WO2002098983A1 - Silicone composition for water-repellent coating - Google Patents
Silicone composition for water-repellent coating Download PDFInfo
- Publication number
- WO2002098983A1 WO2002098983A1 PCT/JP2002/005130 JP0205130W WO02098983A1 WO 2002098983 A1 WO2002098983 A1 WO 2002098983A1 JP 0205130 W JP0205130 W JP 0205130W WO 02098983 A1 WO02098983 A1 WO 02098983A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight parts
- silicone composition
- component
- parts
- water
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/14—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/14—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/14—Polysiloxanes containing silicon bound to oxygen-containing groups
- C08G77/18—Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/48—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
- C08G77/50—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
Definitions
- the present invention relates to a silicone composition for a water-repellent coating, and more particularly to a silicone composition for a water-repellent coating capable of forming a soft water-repellent film when cured for a short time at a low temperature.
- silicone compositions are used as treatment agents that give the surfaces of various substrates water repellency or water resistance.
- Known examples include silicone resin compositions and compositions primarily containing alkylalkoxysilanes.
- Japanese Patent Application Publication(Kokai) No.Hei 9-255941 discloses a water repellency treatment agent containing a fluoroalkylsilane.
- Japanese Patent Application Publication(Kokai) No.Hei 9-255941 discloses a water repellency treatment agent containing a fluoroalkylsilane.
- Japanese Patent Application Publication(Kokai) No.Hei 9-255941 discloses a water repellency treatment agent containing a fluoroalkylsilane.
- Japanese Patent Application Publication(Kokai) No.Hei 9-255941 discloses a water repellency treatment agent containing a fluoroalkylsilane.
- Japanese Patent Application Publication(Kokai) No.Hei 9-255941 disclose
- Application Publication(Kokai) No.Hei 11-21508 discloses a coating agent composed of a hydrolyzable silicone resin, a phenylsilane, a partial hydrolysate of alkoxysilane, and a tin catalyst.
- surface treatment agents are disadvantageous in that they have inadequate water repellency and take long to cure, and thus need additional improvement.
- Rl x Si(OR2) 4 _ x where * is a C ⁇ to Cg monovalent hydrocarbon group, R ⁇ is a C ⁇ to Cg alkyl group, and x is an integer from 0 to 3 ;
- R is a Ci to Cio monovalent hydrocarbon group such as methyl, ethyl, propyl, or other alkyl. Of these, methyl and ethyl are preferred.
- Q is an oxygen atom or a C to C o alkylene group. Examples of alkylene groups include ethylene, propylene, butylene, and hexylene.
- n is an integer from 10 to 1000, preferably 100 to 800, and ideally 300 to 700.
- Component (A) can be readily produced by a conventionally known method.
- the component may, for example, be synthesized by condensing a tetraalkoxysilane and a silanol-blocked polydimethylsiloxane in the presence or absence of a catalyst.
- the reaction ratio thereof expressed as the tetraalkoxysilane/silanol group molar ratio, should preferably be 5 to 15.
- a trialkoxychlorosilane and a silanol-blocked polydimethylsiloxane are condensed in the presence of a pyridine or other hydrogen halide receptor.
- the component may be produced by a method in which a trialkoxysilane and an alkenyl-blocked polydimethylsiloxane are hydrosilated in the presence of a platinum catalyst, or a method in which an alkenyltrialkoxysilane and an SiH-blocked polydimethylsiloxane are hydrosilated in the presence of a platinum catalyst.
- Component (B) is a partial hydrolysate/condensate of alkoxysilane, wherein the alkoxysilane has a general formula R* x Si(OR2) _ x .
- R! is a C ⁇ to C monovalent hydrocarbon group such as methyl, ethyl, propyl, or other alkyl group; vinyl, allyl, 5-hexenyl, or other alkenyl group; or phenyl or other aryl group, of which methyl is preferred.
- R2 is a C] to C alkyl group such as methyl, ethyl, or propyl, of which methyl and ethyl are preferred.
- x is an integer from 0 to 3, and preferably 1 or 0.
- alkoxysilanes suitable for component (B) include dimethyldimethoxysilane, dimethyldiethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane.
- Component (B) may be prepared by adding water to such an alkoxysilane to achieve partial hydrolysis/condensation, and the resulting partial hydrolysate/condensate should preferably contain alkoxy groups in an amount at which the
- OR ⁇ /Si ratio falls within a range of 0.8 to 2.6. This is because a ratio greater than 2.6 increases volatility and makes it more likely that the degree of crosslinking will vary, whereas a ratio less than 0.8 reduces compatibility with component (A).
- the viscosity of component (B) at 25°C should preferably be 1 to 100 mm ⁇ /s.
- Component (B) should be added in an amount of 5 to 100 weight parts, preferably 5 to 20 weight parts because of considerations related to curability, in each case per 100 weight parts of component (A).
- the organotitanium-based catalyst facilitates the hydrolysis and condensation of alkoxy groups.
- specific examples of such catalysts include tetramethyl titanate, tetraisopropyl titanate, tetrabutyl titanate, tetra(2-ethylhexyl) titanate, titanium tetraacetyl acetonate, and bis(isopropoxy)titanium bis(acetyl acetonate).
- Component (C) should be added in an amount of 0.1 to 10 weight parts, preferably 0.5 to 5 weight parts because of considerations related to curability, in each case per 100 weight parts of component (A).
- the aliphatic hydrocarbon solvent or ester-based solvent is a component that dissolves component (A) or (B) and improves the applicability of the present composition.
- suitable aliphatic hydrocarbon solvents include hexane, octane, heptane, n-paraffins (such as Normal Paraffin SL, L, and M® from Nippon Petrochemicals), and other linear aliphatic hydrocarbons, and isohexane, isoparaffins (such as Isosol 200 and 300® from Nippon Petrochemicals), and other branched aliphatic hydrocarbons.
- ester-based solvents include ethyl acetate, butyl acetate, and isobutyl acetate.
- Component (D) should be added in an amount of 50 to 900 weight parts, preferably 100 to 500 weight parts because of considerations related to the ease of application, in each case per 100 weight parts of component (A).
- the alcohol-based solvent (component (E)) is a diluting component designed to improve the dispersibility of component (C) and storage stability of the present composition. Specific examples include methanol, ethanol, isopropanol, butanol, and isobutanol. These alcohol-based solvents may also contain small amounts of moisture.
- Component (E) should be added in an amount of 0.1 to 100 weight parts, and preferably 0.5 to 50 weight parts, in each case per 100 weight parts of component (A). This is because adding less than 0.1 weight part has an adverse effect on the dispersion stability of component (C), whereas adding more than 100 weight parts has an adverse effect on applicability.
- composition of the present invention comprises the above-described components (A) to (E), it is also possible to optionally add coloring pigments, anticorrosive pigments, and other pigments; antimicrobials agents; polyether-modified silicones and other leveling agents; antifouling agents; and the like in an appropriate manner.
- the following components may also be added in an appropriate manner in order to improve the adhesion of the resulting coating film: 3-aminopro ⁇ yltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-(2-aminoethyl)aminopropyltrimethoxysilane, 3-(2-aminoethyl)aminopropyltriethoxysilane, 3-(2-aminoethyl)aminopropylmethyldimethoxysilane, 3-(2-aminoethyl)aminopropylmethyldiethoxysilane, and other aminosilane coupling agents; and 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, and other epoxysilane coupling agents; as well as 3-mercaptopropyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and the like. It should be noted
- the present composition may, for example, be applied by dipping, spraying, or brushing.
- the coating film may have any thickness, but a thickness of 1 to 500 ⁇ m is preferred.
- a film with excellent water repellency can be formed by applying a material and heating it
- the composition of the present invention is characterized in that fast curing can be achieved even at comparatively low heating temperatures (50 to 100°C).
- a cured film can be formed in 0.5 to 20 minutes when the material is heated to 100°C, and in 1 to 30 minutes when the material is heated to 80°C. Additional benefits include the fact that the present composition has excellent storage stability and can form a film that exhibits excellent water repellency at a low temperature in a short time even after prolonged standing.
- the composition is therefore suitable as a water-repellent coating for acrylic resins, ABS resins, polyester nonwovens, leather, synthetic imitation leather, and other organic materials. Glass, iron, aluminum, and stainless steel plates can also be cited as examples of substrates to which the present composition can be applied. Since a cured film commonly has a pencil hardness of 6B or less, the composition of the present invention can be used as a water-repellent agent for forming coatings on materials for which such soft films are required, such as wallpaper, ceiling finishes, flooring materials, cloth, curtains, and other materials for interior use; doors, roofs, seats, and other interior materials of automobile or vehicle; and films, sheets, and other packaging materials.
- part refers to weight parts
- viscosity denotes values measured at 25°C
- Me refers to methyl group.
- contact angle of the film with water was measured using a contact angle meter (CA-Z® from Kyowa Interface Science), and the pencil hardness was measured by the method defined in JIS K5400.
- the resulting silicone composition was applied to a polyester nonwoven for wallpaper and heat-treated for 5 minutes in a 100°C oven, yielding a cured film.
- the contact angle of the film with water was 106° and the pencil hardness thereof was 6B or less.
- the silicone composition was stored for 3 months at room temperature, and a cured film was formed on the surface of a polyester nonwoven for wallpaper in the same manner.
- the contact angle of the film with water was measured and it was found that the result was the same as that obtained immediately after preparation. In addition, no change was detected in product appearance.
- Working Example 2
- the resulting silicone composition was applied to a polyester nonwoven for wallpaper and heat-treated for 5minutes in a 100°C oven, yielding a cured film.
- the contact angle of the film with water was 105° and the pencil hardness thereof was 6B or less.
- Comparative Example 1 A silicone composition for coating was prepared in the same manner as in Working Example 2 except that the bis(isopropoxy)titanium bis(acetyl acetonate) (3 parts) used in Working Example 2 was dispensed with.
- the resulting silicone composition was applied to a polyester nonwoven for wallpaper and heat-treated for 5 minutes in a 100°C oven, yielding a film.
- the contact angle of the film with water was measured and it was found that water had penetrated into the polyester nonwoven and that the film had failed to become water repellent.
- silicone composition for coating.
- the resulting silicone composition was applied to a polyester nonwoven for wallpaper and heat-treated for 5minutes in a 100°C oven, yielding a cured film.
- the contact angle of the film with water was 106° and the pencil hardness thereof was 6B or less.
- the resulting silicone composition was applied to a polyester nonwoven for wallpaper and heat-treated for 10 minutes in a 80°C oven, yielding a cured film.
- the contact angle of the film with water was 105° and the pencil hardness thereof was 6B or less.
- Comparative Example 2 The following components were added to 100 parts of a polydimethylsiloxane fluid that had a viscosity of about 3000 mPa-s and was described by the average molecular formula (MeO)3SiO(Me2SiO)30()Si(OMe)3: 20 parts of the partial hydrolysate/condensate of methyltrimethoxysilane(Bl) obtained as the synthetic example, 400 parts of isopropyl alcohol, and 3 parts of bis(isopropoxy)titanium bis(acetyl acetonate), yielding a silicone composition for coating.
- the resulting silicone composition was applied to a polyester nonwoven for wallpaper and heat-treated for 5 minutes in a 100°C oven, yielding a cured film.
- the contact angle of the film with water was 106°.
- the silicone composition was stored for 3 months at room temperature, a cured film was formed on the surface of a polyester nonwoven for wallpaper in the same manner and the contact angle of the film with water was measured and found to have decreased to 100°. It was thus demonstrated that the silicone composition had inadequate storage stability.
- Comparative Example 3 The following components were added to 100 parts of a polydimethylsiloxane fluid that had a viscosity of about 3000 mPa-s and was described by the average molecular formula (MeO)3SiO(Me2SiO)30()Si(OMe)3: 20 parts of the partial hydrolysate/condensate of methyl trimethoxysilane(Bl) obtained as the synthetic example, 400 parts of an isoparaffin solvent (Isosol 300® from Nippon Petrochemicals), and 3 parts of bis(isopropoxy)titanium bis(acetyl acetonate), yielding a light-yellow transparent silicone composition for coating.
- an isoparaffin solvent Isosol 300® from Nippon Petrochemicals
- the silicone composition was stored at room temperature, and cloudiness was observed in two months. It was thus demonstrated that the silicone composition had inadequate storage stability.
- Comparative Example 4 The following components were added to 100 parts of a polydimethylsiloxane fluid that had a viscosity of about 3000 mPa-s and was described by the average molecular formula (MeO)3SiO(Me2SiO)30()Si(OMe)3: 20 parts of the partial hydrolysate/condensate of methyltrimethoxysilane(Bl) obtained as the synthetic example, 390 parts of an isoparaffin solvent (Isosol 300® from Nippon Petrochemicals), 10 parts of isopropyl alcohol, and 3 parts of dibutyltin dilaurate, yielding a silicone composition for coating.
- an isoparaffin solvent Isosol 300® from Nippon Petrochemicals
- the resulting silicone composition was applied to a polyester nonwoven for wallpaper and heat-treated for 5 minutes in a 100°C oven, yielding a cured film.
- the contact angle of the film with water was measured and found to be 100°, indicating that the film had inadequate water repellency.
- the present silicone composition as described above is capable of forming a soft water-repellent film when cured for a short time at a low temperature, it is suitable as a water- repellent coating for acrylic resins, ABS resins, polyester nonwovens, leather, synthetic imitation leather, and other organic materials; and it can be used as a water-repellent agent for forming coatings on materials such as wallpaper, ceiling finishes, flooring materials, cloth, curtains, and other materials for interior use; doors, roofs, seats, and other interior materials of automobile or vehicle; and films, sheets, and other packaging materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Paints Or Removers (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-7015533A KR20040030640A (en) | 2001-05-30 | 2002-05-27 | Silicone composition for water-repellent coating |
EP02728164A EP1392772B1 (en) | 2001-05-30 | 2002-05-27 | Silicone composition for water-repellent coating |
CA002448750A CA2448750A1 (en) | 2001-05-30 | 2002-05-27 | Silicone composition for water-repellent coating |
DE60221383T DE60221383T2 (en) | 2001-05-30 | 2002-05-27 | SILICONE COMPOSITION FOR A WATER REPELLENT COATING |
US10/478,158 US20060281889A1 (en) | 2001-05-30 | 2002-05-27 | Silicone composition for water-repellent coating |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001162086A JP2002356651A (en) | 2001-05-30 | 2001-05-30 | Silicone composition for water repellent coating |
JP2001-162086 | 2001-05-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002098983A1 true WO2002098983A1 (en) | 2002-12-12 |
Family
ID=19005263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/005130 WO2002098983A1 (en) | 2001-05-30 | 2002-05-27 | Silicone composition for water-repellent coating |
Country Status (10)
Country | Link |
---|---|
US (1) | US20060281889A1 (en) |
EP (1) | EP1392772B1 (en) |
JP (1) | JP2002356651A (en) |
KR (1) | KR20040030640A (en) |
CN (1) | CN1513032A (en) |
AT (1) | ATE368078T1 (en) |
CA (1) | CA2448750A1 (en) |
DE (1) | DE60221383T2 (en) |
TW (1) | TW539729B (en) |
WO (1) | WO2002098983A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011032875A1 (en) | 2009-09-15 | 2011-03-24 | Basf Se | Photo-latent titanium catalysts |
WO2011032837A1 (en) | 2009-09-15 | 2011-03-24 | Basf Se | Photo-latent titanium-chelate catalysts |
WO2012136606A1 (en) | 2011-04-05 | 2012-10-11 | Basf Se | Photo-latent titanium-oxo-chelate catalysts |
US9067821B2 (en) | 2008-10-07 | 2015-06-30 | Ross Technology Corporation | Highly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation |
US9074778B2 (en) | 2009-11-04 | 2015-07-07 | Ssw Holding Company, Inc. | Cooking appliance surfaces having spill containment pattern |
US9139744B2 (en) | 2011-12-15 | 2015-09-22 | Ross Technology Corporation | Composition and coating for hydrophobic performance |
US9179773B2 (en) | 2008-06-27 | 2015-11-10 | Ssw Holding Company, Inc. | Spill containing refrigerator shelf assembly |
US9388325B2 (en) | 2012-06-25 | 2016-07-12 | Ross Technology Corporation | Elastomeric coatings having hydrophobic and/or oleophobic properties |
US9546299B2 (en) | 2011-02-21 | 2017-01-17 | Ross Technology Corporation | Superhydrophobic and oleophobic coatings with low VOC binder systems |
US9914849B2 (en) | 2010-03-15 | 2018-03-13 | Ross Technology Corporation | Plunger and methods of producing hydrophobic surfaces |
US10317129B2 (en) | 2011-10-28 | 2019-06-11 | Schott Ag | Refrigerator shelf with overflow protection system including hydrophobic layer |
US11786036B2 (en) | 2008-06-27 | 2023-10-17 | Ssw Advanced Technologies, Llc | Spill containing refrigerator shelf assembly |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070281167A1 (en) * | 2006-06-06 | 2007-12-06 | Jeffrey Allen Odle | Method for improving cleanability of surfaces |
CN103319718A (en) * | 2006-07-27 | 2013-09-25 | 陶氏康宁公司 | Silicone resins, silicone composition, and coated substrates |
JP2008115332A (en) * | 2006-11-07 | 2008-05-22 | Mitsubishi Chemicals Corp | Phosphor-containing composition, light-emitting device, lighting device, and image display device |
JP5483730B2 (en) * | 2007-03-21 | 2014-05-07 | ジェイムズ ハーディー テクノロジー リミテッド | Frame structure and method |
US20100273696A1 (en) * | 2009-04-23 | 2010-10-28 | Herbert Hopfstock | Composition and method for the prevention and removal of unwanted paint on a surface |
KR101154029B1 (en) * | 2009-05-20 | 2012-06-07 | 한국화학연구원 | Catalyst for direct conversion of esters of lactic acid to lactide and the method for producing the lactide using the same |
KR101220416B1 (en) | 2010-08-26 | 2013-01-10 | 전남대학교산학협력단 | Method for manufacturing super water-repellent polymer film |
KR101249782B1 (en) * | 2011-03-04 | 2013-04-03 | 대주나노솔라주식회사 | Heat-curable dip-coating composition |
JP5682095B2 (en) | 2011-05-18 | 2015-03-11 | スリーボンドファインケミカル株式会社 | Coating layer and coating layer forming method |
US9446604B2 (en) * | 2011-06-10 | 2016-09-20 | Hewlett-Packard Development Company, L.P. | White pre-treatment composition |
ITVR20110155A1 (en) * | 2011-07-21 | 2013-01-22 | Led Srl | COMPOSITION FOR THE COATING OF SURFACES INTENDED TO GO TO CONTACT WITH CEMENTITIOUS PASTE IN THE FLUID STATE |
DE102011087931A1 (en) * | 2011-12-07 | 2013-06-13 | Wacker Chemie Ag | Production of high molecular weight silicone resins |
ITVR20130093A1 (en) * | 2013-04-19 | 2014-10-20 | Led Srl | PROCEDURE FOR APPLICATION OF A COMPOSITION FOR THE COATING OF SURFACES INTENDED TO GO TO CONTACT WITH CEMENTITIOUS PASTE IN THE FLUID STATE |
JP6487159B2 (en) * | 2014-07-14 | 2019-03-20 | 中国塗料株式会社 | Antifouling paint composition, antifouling film, method for producing antifouling film and antifouling substrate |
SG11201807229WA (en) * | 2016-02-24 | 2018-09-27 | Agency Science Tech & Res | Durable hydrophobic coating composition |
US10759944B2 (en) * | 2016-04-28 | 2020-09-01 | Sumitomo Chemical Company, Limited | Film |
US10308771B2 (en) | 2016-08-31 | 2019-06-04 | Ppg Industries Ohio, Inc. | Coating compositions and coatings for adjusting friction |
WO2019039468A1 (en) * | 2017-08-22 | 2019-02-28 | 大阪ガスケミカル株式会社 | Curable composition and use of same |
JP6403080B1 (en) * | 2017-08-22 | 2018-10-10 | 大阪ガスケミカル株式会社 | Coating composition and method for producing coating film |
JP6947109B2 (en) | 2018-04-03 | 2021-10-13 | 株式会社デンソー | Manufacturing method of sensors and structures |
JP6983121B2 (en) * | 2018-07-12 | 2021-12-17 | 信越化学工業株式会社 | A coating composition containing a hydrolyzable group-containing silicone resin, a coating film, and an article having the film. |
KR101971074B1 (en) * | 2018-08-31 | 2019-04-22 | 정재윤 | Environment friendly water repellent composition |
JP6933309B2 (en) | 2019-07-02 | 2021-09-08 | 株式会社村田製作所 | Optical unit and vehicle equipped with optical unit |
CN114106689A (en) * | 2020-08-30 | 2022-03-01 | 刘德福 | Waterproof composition for 3C product, preparation method and application thereof, and 3C product treated by waterproof composition |
CN112921663B (en) * | 2021-01-27 | 2023-01-13 | 宁波润禾高新材料科技股份有限公司 | Reactive water repellent and preparation method thereof |
CN113980577B (en) * | 2021-10-26 | 2022-07-29 | 厦门锶特材料科技有限公司 | Prehydrolysis organic silicon precursor composition for stone protection and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0273867A2 (en) * | 1987-01-02 | 1988-07-06 | Richard Kaufmann & Co. | Agent for improving the hydrophobic properties of inorganic materials |
EP0657517A1 (en) * | 1993-12-07 | 1995-06-14 | Shin-Etsu Chemical Co., Ltd. | Organopolysiloxane compositions, their preparation and use, articles coated with them |
JPH09255941A (en) * | 1996-03-26 | 1997-09-30 | Nippon Sheet Glass Co Ltd | Water-repellent treatment and preparation thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2415389A (en) * | 1944-05-31 | 1947-02-04 | Dow Chemical Co | Alkoxy end-blocked siloxanes and method of making same |
US3151099A (en) * | 1960-05-30 | 1964-09-29 | Rhone Poulenc Sa | Water curable organopolysiloxanes containing silicic esters and zirconic or titanic esters |
BE623603A (en) * | 1961-10-16 | |||
US4144216A (en) * | 1975-05-19 | 1979-03-13 | Dow Corning Corporation | Room temperature vulcanizable organic solvent dispersions of silicone elastomers |
US6132664A (en) * | 1997-12-23 | 2000-10-17 | Dow Corning Corporation | Method of forming a seal in a confined configuration with an alkoxy-functional RTV composition |
US6512072B1 (en) * | 2000-06-12 | 2003-01-28 | Dow Corning Corporation | Fast cure film forming formulation |
-
2001
- 2001-05-30 JP JP2001162086A patent/JP2002356651A/en active Pending
-
2002
- 2002-05-27 US US10/478,158 patent/US20060281889A1/en not_active Abandoned
- 2002-05-27 AT AT02728164T patent/ATE368078T1/en not_active IP Right Cessation
- 2002-05-27 EP EP02728164A patent/EP1392772B1/en not_active Expired - Lifetime
- 2002-05-27 CN CNA028108159A patent/CN1513032A/en active Pending
- 2002-05-27 WO PCT/JP2002/005130 patent/WO2002098983A1/en active IP Right Grant
- 2002-05-27 KR KR10-2003-7015533A patent/KR20040030640A/en not_active Application Discontinuation
- 2002-05-27 DE DE60221383T patent/DE60221383T2/en not_active Expired - Fee Related
- 2002-05-27 CA CA002448750A patent/CA2448750A1/en not_active Abandoned
- 2002-05-30 TW TW091111570A patent/TW539729B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0273867A2 (en) * | 1987-01-02 | 1988-07-06 | Richard Kaufmann & Co. | Agent for improving the hydrophobic properties of inorganic materials |
EP0657517A1 (en) * | 1993-12-07 | 1995-06-14 | Shin-Etsu Chemical Co., Ltd. | Organopolysiloxane compositions, their preparation and use, articles coated with them |
JPH09255941A (en) * | 1996-03-26 | 1997-09-30 | Nippon Sheet Glass Co Ltd | Water-repellent treatment and preparation thereof |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 01 30 January 1998 (1998-01-30) * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9207012B2 (en) | 2008-06-27 | 2015-12-08 | Ssw Holding Company, Inc. | Spill containing refrigerator shelf assembly |
US10827837B2 (en) | 2008-06-27 | 2020-11-10 | Ssw Holding Company, Llc | Spill containing refrigerator shelf assembly |
US10130176B2 (en) | 2008-06-27 | 2018-11-20 | Ssw Holding Company, Llc | Spill containing refrigerator shelf assembly |
US9532649B2 (en) | 2008-06-27 | 2017-01-03 | Ssw Holding Company, Inc. | Spill containing refrigerator shelf assembly |
US11786036B2 (en) | 2008-06-27 | 2023-10-17 | Ssw Advanced Technologies, Llc | Spill containing refrigerator shelf assembly |
US12096854B2 (en) | 2008-06-27 | 2024-09-24 | Ssw Advanced Technologies, Llc | Spill containing refrigerator shelf assembly |
US11191358B2 (en) | 2008-06-27 | 2021-12-07 | Ssw Advanced Technologies, Llc | Spill containing refrigerator shelf assembly |
US9179773B2 (en) | 2008-06-27 | 2015-11-10 | Ssw Holding Company, Inc. | Spill containing refrigerator shelf assembly |
US9279073B2 (en) | 2008-10-07 | 2016-03-08 | Ross Technology Corporation | Methods of making highly durable superhydrophobic, oleophobic and anti-icing coatings |
US9243175B2 (en) | 2008-10-07 | 2016-01-26 | Ross Technology Corporation | Spill resistant surfaces having hydrophobic and oleophobic borders |
US9096786B2 (en) | 2008-10-07 | 2015-08-04 | Ross Technology Corporation | Spill resistant surfaces having hydrophobic and oleophobic borders |
US9067821B2 (en) | 2008-10-07 | 2015-06-30 | Ross Technology Corporation | Highly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation |
US9926478B2 (en) | 2008-10-07 | 2018-03-27 | Ross Technology Corporation | Highly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation |
WO2011032875A1 (en) | 2009-09-15 | 2011-03-24 | Basf Se | Photo-latent titanium catalysts |
WO2011032837A1 (en) | 2009-09-15 | 2011-03-24 | Basf Se | Photo-latent titanium-chelate catalysts |
US9074778B2 (en) | 2009-11-04 | 2015-07-07 | Ssw Holding Company, Inc. | Cooking appliance surfaces having spill containment pattern |
US9914849B2 (en) | 2010-03-15 | 2018-03-13 | Ross Technology Corporation | Plunger and methods of producing hydrophobic surfaces |
US9546299B2 (en) | 2011-02-21 | 2017-01-17 | Ross Technology Corporation | Superhydrophobic and oleophobic coatings with low VOC binder systems |
US10240049B2 (en) | 2011-02-21 | 2019-03-26 | Ross Technology Corporation | Superhydrophobic and oleophobic coatings with low VOC binder systems |
WO2012136606A1 (en) | 2011-04-05 | 2012-10-11 | Basf Se | Photo-latent titanium-oxo-chelate catalysts |
US10317129B2 (en) | 2011-10-28 | 2019-06-11 | Schott Ag | Refrigerator shelf with overflow protection system including hydrophobic layer |
US9139744B2 (en) | 2011-12-15 | 2015-09-22 | Ross Technology Corporation | Composition and coating for hydrophobic performance |
US9528022B2 (en) | 2011-12-15 | 2016-12-27 | Ross Technology Corporation | Composition and coating for hydrophobic performance |
US9388325B2 (en) | 2012-06-25 | 2016-07-12 | Ross Technology Corporation | Elastomeric coatings having hydrophobic and/or oleophobic properties |
Also Published As
Publication number | Publication date |
---|---|
KR20040030640A (en) | 2004-04-09 |
TW539729B (en) | 2003-07-01 |
CN1513032A (en) | 2004-07-14 |
US20060281889A1 (en) | 2006-12-14 |
JP2002356651A (en) | 2002-12-13 |
ATE368078T1 (en) | 2007-08-15 |
EP1392772A1 (en) | 2004-03-03 |
DE60221383D1 (en) | 2007-09-06 |
CA2448750A1 (en) | 2002-12-12 |
EP1392772B1 (en) | 2007-07-25 |
DE60221383T2 (en) | 2008-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1392772B1 (en) | Silicone composition for water-repellent coating | |
EP1360253B1 (en) | Silicone resin composition for water repellent coating | |
EP3119847B1 (en) | Alkoxy group-containing silicones with reactive functional groups of defined reactivity | |
JP2000202363A5 (en) | ||
US5213617A (en) | Primer for silicone substrates | |
US20130164539A1 (en) | Plastic substrate for automotive glazing and its repairing method | |
KR20190126846A (en) | Organosilicon Compound and Method for Making the Same | |
US5238708A (en) | Primer for silicone substrates | |
US7368500B2 (en) | Film-forming silicone resin composition | |
JP7467891B2 (en) | ORGANOPOLYSILOXANE AND COATING COMPOSITION CONTAINING SAME | |
JP3115928B2 (en) | Silicone compound, vinyl copolymer thereof, and coating composition using the same | |
US6319982B1 (en) | Waterborne silicone adhesives, sealants and coatings | |
JP3279015B2 (en) | Composition for coating | |
JP2000086765A (en) | Organic silicon composition | |
CA1187239A (en) | Coating composition and primer | |
WO2021113043A1 (en) | Weatherable and durable coating compositions | |
JPH1121510A (en) | Silicone resin for forming water-repellent coating film and its composition | |
WO2021235286A1 (en) | Organopolysiloxane and composition containing same | |
KR20220143591A (en) | Organopolysiloxane and Coating Composition Containing Organopolysiloxane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2448750 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 028108159 Country of ref document: CN Ref document number: 1020037015533 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002728164 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2002728164 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006281889 Country of ref document: US Ref document number: 10478158 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 10478158 Country of ref document: US |
|
WWG | Wipo information: grant in national office |
Ref document number: 2002728164 Country of ref document: EP |