WO2002096280A2 - Procede et dispositif d'acquisition d'informations relatives a une fracture osseuse - Google Patents

Procede et dispositif d'acquisition d'informations relatives a une fracture osseuse Download PDF

Info

Publication number
WO2002096280A2
WO2002096280A2 PCT/AT2002/000156 AT0200156W WO02096280A2 WO 2002096280 A2 WO2002096280 A2 WO 2002096280A2 AT 0200156 W AT0200156 W AT 0200156W WO 02096280 A2 WO02096280 A2 WO 02096280A2
Authority
WO
WIPO (PCT)
Prior art keywords
fracture
area
image
orbital floor
layer
Prior art date
Application number
PCT/AT2002/000156
Other languages
German (de)
English (en)
Other versions
WO2002096280A3 (fr
WO2002096280A8 (fr
Inventor
Oliver Ploder
Clemens Klug
Original Assignee
Innovationsagentur Gesellschaft M.B.H.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovationsagentur Gesellschaft M.B.H. filed Critical Innovationsagentur Gesellschaft M.B.H.
Priority to AU2002344137A priority Critical patent/AU2002344137A1/en
Publication of WO2002096280A2 publication Critical patent/WO2002096280A2/fr
Publication of WO2002096280A3 publication Critical patent/WO2002096280A3/fr
Publication of WO2002096280A8 publication Critical patent/WO2002096280A8/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4504Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1075Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions by non-invasive methods, e.g. for determining thickness of tissue layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]

Definitions

  • the invention relates to a method for obtaining information about a bone fracture, in particular an orbital (floor) fracture, e.g. slice images generated with the aid of computer tomography are subjected to image processing for obtaining fracture image data, from which information regarding the size of the fracture area is derived.
  • a bone fracture in particular an orbital (floor) fracture
  • slice images generated with the aid of computer tomography are subjected to image processing for obtaining fracture image data, from which information regarding the size of the fracture area is derived.
  • the invention relates to a device for carrying out such a method, with a layer image recording device, in particular a computed tomography device, an image processing unit connected thereto and an image display unit.
  • slice imaging techniques to detect such fractures, such as ultrasound or x-ray slice images, in particular computed tomography (CT).
  • CT computed tomography
  • coronal tomography slice images are recorded, the image planes running parallel to the forehead.
  • axial computed tomography slices in addition to coronal computed tomography slices, corresponding to planes perpendicular to the end face.
  • the method according to the invention of the type mentioned at the outset is characterized in that, from the fracture image data of the individual slice images obtained with the aid of image processing, dimension values relating to the fracture area are taken, on the basis of which an area determination for representing the extent of the fracture is carried out via the slice images.
  • the device according to the invention of the type mentioned at the outset is characterized by computer means connected to the image processing unit or image reproduction unit, which are set up to determine an area for displaying the extent of the fracture from the fracture image data output by the image processing unit, specifying dimension values per layer image via the image reproduction unit ,
  • the (axial or coronal) slice images are used one after the other to obtain length dimensions, these dimensions expediently directly from the representation of the slice images on the image display device by "clicking" on the ends of the respective as Line in the slice image recognizable area (left and right end of the orbital floor and left and right end of the fracture area), that is, can be removed in order to be processed.
  • length sizes can be immediately entered into the computer unit, where corresponding length dimensions are determined on the basis of the scale known from the image processing unit and multiplied by the "layer thicknesses" or more precisely by the distances between the layer image levels are so that partial areas of the fracture area or the surrounding affected bone area, for example orbital floor, are obtained from layer image to layer image.
  • averaging is expediently carried out by determining these partial areas as trapezoidal areas, the arithmetic mean values from the length specifications of two adjacent slice images being used for the area calculation.
  • trapezoidal partial areas are expediently used for determining the fracture area as well as for calculating the area of the entire orbital floor - in the case of an orbital floor fracture.
  • this graphical representation can in fact correspond to a schematic plan view of this bone area including the fracture area.
  • Such a top view has so far not been possible using conventional imaging techniques (e.g. computed tomography, ultrasound) alone.
  • One possible treatment for a fracture in the orbital floor is to place suitable implants in the eye socket or in a socket Introducing balloon catheters into the maxillary sinus, and for this purpose it is also desirable to obtain an approximate estimate of the extent of the fracture and the volume of the displaced orbital contents affected by the fracture area. Based on this data, the surgeon can make a diagnosis or plan the operation from the maxillary sinus, from the eye socket or from both access routes. Furthermore, the type and size of the implant used, which is necessary to support the fracture, can be determined before the surgical intervention.
  • the fracture piece projecting obliquely downward is not only calculated in terms of area, but also a calculation of the volume defined above this folded-away fracture piece, in order thus to carry out the so-called herniation (displacement of the orbital contents ) to be able to fix it rationally.
  • herniation displacement of the orbital contents
  • in order to create a targeted diagnosis not only is information about the area size of the fracture area obtained, but also about the extent of the sinking or the sinking volume.
  • This volume calculation can also be carried out layer by layer, with a partial volume being calculated for each layer thickness, and these partial volumes being able to be calculated on the basis of the partial areas determined and of height information taken from the layer image data.
  • a graphical representation is also useful here.
  • a major advantage of the technique according to the invention is that information about the location and the size of the respective fracture can be obtained with great accuracy, so that the diagnosis and consequently the therapy are made considerably easier for the attending doctor.
  • the tabular and graphical representation of the areas and volumes of the fracture areas enables the surgeon in the event of a fracture of the orbital floor (or other walls of the orbit) to make a quick and exact diagnosis, so that an immediate decision about the treatment method is subsequently made - Intervention from the eye socket with insertion of an implant or lifting of the fracture area with the help of a balloon catheter inserted below it - can be decided. Sometimes the decision can also be that Surgical treatment is not required for smaller fractures.
  • Fig.l in a schematic block diagram of a device for obtaining information about bone fractures based on CT scans
  • FIG. 2 shows a schematic vertical section, corresponding to a coronal CT slice, through part of a skull
  • FIG. 3 shows a plan view of a left orbital floor with a fracture area
  • FIG. 4 shows schematically in a diagram the procedure for obtaining information about the areal size and the position of the fracture area and the orbital floor in the case of such an orbital floor fracture;
  • FIG. 5 shows the finished area diagram of orbital floor and fracture area in a diagram representation corresponding to FIG. 4;
  • a device for obtaining information about a bone fracture is shown schematically in a block diagram, with particular attention being given to difficult bone areas in terms of diagnosis and therapy, in particular fractures of the floor of the eye sockets (orbital floor).
  • a device 1 for recording slice images of the bone area in question is used, in particular a computer tomograph (CT) device 1, in order to slice images from the bone area to be examined, where the fracture is or is suspected, at the required intervals, e.g. in the case of slice images of the orbital floor at intervals of 3 mm.
  • CT computer tomograph
  • the slice images recorded in the CT device 1 are processed in an image processing unit 2 and are displayed on an image display unit in the form of a screen 3 edited.
  • the image processing unit 2 can be equipped with a conventional image processing module, such as the so-called "Easy Vision module", in order to process the images scanned by the CT device 1. If an orbital floor is examined, the images are recorded with the CT device 1 in coronal planes, ie in planes parallel to the forehead of the skull.
  • Such a slice image is shown schematically in a coronal plane in FIG. 2, the history skull 4 being visible, in which the right eye socket 5 has an intact orbital floor 6.
  • the length dimension (strictly speaking the width of the orbital floor 6), as it is denoted by L in FIG. 2, can be reduced between points 7 and 8, the points 7, 8, for example, with the cursor
  • a mouse 9 see FIG. 1
  • a similar control device for example cursor control keys on a keyboard
  • the length dimensions X and Y at the beginning 18 and end 17 of the fracture area 11 are taken from the inner edge of the orbital floor, corresponding to the respective point 8 ′.
  • the herniation area given per slice (recording) - according to FIG. 2 the triangular, checkered area H with the corner points 17, 18 and 19 - can be moved around with the cursor on the screen be removed.
  • this area H is used by the image processing module, e.g. calculated directly by the "Easy Vision" module, and this calculation is carried out for all CT slices.
  • the determined individual areas are used to calculate the herniation volume with a known slice thickness.
  • L, X, Y and H of the orbital floor 6 can be stored in tables, whereby they are transferred from the image processing unit 2 shown in FIG. 1 to a memory 13 belonging to a computer 12 be, s. Fig.l.
  • a dashed line at 14 the image processing unit 2 and the computer 12 can be integrated into a single computer. be summarized unit, which may also include the memory 13.
  • FIG. 3 for better illustration of such a fracture of the orbital floor, a plan view of an orbital floor is shown, this orbital floor similarly designated as 6 ′ in FIG. 2, and FIG. 3 likewise showing a left orbital floor; Furthermore, the front of the skull is to be thought in Fig. 3 on the right side.
  • the fracture area can be seen at 11 in FIG. 3, and the planes of the slice images according to the coronal stratification would be parallel to the right leaf edge of FIG. 3, the numbers of the CT slices according to the arrow n in FIG. 3 from the left ascending to the right.
  • the points 8 ' from where the lengths L n , X n and Y n are taken, lie on the slightly curved edge 8A' shown in FIG.
  • the opposite, outer edge of the orbital floor 6 ' is designated by 7A' in FIG.
  • FIG. 4 shows schematically in a diagram how the individual slice images with the numbers n, for example 11 to 21, lead to the reduced length dimensions L n , Xn and Y n , specifically the left boundary points 8n 'and 812' as well the right edge points In 'and I12' are drawn in Fig.4. Since the points 8 n 'are drawn on a straight coordinate in a map-based coordinate system, the right edge line 8A' according to FIG. 3 in FIG. 4 thus corresponds to the straight coordinate 8A '. However, this is not a problem for the doctor, who uses this representation and the other information obtained to make his diagnosis for the required therapy, since the basic shape of the orbital floor with the slight curve on. Inner edge is known in principle.
  • points 17 and 18 are also shown as edge points for the fracture area 11 for the layers with the numbers 14, 16 and 18 (points 17i4, 17i6, 17 ⁇ s and I814 18i6 and 18 ⁇ s.
  • the length dimensions X ⁇ 4 and Y ⁇ 4 measured from the left edge 8A ', are also illustrated for layer No. 14.
  • the fracture area 11 within the orbital floor 6' thus initially results as a series of rectangles, each correspondingly the individual layer thicknesses or distances of the layer planes from one another, for example with the depth S, which is uniform for the entire series of layer images and is, for example, 3 mm.
  • the total area F for the fracture area 11 is thus obtained by the sum of the partial areas F n , ie
  • the first length dimension (or area dimension) is used for the overall calculation:
  • the individual volumes V n already mentioned above are determined in layers on the basis of the removed herniation areas H n , u. between according to the relationships
  • V - 1 ⁇ J. S (single volume) or
  • V V n (total volume).
  • FIG. 5 shows, in correspondence with the diagram of FIG. 4, an illustration of the orbital floor 6 'including the fracture area 11 in the contour approximated by the triangles (19 in FIG. 4).
  • Such a representation can be displayed on the image display unit 3 and / or printed out with the help of the printer 15, for example after it has been determined by the computer 12 according to FIG. 1, so as to give the surgeon treating the diagnosis help with the necessary therapy.
  • the volume defined by the broken down piece of bone 16 in the fracture area 11 (see FIG. 2) between this piece of bone 16 and the imaginary orbital floor 6 'in the fracture area 11 is determined, for which purpose the respective individual herniation area (H n ) (see FIG. 2) is taken from the individual slice images, as a result of which the individual volumes V n are determined in layers, from which the total volume V is then calculated by adding them up.
  • H n herniation area
  • the partial volumes V n obtained may also, for example, as shown in Figure 6 shown and printed, are, and that 'cumulative total gives the physician an indication of the decision on the urgency of surgical intervention.
  • the corresponding partial volumes Vn and the total volume V are also included as an example.
  • the orbital floor 6 or 6 ' can be assumed to be flat; For a higher precision or for those cases where the orbital floor 6 or 6 'has a noticeable curvature, a correction can be made for the respective length dimensions, as will be illustrated below with reference to FIG. 7.
  • the curvature of the orbital floor 6 or 6 ' is concave, and it can be assumed to be approximately circular in section be, s. 7, where a circular arc for the orbital floor 6 ', with the edge points 7', 8 ', is shown.
  • the associated radius is labeled R.
  • the maximum deviation of one plane is equal to dimension d, and the angle ⁇ is the arc angle associated with the circular arc 6 '.
  • Half the length L between the points 7 ', 8' can thus be written to
  • the angle - can also be written as follows:

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Geometry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

La présente invention concerne un procédé et un dispositif servant à acquérir des informations relatives à une fracture osseuse, notamment à une fracture du plancher orbitaire (11). Selon l'invention: par exemple par tomographie informatisée (1), des images en couches produites sont soumises à un traitement d'images (2) pour permettre l'acquisition de données d'images de fracture à partir desquelles sont déduites des informations relatives à la taille de la zone fracturée; à partir des données d'images de fracture acquises grâce au traitement d'images (2) des images en couches individuelles, des valeurs dimensionnelles concernant la zone fracturée sont prélevées, et, sur la base de ces valeurs acquises sur les images en couches, est réalisée une évaluation de surface permettant la représentation de l'ampleur de la fracture (11).
PCT/AT2002/000156 2001-05-29 2002-05-22 Procede et dispositif d'acquisition d'informations relatives a une fracture osseuse WO2002096280A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002344137A AU2002344137A1 (en) 2001-05-29 2002-05-22 Method and device for obtaining information relating to a bone fracture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA837/2001 2001-05-29
AT8372001A ATA8372001A (de) 2001-05-29 2001-05-29 Verfahren und einrichtung zum gewinnen von informtionen über eine knochenfraktur

Publications (3)

Publication Number Publication Date
WO2002096280A2 true WO2002096280A2 (fr) 2002-12-05
WO2002096280A3 WO2002096280A3 (fr) 2003-02-27
WO2002096280A8 WO2002096280A8 (fr) 2004-03-18

Family

ID=34317914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2002/000156 WO2002096280A2 (fr) 2001-05-29 2002-05-22 Procede et dispositif d'acquisition d'informations relatives a une fracture osseuse

Country Status (3)

Country Link
AT (1) ATA8372001A (fr)
AU (1) AU2002344137A1 (fr)
WO (1) WO2002096280A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108491770A (zh) * 2018-03-08 2018-09-04 李书纲 一种基于骨折影像的数据处理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUGHES S W ET AL: "Technical note: a technique for measuring the surface area of articular cartilage in acetabular fractures." THE BRITISH JOURNAL OF RADIOLOGY. ENGLAND JUN 1994, Bd. 67, Nr. 798, Juni 1994 (1994-06), Seiten 584-588, XP008009976 ISSN: 0007-1285 *
MCGURK M ET AL: "Orbital volume measured by a low-dose CT scanning technique." DENTO MAXILLO FACIAL RADIOLOGY. UNITED STATES MAY 1992, Bd. 21, Nr. 2, Mai 1992 (1992-05), Seiten 70-72, XP001126221 ISSN: 0250-832X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108491770A (zh) * 2018-03-08 2018-09-04 李书纲 一种基于骨折影像的数据处理方法
CN108491770B (zh) * 2018-03-08 2023-05-30 李书纲 一种基于骨折影像的数据处理方法

Also Published As

Publication number Publication date
ATA8372001A (de) 2005-09-15
AU2002344137A8 (en) 2005-10-13
AU2002344137A1 (en) 2002-12-09
WO2002096280A3 (fr) 2003-02-27
WO2002096280A8 (fr) 2004-03-18

Similar Documents

Publication Publication Date Title
DE102009053471B4 (de) Verfahren und Vorrichtung zur Identifizierung und Zuordnung von Koronarkalk zu einem Herzkranzgefäß sowie Computerprogrammprodukt
EP3367972B1 (fr) Generation automatisee des agent de traitement osseux
DE10357205A1 (de) Verfahren zur Erzeugung von Ergebnis-Bildern eines Untersuchungsobjekts
DE10202515B4 (de) Verfahren, Vorrichtung und Computerprogrammprodukt zum Erstellen eines individuellen Modells eines Kieferknochens
DE102010061777B4 (de) Verfahren zur Bestimmung eines Parameters eines Fixierelementes für ein an einem Knochen zu fixierendes Implantat
EP1348393A1 (fr) Procédé de navigation ou planification de traitement pré-opératoire assisté par données de patients génériques
DE102005026220A1 (de) Verfahren zur Aufnahme, Analyse und Darstellung eines medizinischen Bilddatensatzes
EP1894538A1 (fr) Procédé et appareil pour la détermination de la position des plans pelviens
EP3355268B1 (fr) Procédé, dispositif de calcul et système de mesure d'une radiographie d'une zone d'examen médicale
DE10357206A1 (de) Verfahren und Bildbearbeitungssystem zur Segmentierung von Schnittbilddaten
EP3308738B1 (fr) Procédé d'apurement de représentations virtuelles d'objets
DE102004043057A1 (de) Verfahren zur Bestimmung ausgezeichneter coronaler und sagittaler Ebenen für die nachfolgende Aufnahme neuer Magnetresonanz-Schichtbildern oder die Darstellung von Magnetresonanz-Schichtbildern aus einem bereits vorhandenen Bilddatensatz eines Kniegelenks
EP1348394A1 (fr) Assistance à la planification ou navigation par des données génériques obtenues de patients avec adaptation bi-dimensionelle
DE4404695C2 (de) Verfahren zum Herstellen orthopädischer Einlagen
EP2271265B1 (fr) Production et présentation de panoramiques dentaires individualisés
DE102006058906B4 (de) Verfahren zur Darstellung von tomographischen Aufnahmen und Tomographiesystem oder Tomographiesystemverbund zur Durchführung dieses Verfahrens
DE102004003381A1 (de) Verfahren zur Bestimmung der Lage wenigstens einer Schicht in einem Untersuchungsgebiet, in welcher Schicht eine Schichtbildaufnahme erfolgen soll
EP3473185B1 (fr) Procédé de tomosynthese et dispositif de radiographie
WO2002096280A2 (fr) Procede et dispositif d'acquisition d'informations relatives a une fracture osseuse
DE102007028115B4 (de) Verfahren zur Bestimmung einer für eine Myokardablation bei einem Patienten optimalen Leistung eines Ablationskatheters sowie zugehörige medizinische Einrichtungen
DE10210644A1 (de) Verfahren zum Erstellen einer Sequenz
DE102006035123B4 (de) Verfahren zum Verbessern der Genauigkeit einer Bronchialbiopsie und Vorrichtung zur Durchführung eines Verfahrens zum Verbessern der Genauigkeit einer Bronchialbiopsie
DE102010048090B4 (de) Verfahren zur Herstellung einer Sägeführungsvorrichtung sowie Sägeführungsvorrichtung zur Knochenblockgewinnung
DE102019214560A1 (de) Verfahren zur automatischen Auswahl von medizinischen Strukturen und Vorrichtung
EP3723654B1 (fr) Système de planification d'opération pour la reconstruction de parties osseuses manquantes ou lésées

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 49/2002 UNDER (30) REPLACE "A 873/2001" BY "A 837/2001"; UNDER (71, 72) REPLACE "KLUG, GLEMENS" BY "KLUG, CLEMENS"; UNDER (74) THE ADDRESS SHOULD READ "RIEMERGASSE 14, A-1010 WIEN (AT)."; UNDER (81) ADD "AT (UTILITY MODEL), CZ (UTILITY MODEL), DE (UTILITY MODEL), DK (UTILITY MODEL), EE (UTILITY MODEL), FI (UTILITY MODEL), SK (UTILITY MODEL)."; UNDER (54) PUBLISHED TITLE IN GERMAN REPLACED BY CORRECT TITLE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP