stage light reflectances. As a result, any one of a plurality of data is recorded in one virtual recording cell
  • the light transmittance is the ratio of the laser beam passing through the virtual recording cell to the reproducing laser beam irradiated on the virtual recording cell, and the light reflectance is the virtual recording cell.
  • the irradiated reproduction laser beam passes through this virtual recording cell, is reflected by the reflective layer of the multi-level optical recording medium, and then passes through the virtual recording cell again and is emitted outside the multi-level optical recording medium.
  • Laser beam rate is the ratio of the laser beam passing through the virtual recording cell to the reproducing laser beam irradiated on the virtual recording cell.
  • the recording layer used for the multi-level optical recording medium is made of a material suitable for multi-level recording, such as a wide dynamic range of light reflectivity to cope with multi-step irradiation by the recording laser beam. Must be selected.
  • the characteristic data such as the dynamic range of the light reflectance of various multi-level optical recording media to be evaluated in which the recording layer is formed of various materials is measured, and based on the characteristic data, It is necessary to evaluate the quality of the multilevel optical recording medium to be evaluated. Also, at the time of manufacturing a multi-level optical recording medium, the recording data can be normally reproduced in a multi-level optical recording medium in a reproducible manner by using a dedicated multi-level recording / reproducing evaluation apparatus for each manufacturing lot. Need to be evaluated. Disclosure of the invention
  • a binary recording / reproducing evaluation device for evaluating a binary optical recording medium is mainly used. Used. For this reason, if it is necessary to use a dedicated multi-level recording / reproduction evaluation device to measure and evaluate the characteristic data of the multi-level optical recording medium, the manufacturer of the optical recording medium must use a dedicated multi-level recording / reproduction evaluation. Equipment must be newly purchased or manufactured.
  • the method for measuring characteristic data of a multi-level optical recording medium is a measuring method for measuring characteristic data of a multi-level optical recording medium manufactured to enable multi-level recording.
  • the characteristic data of the multi-level optical recording medium is measured using a reproduction evaluation device.
  • the multi-level optical recording medium of the present invention includes both a multi-level optical recording medium as a sample manufactured in a development stage and a multi-level optical recording medium actually manufactured as a product.
  • the multi-level optical recording medium by switching at least one of the irradiation time and the irradiation power of the recording laser beam, the light reflectance with respect to the reproducing laser beam is controlled in multiple stages, and multi-level recording is performed.
  • the multi-level optical recording medium may be configured such that the transmittance of the recording layer is changed by one beam of the recording laser, whereby It is preferable that the light reflectance for the one beam is controlled in multiple stages.
  • the multi-level optical recording medium is configured so that the light reflectance with respect to the reproduction laser beam can be controlled to five or more steps.
  • the characteristic data of the multi-level optical recording medium is measured using an existing binary recording / reproducing evaluation device, and a dedicated multi-level recording / reproduction evaluation device is used. Since the characteristic data of the multi-level optical recording medium can be measured without purchasing or manufacturing a new one, the measurement cost can be reduced. Therefore, the manufacturing cost of the multi-level optical recording medium can be sufficiently reduced.
  • predetermined data is recorded on the multi-level optical recording medium by the binary recording / reproducing evaluation device, and the characteristic data of an unrecorded part and a recorded part of the recorded multi-level optical recording medium are recorded. It is preferable to measure. By performing the measurement in this manner, it is possible to measure accurate characteristic data of the actually recorded multilevel optical recording medium. Therefore, for example, when evaluating the quality of a multilevel optical recording medium, the reliability of the evaluation can be improved.
  • the evaluation method of the multi-level optical recording medium according to the present invention is based on the characteristic data measured by the characteristic data measuring method for any one of the above-described multi-level optical recording media. Evaluate multi-level optical recording media.
  • a special multilevel optical recording medium is evaluated based on characteristic data measured using an existing binary recording / reproduction evaluation apparatus. Since the multilevel optical recording medium can be evaluated without newly purchasing or manufacturing an apparatus, the evaluation cost can be reduced. Therefore, the manufacturing cost of the multi-level optical recording medium can be sufficiently reduced.
  • the measured characteristic data and the multi-level optical recording medium measured by the binary recording / reproduction evaluation device and the multi-layer recording / reproduction evaluation device, respectively. It is preferable to evaluate the quality of the multi-level optical recording medium based on a correlation previously obtained with respect to both characteristic data of the body. By performing the evaluation in this manner, the quality of the multi-level optical recording medium can be accurately evaluated.
  • the quality of the multi-level optical recording medium is evaluated by comparing reference characteristic data obtained in advance based on the correlation with the characteristic data measured by the binary recording / reproducing evaluation device. . With such an evaluation, the quality of the multi-level optical recording medium can be evaluated in a short time.
  • FIG. 1 is a partially cutaway perspective view showing the configuration of an optical recording medium 1 according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram conceptually showing the recording marks M a to M g recorded on the optical recording medium 1.
  • FIG. 3 is a characteristic diagram showing the relative light reflectance characteristics of the optical recording medium 1 using various organic dyes.
  • FIG. 4 is a characteristic diagram showing relative light reflectance characteristics of Samples 1 to 3 using different types of organic dyes.
  • FIG. 5 is a flowchart of the medium evaluation process 30.
  • FIG. 6 is a block diagram showing the configuration of the binary recording / reproduction evaluation device 40. BEST MODE FOR CARRYING OUT THE INVENTION
  • optical recording medium 1 a multilevel optical recording medium 1 to be evaluated in the present invention
  • the optical recording medium 1 is a CD-R type optical recording medium (write-once optical recording medium). As shown in FIG. 1, a substrate 11, a recording layer 12, a reflective film 13, and a protective layer 14 are provided. It is configured with.
  • the substrate 11 is formed in a disk shape using a transparent resin as a base material. On one surface (upper surface in FIG. 1) of the substrate 11, a laser beam guide group 11 a and a land 11 b are spirally formed from the vicinity of the center to the outer edge. ing.
  • the recording layer 12 is formed using organic dyes such as cyanine, merocyanine, methine dyes and derivatives thereof, benzenethiol metal complexes, phthalocyanine dyes, naphthalocyanine dyes, and azo dyes. It is formed by coating so as to cover 11a and land 11b.
  • the recording layer 12 is decomposed and deteriorated by the irradiation of the recording laser beam by the recording device, and the light transmittance changes according to the irradiation amount of the laser beam.
  • the reflection film 13 is a thin film layer for reflecting a reproduction laser beam that has passed through the substrate 11 and the recording layer 12 when reproducing the recording data recorded on the optical recording medium 1, and is made of gold, silver, or the like.
  • the protective layer 14 is a layer that protects the reflective film 13 and the recording layer 12, and is formed so as to cover the outer surface of the reflective film 13.
  • virtual recording cells S 1, S ′ ′ obtained by virtually dividing the group 11 a along the rotation direction (circumferential direction) are defined as recording units. ing.
  • the length of the virtual recording cell S in the direction along the group 11a is defined to be shorter than the focused beam diameter (diameter of the beam waist) D.
  • the recording laser beam emitted from the pickup of the recording device is irradiated.
  • the irradiation time that is, the irradiation amount of the laser beam
  • the degree of decomposition and alteration of the recording layer 12 differs as shown in Fig. 2.
  • Recording marks M a to M g (hereinafter, also referred to as “recording marks M” when not distinguished) are formed in the virtual recording cell S.
  • the degree of decomposition and deterioration is conceptually shown by the size of the recording mark M.
  • the recording mark M has a length corresponding to the irradiation time because the recording laser beam is irradiated while rotating the optical recording medium 1. It becomes an oval.
  • the light reflectance when the virtual recording cell S is irradiated with the reproduction laser beam is, for example, 7 steps (8 steps including the unrecorded part).
  • the degree of degradation and deterioration (the amount of change in light transmittance) of each of the recording marks M a to M g is specified.
  • the light reflectance increases as the degree of degradation of the recording layer 12 decreases.
  • the virtual recording cell S on which the recording mark M is not recorded has the characteristic of maximum light reflectance, and the virtual recording cell S of the smallest recording mark M a has the largest light reflectance of the recording mark M.
  • the light reflectance of each virtual recording cell S decreases in the order of the recording marks Mb to Mf, and the virtual recording cell S of the largest recording mark Mg has the minimum light reflectance. It has the following characteristics. Therefore, by controlling the irradiation amount of one laser beam and appropriately setting the area ratio of the degraded and degraded portion (that is, the light transmittance of the recording layer 12), the recording marks Ma to M having the seven levels of light reflectivity are obtained. g can be formed.
  • the organic dye used in the recording layer 12 has a characteristic that the degree of decomposition and alteration increases as the irradiation time (irradiation amount) of the recording laser beam increases.
  • the change in the light reflectance at this time is not linear with respect to the irradiation time (irradiation amount) of the recording laser beam.
  • the recording laser beam irradiation time (irradiation amount) ) The degree of degradation is moderate for a while from the start of irradiation, becomes steep and linear after a predetermined time, and then gradually decreases again, exceeding a certain irradiation time. Later, it shows the characteristic that the degree hardly increases.
  • the absolute light reflectance is replaced by the reference light reflectance (100%) for the disk with a thin surface made of gold or the like applied to the smooth surface by, for example, sputtering.
  • the characteristics of the relative light reflectivity of each recording layer 12 of each optical recording medium 1 are also different from each other as shown by characteristics C1 to C5 in FIG.
  • the degree of the above-mentioned degradation alteration contributes to the slope of the curves of the characteristics C1 to C5.
  • the relative light reflectance is obtained by replacing the value of the absolute light reflectance of the unrecorded portion (that is, the unrecorded virtual recording cell S) in the recording layer 12 of each optical recording medium 1 with 100%.
  • the modulation degree, dynamic range, jitter characteristics, and B.E.R. Various characteristics such as rate) are also different.
  • these various properties are determined not only by the material of the organic dye, but also by various parameters such as the coating thickness of the organic dye, the structure of the group 11a (depth, width or shape of the groove) and the material of the reflective film 13. It will be different depending on the situation.
  • the multi-recording is performed only when the optical reflectance of the optical Since the recording of a bell is possible, the absolute light reflectance of the recording portion having the highest light reflectance (the unrecorded virtual recording cell S) is somewhat large (for example, 40% to 80%), and Unless the difference in light reflectance between the recording part having the largest light reflectance and the recording part having the smallest light (the virtual recording cell S in which the recording mark M g is formed) is large to some extent, the recording data recorded at multi-levels will be obtained. Reproduction becomes difficult.
  • the absolute light reflectivity is preferably as large as possible.
  • the laser beam for reproduction is irregularly reflected in accordance with the characteristics of the above-described parameters and the structure of the group 11a, so that it is difficult for the pickup of the reproduction apparatus to pick up. It is difficult to secure values above 80% due to the reduced amount of return. Also, the value of the light reflectivity in the recorded portion (unrecorded virtual recording cell S) that has not been degraded and altered is replaced with 100%, and the degree of degradation and degeneration is the highest, and the recorded portion (degradation and degradation is degraded).
  • the relative light reflectance dynamic When the ratio of the light reflectance of the virtual recording cell S) which has been decomposed and deteriorated until the laser state hardly increases is defined as the relative light reflectance dynamic, the relative light reflectance is determined from the characteristics of the organic dye described above. In the unrecorded area (approximately two-tenths of an area) of the dynamic range, and in the recorded part (the area of about two-tenths) where the degree of decomposition and degradation is the highest, the laser beam The relative light reflectance changes nonlinearly with respect to the irradiation time (irradiation amount), and the relative light reflection with respect to the irradiation time is in an area of about 6/10 which is an intermediate area between the two areas. The rate changes linearly.
  • the recording portion having the highest absolute light reflectance is in the range of 40% to 80%, and the recording portion having the highest light reflectance is within the range of 40% to 80%.
  • the difference in light reflectance between the virtual recording cell S where the recording mark M a is recorded and the virtual recording cell S where the recording mark M g is recorded exceeds 40 points. preferable. Therefore, when selecting an organic dye to be used as the recording layer 12 or when inspecting non-defective products during the production of the optical recording medium 1, the difference between the absolute light reflectance and the light reflectance is determined by the above-described criteria. Value) is important.
  • the two regions of about two-tenths in the unrecorded portion side and the recorded portion side described above, and the intermediate region The ratio of the area in the range of about 6/10 is largely determined by the organic dye used for the recording layer 12 and is not determined uniquely.
  • the optical recording medium 1 can be evaluated using any of the various characteristics described above, and is usually evaluated using a multilevel recording / reproduction evaluation apparatus.
  • the inventor has determined that the characteristic data of the optical recording medium 1 measured by the multi-level recording / reproducing evaluation device is different from the characteristic data of the optical recording medium 1 measured by the binary recording / reproducing evaluation device. Have found that a certain correlation exists.
  • the absolute light reflectance and the relative light reflectivity dynamic range of the optical recording medium 1 recorded by the binary recording method satisfy predetermined criteria, regardless of the type of the above-described parameter,
  • the absolute light reflectance is in the range of 40% to 80%, and the light reflectance between the unrecorded portion and the recording mark Mg is It has been found that the difference exceeds 40 points and is sufficient to identify each recording mark M a -M g.
  • the C / N ratio of a reproduced signal to a binary recording signal (so-called 3T signal (692 ⁇ s signal)) determined according to the orange hook (Compact Disc Recordable System Description) is used.
  • the optical recording medium 1 can be used for multilevel recording. Furthermore, between the above-mentioned various characteristics of the optical recording medium 1 based on the binary recording method, such as the optical reflectance, modulation degree, dynamic range, jitter characteristics, and B.E.R. (bit error rate). Also find that a certain correlation exists.
  • the absolute light reflectance and relative light reflectance dynamic range of the optical recording medium 1 recorded by the binary recording / reproducing method and the multi-level recording Correlation between the absolute light reflectivity of the optical recording medium 1 recorded by the reproducing method and the difference in the light reflectivity described above.
  • a method for evaluating the optical recording medium 1 based on raw data on the absolute light reflectance and relative light reflectance dynamic range of the optical recording medium 1 recorded by the binary recording / reproducing method. explain. Note that, as the above-mentioned predetermined reference (threshold), the following description is based on the assumption that the lower limit of the absolute light reflectance is 40% and the lower limit of the relative light reflectance dynamic range is 40%. .
  • the present invention evaluates the optical recording medium 1 (hereinafter, also referred to as “sample”) when selecting an organic dye to be used as the recording layer 12, and evaluates the optical recording medium 1 for each production lot during the production of the optical recording medium 1.
  • This method can be applied to both evaluation of actual products at the time of quality inspection. The following describes an example of evaluation of a sample when selecting an organic dye.
  • the binary recording / reproduction evaluation device 40 is a general-purpose evaluation device, and has a function of a normal CD-R recorder and a function of measuring light reflectance.
  • the binary recording / reproducing evaluation device 40 includes a spindle servo 41, a spinneret motor 42, a pickup 43, a focus tracking servo 44, a feed servo 55, and a control device 46.
  • the spindle motor 42 is driven and controlled by the spindle servo 41, and rotates the optical recording medium 1 at a constant linear velocity.
  • the laser 43 (both not shown) is driven by a laser driver under the control of the controller 46 to irradiate the optical recording medium 1 with a recording laser beam or a reproducing laser beam. As a result, the recording of binary data on the recording layer 12 or the reproduction according to the level of the reproduction laser beam reflected by the optical recording medium 1 is performed.
  • the pickup 43 has an objective lens and a half mirror (both not shown), and focuses a recording or reproducing laser beam on the recording layer 12 of the optical recording medium 1. Specifically, focus tracking control of the objective lens is performed by the focus tracking servo 44, whereby a recording or reproducing laser beam is focused on the recording layer 12 of the optical recording medium 1.
  • This pickup 4 3 The optical recording medium 1 is reciprocated by a feeder 45 between the inner peripheral side and the outer peripheral side along the diameter direction of the optical recording medium 1.
  • the control device 46 controls the drive of the spindle servo 41, the pickup 43, the focus tracking servo 44, and the feed servo 45, and the recording layer 1 based on the electric signal output from the pickup 43.
  • the recorded data recorded in 2 is read, and the light reflectance of the reproducing laser beam reflected by the optical recording medium 1 is measured. Since the reading process of the recorded data and the measuring process of the light reflectance are known, their description is omitted.
  • samples 1 to 3 are prepared by applying different organic dyes, respectively.
  • the recording laser beam emitted by the binary recording / reproduction evaluation device 40 is set to a relatively large power for binary recording. Therefore, since the recording layer 12 is greatly decomposed and deteriorated, the relative light reflectance of the recording portion in each sample is represented by the points P 1 to P 3 on the characteristics C 1 to C 3 of the samples 1 to 3 shown in FIG. As shown by 3, it drops significantly.
  • the absolute light reflectance of the unrecorded portion of each of the samples 1 to 3 and the relative light reflectance of the unrecorded portion and the recorded portion are measured by the binary recording / reproducing evaluation device 40 (step 32). Specifically, the binary recording / reproduction evaluation device 40 irradiates a reproduction laser beam toward each sample and simultaneously passes the reproduction laser beam reflected by the reflection film 13 after passing through the recording layer 12. Receive light. Next, after converting the reproduction laser beam received via the pickup 43 into an electric signal, the controller 46 controls the absolute light reflection of each sample 1 to 3 based on the level of the electric signal. Find the rate. Next, the control device
  • step 46 the relative light reflectance of the recording portion is obtained for each of the samples 1 to 3 by replacing the value of the absolute light reflectance for each of the samples 1 to 3 with the light reflectance of 100%.
  • the controller 46 obtains a relative light reflectance dynamic range of each of the samples 1 to 3 based on the relative light reflectance of each of the unrecorded portion and the recorded portion (step 33).
  • the relative light reflectivity dynamic range Ra1 of sample 1 is 90%
  • the relative light reflectivity dynamic range Ra2 of sample 2 is 35%
  • sample 3 is A relative light reflectivity dynamic range Ra3 of 85% is obtained.
  • the controller 46 compares the obtained absolute light reflectance with the corresponding lower limit (40% as a predetermined reference value), and determines whether each absolute light reflectance exceeds the lower limit.
  • the relative light reflectance dynamic range of each sample 1 to 3 is compared with the corresponding lower limit (40% as a predetermined reference value).
  • the relative light reflectance dynamic range is determined. To determine whether or not exceeds the lower limit (Step 3 4) 0
  • the controller 46 determines that the sample 1 in which both the absolute light reflectance and the relative light reflectance dynamic range exceed the lower limit value is a non-defective product (step 35), and sets the sample in which the absolute light reflectance is lower than the lower limit value. 3 is determined to be defective, and sample 2 having a relative light reflectance dynamic range below the lower limit is determined to be defective (step 36).
  • the region where the relative light reflectivity is linear has 54% of the relative light reflectivity dynamic range (90% x 6/10). Therefore, for example, in the case of seven-level multi-level recording, it is possible to secure a sufficiently large margin (relative light reflectance difference) between each step.
  • the organic dye used in Sample 1 It is determined that the recording medium 1 is suitable for use in the recording layer 12.
  • the absolute light reflectance of the unrecorded portion and the relative light By measuring the reflectivity dynamic range as characteristic data and evaluating the quality of the sample based on each measured characteristic data, the quality can be determined reliably and easily without using a dedicated multi-level recording / reproduction evaluation device. Can be evaluated. As a result, the characteristic data of the sample can be measured using the existing binary recording / reproduction evaluation device 40, and the evaluation can be performed based on the raw data. ⁇ Evaluation cost and, consequently, manufacturing cost of optical recording medium 1 can be sufficiently reduced '.
  • the reliability of the evaluation is further enhanced by performing the evaluation based on the absolute light reflectance and the relative light reflectance dynamic range that directly affect the quality of the optical recording medium 1 during the actual reproduction of the recorded data.
  • the quality of the optical recording medium 1 can be evaluated by simply comparing the lower limit (reference characteristic data) with the characteristic data measured by the binary recording / reproducing evaluation device 40. The quality of the recording medium 1 can be evaluated.
  • the present invention is not limited to the above-described embodiment of the invention, and can be appropriately modified.
  • an example of evaluating the optical recording medium 1 employing an organic dye as the recording layer 12 has been described, but the multi-level optical recording medium according to the present invention has been described.
  • the method of measuring the characteristic data and the method of evaluating the multi-level optical recording medium are not limited to the above, and the multi-level optical recording medium using an organic dye or an inorganic material other than those described above for the recording layer 12 may be used. It can also be applied to multi-level optical recording media for multi-level recording by phase change or magneto-optical.
  • the optical recording medium 1 is configured as a CD-R type optical recording medium.
  • the present invention is not limited to this, and other optical recording media may be used. It is generally applied to recording media, and is not limited to disk-shaped rotating bodies. Absent.
  • the optical recording medium 1 is configured to irradiate the recording and reproducing laser beams from the substrate 11 side, but the reflective layer, the recording layer, and the protective layer are sequentially formed on the substrate.
  • the present invention can also be applied to an optical recording medium which is stacked and configured to irradiate a recording and reproducing laser beam from the protective layer side.
  • the characteristic data (data on light reflectance) shown in the embodiment of the present invention is an example, and can be applied to measurement of other characteristic data and an evaluation method based on the measured characteristic data.
  • the numerical values of each light reflectance shown as an example are illustrative values for facilitating the understanding of the present invention, and can be appropriately changed.
  • the multi-level optical recording medium of the present invention includes various multi-level optical recording media that can perform multi-level multi-level recording as long as there are five or more levels.
  • the lower limit (reference characteristic data) for the characteristic data measured by the binary recording / reproducing evaluation device 40 is obtained in advance based on the correlation.
  • the present invention is not limited to this.
  • the characteristic data measured by the binary recording / reproduction evaluation device 40 is replaced with the characteristic data measured by the multi-level recording / reproduction evaluation device, and the replaced characteristic data and the multi-level recording It is also possible to evaluate by comparing with reference characteristic data for a reproduction evaluation device.
  • the multilevel optical recording medium is evaluated by evaluating the multilevel optical recording medium based on characteristic data measured using an existing binary recording / reproduction evaluation apparatus. Since the multi-level optical recording medium can be evaluated without newly purchasing or manufacturing the multi-level recording / reproducing evaluation device, the evaluation cost can be reduced. Therefore, an evaluation method for a multi-level optical recording medium that can sufficiently reduce the manufacturing cost of the multi-level optical recording medium is realized.

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

A method of measuring characteristic data for a multilevel optical recording medium, comprising measuring (steps 31-33) characteristic data for a multilevel optical recording medium (1) by using a two-value recording/reproducing evaluation device. This multilevel optical recording medium (1) is so produced as to be capable of multilevel recording with light reflectance with respect to a reproducing laser beam controlled in multiple stages by switching at least one of a recording laser beam irradiation time and an irradiation power and by changing the transmittance of a recording layer (12) by a recording laser beam. Accordingly, since characteristic data for a multilevel optical recording medium (1) can be measured without newly purchasing or producing a dedicated multilevel recording/reproducing evaluation device, the measuring costs can be reduced.

Description

糸田 »  Itoda »
マルチレベル光記録媒体についての特性データの測定方法、 およぴマルチレベル 光記録媒体にっ 、ての評価方法 Method for measuring characteristic data of multi-level optical recording medium and evaluation method for multi-level optical recording medium
技術分野 Technical field
この発明は、 1の仮想記録セルにマルチレベル記録が可能なマルチレベル光記 録媒体についての特性データを測定する測定方法、 およびその測定方法によって 測定された特性データに基づいてマルチレベル光記録媒体を評価する評価方法に 関するものである。 - 背景技術  The present invention relates to a measuring method for measuring characteristic data of a multilevel optical recording medium capable of multilevel recording in one virtual recording cell, and a multilevel optical recording medium based on the characteristic data measured by the measuring method. It is related to the evaluation method for evaluating. -Background technology
現在、 光記録媒体として、 記録用レーザービームを照射してピットを形成する ことにより 2値データが記録され、 かつそのピットの有無に基づいてその 2値デ ータを再生可能に構成された 2値光記録媒体が広く使用されている。 また、 近年 、 光記録媒体の記録密度向上の要請により、 記録用レーザービームの集光ビーム 径を調節して高密度に記録する研究も進められている。 その一方、 集光ビーム径 を調節する方式とは異なり、 複数の意味を持つ異なるマークのうちの一つを 1の 仮想記録セルに記録可能なマルチレベル光記録媒体の開発が進められている。 こ のマルチレベル光記録媒体では、 例えば、 記録用レーザービームの照射量を多段 階に切り替えることによって光記録媒体における記録対象の 1の仮想記録セルの 一部に光透過率を低下させる変質部分 (以下、 「記録マーク」 ともいう) が出現 し、 かつ、 この記録マークの 1の仮想記録セル全体に占める割合が記録用レーザ —ビームの照射量によって異なるという特性が利用されている。 つまり、 このマ ルチレベル光記録媒体では、 再生用レーザービームが照射された際に、 この記録 マークが形成されている仮想記録セルにおける光透過率の影響を受け、 その結果 として再生用レーザービームの光反射率が多段階 (例えば 5段階以上), になる。 したがって、 多段階の光反射率の各々に複数のデータ内容の各々を対応させるこ とにより、 1の仮想記録セルに複数のデータのいずれかが記録されることになるCurrently, as an optical recording medium, binary data is recorded by irradiating a recording laser beam to form pits, and the binary data can be reproduced based on the presence or absence of the pits. Value optical recording media are widely used. In recent years, in response to a request for an increase in the recording density of an optical recording medium, a study for adjusting the focused beam diameter of a recording laser beam to perform high-density recording has been advanced. On the other hand, unlike the method of adjusting the focused beam diameter, the development of a multi-level optical recording medium that can record one of a plurality of different meaningful marks in one virtual recording cell is underway. In this multi-level optical recording medium, for example, by changing the irradiation amount of the recording laser beam to multiple stages, a part of one virtual recording cell to be recorded in the optical recording medium that has a deteriorated portion (light-transmissive portion) is reduced. In the following, this is also called the “recording mark”), and the ratio of the recording mark to the entire virtual recording cell depends on the irradiation amount of the recording laser beam. In other words, in this multilevel optical recording medium, when the reproduction laser beam is irradiated, the light transmittance of the virtual recording cell where the recording mark is formed is affected, and as a result, the light of the reproduction laser beam is irradiated. The reflectivity is multi-step (for example, 5 steps or more),. Therefore, it is necessary to associate each of a plurality of data contents with each of the multi-stage light reflectances. As a result, any one of a plurality of data is recorded in one virtual recording cell
。 この場合、 光透過率とは、 仮想記録セルに照射した再生用レーザービームに対 して、 仮想記録セルを通過したレーザービームの割合をレ、い、 光反射率とは、 仮 想記録セノレに照射した再生用レーザービームに対して、 この仮想記録セルを通過 してマルチレベル光記録媒体の反射層で反射された後にその仮想記録セルを再度 通過してマルチレベル光記録媒体の外部に出射されるレーザービームの割合をレヽ ラ。 . In this case, the light transmittance is the ratio of the laser beam passing through the virtual recording cell to the reproducing laser beam irradiated on the virtual recording cell, and the light reflectance is the virtual recording cell. The irradiated reproduction laser beam passes through this virtual recording cell, is reflected by the reflective layer of the multi-level optical recording medium, and then passes through the virtual recording cell again and is emitted outside the multi-level optical recording medium. Laser beam rate.
その一方、 マルチレベル光記録媒体が各仮想記録セル毎の光反射率を多段階で 制御されて初めてマルチレベル記録が可能となる以上、 例えば、 未記録部分の光 反射率と、 記録用レーザービームの照射量が最も多い記録部分の光反射率との差 分に相当するダイナミックレンジがある程度広くなければ、 マルチレベル記録が 困難となる。 このため、 マルチレベル光記録媒体に用いる記録層としては、 記録 用レーザービームによる多段階の照射量に対応すべく、 光反射率のダイナミック レンジがある程度広レ、など、 マルチレベル記録に適した素材を選択しなければな らない。 したがって、 この素材の選択に際しては、 各種素材で記録層を形成した 評価対象の各種マルチレベル光記録媒体についての光反射率のダイナミックレン ジなどの特性データを測定し、 その特性データに基づいて、 その評価対象のマル チレベル光記録媒体の良否を評価する必要がある。 また、 マルチレベル光記録媒 体の製造時にも、 製造ロット毎に、 マルチレベル光記録媒体に対して専用のマル チレベル記録再生評価装置を用いて記録データが再生可能に正常にマルチレベル 記録されるか否かを評価する必要がある。 発明の開示  On the other hand, multi-level recording is possible only after the multi-level optical recording medium controls the light reflectivity of each virtual recording cell in multiple steps. For example, the light reflectivity of the unrecorded portion and the recording laser beam Unless the dynamic range corresponding to the difference from the light reflectance of the recording portion with the largest irradiation amount is large to some extent, multilevel recording becomes difficult. For this reason, the recording layer used for the multi-level optical recording medium is made of a material suitable for multi-level recording, such as a wide dynamic range of light reflectivity to cope with multi-step irradiation by the recording laser beam. Must be selected. Therefore, when selecting this material, the characteristic data such as the dynamic range of the light reflectance of various multi-level optical recording media to be evaluated in which the recording layer is formed of various materials is measured, and based on the characteristic data, It is necessary to evaluate the quality of the multilevel optical recording medium to be evaluated. Also, at the time of manufacturing a multi-level optical recording medium, the recording data can be normally reproduced in a multi-level optical recording medium in a reproducible manner by using a dedicated multi-level recording / reproducing evaluation apparatus for each manufacturing lot. Need to be evaluated. Disclosure of the invention
発明者は、 上述の従来技術を検討した結果、 以下のような改善すべき点を発見 した。 すなわち、 現在、 光記録媒体についての特性データを測定しかつ評価する ための装置としては、 2値光記録媒体を評価する 2値記録再生評価装置が主とし て用いられている。 このため、 マルチレベル光記録媒体についての特性データの 測定および評価に際して専用のマルチレベル記録再生評価装置を使用しなければ ならないとすれば、 光記録媒体の製造メーカーは、 専用のマルチレベル記録再生 評価装置を新たに購入または製造する必要がある。 また、 マルチレベル記録再生 評価装置を既に所有している製造メーカーであっても、 マルチレベル光記録媒体 を更に増産しょうとする場合には、 マルチレベル記録再生評価装置を新たに購入 または製造する必要がある。 このため、 その記録方式が優れているにも拘わらず 、 新たな評価装置の購入などによる特性データの測定コストおよび評価コストの 高騰に起因してマルチレベル光記録媒体の製造コストを低減するのが困難となる 。 したがって、 この点を改善するのが好ましい。 The inventor has found the following points to be improved as a result of examining the above-described conventional technology. That is, at present, as a device for measuring and evaluating characteristic data of an optical recording medium, a binary recording / reproducing evaluation device for evaluating a binary optical recording medium is mainly used. Used. For this reason, if it is necessary to use a dedicated multi-level recording / reproduction evaluation device to measure and evaluate the characteristic data of the multi-level optical recording medium, the manufacturer of the optical recording medium must use a dedicated multi-level recording / reproduction evaluation. Equipment must be newly purchased or manufactured. Even if a manufacturer already owns a multi-level recording / reproducing evaluation device, it is necessary to purchase or manufacture a new multi-level recording / reproducing evaluation device to further increase the production of multi-level optical recording media. There is. For this reason, despite the superior recording method, it is necessary to reduce the manufacturing cost of the multi-level optical recording medium due to the rise in the characteristic data measurement cost and the evaluation cost due to the purchase of a new evaluation device. It will be difficult. Therefore, it is preferable to improve this point.
本発明は、 上述のような改善すべき点を解決すべくなされたものであり、 測定 コストを低減し得るマルチレベル光記録媒体についての特性データの測定方法を 提供することを主目的とする。 また、 評価コストを低減し得るマルチレベル光記 録媒体についての評価方法を提供することを他の目的とする。  The present invention has been made to solve the above-described points to be improved, and has as its main object to provide a method for measuring characteristic data of a multilevel optical recording medium that can reduce the measurement cost. Another object of the present invention is to provide an evaluation method for a multi-level optical recording medium that can reduce the evaluation cost.
この発明に係るマルチレベル光記録媒体についての特性データの測定方法は、 マルチレベル記録が可能に製造されたマルチレベル光記録媒体についての特性デ ータを測定する測定方法であって、 2値記録再生評価装置を用いて前記マルチレ ベル光記録媒体についての特性データを測定する。 なお、 本発明におけるマルチ レベル光記録媒体には、 開発段階において作製される試料としてのマルチレベル 光記録媒体、 および実際に製品として製造されるマルチレベル光記録媒体の両者 が含まれる。  The method for measuring characteristic data of a multi-level optical recording medium according to the present invention is a measuring method for measuring characteristic data of a multi-level optical recording medium manufactured to enable multi-level recording. The characteristic data of the multi-level optical recording medium is measured using a reproduction evaluation device. It should be noted that the multi-level optical recording medium of the present invention includes both a multi-level optical recording medium as a sample manufactured in a development stage and a multi-level optical recording medium actually manufactured as a product.
この場合、 前記マルチレベル光記録媒体は、 記録用レーザービームの照射時間 および照射パヮ一の少なくとも一方を切り替えることにより、 再生用レーザービ ームに対する光反射率が多段階に制御されてマルチレベル記録が可能に製造され ているのが好ましい。 また、 前記マルチレベル光記録媒体は、 前記記録用レーザ 一ビームによつて記録層の透過率が変化させられることにより、 前記再生用レー ザ一ビームに対する光反射率が多段階に制御されるのが好ましい。 さらに、 前記 マルチレベル光記録媒体は、 前記再生用レーザービームに対する光反射率が 5段 階以上に制御可能に構成されているのが好ましレ、。 In this case, in the multi-level optical recording medium, by switching at least one of the irradiation time and the irradiation power of the recording laser beam, the light reflectance with respect to the reproducing laser beam is controlled in multiple stages, and multi-level recording is performed. Preferably, it is manufactured as possible. Further, the multi-level optical recording medium may be configured such that the transmittance of the recording layer is changed by one beam of the recording laser, whereby It is preferable that the light reflectance for the one beam is controlled in multiple stages. Further, it is preferable that the multi-level optical recording medium is configured so that the light reflectance with respect to the reproduction laser beam can be controlled to five or more steps.
これらのマルチレベル光記録媒体についての特性データの測定方法では、 既存 の 2値記録再生評価装置を用いてマルチレベル光記録媒体についての特性データ を測定することにより、 専用のマルチレベル記録再生評価装置を新たに購入また は製造することなくマルチレベル光記録媒体についての特性データを測定できる ため、 その測定コス トを低減することができる。 したがって、 マルチレベル光記 録媒体の製造コストを十分に低減することができる。  In the method of measuring characteristic data of these multi-level optical recording media, the characteristic data of the multi-level optical recording medium is measured using an existing binary recording / reproducing evaluation device, and a dedicated multi-level recording / reproduction evaluation device is used. Since the characteristic data of the multi-level optical recording medium can be measured without purchasing or manufacturing a new one, the measurement cost can be reduced. Therefore, the manufacturing cost of the multi-level optical recording medium can be sufficiently reduced.
また、 前記 2値記録再生評価装置によつて前記マルチレベル光記録媒体に所定 のデータを記録し、 かつ当該記録したマルチレベル光記録媒体の未記録部分およ ぴ記録部分についての前記特性データを測定するのが好ましい。 このように測定 することで、 実際に記録されたマルチレベル光記録媒体についての正確な特性デ ータを測定することができる。 したがって、 例えば、 マルチレベル光記録媒体の 良否を評価する際には、 その評価の信頼性を向上させることができる。  Also, predetermined data is recorded on the multi-level optical recording medium by the binary recording / reproducing evaluation device, and the characteristic data of an unrecorded part and a recorded part of the recorded multi-level optical recording medium are recorded. It is preferable to measure. By performing the measurement in this manner, it is possible to measure accurate characteristic data of the actually recorded multilevel optical recording medium. Therefore, for example, when evaluating the quality of a multilevel optical recording medium, the reliability of the evaluation can be improved.
この発明に係るマルチレベル光記録媒体にっレ、ての評価方法は、 上記したいず れかのマルチレベル光記録媒体についての特性データの測定方法によって測定し た前記特^^データに基づいて前記マルチレベル光記録媒体を評価する。  The evaluation method of the multi-level optical recording medium according to the present invention is based on the characteristic data measured by the characteristic data measuring method for any one of the above-described multi-level optical recording media. Evaluate multi-level optical recording media.
このマルチレベル光記録媒体についての評価方法では、 既存の 2値記録再生評 価装置を用いて測定された特性データに基づいてマルチレベル光記録媒体を評価 することにより、 専用のマルチレベル記録再生評価装置を新たに購入または製造 することなくマルチレベル光記録媒体について評価することができるため、 その 評価コス トを低減することができる。 したがって、 マルチレベル光記録媒体の製 造コストを十分に低減することができる。  In this evaluation method for a multilevel optical recording medium, a special multilevel optical recording medium is evaluated based on characteristic data measured using an existing binary recording / reproduction evaluation apparatus. Since the multilevel optical recording medium can be evaluated without newly purchasing or manufacturing an apparatus, the evaluation cost can be reduced. Therefore, the manufacturing cost of the multi-level optical recording medium can be sufficiently reduced.
この場合、 前記測定した特性データと、 前記 2値記録再生評価装置およびマル '記録再生評価装置によつてそれぞれ測定した前記マルチレベル光記録媒 体についての両特性データに関して予め求めた相関関係とに基づいて、 前記マル チレベル光記録媒体の良否を評価するのが好ましい。 このように評価することで 、 マルチレベル光記録媒体の良否を精度良く評価することができる。 In this case, the measured characteristic data and the multi-level optical recording medium measured by the binary recording / reproduction evaluation device and the multi-layer recording / reproduction evaluation device, respectively. It is preferable to evaluate the quality of the multi-level optical recording medium based on a correlation previously obtained with respect to both characteristic data of the body. By performing the evaluation in this manner, the quality of the multi-level optical recording medium can be accurately evaluated.
また、 前記相関関係に基づいて予め求めた基準特性データと、 前記 2値記録再 生評価装置によって測定した前記特性データとを比較して前記マルチレベル光記 録媒体の良否を評価するのが好ましい。 このように評価することで、 短時間でマ ルチレベル光記録媒体の良否を評価することができる。  Further, it is preferable that the quality of the multi-level optical recording medium is evaluated by comparing reference characteristic data obtained in advance based on the correlation with the characteristic data measured by the binary recording / reproducing evaluation device. . With such an evaluation, the quality of the multi-level optical recording medium can be evaluated in a short time.
なお、 本開示は、 2 0 0 1年 6月 5日に出願された日本特許出願である特願 2 0 0 1 - 1 6 9 9 0 8に含まれた主題に関連し、 これらの開示の全てはここに参 照事項として明白に組み込まれる。 図面の簡単な説明  This disclosure relates to the subject matter included in Japanese Patent Application No. 2001-169699, filed on June 5, 2001, All are expressly incorporated herein by reference. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態に係る光記録媒体 1の構成を示すために一部を切 り欠いた斜視図である。  FIG. 1 is a partially cutaway perspective view showing the configuration of an optical recording medium 1 according to an embodiment of the present invention.
図 2は、 光記録媒体 1に記録された記録マーク M a〜M gを概念的に示す概念 図である。  FIG. 2 is a conceptual diagram conceptually showing the recording marks M a to M g recorded on the optical recording medium 1.
図 3は、 各種有機色素を使用した光記録媒体 1の相対光反射率特性を示す特性 図である。  FIG. 3 is a characteristic diagram showing the relative light reflectance characteristics of the optical recording medium 1 using various organic dyes.
図 4は、 互いに異なる種類の有機色素を使用した試料 1〜 3のそれぞれの相対 光反射率特性を示す特性図である。  FIG. 4 is a characteristic diagram showing relative light reflectance characteristics of Samples 1 to 3 using different types of organic dyes.
図 5は、 媒体評価処理 3 0のフローチャートである。  FIG. 5 is a flowchart of the medium evaluation process 30.
図 6は、 2値記録再生評価装置 4 0の構成を示すプロック図である。 発明を実施するための最良の形態  FIG. 6 is a block diagram showing the configuration of the binary recording / reproduction evaluation device 40. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 添付図面を参照して、 本発明に係るマルチレベル光記録媒体についての 特性データの測定方法、 およぴマルチレベル光記録媒体についての評価方法の好 適な実施の形態について説明する。 Hereinafter, with reference to the accompanying drawings, a method of measuring characteristic data of a multi-level optical recording medium according to the present invention and a method of evaluating a multi-level optical recording medium will be described. A preferred embodiment will be described.
最初に、 本発明における評価対象のマルチレベル光記録媒体 1 (以下、 「光記 録媒体 1」 ともいう) の構成について、 図 1を参照して説明する。  First, the configuration of a multilevel optical recording medium 1 to be evaluated in the present invention (hereinafter, also referred to as “optical recording medium 1”) will be described with reference to FIG.
光記録媒体 1は、 C D— R型の光記録媒体 (追記型光記録媒体) であって、 図 1に示すように、 基板 1 1、 記録層 1 2、 反射膜 1 3および保護層 1 4を備えて 構成されている。 基板 1 1は、 透明な樹脂を基材として円盤状に形成されている 。 この基板 1 1における一方の面 (図 1における上面) には、 その中心部近傍か ら外縁部に向けて、 レーザービームガイド用のグループ 1 1 a、 およびランド 1 1 bが螺旋状に形成されている。 記録層 1 2は、 シァニン、 メロシアニン、 メチ ン系色素およびその誘導体、 ベンゼンチオール金属錯体、 フタロシアニン色素、 ナフタロシアニン色素、 ァゾ色素などの有機色素が用いられて形成され、 この有 機色素がグループ 1 1 aおよびランド 1 1 bを覆うように塗布して形成されてい る。 この記録層 1 2は、 記録装置によって記録用レーザービームが照射されるこ とで分解変質し、 そのレーザービームの照射量に応じて、 その光透過率が変化す る。 反射膜 1 3は、 光記録媒体 1に記録された記録データの再生時に基板 1 1お よび記録層 1 2を通過した再生用レーザービームを反射するための薄膜層であつ て、 金や銀などの金属を主原料として記録層 1 2の上に例えばスパッタリングに よって形成されている。 保護層 1 4は、 反射膜 1 3および記録層 1 2を保護する 層であって、 反射膜 1 3の外面を覆うように形成されている。  The optical recording medium 1 is a CD-R type optical recording medium (write-once optical recording medium). As shown in FIG. 1, a substrate 11, a recording layer 12, a reflective film 13, and a protective layer 14 are provided. It is configured with. The substrate 11 is formed in a disk shape using a transparent resin as a base material. On one surface (upper surface in FIG. 1) of the substrate 11, a laser beam guide group 11 a and a land 11 b are spirally formed from the vicinity of the center to the outer edge. ing. The recording layer 12 is formed using organic dyes such as cyanine, merocyanine, methine dyes and derivatives thereof, benzenethiol metal complexes, phthalocyanine dyes, naphthalocyanine dyes, and azo dyes. It is formed by coating so as to cover 11a and land 11b. The recording layer 12 is decomposed and deteriorated by the irradiation of the recording laser beam by the recording device, and the light transmittance changes according to the irradiation amount of the laser beam. The reflection film 13 is a thin film layer for reflecting a reproduction laser beam that has passed through the substrate 11 and the recording layer 12 when reproducing the recording data recorded on the optical recording medium 1, and is made of gold, silver, or the like. It is formed on the recording layer 12 by, for example, sputtering using the above metal as a main raw material. The protective layer 14 is a layer that protects the reflective film 13 and the recording layer 12, and is formed so as to cover the outer surface of the reflective film 13.
次に、 光記録媒体 1の記録原理について、 図面を参照して説明する。  Next, the recording principle of the optical recording medium 1 will be described with reference to the drawings.
この光記録媒体 1では、 図 1に示すように、 その回転方向 (円周方向) に沿つ てグループ 1 1 aを仮想的に分割した仮想記録セル S , S · 'が記録単位として 規定されている。 ここで、 図 2に示すように、 仮想記録セル Sのグループ 1 1 a に沿った方向の長さは、 集光ビーム径 (ビームウェストの直径) Dよりも短く規 定されている。  In the optical recording medium 1, as shown in FIG. 1, virtual recording cells S 1, S ′ ′ obtained by virtually dividing the group 11 a along the rotation direction (circumferential direction) are defined as recording units. ing. Here, as shown in FIG. 2, the length of the virtual recording cell S in the direction along the group 11a is defined to be shorter than the focused beam diameter (diameter of the beam waist) D.
この場合、 記録装置のピックァップから出射される記録用レーザービームの照 射時間 (すなわち、 レーザービームの照射量) を記録データの値に応じて多段階 に制御することで、 図 2に示すように、 記録層 1 2 (主として有機色素) の分解 変質の度合いが異なる記録マーク M a〜M g (以下、 区別しないときには 「記録 マーク M」 ともいう) が仮想記録セル S内に形成される。 なお、 同図では、 分解 変質の度合いを記録マーク Mの大きさで概念的に図示している。 また、 記録用レ 一ザ一ビームによって記録データを記録する際には、 光記録媒体 1を回転させつ つ記録用レーザービームを照射するため、 記録マーク Mは、 照射時間に応じた長 さの長円形となる。 In this case, the recording laser beam emitted from the pickup of the recording device is irradiated. By controlling the irradiation time (that is, the irradiation amount of the laser beam) in multiple steps according to the value of the recording data, the degree of decomposition and alteration of the recording layer 12 (mainly organic dye) differs as shown in Fig. 2. Recording marks M a to M g (hereinafter, also referred to as “recording marks M” when not distinguished) are formed in the virtual recording cell S. In the figure, the degree of decomposition and deterioration is conceptually shown by the size of the recording mark M. In addition, when recording data is recorded with a recording laser beam, the recording mark M has a length corresponding to the irradiation time because the recording laser beam is irradiated while rotating the optical recording medium 1. It becomes an oval.
また、 この光記録媒体 1にマルチレベル記録する際には、 仮想記録セル Sに再 生用レーザービームを照射した際の光反射率が例えば 7段階 (未記録部分を含め て 8段階) となるように、 記録マーク M a〜M gのそれぞれの分解変質度合い ( 光透過率の変化量) を規定する。 この場合、 光反射率は、 記録層 1 2の分解変質 度合いが小さいほど大きくなる。 このため、 記録マーク Mが記録されていない仮 想記録セル Sが最大光反射率の特性を有し、 最も小さな記録マーク M aの仮想記 録セル Sが記録マーク Mのうち最も大きい光反射率の特性を有し、 以降、 記録マ ーク M b〜M f の順に各仮想記録セル Sの光反射率が低下し、 最も大きな記録マ ーク M gの仮想記録セル Sが最小光反射率の特性を有する。 したがって、 レーザ 一ビームの照射量を制御して分解変質部分の面積比 (つまり記録層 1 2の光透過 率) を適宜設定することにより、 光反射率が 7段階となる記録マーク M a〜M g を形成することが可能となる。  When multi-level recording is performed on the optical recording medium 1, the light reflectance when the virtual recording cell S is irradiated with the reproduction laser beam is, for example, 7 steps (8 steps including the unrecorded part). In this way, the degree of degradation and deterioration (the amount of change in light transmittance) of each of the recording marks M a to M g is specified. In this case, the light reflectance increases as the degree of degradation of the recording layer 12 decreases. For this reason, the virtual recording cell S on which the recording mark M is not recorded has the characteristic of maximum light reflectance, and the virtual recording cell S of the smallest recording mark M a has the largest light reflectance of the recording mark M. Thereafter, the light reflectance of each virtual recording cell S decreases in the order of the recording marks Mb to Mf, and the virtual recording cell S of the largest recording mark Mg has the minimum light reflectance. It has the following characteristics. Therefore, by controlling the irradiation amount of one laser beam and appropriately setting the area ratio of the degraded and degraded portion (that is, the light transmittance of the recording layer 12), the recording marks Ma to M having the seven levels of light reflectivity are obtained. g can be formed.
次に、 光記録媒体 1の記録層 1 2に使用される有機色素の特性について、 図面 を参照して説明する。  Next, characteristics of the organic dye used in the recording layer 12 of the optical recording medium 1 will be described with reference to the drawings.
記録層 1 2に使用される有機色素は、 一般的に、 記録用レーザービームの照射 時間 (照射量) の増加に伴い分解変質の度合いも増加するという特性を有する。 その一方、 この際の光反射率の変化は、 記録用レーザービームの照射時間 (照射 量) に対して直線的ではない。 また、 記録用レーザービームの照射時間 (照射量 ) に伴う分解変質は、 照射開始から暫くの間はその度合いが緩やかで、 所定時間 経過後にその度合いが急峻かつ直線的となり、 その後、 その度合いが再び緩やか となって、 ある照射時間を超えた後には、 その度合いが殆ど増加しないという特 性を示す。 まだ、 分解変質されていない有機色素の光透過率、 最も大きく分解変 質した有機色素 (分解変質の度合いが殆ど増加しない状態となるまで分解変質さ せられた状態の有機色素) の光透過率、 および分解変質の度合いに応じた光透過 率の変化量も、 使用する有機色素の材質によって様々である。 したがって、 例え ば互いに異なる有機色素で記録層 1 2が形成される 5種類の光記録媒体 1を作製 した場合、 各光記録媒体 1の各記録層 1 2における絶対光反射率は互いに相違す る。 この場合、 絶対光反射率は、 平滑な表面に例えばスパッタリングなどによつ て金などの薄膜が施された円盤体についての光反射率の値を基準光反射率 (1 0 0 %) に置き換えたときに、 その基準光反射率と比較した各光記録媒体 1につい ての記録層 1 2における未記録部分 (未記録の仮想記録セル S ) での光反射率を 意味する。 また、 各光記録媒体 1の各記録層 1 2における相対光反射率の特性も 、 図 3の特性 C 1〜C 5に示すように、 互いに相違する。 なお、 同図に示すよう に、 上記した分解変質の度合いが特性 C 1〜C 5の曲線における傾きに寄与して いる。 この場合、 相対光反射率は、 各光記録媒体 1の記録層 1 2における未記録 部分 (つまり未記録の仮想記録セル S ) の絶対光反射率の値を 1 0 0 %に置き換 えたときに、 記録部分 (つまり記録されている仮想記録セル S ) における照射時 間に応じた光反射率の割合を意味する。 また、 絶対光反射率および相対光反射率 が各有機色素毎に相違することに起因して、 各光記録媒体 1についての変調度、 ダイナミックレンジ、 ジッタ特性、 および B . E . R (ビットエラーレート) な どの各種特性も相違する。 さらに、 これらの各種特性は、 有機色素の材質だけで はなく、 有機色素の塗布厚、 グループ 1 1 aの構造 (溝の深さや幅あるいは形状 ) および反射膜 1 3の材質などの各種パラメータに応じても相違する。 Generally, the organic dye used in the recording layer 12 has a characteristic that the degree of decomposition and alteration increases as the irradiation time (irradiation amount) of the recording laser beam increases. On the other hand, the change in the light reflectance at this time is not linear with respect to the irradiation time (irradiation amount) of the recording laser beam. The recording laser beam irradiation time (irradiation amount) ), The degree of degradation is moderate for a while from the start of irradiation, becomes steep and linear after a predetermined time, and then gradually decreases again, exceeding a certain irradiation time. Later, it shows the characteristic that the degree hardly increases. The light transmittance of the organic dye that has not yet been degraded and altered, and the light transmittance of the organic dye that has been degraded and altered the most (organic dye that has been degraded and altered until the degree of degradation and degradation hardly increases) Also, the amount of change in light transmittance according to the degree of degradation and degradation varies depending on the material of the organic dye used. Therefore, for example, when five types of optical recording media 1 in which the recording layers 12 are formed of mutually different organic dyes are produced, the absolute light reflectances of the recording layers 12 of the optical recording media 1 are different from each other. . In this case, the absolute light reflectance is replaced by the reference light reflectance (100%) for the disk with a thin surface made of gold or the like applied to the smooth surface by, for example, sputtering. Means the light reflectance at the unrecorded portion (unrecorded virtual recording cell S) in the recording layer 12 of each optical recording medium 1 compared to the reference light reflectance. The characteristics of the relative light reflectivity of each recording layer 12 of each optical recording medium 1 are also different from each other as shown by characteristics C1 to C5 in FIG. In addition, as shown in the figure, the degree of the above-mentioned degradation alteration contributes to the slope of the curves of the characteristics C1 to C5. In this case, the relative light reflectance is obtained by replacing the value of the absolute light reflectance of the unrecorded portion (that is, the unrecorded virtual recording cell S) in the recording layer 12 of each optical recording medium 1 with 100%. Means the ratio of the light reflectance according to the irradiation time in the recording portion (that is, the recorded virtual recording cell S). Further, due to the difference in the absolute light reflectance and the relative light reflectance for each organic dye, the modulation degree, dynamic range, jitter characteristics, and B.E.R. Various characteristics such as rate) are also different. Furthermore, these various properties are determined not only by the material of the organic dye, but also by various parameters such as the coating thickness of the organic dye, the structure of the group 11a (depth, width or shape of the groove) and the material of the reflective film 13. It will be different depending on the situation.
この場合、 光記録媒体 1の光反射率を多段階で正確に制御して初めてマルチレ ベルの記録が可能となる以上、 光反射率が最も大きい記録部分 (未記録の仮想記 録セル S ) の絶対光反射率がある程度大きく (例えば、 4 0 %〜8 0 %) 、 かつ 、 絶対光反射率が最も大きい記録部分と、 最も小さい記録部分 (記録マーク M g が形成された仮想記録セル S ) との光反射率の差がある程度大きくなければ、 マ ルチレベルで記録された記録データの再生が困難となる。 なお、 絶対光反射率は 、 大きいほど好ましいが、 一般的には、 例えば、 上記したパラメータの特性や、 グループ 1 1 aの構造に応じて再生用レーザービームが乱反射することによって 再生装置のピックアップに戻る量が減少することに起因して、 8 0 %を超える値 を確保するのは困難である。 また、 分解変質していない記録部分 (未記録の仮想 記録セル S ) における光反射率の値を 1 0 0 %に置き換えて、 分解変質の度合い が最も大きレ、記録部分 (分解変質の度合いが殆ど増加しなレヽ状態となるまで分解 変質させられた仮想記録セル S ) の光反射率の割合を相対光反射率ダイナミック 定義した場合、 前述した有機色素の特性からして、 その相対光反射率ダ ミックレンジのうち、 未記録部分側の領域 (約 1 0分の 2の領域) 、 および 分解変質の度合いが最も大きい記録部分側の領域 (約 1 0分の 2の領域) では、 レーザービームの照射時間 (照射量) に対して非直線的に相対光反射率が変化し 、 その両領域の中間領域としての 1 0分の 6程度の範囲の領域では、 照射時間に 対して相対光反射率が直線的に変化する。 このため、 光記録媒体 1としては、 例 えば、 光反射率が最も大きい記録部分の絶対光反射率が 4 0 %〜8 0 %の範囲内 であって、 絶対光反射率が最も大きい記録部分 (記録マーク M aが記録された仮 想記録セル S ) と、 最も小さい記録部分 (記録マーク M gが記録された仮想記録 セル S ) との光反射率の差が 4 0ポイントを超えるのが好ましい。 したがって、 記録層 1 2として用いる有機色素を選択する際や、 光記録媒体 1の製造時におけ る良品検査の際には、 この絶対光反射率および光反射率の差が上記の基準 (しき い値) を満たしている力否かの評価が重要となる。 なお、 上記した未記録部分側 およぴ記録部分側の領域における 2つの約 1 0分の 2の領域、 並びに中間領域と しての 1 0分の 6程度の範囲の領域の割合は、 記録層 1 2に用いられる有機色素 の特 1"生によるところが大きく、 一義的に定まるものではない。 In this case, the multi-recording is performed only when the optical reflectance of the optical Since the recording of a bell is possible, the absolute light reflectance of the recording portion having the highest light reflectance (the unrecorded virtual recording cell S) is somewhat large (for example, 40% to 80%), and Unless the difference in light reflectance between the recording part having the largest light reflectance and the recording part having the smallest light (the virtual recording cell S in which the recording mark M g is formed) is large to some extent, the recording data recorded at multi-levels will be obtained. Reproduction becomes difficult. The absolute light reflectivity is preferably as large as possible. However, in general, for example, the laser beam for reproduction is irregularly reflected in accordance with the characteristics of the above-described parameters and the structure of the group 11a, so that it is difficult for the pickup of the reproduction apparatus to pick up. It is difficult to secure values above 80% due to the reduced amount of return. Also, the value of the light reflectivity in the recorded portion (unrecorded virtual recording cell S) that has not been degraded and altered is replaced with 100%, and the degree of degradation and degeneration is the highest, and the recorded portion (degradation and degradation is degraded). When the ratio of the light reflectance of the virtual recording cell S) which has been decomposed and deteriorated until the laser state hardly increases is defined as the relative light reflectance dynamic, the relative light reflectance is determined from the characteristics of the organic dye described above. In the unrecorded area (approximately two-tenths of an area) of the dynamic range, and in the recorded part (the area of about two-tenths) where the degree of decomposition and degradation is the highest, the laser beam The relative light reflectance changes nonlinearly with respect to the irradiation time (irradiation amount), and the relative light reflection with respect to the irradiation time is in an area of about 6/10 which is an intermediate area between the two areas. The rate changes linearly. For this reason, for the optical recording medium 1, for example, the recording portion having the highest absolute light reflectance is in the range of 40% to 80%, and the recording portion having the highest light reflectance is within the range of 40% to 80%. The difference in light reflectance between the virtual recording cell S where the recording mark M a is recorded and the virtual recording cell S where the recording mark M g is recorded exceeds 40 points. preferable. Therefore, when selecting an organic dye to be used as the recording layer 12 or when inspecting non-defective products during the production of the optical recording medium 1, the difference between the absolute light reflectance and the light reflectance is determined by the above-described criteria. Value) is important. It should be noted that the two regions of about two-tenths in the unrecorded portion side and the recorded portion side described above, and the intermediate region The ratio of the area in the range of about 6/10 is largely determined by the organic dye used for the recording layer 12 and is not determined uniquely.
続いて、 光記録媒体 1の評価方法について、 図面を参照して説明する。 なお、 光記録媒体 1の評価としては、 上記した各種特性のいずれを用いても評価するこ とができ、 通常は、 マルチレベル記録再生評価装置を用いて評価する。 その一方 、 発明者は、 マルチレベル記録再生評価装置によって測定した光記録媒体 1につ いての特性データと、 2値記録再生評価装置によって測定した光記録媒体 1につ いての特性データとの間には、 所定の相関関係が存在することを見いだしている 。 例えば、 上記したように、 2値記録方式で記録した光記録媒体 1の絶対光反射 率および相対光反射率ダイナミックレンジが所定の基準を満たす場合には、 上記 したパラメータの種類に拘わらず、 その光記録媒体 1にマルチレベル記録方式で 記録した際に、 絶対光反射率が 4 0 %〜 8 0 %の範囲内であって、 未記録部分と 記録マーク M gとの間の光反射率の差が 4 0ポイントを超えて、 各記録マーク M a〜M gを識別するのに十分となることを見いだしている。 また、 他の例として 、 オレンジフック (Compact Disc Recordable System Description) に従って彻 J 定した 2値記録信号に対する再生信号の C/N比 (いわゆる 3 T信号 (6 9 2 η s信号) を使用しての C/N比測定) が所定レベル (例えば 5 0 d B ) を超える ときには、 その光記録媒体 1がマルチレベル記録方式の記録に使用可能なことも 見いだしている。 さらには、 2値記録方式による光記録媒体 1についての上記し た光反射率、 変調度、 ダイナミックレンジ、 ジッタ特性、 および B . E . R (ビ ットエラ一レート) などの各種特性の相互間にも、 所定の相関関係が存在するこ とを見いだしている。  Next, a method for evaluating the optical recording medium 1 will be described with reference to the drawings. The optical recording medium 1 can be evaluated using any of the various characteristics described above, and is usually evaluated using a multilevel recording / reproduction evaluation apparatus. On the other hand, the inventor has determined that the characteristic data of the optical recording medium 1 measured by the multi-level recording / reproducing evaluation device is different from the characteristic data of the optical recording medium 1 measured by the binary recording / reproducing evaluation device. Have found that a certain correlation exists. For example, as described above, when the absolute light reflectivity and the relative light reflectivity dynamic range of the optical recording medium 1 recorded by the binary recording method satisfy predetermined criteria, regardless of the type of the above-described parameter, When recording on the optical recording medium 1 by the multi-level recording method, the absolute light reflectance is in the range of 40% to 80%, and the light reflectance between the unrecorded portion and the recording mark Mg is It has been found that the difference exceeds 40 points and is sufficient to identify each recording mark M a -M g. As another example, the C / N ratio of a reproduced signal to a binary recording signal (so-called 3T signal (692 ηs signal)) determined according to the orange hook (Compact Disc Recordable System Description) is used. When the C / N ratio measurement exceeds a predetermined level (for example, 50 dB), it is also found that the optical recording medium 1 can be used for multilevel recording. Furthermore, between the above-mentioned various characteristics of the optical recording medium 1 based on the binary recording method, such as the optical reflectance, modulation degree, dynamic range, jitter characteristics, and B.E.R. (bit error rate). Also find that a certain correlation exists.
したがって、 以下、 発明者が見いだした相関関係のうちの一例として、 2値記 録再生方式によつて記録した光記録媒体 1についての絶対光反射率および相対光 反射率ダイナミックレンジと、 マルチレベル記録再生方式によつて記録された光 記録媒体 1についての絶対光反射率および上記した光反射率の差との間の相関関 係、 並びに、 2値記録再生方式によって記録された光記録媒体 1についての絶対 光反射率および相対光反射率ダイナミックレンジについての特'生データに基づい て、 その光記録媒体 1を評価する方法について説明する。 なお、 上記した所定の 基準 (しきい値) として、 絶対光反射率の下限値が 4 0 %であって、 相対光反射 率ダイナミックレンジの下限値が 4 0 %であるとして、 以下に説明する。 また、 本発明は、 記録層 1 2として使用する有機色素を選択する際の光記録媒体 1 (以 下、 「試料」 ともいう) の評価、 および光記録媒体 1の製造時における製造ロッ ト毎の良否検査の際の実製品の評価の両者に適用できるが、 以下、 有機色素の選 択時における試料の評価を例に挙げて説明する。 Accordingly, hereinafter, as an example of the correlation found by the inventor, the absolute light reflectance and relative light reflectance dynamic range of the optical recording medium 1 recorded by the binary recording / reproducing method, and the multi-level recording Correlation between the absolute light reflectivity of the optical recording medium 1 recorded by the reproducing method and the difference in the light reflectivity described above. And a method for evaluating the optical recording medium 1 based on raw data on the absolute light reflectance and relative light reflectance dynamic range of the optical recording medium 1 recorded by the binary recording / reproducing method. explain. Note that, as the above-mentioned predetermined reference (threshold), the following description is based on the assumption that the lower limit of the absolute light reflectance is 40% and the lower limit of the relative light reflectance dynamic range is 40%. . In addition, the present invention evaluates the optical recording medium 1 (hereinafter, also referred to as “sample”) when selecting an organic dye to be used as the recording layer 12, and evaluates the optical recording medium 1 for each production lot during the production of the optical recording medium 1. This method can be applied to both evaluation of actual products at the time of quality inspection. The following describes an example of evaluation of a sample when selecting an organic dye.
最初に、 この光記録媒体 1に対する光反射率を測定する 2値記録再生評価装置 について図 6を参照して説明する。 2値記録再生評価装置 4 0は、 汎用の評価装 置であって、 通常の C D— Rレコーダの機能と、 光反射率を測定する機能とを有 している。 具体的には、 2値記録再生評価装置 4 0は、 スピンドルサーボ 4 1、 スピンドノレモータ 4 2、 ピックアップ 4 3、 フォーカストラッキングサーボ 4 4 、 送りサーボ 5 5および制御装置 4 6を備えている。 この場合、 スピンドルモー タ 4 2は、 スピンドルサーポ 4 1によつて駆動制御され、 光記録媒体 1を線速度 一定の条件で回転させる。 ピックアップ 4 3は、 制御装置 4 6の制御下でレーザ 一ドライバによってレーザー (共に図示せず) が駆動されて光記録媒体 1に対し て記録用レーザービームまたは再生用レーザービームを照射する。 これにより、 記録層 1 2に対する 2値データの記録、 または光記録媒体 1によって反射された 再生用レーザービームのレベルに応じた再生が行われる。  First, a binary recording / reproducing evaluation apparatus for measuring the light reflectance of the optical recording medium 1 will be described with reference to FIG. The binary recording / reproduction evaluation device 40 is a general-purpose evaluation device, and has a function of a normal CD-R recorder and a function of measuring light reflectance. Specifically, the binary recording / reproducing evaluation device 40 includes a spindle servo 41, a spinneret motor 42, a pickup 43, a focus tracking servo 44, a feed servo 55, and a control device 46. In this case, the spindle motor 42 is driven and controlled by the spindle servo 41, and rotates the optical recording medium 1 at a constant linear velocity. The laser 43 (both not shown) is driven by a laser driver under the control of the controller 46 to irradiate the optical recording medium 1 with a recording laser beam or a reproducing laser beam. As a result, the recording of binary data on the recording layer 12 or the reproduction according to the level of the reproduction laser beam reflected by the optical recording medium 1 is performed.
また、 ピックアップ 4 3は、 対物レンズおよびハーフミラー (共に図示せず) を備え、 記録用または再生用のレーザービームを光記録媒体 1の記録層 1 2に集 光させる。 具体的には、 フォーカストラッキングサーボ 4 4によって対物レンズ がフォーカストラッキング制御され、 これにより、 記録用または再生用のレーザ 一ビームが光記録媒体 1の記録層 1 2に集光させられる。 このピックアップ4 3 は、 光記録媒体 1の直径方向に沿つてその内周側と外周側との間を送りサーポ 4 5によって往復動させられる。 制御装置 4 6は、 スピンドルサーボ 4 1、 ピック アップ 4 3、 フォーカストラッキングサーボ 4 4および送りサーボ 4 5の駆動を 制御すると共に、 ピックアップ 4 3から出力された電気的信号に基づいて、 記録 層 1 2に記録されている記録データを判読すると共に、 光記録媒体 1によって反 射された再生用レーザービームの光反射率を測定する。 なお、 記録データの判読 処理および光反射率の測定処理自体は公知のため、 その説明を省略する。 The pickup 43 has an objective lens and a half mirror (both not shown), and focuses a recording or reproducing laser beam on the recording layer 12 of the optical recording medium 1. Specifically, focus tracking control of the objective lens is performed by the focus tracking servo 44, whereby a recording or reproducing laser beam is focused on the recording layer 12 of the optical recording medium 1. This pickup 4 3 The optical recording medium 1 is reciprocated by a feeder 45 between the inner peripheral side and the outer peripheral side along the diameter direction of the optical recording medium 1. The control device 46 controls the drive of the spindle servo 41, the pickup 43, the focus tracking servo 44, and the feed servo 45, and the recording layer 1 based on the electric signal output from the pickup 43. The recorded data recorded in 2 is read, and the light reflectance of the reproducing laser beam reflected by the optical recording medium 1 is measured. Since the reading process of the recorded data and the measuring process of the light reflectance are known, their description is omitted.
まず、 異なる有機色素をそれぞれ塗布して試料 1〜3 (図示せず) を作製する 。 次に、 この試料 1〜 3に対して図 5に示す媒体評価処理 3 0を実行する。 この 媒体評価処理 3 0では、 まず、 評価対象の試料に対して 2値記録再生評価装置 4 0によって所定のデータを記録する (ステップ 3 1 ) 。 この場合、 2値記録再生 評価装置 4 0によつて照射される記録用レーザービームが 2値記録用に比較的大 きなパワーに設定されている。 したがって、 記録層 1 2が大きく分解変質される ため、 各試料における記録部分の相対光反射率は、 図 4に示す試料 1〜3につい ての特性 C 1〜C 3上に点 P 1〜P 3で示すように、 大きく低下する。 次に、 2 値記録再生評価装置 4 0によって、 各試料 1〜 3の未記録部分の絶対光反射率と 、 未記録部分および記録部分の相対光反射率を測定する (ステップ 3 2 ) 。 具体 的には、 2値記録再生評価装置 4 0によって、 各試料に向けて再生用レーザービ ームを照射すると共に記録層 1 2を通過して反射膜 1 3によって反射された再生 用レーザービームを受光する。 次に、 ピックアップ 4 3を介して受光した再生用 レーザービームを電気的信号に変換した後、 制御装置 4 6が、 この電気的信号の レベルに基づいて、 各試料 1〜 3毎の絶対光反射率を求める。 次いで、 制御装置 First, samples 1 to 3 (not shown) are prepared by applying different organic dyes, respectively. Next, the medium evaluation processing 30 shown in FIG. In the medium evaluation process 30, first, predetermined data is recorded on the sample to be evaluated by the binary recording / reproducing evaluation device 40 (step 31). In this case, the recording laser beam emitted by the binary recording / reproduction evaluation device 40 is set to a relatively large power for binary recording. Therefore, since the recording layer 12 is greatly decomposed and deteriorated, the relative light reflectance of the recording portion in each sample is represented by the points P 1 to P 3 on the characteristics C 1 to C 3 of the samples 1 to 3 shown in FIG. As shown by 3, it drops significantly. Next, the absolute light reflectance of the unrecorded portion of each of the samples 1 to 3 and the relative light reflectance of the unrecorded portion and the recorded portion are measured by the binary recording / reproducing evaluation device 40 (step 32). Specifically, the binary recording / reproduction evaluation device 40 irradiates a reproduction laser beam toward each sample and simultaneously passes the reproduction laser beam reflected by the reflection film 13 after passing through the recording layer 12. Receive light. Next, after converting the reproduction laser beam received via the pickup 43 into an electric signal, the controller 46 controls the absolute light reflection of each sample 1 to 3 based on the level of the electric signal. Find the rate. Next, the control device
4 6は、 各試料 1〜 3毎の絶対光反射率の値を 1 0 0 %の光反射率に置き換えて 、 各試料 1〜 3毎に記録部分の相対光反射率を求める。 In step 46, the relative light reflectance of the recording portion is obtained for each of the samples 1 to 3 by replacing the value of the absolute light reflectance for each of the samples 1 to 3 with the light reflectance of 100%.
この場合、 試料 1 , 2 , 3の未記録部分についての各絶対光反射率が 6 0 %、 In this case, the absolute light reflectance of each of the unrecorded portions of Samples 1, 2, and 3 was 60%,
5 0 %および 3 0 %と測定され、 試料 1 , 2 , 3の記録部分についての相対光反 射率が、 図 4に示す特性 C 1〜C 3上の各点 P 1〜P 3で示すように、 1 0 %、 6 5 %および 1 5 %とそれぞれ測定されたものとする。 なお、 同図における特性 C 1〜C 3は、 試料 1 , 2, 3の記録部分についての相対光反射率に基づいて、 各照射時間に応じた記録部分に対応する相対光反射率を推測した特性を図示して いる。 Measured at 50% and 30%, and the relative light reflections on the recorded portions of Samples 1, 2, and 3 It is assumed that the emissivity is measured as 10%, 65%, and 15%, respectively, as indicated by points P1 to P3 on characteristics C1 to C3 shown in FIG. Note that the characteristics C1 to C3 in the figure are based on the relative light reflectance of the recording portions of Samples 1, 2, and 3, and the relative light reflectance corresponding to the recording portion corresponding to each irradiation time was estimated. The characteristics are illustrated.
次に、 制御装置 4 6は、 未記録部分および記録部分の各相対光反射率に基づい て、 各試料 1〜 3の相対光反射率ダイナミックレンジを求める (ステップ 3 3 ) 。 この場合、 図 4に示すように、 例えば、 試料 1の相対光反射率ダイナミックレ ンジ R a 1として 9 0 %、 試料 2の相対光反射率ダイナミックレンジ R a 2とし て 3 5 %、 試料 3の相対光反射率ダイナミックレンジ R a 3として 8 5 %が求め られる。 次いで、 制御装置 4 6は、 求めた各絶対光反射率と、 対応する下限値 ( 所定の基準値としての 4 0 %) とを比較して、 各絶対光反射率が下限値を超えて いるか否かを判別すると共に、 各試料 1〜 3の相対光反射率ダイナミックレンジ と、 対応する下限値 (所定の基準値としての 4 0 %) とを比較して、 各相対光反 射率ダイナミックレンジが下限値を超えているか否かを判別する (ステップ 3 4 ) 0 Next, the controller 46 obtains a relative light reflectance dynamic range of each of the samples 1 to 3 based on the relative light reflectance of each of the unrecorded portion and the recorded portion (step 33). In this case, as shown in FIG. 4, for example, the relative light reflectivity dynamic range Ra1 of sample 1 is 90%, the relative light reflectivity dynamic range Ra2 of sample 2 is 35%, and sample 3 is A relative light reflectivity dynamic range Ra3 of 85% is obtained. Next, the controller 46 compares the obtained absolute light reflectance with the corresponding lower limit (40% as a predetermined reference value), and determines whether each absolute light reflectance exceeds the lower limit. In addition to determining whether or not the relative light reflectance dynamic range of each sample 1 to 3 is compared with the corresponding lower limit (40% as a predetermined reference value), the relative light reflectance dynamic range is determined. To determine whether or not exceeds the lower limit (Step 3 4) 0
この結果、 制御装置 4 6は、 絶対光反射率および相対光反射率ダイナミックレ ンジが共に下限値を超える試料 1を良品と判別し (ステップ 3 5 ) 、 絶対光反射 率が下限値を下回る試料 3を不良品と判別し、 かつ相対光反射率ダイナミックレ ンジが下限値を下回る試料 2を不良品と判別する (ステップ 3 6 ) 。 この場合、 相対光反射率ダイナミックレンジが 9 0 %の試料 1は、 相対光反射率が直線性を 有する領域が相対光反射率ダイナミックレンジの 5 4 % ( 9 0 % X 1 0分の 6 ) を占めるため、 例えば 7段階のマルチレベル記録の際には、 各段階間のマージン (相対光反射率差) を十分に大きく確保することができる。 一方、 試料 2 , 3は 、 いずれも 7段階のマルチレベル記録の際における各段階間のマージンを十分に 大きく確保するのが困難となる。 したがって、 試料 1に用いられた有機色素が光 記録媒体 1における記録層 1 2への使用に適していると判別される。 As a result, the controller 46 determines that the sample 1 in which both the absolute light reflectance and the relative light reflectance dynamic range exceed the lower limit value is a non-defective product (step 35), and sets the sample in which the absolute light reflectance is lower than the lower limit value. 3 is determined to be defective, and sample 2 having a relative light reflectance dynamic range below the lower limit is determined to be defective (step 36). In this case, for sample 1 with a relative light reflectivity dynamic range of 90%, the region where the relative light reflectivity is linear has 54% of the relative light reflectivity dynamic range (90% x 6/10). Therefore, for example, in the case of seven-level multi-level recording, it is possible to secure a sufficiently large margin (relative light reflectance difference) between each step. On the other hand, in each of the samples 2 and 3, it is difficult to secure a sufficiently large margin between each step in multi-level recording of seven steps. Therefore, the organic dye used in Sample 1 It is determined that the recording medium 1 is suitable for use in the recording layer 12.
このように、 このマルチレベル光記録媒体についての特性データの測定方法お ょぴ評価方法によれば、 2値記録再生評価装置 4 0を用いて未記録部分について の絶対光反射率と、 相対光反射率ダイナミックレンジとを特性データとして測定 し、 測定した各特性データに基づいて試料の良否を評価することにより、 専用の マルチレベル記録再生評価装置を使用することなく、 その良否を確実かつ容易に 評価することができる。 この結果、 既存の 2値記録再生評価装置 4 0を使用して 試料についての特性データの測定、 およぴ特†生データに基づいての評価を行うこ とができるため、 その測定コストおょぴ評価コスト、 ひいては、 光記録媒体 1の 製造コストを十分に低減することができる'。 また、 記録データの実際の再生に際 して光記録媒体 1の善し悪しに直接的に影響する絶対光反射率および相対光反射 率ダイナミックレンジに基づいて評価することにより、 評価の信頼性を一層高め ることができる。 さらに、 上記したように、 下限値 (基準特性データ) と、 2値 記録再生評価装置 4 0によって測定した特性データとを単に比較して光記録媒体 1の良否を評価できるため、 短時間で光記録媒体 1の良否を評価することができ る。  As described above, according to the method of measuring and evaluating the characteristic data of the multilevel optical recording medium, the absolute light reflectance of the unrecorded portion and the relative light By measuring the reflectivity dynamic range as characteristic data and evaluating the quality of the sample based on each measured characteristic data, the quality can be determined reliably and easily without using a dedicated multi-level recording / reproduction evaluation device. Can be evaluated. As a result, the characteristic data of the sample can be measured using the existing binary recording / reproduction evaluation device 40, and the evaluation can be performed based on the raw data.ぴ Evaluation cost and, consequently, manufacturing cost of optical recording medium 1 can be sufficiently reduced '. In addition, the reliability of the evaluation is further enhanced by performing the evaluation based on the absolute light reflectance and the relative light reflectance dynamic range that directly affect the quality of the optical recording medium 1 during the actual reproduction of the recorded data. Can be Further, as described above, the quality of the optical recording medium 1 can be evaluated by simply comparing the lower limit (reference characteristic data) with the characteristic data measured by the binary recording / reproducing evaluation device 40. The quality of the recording medium 1 can be evaluated.
なお、 本発明は、 上記した発明の実施の形態に限らず、 適宜変更が可能である 。 例えば、 本発明の実施の形態では、 記録層 1 2として有機色素を採用した光記 録媒体 1を評価する例を挙げて説明したが、 本発明におけるマルチレベル光記録 媒体にっレ、ての特性データの測定方法およぴマルチレベル光記録媒体にっレ、ての 評価方法は、 これに限定されず、 上記以外の有機色素あるいは無機材料を記録層 1 2に用いたマルチレベル光記録媒体にも適用できるし、 相変化や光磁気による マルチレベル記録用のマルチレベル光記録媒体にも適用することができる。 さら に、 本発明の実施の形態では、 光記録媒体 1を C D— R型の光記録媒体として構 成した例を示したが、 本発明は、 これに限定されるものでなく、 他の光記録媒体 に一般に適用されるものであり、 またディスク状の回転体に限定されるものでは ない。 また、 本発明の実施の形態では、 光記録媒体 1は、 基板 1 1側から記録用 および再生用のレーザービームを照射する構成としたが、 基板上に反射層、 記録 層、 保護層が順次積層され、 保護層側から記録用および再生用のレーザービーム を照射する構成の光記録媒体に対しても適用することができる。 It should be noted that the present invention is not limited to the above-described embodiment of the invention, and can be appropriately modified. For example, in the embodiment of the present invention, an example of evaluating the optical recording medium 1 employing an organic dye as the recording layer 12 has been described, but the multi-level optical recording medium according to the present invention has been described. The method of measuring the characteristic data and the method of evaluating the multi-level optical recording medium are not limited to the above, and the multi-level optical recording medium using an organic dye or an inorganic material other than those described above for the recording layer 12 may be used. It can also be applied to multi-level optical recording media for multi-level recording by phase change or magneto-optical. Furthermore, in the embodiment of the present invention, an example is shown in which the optical recording medium 1 is configured as a CD-R type optical recording medium. However, the present invention is not limited to this, and other optical recording media may be used. It is generally applied to recording media, and is not limited to disk-shaped rotating bodies. Absent. Further, in the embodiment of the present invention, the optical recording medium 1 is configured to irradiate the recording and reproducing laser beams from the substrate 11 side, but the reflective layer, the recording layer, and the protective layer are sequentially formed on the substrate. The present invention can also be applied to an optical recording medium which is stacked and configured to irradiate a recording and reproducing laser beam from the protective layer side.
また、 本発明の実施の形態に示した特性データ (光反射率に関するデータ) は 、 一例であり、 他の特性データの測定、 およびその測定した特性データに基づく 評価方法にも適用が可能である。 また、 一例として示した各光反射率の数値は、 本発明についての理解を容易にするための例示値であり、 適宜変更することがで きる。 さらに、 本発明におけるマルチレベル光記録媒体には、 5段階以上である 限り、 複数段階のマルチレベル記録が可能な各種マルチレベル光記録媒体が含ま れる。 加えて、 本発明の実施の形態で示した評価方法では、 2値記録再生評価装 置 4 0によって測定される特性データに対する下限値 (基準特性データ) を相関 関係に基づいて予め求めておき、 測定した特性データと下限値とを比較して光記 録媒体 1の良否を評価した例について説明したが、 これに限定されない。 例えば 、 相関関係に基づいて、 2値記録再生評価装置 4 0によって測定した特性データ をマルチレベル記録再生評価装置によつて測定される特性データに置換し、 その 置換した特性データと、 マルチレベル記録再生評価装置用の基準特性データとを 比較して評価することもできる。 産業上の利用可能性  Further, the characteristic data (data on light reflectance) shown in the embodiment of the present invention is an example, and can be applied to measurement of other characteristic data and an evaluation method based on the measured characteristic data. . Further, the numerical values of each light reflectance shown as an example are illustrative values for facilitating the understanding of the present invention, and can be appropriately changed. Further, the multi-level optical recording medium of the present invention includes various multi-level optical recording media that can perform multi-level multi-level recording as long as there are five or more levels. In addition, in the evaluation method described in the embodiment of the present invention, the lower limit (reference characteristic data) for the characteristic data measured by the binary recording / reproducing evaluation device 40 is obtained in advance based on the correlation. Although an example in which the quality of the optical recording medium 1 is evaluated by comparing the measured characteristic data with the lower limit has been described, the present invention is not limited to this. For example, based on the correlation, the characteristic data measured by the binary recording / reproduction evaluation device 40 is replaced with the characteristic data measured by the multi-level recording / reproduction evaluation device, and the replaced characteristic data and the multi-level recording It is also possible to evaluate by comparing with reference characteristic data for a reproduction evaluation device. Industrial applicability
以上のように、 この発明に係るマルチレベル光記録媒体についての特1生データ の測定方法によれば、 既存の 2値記録再生評価装置を用いてマルチレベル光記録 媒体についての特性データを測定することにより、 専用のマルチレベル記録再生 評価装置を新たに購入または製造することなくマルチレベル光記録媒体について の特性データを測定できるため、 その測定コストを低減することができる。 これ により、 マルチレベル光記録媒体の製造コストを十分に低減することができるマ ルチレベル光記録媒体についての特†生データの測定方法が実現される。 As described above, according to the measuring method of Patent 1 raw data for the multi-level optical recording medium according to the present invention, to measure the characteristic data of the multi-level optical recording medium using an existing binary recording reproducing evaluation apparatus This makes it possible to measure characteristic data of a multi-level optical recording medium without newly purchasing or manufacturing a dedicated multi-level recording / reproducing evaluation device, thereby reducing the measurement cost. This makes it possible to sufficiently reduce the manufacturing cost of the multi-level optical recording medium. A method for measuring special raw data for a multilevel optical recording medium is realized.
また、 この発明に係るマルチレベル光記録媒体についての評価方法によれば、 既存の 2値記録再生評価装置を用いて測定された特性データに基づいてマルチレ ベル光記録媒体を評価することにより、 専用のマルチレベル記録再生評価装置を 新たに購入または製造することなくマルチレベル光記録媒体について評価するこ とができるため、 その評価コス トを低減することができる。 このため、 マルチレ ベル光記録媒体の製造コストを十分に低減することができるマルチレベル光記録 媒体についての評価方法が実現される。  According to the method for evaluating a multilevel optical recording medium according to the present invention, the multilevel optical recording medium is evaluated by evaluating the multilevel optical recording medium based on characteristic data measured using an existing binary recording / reproduction evaluation apparatus. Since the multi-level optical recording medium can be evaluated without newly purchasing or manufacturing the multi-level recording / reproducing evaluation device, the evaluation cost can be reduced. Therefore, an evaluation method for a multi-level optical recording medium that can sufficiently reduce the manufacturing cost of the multi-level optical recording medium is realized.

Claims

言青求の範囲 Scope of word blue
1 . マルチレベル記録が可能に製造されたマルチレベル光記録媒体について の特性データを測定する測定方法であって、  1. A measuring method for measuring characteristic data of a multi-level optical recording medium manufactured to enable multi-level recording,
2値記録再生評価装置を用いて前記マルチレベル光記録媒体についての特性デ ータを測定することを特徴とするマルチレベル光記録媒体についての特性データ の測定方法。  A method for measuring characteristic data of a multi-level optical recording medium, comprising measuring characteristic data of the multi-level optical recording medium using a binary recording / reproduction evaluation apparatus.
2 . 前記 2値記録再生評価装置によつて前記マルチレベル光記録媒体に所定 のデータを記録し、 かつ当該記録したマルチレベル光記録媒体の未記録部分およ び記録部分についての前記特性データを測定することを特徴とする請求項 1記載 のマルチレベル光記録媒体についての特性データの測定方法。  2. Predetermined data is recorded on the multi-level optical recording medium by the binary recording / reproducing evaluation device, and the characteristic data on the unrecorded part and the recorded part of the recorded multi-level optical recording medium is recorded. The method for measuring characteristic data of a multilevel optical recording medium according to claim 1, wherein the measurement is performed.
3 . 前記マルチレベル光記録媒体は、 記録用レーザービームの照射時間およ び照射パワーの少なくとも一方を切り替えることにより、 再生用レーザービーム に対する光反射率が多段階に制御されてマルチレベル記録が可能に製造されてい ることを特徴とする請求項 1記載のマルチレベル光記録媒体についての特性デー タの測定方法。  3. The multi-level optical recording medium is capable of multi-level recording by switching at least one of the irradiation time and the irradiation power of the recording laser beam so that the light reflectivity to the reproduction laser beam is controlled in multiple stages. The method for measuring characteristic data of a multi-level optical recording medium according to claim 1, wherein the characteristic data is manufactured.
4 . 前記マルチレベル光記録媒体は、 記録用レーザービームの照射時間およ び照射パワーの少なくとも一方を切り替えることにより、 再生用レーザービーム に対する光反射率が多段階に制御されてマルチレベル記録が可能に製造されてい ることを特徵とする請求項 2記載のマルチレベル光記録媒体についての特性デー タの測定方法。  4. In the multi-level optical recording medium, by switching at least one of the irradiation time and the irradiation power of the recording laser beam, the light reflectance with respect to the reproduction laser beam is controlled in multiple steps, thereby enabling multi-level recording. 3. The method for measuring characteristic data of a multi-level optical recording medium according to claim 2, wherein the characteristic data is manufactured.
5 . 前記マルチレベル光記録媒体は、 前記記録用レーザービームによつて記 録層の透過率が変化させられることにより、 前記再生用レーザービームに対する 光反射率が多段階に制御されることを特徴とする請求項 3記載のマルチレベル光 記録媒体にっレヽての特性データの測定方法。  5. The multi-level optical recording medium is characterized in that the reflectance of the reproduction laser beam is controlled in multiple stages by changing the transmittance of the recording layer by the recording laser beam. 4. The method for measuring characteristic data of a multilevel optical recording medium according to claim 3, wherein:
6 . 前記マルチレベル光記録媒体は、 前記記録用レーザービームによって記 録層の透過率が変化させられることにより、 前記再生用レーザービームに対する 光反射率が多段階に制御されることを特徴とする請求項 4記載のマルチレベル光 記録媒体につ!/、ての特性データの測定方法。 6. The multi-level optical recording medium is configured such that the transmittance of the recording layer is changed by the recording laser beam, 5. The method for measuring characteristic data of a multi-level optical recording medium according to claim 4, wherein the light reflectance is controlled in multiple stages.
7 . 前記マルチレベル光記録媒体は、 前記再生用レーザービームに対する光 反射率が 5段階以上に制御可能に構成されていることを特徴とする請求項 3記載 のマルチレベル光記録媒体についての特性データの測定方法。  7. The characteristic data of the multi-level optical recording medium according to claim 3, wherein the multi-level optical recording medium is configured so that the light reflectance with respect to the reproduction laser beam can be controlled in five or more steps. Measurement method.
8 . 前記マルチレベル光記録媒体は、 前記再生用レーザービームに対する光 反射率が 5段階以上に制御可能に構成されていることを特徴とする請求項 4記載 のマルチレベル光記録媒体についての特性データの測定方法。  8. The characteristic data of the multi-level optical recording medium according to claim 4, wherein the multi-level optical recording medium is configured such that the light reflectance with respect to the reproduction laser beam can be controlled in five or more steps. Measurement method.
9 . 前記マルチレベル光記録媒体は、 前記再生用レーザービームに対する光 反射率が 5段階以上に制御可能に構成されていることを特徴とする請求項 5記載 のマノレチレベル光記録媒体についての特性データの測定方法。  9. The characteristic data of the multilevel optical recording medium according to claim 5, wherein the multi-level optical recording medium is configured so that the light reflectance with respect to the reproducing laser beam can be controlled in five or more steps. Measuring method.
1 0 . 前記マルチレベル光記録媒体は、 前記再生用レーザービームに対する 光反射率が 5段階以上に制御可能に構成されていることを特徴とする請求項 6記 載のマルチレベル光記録媒体についての特性データの測定方法。  10. The multi-level optical recording medium according to claim 6, wherein the multi-level optical recording medium is configured so that the light reflectance with respect to the reproduction laser beam can be controlled in five or more steps. How to measure characteristic data.
1 1 . 請求項 1カゝら 1 0のいずれかに記載のマルチレベル光記録媒体につい ての特性データの測定方法によつて測定した前記特性デ一タに基づいて前記マル チレベル光記録媒体を評価することを特徴とするマルチレベル光記録媒体につい ての評価方法。  11. The multi-level optical recording medium based on the characteristic data measured by the characteristic data measuring method for the multi-level optical recording medium according to any one of claims 1 to 10. An evaluation method for a multi-level optical recording medium characterized by being evaluated.
1 2 . 前記測定した特性データと、 前記 2値記録再生評価装置およびマルチ レベル記録再生評価装置によつてそれぞれ測定した前記マルチレベル光記録媒体 についての両特性データに関して予め求めた相関関係とに基づいて、 前記マルチ レベル光記録媒体の良否を評価することを特徴とする請求項 1 1記載のマルチレ ベル光記録媒体についての評価方法。  12. Based on the measured characteristic data and the correlation previously obtained for both the characteristic data of the multi-level optical recording medium measured by the binary recording / reproduction evaluation device and the multi-level recording / reproduction evaluation device, respectively. 12. The evaluation method for a multi-level optical recording medium according to claim 11, wherein the quality of the multi-level optical recording medium is evaluated.
1 3 . 前記相関関係に基づいて予め求めた基準特性データと、 前記 2値記録 再生評価装置によつて測定した前記特性データとを比較して前記マルチレベル光 記録媒体の良否を評価することを特徴とする請求項 1 2記載のマルチレベル光記 録媒体についての評価方法。 13. Evaluation of the quality of the multi-level optical recording medium by comparing reference characteristic data obtained in advance based on the correlation with the characteristic data measured by the binary recording / reproduction evaluation apparatus. The multi-level optical storage device according to claim 12, characterized in that: Evaluation method for recording media.
PCT/JP2002/005518 2001-06-05 2002-06-04 Method of measuring chracteristic data for multilevel optical recording medium, and evaluation method for multilevel optical recording medium WO2002099791A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001169908A JP2002367237A (en) 2001-06-05 2001-06-05 Method of measuring characteristic data relating to multilevel optical recording medium and evaluation method relating to multilevel optical recording medium
JP2001-169908 2001-06-05

Publications (1)

Publication Number Publication Date
WO2002099791A1 true WO2002099791A1 (en) 2002-12-12

Family

ID=19011924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005518 WO2002099791A1 (en) 2001-06-05 2002-06-04 Method of measuring chracteristic data for multilevel optical recording medium, and evaluation method for multilevel optical recording medium

Country Status (2)

Country Link
JP (1) JP2002367237A (en)
WO (1) WO2002099791A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319134A (en) * 1988-06-21 1989-12-25 Toshiba Corp Multiplex recording method and multiplex recording device
JPH0214427A (en) * 1988-06-30 1990-01-18 Toshiba Corp Information recorder, method for recording information and information reproducing device
JP2001084591A (en) * 1998-10-26 2001-03-30 Mitsubishi Chemicals Corp Multi-valued recording and reproducing method and phase transition type medium for multi-valued recording
WO2001027917A1 (en) * 1999-10-14 2001-04-19 Tdk Corporation Optical recording medium, optical recording method, optical recorded medium reproducing method
JP2002083446A (en) * 2000-06-22 2002-03-22 Tdk Corp Optical recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01319134A (en) * 1988-06-21 1989-12-25 Toshiba Corp Multiplex recording method and multiplex recording device
JPH0214427A (en) * 1988-06-30 1990-01-18 Toshiba Corp Information recorder, method for recording information and information reproducing device
JP2001084591A (en) * 1998-10-26 2001-03-30 Mitsubishi Chemicals Corp Multi-valued recording and reproducing method and phase transition type medium for multi-valued recording
WO2001027917A1 (en) * 1999-10-14 2001-04-19 Tdk Corporation Optical recording medium, optical recording method, optical recorded medium reproducing method
JP2002083446A (en) * 2000-06-22 2002-03-22 Tdk Corp Optical recording medium

Also Published As

Publication number Publication date
JP2002367237A (en) 2002-12-20

Similar Documents

Publication Publication Date Title
EP1628291B1 (en) Method for manufacturing optical disk media of high-to-low and low-to-high reflectance types
KR20020041455A (en) Optical recording medium, optical recording method, optical recorded medium reproducing method
US8031582B2 (en) Optical information recording medium, BCA information recorder, and BCA information recording method
US6754166B2 (en) Optical recording medium and optical recording method
CA2583478A1 (en) Optical recording medium, recording/reproducing method and recording/reproducing apparatus
US7012870B2 (en) Optical recording method, optical recording medium and optical irradiating time controlling device
US7042824B2 (en) Optical multi-level recording medium and optical multi-level recording method
US7221637B2 (en) Multi-level optical recording medium, multi-level recording method, and multi-level reproduction method
WO2003025917A1 (en) Multi-level optical recording medium reproducing method and reproducing device
WO2002099791A1 (en) Method of measuring chracteristic data for multilevel optical recording medium, and evaluation method for multilevel optical recording medium
US7167439B2 (en) Multilevel optical recording medium with calibration signals
KR20050052380A (en) Method and device for recording information on optical information recording medium and the medium itself
WO2002099793A1 (en) Multi-level optical recording medium
JP2002083426A (en) Optical recording medium
JP2002083424A (en) Optical recording method
JP2002083427A (en) Optical recording medium
TW569197B (en) Optical recording medium and optical recording method
WO2003028013A1 (en) Multi-level optical recording medium, multi-level reproducing method and reproducing device
JP2002083428A (en) Optical recording method
JP2002304727A (en) Medium and method for optical recording
JP2003067933A (en) Multilevel optical data-storage medium
JP2003162820A (en) Method for reproducing multilevel optical recording medium and reproducing apparatus
JP2002312937A (en) Optical recording method and optical recorder
JP2004086949A (en) Method for recording data to optical recording medium
JP2003067938A (en) Measuring method of characteristics data to multilevel optical storage-medium and multilevel optical storage- medium to which pattern for measuring the characteristics data is recorded

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase