KR101220416B1 - Method for manufacturing super water-repellent polymer film - Google Patents

Method for manufacturing super water-repellent polymer film Download PDF

Info

Publication number
KR101220416B1
KR101220416B1 KR1020100082790A KR20100082790A KR101220416B1 KR 101220416 B1 KR101220416 B1 KR 101220416B1 KR 1020100082790 A KR1020100082790 A KR 1020100082790A KR 20100082790 A KR20100082790 A KR 20100082790A KR 101220416 B1 KR101220416 B1 KR 101220416B1
Authority
KR
South Korea
Prior art keywords
super water
photoresist
repellent
aluminum
aspect ratio
Prior art date
Application number
KR1020100082790A
Other languages
Korean (ko)
Other versions
KR20120019545A (en
Inventor
이동원
안준형
오재원
손중기
이창훈
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020100082790A priority Critical patent/KR101220416B1/en
Publication of KR20120019545A publication Critical patent/KR20120019545A/en
Application granted granted Critical
Publication of KR101220416B1 publication Critical patent/KR101220416B1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2014Contact or film exposure of light sensitive plates such as lithographic plates or circuit boards, e.g. in a vacuum frame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/48Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • C08G77/50Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms by carbon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/14Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/06Silver salts
    • G03F7/063Additives or means to improve the lithographic properties; Processing solutions characterised by such additives; Treatment after development or transfer, e.g. finishing, washing; Correction or deletion fluids
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0752Silicon-containing compounds in non photosensitive layers or as additives, e.g. for dry lithography

Abstract

본 발명은 초발수성 폴리머 필름의 제작방법에 관한 것으로서, 보다 구체적으로는 포토리소그래피(phothlithography) 공정을 이용하여 표면에 고종횡비 마이크로 구조물을 갖는 초발수성 필름을 제작하는 방법에 관한 것이다.
본 발명의 제작방법에 따르면, 실리콘을 식각하는 종래 기술에 비하여 간단하고 경제적인 포토리소그래피(phothlithography) 공정을 이용하여 접촉각이 향상된 초발수성 필름을 제작할 수 있다.
The present invention relates to a method of manufacturing a super water-repellent polymer film, and more particularly to a method of manufacturing a super water-repellent film having a high aspect ratio microstructure on the surface by using a photolithography process.
According to the manufacturing method of the present invention, it is possible to produce a super water-repellent film having an improved contact angle by using a simple and economical photolithography process compared to the conventional technique of etching silicon.

Description

초발수성 폴리머 필름의 제작방법{METHOD FOR MANUFACTURING SUPER WATER-REPELLENT POLYMER FILM}Manufacturing method of super water-repellent polymer film {METHOD FOR MANUFACTURING SUPER WATER-REPELLENT POLYMER FILM}

본 발명은 초발수성 폴리머 필름의 제작방법에 관한 것으로서, 보다 구체적으로는 포토리소그래피(phothlithography) 공정을 이용하여 표면에 고종횡비 마이크로 구조물을 갖는 초발수성 필름을 제작하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a super water-repellent polymer film, and more particularly to a method of manufacturing a super water-repellent film having a high aspect ratio microstructure on the surface by using a photolithography process.

연꽃잎 표면은 마이크로 크기의 돌기 위에 마이크로 구조물이 있는 형태로 되어 있고, 이러한 구조가 초발수성 표면으로 만들어 주기 때문에 연꽃잎 표면에서 물방울은 맺혀 있지 않고 구 형태를 이루면서 굴러간다. 초발수성 표면은 물방울의 접촉각이 140°이상이 되는 표면으로서, 물방울이 표면 위에서 구 형태를 이루면서 쉽게 굴러갈 수 있게 된다. 이러한 초발수성 표면은 물방울이 구 형태를 이룰 경우 표면의 에너지가 높아지면서 이물질이 달라붙음으로써 자유에너지가 감소하는 현상을 통해 자가세정(self-cleaning) 작용이 일어나게 한다. The surface of the lotus leaf has a micro structure on the micro-sized protrusions, and because this structure makes the super water-repellent surface, the water droplets roll on the surface of the lotus leaf without forming condensation. The super water-repellent surface is a surface where the contact angle of the water droplets is 140 ° or more, so that the water droplets can easily roll while forming a spherical shape on the surface. This super water-repellent surface is a self-cleaning action occurs through the phenomenon that the free energy is reduced by the adhesion of foreign matter as the surface energy increases when the water droplets form a sphere.

최근 MEMS(Microelecromechanical systems)와 NEMS(Nanoelectromechanical systems) 기술의 발전에 따라 자연을 모방하는 생체모방기술(biomimetics)이 각광 받고 있다. 이와 관련하여 연꽃잎 효과(lutus effect)를 갖는 초발수성 표면을 인위적으로 구현하고자 하는 연구가 많이 진행되었으며, 현재에도 활발히 진행되고 있다.Recently, with the development of microelecromechanical systems (MEMS) and nanoelectromechanical systems (NEMS), biomimetics that mimic nature have been in the spotlight. In this regard, a lot of researches have been conducted to artificially implement a super water-repellent surface having a lotus effect (lutus effect), and is still actively underway.

종래 연구는 실리콘 표면을 DRIE(deep reactive-ion etching) 공정을 하여 마이크로 구조물을 형성하고 표면을 PPFC(plasma polymerized fluorocarbon) 박막 코팅 처리하여 웬젤과 캐시 모델의 젖음 특성을 비교하거나, 불규칙적인 거친 표면을 제작하기 위하여 졸겔법이나 소수성을 띠는 PTFE(polytetrafluoroethylene) 기판에 아르곤(Ar) 이온 충돌 및 산소 플라즈마 식각 방법 등을 이용하여 표면 거칠기를 증가시키는 등의 방법을 사용하였다.Conventional research has been performed by deep reactive-ion etching (DRIE) on silicon surfaces to form microstructures and coating the surface with plasma polymerized fluorocarbon (PPFC) thin films to compare the wetting characteristics of wenzel and cache models, or to produce irregular rough surfaces. For fabrication, surface roughness was increased by argon (Ar) ion bombardment and oxygen plasma etching on a sol-gel method or a hydrophobic PTFE (polytetrafluoroethylene) substrate.

그러나 소수성 표면개질 공정을 개별적으로 진행하는 종래 기술은 그 공정이 복잡하고 긴 시간을 요하며, 비경제적이라는 단점이 있었다.However, the prior art of individually performing the hydrophobic surface modification process has a disadvantage that the process is complicated, takes a long time, and is uneconomical.

본 발명은 상기의 문제점을 해결하고 상기의 필요성에 의하여 안출된 것으로서, 본 발명이 이루고자 하는 기술적 과제는 포토리소그래피(phothlithography) 공정을 이용하여 고종횡비 마이크로 구조물을 갖는 초발수성 필름을 제공하는 데 있다.SUMMARY OF THE INVENTION The present invention has been made in view of the above problems and the necessity of the above, the technical problem to be achieved by the present invention is to provide a super water-repellent film having a high aspect ratio microstructure using a photolithography (phothlithography) process.

상기의 목적을 달성하기 위하여, 본 발명은 고종횡비 마이크로 구조물을 가지는 초발수성 폴리머 필름의 제작방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing a super water-repellent polymer film having a high aspect ratio microstructure.

본 발명에 의하면, 포토리소그래피(phothlithography) 방식을 이용한 초발수성 필름의 제작방법에 있어서, 실리콘 웨이퍼 위에 희생층으로 알루미늄(Al)을 증착하는 단계; 상기 알루미늄(Al) 증착층 위에 포토레지스트(photoresist)를 코팅하는 단계; 상기 포토레지스트 위에 일정한 패턴 홈을 갖는 크롬(Cr) 마스크를 정렬하여 노광(exposure)한 후, 현상하는 단계; 상기 현상된 포토레지스트 위에 초소수성 폴리머를 코팅하는 단계; 상기 희생층인 알루미늄(Al) 증착층을 제거하는 단계; 및 상기 포토레지스트를 제거하는 단계를 포함하는 고종횡비 마이크로 구조물을 가지는 초발수성 폴리머 필름의 제작방법을 제공한다.According to the present invention, a method of manufacturing a super water-repellent film using a photolithography method comprising the steps of: depositing aluminum (Al) as a sacrificial layer on a silicon wafer; Coating a photoresist on the aluminum deposition layer; Arranging and then developing a chromium (Cr) mask having a predetermined pattern groove on the photoresist; Coating a superhydrophobic polymer on the developed photoresist; Removing the sacrificial layer, an aluminum (Al) deposition layer; And it provides a method for producing a super water-repellent polymer film having a high aspect ratio microstructure comprising the step of removing the photoresist.

본 발명의 제작방법에 따르면, 실리콘을 식각하는 종래 기술에 비하여 간단하고 경제적인 포토리소그래피(phothlithography) 공정을 이용하여 접촉각이 향상된 초발수성 필름을 제작할 수 있다. According to the manufacturing method of the present invention, it is possible to produce a super water-repellent film having an improved contact angle by using a simple and economical photolithography process compared to the conventional technique of etching silicon.

또한, 본 발명의 초발수성 필름은 초소수성 폴리머의 마이크로 구조체로 이루어져 있으며, 종횡비가 높을수록 접촉각이 높아져 초발수성 효과가 향상된다. 또한, 본 발명의 초발수성 필름은 투과성 및 반사율이 일반 유리와 큰 차이를 나타내지 않고, 탄성이 좋은 소재를 이용함으로써 곡면 유리에 부착하여 사용할 수 있으며, 돌출형 구조임에도 불구하고 외력에 의한 파손의 위험이 적다는 장점이 있다.In addition, the superhydrophobic film of the present invention is composed of a microstructure of the superhydrophobic polymer, and the higher the aspect ratio, the higher the contact angle, so that the superhydrophobic effect is improved. In addition, the super water-repellent film of the present invention does not show a large difference in the transmittance and reflectance of ordinary glass, can be used to attach to the curved glass by using a good elastic material, despite the protruding structure risk of damage by external force This has the advantage of being less.

본 발명의 초발수성 필름은 자동차의 사이드 미러 또는 자동차 창유리 뿐만 아니라 일반 창유리에 부착함으로써 물방울이 맺히지 않아 시야 확보가 용이해 질뿐만 아니라, 자가 세정 효과 얻을 수 있다.The super water-repellent film of the present invention can be attached to not only the side mirrors or automobile window glass of the vehicle but also to general window glass, so that water droplets do not form, making it easy to secure the field of view, and the self-cleaning effect can be obtained.

도 1은 초발수성 마이크로 구조물을 가지고 있는 PDMS 필름의 계략도이다.
도 2는 본 발명의 실시예에 따른 초발수성 마이크로 구조물을 가지고 있는 PDMS 필름의 제작 공정을 나타낸 순서도이다.
도 3은 본 발명에 의해 제작된 초발수성 표면에서 종횡비에 따른 접촉각 차이를 나타낸 사진이다.
도 4는 본 발명의 실시예에 따른 마이크로 구조물을 가지고 있는 PDMS 필름의 (a) 반사율 및 (b) 투과율을 나타낸 그래프이다.
1 is a schematic diagram of a PDMS film having a superhydrophobic microstructure.
2 is a flow chart showing a manufacturing process of a PDMS film having a super water-repellent microstructure according to an embodiment of the present invention.
Figure 3 is a photograph showing the difference in contact angle according to the aspect ratio in the super water-repellent surface produced by the present invention.
4 is a graph showing (a) reflectance and (b) transmittance of a PDMS film having a microstructure according to an embodiment of the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 고종횡비 마이크로 구조물을 가지는 초발수성 폴리머 필름의 제작방법을 제공한다.The present invention provides a method for producing a super water-repellent polymer film having a high aspect ratio microstructure.

구체적으로 본 발명은 포토리소그래피(phothlithography) 공정을 이용한 초발수성 필름의 제작방법에 있어서, (1) 실리콘 웨이퍼 위에 희생층으로 알루미늄(Al)을 증착하는 단계; (2) 상기 알루미늄(Al) 증착층 위에 포토레지스트(photoresist)를 코팅하는 단계; (3) 상기 포토레지스트 위에 일정한 패턴 홈을 갖는 크롬(Cr) 마스크를 정렬하여 노광(exposure)한 후, 현상하는 단계; (4) 상기 현상된 포토레지스트 위에 초소수성 폴리머를 코팅하는 단계; (5) 상기 희생층인 알루미늄(Al) 증착층을 제거하는 단계; 및 (6) 상기 포토레지스트를 제거하는 단계; 를 포함하는 초발수성 폴리머 필름의 제작방법을 제공한다.Specifically, the present invention provides a method of manufacturing a super water-repellent film using a photolithography process, comprising: (1) depositing aluminum (Al) as a sacrificial layer on a silicon wafer; (2) coating a photoresist on the aluminum (Al) deposition layer; (3) arranging and then developing a chromium (Cr) mask having a predetermined pattern groove on the photoresist and then developing; (4) coating a superhydrophobic polymer on the developed photoresist; (5) removing the sacrificial layer, an aluminum (Al) deposition layer; And (6) removing the photoresist; It provides a method for producing a super water-repellent polymer film comprising a.

본 발명에 있어서, 상기 포토레지스트는 AZ4620인 것을 특징으로 하며, 알루미늄이 증착된 실리콘 웨이퍼 위에 스핀코팅 방식으로 코팅하되, 스핀속도를 조절하거나 적층코팅함으로써 포토레지스트의 두께를 조절할 수 있다.In the present invention, the photoresist is characterized in that the AZ4620, the coating on the silicon wafer on which aluminum is deposited by spin coating method, it is possible to control the thickness of the photoresist by controlling the spin speed or lamination coating.

또한 본 발명에 있어서, 상기 크롬(Cr) 마스크의 패턴 홈은 가로 4 ~ 6 ㎛, 세로 4 ~ 6 ㎛, 간격 45 ~ 55 ㎛인 것이 바람직하다.In the present invention, the pattern groove of the chromium (Cr) mask is preferably 4 to 6 ㎛ horizontally, 4 to 6 ㎛ vertical, 45 ~ 55 ㎛ spacing.

본 발명의 상기 초소수성 폴리머는 폴리디메틸실록산(polydimethylsiloxane, PDMS) 또는 하기 화학식 1로 표시되는 SU-8 중 어느 하나인 것을 특징으로 한다.
[화학식 1]

Figure 112012061675248-pat00013
The superhydrophobic polymer of the present invention is characterized in that any one of polydimethylsiloxane (polydimethylsiloxane, PDMS) or SU-8 represented by the following formula (1).
[Formula 1]
Figure 112012061675248-pat00013

또한 상기 초소수성 폴리머를 코팅하는 단계는 현상한 실리콘 웨이퍼 위에 초소수성 폴리머를 적층한 후 95℃ 진공오븐에서 60분 동안 경화시키는 단계이며, 본 발명에서 상기 알루미늄(Al)층은 BHF 용액을 이용하여 제거하며 포토레지스트는 아세톤으로 제거하는 것이 바람직하다.In addition, the coating of the superhydrophobic polymer is a step of laminating the superhydrophobic polymer on the developed silicon wafer and curing for 60 minutes in a vacuum oven at 95 ° C. In the present invention, the aluminum (Al) layer is formed by using a BHF solution. The photoresist is preferably removed with acetone.

본 발명에 있어서, 희생층으로 사용된 알루미늄(Al) 증착층을 제거할 때는 BHF(buffered hydrofluoric acid) 용액 또는 알루미늄 식각 용액(Al etchant)을 이용할 수 있으며, 알루미늄(Al) 증착층을 더 빠르게 제거하기 위해서는 BHF(buffered hydrofluoric acid) 용액을 이용하는 것이 바람직하다.In the present invention, a buffered hydrofluoric acid (BHF) solution or an aluminum etching solution (Al etchant) may be used to remove the aluminum (Al) deposition layer used as the sacrificial layer, and the aluminum (Al) deposition layer may be removed more quickly. In order to do so, it is preferable to use a buffered hydrofluoric acid (BHF) solution.

또한 본 발명에 있어서, 포토레지스트를 제거하는 단계는 아세톤 또는 포토레지스트 리무버(AZ100 remover)를 이용할 수 있으며, 바람직하게는 아세톤을 이용하는 것이 좋다.In addition, in the present invention, the removing of the photoresist may use acetone or a photoresist remover (AZ100 remover), preferably acetone.

또한 본 발명은 상기 제작방법에 의하여 제작된 고종횡비 마이크로 구조물을 가지는 초발수성 폴리머 필름을 제공한다.In another aspect, the present invention provides a super water-repellent polymer film having a high aspect ratio microstructure produced by the manufacturing method.

본 발명의 초발수성 표면에 형성되는 마이크로 구조체의 높이는 6 ~ 30 ㎛이며, 초발수성 표면의 접촉각은 130° ~ 170°인 것을 특징으로 한다.
The height of the microstructure formed on the super water-repellent surface of the present invention is 6 to 30 ㎛, characterized in that the contact angle of the super water-repellent surface is 130 ° ~ 170 °.

이하, 실시예에 의하여 본 발명을 더욱 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
However, the following examples are only for illustrating the present invention, and the contents of the present invention are not limited to the following examples.

연잎의 표면과 가장 유사한 형태의 마이크로 구조물을 제작하기 위해 L-EDIT를 이용하여 포토 마스크를 설계하였으며, 구체적으로 가로 4 ~ 6 ㎛, 세로 4 ~ 6 ㎛, 간격 45 ~ 55 ㎛인 정사각형 기둥 모양의 패턴을 가진 크롬(Cr) 마스크를 제작하였다.The photo mask was designed using L-EDIT to produce the microstructures most similar to the surface of the lotus leaf, and specifically, the shape of a square column with a width of 4 to 6 μm, a length of 4 to 6 μm, and a spacing of 45 to 55 μm. A chrome (Cr) mask with a pattern was produced.

초발수성 표면을 가진 마이크로 구조체를 제작하기 위하여 포토리소그래피(phothlithography) 공정과 초소수성 폴리머 코팅 공정을 실시하였다. 본 발명의 실시예에서는 초소수성 폴리머로 폴리디메틸실록산(polydimethylsiloxane, PDMS)을 사용하였으나, SU-8 등을 사용할 수도 있다.Photolithography (phothlithography) processes and superhydrophobic polymer coating processes were performed to fabricate microstructures with superhydrophobic surfaces. In the exemplary embodiment of the present invention, polydimethylsiloxane (PDMS) is used as the superhydrophobic polymer, but SU-8 may be used.

제작에는 5인치 포토 마스크와 4인치 P-type 실리콘 웨이퍼를 사용하였으며, 희생층인 알루미늄(Al)을 증착시킨 후 AZ4620을 포토레지스트로 하여 PDMS를 몰딩하는 공정을 사용하였다.
A 5 inch photo mask and a 4 inch P-type silicon wafer were used for the fabrication, and a process of molding PDMS using AZ4620 as a photoresist after depositing sacrificial layer aluminum (Al) was used.

실시예 1. AZ4620을 포토레지스트로 하는 마이크로 구조물의 제작Example 1 Fabrication of Microstructures Using AZ4620 as Photoresist

AZ4620(PhotoResist)을 포토레지스트로 하는 마이크로 구조물을 제작하는 전체 공정은 도 2에 나타나 있다. 먼저, 클리닝한 실리콘 웨이퍼 위에 희생층인 알루미늄(Al)을 증착한 후, AZ4620을 스핀코팅한다. 실리콘 웨이퍼를 세척하는 공정은 피라냐(Piranha), RCA-1, RCA-2 공정을 수행하였으며, AZ4620은 2000 rpm에서 40초 간 스핀코팅하였다.The overall process of fabricating a microstructure using AZ4620 (PhotoResist) as a photoresist is shown in FIG. First, aluminum (Al), which is a sacrificial layer, is deposited on the cleaned silicon wafer, and then spin-coated AZ4620. The silicon wafer was washed with Piranha, RCA-1, and RCA-2. The AZ4620 was spin-coated for 40 seconds at 2000 rpm.

스핀코팅을 마친 실리콘 웨이퍼를 105℃ 핫플레이트(hot-plate) 위에서 60초 간 소프트 베이크(soft-bake) 처리한 후, 실리콘 웨이퍼 위에 포토 마스크를 정렬하고 35초간 노광(exposure) 수행하고, 현상공정액에서 3분간 현상하였다. After the spin-coated silicon wafer is soft-baked for 60 seconds on a 105 ° C. hot-plate, the photo mask is aligned on the silicon wafer and exposed for 35 seconds, and a developing process is performed. It developed for 3 minutes in liquid.

상기 현상 공정을 마친 실리콘 웨이퍼에 PDMS를 200 ㎛ 적층하고 95℃ 오븐에 1시간 동안 경화하고, BHF(buffered hydrofluoric acid) 용액을 이용하여 알루미늄(Al) 증착층을 제거한 후 아세톤 용액으로 AZ4620을 제거하여 마이크로 구조물을 제작하였다.After the development process, the PDMS was laminated 200 μm on the silicon wafer, cured in an oven at 95 ° C. for 1 hour, and the aluminum (Al) deposition layer was removed using a buffered hydrofluoric acid (BHF) solution, and then AZ4620 was removed with acetone solution. Micro structures were made.

AZ4620을 사용하여 9 ㎛ 높이의 구조물 패턴을 제작하고, PDMS를 약 200 ㎛ 적층코팅하였다. 오븐에서 경화한 후 BHF 용액을 사용하여 알루미늄 증착층을 제거하면, PDMS 층과 포토레지스트 층이 쉽게 분리 되고, 남은 포토레지스트 역시 쉽게 분리되는 장점이 있었다.A 9 μm high structure pattern was fabricated using AZ4620 and PDMS was laminated over about 200 μm. When the aluminum deposition layer was removed using a BHF solution after curing in an oven, the PDMS layer and the photoresist layer were easily separated, and the remaining photoresist was easily separated.

AZ 계열의 포토레지스트를 이용하면 화학작용을 이용할 수 있기 때문에 사이드 미러에 적용할 수 있을 정도의 얇은 막을 얻을 수 있다. 한편, AZ 계열의 포토레지스트는 SU-8에 비해 높이가 낮기 때문에 고종횡비를 얻기 어려우나 이는 적층 코팅을 통해 해결할 수 있다.AZ-based photoresists enable chemical reactions, resulting in thin films that can be applied to side mirrors. On the other hand, AZ-based photoresist is difficult to obtain a high aspect ratio because the height is lower than that of SU-8, but this can be solved through the laminated coating.

마이크로 구조체의 종횡비를 달리하기 위하여 AZ4620 몰드 자체의 두께를 조절함으로써 PDMS 구조체의 높이도 변화시킬 수 있었다. 포토레지스트를 코팅할 때 스핀속도를 1000, 2000, 3000, 4000 rpm으로 다르게 하여 높이가 서로 다른 구조체를 제작하였고, 고종횡비의 구조를 제작하기 위하여 2000 rpm에서 3회 적층코팅 실시함으로써 최적화된 공정조건을 수립하였다.
In order to change the aspect ratio of the microstructure, the height of the PDMS structure can be changed by adjusting the thickness of the AZ4620 mold itself. Structures with different heights were fabricated by varying the spin speed to 1000, 2000, 3000, and 4000 rpm when coating the photoresist. Optimized process conditions by three lamination coatings at 2000 rpm to produce high aspect ratio structures Was established.

실험예 1. 몰드 두께에 따른 마이크로 구조체의 종횡비 측정Experimental Example 1. Measurement of the aspect ratio of the microstructure according to the mold thickness

구조체의 종횡비를 다르게 하기 위하여 스핀속도 또는 코팅횟수를 다르게 하여 구조체를 제작한 후 Nano-Scan(NVC-10100, 나노시스템, 한국)을 이용하여 구조체의 높이를 측정하는 실험을 수행하였다.In order to change the aspect ratio of the structure, the structure was fabricated by varying the spin speed or the number of coatings, and then the height of the structure was measured by using Nano-Scan (NVC-10100, Nano System, Korea).

AZ4620 포토레지스트를 4000, 3000, 2000, 1000 rpm으로 스핀코팅하고, 2000 rpm으로 3회 적층코팅 한 결과 하기 표 1과 같이 구조체의 높이가 각각 6, 7.3, 15.8, 35 ㎛로 제작 되었다.The AZ4620 photoresist was spin-coated at 4000, 3000, 2000, and 1000 rpm, and laminated coating was performed three times at 2000 rpm. As a result, the heights of the structures were 6, 7.3, 15.8, and 35 μm, respectively, as shown in Table 1 below.

[표 1][Table 1]

Figure 112010055106417-pat00001

Figure 112010055106417-pat00001

실험예 2. 종횡비에 따른 접촉각 측정Experimental Example 2. Measurement of contact angle according to aspect ratio

종횡비에 따른 구조체의 접촉각을 측정하기 위하여 평판 위에 PDMS 구조체를 올려 놓고 물방울을 5 ㎕ 떨어뜨린 후 CCD 카메라를 이용하여 접촉각을 측정하였다. 정사각형 돌출 형상에서 구한 이론 및 실험 접촉각을 하기 표 2에 나타내었다. In order to measure the contact angle of the structure according to the aspect ratio, the PDMS structure was placed on a plate, 5 μl of water droplets were dropped, and the contact angle was measured using a CCD camera. Theoretical and experimental contact angles obtained from the square protrusion shape are shown in Table 2 below.

[표 2][Table 2]

Figure 112010055106417-pat00002
Figure 112010055106417-pat00002

상기 표에서 이론적 접촉각은 고체 표면이 평평하지 않고 요철이 있는 경우에 대하여 웬젤(Wenzel)과 카시(Cassie)가 제안한 모델을 따라 계산한 값이다. The theoretical contact angle in the table is calculated according to the model proposed by Wenzel and Cassie for the case where the solid surface is not flat and there are irregularities.

웬젤(Wenzel)의 모델은 액체방울이 요철의 바닥까지 적시는 경우를 가정한 것이고, 이 때의 접촉각(θ r w )은 다음의 식으로 표현된다.Wenzel's model assumes that the droplets are wetted to the bottom of the unevenness, and the contact angle θ r w is expressed by the following equation.

Figure 112010055106417-pat00003
Figure 112010055106417-pat00003

Figure 112010055106417-pat00004
Figure 112010055106417-pat00004

이 때 r은 액체방울이 실제로 표면에 닿는 면적(ASL)과 상부에서 투영된 면적(AF)의 비율로 나타내며, 거칠기율(roughness factor)로 정의한다. In this case, r is expressed as the ratio of the area A SL that the droplet actually touches the surface and the area A F projected from the upper part, and is defined as a roughness factor.

가로, 세로의 길이가 a, 간격이 b, 높이가 h인 형상변수를 가지는 사각형 돌출형상(square pillar)에서 r은 하기 식과 같이 계산된다.In a square pillar having a shape variable of length a, length b, and height h, the r is calculated as follows.

Figure 112010055106417-pat00005
Figure 112010055106417-pat00005

카시(Cassie) 모델은 액체방울이 요철에 의해 떠받쳐져 있는 경우를 가정한 것이고, 이 때의 접촉각(θ r c )은 다음 식과 같이 정의된다.The Cassie model assumes that a droplet is supported by unevenness, and the contact angle θ r c is defined by the following equation.

Figure 112010055106417-pat00006
Figure 112010055106417-pat00006

Figure 112010055106417-pat00007
Figure 112010055106417-pat00007

여기서 fs는 액체방울이 실제로 표면에 닿는 면적(ASL)과 상부에서 투영된 면적(AC)의 비율로 나타내며, 고체비율(solid fraction)로 정의 된다. 상기와 같은 항상변수를 가지는 돌출현상에서 fs는 아래 식과 같이 계산된다.Where f s is the ratio of the area where the droplet actually touches the surface (A SL ) and the area projected from the top (A C ), which is defined as the solid fraction. In the above-mentioned protrusion with always variable f s is calculated as follows.

Figure 112010055106417-pat00008
Figure 112010055106417-pat00008

실험에서 측정된 접촉각은 종횡비가 증가할수록 커지는 것을 알 수 있었다. 특히 적층코팅으로 구조체의 높이를 최대 35 ㎛까지 올렸을 때 최대 접촉각이 165°를 나타냄으로써 초발수성 표면이 구현되었다. 상기 표 2에서 접촉각의 변화양상을 살펴보면, 웬젤(Wenzel)의 이론값 보다는 카시(Cassie)의 이론값을 따르는 것을 확인할 수 있다. 따라서 제작한 PDMS 구조체 위에 물방울이 떠 있을 것으로 생각된다.
It was found that the measured contact angle increases as the aspect ratio increases. In particular, when the height of the structure was raised to a maximum of 35 ㎛ by lamination coating, the maximum water contact angle was 165 ° to realize a super water-repellent surface. Looking at the change pattern of the contact angle in Table 2, it can be seen that the theoretical value of Cassie (Cassie) rather than the Wenge (The Wenzel). Therefore, water droplets are thought to float on the fabricated PDMS structure.

실험예 3. PDMS 구조체의 반사율 및 투과율 측정Experimental Example 3 Measurement of Reflectance and Transmittance of PDMS Structure

본 발명의 상기 실시예 1에서 제시한 방법에 의하여 구조체의 높이가 35 ㎛인 초발수성 PDMS 박막을 제작(2000 rpm, 40초, 3회 적층코팅)한 후, 이를 자동차 사이드미러 또는 일반 창유리에 사용하기 적합한지를 확인하기 위하여 PDMS 박막 부착 전후의 반사율과 투과율을 측정하는 실험을 하였다. After manufacturing a super water-repellent PDMS thin film having a height of 35 μm by the method proposed in Example 1 of the present invention (2000 rpm, 40 seconds, three times lamination coating), it is used for automobile side mirrors or general window panes. In order to confirm the following suitability, the experiment to measure the reflectance and transmittance before and after the PDMS thin film was carried out.

본 실험은 UV-visible-NIR 분광광도계 (CARY 500 Scan, VARIAN Co., Australian) 장비를 이용하여 일반 슬라이드 글라스와 본 발명의 구조체가 없는 PDMS 박막 및 본 발명의 PDMS 박막으로 이루어진 세 가지 샘플의 반사율과 투과율을 측정한 결과 도 4와 같이 나타났다.In this experiment, the UV-visible-NIR spectrophotometer (CARY 500 Scan, VARIAN Co., Australian) equipment was used to reflect the reflectance of three samples consisting of a general slide glass, a PDMS thin film without the structure of the present invention, and a PDMS thin film of the present invention. As a result of measuring the transmittance and as shown in FIG.

투과율은 UV-visible-NIR 분광광도계(CARY 500 Scan, VARIAN Co., Australian)를 이용하였다. 투과율 특정에는 실리카 유리를 참고 시료로 사용하여 투과율을 자동 보정한 후, 자외선(200 ~ 380 nm), 가시광선(380 ~ 780 nm), 적외선(780 ~ 900 nm) 영역으로 나누어 투과율을 측정하였다. PDMS 마이크로 구조물 필름의 투과율 측정 결과 도 4(b)에서 알 수 있듯이 가시광선 영역에서 90% 이상의 투과율을 보였다. The transmittance was measured using a UV-visible-NIR spectrophotometer (CARY 500 Scan, VARIAN Co., Australian). To determine the transmittance, the transmittance was measured by automatically calibrating the transmittance using silica glass as a reference sample, and then divided into ultraviolet (200 to 380 nm), visible (380 to 780 nm), and infrared (780 to 900 nm) regions. As a result of measuring the transmittance of the PDMS microstructure film, as shown in FIG. 4 (b), the transmittance showed more than 90% in the visible light region.

결과적으로 본 발명의 초발수성 마이크로 구조체가 있는 PDMS 표면은 사이드 미러 또는 창유리에 부착하여도 문제가 없음을 알 수 있었다.As a result, the surface of the PDMS having the superhydrophobic microstructure of the present invention was found to have no problem even when attached to the side mirror or the window glass.

Claims (4)

포토리소그래피(phothlithography) 공정을 이용한 초발수성 필름의 제작방법에 있어서,
(1) 실리콘 웨이퍼 위에 희생층으로 알루미늄(Al)을 증착하는 단계;
(2) 상기 알루미늄(Al) 증착층 위에 포토레지스트(photoresist)를 코팅하는 단계;
(3) 상기 포토레지스트 위에 일정한 패턴 홈을 갖는 크롬(Cr) 마스크를 정렬하여 노광(exposure)한 후, 현상하는 단계;
(4) 상기 현상된 포토레지스트 위에 초소수성 폴리머로서 폴리디메틸실록산(polydimethylsiloxane, PDMS) 또는 하기 화학식 1로 표시되는 SU-8 중 어느 하나를 코팅하는 단계;
[화학식 1]
Figure 112012061675248-pat00014

(5) 상기 희생층인 알루미늄(Al)을 제거하는 단계; 및
(6) 상기 포토레지스트를 제거하는 단계;를 포함하는 고종횡비 마이크로 구조물을 가지는 초발수성 폴리머 필름의 제작방법.
In the manufacturing method of the super water-repellent film using a photolithography (phothlithography) process,
(1) depositing aluminum (Al) as a sacrificial layer on a silicon wafer;
(2) coating a photoresist on the aluminum (Al) deposition layer;
(3) arranging and then developing a chromium (Cr) mask having a predetermined pattern groove on the photoresist and then developing;
(4) coating any one of polydimethylsiloxane (PDMS) or SU-8 represented by the following Chemical Formula 1 as a superhydrophobic polymer on the developed photoresist;
[Formula 1]
Figure 112012061675248-pat00014

(5) removing the sacrificial layer aluminum (Al); And
(6) removing the photoresist; manufacturing method of a super water-repellent polymer film having a high aspect ratio microstructure comprising a.
제 1항에 있어서,
상기 패턴 홈은 가로 4 ~ 6 ㎛, 세로 4 ~ 6 ㎛, 간격 45 ~ 55 ㎛인 것을 특징으로 하는 고종횡비 마이크로 구조물을 가지는 초발수성 폴리머 필름의 제작방법.
The method of claim 1,
The pattern groove is a method of producing a super water-repellent polymer film having a high aspect ratio microstructure, characterized in that the width 4 ~ 6 ㎛, length 4 ~ 6 ㎛, interval 45 ~ 55 ㎛.
삭제delete 제 1항에 있어서,
상기 (5) 단계는 BHF(buffered hydrofluoric acid) 용액 또는 알루미늄 식각 용액(Al etchant)를 이용하여 알루미늄(Al) 희생층을 제거하는 것을 특징으로 하는 표면에 고 종횡비 마이크로 구조물을 가지는 고종횡비 마이크로 구조물을 가지는 초발수성 폴리머 필름의 제작방법.
The method of claim 1,
Step (5) is a high aspect ratio microstructure having a high aspect ratio microstructure on the surface, characterized in that to remove the aluminum (Al) sacrificial layer using a buffered hydrofluoric acid (BHF) solution or aluminum etchant (Al etchant). The method of manufacturing a super water-repellent polymer film having a branch.
KR1020100082790A 2010-08-26 2010-08-26 Method for manufacturing super water-repellent polymer film KR101220416B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100082790A KR101220416B1 (en) 2010-08-26 2010-08-26 Method for manufacturing super water-repellent polymer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100082790A KR101220416B1 (en) 2010-08-26 2010-08-26 Method for manufacturing super water-repellent polymer film

Publications (2)

Publication Number Publication Date
KR20120019545A KR20120019545A (en) 2012-03-07
KR101220416B1 true KR101220416B1 (en) 2013-01-10

Family

ID=46128403

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100082790A KR101220416B1 (en) 2010-08-26 2010-08-26 Method for manufacturing super water-repellent polymer film

Country Status (1)

Country Link
KR (1) KR101220416B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101362511B1 (en) * 2012-12-05 2014-02-14 성균관대학교산학협력단 A method for manufacturing high transmittance and stable hydrophobic surface by aligning nano particles coated with silicon-carbon complex
CN109292730B (en) * 2018-09-03 2020-07-24 山东科技大学 Preparation method of super-smooth surface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812375A (en) * 1994-06-30 1996-01-16 Nippon Sheet Glass Co Ltd Water repellent article and its production
KR970015788A (en) * 1995-09-30 1997-04-28 배순훈 Metal layer formation method
JP2002356651A (en) 2001-05-30 2002-12-13 Dow Corning Toray Silicone Co Ltd Silicone composition for water repellent coating
KR20100086806A (en) * 2009-01-23 2010-08-02 한국과학기술원 Fabrication method of hierarchical structure film by electron beam irradiation and fabrication method of large area superhydrophobic and superhydrophilic surfaces using hierarchical structure film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812375A (en) * 1994-06-30 1996-01-16 Nippon Sheet Glass Co Ltd Water repellent article and its production
KR970015788A (en) * 1995-09-30 1997-04-28 배순훈 Metal layer formation method
JP2002356651A (en) 2001-05-30 2002-12-13 Dow Corning Toray Silicone Co Ltd Silicone composition for water repellent coating
KR20100086806A (en) * 2009-01-23 2010-08-02 한국과학기술원 Fabrication method of hierarchical structure film by electron beam irradiation and fabrication method of large area superhydrophobic and superhydrophilic surfaces using hierarchical structure film

Also Published As

Publication number Publication date
KR20120019545A (en) 2012-03-07

Similar Documents

Publication Publication Date Title
US9993948B2 (en) Superhydrophobic films
Choi et al. Fabrication of superhydrophobic and oleophobic surfaces with overhang structure by reverse nanoimprint lithography
Pozzato et al. Superhydrophobic surfaces fabricated by nanoimprint lithography
Torun et al. Water impact resistant and antireflective superhydrophobic surfaces fabricated by spray coating of nanoparticles: interface engineering via end-grafted polymers
EP2632614B1 (en) Superhydrophobic film constructions
JP5560046B2 (en) Products with superhydrophobic nanotextured surfaces
KR102130665B1 (en) Method of manufacturing mold for superhydrophobic material, superhydrophobic material and method of manufacturing the same
Erbil et al. Range of applicability of the Wenzel and Cassie− Baxter equations for superhydrophobic surfaces
EP2155620B1 (en) Preparation of super water repellent surface
KR101410826B1 (en) Superhydrophobic surfaces consisted of homogeneously mixed nanostructure and microstructure
Manca et al. Influence of chemistry and topology effects on superhydrophobic CF4-plasma-treated poly (dimethylsiloxane)(PDMS)
US20120181346A1 (en) Nanotextured surfaces and related methods, systems, and uses
Kim et al. Fabrication of PDMS micro/nano hybrid surface for increasing hydrophobicity
US20230323052A1 (en) Nanocomposite Films And Methods For Producing The Same
KR101220416B1 (en) Method for manufacturing super water-repellent polymer film
KR101014277B1 (en) Manufacturing method for anti-reflective surface and super water-repellent surface
TW201604000A (en) Antifogging member and manufacturing method therefor
Lim et al. Simple nanofabrication of a superhydrophobic and transparent biomimetic surface
Fang et al. Optical nanoscale patterning through surface-textured polymer films
KR20090061380A (en) Forming method for super water-repellent product
US20170371243A1 (en) Micron patterned silicone hard-coated polymer (shc-p) surfaces
KR101669734B1 (en) Superhydrophobic sheet and method of manufacturing the same
Jeong et al. Super-hydrophobicity of PMMA and PDMS surfaces structured by femtosecond laser pulses
JP3834609B2 (en) Evaluation method of water-repellent coating
Kim et al. Robust fabrication of double-ring mushroom structure for reliable omniphobic surfaces

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151222

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161228

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190121

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191226

Year of fee payment: 8