WO2002094553A1 - Resin form, method for preparing the same, and core material and mold using the same - Google Patents

Resin form, method for preparing the same, and core material and mold using the same Download PDF

Info

Publication number
WO2002094553A1
WO2002094553A1 PCT/JP2001/004340 JP0104340W WO02094553A1 WO 2002094553 A1 WO2002094553 A1 WO 2002094553A1 JP 0104340 W JP0104340 W JP 0104340W WO 02094553 A1 WO02094553 A1 WO 02094553A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mold
core material
soft porous
porous core
Prior art date
Application number
PCT/JP2001/004340
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiko Suzuki
Original Assignee
K.U.S Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K.U.S Co., Ltd. filed Critical K.U.S Co., Ltd.
Priority to PCT/JP2001/004340 priority Critical patent/WO2002094553A1/en
Publication of WO2002094553A1 publication Critical patent/WO2002094553A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/24Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least three directions forming a three dimensional structure
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/02Pile fabrics or articles having similar surface features
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/10Open-work fabrics

Definitions

  • the present invention relates to a resin molded product, a method for producing the same, and a core material and a molding die used for the resin molded product.
  • honeycomb structures have been manufactured by laminating thin objects or laminating corrugated sheets.
  • the present invention is directed to a resin molded body capable of easily producing a part having a partially different thickness or a curved part with a small number of production steps, a production method capable of easily molding the molded body, and a core material. It was developed to provide a mold.
  • the male and female molds are pressed by applying pressure from a large device from outside the molding die.
  • the female and male molds are clamped with clamps or airbags, and then the resin is injected into the mold with high pressure.
  • Pressing by the above-mentioned external pressure requires a press machine.
  • Pressing by applying an external pressure to a high-viscosity compounded resin requires a large pressurizing device, and the pressure It requires a robust mold that can withstand high temperatures, and both its equipment and the mold are very expensive.
  • a crane is required to move a robust and heavy mold, and workability is unlikely to deteriorate.
  • Pressing resin into the clamped mold is difficult to balance the viscosity of the resin material, pressurization speed, etc., and when the rigidity of the mold is weak, If deformation occurs and the material and injection conditions are not balanced, there are problems such as unevenness in the thickness of the molded product.
  • a second object of the present invention is to provide a method of manufacturing a resin molded article that can easily produce a large molded article without performing pressing by externally large pressure in view of those circumstances. I have. Disclosure of the invention
  • the present invention has taken the following technical means in order to solve the above problems and achieve the object.
  • compound resin used herein refers to a material resin obtained by compounding and kneading various materials used in general FRP molding.
  • honeycomb is not limited to a shape having a hexagonal through hole, but includes a square, a triangle, and the like.
  • the constitution of the invention of the resin molded article is as follows.
  • a large number of through-holes are formed on the front and back of a flexible and permeable material, and a thick honeycomb-shaped soft porous core material (soft porous plate-shaped body) is formed.
  • a resin molded product that is impregnated with a compounded resin, molded and cured in a mold.
  • a large number of through holes are formed on the front and back of a flexible and permeable material. Then, a resin molded body is formed by impregnating a compounded resin into a thick honeycomb-shaped plate-shaped soft porous core material, and partially forming a thick-thin portion, followed by molding and curing.
  • This is formed into a three-dimensional shape having a rising portion from a flat portion, and is molded and cured.
  • Impregnated with a compound resin into a thick honeycomb-shaped soft porous core material in which a number of poorly formed through holes are formed on the front and back of a flexible and permeable plate-like material This is a resin molded body that is formed by integrally laminating this on a mold surface having a surface material layer formed on the mold surface and hardening.
  • a large number of through-holes are formed through the front and back of a flexible and permeable plate-shaped material, and a thick honeycomb-shaped soft porous core material is impregnated with a compound resin. This is molded into a tube and cured to form a resin molded body.
  • the term “compound resin” as used herein refers to a material resin obtained by compounding and kneading various materials used for general FRP and other molding.
  • the surface material layer is a resin material layer containing a material suitable for the surface layer, and is formed by coating or spraying. In this case, the compounded resin and the glass strand chiyo and soap can be sprayed simultaneously to form a layer. Impregnation means that it is included inside or attached to the outside.
  • the constitution of the invention of the method for producing a resin molded article is as follows.
  • (11) a step of preparing a thick honeycomb-shaped soft porous core material (soft porous plate material) having a large number of through holes penetrating the front and back of a flexible and permeable plate material; A step of impregnating the soft porous core material with a compounded resin; a step of forming a surface material layer on a molding surface of a mold; and a step of integrally forming and curing the soft porous core material on the surface material layer. And a method for producing a resin molded body.
  • (14) a step of preparing a thick honeycomb-shaped soft porous core material having a large number of through-holes penetrating the front and back of a flexible and permeable plate-shaped material, and blending the soft porous core material with the thick porous honeycomb material; A step of impregnating the resin, a step of forming a surface material layer on the molding surface of the mold, and an intermediate cloth impregnated with the compounded resin interposed between each of the plurality of the soft porous cores described above.
  • a method of manufacturing a resin molded body comprising the steps of forming an integral molding and curing step on a surface material layer.
  • a step of preparing a thick honeycomb-shaped soft porous core material having a large number of through-holes penetrating on the front and back of a flexible and permeable plate-like material A step of impregnating the compounded resin, a step of forming a surface layer on the molding surface of the male and female molds, and a step of winding the soft porous core material on the surface layer of the peripheral surface of the columnar male mold, and covering the female mold.
  • a method of manufacturing a resin molded article comprising: attaching, integrally molding into a tube, and curing.
  • a step of forming a surface layer on the forming surface of the male and female molds, a step of forming a fiber reinforced layer impregnated with the compounded resin on the surface layer of the female mold, and a plate-shaped soft porous core A resin molded body comprising: a step of impregnating a compounded resin into a material; and a step of laminating a plate-shaped soft porous core material impregnated with the compounded resin on the fiber reinforced material layer, and integrally molding and curing the mold. Manufacturing method.
  • a step of preparing a thick honeycomb-shaped soft porous core material having a large number of through-holes penetrating on the front and back of a flexible and permeable plate-shaped material A step of impregnating the compounded resin, a step of arranging the existing molded body on the molding surface of the female mold, and a step of arranging the soft porous core material on the existing molded body and integrally molding and hardening the mold. And a method for producing a resin molded body.
  • a method for producing a resin molded body comprising: a step of arranging an inner molded body thereon, and a step of integrally molding and curing by pressurizing the inner molded body.
  • the step of arranging the soft porous core material on the surface and molding and hardening the resin, the front and back texture portions are hard, and the elasticity of the binding yarn maintains flexibility in the thickness direction. How to make the body.
  • fiber bundle yarn refers to a yarn in which a bundle of fibers is twisted (single-twisted yarn, single-twisted yarn, or multi-twisted yarn).
  • Single yarn refers to a single linear yarn.
  • Impregnation refers to either being included between a large number of fine fibers or being attached to a single yarn or a cloth.
  • Intermediate cloth shoulder refers to a cloth-like (woven cloth, knitted cloth, net, non-woven fabric, mineral fiber fabric, soto, resin preform) that can impregnate the compounded resin.
  • the compounded resin refers to a soft syrup-like resin obtained by compounding and kneading materials necessary for forming a molded article.
  • the front and back tissues are each composed of a thin knit part and a thick knit part where the left and right thin knit parts are joined.
  • the thick knit parts are intermittently connected in series, and the adjacent thick knit parts are in the vertical direction.
  • the pitch phase is made different, and the thin stitch is formed by the thick stitch being bifurcated to the left and right, the left and right thin stitches are combined to form the next thick stitch, and the stitch is formed.
  • the front and back texture is composed of fiber bundle yarns, and the binding yarn is mainly a synthetic fiber single yarn, mineral fiber bundle yarns are selectively mixed, and the three-dimensional shape is fixed by heat setting.
  • Soft porous core material soft porous plate-shaped body).
  • the flexible porous core material for a resin honeycomb molded body wherein the front and back texture is composed of one selected from a single fiber or a mixed fiber of synthetic fibers and mineral fibers.
  • the mineral fiber is one selected from a carbon fiber, a simple substance of glass fiber, and a composite, and is a soft porous material for a resin honeycomb molded body according to any one of (24) to (25). Core material.
  • the mixing of synthetic fibers and mineral fibers in the binding yarn is one selected from ply twisting, aligning, or alternating arrangement of synthetic fibers and mineral fibers (24) to (27).
  • the mixing of synthetic fibers and mineral fibers in the binding yarn may be alternately arranged in the longitudinal direction of the thick knit portion and the thin knit portion (24) to (27).
  • the described soft porous core material for a resin honeycomb molded body may be alternately arranged in the longitudinal direction of the thick knit portion and the thin knit portion (24) to (27).
  • a double-knitted fabric is formed by a double Russell three-dimensional knitted fabric, which intersects perpendicularly to set the thickness between the front and back tissues and joins the front and back tissues together.
  • the front and back tissues are each composed of a thin knitted part and a thick knitted part where the left and right thin knitted parts are joined.
  • the thick knitted parts are intermittently connected in series, and the adjacent thick knitted parts are in the vertical direction.
  • Pick The thin stitch is formed by branching the thick stitch; the right stitch is formed by joining the left and right thin stitches to form the next thick stitch.
  • the front and back texture is composed of a fiber bundle yarn
  • the binding yarn is mainly a synthetic fiber single yarn
  • a mineral fiber bundle yarn is selectively mixed
  • a three-dimensional shape is fixed by a heat set.
  • a resin molded article in which a core material is impregnated with a soft syrup-like compound resin, and the elasticity of the binding yarn is used to provide elasticity in the thickness direction of the molded article.
  • An intervening cloth impregnated with a compound resin is sandwiched between a plurality of soft porous cores made of a double Russell three-dimensional knitted fabric with binding yarns perpendicular to the front and back tissues.
  • a double 82 cam is formed integrally with the double honeycomb, and an intervening cloth layer impregnated with a compounded resin is laminated on the front and back surfaces of the double honeycomb, respectively, and integrally formed to form a binding yarn.
  • a soft porous core material consisting of a double Russell three-dimensional knitted fabric in which the binding yarns are perpendicular to the front and back textures, and are joined together with a pre-formed compact between each of the multiple pieces.
  • a double honeycomb is formed on the front and back surfaces of the double honeycomb, and each of the preformed bodies is overlapped and integrally formed.
  • the elasticity of the binding yarn provides elasticity in the thickness direction.
  • the process of forming a double honeycomb by integral molding and the process of laminating an interposed cloth layer impregnated with a compounded resin on the front and back surfaces of the double honeycomb, and integrally molding with a molding die are combined to form a soft honeycomb.
  • the preform fiber referred to here is a fiber preformed into the shape to be molded by spraying a fiber reinforcing material (glass, carbon or other fiber) together with the resin onto the mold surface, or attaching it by hand.
  • the compounded resin is a soft candy resin in which various materials necessary and sufficient for FRP molding and other moldings are mixed.
  • thermosetting resin material In a molding method using a thermosetting resin material, a thermosetting resin material is charged into a molding die without pressurization, the molds are aligned, and the mold is not clamped by external pressure. A method for producing a resin molded body, which is molded by clamping the mold under reduced pressure in the mold.
  • thermosetting resin material In a molding method using a thermosetting resin material, the mold is set, and the thermosetting resin material is put into the molding die without applying pressure. A method for producing a resin molded article which is molded by clamping the mold by reducing the pressure in the mold.
  • a method for producing a resin molded product comprising: a step of reducing the pressure in a mold; and a step of closing and curing and curing the reduced pressure hole when the compounded resin overflows in the reduced pressure hole.
  • a step of setting the fiber reinforcing material in the female mold a step of arranging the male mold and lightly clamping the mold, and injecting the compounded resin from the mold material injection hole without pressure.
  • Production of a resin molded body comprising a combination of a process, a process of closing the material injection hole to reduce the pressure in the male and female molds, and a process of closing and curing and curing the compounded resin when the resin overflows in the pressure reduction hole.
  • Method. (42) Consists of a combination of male and female molds.
  • the female mold is configured to directly charge the compounded resin without pressure
  • the male mold has a pressure reduction hole from the mating surface inside the seal to the outside of the mold.
  • a resin mold in which a pressure reducing means is connected to the pressure reducing hole.
  • the male mold has a combination of a male and a male, and the male mold has a decompression hole formed from the mating surface inside the seal to the outside of the mold, and a decompression means is connected to the decompression hole.
  • a resin mold with a non-pressurized material injection hole that passes from the outside to the molding section.
  • the seal is disposed to face each of the male and female molds, and the female seal has a seal formed with a recess on the upper surface fitted into the female seal fitting recess (42), ( 43) The resin mold according to any one of the above.
  • the present invention provides the following windmill blades and reinforcing members.
  • a blade for a windmill comprising: a core-shaped core material, a reinforcing sheet provided around the core material, and a curable resin filled in voids of the core material and the reinforcing sheet.
  • a three-dimensional core made of a synthetic resin foam, a sheet-shaped core provided around the core, a reinforcing sheet provided around the core, a core and a reinforcing core.
  • a reinforcing member made of a curable resin filled in the voids of the resin.
  • a composite member in which one or more reinforcing members of (48) and (47) are arranged, the outside of which is surrounded by a reinforcing sheet, and integrally formed.
  • FIG. 1 is a perspective view of a soft multi-hole core material.
  • FIG. 2 is a plan view of a soft porous plate.
  • FIG. 3 is a longitudinal sectional front view of a mold and a soft porous core material showing a molding method.
  • FIG. 4 is a vertical sectional front view showing an embodiment of the resin honeycomb structure of the present invention.
  • FIG. 5 is a plan view showing a part of the mesh of the soft porous core material.
  • FIG. 6 is a perspective view showing a second embodiment of the soft porous core material.
  • FIG. 7 is a vertical sectional front view showing a second embodiment of the resin two-cam structure.
  • FIG. 8 is a vertical sectional front view showing a third embodiment of the resin honeycomb structure.
  • FIG. 9 is a front view showing an embodiment of a molding die used in the production method of the present invention.
  • FIG. 10 is a plan view of a soft porous core material processed.
  • FIG. 11 is a perspective view of a resin honeycomb formed body according to the first embodiment.
  • FIG. 12 is a partial vertical sectional front view of the resin honeycomb molded body of FIG.
  • FIG. 13 is a partial vertical sectional front view of the resin honeycomb formed body of the second embodiment.
  • FIG. 14 is a longitudinal sectional front view of a molding die showing a method of uniting molding with an FRP molded body.
  • FIG. 15 is a longitudinal sectional front view of a resin honeycomb molded body showing a third embodiment.
  • FIG. I6 is a longitudinal sectional front view of a resin honeycomb molded body according to the fourth embodiment.
  • FIG. 17 is a plan view showing a method of forming a tubular resin honeycomb formed body.
  • FIG. 18 is a partial front view of a thick knit portion of a soft porous core material.
  • FIG. 19 is a front view of the binding yarn showing the second embodiment.
  • FIG. 20 is a front view of the binding yarn showing the third embodiment.
  • FIG. 21 is a front view of a binding yarn showing a fourth embodiment.
  • FIG. 22 is a vertical sectional front view of a molding die used in the molding method of the present invention.
  • FIG. 23 is a partial longitudinal front view of the resin honeycomb formed body.
  • FIG. 24 is a longitudinal sectional front view of a resin honeycomb molded body according to the second embodiment.
  • FIG. 25 is a vertical sectional front view of the molding die.
  • FIG. 26 is a vertical sectional front view showing a state in which the mold is clamped.
  • FIG. 27 is a longitudinal sectional front view of a molding die showing a second embodiment.
  • FIG. 28 is a perspective view of a main part showing an embodiment of a wind turbine blade according to the present invention.
  • FIG. 29 is an enlarged sectional view of the outer shell of the blade of FIG.
  • FIG. 30a and 30b are enlarged cross-sectional views of the reinforcing rib of FIG. 28, respectively.
  • FIG. 31 is a cross-sectional view of the blade of FIG. 28 before assembly.
  • FIG. 32 is a sectional view showing another embodiment of the wind turbine blade according to the present invention.o
  • 33a to 33c are process diagrams showing one embodiment of a method for manufacturing a blade of a wind turbine according to the present invention.
  • FIGS. 34a to 34b are process diagrams showing another embodiment of the method for manufacturing a wind turbine blade according to the present invention.
  • FIG. 2 is a perspective view of a soft porous core material (hereinafter simply referred to as a soft porous core material) for a resin molded body made of a Russell three-dimensional knitted fabric, and FIG. 2 is a plan view.
  • a soft porous core material hereinafter simply referred to as a soft porous core material
  • FIG. 2 is a plan view.
  • the soft porous core material 1 is composed of a double-layered, three-dimensional knitted fabric by Sosel.
  • the material is selected from synthetic fibers such as polyester fiber, vinylon fiber, Kevlar fiber (trademark of DuPont), and mineral fibers such as carbon fiber and glass fiber.
  • the double-laced three-dimensional knitted fabric is a double-faced double-sided knitted fabric by a Russell knitting machine, in which a tortoiseshell pattern is set up.
  • a large number of binding yarns 4 are interposed between a front structure 2 and a back structure 3 to have a predetermined thickness, and are formed into a body having an arbitrary thickness, for example, 2 mm to 20 mm. Have been.
  • a large number of thin knitted portions (braided yarns) 5 are joined adjacently at their longitudinal ends to form a thick knitted portion 6,
  • a coarse portion 7 is formed between the left and right thick knit portions 6, and a wool 8 that is zigzag between the right and left thick knit portions 6 is knitted in the coarse portion 7.
  • the thick knitted portion 6 is composed of a thick knitted portion 6 and a thick knitted portion 6 joined together, the thick knitted portion 6 is intermittently connected in series, and the adjacent thick knitted portion 6 has a pitch difference of one pitch in the vertical direction.
  • the part 5 is formed by dividing the thick knit part 6 into two parts on the left and right, and the left and right thin knit parts 5 are joined to form the next thick knit part 6, so that a large number of turtle pattern stitches 9 are formed. . By heat setting this, the shape of the stitch 9 of the tortoiseshell pattern can be fixed.
  • the yarn used for the front and back textures 2 and 3 is, for example, a single or mixed material of a synthetic fiber bundle yarn and a mineral fiber bundle yarn, has flexibility, and can easily impregnate a compound resin. If a single yarn of synthetic fiber is used for the binding yarn 4, the binding yarn 4 has elasticity. Elasticity in the front and back direction occurs.
  • a bundle of fibers such as a single-twisted yarn, a single-twisted yarn, a multi-twisted yarn, and a tying yarn (pulling yarn) of a bundle of fine fibers is preferable.
  • it can be used as a twine of a fiber bundle yarn and a thick single yarn, and can be aligned.
  • the arrangement of the binding yarns 4 can be set at an arbitrary interval, for example, from 0.2 mm to 1 mm, depending on the purpose of use, or can form intermittently dense portions. When this gap is narrower, the compounded resin adheres in a plate shape.
  • FIG. 3 is a side view of the thick knitting portion 6. Since the organization can be set arbitrarily, a schematic diagram is shown.
  • the binding yarn 4 is composed of a ply-twisted yarn of a synthetic fiber single yarn 4a and a mineral fiber bundle yarn 4b. Polyester fiber was selected as synthetic fiber, and carbon fiber was selected as mineral fiber.
  • the binding yarn 4 is composed at the upper end in the front texture 2 and is formed by passing over several yarns and descending into the back texture 3 to join the front and back textures 2 and 3 together. I have. This varies depending on the organization.
  • FIG. 4 is a schematic view showing a second embodiment of the binding yarn 4.
  • the binding yarn 4 is a combination of a synthetic fiber single yarn 4a and a mineral fiber bundle yarn 4b. If necessary, a not-shown entanglement thread can be entangled.
  • FIG. 5 is a schematic view showing a third embodiment of the binding yarn 4.
  • the binding yarn 4 shows an aspect in which the synthetic fiber single yarn 4a and the mineral fiber bundle yarn 4b are alternately arranged and knitted between the front and back tissues 2 and 3.
  • FIG. 6 is a schematic view showing a fourth embodiment of the binding yarn 4.
  • the binding yarn 4 is formed by alternately arranging a plurality of yarn rows of the synthetic fiber single yarn 4 a and a plurality of yarn rows of the mineral fiber bundle yarn 4 b between the front and back tissues 2 and 3 and integrally knitting. An embodiment is shown.
  • the mixing ratio of the mineral fiber bundle yarn 4b to the synthetic fiber single yarn 4a in the binding yarn 4 is arbitrarily set in the range of 20% by volume to 50% by volume.
  • FIG. 7 is a plan view showing a state where the stitch 9 of the soft porous core material 1 is partially moved.
  • the double Russell three-dimensional knitted fabric can deform the stitch 9 in a free direction.
  • the binding yarn 4 has elasticity, the binding yarn 4 has a rigidity so that it does not collapse even if it is placed flat and pressed down on the surface structure 2 by hand.
  • a soft syrup-shaped compounded resin is impregnated into a soft porous core material 1 made of a double ply and a solid three-dimensional knitted fabric shown in FIG.
  • the impregnation method is arbitrary such as dipping, coating, spraying and the like.
  • the compounded resin a mixture of various necessary materials used in general FRP molding or a resin equivalent thereto can be used.
  • FIG. 8 shows a state in which the soft porous core material 1 impregnated with the compounded resin is placed flat on the mold 10.
  • the compounded resin 11 is impregnated between fine fibers. Even if the binding yarn 4 is only a single yarn 4a made of a synthetic fiber, the compound resin 11 is impregnated between adjacent single yarns 4a. When the mineral fiber bundle yarn 4b is added, the compound resin 11 is impregnated between the fine fibers of the fiber bundle yarn 4b. If the mold 10 is curved, it curves accordingly.
  • the soft porous core material 1 is cured (5 to 20 minutes depending on the material and temperature) in a molding die, and the compounded resin 11 is cured with time, whereby a resin 82 cam molded body 12 is formed.
  • the compound resin 11 is hard to adhere to the thick single yarn 4a, but the compound resin 11 is interposed between the thin mineral fiber bundle yarns 4b. It is also possible to see the plate-like connection between adjacent binding yarns 4 by impregnating them.
  • the compounded resin in the case of a linear single yarn, regardless of the material, the compounded resin is hard to adhere, and may peel off even if it adheres.
  • the fiber bundle yarn regardless of the material, the compounded resin enters between the fine fibers by capillary action, and the compounded resin is united with the fibers, so that peeling does not easily occur.
  • the fine fibers are fluffed right and left and front and back, the compound resin is impregnated between the adjacent fibers and the adjacent fibers are united together.
  • adjacent ones of the binding yarns 4 densely arranged along the length of the thick knit portion 6 can be connected in a plate shape.
  • a thick single yarn 4a was used as the binding yarn 4, and when the mineral fiber bundle yarn 4b was added to this, the thick single yarn 4a was impregnated with the mineral fiber bundle yarn 4b. Since the resin is adhered and integrally formed, the resin honeycomb molded body 12 is elastic in the thickness direction due to the elasticity of the thick single yarn 4a of the synthetic fiber when pressed in the thickness direction. 1 and 2
  • the soft porous core material 1 can freely change the width of the stitch 9 and can be made thinner by applying pressure in the thickness direction. After being impregnated, a box-shaped three-dimensional molding can be facilitated by the male and female molds. Even in such a case, elasticity in the thickness direction (for example, only the corner portions) can be provided by setting the binding yarn 4.
  • the soft porous core material 1 can be integrally formed as a molded body by laminating a material having different aspects (material composition and thickness) into a plurality of layers by impregnating a compounded resin. Also, an intervening cloth layer (woven cloth, knitted cloth, net, non-woven cloth, glass mat, etc.) 13 in which the compounded resin is impregnated between the layers can be integrally cured and formed as a molded article. .
  • FIG. 10 is a longitudinal sectional front view of a resin honeycomb molded body 12 in which a plurality of soft porous core materials 1 are laminated.
  • An outline of a method of manufacturing the molded body 12 is as follows. First, a compound resin is impregnated into an intervening cloth layer 13 made of a fiber reinforcing material mat (for example, a glass strand mat) to form a soft porous core material 1 between the soft porous core materials 1. The upper and lower soft porous cores 1 are adhered to each other by a compound resin impregnated in an intervening cloth layer 13 made of fiber-reinforced mats, and are integrally molded as a double honeycomb 14.
  • a fiber reinforcing material mat for example, a glass strand mat
  • the binding resin 4 can be prevented from being impregnated with the compounded resin, and the elasticity of the binding yarn 4 can be maintained. Therefore, the quality, thickness, array density, and the like of the binding yarn 4 are set according to the required elasticity.
  • the fiber reinforced material impregnated with the compound resin in the mold (not shown)
  • the interposed cloth layer 15 made of mat is arranged, and the double honeycomb 14 is stacked thereon, and the interposed cloth layer 15 made of fiber-reinforced mat impregnated with the compounded resin is stacked thereon. Tighten and mold integrally.
  • the binding yarn 4 is curved due to pressurization by a mold, and this shape is heat set by heat during molding.
  • the plurality of soft porous core materials 1 are connected as a double honeycomb 14 by the intervening cloth layer 13, and the surface is protected by the molded article layer in which the intervening cloth layer 15, which may be a fiber reinforcing material mat, is hardened.
  • the resulting resin honeycomb molded body 12 has excellent rigidity.
  • a surface layer (for example, for coloring) can be formed on the molding surface of the mold in advance.
  • a preformed molded body is interposed, and the soft porous core material 1 is included in the soft porous core material 1 by clamping. It can be integrally joined by the compounded resin attached.
  • a preformed molded article having good adhesiveness with the compounded resin is selected, and a soft molded article can also be used.
  • hardness, wall thickness, material, and the like can be changed for a plurality of layers.
  • the molded body 12 Even if the front and back surfaces of the resin honeycomb molded body 12 are hard, since the binding yarn 4 has elasticity, the molded body 12 has flexibility in the thickness direction of the molded body 12 even when pressed from the outside, so that Absorb pressure. For this reason, even if an external impact is applied, for example, it is extremely difficult to open the damaged hole because the impact is absorbed.
  • the resin honeycomb molded body 12 can be easily molded by a male and female mold, for example, when the double honeycomb 14 is used for a bumper of an automobile, the impact of a collision can be absorbed. When used in ships, etc., it can improve buoyancy by itself, mitigate the impact of collisions in case of marine accidents, do not leak into the ship even if the outside is damaged, and use severely broken debris as a floating body You can do it.
  • the present invention is not limited to the above embodiment, and may be used in various fields. Yes, and design changes can be made appropriately according to the purpose.
  • the material can be changed vertically above and below the intervening cloth layer 13 of the double honeycomb 14.
  • the material of the soft porous core material 1 can also be partially changed in the plane direction.
  • the front and back layers (intervening cloth layers) of the resin honeycomb molded body 12 may be mixed with a flame-retardant material, a weather-resistant material, a wear-resistant material, and the like.
  • a method of three-dimensionally forming the soft porous core material by a mold will be described.
  • a soft water-blended resin is impregnated in the soft porous core material 1 made of the double-rassel turtle-shaped three-dimensional knitted fabric.
  • immersion, coating by spraying or the like, and other methods are optional.
  • the mixed resin is impregnated into the front and back tissues and adheres to the surface.
  • the compounded resin adheres to the surface, and the compounded resin adhering to the surface of the adjacent binding yarns 4 is united with each other to form the knitting yarn bundle 5 and the thick knit portion 6 Then, they are connected in a plate shape to form a flat tortoiseshell connection.
  • the soft porous core material 1 impregnated with the compounded resin is accommodated in the molding part 21 of the lower mold 20.
  • the upper mold 22 is overlaid on the lower mold 20, closed and molded, and the compounded resin is cured over time.
  • a surface material layer 26 can be formed on the molding surface of the mold.
  • a coloring material may be added to the surface material layer 26, or a glass strand chip, mat, cloth or the like impregnated with the compounded resin may be superposed. This improves the appearance and the strength.
  • the mold is removed and a resin honeycomb molded body 12 is formed.
  • the lower surface is not flat, but is a male mold and has a protruding portion 22 a.
  • the binding yarn 4 is bent and deformed in the portion where the formed portion spacing is small on the side of the protruding portion 2 2a, and it is formed and hardened as it is deformed to form a plate.
  • the resin honeycomb formed body 12 has a partially different thickness.
  • FIG. 11 if the surface layer 26 is formed on the molding surface of the mold, as shown in FIG. 12, an 82 cam molded body 1 2 in which the surface layer 26 and the soft porous core 1 are united is formed. Becomes Therefore, if the surface material layer 26 is not formed, a honeycomb structure having through holes is obtained.
  • the soft porous core material 1 made of double Russell turtle-patterned three-dimensional knitted fabric can gather the turtle-patterned meshes 9 in a plane and partially narrow the holes, as shown in FIG.
  • a three-dimensional solid resin cam like a boat can be formed.
  • it since it can be bent freely, it can be formed into a box-like three-dimensional shape having a flat portion and a rising portion.
  • male and female molds can be individually molded by hand.
  • the soft porous core material 1 made of the double Russell tortoiseshell three-dimensional knitted fabric uses a somewhat thick single yarn as the binding yarn 4, and impregnates the compound resin into the front structure 2 and the back structure 3 in FIG. Mold and cure in the mold.
  • the compounded resin in the surface structure 2 and the back structure 3 is hardened, resulting in a hard honeycomb structure on the front and back.
  • a resin honeycomb structure that expands and contracts in the thickness direction is obtained by the elasticity of the thick single binding yarn 4.
  • FIG. 13 is a perspective view of a plate-like soft porous core material 23 made of a heat-resistant and solvent-resistant soft foam resin block.
  • a large number of punched through holes 24 are formed on the surface by a punching machine.
  • the shape of the through hole 24 may be any shape such as a square, a circle, and a triangle.
  • the compounded resin is impregnated into the porous core material 23 made of the soft foamed resin block and cured in the same manner as described above, a resin honeycomb molded body is formed.
  • the advantage of the soft porous core material 23 made of the soft foamed resin block is that the thickness can be arbitrarily selected, and the shape and size of the prize through hole 24 can be arbitrarily formed. In particular, the size and shape of the through hole 24 can be partially changed That is.
  • FIG. 14 shows a product obtained by sandwiching an intervening cloth 25 impregnated with a compound resin between two soft porous core materials 1 and integrally molding and curing the same as described above.
  • the material of the upper and lower soft porous core materials 1 can be changed. This material includes differences in material, wall thickness, through-hole size, color, etc.
  • the intervening cloth 25 include a woven cloth, a knitted cloth, a nonwoven cloth, paper, wood, a glass strander, a soft cloth, and the like.
  • a preformed resin molded body 27 is arranged on the inner surface of a mold (not shown), and a soft porous core material 1 impregnated with a compound resin is arranged thereon, and is integrally molded and cured as described above. It is a thing.
  • the preformed resin molded article 27 one having adhesiveness to the compounded resin can be arbitrarily selected.
  • the soft porous core material 1 can be wound around the male surface of the columnar body to form a tubular resin honeycomb molded body.
  • the application of the resin honeycomb molded body can be used in various fields. For example, it can be used for FRP molded core material, sound insulation wall material, heat insulation wall material, floor material, ceiling material, road surface pavement material, box material, pipe material, and other various fields.
  • the resin honeycomb structure that does not use glass fiber is flammable and can be recycled.
  • a method for forming a three-dimensional shape such as a box using the above-mentioned soft porous core material in the form of a plate will be described.
  • a surface material layer 33 is formed on the surface of the male mold 31, and a soft porous core material 1 impregnated with a compounded resin is adhered thereon. In this case, as shown in Fig.
  • the soft porous core material 1 is folded in four in the left-right direction, and the portion that hits the mold is cut so that it does not overlap with the adjacent one when folded horizontally. They can be attached, or they can be covered from above, and the stitches in the overlapping area can be packed and attached as shown in Fig. 7.
  • the female mold 32 is placed on top of this, molded by clamping, and the compounded resin is cured over time. In this case, a surface material layer 33 is also formed on the inner surface of the female mold. After curing, when the mold is released, a box-shaped hollow resin honeycomb molded body 34 is formed.
  • the female mold 32 shown in FIG. 16 since the lower surface of the top plate is not flat and has a projection 32a, the soft porous core material 1 is pressed by the projection 32a from above by molding. Then, the binding yarn 4 where the protruding portion 3 2a is present is bent and deformed, and is formed and hardened into a plate shape while being deformed, so that the completed resin honeycomb formed body 34 is shown in FIG. As shown in the figure, a thin portion 34a is formed partially, and has a different thickness.
  • the surface material layer 33 can be colored at the same time as the resin honeycomb molded body 34 is formed by adding a coloring material.
  • a cloth or a mat impregnated with the compounded resin can be applied on the applied or sprayed layer to make the whole or part of the layer thicker.
  • the binding yarn 4 When the binding yarn 4 is set as a thick single yarn (including a composite yarn of fine single yarn) and the compounded resin is impregnated with the soft porous core material 1, the mixed resin is well impregnated on the front and back structures 2 and 3. However, it is difficult to attach to the thick single binding yarn 4. Therefore, when this is molded, the front and back structures 2 and 3 become a hard molded body, but since the binding yarn 4 has the elasticity of a single yarn remaining, this resin honeycomb molded body 34 is It is possible to maintain flexibility in the thickness direction.
  • mineral fibers such as carbon fiber, Kepler fiber, and glass fiber are twisted or tied with the synthetic fiber, or the mineral fibers are intermittently interlocked.
  • the fibers can be arranged in an array of synthetic fibers (see Figures 3-5).
  • the molds can be formed by FRP or the like.
  • a 200 mm x 200 mm x 400 mm millimeter of resin honeycomb molded body for a refrigerator of a large freezer truck can be easily molded by FRP to form a large-sized housing.
  • a large housing that is excellent, lightweight, and excellent in heat insulation can be molded.
  • it since it is molded by male and female molds, it has excellent dimensional accuracy.
  • FIG. 20 is a resin c showing an embodiment in which an intervening cloth 25 impregnated with a compound resin is sandwiched between each of a plurality of soft porous core materials 1 and integrally molded and cured in the same manner as described above.
  • This is a two-cam molding 34.
  • the material of the upper and lower soft porous core materials 1 can be changed. This material includes differences in material, wall thickness, through-hole size, color, etc.
  • examples of the intervening cloth 25 include woven cloth, knitted cloth, non-woven cloth, paper, wood, glass strand mat and cloth.
  • it can be used as a wall for an aircraft or a ship, or as a blade for a windmill of a wind power generator. In a ship, the use of multiple layers not only improves the buoyancy of the hull, but also does not allow water to enter the interior even if a breach occurs in the outer layer, and does not sink.
  • FIG. 21 shows a method of uniting the FRP molded body 36 and the soft porous core material 1. Wooden plywood is often used as a reinforcing material in FRP bathtubs. Wood and metal are also used for the feet.
  • the outer tank 37 and the inner tank 38 are formed in advance as an FRP molded body 36. The portion of the foot 17a of the outer tub 37 is recessed, and a reinforcing material 37b such as wood is fitted therein.
  • the soft porous core material 1 impregnated with the compounded resin is disposed inside the outer tank 37.
  • the soft porous core material 1 is cut out at four corners that are not needed, and is formed into a substantially cross-shaped plane.
  • the inner tank 38 is fitted into the outer tank 37 from above the soft porous core material 1 and pressurized.
  • the inner and outer tanks 17 and 18 and the soft porous core material 1 are integrally bonded, and as shown in FIG. A cam compact 34 is formed.
  • the thickness of the soft porous core material 1 is large at the bottom and the thickness of the soft porous core material 1 is small at the side wall.
  • the soft multi-porous core material 1 impregnated with the compounded resin is sandwiched between the upper and lower FRP molded bodies 36 and molded and cured, so that the FRP molded body 36 and the soft porous core material 1 can be easily formed. Combined molding can be performed.
  • the soft porous core material 1 was formed between the molded bodies, but the FRP molded body and the soft porous core material 1 can be housed in a male and female mold.
  • a fiber reinforcement layer is formed on the molding surface of the female mold, Impregnating the compounded resin, and then impregnating the compounded resin into the soft porous core material 1, arranging it so as to be in contact with the ribs, closing the male mold, molding and curing integrally Can be.
  • FIG. 23 is a vertical sectional front perspective view of a resin honeycomb formed body of another embodiment. This method may be that shown in FIG. A large number of through holes 39 are formed at the bottom of the inner tank 38, and the through holes 39 communicate with the lower honeycomb holes.
  • An air supply pipe 40 is provided so as to communicate from the outer tank 37 to the inner soft porous core material 1.
  • the resin honeycomb formed body 34 as the bathtub can generate air bubbles in the bathtub by sending air from an air supply means (not shown) through an air supply pipe 40.
  • FIG. 24 shows a method of forming a resin honeycomb formed body 34 made of a tubular body.
  • a surface material layer 33 is formed on the peripheral surface of the male mold 31, and a soft porous core material 1 impregnated with a compounded resin is wound around the peripheral surface, and a female mold 32 is formed on the peripheral surface.
  • a tube of the resin honeycomb molded body 34 can be obtained by forming the resin honeycomb molded body and curing it.
  • the shape of the resin honeycomb formed body 34 can be freely changed, and the resin honeycomb formed body 34 can be used in various fields. For example, soundproof wall materials, heat insulating wall materials, flooring materials, ceiling materials, box bodies, tank bodies, pipe bodies, sheds, aircraft, ships, boats, floats, wind turbine blades for wind power generation, and many other areas Can be used.
  • the resin honeycomb molded body 34 that is not using mineral fibers can be recycled because it is flammable.
  • it can be used as a protective cover for antennas because it can be made thinner and has excellent radio wave transmission.
  • a metal molded product can be inserted into the inside of a soft porous core material, the middle of a multilayer, a resin molded product, or the like to be integrally molded.
  • Fig. 25 is a vertical front view of the molding die
  • Fig. 26 is a vertical front view of the clamped die.
  • the molding dies 41 and 42 are composed of a female mold 41 and a male mold 42.
  • reference numeral 43 is a mating surface
  • 44 is a seal
  • 45 is a material injection hole
  • 46 is a pressure reducing hole
  • 47 is a pressure reducing means.
  • a preform fiber 48 in which a fiber reinforced material (glass fiber or the like) was preliminarily formed was placed in a molding portion of the female mold 41 and was then sorted. However, it is also possible to use fiber reinforced mat cloth without preforming.
  • the male mold 42 was lightly tightened on the female mold 41 until the seal 44 hit the surface. Then, the compounded resin was injected from the material injection holes 45 without pressure.
  • the theoretical amount of the compounded resin required for the molded body is put in the funnel above the material injection hole 45, and when the compounded resin has completely entered the mold, the opening of the material injection hole 45 is closed.
  • the male mold 42 supported by the seal 44 is in a floating state, so that the compounded resin has no resistance from the material injection hole 45 even if no pressure is applied. Without entering the molds 4 1 and 4 2. Therefore, in the production of any large-sized compact having a side exceeding 2 meters, the required amount of material can be filled into the molds 41 and 42 in a very short time.
  • the depressurizing hole 46 is formed from the mold mating surface 43 outward and upward, and the inside of the forming dies 41 and 42 is depressurized, whereby the mold is clamped and the preform is formed. Air bubbles between the fibers of the fibers 48 are sucked out, and the compounded resin permeates completely between the fibers.
  • the compounded resin is injected by a strong external pressure, so the small air bubbles between the fibers are trapped between the fibers as they are, and the resin often flows and wraps the resin.
  • the present invention by reducing the pressure in the molds 41 and 42, any fine air bubbles between the fibers can be completely sucked out from between the fibers.
  • the compounded resin is injected under pressure, so if the molds of the male and female molds 41 and 42 are not firmly tightened, the mold will be misaligned.
  • the insides of the male and female dies 41 and 42 approach each other by reducing the pressure inside the molding dies 41 and 42 with low pressure. Pressing this resin material eliminates the need for large-scale mold clamping equipment and work as in the past.
  • FIG. 27 is a vertical sectional front view of a molding die showing production of a deep tank or the like.
  • the male mold 42 is removed, and the preform fiber 48 is set in the molded portion of the female mold 41. Thereafter, a theoretical amount of the compounded resin necessary for molding the molded body is poured into the female mold 41 so as to be poured without pressure.
  • the seal 44 of the female mold 41 has a recess on the upper surface, and the seal 44 of the male mold 42 is in close contact with the recess of the female mold 44, and Since the contact area is large, close contact is excellent, and the decompression action is effective quickly.
  • the molds 41 and 42 When light pressure is applied to the molds 41 and 42, the mold is loosely clamped by the negative pressure.
  • the pressure is reduced at a low pressure until the compounded resin comes out from the pressure reducing hole 46, and the pressure reducing hole 46 is closed when the compounded resin comes out.
  • the molding dies 41 and 42 are firmly closed by the internal negative pressure, so that the outer circumferences of the molding dies 41 and 42 are fixed so that they do not float up and down to prevent mold displacement. I do.
  • the compounded resin in the molds 41 and 42 is hardened to form a deep tank-shaped molded body (not shown).
  • a molding die composed of a thin FRP molded body is sufficient. In time, the mold cost burden can be reduced.
  • large-scale equipment for work is not required, and workability is improved.
  • the compounded resin is not pressed into the mold by applying an external pressure.
  • the time for material injection is extremely short.
  • the present invention relates to an FRP type in which a fiber reinforcing material (such as a cloth mat) is disposed in a molding die, including the above-mentioned compounded resin.
  • the present invention can be applied to any molding using a thermosetting resin material without using a soft porous core material and a fiber reinforced material. That is, for example, molding of artificial proxy stone, urethane injection molding, and the like can be performed without injection of resin under pressure and molding without a mold clamping press.
  • FIG. 28 shows a wind turbine used in a wind power generator or the like to which the resin molded article of the present invention is applied.
  • 4 shows an embodiment of a blade.
  • the blade 51 includes a cylindrical outer shell 52 and a reinforcing rib 53 fitted and fixed inside the outer shell 52.
  • the outer shell 52 has a closed-loop cross-section, starting at the narrow rear end 54, curving at the front end 55, and returning to the rear end 54 again.
  • the outer shell 52 has a soft porous sheet-like core material 56, a reinforcing sheet 57 integrally formed on the upper and lower surfaces of the core material 56, and a core material. 5 and the curable resin filled in the voids of the reinforcing sheet 57.
  • the core material 56 may use the above-mentioned double rassel turtle pattern solid knitted fabric or the like.
  • the curable resin a two-part curable resin such as an epoxy resin, or a thermosetting resin such as a phenol resin, a urea resin, or a melamine resin is used.
  • the reinforcing sheet is preferably a strand mat or roving made of reinforcing fibers such as glass fiber, carbon fiber, and Kevlar fiber.
  • the reinforcing sheet 57 may be used only on one side of the core material 56.
  • the reinforcing rib 53 includes a cross-sectional I-shaped core material 59 made of a synthetic resin foam, and a sheet-shaped core material 5 provided around the core. 6, a reinforcing sheet 60 provided around the core material 56, and a curable resin filled in the voids of the core material 56 and the reinforcing sheet 60.
  • a reinforcing sheet may be interposed between the sheet-like core material 56 and the three-dimensional core material 59.
  • the same materials as those used for the outer shell 52 can be used.
  • the three-dimensional core material 59 other materials may be used as long as they are lightweight and can withstand a compressive load, but synthetic resin foams, particularly styrene foam, are preferred.
  • the cross-sectional shape is not limited to the I-shape, and various cross-sectional shapes such as a rectangular shape and a C-shape can be adopted.
  • Fig. 3 Ob two or more reinforcing ribs 53 are arranged, and the entire outside of them is a composite reinforcing rib 61 surrounded by a single reinforcing sheet 60. Can also. In that case, provide a reinforcing sheet for each reinforcing rib 56. Instead, only the entire reinforcing sheet 60 may be used.
  • the blade 51 can be formed by separately forming the outer shell 52 and the reinforcing rib 53 and then combining them.However, usually, the reinforcing rib is first formed, and then the outer shell 53 is formed.
  • the laminated sheet to be formed is wound and molded integrally. That is, for the reinforcing rib 53, a sheet-like core material 56 impregnated with a compounded resin material obtained by mixing a curable resin material and a hardening agent in advance is wound around a three-dimensional core material 59. Then, a reinforcing sheet 60 is wound therearound to prepare a reinforcing rib intermediate.
  • the reinforcing rib intermediate body is housed in a mold, and the curable resin is cured while maintaining a predetermined shape.
  • thermosetting resin it is cured while heating.
  • the mold is usually a split mold divided into left and right in Fig. 30a.
  • a flexible sheet-like core material 56 is impregnated with a liquid or paste-like curable resin material.
  • a reinforcing sheet 57 is overlaid to prepare an outer shell intermediate.
  • the laminated sheet as an intermediate is flexible. However, it may be preformed with a heat set or the like in advance.
  • the outer shell intermediate body and the molded reinforcing rib are accommodated in a mold, and the curable resin is cured while maintaining a predetermined shape.
  • Upper and lower split dies having parting lines at the rear end 54 and the front end 55 of the blade are used.
  • the molding is preferably performed by the negative pressure molding method described above. However, a pressing molding method is also possible.
  • the blade 51 configured as described above is light in weight and high in strength because the outer shell 52 positioned on the contour carries a tensile load and a compressive load. In addition, since the outer shell 52 has a closed loop shape, it has high strength against torsion. Further, since the reinforcing ribs 53 are provided, the strength is further enhanced.
  • the reinforcing rib 53 has a high secondary moment of cross-section because the peripheral portion becomes a strength member, and has high strength against bending stress.
  • the three-dimensional core material 59 made of synthetic resin foam inside has a high buckling strength because it bears a compressive load. So, for example, it is possible to manufacture blades with a width of several tens of centimeters to 2-3 meters and a length of several meters to several tens of meters, It is suitably used as a blade of an electric windmill.
  • the part as a part that can be joined on the way with the seal joints 62 and 63 as shown in FIG. 31 in relation to the limitation of the molding die and the transportation.
  • it can be assembled at the construction site of the wind turbine using an adhesive or the like.
  • the above-mentioned reinforcing ribs may be continuous and long, and the outer shell 52 may be constructed by joining short ones.
  • the blade 65 shown in FIG. 32 is obtained by combining a plurality of pros and hooks 66 similar to the reinforcing rib 53 of FIG. 30a. Since the configuration and manufacturing method of each block 66 are the same as those in FIG. 30a, the same reference numerals are given and the description is omitted.
  • the blocks 66 are arranged in parallel, and their surroundings are integrally surrounded by an outer shell 52 shown in FIG. Since the structure and manufacturing method of the outer shell 52 are the same as those shown in FIGS. 28 and 29, the same reference numerals are given and the description is omitted.
  • the vertical reinforcing sheet 67 between the adjacent blocks 66 serves as a reinforcing rib connecting the upper and lower outer shells 52.
  • the three-dimensional core material 59 made of a synthetic resin foam filled in the interior of each block 66 is lightweight and has high strength against a compressive load. Therefore, the blades 50 are lightweight and high in strength as a whole. As shown in Fig. 31, it is also preferable to manufacture this product separately and assemble it at the wind turbine installation site. '
  • the inside of the outer shell 52 is a cavity except for the reinforcing rib 53, but as in the case of FIG. 32, a synthetic resin foam is provided in the cavity. Is also good.
  • the material of the synthetic resin foam may be filled in the hollow portion and then foamed, or the blade 51 may be assembled by incorporating a block foamed in a predetermined shape in advance. Good.
  • the reinforcing ribs 53 are arranged so as to extend in the longitudinal direction of the blade 51. However, they may be arranged so as to extend in a direction crossing the blade 51 or in an oblique direction.
  • 30a and 30b are not only used as reinforcing ribs for wind turbine blades, but also in a chassis of a car, other strength members of a car, It can be applied as a strength member where weight reduction is desired, such as building beams and other strength members.
  • FIGS. 33a to 33c show another embodiment of the method for manufacturing the above-described wind turbine blade.
  • this manufacturing method first, as shown in FIG. 33a, an upper mold 70a and a lower mold 70b that form the upper surface side and the lower surface side of the blade are prepared. Further, as shown in FIG. 33b, blocks 71a, 71b, 71G of the synthetic resin foam divided into several parts and several preformed fiber sheets 72a to g are prepared.
  • the block is the same as the three-dimensional core 59 of the reinforcing rib 53 in FIG. 28, for example, styrene foam.
  • three blocks are used: a front block 71a for the blade, a center block 71b and a block 71c on the rear side.
  • the preformed fiber sheet (preform fiber) 72 ag can be prepared by spraying a fiber reinforcing material (glass, carbon or other fiber) together with the resin onto the mold surface, or by manually attaching it to a predetermined shape.
  • a fiber reinforcing material glass, carbon or other fiber
  • the fiber reinforced material may be simply formed into a predetermined shape by a heat set.
  • a flexible porous sheet-like core material similar to the sheet-like core material 56 in FIG. 28, for example, a double-rasel three-dimensional knitted fabric is cut into a predetermined shape and heat-set into a predetermined shape. Can also be used.
  • the preformed core material is a fiber sheet 72 a having a V-shaped or U-shaped cross section constituting the front side of the blade and a fiber sheet 72 having a V-shaped cross section constituting the rear side.
  • a loosely curved fiber sheet 7 2 c forming the upper surface side of the blade
  • a loosely curved fiber sheet 7 2 d forming the lower surface
  • three fiber sheets 7 whose upper and lower ends are bent to form the reinforcing ribs 7 2 e to g.
  • the preformed fiber sheets 72a-g are combined between and around the foam blocks 71a-c.
  • an adhesive may be used, or the adhesive may be stuck with an adhesive tape or a stapler.
  • the set material 73 is put into dies 70 and 70b, and the compounded resin is injected and molded.
  • the compounded resin refers to a soft candy resin in which various materials necessary and sufficient for FRP molding and other moldings are compounded.
  • the compounded resin is filled in the gaps between the preformed fiber sheets 72a to 72g, and is molded into cavities of molds 70a and 70b. Then, remove the mold and trim the burr to complete the blade 74.
  • FIGS. 34a and 34b show an embodiment of an integral molding method using the same reinforcing ribs as in the case of FIG.
  • a soft porous core material 7 was previously set around the block 71 b. 5 is wound and set in a mold, and a reinforcing rib (bone) 76 formed by injecting a compounding resin is used.
  • the other point is that the front and rear blocks 7 1a and 7 1b, the front and rear preformed fiber sheets h 7 2a and 7 2b and the upper and lower preformed fiber sheets 7 2c and 7 2d are used. Is the same.
  • These parts are assembled as shown in Fig. 34b, put into a mold, injected with compounded resin, molded, demolded, and trimmed with burrs as in Fig. 33.
  • the strength is increased and there is no place to peel off.
  • the quality is constant, work management becomes easier, the number of man-hours is reduced, and the performance is increased.
  • a foamable resin material is injected into a mold and foamed in the mold to be integrally molded, only a size that can mold the foam can be manufactured, but the block is molded in advance as described above. After that, by integrally molding the whole, it is possible to integrally mold the one with a size of several tens of meters.
  • the strength should be further increased by connecting the foam blocks together, using a long one in which only the reinforcing ribs 76 are pre-formed, and integrally forming them. Can be.
  • the resin molded article of the present invention configured as described above has the following excellent effects.
  • the porous core material impregnated with the compounded resin is formed into a box-shaped three-dimensional shape with a rising part from a flat part by a mold or by hand, and then molded and cured to form a box-shaped honeycomb. It is possible to obtain a fat honeycomb formed body having an integrated structure.
  • the resin honeycomb molded body in which the soft porous core material is a double-layered, soselled creature pattern three-dimensional knitted fabric can be manufactured by simply impregnating the three-dimensional knitted fabric with a compounded resin.
  • the resin honeycomb structure, in which the through holes are formed by punching the foamed resin plate, is used to open the through holes in the foamed resin plate, so that the size and position of the holes can be freely selected. The rigidity can be adjusted.
  • a resin honeycomb structure that expands and contracts in the thickness direction can be easily obtained.
  • the soft porous core material is a fibrous porous plate in which a large number of through holes are formed
  • waste paper or the like can be used for the resin honeycomb structure in which the soft porous core material is a fibrous porous plate in which a large number of through holes are formed.
  • a honeycomb structure can be easily obtained regardless of the size of the holes.
  • a tubular honeycomb structure can be easily formed.
  • the porous core material of the present invention configured as described above has the following excellent effects.
  • the excellent resin honeycomb formed body can be easily manufactured.
  • An existing molded body is placed and placed in a mold, and a soft porous core material impregnated with a compounded resin is laminated on top of this, and molded, for example, by combining a FRP part and a honeycomb part.
  • a honeycomb formed body can be easily formed.
  • a soft porous core material impregnated with a compounded resin is sandwiched between the outer and inner tanks of the FRP molded bathtub, and the inner and outer tanks are formed by pressing and molding and curing together.
  • a resin honeycomb molded body as a bathtub having an excellent heat retaining property and rigidity having a honeycomb structure formed in the middle can be formed.
  • pores communicating with the lower honeycomb structure are formed at the bottom of the inner bath, so that air is supplied from the outside, so that a structure that generates air bubbles in the bathtub can be easily achieved.
  • the resin honeycomb structure in which the soft porous core material is a double-layered, sosel turtle-patterned three-dimensional knitted fabric, uses a thick single yarn as a binding yarn that connects the front and back tissues, thereby impregnating the mixed resin.
  • the front and back structures are hard, and the elasticity of the binding yarn in the thickness direction makes it possible to obtain a flexible resin honeycomb molded body.
  • the manufacturing method of the present invention configured as described above has the following excellent effects.
  • the soft porous core material for the resin honeycomb formed body is made of a double raschel three-dimensional knitted fabric, and a binding yarn that sets the thickness between the front and back textures intersects perpendicularly to make the front and back texture. Since the double knitted structure is formed by joining together, it has a thick 82-cam structure, and the resin honeycomb molded body can be easily formed simply by impregnating the compounded resin and curing. Can be formed. Further, since the front and back textures are composed of bundles of synthetic fibers, the compounded resin is excellent in impregnating property, and the binding yarns are mixed resin when single yarns of synthetic fibers and bundles of mineral fibers are mixed. It is possible to obtain a resin honeycomb molded body using the elasticity of the synthetic fiber single yarn and maintaining the elasticity in the thickness direction of the molded body, while at the same time utilizing the elasticity of the synthetic fiber single yarn.
  • the rigidity of the front and back tissues is set arbitrarily according to the purpose. can do.
  • the synthetic fiber is a high-molecular synthetic fiber such as polyester and Kepler fiber. At one time, it has excellent bondability with the compounded resin, and when a single yarn is used for the binding yarn, it has excellent elasticity.
  • the mineral fiber is selected from carbon fiber, glass fiber simple substance, and composite, it is excellent in adaptability to the compounded resin and the rigidity of the molded body is improved.
  • the double knitted fabric is formed from a double Russell three-dimensional knitted fabric, and a binding yarn that sets the thickness between the front and back textures intersects orthogonally and bonds the front and back tissues together.
  • a binding yarn a synthetic fiber single yarn and a mineral fiber bundle yarn are mixed, and a soft porous core material, whose three-dimensional shape is fixed by a heat set, is impregnated with a soft syrup-like compounded resin and cured.
  • a resin honeycomb molded body having elasticity in the thickness direction of the molded body due to the elasticity of the binding yarn has excellent elasticity in the thickness direction, and can have elasticity particularly at corners.
  • the thickness of the molded body is partially changed to be thin by the male and female molding, the thickness can be changed according to the thickness of the target molded body.
  • a soft porous core material made of a double Russell three-dimensional knitted fabric in which the binding yarns are perpendicular to the front and back textures, with the compounded resin impregnated between each of the multiple pieces.
  • a double honeycomb is formed integrally by sandwiching the cloth layer, and an interposed cloth layer impregnated with a compounded resin is overlapped on the front and back surfaces of the double honeycomb, and integrally formed. Due to the elasticity of the binding yarn, the molded body has elasticity in the thickness direction and does not burst even when subjected to an impact.
  • a soft porous core material consisting of a double Russell three-dimensional knitted fabric in which binding yarns are perpendicular to the front and back textures, with an intervening fabric layer impregnated with the compounded resin interposed between each of the soft porous cores.
  • the method of manufacturing the body is such that the elasticity of the binding thread of the soft porous core material allows the molded body to have elasticity in the thickness direction, so that the resin honeycomb molding having elasticity can be easily performed in a simple process.
  • the body can be manufactured with high precision.
  • the decompression molding method of the invention configured as described above has the following excellent effects.
  • the method of manufacturing a resin molded body which comprises a step of reducing the pressure in the male and female molds and a step of closing and curing and curing the reduced pressure hole when the compounded resin overflows in the reduced pressure hole, comprises a fiber reinforced material set. Since the compounded resin is simply injected into the female mold without pressure, no matter how large the resin is, the compounded resin can be filled in an extremely short time. Next, the mold is clamped by reducing the pressure to a low pressure, so that the bubbles between the fibers of the fiber reinforced material are completely sucked out, and the compounded resin can be evenly and completely filled even in the corners of the complicated shape.
  • the method for manufacturing a resin molded body which includes a step of reducing the pressure in the mold and a step of closing and curing and curing the compounded resin when the compounded resin overflows in the reduced pressure hole, an extra space is formed in the molding portion.
  • the compounded resin is injected without pressure, so that the required amount of the compounded resin can be injected in a very short time, and the workability can be improved.
  • Consists of a combination of male and female molds The female mold is configured to directly charge the compounded resin under no pressure, while the male mold has a decompression hole from the mating surface inside the seal to the outside of the mold.
  • the mold in which the decompression means is connected to the decompression hole has an effect that the compounded resin can be directly poured into the female mold without pressurization in a short time. Further, only by reduced pressure from the depressurization hole, 9 therefor pressure based on a large area as the atmospheric pressure is obtained without requiring a large is rising, such mold clamping devices and work, and the resin is filled completely between the fibers, Can be molded.
  • the male mold has a combination of a male and a male.
  • the male mold has a decompression hole formed from the mating surface inside the seal to the outside of the mold, and a decompression means is connected to the decompression hole.
  • the molding die which has a non-pressurized material injection hole that passes from the outside to the molding die, can be filled with the compounded resin in a short time without pressurization. The resin can be completely and uniformly filled between the fibers and molded without any additional work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Laminated Bodies (AREA)

Abstract

A soft porous core material (1) for a resin form which comprises a double raschel three dimensional knitting fabric (1), wherein binding yarns (4) are arranged between a face structure (2) and a back structure (3) orthogonally to bind the two structures in one piece and form a doubly knitted structure, wherein the face and back structures are each comprised of finely knitted portions (5) and thickly knitted portions (6) formed by combining two finely knitted portions (5) present right and left, wherein the thickly knitted portions (6) are arranged in line intermittently and adjacent thickly knitted portions (6) are different in phase by one pitch in the longitudinal direction, wherein a stitch (9) is formed in a way such that a finely knitted portion (5) is formed by dividing a thickly knitted portion (6)into two parts, and two finely knitted portions (5) present in right and left are again combined to form an adjacent thickly knitted portion (6), wherein the face and back structures comprise fiber bundles and binding yarns (4) comprise mainly synthetic fiber filaments and occasionally those in combination with mineral fiber bundles, and wherein a three dimensional shape is fixed by heat setting; and a resin form prepared by impregnating the core material (1) with a compounded resin, followed by forming and hardening.

Description

樹脂成形体、 その製造方法並びにそれに用いる芯材および成形型 技術分野 Technical Field of the Invention
この発明は樹脂成形体、 その製造方法並びにそれに用いる芯材および成形 型に係り、 特に肉厚を部分的明に厚薄自由に変化させたもの、 あるいは三次元 形状にすることのできる樹脂成形体、 その成形体を容易に成形しうる製造方 田  The present invention relates to a resin molded product, a method for producing the same, and a core material and a molding die used for the resin molded product. A manufacturing method that can easily mold the compact
法、 芯材および成形型に関する。 Method, core material and mold.
背景技術 Background art
従来、 ハニカム構造は薄物を積層したり、 波板を貼り合わせるなどの方法 で製造されている。  Conventionally, honeycomb structures have been manufactured by laminating thin objects or laminating corrugated sheets.
従って、 製造工程が多いという難点があった。 また平坦なものは容易に造 ることはできるが、 部分的に肉厚の異なる物、 あるいは湾曲したもの、 函状 等の製造は困難であった。 また厚肉方向へ可撓性を持たせた成形体はなかつ た。 この発明は、 製造工程が少なくて、 部分的に肉厚の異なる物、 あるいは 湾曲した物等を容易に製造することのできる樹脂成形体およびその成形体を 容易に成形しうる製造方法、 芯材、 成形型を提供することを目的として開発 されたものである。  Therefore, there was a problem that there were many manufacturing processes. Flat products can be easily manufactured, but it is difficult to manufacture products with partially different wall thickness, curved products, and boxes. Also, there was no molded article having flexibility in the thickness direction. The present invention is directed to a resin molded body capable of easily producing a part having a partially different thickness or a curved part with a small number of production steps, a production method capable of easily molding the molded body, and a core material. It was developed to provide a mold.
他方、 従来、 熱硬化性樹脂材を使用して、 樹脂成形体を製造する過程では 、 成形型の外部から大がかりな装置により加圧して、 雌雄型の締付をおこな つてプレスしている。 また雌雄両型をクランプやエアバックなどで締付けて 型締めをしてから、 大きな圧力をかけて樹脂材を成形型内に注入している。 前記外圧によるプレスでは、 プレス機が必要であり、 粘度の高い配合樹脂 に外圧をかけてプレスするには、 大きな加圧装置を必要とし、 またその圧力 に耐えられる頑強な成形型が必要となり、 その設備、 型ともに多大な費用が かかる。 特に大型製品を製造するには、 頑強で重い成形型の移動にクレーン も必要となり、 作業性も悪化する難がある。 On the other hand, conventionally, in the process of manufacturing a resin molded body using a thermosetting resin material, the male and female molds are pressed by applying pressure from a large device from outside the molding die. The female and male molds are clamped with clamps or airbags, and then the resin is injected into the mold with high pressure. Pressing by the above-mentioned external pressure requires a press machine. Pressing by applying an external pressure to a high-viscosity compounded resin requires a large pressurizing device, and the pressure It requires a robust mold that can withstand high temperatures, and both its equipment and the mold are very expensive. In particular, in order to manufacture large products, a crane is required to move a robust and heavy mold, and workability is unlikely to deteriorate.
繊維を使用する成形では、 成形型内部に繊維強化材がセ、ソトされているた めに、 注入樹脂の流動抵抗があり、 材注入圧力をあげなければ早く樹脂を注 入することができない。 早く注入するためには高い注入圧に耐えられる強度 が成形型に必要となる。 また仮に注入圧力を低くすると、 樹脂材注入に長時 間を要して生産性が悪化するという問題点がある。  In molding using fibers, since the fiber reinforcing material is removed inside the mold, there is flow resistance of the injected resin, and the resin cannot be poured quickly unless the injection pressure is increased. For rapid injection, the mold must be strong enough to withstand high injection pressures. Also, if the injection pressure is lowered, there is a problem that it takes a long time to inject the resin material and productivity is deteriorated.
型締めされた成形型内に樹脂を圧入させる事は、 樹脂材の粘度、 加圧速度 、 などのバランスがとりにく く、 成形型の剛性が弱い場合には、 外圧によつ て型の変形が生じ、 材料、 注入条件のバランスがとれない場合には、 成形品 板厚に斑が生じるなどの問題がある。  Pressing resin into the clamped mold is difficult to balance the viscosity of the resin material, pressurization speed, etc., and when the rigidity of the mold is weak, If deformation occurs and the material and injection conditions are not balanced, there are problems such as unevenness in the thickness of the molded product.
この発明は、 それらの実情に鑑みて、 外的大きな加圧によるプレスをせず 、 容易に大型成形体を製造することのできる樹脂成形体の製造方法を提供す ることを第 2の目的としている。 発明の開示  A second object of the present invention is to provide a method of manufacturing a resin molded article that can easily produce a large molded article without performing pressing by externally large pressure in view of those circumstances. I have. Disclosure of the invention
この発明は、 前記課題を解決し、 目的を達成するために次のような技術的 な手段を講じた。 ここでいう配合樹脂とは、 一般的な F R P成形に使用され る各種素材を配合混練した素材樹脂をいう。 またハニカム状とは六角形の透 孔を有するものに限らず、 四角形、 三角形なども含むものとする。 樹脂成形 体の発明の構成内容は次の通りである。  The present invention has taken the following technical means in order to solve the above problems and achieve the object. The term “compound resin” used herein refers to a material resin obtained by compounding and kneading various materials used in general FRP molding. Further, the term “honeycomb” is not limited to a shape having a hexagonal through hole, but includes a square, a triangle, and the like. The constitution of the invention of the resin molded article is as follows.
(1) 柔軟性と浸透性のある素材の表裏に貫通する多数の透孔が形成され て、 肉厚のハニカム状に形成された板状の軟質多孔芯材 (軟質多孔板状体) に、 配合樹脂を含浸させ、 これを型において成形、 硬化させた樹脂成形体。  (1) A large number of through-holes are formed on the front and back of a flexible and permeable material, and a thick honeycomb-shaped soft porous core material (soft porous plate-shaped body) is formed. A resin molded product that is impregnated with a compounded resin, molded and cured in a mold.
(2) 柔軟性と浸透性のある素材の表裏に貫通する多数の透孔が形成され て、 肉厚のハニカム状に形成された板状の軟質多孔芯材に、 配合樹脂を含浸 させ、 これを、 部分的に肉厚の厚薄部分を形成して成形、 硬化させた樹脂成 形体。 (2) A large number of through holes are formed on the front and back of a flexible and permeable material. Then, a resin molded body is formed by impregnating a compounded resin into a thick honeycomb-shaped plate-shaped soft porous core material, and partially forming a thick-thin portion, followed by molding and curing.
(3) 柔軟性と浸透性のある板状の素材の表裏に貫通する多数の透孔が形 成されて、 肉厚のハニカム状に形成された多孔芯材に、 配合樹脂を含浸させ (3) A large number of through-holes are formed through the front and back of a flexible and permeable plate-shaped material, and a thick honeycomb-shaped porous core material is impregnated with a compound resin.
、 これを平坦部から立上り部のある三次元形状に形成して成形、 硬化させた 樹脂成形体。 This is formed into a three-dimensional shape having a rising portion from a flat portion, and is molded and cured.
(4) 柔軟性と浸透性のある板状の素材の表裏に貫通する多数の透孔が形 成きれて、 肉厚のハニカム状に形成された軟質多孔芯材に、 配合樹脂を含浸 させ、 これを、 上下二枚重ねの中間に、 配合樹脂を含着した介在布を挟み一 体に成形、 硬化させた樹脂成形体。  (4) A large number of through-holes are formed through the front and back of a flexible and permeable plate-like material, and a thick porous soft porous core material is impregnated with the compound resin. This is a resin molded body that is molded and cured as a single piece with an intervening cloth impregnated with the compounded resin sandwiched between the upper and lower two sheets.
(5) 柔軟性と浸透性のある板状の素材の表裏に貧通する多数の透孔が形 成されて、 肉厚のハニカム状に形成された軟質多孔芯材に、 配合樹脂を含浸 させ、 これを型面に表層材層が形成されている型面に重ねて一体に成形、 硬 化させた樹脂成形体。  (5) Impregnated with a compound resin into a thick honeycomb-shaped soft porous core material in which a number of poorly formed through holes are formed on the front and back of a flexible and permeable plate-like material This is a resin molded body that is formed by integrally laminating this on a mold surface having a surface material layer formed on the mold surface and hardening.
(6) 柔軟性と浸透性のある板状の素材の表裏に貫通する多数の透孔が形 成されて、 肉厚のハニカム状に形成された軟質多孔芯材に、 配合樹脂を含浸 させ、 これを、 管状に成形、 硬化させた樹脂成形体。  (6) A large number of through-holes are formed through the front and back of a flexible and permeable plate-shaped material, and a thick honeycomb-shaped soft porous core material is impregnated with a compound resin. This is molded into a tube and cured to form a resin molded body.
(7) 前記軟質多孔芯材がダプルラッセル亀甲紋立体編布である(1) 〜(6 ) のいずれかに記載された樹脂成形体。  (7) The resin molded product according to any one of (1) to (6), wherein the soft porous core material is a three-dimensional knitted fabric of a double-ruple Russell pattern.
(8) 前記軟質多孔芯材が耐熱耐溶剤性発泡樹脂板にパンチングにより透 孔が形成されたものである(1) 〜(6) のいずれかに記載された樹脂成形体。  (8) The resin molded article according to any one of (1) to (6), wherein the soft porous core material is formed by punching holes in a heat-resistant and solvent-resistant foamed resin plate by punching.
(9) 柔軟性と浸透性のある素材の表裏に貫通する多数の透孔が形成され て、 肉厚のハニカム状に形成された軟質多孔芯材の、 中間を除く表裏組織に 配合樹脂を含浸させ、 これを成形、 硬化させ、 厚味方向に弾性を具有させた (1) 〜(8) のいずれかに記載された樹脂成形体。 (10) 前記軟質多孔芯材が繊維質多孔板に多数の透孔が形成されたもので ある(1 ) 〜(6 ) のいずれかに記載された樹脂成形体。 (9) Impregnated with compound resin in the front and back tissues except for the middle of the soft porous core material formed into a thick honeycomb with many through holes formed on the front and back of the flexible and permeable material The resin molded article according to any one of (1) to (8), wherein the molded article is molded and cured to have elasticity in the thickness direction. (10) The resin molded article according to any one of (1) to (6), wherein the soft porous core material has a large number of through holes formed in a fibrous porous plate.
さらにこの発明は、 前記課題を解決し、 目的を達成するために次のような 技術的な手段を講じた。 ここでいう配合樹脂とは、 一般的な F R P、 その他 の成形に使用される各種素材を配合混練した素材樹脂をいう。 また表層材層 とは、 表層に適した素材配合の樹脂材層で、 塗布あるいは吹き付けにより形 成される。 この場合、 配合樹脂とガラスストランドチヨ、ソプを同時に吹付け て層成したものとすることができる。 含着とは、 内部に含ませたり外面に付 着させたりすることをいう。 樹脂成形体の製造方法の発明の構成内容は次の 通りである。  Further, the present invention has taken the following technical means in order to solve the above-mentioned problems and achieve the object. The term “compound resin” as used herein refers to a material resin obtained by compounding and kneading various materials used for general FRP and other molding. The surface material layer is a resin material layer containing a material suitable for the surface layer, and is formed by coating or spraying. In this case, the compounded resin and the glass strand chiyo and soap can be sprayed simultaneously to form a layer. Impregnation means that it is included inside or attached to the outside. The constitution of the invention of the method for producing a resin molded article is as follows.
(11 ) 柔軟性と浸透性のある板状素材の表裏に貫通する多数の透孔を有す る、 厚肉のハニカム状の軟質多孔芯材 (軟質多孔板状体) を準備する工程と 、 該軟質多孔芯材に、 配合樹脂を含着させる工程と、 型の成形面に表層材層 を形成する工程と、 前記軟質多孔芯材を表層材層の上に重ねて一体に成形、 硬化させる工程とからなる樹脂成形体の製造方法。  (11) a step of preparing a thick honeycomb-shaped soft porous core material (soft porous plate material) having a large number of through holes penetrating the front and back of a flexible and permeable plate material; A step of impregnating the soft porous core material with a compounded resin; a step of forming a surface material layer on a molding surface of a mold; and a step of integrally forming and curing the soft porous core material on the surface material layer. And a method for producing a resin molded body.
( 12) 柔軟性と浸透性のある板状素材の表裏に貫通する多数の透孔を有す る、 厚肉のハニカム状の軟質多孔芯材を準備する工程と、 該軟質多孔芯材に 、 配合樹脂を含着させる工程と、 型の成形面に表層材層を形成する工程と、 前記軟質多孔芯材を表層材層の上に重ねて雌雄型内において、 部分的に肉厚 の厚薄部分を形成して一体に成形、 硬化させる工程とからなる樹脂成形体の 製造方法。  (12) A step of preparing a thick honeycomb-shaped soft porous core material having a large number of through-holes penetrating the front and back of a flexible and permeable plate-like material; A step of impregnating the compounded resin, a step of forming a surface layer on the molding surface of the mold, and a step of laminating the soft porous core material on the surface layer to form a partially thick and thin portion in the male and female molds. Forming a resin and integrally molding and curing the same.
(13 ) 柔軟性と浸透性のある板状素材の表裏に賞通する多数の透孔を有す る、 厚肉の八二カム状の軟質多孔芯材を準備する工程と、 該軟質多孔芯材に 配合樹脂を含着させる工程と、 型の成形面に表層材層を形成する工程と、 前 記軟質多孔芯材を成形面に貼着させて、 部分的に引き延ばしあるいは引縮め て、 平坦部から立上り部のある三次元形状に形成して一体に成形、 硬化させ る工程とからなる樹脂成形体の製造方法。 (14) 柔軟性と浸透性のある板状素材の表裏に貫通する多数の透孔を有す る、 厚肉のハニカム状の軟質多孔芯材を準備する工程と、 該軟質多孔芯材に 配合樹脂を含着させる工程と、 型の成形面に表層材層を形成する工程と、 前 記軟質多孔芯材の複数を重ねたそれぞれの中間に、 配合樹脂を含着させた介 在布を挟み表層材層の上に重ね、 一体に成形、 硬化させる工程とからなる樹 脂成形体の製造方法。 (13) A step of preparing a thick 82-cam-shaped soft porous core material having a large number of through-holes penetrating the front and back of a flexible and permeable plate-like material; A step of impregnating the resin with the compounded resin, a step of forming a surface layer on the molding surface of the mold, and a step of sticking the soft porous core material to the molding surface and partially stretching or shrinking to flatten the material. Forming a three-dimensional shape having a rising portion from a part, and integrally molding and curing the same. (14) a step of preparing a thick honeycomb-shaped soft porous core material having a large number of through-holes penetrating the front and back of a flexible and permeable plate-shaped material, and blending the soft porous core material with the thick porous honeycomb material; A step of impregnating the resin, a step of forming a surface material layer on the molding surface of the mold, and an intermediate cloth impregnated with the compounded resin interposed between each of the plurality of the soft porous cores described above. A method of manufacturing a resin molded body, comprising the steps of forming an integral molding and curing step on a surface material layer.
(15) 柔軟性と浸透性のある板状素材の表裏に貫通する多数の透孔を有す る、 厚肉のハニカム状の軟質多孔芯材を準備する工程と、 該軟質多孔芯材に 、 配合樹脂を含着させる工程と、 雌雄型の成形面に表層材層を形成する工程 と、 柱状雄型の周面の表層材層上に前記軟質多孔芯材を巻着し、 雌型を被着 させて管状に一体成形、 硬化させる工程とからなる樹脂成形体の製造方法。  (15) a step of preparing a thick honeycomb-shaped soft porous core material having a large number of through-holes penetrating on the front and back of a flexible and permeable plate-like material; A step of impregnating the compounded resin, a step of forming a surface layer on the molding surface of the male and female molds, and a step of winding the soft porous core material on the surface layer of the peripheral surface of the columnar male mold, and covering the female mold. A method of manufacturing a resin molded article, comprising: attaching, integrally molding into a tube, and curing.
(16) 雌雄型の成形面に表層材層を形成する工程と、 雌型の表層材層の上 に配合樹脂の含着された繊維強化材層を形成する工程と、 板状の軟質多孔芯 材に配合樹脂を含浸させる工程と、 繊維強化材層の上に配合樹脂の含着され た板状の軟質多孔芯材を重ね合わせて型締め一体に成形、 硬化させる工程と からなる樹脂成形体の製造方法。 (16) A step of forming a surface layer on the forming surface of the male and female molds, a step of forming a fiber reinforced layer impregnated with the compounded resin on the surface layer of the female mold, and a plate-shaped soft porous core A resin molded body comprising: a step of impregnating a compounded resin into a material; and a step of laminating a plate-shaped soft porous core material impregnated with the compounded resin on the fiber reinforced material layer, and integrally molding and curing the mold. Manufacturing method.
(17) 柔軟性と浸透性のある板状素材の表裏に貫通する多数の透孔を有す る、 肉厚のハニカム状の軟質多孔芯材を準備する工程と、 該軟質多孔芯材に 、 配合樹脂を含着させる工程と、 雌型の成形面に既成の成形体を配置するェ 程と、 既成の成形体上に前記軟質多孔芯材を配置し、 型締め一体に成形、 硬 化させる工程とからなる樹脂成形体の製造方法。  (17) a step of preparing a thick honeycomb-shaped soft porous core material having a large number of through-holes penetrating on the front and back of a flexible and permeable plate-shaped material; A step of impregnating the compounded resin, a step of arranging the existing molded body on the molding surface of the female mold, and a step of arranging the soft porous core material on the existing molded body and integrally molding and hardening the mold. And a method for producing a resin molded body.
(18) 合わせ目に空間を有する外成形体と内成形体を個別に成形する工程 と、 板状の軟質多孔芯材に配合樹脂を含着させる工程と、 該軟質多孔芯材を 外成形体の内面に配設する工程と、 その上に内成形体を配置、 加圧して一体 に成型、 硬化させる工程との結合からなることを特徴とする樹脂成形体の製 造方法。 ( 19 ) ダブルラッセル亀甲紋立体編布の接結糸を太い単糸として軟質多孔 芯材を準備する工程と、 該軟質多孔芯材の表裏組織に配合樹脂を含着させる 工程と、 型の成形面に前記軟質多孔芯材を配置して成形、 硬化させる工程と により、 表裏組織部分は硬質で、 接結糸の弾性により肉厚方向へ可撓性を保 持させる、 樹脂ノ\二カム成形体の製造方法。 (18) a step of individually molding an outer molded body and an inner molded body having a space at a joint; a step of impregnating a compounded resin into a plate-shaped soft porous core material; A method for producing a resin molded body, comprising: a step of arranging an inner molded body thereon, and a step of integrally molding and curing by pressurizing the inner molded body. (19) A step of preparing a soft porous core material with the binding yarn of the double Russell turtle pattern solid knitted fabric as a thick single yarn, a step of impregnating the mixed resin into the front and back tissues of the soft porous core material, and forming a mold. The step of arranging the soft porous core material on the surface and molding and hardening the resin, the front and back texture portions are hard, and the elasticity of the binding yarn maintains flexibility in the thickness direction. How to make the body.
(20) 前記多孔芯材がダブルラッセル亀甲紋立体編布である(11)〜(18)の いずれか 1 に記載された樹脂成形体の製造方法。  (20) The method for producing a resin molded product according to any one of (11) to (18), wherein the porous core material is a double Russell tortoiseshell pattern three-dimensional knitted fabric.
(21 ) 前記ダブルラッセル亀甲紋立体綱布の使用糸として、 高分子合成繊 維の他にカーボン繊維、 ケプラー繊維、 ガラス繊維など補強繊維が混用され ている(20)に記載された樹脂成形体の製造方法。  (21) The resin molded article according to (20), wherein a reinforcing fiber such as a carbon fiber, a Kepler fiber, or a glass fiber is mixed in addition to the polymer synthetic fiber as the yarn used for the double Russell tortoiseshell three-dimensional cloth. Manufacturing method.
(22 ) 前記多孔芯材が耐熱耐溶剤性の発泡樹脂板にパンチングにより透孔 が形成されたものである(11)〜(18)のいずれか 1に記載された樹脂成形体の 製造方法。  (22) The method for producing a resin molded article according to any one of (11) to (18), wherein the porous core material is formed by punching holes in a heat-resistant and solvent-resistant foamed resin plate.
(23) 前記多孔芯材が繊維質多孔板に多数の透孔が形成されたものである (11)〜(18)のいずれか 1に記載された樹脂ハニカム成形体の製造方法。  (23) The method for producing a resin honeycomb molded body according to any one of (11) to (18), wherein the porous core material is formed by forming a large number of through holes in a fibrous porous plate.
さらにこの発明は、 前記課題を解決し、 目的を達成するために次のような 技術的な手段を講じた。 ここでいう繊維束糸とは、 繊維の束に撚りがかけら れている糸 (単撚糸、 片撚糸、 諸撚糸) をいう。 単糸とは、 線状単体の糸を いう。 含着とは、 多数の細繊維間に含まれる事と、 単糸、 布状物に付着する 事のいずれかをいう。 介在布肩とは、 配合樹脂を含着できる布状 (織布、 編 布、 網、 不織布、 鉱物繊維マ、ソ ト、 樹脂既成成形体) の物を指す。 配合樹脂 とは、 成形体の形成に必要な素材を配合混練した軟性水飴状の樹脂を指す。  Further, the present invention has taken the following technical means in order to solve the above-mentioned problems and achieve the object. The term “fiber bundle yarn” as used herein refers to a yarn in which a bundle of fibers is twisted (single-twisted yarn, single-twisted yarn, or multi-twisted yarn). Single yarn refers to a single linear yarn. Impregnation refers to either being included between a large number of fine fibers or being attached to a single yarn or a cloth. Intermediate cloth shoulder refers to a cloth-like (woven cloth, knitted cloth, net, non-woven fabric, mineral fiber fabric, soto, resin preform) that can impregnate the compounded resin. The compounded resin refers to a soft syrup-like resin obtained by compounding and kneading materials necessary for forming a molded article.
(24) ダブルラッセル立体編布からなり、 表組織と裏組織の間に肉厚を設 定する接結糸が直交状に介在して表裏組織を一体に接結して二重編組織が形 成され、 表裏組織は、 それぞれが細編部と、 左右の細編部が結合した太編部 とで構成されて、 太編部は間欠的に直列し、 かつ隣接の太編部は縦方向で 1 ピッチ位相を違差させ、 細編部は太編部が左右に二分岐して形成されて、 左 右の細編部が結合して隣の太編部を形成する連続により編目が形成され、 前 記表裏組織は繊維束糸から構成され、 接結糸は合成繊維単糸を主用して選択 的に鉱物繊維束糸が混用され、 ヒートセッ トにより立体形状が固定されてい る樹脂ハニカム成形体用の軟質多孔芯材 (軟質多孔板状体) 。 (24) A double woven structure made of a double Russell three-dimensional knitted fabric, with a binding yarn that sets the wall thickness between the front and back textures intersects orthogonally and connects the front and back tissues together. The front and back tissues are each composed of a thin knit part and a thick knit part where the left and right thin knit parts are joined. The thick knit parts are intermittently connected in series, and the adjacent thick knit parts are in the vertical direction. In 1 The pitch phase is made different, and the thin stitch is formed by the thick stitch being bifurcated to the left and right, the left and right thin stitches are combined to form the next thick stitch, and the stitch is formed. The front and back texture is composed of fiber bundle yarns, and the binding yarn is mainly a synthetic fiber single yarn, mineral fiber bundle yarns are selectively mixed, and the three-dimensional shape is fixed by heat setting. Soft porous core material (soft porous plate-shaped body).
(25) 前記表裏組織は、 合成繊維、 鉱物繊維の単体もしくは混用体の繊維 束糸の中から選択される 1種から構成されている樹脂ハニカム成形体用の軟 質多孔芯材。  (25) The flexible porous core material for a resin honeycomb molded body, wherein the front and back texture is composed of one selected from a single fiber or a mixed fiber of synthetic fibers and mineral fibers.
(26) 前記合成繊維はポリエステルなどの高分子合成繊維またはケプラー 繊維である(24)、 (25)のいずれか 1に記載された樹脂ハニカム成形体用の軟 質多孔芯材。  (26) The soft porous core material for a resin honeycomb molded body according to any one of (24) and (25), wherein the synthetic fiber is a polymer synthetic fiber such as polyester or a Kepler fiber.
(27) 前記鉱物繊維は、 カーボン繊維、 ガラス繊維の単体、 複合体から選 択される 1 つである(24) ~ (25)のいずれか 1に記載された樹脂ハニカム成形 体用の軟質多孔芯材。  (27) The mineral fiber is one selected from a carbon fiber, a simple substance of glass fiber, and a composite, and is a soft porous material for a resin honeycomb molded body according to any one of (24) to (25). Core material.
(28) 前記接結糸における合成繊維と鉱物繊維の混用は、 合撚、 引揃え、 あるいは合成維維と鉱物繊維の交互配列から選択される 1つである(24)〜(2 7)のいずれか 1に記載された樹脂ノ\二カム成形体用の軟質多孔芯材。  (28) The mixing of synthetic fibers and mineral fibers in the binding yarn is one selected from ply twisting, aligning, or alternating arrangement of synthetic fibers and mineral fibers (24) to (27). A soft porous core material for a resin non-cam molded article according to any one of the above.
(29) 前記接結糸における合成繊維と鉱物繊維の混用は、 太編部並びに細 編部の長手方向に ¾つて交互に配列されるものである(24)〜(27)のいずれか 1に記載された樹脂ハニカム成形体用の軟質多孔芯材。  (29) The mixing of synthetic fibers and mineral fibers in the binding yarn may be alternately arranged in the longitudinal direction of the thick knit portion and the thin knit portion (24) to (27). The described soft porous core material for a resin honeycomb molded body.
(30) 前記接結糸における合成繊維に対する鉱物繊維の混用割合は、 2 0 容積%〜5 0容様積%である(24)〜(27)のいずれか 1に記載された樹脂ハニ カム成形体用の軟質多孔芯材。  (30) The resin honeycomb molding according to any one of (24) to (27), wherein the mixing ratio of the mineral fiber to the synthetic fiber in the binding yarn is 20% by volume to 50% by volume. Soft porous core material for body.
(31) ダブルラッセル立体編布からなり、 表組織と裏組織の間に肉厚を設 定する接結直交状に介在して表裏組織を一体に接結して二重編組織が形成さ れ、 表裏組織は、 それぞれが細編部と、 左右の細編部が結合した太編部とで 構成されて、 太編部は間欠的に直列し、 かつ隣接の太編部は縦方向で 1ピッ チ位相を違差させ、 細編部は太編部が; £右に二分岐して形成されて、 左右の 細編部が結合して隣の太編部を形成する連続により編目が形成され、 前記表 裏組織は繊維束糸から構成され、 接結糸は合成繊維単糸を主用し、 選択的に 鉱物繊維束糸が混用され、 ヒートセツ トにより立体形状が固定されている軟 質多孔芯材に、 軟性水飴状配合樹脂を含着させ、 接結糸の弾性により、 成形 体の肉厚方向に弾性を具備させてなる樹脂成形体。 (31) A double-knitted fabric is formed by a double Russell three-dimensional knitted fabric, which intersects perpendicularly to set the thickness between the front and back tissues and joins the front and back tissues together. The front and back tissues are each composed of a thin knitted part and a thick knitted part where the left and right thin knitted parts are joined. The thick knitted parts are intermittently connected in series, and the adjacent thick knitted parts are in the vertical direction. Pick The thin stitch is formed by branching the thick stitch; the right stitch is formed by joining the left and right thin stitches to form the next thick stitch. The front and back texture is composed of a fiber bundle yarn, the binding yarn is mainly a synthetic fiber single yarn, a mineral fiber bundle yarn is selectively mixed, and a three-dimensional shape is fixed by a heat set. A resin molded article in which a core material is impregnated with a soft syrup-like compound resin, and the elasticity of the binding yarn is used to provide elasticity in the thickness direction of the molded article.
(32) 前記成形体は、 雌雄型成形により、 肉厚が部分的に厚薄に変化して いる(31)に記載された樹脂成形体。  (32) The resin molded article according to (31), wherein the molded article has a partially changed thickness due to male and female molding.
(33) 前記成形体は、 成形型の成形面にあらかじめ形成した表層材層がー 体に結合されている(31)、 (32)のいずれか 1に記載された樹脂成形体。  (33) The resin molded article according to any one of (31) and (32), wherein a surface layer formed in advance on a molding surface of a molding die is bonded to the molded article.
(34) 表組織と裏組織間に接結糸を直交させたダブルラッセル立体編布か らなる軟質多孔芯材の、 複数のそれぞれの合間に、 配合樹脂を含着させた介 在布を挟んで一体に結合してダブル八二カムが形成され、 該ダブルハ二カム の表裏面に、 配合樹脂を含着させた介在布層をそれぞれ重ねて一体に結合成 形してなり、 接結糸の弾性により、 成形体の肉厚方向に弾性を具備させてな る樹脂成形体。  (34) An intervening cloth impregnated with a compound resin is sandwiched between a plurality of soft porous cores made of a double Russell three-dimensional knitted fabric with binding yarns perpendicular to the front and back tissues. A double 82 cam is formed integrally with the double honeycomb, and an intervening cloth layer impregnated with a compounded resin is laminated on the front and back surfaces of the double honeycomb, respectively, and integrally formed to form a binding yarn. A resin molded article having elasticity in the thickness direction of the molded article due to elasticity.
(35) 表組織と裏組織間に接結糸を直交させたダブルラッセル立体編布か らなる軟質多孔芯材の、 複数のそれぞれの合間に、 あらかじめ成形した成形 体を挟んで一体に結合してダブルハニカムが形成され、 該ダブルハニカムの 表裏面に、 あらかじめ成形された成形体をそれぞれ重ねて一体に結合成形し てなり、 接結糸の弾性により、 肉厚方向に弾性を具備させてなる樹脂成形体  (35) A soft porous core material consisting of a double Russell three-dimensional knitted fabric in which the binding yarns are perpendicular to the front and back textures, and are joined together with a pre-formed compact between each of the multiple pieces. A double honeycomb is formed on the front and back surfaces of the double honeycomb, and each of the preformed bodies is overlapped and integrally formed. The elasticity of the binding yarn provides elasticity in the thickness direction. Resin molding
(36) 表組織と裏組織間に接結糸を直交させたダブルラッセル立体編布か らなる軟質多孔芯材の複数のそれぞれの合間に、 配合樹脂を含着させた介在 布層を挟んで一体に成形してダブルハニカムを形成する工程と、 該ダブルハ 二カムの表裏面に、 配合樹脂を含着させた介在布層をそれぞれ重ねて成形型 により一体に成形する工程との結合により、 軟質多孔芯材の接結糸の弾性に より、 成形体の肉厚方向に弾性を具備させてなる樹脂成形体の製造方法。 さらにこの発明は、 前記課題を解決し、 目的を達成するために、 次のよう な技術的な手段を講じた。 ここで云うプリホーム繊維とは、 繊維強化材 (ガ ラス、 カーボンその他繊維) を樹脂と共に型面に吹付け、 あるいは手作業に よって付着させて、 成形しょうとする形状にあらかじめ成形してある繊維を いう。 配合樹脂とは、 F R P成形その他成形に必要かつ充分な各種素材を配 合させてある軟性飴状樹脂をいう。 発明の具体的な内容は次の通りである。 (36) A soft porous core made of a double Russell three-dimensional knitted fabric in which the binding yarns are perpendicular to the front and back textures, with an intervening fabric layer impregnated with the compounded resin interposed between the soft porous cores. The process of forming a double honeycomb by integral molding and the process of laminating an interposed cloth layer impregnated with a compounded resin on the front and back surfaces of the double honeycomb, and integrally molding with a molding die are combined to form a soft honeycomb. For elasticity of binding yarn of porous core material Thus, a method for producing a resin molded article having elasticity in the thickness direction of the molded article. Further, the present invention has taken the following technical means in order to solve the above-mentioned problems and achieve the object. The preform fiber referred to here is a fiber preformed into the shape to be molded by spraying a fiber reinforcing material (glass, carbon or other fiber) together with the resin onto the mold surface, or attaching it by hand. . The compounded resin is a soft candy resin in which various materials necessary and sufficient for FRP molding and other moldings are mixed. The specific contents of the invention are as follows.
(37) 熱硬化性樹脂材を使用する成形方法において、 成形型内に熱硬化性 樹脂材を無加圧で投入して、 型合わせをすると共に、 外圧による型締めプレ スをせずに、 型内の減圧により型締めして成形する樹脂成形体の製造方法。 (37) In a molding method using a thermosetting resin material, a thermosetting resin material is charged into a molding die without pressurization, the molds are aligned, and the mold is not clamped by external pressure. A method for producing a resin molded body, which is molded by clamping the mold under reduced pressure in the mold.
(38) 熱硬化性樹脂材を使用する成形方法において、 型合わせをすると共 に、 成形型内に熱硬化性樹脂材を無加圧で投入して、 外圧による型締めプレ スをせずに、 型内の減圧をすることによって型締めして成形する樹脂成形体 の製造方法。 (38) In a molding method using a thermosetting resin material, the mold is set, and the thermosetting resin material is put into the molding die without applying pressure. A method for producing a resin molded article which is molded by clamping the mold by reducing the pressure in the mold.
(39) 前記減圧は、 2 . 5 c m H g〜2 0 c m H gの範囲で行う(38)、 (3 9)のいずれかに記載された樹脂成形体の製造方法。  (39) The method for producing a resin molded article according to any one of (38) and (39), wherein the pressure reduction is performed in a range of 2.5 cmHg to 20 cmHg.
(40) 雌型に繊維強化材をセッ トする工程と、 その雌型に配合樹脂を無加 圧で投入する工程と、 雄型を雌型に配設して軽く型締めする工程と、 雌雄型 内の減圧をする工程と、 減圧孔に配合樹脂が溢れた時点で、 減圧孔を閉ざし て養生、 硬化させる工程、 との結合からなる樹脂成形体の製造方法。  (40) A step of setting the fiber reinforced material in the female mold, a step of introducing the compounded resin into the female mold without applying pressure, a step of arranging the male mold in the female mold and lightly clamping the mold, A method for producing a resin molded product, comprising: a step of reducing the pressure in a mold; and a step of closing and curing and curing the reduced pressure hole when the compounded resin overflows in the reduced pressure hole.
(41) 樹脂成形体において、 雌型に繊維強化材をセッ 卜する工程と、 雄型 を配設して軽く型締めする工程と、 型の材注孔から無加圧で配合樹脂を注入 する工程と、 材注孔を閉ざして雌雄型内の減圧をする工程と、 減圧孔に配合 樹脂が溢れた時点で減圧孔を閉ざして養生、 硬化させる工程、 との結合から なる樹脂成形体の製造方法。 (42) 雌雄型の組合わせからなり、 雌型は、 配合樹脂を無加圧で直接投入 するよう構成され、 雄型は、 シールより内側の型合面から型外方へ向けて減 圧孔が形成され、 該減圧孔には、 減圧手段が連結される樹脂成形型。 (41) In the resin molded body, a step of setting the fiber reinforcing material in the female mold, a step of arranging the male mold and lightly clamping the mold, and injecting the compounded resin from the mold material injection hole without pressure. Production of a resin molded body comprising a combination of a process, a process of closing the material injection hole to reduce the pressure in the male and female molds, and a process of closing and curing and curing the compounded resin when the resin overflows in the pressure reduction hole. Method. (42) Consists of a combination of male and female molds.The female mold is configured to directly charge the compounded resin without pressure, and the male mold has a pressure reduction hole from the mating surface inside the seal to the outside of the mold. A resin mold in which a pressure reducing means is connected to the pressure reducing hole.
(43) 雌雄型の組合わせからなり、 雄型は、 シールより内側の型合面から 型外方へ向けて減圧孔が形成され、 該減圧孔には減圧手段が連結され、 該雄 型には、 外部から成形部にかけて賞通する、 無加圧式材注孔が形成されてい る樹脂成形型。  (43) The male mold has a combination of a male and a male, and the male mold has a decompression hole formed from the mating surface inside the seal to the outside of the mold, and a decompression means is connected to the decompression hole. Is a resin mold with a non-pressurized material injection hole that passes from the outside to the molding section.
(44) 前記シールは、 雌雄型それぞれに対向状に配設され、 雌型のシール は、 上面に凹部を形成したシールが、 雌型のシール嵌凹部に嵌装されている (42)、 (43)のいずれかに記載された樹脂成形型。  (44) The seal is disposed to face each of the male and female molds, and the female seal has a seal formed with a recess on the upper surface fitted into the female seal fitting recess (42), ( 43) The resin mold according to any one of the above.
(45) 前記減圧手段は、 2 . 5 c m H g〜2 0 c m H gの範囲の低圧減圧 機である(42)、 (43)のいずれかに記載された樹脂成形型。  (45) The resin mold according to any one of (42) and (43), wherein the decompression means is a low-pressure decompression device in a range of 2.5 cmHg to 20 cmHg.
さらに本発明は、 以下の風車用の羽根および補強部材を要旨とする。  Further, the present invention provides the following windmill blades and reinforcing members.
(46) 筒状に形成した外殻と、 その内部に嵌合固定された補強リブとから 構成され、 前記外殻が、 軟質の多孔性のシート状の芯材と、 その芯材の上下 面に設けた補強シー卜と、 芯材および補強シートの空隙に充填した硬化性樹 脂とからなり、 前記補強リブが、 合成樹脂発泡体からなる立体的な芯材と、 その周囲に設けられるシー卜状の芯材と、 その芯材の周囲に設けられた補強 シートと、 芯材および補強シートの空隙に充填した硬化性樹脂とからなる、 風車用の羽根。  (46) An outer shell formed in a cylindrical shape, and a reinforcing rib fitted and fixed inside the outer shell, wherein the outer shell is formed of a soft porous sheet-shaped core material, and upper and lower surfaces of the core material. And a hardening resin filled in voids of the core material and the reinforcing sheet, wherein the reinforcing ribs comprise a three-dimensional core material made of synthetic resin foam, and a sheet provided around the core material. A blade for a windmill, comprising: a core-shaped core material, a reinforcing sheet provided around the core material, and a curable resin filled in voids of the core material and the reinforcing sheet.
(47) 合成樹脂発泡体からなる立体的な芯材と、 その周囲に設けられるシ ート状の芯材と、 その芯材の周囲に設けられた補強シートと、 芯材および補 強シ一トの空隙に充填した硬化性樹脂とからなる補強部材。  (47) A three-dimensional core made of a synthetic resin foam, a sheet-shaped core provided around the core, a reinforcing sheet provided around the core, a core and a reinforcing core. A reinforcing member made of a curable resin filled in the voids of the resin.
(48)、 (47)の補強部材を 1本または複数本配置し、 その外側を補強シート で囲み、 一体成形した複合部材。  A composite member in which one or more reinforcing members of (48) and (47) are arranged, the outside of which is surrounded by a reinforcing sheet, and integrally formed.
(49) 補強部材と補強シートの間に発泡樹脂製のブロックを設けている ( 47) 記載の複合部材。 (50) (47)の補強部材を 1本または複数本並べ、 その外側を補強シートで 囲み、 一体成形した風車用の羽根。 (49) The composite member according to (47), wherein a block made of a foamed resin is provided between the reinforcing member and the reinforcing sheet. (50) One or more reinforcing members of (47) are arranged, the outside of which is surrounded by a reinforcing sheet, and integrally molded windmill blades.
(51) 補強部材と補強シートの間に発泡樹脂製のブロックを設けている ( 50) 記載の風車用の羽根。  (51) The blade for a windmill according to (50), wherein a block made of a foamed resin is provided between the reinforcing member and the reinforcing sheet.
(52) 発泡材からなるブロックと、 柔軟なシ一卜状の多孔性の芯材とを組 み合わせて金型内に入れ、 ついで配合樹脂を充填して一体成形する風車用の 羽根の成形方法。 図面の簡単な説明  (52) Combining a block made of a foam material and a flexible sheet-like porous core material into a mold, then filling the compounded resin and molding integrally to form windmill blades Method. BRIEF DESCRIPTION OF THE FIGURES
図 1は軟質多,孔芯材の斜視図である。  FIG. 1 is a perspective view of a soft multi-hole core material.
図 2は軟質多孔板状の平面図である。  FIG. 2 is a plan view of a soft porous plate.
図 3は成形方法を示す型と軟質多孔芯材の縦断正面図である。  FIG. 3 is a longitudinal sectional front view of a mold and a soft porous core material showing a molding method.
図 4は本発明の樹脂ハニカム構造の実施形態を示す縦断正面図である。 図 5は軟質多孔芯材の綱目の一部を寄せた平面図である。  FIG. 4 is a vertical sectional front view showing an embodiment of the resin honeycomb structure of the present invention. FIG. 5 is a plan view showing a part of the mesh of the soft porous core material.
図 6は軟質多孔芯材の第 2実施例を示す斜視図である。  FIG. 6 is a perspective view showing a second embodiment of the soft porous core material.
図 7は樹脂 Λ二カム構造の第 2実施例を示す縦断正面図である。  FIG. 7 is a vertical sectional front view showing a second embodiment of the resin two-cam structure.
図 8は樹脂ハニカム構造の第 3実施例を示す縦断正面図である。  FIG. 8 is a vertical sectional front view showing a third embodiment of the resin honeycomb structure.
図 9は本発明の製造方法で用いる成形型の実施形態を示す正面図である。 図 1 0は軟質多孔芯材を加工した平面図である。  FIG. 9 is a front view showing an embodiment of a molding die used in the production method of the present invention. FIG. 10 is a plan view of a soft porous core material processed.
図 1 1は第 1実施例を示す樹脂ハニカム成形体の斜視図である。  FIG. 11 is a perspective view of a resin honeycomb formed body according to the first embodiment.
図 1 2は図 1 1の樹脂ハニカム成形体の部分縦断正面図である。  FIG. 12 is a partial vertical sectional front view of the resin honeycomb molded body of FIG.
図 1 3は第 2実施例の樹脂ハニカム成形体の部分縦断正面図である。  FIG. 13 is a partial vertical sectional front view of the resin honeycomb formed body of the second embodiment.
図 1 4は F R P成形体との合体成形方法を示す成形型の縦断正面図である 図 1 5は第 3実施例を示す樹脂ハニカム成形体の縦断正面図である。  FIG. 14 is a longitudinal sectional front view of a molding die showing a method of uniting molding with an FRP molded body. FIG. 15 is a longitudinal sectional front view of a resin honeycomb molded body showing a third embodiment.
図 i 6は第 4実施例を示す樹脂ハニカム成形体の縦断正面図である。 図 1 7は管体の樹脂ハニカム成形体を成形する方法を示す平面図である。 図 1 8は軟質多孔芯材の太編部の一部正面図である。 FIG. I6 is a longitudinal sectional front view of a resin honeycomb molded body according to the fourth embodiment. FIG. 17 is a plan view showing a method of forming a tubular resin honeycomb formed body. FIG. 18 is a partial front view of a thick knit portion of a soft porous core material.
図 1 9は第 2実施例を示す接結糸の正面図である。  FIG. 19 is a front view of the binding yarn showing the second embodiment.
図 2 0は第 3実施例を示す接結糸の正面図である。  FIG. 20 is a front view of the binding yarn showing the third embodiment.
図 2 1は第 4実施例を示す接結糸の正面図である。  FIG. 21 is a front view of a binding yarn showing a fourth embodiment.
図 2 2は本発明の成形方法に用いる成形型の縦断正面図である。  FIG. 22 is a vertical sectional front view of a molding die used in the molding method of the present invention.
図 2 3は樹脂ハニカム成形体の一部縦断正面図である。  FIG. 23 is a partial longitudinal front view of the resin honeycomb formed body.
図 2 4は第 2実施例を示す樹脂ハニカム成形体の縦断正面図である。 図 2 5は成形型の縦断正面図である。  FIG. 24 is a longitudinal sectional front view of a resin honeycomb molded body according to the second embodiment. FIG. 25 is a vertical sectional front view of the molding die.
図 2 6は成形型の型締めした状態を示す縦断正面図である。  FIG. 26 is a vertical sectional front view showing a state in which the mold is clamped.
図 2 7は第 2形態例を示す成形型の縦断正面図である。  FIG. 27 is a longitudinal sectional front view of a molding die showing a second embodiment.
図 2 8は本発明にかかわる風車の羽根の実施の形態を示す要部斜視図であ る。  FIG. 28 is a perspective view of a main part showing an embodiment of a wind turbine blade according to the present invention.
図 2 9は図 2 8の羽根の外殻の拡大断面図である。  FIG. 29 is an enlarged sectional view of the outer shell of the blade of FIG.
図 3 0 aおよび図 3 0 bはそれぞれ図 2 8の補強リブの拡大断面図である 図 3 1は図 2 8の羽根の組立前の状態を示す断面図である。  30a and 30b are enlarged cross-sectional views of the reinforcing rib of FIG. 28, respectively. FIG. 31 is a cross-sectional view of the blade of FIG. 28 before assembly.
図 3 2は本発明に関わる風車の羽根の他の実施の形態を示す断面図である o  FIG. 32 is a sectional view showing another embodiment of the wind turbine blade according to the present invention.o
図 3 3 a〜cは本発明に関わる風車の羽根の製造方法の一実施形態を示す 工程図である。  33a to 33c are process diagrams showing one embodiment of a method for manufacturing a blade of a wind turbine according to the present invention.
図 3 4 a〜bは本発明に関わる風車の羽根の製造方法の他の実施形態を示 す工程図である。 発明を実施するための最良の形態  FIGS. 34a to 34b are process diagrams showing another embodiment of the method for manufacturing a wind turbine blade according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施の形態例を図面を参照して説明する。 図 1はダブル ラッセル立体編布からなる樹脂成形体用の軟質多孔芯材 (以下単に軟質多孔 芯材という) の斜視図、 図 2は平面図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Figure 1 is a double FIG. 2 is a perspective view of a soft porous core material (hereinafter simply referred to as a soft porous core material) for a resin molded body made of a Russell three-dimensional knitted fabric, and FIG. 2 is a plan view.
軟質多孔芯材 1はダブルラ、ソセル亀甲紋立体編布から構成されている。 素 材はポリエステル繊維、 ビニロン繊維、 ケブラ一繊維 (デュポン社の商標) など合成繊維、 並びにカーボン繊維、 ガラス繊維などの鉱物繊維から選択さ れる。  The soft porous core material 1 is composed of a double-layered, three-dimensional knitted fabric by Sosel. The material is selected from synthetic fibers such as polyester fiber, vinylon fiber, Kevlar fiber (trademark of DuPont), and mineral fibers such as carbon fiber and glass fiber.
前記ダブルラ セル立体編布はラッセル編機による表裏二重編物であり、 亀甲紋を編出したもので、 該文様は四角形その他任意に設定することができ る。  The double-laced three-dimensional knitted fabric is a double-faced double-sided knitted fabric by a Russell knitting machine, in which a tortoiseshell pattern is set up.
図 1において、 表組織 2と裏組織 3との間に直交する接結糸 4が多数介在 されて所定の肉厚にされ、 例えば 2ミリないし 2 0ミリなど任意の肉厚の立 体に形成されている。  In FIG. 1, a large number of binding yarns 4 are interposed between a front structure 2 and a back structure 3 to have a predetermined thickness, and are formed into a body having an arbitrary thickness, for example, 2 mm to 20 mm. Have been.
組織的には、 図 2における左方部分に示すように、 多数並列された細編部 (編束糸) 5が隣接同士で長手方向の端部で結合して太編部 6が形成され、 左右の太編部 6の間に粗目部 7が形成され、 該粗目部 7において左右の太編 部 6間にジグザグに往来する鏠糸 8が編成されている。  Organizationally, as shown in the left part of FIG. 2, a large number of thin knitted portions (braided yarns) 5 are joined adjacently at their longitudinal ends to form a thick knitted portion 6, A coarse portion 7 is formed between the left and right thick knit portions 6, and a wool 8 that is zigzag between the right and left thick knit portions 6 is knitted in the coarse portion 7.
編立てが終了後に、 前記縫糸 8を切除して、 図 2における左右方向に引き 延ばすと、 図 2における右方部分のように、 表裏組織 2、 3は、 それぞれが 細編部 5と、 左右の細編部 5が結合した太編部 6とで構成されて、 太編部 6 は間欠的に直列し、 かつ隣接の太編部 6は縦方向で 1 ピッチ位相を違差させ 、 細編部 5は太編部 6が左右に二分岐して形成されて、 左右の細編部 5が結 合して隣の太編部 6を形成する連続により、 亀甲紋編目 9が多数形成される 。 これをヒートセッ トすることによって、 亀甲紋の編目 9の形状を固定させ ることができる。  After the knitting is completed, the suture 8 is cut off and stretched in the left-right direction in FIG. 2, and as shown in the right part in FIG. The thick knitted portion 6 is composed of a thick knitted portion 6 and a thick knitted portion 6 joined together, the thick knitted portion 6 is intermittently connected in series, and the adjacent thick knitted portion 6 has a pitch difference of one pitch in the vertical direction. The part 5 is formed by dividing the thick knit part 6 into two parts on the left and right, and the left and right thin knit parts 5 are joined to form the next thick knit part 6, so that a large number of turtle pattern stitches 9 are formed. . By heat setting this, the shape of the stitch 9 of the tortoiseshell pattern can be fixed.
前記表裏組織 2、 3の使用糸は、 例えば合成繊維束糸、 鉱物繊維束糸、 の 単体もしくは混用体であり、 柔軟性があり、 配合樹脂を容易に含着させるこ とができる。 接結糸 4は合成繊維の単糸を使用すれば、 弾力性があるので、 表裏方向の弾力性が生じる。 The yarn used for the front and back textures 2 and 3 is, for example, a single or mixed material of a synthetic fiber bundle yarn and a mineral fiber bundle yarn, has flexibility, and can easily impregnate a compound resin. If a single yarn of synthetic fiber is used for the binding yarn 4, the binding yarn 4 has elasticity. Elasticity in the front and back direction occurs.
しかし配合樹脂を程良く含着させるためには、 細い繊維の束の単撚り糸、 片撚糸、 諸撚り糸、 抱合わせ糸 (引揃え) など繊維束糸が好ましい。 また繊 維束糸と太い単糸の合糸、 引揃えなどにすることができる。 接結糸 4の配列 は、 使用目的に合わせて、 例えば 0 . 2ミリないし 1ミリなど任意の間隔に 設定され、 あるいは間欠的に粗密部を形成させることができる。 この間隔は 詰った方が配合樹脂が板状に付着する。  However, in order to impregnate the compounded resin moderately, a bundle of fibers such as a single-twisted yarn, a single-twisted yarn, a multi-twisted yarn, and a tying yarn (pulling yarn) of a bundle of fine fibers is preferable. In addition, it can be used as a twine of a fiber bundle yarn and a thick single yarn, and can be aligned. The arrangement of the binding yarns 4 can be set at an arbitrary interval, for example, from 0.2 mm to 1 mm, depending on the purpose of use, or can form intermittently dense portions. When this gap is narrower, the compounded resin adheres in a plate shape.
図 3は前記太編部 6の側面図である。 組織は任意に設定することができる ので、 概略図を示している。 図において、 接結糸 4は合成繊維の単糸 4 aと 鉱物繊維束糸 4 bの合撚糸から構成されている。 合成繊維としてはポリエス テル繊維が選択され、 鉱物繊維としてはカーボン繊維が選択された。  FIG. 3 is a side view of the thick knitting portion 6. Since the organization can be set arbitrarily, a schematic diagram is shown. In the figure, the binding yarn 4 is composed of a ply-twisted yarn of a synthetic fiber single yarn 4a and a mineral fiber bundle yarn 4b. Polyester fiber was selected as synthetic fiber, and carbon fiber was selected as mineral fiber.
該接結糸 4は、 上端部は表組織 2に組成されて糸何本かを超えて下方へ下 つて裏組織 3に入って組成されて、 表裏組織 2、 3を一体に接結している。 これは組織により適宜変化する。  The binding yarn 4 is composed at the upper end in the front texture 2 and is formed by passing over several yarns and descending into the back texture 3 to join the front and back textures 2 and 3 together. I have. This varies depending on the organization.
図 4は接結糸 4の第 2実施例を示す概略図である。 この接結糸 4は合成繊 維単糸 4 aと鉱物繊維束糸 4 bとを引揃えたものである。 必要に応じて図示 しない絡み糸を絡ませることができる。  FIG. 4 is a schematic view showing a second embodiment of the binding yarn 4. As shown in FIG. The binding yarn 4 is a combination of a synthetic fiber single yarn 4a and a mineral fiber bundle yarn 4b. If necessary, a not-shown entanglement thread can be entangled.
図 5は接結糸 4の第 3実施例を示す概略図である。 この接結糸 4は、 表裏 組織 2、 3の間において、 合成繊維単糸 4 aと鉱物繊維束糸 4 bとを交互に 配列編 させた態様を示している。  FIG. 5 is a schematic view showing a third embodiment of the binding yarn 4. As shown in FIG. The binding yarn 4 shows an aspect in which the synthetic fiber single yarn 4a and the mineral fiber bundle yarn 4b are alternately arranged and knitted between the front and back tissues 2 and 3.
図 6は接結糸 4の第 4実施例を示す概略図である。 この接結糸 4は、 表裏 組織 2、 3の間において、 合成繊維単糸 4 aの複数の糸列と鉱物繊維束糸 4 bの複数の糸列とを交互に配列して一体に編成した態様を示している。 前記各実施例において、 接結糸 4における合成繊維単糸 4 aに対する鉱物 繊維束糸 4 bの混用割合は、 2 0容積%〜5 0容積%の範囲で任意に設定さ れる。  FIG. 6 is a schematic view showing a fourth embodiment of the binding yarn 4. As shown in FIG. The binding yarn 4 is formed by alternately arranging a plurality of yarn rows of the synthetic fiber single yarn 4 a and a plurality of yarn rows of the mineral fiber bundle yarn 4 b between the front and back tissues 2 and 3 and integrally knitting. An embodiment is shown. In each of the above embodiments, the mixing ratio of the mineral fiber bundle yarn 4b to the synthetic fiber single yarn 4a in the binding yarn 4 is arbitrarily set in the range of 20% by volume to 50% by volume.
図 7は、 軟質多孔芯材 1の編目 9を一部に寄せた状態を示す平面図である ダブルラッセル立体編布は編目 9を自由方向へ変形させることができる。 ま た、 接結糸 4に弾力性があるので、 平置して表組織 2の上から手で押さえて も型崩れしない剛性を有している。 FIG. 7 is a plan view showing a state where the stitch 9 of the soft porous core material 1 is partially moved. The double Russell three-dimensional knitted fabric can deform the stitch 9 in a free direction. In addition, since the binding yarn 4 has elasticity, the binding yarn 4 has a rigidity so that it does not collapse even if it is placed flat and pressed down on the surface structure 2 by hand.
次に樹脂ハニカム成形体 1の製造方法を説明する。 図 1に示すダブルラ、ソ セル立体編布からなる軟質多孔芯材 1に軟質水飴状の配合樹脂を含着させる 。 含着方法としては、 浸漬、 塗布、 吹付けなど任意である。 配合樹脂として は、 一般的な F R P成形に使用される各種必要素材を混合したもの、 これに 準ずるものを使用することができる。  Next, a method for manufacturing the resin honeycomb molded body 1 will be described. A soft syrup-shaped compounded resin is impregnated into a soft porous core material 1 made of a double ply and a solid three-dimensional knitted fabric shown in FIG. The impregnation method is arbitrary such as dipping, coating, spraying and the like. As the compounded resin, a mixture of various necessary materials used in general FRP molding or a resin equivalent thereto can be used.
図 8は配合樹脂を含着させた軟質多孔芯材 1を成形型 1 0の上に平置した 状態を示す。  FIG. 8 shows a state in which the soft porous core material 1 impregnated with the compounded resin is placed flat on the mold 10.
前記表裏組織 2、 3は合成繊維束糸が使用されている時、 配合樹脂 1 1は 細い繊維間に含着されている。 また接結糸 4は、 合成繊維の太い単糸 4 aだ けであっても、 隣接の単糸 4 aの間に配合樹脂 1 1が含着する。 鉱物繊維束 糸 4 bが添えられていると、 この繊維束糸 4 bの細い繊維間に配合樹脂 1 1 が含着する。 成形型 1 0が湾曲していれば、 それなりに湾曲する。  When synthetic fiber bundle yarns are used for the front and back tissues 2 and 3, the compounded resin 11 is impregnated between fine fibers. Even if the binding yarn 4 is only a single yarn 4a made of a synthetic fiber, the compound resin 11 is impregnated between adjacent single yarns 4a. When the mineral fiber bundle yarn 4b is added, the compound resin 11 is impregnated between the fine fibers of the fiber bundle yarn 4b. If the mold 10 is curved, it curves accordingly.
この軟質多孔芯材 1を成形型において養生 (材質、 温度により 5〜2 0分 ) させて、 経時的に配合樹脂 1 1を硬化させることによって樹脂八二カム成 形体 1 2が形成される。 これによつて、 図 9に示すように、 太い単糸 4 aに は配合樹脂 1 1が付着しにく くても、 細い鉱物繊維束糸 4 bにはその繊維間 に配合樹脂 1 1が含着して、 隣接する接結糸 4同士の板状の連結も見ること ができる。  The soft porous core material 1 is cured (5 to 20 minutes depending on the material and temperature) in a molding die, and the compounded resin 11 is cured with time, whereby a resin 82 cam molded body 12 is formed. As a result, as shown in FIG. 9, the compound resin 11 is hard to adhere to the thick single yarn 4a, but the compound resin 11 is interposed between the thin mineral fiber bundle yarns 4b. It is also possible to see the plate-like connection between adjacent binding yarns 4 by impregnating them.
すなわち、 線状の単糸の場合、 素材に関係なく、 配合樹脂が付着しにく く 、 付着しても剥離することがある。 繊維束糸では、 素材に関係なく、 細い繊 維同士の間に毛管現象によって配合樹脂が入り込み、 繊維同士を配合樹脂が 一体に結合させるので、 剥離は生じにくい。 また細繊維は左右前後に毛羽を 出すため、 隣接の繊維同士間に配合樹脂が含着して隣接繊維同士を一体に結 合させ、 例えば太編部 6の長手に沿つて密に配列されている接結糸 4の隣同 士を板状に連結させることができる。 That is, in the case of a linear single yarn, regardless of the material, the compounded resin is hard to adhere, and may peel off even if it adheres. Regarding the fiber bundle yarn, regardless of the material, the compounded resin enters between the fine fibers by capillary action, and the compounded resin is united with the fibers, so that peeling does not easily occur. In addition, since the fine fibers are fluffed right and left and front and back, the compound resin is impregnated between the adjacent fibers and the adjacent fibers are united together. For example, adjacent ones of the binding yarns 4 densely arranged along the length of the thick knit portion 6 can be connected in a plate shape.
以上のことから、 接結糸 4として太い単糸 4 aを使用し、 これに鉱物繊維 束糸 4 bを添わせる時、 該太い単糸 4 aは鉱物繊維束糸 4 bに含着した配合 樹脂が付着し一体に形成されるため、 樹脂ハニカム成形体 1 2は肉厚方向に 加圧したとき、 合成繊維の太い単糸 4 aの弾性によって、 肉厚方向に弾性の ある樹脂ハニカム成形体 1 2とすることができる。  From the above, a thick single yarn 4a was used as the binding yarn 4, and when the mineral fiber bundle yarn 4b was added to this, the thick single yarn 4a was impregnated with the mineral fiber bundle yarn 4b. Since the resin is adhered and integrally formed, the resin honeycomb molded body 12 is elastic in the thickness direction due to the elasticity of the thick single yarn 4a of the synthetic fiber when pressed in the thickness direction. 1 and 2
軟質多孔芯材 1は、 図 7に示すように、 編目 9の幅を自由に変化させるこ とができること、 肉厚方向で加圧により厚薄にすることができるので、 後述 するように配合樹脂を含着させた後、 雌雄型によって函状の三次元成形を容 易にすることができる。 その場合でも、 前記接結糸 4の設定によって、 肉厚 方向の弾性付与 (例えば角部分だけも) をすることができる。  As shown in FIG. 7, the soft porous core material 1 can freely change the width of the stitch 9 and can be made thinner by applying pressure in the thickness direction. After being impregnated, a box-shaped three-dimensional molding can be facilitated by the male and female molds. Even in such a case, elasticity in the thickness direction (for example, only the corner portions) can be provided by setting the binding yarn 4.
軟質多孔芯材 1は、 態様の異なったもの (素材構成、 肉厚) を配合樹脂を 含着させて複層に積層させて成形体として一体に硬化形成させることができ る。 また各層の間に配合樹脂の含着された介在布層 (織布、 編布、 網、 不織 布、 ガラスマッ トなど) 1 3を介在させて成形体として一体に硬化形成させ ることができる。  The soft porous core material 1 can be integrally formed as a molded body by laminating a material having different aspects (material composition and thickness) into a plurality of layers by impregnating a compounded resin. Also, an intervening cloth layer (woven cloth, knitted cloth, net, non-woven cloth, glass mat, etc.) 13 in which the compounded resin is impregnated between the layers can be integrally cured and formed as a molded article. .
図 1 0は軟質多孔芯材 1を複数積層した樹脂ハニカム成形体 1 2の縦断正 面図である。 この成形体 1 2の製造方法の概略は、 まず、 繊維強化材マッ ト (例えばガラスストランドマッ ト) からなる介在布層 1 3に配合樹脂を含着 させて、 軟質多孔芯材 1同士の間に挟み、 繊維強化材マツ 卜からなる介在布 層 1 3に含着されている配合樹脂によって上下の軟質多孔芯材 1を接着させ るようにしてダブルハニカム 1 4として一体に型成形をする。  FIG. 10 is a longitudinal sectional front view of a resin honeycomb molded body 12 in which a plurality of soft porous core materials 1 are laminated. An outline of a method of manufacturing the molded body 12 is as follows. First, a compound resin is impregnated into an intervening cloth layer 13 made of a fiber reinforcing material mat (for example, a glass strand mat) to form a soft porous core material 1 between the soft porous core materials 1. The upper and lower soft porous cores 1 are adhered to each other by a compound resin impregnated in an intervening cloth layer 13 made of fiber-reinforced mats, and are integrally molded as a double honeycomb 14.
この方法によって、 接結糸 4部分への配合樹脂の含着を抑止して、 接結糸 4の弾性を維持させる事ができる。 従って、 求められる弾性に対応して、 接 結糸 4の質、 太さ、 配列密度等を設定する。  By this method, the binding resin 4 can be prevented from being impregnated with the compounded resin, and the elasticity of the binding yarn 4 can be maintained. Therefore, the quality, thickness, array density, and the like of the binding yarn 4 are set according to the required elasticity.
しかる後、 成形型 (図示せず) の中に、 配合樹脂を含着させた繊維強化材 マツ トからなる介在布層 1 5を配列させ、 その上に前記ダブルハニカム 1 4 を重ね、 その上に配合樹脂を含着させた繊維強化材マツ 卜からなる介在布層 1 5を重ねて型締めして一体に成形する。 図 1 0において接結糸 4が湾曲し ているのは成形型による加圧のためで、 この形状は成形時の熱によってヒー トセヅ トされている。 After that, the fiber reinforced material impregnated with the compound resin in the mold (not shown) The interposed cloth layer 15 made of mat is arranged, and the double honeycomb 14 is stacked thereon, and the interposed cloth layer 15 made of fiber-reinforced mat impregnated with the compounded resin is stacked thereon. Tighten and mold integrally. In FIG. 10, the binding yarn 4 is curved due to pressurization by a mold, and this shape is heat set by heat during molding.
これによつて、 複数の軟質多孔芯材 1は介在布層 1 3によってダブルハ二 カム 1 4として結合され、 表面は繊維強化材マツ 卜かもなる介在布層 1 5が 硬化した成形体層によって保護された剛性に優れた樹脂ハニカム成形体 1 2 となっている。 この場合、 必要に応じて、 成形型の成型面に表層材層 (例え ば着色用) をあらかじめ形成しておく事ができる。  As a result, the plurality of soft porous core materials 1 are connected as a double honeycomb 14 by the intervening cloth layer 13, and the surface is protected by the molded article layer in which the intervening cloth layer 15, which may be a fiber reinforcing material mat, is hardened. The resulting resin honeycomb molded body 12 has excellent rigidity. In this case, if necessary, a surface layer (for example, for coloring) can be formed on the molding surface of the mold in advance.
なお、 前記ダブルハニカム 1 4の中間の介在布層 1 3、 並びに表裏の介在 布層 1 5に代えて、 あらかじめ用意された既成成形体を介在させて、 型締め により軟質多孔芯材 1に含着された配合樹脂によって一体に結合させる事が できる。 その場合、 既成成形体は配合樹脂との接着性のよいものが選択され 、 軟質の物も使用する事ができる。 また複数ある層について硬度、 肉厚、 材 質などを変化させる事ができる。  In place of the intermediate cloth layer 13 in the middle of the double honeycomb 14 and the cloth layers 15 on the front and back, a preformed molded body is interposed, and the soft porous core material 1 is included in the soft porous core material 1 by clamping. It can be integrally joined by the compounded resin attached. In this case, a preformed molded article having good adhesiveness with the compounded resin is selected, and a soft molded article can also be used. In addition, hardness, wall thickness, material, and the like can be changed for a plurality of layers.
前記樹脂ハニカム成形体 1 2の表裏面は硬質であっても、 接結糸 4に弾性 があるために、 外から加圧されても成形体 1 2の肉厚方向に可撓性があり外 圧を吸収する。 このため、 例えば外部から衝撃を与えても、 衝撃を吸収する ために、 破損開孔が極めて困難である。  Even if the front and back surfaces of the resin honeycomb molded body 12 are hard, since the binding yarn 4 has elasticity, the molded body 12 has flexibility in the thickness direction of the molded body 12 even when pressed from the outside, so that Absorb pressure. For this reason, even if an external impact is applied, for example, it is extremely difficult to open the damaged hole because the impact is absorbed.
また樹脂ハニカム成形体 1 2は、 雌雄型によって容易に成形する事ができ るので、 例えば自動車のバンパーに前記ダブルハニカム 1 4を使用するとき 、 衝突の衝撃を吸収させる事ができる。 船舶などに使用するときは、 これ自 体で浮力を向上させる事ができるほか、 海難時には衝突の衝撃を緩和し、 外 部が破損しても船内に漏水せず、 大破した破片は浮体として利用する事がで きる。  Further, since the resin honeycomb molded body 12 can be easily molded by a male and female mold, for example, when the double honeycomb 14 is used for a bumper of an automobile, the impact of a collision can be absorbed. When used in ships, etc., it can improve buoyancy by itself, mitigate the impact of collisions in case of marine accidents, do not leak into the ship even if the outside is damaged, and use severely broken debris as a floating body You can do it.
この発明は前記形態例に限定されるものではなく、 多方面に利用する事が でき、 目的に沿って適宜設計変更をする事ができる。 例えば前記ダブルハニ カム 1 4の介在布層 1 3を上下において素材を変化させる事ができる。 また 軟質多孔芯材 1についても、 平面方向において部分的に素材を変化させる事 ができる。 前記樹脂ハニカム成形体 1 2の表裏層 (介在布層) には、 難燃材 、 耐候材、 耐磨耗材などを混入させる事ができる。 The present invention is not limited to the above embodiment, and may be used in various fields. Yes, and design changes can be made appropriately according to the purpose. For example, the material can be changed vertically above and below the intervening cloth layer 13 of the double honeycomb 14. The material of the soft porous core material 1 can also be partially changed in the plane direction. The front and back layers (intervening cloth layers) of the resin honeycomb molded body 12 may be mixed with a flame-retardant material, a weather-resistant material, a wear-resistant material, and the like.
つぎに前記軟質多孔芯材を金型によって立体的に成形する方法を説明する 。 まず前記ダブルラッセル亀甲紋立体編布からなる軟質多孔芯材 1に軟質水 配合樹脂を含着させる。 含着の方法としては、 浸漬、 吹きつけ等による塗着 、 その他方法は任意である。  Next, a method of three-dimensionally forming the soft porous core material by a mold will be described. First, a soft water-blended resin is impregnated in the soft porous core material 1 made of the double-rassel turtle-shaped three-dimensional knitted fabric. As the impregnation method, immersion, coating by spraying or the like, and other methods are optional.
これによつて、 前記表裏組織には配合樹脂が含浸すると共に表面に付着す る。 接結糸 4については、 表面に配合樹脂が付着し、 隣接の接結糸 4同士の 表面に付着している配合樹脂同士が合体し合って、 編糸束 5、 太編部 6部分 に沿って、 板状に連結されて平面で亀甲繋ぎ状になる。  As a result, the mixed resin is impregnated into the front and back tissues and adheres to the surface. With regard to the binding yarn 4, the compounded resin adheres to the surface, and the compounded resin adhering to the surface of the adjacent binding yarns 4 is united with each other to form the knitting yarn bundle 5 and the thick knit portion 6 Then, they are connected in a plate shape to form a flat tortoiseshell connection.
つぎに図 1 1に示すように、 下型 2 0の成形部 2 1に、 配合樹脂を含浸さ せた軟質多孔芯材 1を収容する。 上型 2 2を下型 2 0に重ねて閉型して成形 し、 経時的に配合樹脂を硬化させる。 この場合、 図 3に示すように、 型の成 形面に表層材層 2 6を形成しておくことができる。 該表層材層 2 6には着色 材を添加すること、 あるいは配合樹脂の含着されたガラスストランドチヨッ プ ·マッ ト · クロス等を重ね合わせることができる。 それにより外観が向上 し、 強度が向上する。  Next, as shown in FIG. 11, the soft porous core material 1 impregnated with the compounded resin is accommodated in the molding part 21 of the lower mold 20. The upper mold 22 is overlaid on the lower mold 20, closed and molded, and the compounded resin is cured over time. In this case, as shown in FIG. 3, a surface material layer 26 can be formed on the molding surface of the mold. A coloring material may be added to the surface material layer 26, or a glass strand chip, mat, cloth or the like impregnated with the compounded resin may be superposed. This improves the appearance and the strength.
そして硬化後、 脱型させると、 樹脂ハニカム成形体 1 2が形成される。 図 3の上型 2 2においては、 下面が平坦ではなく、 雄型で突出部 2 2 aがある ために、 下型 2 0の中で軟質多孔芯材 1は上から押圧されて、 図 1 2に示す ように突出部 2 2 aの側部の成形部間隔が狭い部分においては、 接結糸 4は 屈曲されて変形し、 変形されたままで成形硬化されて板状になるので、 完成 した樹脂ハニカム成形体 1 2は部分的に異なった肉厚を有する物となってい る。 図 1 1において成形型の成形面に表層材層 2 6を形成しておく と、 図 1 2 に示すように表層材層 2 6と軟質多孔芯材 1が合体した八二カム成形体 1 2 となる。 従って、 表層材層 2 6を形成しておかなければ、 貫通孔のあるハニ カム構造となる。 Then, after curing, the mold is removed and a resin honeycomb molded body 12 is formed. In the upper mold 22 of FIG. 3, the lower surface is not flat, but is a male mold and has a protruding portion 22 a. As shown in Fig. 2, the binding yarn 4 is bent and deformed in the portion where the formed portion spacing is small on the side of the protruding portion 2 2a, and it is formed and hardened as it is deformed to form a plate. The resin honeycomb formed body 12 has a partially different thickness. In FIG. 11, if the surface layer 26 is formed on the molding surface of the mold, as shown in FIG. 12, an 82 cam molded body 1 2 in which the surface layer 26 and the soft porous core 1 are united is formed. Becomes Therefore, if the surface material layer 26 is not formed, a honeycomb structure having through holes is obtained.
また、 ダブルラッセル亀甲紋立体編布からなる軟質多孔芯材 1は、 図 7に 示すように平面において、 亀甲紋綱目 9を寄せ集めて目穴を部分的に狭くす ることができるので、 例えば平面舟形のような型の湾曲に合わせて、 舟形の ような三次元の立体樹脂ノ\二カムを形成させることができる。 また自由に屈 曲させることができるため、 平坦部と立上り部のあるような函状の立体形に 形成させることができる。 雌雄型合わせ成形の他に、 雄型、 雌型単独に手作 業による成形をすることができる。  Also, as shown in FIG. 7, the soft porous core material 1 made of double Russell turtle-patterned three-dimensional knitted fabric can gather the turtle-patterned meshes 9 in a plane and partially narrow the holes, as shown in FIG. According to the curvature of the mold like a plane boat, a three-dimensional solid resin cam like a boat can be formed. In addition, since it can be bent freely, it can be formed into a box-like three-dimensional shape having a flat portion and a rising portion. In addition to male and female mold molding, male and female molds can be individually molded by hand.
前記ダブルラッセル亀甲紋立体編布からなる軟質多孔芯材 1は、 接結糸 4 としてある程度太い単糸を使用しておき、 図 1における表組織 2と裏組織 3 に配合樹脂を含着させて成形型において成形、 硬化させる。 脱型をすると表 組織 2と裏組織 3部分の配合樹脂は硬化するので、 表裏の硬いハニカム構造 となり、 接結糸 4部分は配合樹脂の含着が少なく板状に硬化しないため、 表 組織から裏組織方向へ押圧すると、 太い単糸の接結糸 4の弾性によって、 厚 味方向に伸縮する樹脂ハニカム構造が得られる。  The soft porous core material 1 made of the double Russell tortoiseshell three-dimensional knitted fabric uses a somewhat thick single yarn as the binding yarn 4, and impregnates the compound resin into the front structure 2 and the back structure 3 in FIG. Mold and cure in the mold. When the mold is removed, the compounded resin in the surface structure 2 and the back structure 3 is hardened, resulting in a hard honeycomb structure on the front and back. When pressed in the direction of the back structure, a resin honeycomb structure that expands and contracts in the thickness direction is obtained by the elasticity of the thick single binding yarn 4.
図 1 3は耐熱耐溶剤性の軟質発泡樹脂プロックからなる板状の軟質多孔芯 材 2 3の斜視図である。 表面には、 パンチングマシンによる多数の打抜き貫 通孔 2 4が形成されている。 該貫通孔 2 4の形状は、 四角形、 円形、 三角形 など、 どのような形状でも任意である。  FIG. 13 is a perspective view of a plate-like soft porous core material 23 made of a heat-resistant and solvent-resistant soft foam resin block. A large number of punched through holes 24 are formed on the surface by a punching machine. The shape of the through hole 24 may be any shape such as a square, a circle, and a triangle.
該軟質発泡樹脂プロックからなる多孔芯材 2 3に配合樹脂を含着させて、 前記同様に硬化させると、 樹脂ハニカム成形体が形成される。 この軟質発泡 樹脂ブロックからなる軟質多孔芯材 2 3の利点は、 肉厚を任意に選択するこ とができること、 並びに賞通孔 2 4の形状、 大きさを任意に形成することが できる。 特に部分的に貫通孔 2 4の大きさや形状を変化させることができる ことである。 When the compounded resin is impregnated into the porous core material 23 made of the soft foamed resin block and cured in the same manner as described above, a resin honeycomb molded body is formed. The advantage of the soft porous core material 23 made of the soft foamed resin block is that the thickness can be arbitrarily selected, and the shape and size of the prize through hole 24 can be arbitrarily formed. In particular, the size and shape of the through hole 24 can be partially changed That is.
図 1 4は二枚の軟質多孔芯材 1の間に、 配合樹脂を含着させた介在布 2 5 を挟み、 前記同様に一体に成形硬化させた物である。 この場合、 上下の軟質 多孔芯材 1の素材を変化させることができる。 この素材には、 材質、 肉厚、 貫通孔の大きさ、 色彩などの差違を含む。 介在布 2 5としては、 織布、 編布 、 不織布、 紙、 木材、 ガラスストランドマ、ソ ト ·クロスなどを含む。  FIG. 14 shows a product obtained by sandwiching an intervening cloth 25 impregnated with a compound resin between two soft porous core materials 1 and integrally molding and curing the same as described above. In this case, the material of the upper and lower soft porous core materials 1 can be changed. This material includes differences in material, wall thickness, through-hole size, color, etc. Examples of the intervening cloth 25 include a woven cloth, a knitted cloth, a nonwoven cloth, paper, wood, a glass strander, a soft cloth, and the like.
図 1 5は図示しない型の内面に既成樹脂成形体 2 7を配置し、 その上に配 合樹脂を含着させた軟質多孔芯材 1を配して、 前記同様に一体成形、 硬化さ せたものである。 この既成樹脂成形体 2 7としては配合樹脂との接着性のあ るものは任意に選択することができる。  In FIG. 15, a preformed resin molded body 27 is arranged on the inner surface of a mold (not shown), and a soft porous core material 1 impregnated with a compound resin is arranged thereon, and is integrally molded and cured as described above. It is a thing. As the preformed resin molded article 27, one having adhesiveness to the compounded resin can be arbitrarily selected.
また柱状体の雄型表面に軟質多孔芯材 1を巻着して、 管状体の樹脂ハニカ ム成形体を形成することができる。  Further, the soft porous core material 1 can be wound around the male surface of the columnar body to form a tubular resin honeycomb molded body.
樹脂ハニカム成形体の用途は多方面に利用することができる。 例えば、 F R P成形の芯材、 防音壁材、 保温壁材、 床材、 天井材、 路面舗装材、 函材、 管材その他、 多方面に使用することができる。 またこの樹脂ハニカム構造は 、 ガラス繊維を使用しないものは可燃性で、 リサイクルすることができる。 つぎに前記板状の軟質多孔芯材を用いて箱などの立体的な形状に成形する 方法を説明する。 図 1 6に示すように、 雄型 3 1の表面に、 表層材層 3 3を 形成し、 その上に配合樹脂を含着させた軟質多孔芯材 1を被着させる。 この 場合図 1 7に示すように、 軟質多孔芯材 1は左右方向で四つ折りにする態様 で、 型の上に当る部分は、 水平に折った時に隣接のものと重ならないように 、 切込みをつけるようにすることもできるし、 上からかぶせて、 重なる部分 の編目を図 7のように詰めたりして被着させる。  The application of the resin honeycomb molded body can be used in various fields. For example, it can be used for FRP molded core material, sound insulation wall material, heat insulation wall material, floor material, ceiling material, road surface pavement material, box material, pipe material, and other various fields. The resin honeycomb structure that does not use glass fiber is flammable and can be recycled. Next, a method for forming a three-dimensional shape such as a box using the above-mentioned soft porous core material in the form of a plate will be described. As shown in FIG. 16, a surface material layer 33 is formed on the surface of the male mold 31, and a soft porous core material 1 impregnated with a compounded resin is adhered thereon. In this case, as shown in Fig. 17, the soft porous core material 1 is folded in four in the left-right direction, and the portion that hits the mold is cut so that it does not overlap with the adjacent one when folded horizontally. They can be attached, or they can be covered from above, and the stitches in the overlapping area can be packed and attached as shown in Fig. 7.
この上に雌型 3 2を重ねて締型して成形し、 経時的に配合樹脂を硬化させ る。 この場合、 雌型の内面にも表層材層 3 3を形成しておく。 硬化後、 脱型 させると、 函型中空の樹脂ハニカム成形体 3 4が形成される。 図 1 6の雌型 3 2においては、 天板の下面が平坦でなく、 突出部 3 2 aが あるために、 型成形によって、 軟質多孔芯材 1は上から突出部 3 2 aに押圧 されて、 突出部 3 2 aがある部分の接結糸 4は屈曲されて変形し、 変形され たままで成形、 硬化されて板状になるので、 完成した樹脂ハニカム成形体 3 4は図 1 9に示すように部分的に肉薄部 3 4 aが形成され、 異なった肉厚を 有する物となっている。 The female mold 32 is placed on top of this, molded by clamping, and the compounded resin is cured over time. In this case, a surface material layer 33 is also formed on the inner surface of the female mold. After curing, when the mold is released, a box-shaped hollow resin honeycomb molded body 34 is formed. In the female mold 32 shown in FIG. 16, since the lower surface of the top plate is not flat and has a projection 32a, the soft porous core material 1 is pressed by the projection 32a from above by molding. Then, the binding yarn 4 where the protruding portion 3 2a is present is bent and deformed, and is formed and hardened into a plate shape while being deformed, so that the completed resin honeycomb formed body 34 is shown in FIG. As shown in the figure, a thin portion 34a is formed partially, and has a different thickness.
前記表層材層 3 3は、 着色材を添加させることによって、 樹脂ハニカム成 形体 3 4に、 成形と同時に着色することができる。 また塗布または吹きつけ た層の上に、 配合樹脂を含着させた布、 マツ トなどを被着させて、 全体もし くは部分的に肉厚にするこ ができる。  The surface material layer 33 can be colored at the same time as the resin honeycomb molded body 34 is formed by adding a coloring material. In addition, a cloth or a mat impregnated with the compounded resin can be applied on the applied or sprayed layer to make the whole or part of the layer thicker.
前記接結糸 4を太めの単糸 (細単糸の合糸も含む) としておき、 配合樹脂 を軟質多孔芯材 1に含着させると、 表裏組織 2、 3には配合樹脂がよく含着 するが、 太い単糸の接結糸 4には付着しにくい。 従って、 これを型成形する と表裏組織 2、 3部分は硬質の成形体になるが、 接結糸 4部分は単糸の弾力 性がそのまま残存しているので、 この樹脂ハニカム成形体 3 4は、 肉厚方向 に可撓性を保持させることができる。  When the binding yarn 4 is set as a thick single yarn (including a composite yarn of fine single yarn) and the compounded resin is impregnated with the soft porous core material 1, the mixed resin is well impregnated on the front and back structures 2 and 3. However, it is difficult to attach to the thick single binding yarn 4. Therefore, when this is molded, the front and back structures 2 and 3 become a hard molded body, but since the binding yarn 4 has the elasticity of a single yarn remaining, this resin honeycomb molded body 34 is It is possible to maintain flexibility in the thickness direction.
この場合、 前述のように接結糸 4の弾性強度を向上させるために、 カーボ ン繊維、 ケプラー繊維、 ガラス繊維など鉱物繊維を合成繊維と合撚、 抱き合 わせとし、 あるいは間欠的にそれら鉱物繊維を合成繊維の配列中に配列する ことができる( 図 3〜5参照) 。  In this case, as described above, in order to improve the elastic strength of the binding yarn 4, mineral fibers such as carbon fiber, Kepler fiber, and glass fiber are twisted or tied with the synthetic fiber, or the mineral fibers are intermittently interlocked. The fibers can be arranged in an array of synthetic fibers (see Figures 3-5).
このように、 成形型 3 1、 3 2は、 大きな力がかからないため、 F R P等 で成形型を造成することができる。 例えば大型冷凍車の冷蔵庫用の 2 0 0 X 2 0 0 X 4 0 Qミリなどの大型ハウジングとなる樹脂ハニカム成形 体の型を F R Pで容易に成形することができ、 それによつて肉薄でも剛性に 優れ、 また軽量、 保温性に優れている大型ハウジングを成形できる。 また雌 雄型による成形なので、 寸法精度が優れている。  As described above, since a large force is not applied to the molds 31 and 32, the molds can be formed by FRP or the like. For example, a 200 mm x 200 mm x 400 mm millimeter of resin honeycomb molded body for a refrigerator of a large freezer truck can be easily molded by FRP to form a large-sized housing. A large housing that is excellent, lightweight, and excellent in heat insulation can be molded. Also, since it is molded by male and female molds, it has excellent dimensional accuracy.
図 2 0は複数の軟質多孔芯材 1のそれぞれの間に、 配合樹脂を含着させた 介在布 2 5を挟み、 前記同様に一体に成形硬化させた実施形態を示す樹脂ハ 二カム成形体 3 4である。 この場合、 上下の軟質多孔芯材 1の素材を変化さ せることができる。 この素材には、 材質、 肉厚、 貫通孔の大きさ、 色彩など の差違を含む。 また、 介在布 2 5としては、 織布、 編布、 不織布、 紙、 木材 、 ガラスストランドマット · クロスなどを含む。 用途として、 例えば航空機 、 船舶などの壁体、 風力発電機の風車用の羽根として使用することができる 。 船舶では、 多重層とすることによって、 船体の浮力が向上する他、 外層に 裂孔が生じても内部に水が入らず、 沈没することはない。 FIG. 20 is a resin c showing an embodiment in which an intervening cloth 25 impregnated with a compound resin is sandwiched between each of a plurality of soft porous core materials 1 and integrally molded and cured in the same manner as described above. This is a two-cam molding 34. In this case, the material of the upper and lower soft porous core materials 1 can be changed. This material includes differences in material, wall thickness, through-hole size, color, etc. Further, examples of the intervening cloth 25 include woven cloth, knitted cloth, non-woven cloth, paper, wood, glass strand mat and cloth. As an application, for example, it can be used as a wall for an aircraft or a ship, or as a blade for a windmill of a wind power generator. In a ship, the use of multiple layers not only improves the buoyancy of the hull, but also does not allow water to enter the interior even if a breach occurs in the outer layer, and does not sink.
図 2 1は F R P成形体 3 6と軟質多孔芯材 1 の合体成形の方法を示す。 F R Pの浴槽は、 補強材として木製の合板が多く使用されている。 また足の部 分にも木材や金属が使用されている。 図 2 1において、 外槽 3 7並びに内槽 3 8はあらかじめ F R P成形体 3 6として形成しておく。 外槽 3 7の足 1 7 aの部分は凹成されて木材等の補強材 3 7 bが嵌装される。  FIG. 21 shows a method of uniting the FRP molded body 36 and the soft porous core material 1. Wooden plywood is often used as a reinforcing material in FRP bathtubs. Wood and metal are also used for the feet. In FIG. 21, the outer tank 37 and the inner tank 38 are formed in advance as an FRP molded body 36. The portion of the foot 17a of the outer tub 37 is recessed, and a reinforcing material 37b such as wood is fitted therein.
該外槽 3 7の内部に、 配合樹脂を含着させた軟質多孔芯材 1を配設する。 この場合、 軟質多孔芯材 1は、 不用となる四隅を切り取り、 平面略十字状に しておく。 しかる後、 内槽 3 8を軟質多孔芯材 1の上から外槽 3 7内へ嵌入 させて加圧する。  The soft porous core material 1 impregnated with the compounded resin is disposed inside the outer tank 37. In this case, the soft porous core material 1 is cut out at four corners that are not needed, and is formed into a substantially cross-shaped plane. Thereafter, the inner tank 38 is fitted into the outer tank 37 from above the soft porous core material 1 and pressurized.
経時的に軟質多孔芯材 1の配合樹脂が硬化すると、 内外槽 1 7、 1 8と軟 質多孔芯材 1 とが一体に結合して図 2 2に示すような、 浴槽としての樹脂ハ 二カム成形体 3 4が形成される。 図 2 2でもよくわかるように、 底部は軟質 多孔芯材 1の肉厚が厚く、 側壁部においては軟質多孔芯材 1の肉厚が薄く押 圧されている。  As the resin blended with the soft porous core material 1 hardens over time, the inner and outer tanks 17 and 18 and the soft porous core material 1 are integrally bonded, and as shown in FIG. A cam compact 34 is formed. As can be clearly understood from FIG. 22, the thickness of the soft porous core material 1 is large at the bottom and the thickness of the soft porous core material 1 is small at the side wall.
このように、 上下の F R P成形体 3 6の間に配合樹脂を含着させた軟質多 孔芯材 1を挟んで成形し硬化させることによって、 容易に F R P成形体 3 6 と軟質多孔芯材 1との合体成形をすることができる。 図 2 1は成形体同士の 間に軟質多孔芯材 1を挟んで成形したが、 雌雄型の中に F R P成形体と軟質 多孔芯材 1 を収容して成形することもできる。  As described above, the soft multi-porous core material 1 impregnated with the compounded resin is sandwiched between the upper and lower FRP molded bodies 36 and molded and cured, so that the FRP molded body 36 and the soft porous core material 1 can be easily formed. Combined molding can be performed. In FIG. 21, the soft porous core material 1 was formed between the molded bodies, but the FRP molded body and the soft porous core material 1 can be housed in a male and female mold.
また雌型の成形面に繊維強化材層を形成して、 必要に応じてリブを立て、 配合樹脂を含着させ、 しかる後、 軟質多孔芯材 1に配合樹脂を含着させて、 リブに接するように配置させ、 雄型を閉ざして、 一体に成形、 硬化させる、 という方法を採ることができる。 In addition, a fiber reinforcement layer is formed on the molding surface of the female mold, Impregnating the compounded resin, and then impregnating the compounded resin into the soft porous core material 1, arranging it so as to be in contact with the ribs, closing the male mold, molding and curing integrally Can be.
図 2 3は他の実施例の樹脂ハニカム成形体の縦断正面斜視図である。 この 製法は図 2 1に示したものでよい。 内槽 3 8の底に多数の貫通孔 3 9が形成 されて、 該貫通孔 3 9は下のハニカム孔と連通している。 また外槽 3 7から 内部の軟質多孔芯材 1に連通するように送気パイプ 4 0が配設されている。 この浴槽としての樹脂ハニカム成形体 3 4は、 送気パイプ 4 0を介して図 示しない送気手段から送気することによって、 浴槽の中に気泡を生じさせる ことができる。  FIG. 23 is a vertical sectional front perspective view of a resin honeycomb formed body of another embodiment. This method may be that shown in FIG. A large number of through holes 39 are formed at the bottom of the inner tank 38, and the through holes 39 communicate with the lower honeycomb holes. An air supply pipe 40 is provided so as to communicate from the outer tank 37 to the inner soft porous core material 1. The resin honeycomb formed body 34 as the bathtub can generate air bubbles in the bathtub by sending air from an air supply means (not shown) through an air supply pipe 40.
図 2 4は管体からなる樹脂ハニカム成形体 3 4の成形方法を示す。 雄型 3 1の周面に表層材層 3 3を形成して、 その周面に、 配合樹脂を含着させた軟 質多孔芯材 1を巻着させ、 その周面に雌型 3 2を被着させて成形、 硬化させ ると樹脂ハニカム成形体 3 4の管体を得ることができる。  FIG. 24 shows a method of forming a resin honeycomb formed body 34 made of a tubular body. A surface material layer 33 is formed on the peripheral surface of the male mold 31, and a soft porous core material 1 impregnated with a compounded resin is wound around the peripheral surface, and a female mold 32 is formed on the peripheral surface. A tube of the resin honeycomb molded body 34 can be obtained by forming the resin honeycomb molded body and curing it.
この樹脂ハニカム成形体 3 4は形状を自由に変化させることができ、 用途 は多方面に利用することができる。 例えば、 防音壁材、 保温壁材、 床材、 天 井材、 函体、 槽体、 管体、 小屋、 航空機、 船舶、 ボート、 フロート、 風力発 電用の風車の羽根、 その他、 多方面に使用することができる。 またこの樹脂 ハニカム成形体 3 4は、 鉱物繊維を使用していないものは可燃性なのでリサ ィクルすることができる。 また、 肉厚を薄くすることができ、 電波の透過性 に優れているので、 アンテナの保護カバーに使用することができる。  The shape of the resin honeycomb formed body 34 can be freely changed, and the resin honeycomb formed body 34 can be used in various fields. For example, soundproof wall materials, heat insulating wall materials, flooring materials, ceiling materials, box bodies, tank bodies, pipe bodies, sheds, aircraft, ships, boats, floats, wind turbine blades for wind power generation, and many other areas Can be used. In addition, the resin honeycomb molded body 34 that is not using mineral fibers can be recycled because it is flammable. In addition, it can be used as a protective cover for antennas because it can be made thinner and has excellent radio wave transmission.
なおこの発明は前記実施例に限定されるものではなく、 目的に添って適宜 設計変更をすることができる。 例えば金属成形品を軟質多孔芯材の中あるい は多層の中間、 樹脂成形体との間等に挿入させて一体に成形することができ る。  The present invention is not limited to the above embodiment, and the design can be appropriately changed according to the purpose. For example, a metal molded product can be inserted into the inside of a soft porous core material, the middle of a multilayer, a resin molded product, or the like to be integrally molded.
この発明の減圧方法の実施の形態を、 図 2 5 〜 2 7を参照して説明す る。 図 2 5は成形型の縦断正面図、 図 2 6は型締した成形型の縦断正面図で ある。 An embodiment of the decompression method of the present invention will be described with reference to FIGS. You. Fig. 25 is a vertical front view of the molding die, and Fig. 26 is a vertical front view of the clamped die.
成形型 4 1、 4 2は、 雌型 4 1と雄型 4 2とから構成されている。 図にお いて符号 43は型合面、 4 4はシール、 4 5は材注孔、 4 6は減圧孔、 4 7は 減圧手段である。  The molding dies 41 and 42 are composed of a female mold 41 and a male mold 42. In the figure, reference numeral 43 is a mating surface, 44 is a seal, 45 is a material injection hole, 46 is a pressure reducing hole, and 47 is a pressure reducing means.
雌型 4 1の成形部に、 繊維強化材 (ガラス繊維等) をあらかじめ成形した プリホーム繊維 4 8をセ、ソ 卜した。 ただしプリホームしないで繊維強化材マ V ト ·クロスなどを使用することもできる。 この雌型 4 1の上に雄型 4 2を 、 シール 4 4面が当るまで軽く締め付けた。 その上で、 材注孔 4 5から配合 樹脂を無加圧で注入した。  A preform fiber 48 in which a fiber reinforced material (glass fiber or the like) was preliminarily formed was placed in a molding portion of the female mold 41 and was then sorted. However, it is also possible to use fiber reinforced mat cloth without preforming. The male mold 42 was lightly tightened on the female mold 41 until the seal 44 hit the surface. Then, the compounded resin was injected from the material injection holes 45 without pressure.
この場合、 この成形体に必要な理論量の配合樹脂を、 材注孔 4 5上の漏斗 に人れておき、 配合樹脂が全部型中に入った時点で、 材注孔 4 5の口を閉ざ し、 減圧孔 4 6に連結されている減圧手段 4 7によって、 低圧 (2 . 5 =Hg 〜2 0 == Hg) で成形型 4 1、 4 2内の減圧をした。  In this case, the theoretical amount of the compounded resin required for the molded body is put in the funnel above the material injection hole 45, and when the compounded resin has completely entered the mold, the opening of the material injection hole 45 is closed. The molds 41 and 42 were depressurized at a low pressure (2.5 = Hg to 20 == Hg) by a decompression means 47 connected to the decompression hole 46.
成形型 4 1、 4 2内部の減圧手段 4 7によって、 ゆっく り引きながら減圧 させて型締めをし、 シール 4 4が押しつぶされて、 配合樹脂が減圧孔 4 6か らあがってきたところで、 減圧孔 4 6を閉ざすと共に、 雌雄型 4 1、 4 2の 外周を固定した (図 2 6参照) 。  When the pressure was reduced slowly by the decompression means 4 7 inside the molding dies 4 1 and 4 2, the pressure was reduced, and the mold was closed.The seal 44 was crushed, and when the compounded resin came out of the decompression hole 46, The decompression holes 46 were closed, and the outer peripheries of the male and female molds 41, 42 were fixed (see Fig. 26).
このまま型締めした状態で養生することによって、 配合樹脂が硬化して、 浅い箱状の樹脂成形体 (図示せず) が完成した。  By curing in this state with the mold clamped, the compounded resin was cured, and a shallow box-shaped resin molded body (not shown) was completed.
図 2 5でもよく判るように、 シール 4 4に支えられた雄型 4 2は、 浮いた 状態になっているので、 配合樹脂は材注孔 4 5から無加圧であっても、 抵抗 もなく成形型 4 1、 4 2内に入っていく。 従って、 1辺が 2メートルを超え るような、 どのような大型の成形体製造においても、 材注入は極めて短時間 で必要量を成形型 4 1、 4 2内に充填することができる。  As can be clearly understood from FIG. 25, the male mold 42 supported by the seal 44 is in a floating state, so that the compounded resin has no resistance from the material injection hole 45 even if no pressure is applied. Without entering the molds 4 1 and 4 2. Therefore, in the production of any large-sized compact having a side exceeding 2 meters, the required amount of material can be filled into the molds 41 and 42 in a very short time.
次に、 減圧孔 4 6は型合面 43から外上方へ向けて形成されており、 成形型 4 1、 4 2内を減圧していくことによって、 型締めがなされて、 プリホーム 繊維 4 8の繊維間の気泡が吸い出され、 繊維間中に配合樹脂が完全に浸透し ていく。 Next, the depressurizing hole 46 is formed from the mold mating surface 43 outward and upward, and the inside of the forming dies 41 and 42 is depressurized, whereby the mold is clamped and the preform is formed. Air bubbles between the fibers of the fibers 48 are sucked out, and the compounded resin permeates completely between the fibers.
すなわち、 従来の成形法では、 強力な外圧によって配合樹脂の注入をして いたので、 繊維間の小さな気泡を、 そのまま繊維間に閉じこめて樹脂が流れ て、 包み込んでしまうことが多く、 その結果は不良品の多発につながつたが 、 この発明では、 成形型 4 1、 4 2内を減圧することによって、 繊維間のど のような細かな気泡も、 完全に繊維間から吸い出すことができる。  That is, in the conventional molding method, the compounded resin is injected by a strong external pressure, so the small air bubbles between the fibers are trapped between the fibers as they are, and the resin often flows and wraps the resin. According to the present invention, by reducing the pressure in the molds 41 and 42, any fine air bubbles between the fibers can be completely sucked out from between the fibers.
また、 配合樹脂の流動速度より遅い速度で引かれるように、 低圧で減圧す ることによって、 成形型 4 1、 4 2に大きな負担がかからず、 樹脂材が均一 に引かれる。 従って成形型 4 1、 4 2の強度を頑強にする必要がないので、 型コス卜が著しく低減される。 当然に成形型の軽量化ができる。  Also, by reducing the pressure at a low pressure so that the resin material is drawn at a speed lower than the flow speed of the compounded resin, a large load is not applied to the molds 41 and 42, and the resin material is drawn uniformly. Therefore, since it is not necessary to increase the strength of the molds 41 and 42, the cost of the mold is significantly reduced. Naturally, the weight of the mold can be reduced.
従来の成形法では、 配合樹脂を加圧して注入することから、 雌雄型 4 1、 4 2の型締めを強固にしておかなければ、 型ズレが生じるため、 型締め用の クランプやエアバックを使用するなど、 大がかりな設備と作業を要していた 、 本発明では、 成形型 4 1、 4 2内部を低圧で減圧することによって、 雌 雄型 4 1、 4 2同士が接近して型内部の樹脂材をプレスするので、 従来のよ うな大がかりな型締め装置や作業は全く不要になった。  In the conventional molding method, the compounded resin is injected under pressure, so if the molds of the male and female molds 41 and 42 are not firmly tightened, the mold will be misaligned. According to the present invention, the insides of the male and female dies 41 and 42 approach each other by reducing the pressure inside the molding dies 41 and 42 with low pressure. Pressing this resin material eliminates the need for large-scale mold clamping equipment and work as in the past.
すなわち、 粘性のある流動体を、 強い外圧をかけて押すことよりも、 成形 型内の気体を減圧で外へ引く事の方が遥かに小さな力ですむ。 これによつて 、 設備も型構造も著しく簡素化する事ができる。  In other words, much less force is required to pull out the gas inside the mold under reduced pressure than to push a viscous fluid under a strong external pressure. As a result, the equipment and the mold structure can be significantly simplified.
図 2 7は、 深いタンク等の製造を示す成形型の縦断正面図である。 まず、 図 2 7において雄型 4 2を外し、 雌型 4 1の成形部にプリホーム繊維 4 8を セッ トする。 しかる後、 この成形体を成形するために必要な理論量の配合樹 脂を、 無加圧で流し込むように雌型 4 1の中に投入する。  FIG. 27 is a vertical sectional front view of a molding die showing production of a deep tank or the like. First, in FIG. 27, the male mold 42 is removed, and the preform fiber 48 is set in the molded portion of the female mold 41. Thereafter, a theoretical amount of the compounded resin necessary for molding the molded body is poured into the female mold 41 so as to be poured without pressure.
その後、 雄型 4 2をセッ トして、 上下のシ一ル 4 4、 4 4同士が当るまで 、 軽く締め付ける。 雌型 4 1のシール 4 4は上面に凹部が形成されており、 雄型 4 2のシ一ル 4 4が雌型のシール 4 4の凹部に密接して、 シール同士の 接触面積が大きくなるので密接性が優れていて、 減圧作用が早く有効になる 。 成形型 4 1、 4 2に対して軽く減圧をかけると、 負圧によってゆつく りと 型締めされる。 Then, set the male mold 42, and lightly tighten it until the upper and lower seals 44, 44 contact each other. The seal 44 of the female mold 41 has a recess on the upper surface, and the seal 44 of the male mold 42 is in close contact with the recess of the female mold 44, and Since the contact area is large, close contact is excellent, and the decompression action is effective quickly. When light pressure is applied to the molds 41 and 42, the mold is loosely clamped by the negative pressure.
減圧孔 4 6から配合樹脂が出てくるまで低圧で減圧をして、 配合樹脂が出 てきたところで減圧孔 4 6を閉ざす。 これによつて、 成形型 4 1、 4 2は、 内部の負圧によって固く閉ざされているので、 型ズレが生じないように成形 型 4 1、 4 2の外周を上下に浮かないように固定する。  The pressure is reduced at a low pressure until the compounded resin comes out from the pressure reducing hole 46, and the pressure reducing hole 46 is closed when the compounded resin comes out. As a result, the molding dies 41 and 42 are firmly closed by the internal negative pressure, so that the outer circumferences of the molding dies 41 and 42 are fixed so that they do not float up and down to prevent mold displacement. I do.
これによつて、 養生させれば、 成形型 4 1、 4 2内の配合樹脂が硬化して 、 図示しない深い槽状の成形体が形成される。 このように、 1 辺が 2メート ルを超える大きな成形体でも、 成形型 4 1、 4 2に対して大きな外的材注入 圧がかからないので、 肉厚の薄い F R P成形体からなる成形型で充分に間に 合い、 型コスト負担を安価にすることができる。 当然に成形型の軽量化に伴 レ、、 作業用の大がかりな機材設備を必要とせず、 作業性が向上する。  When cured, the compounded resin in the molds 41 and 42 is hardened to form a deep tank-shaped molded body (not shown). As described above, even with a large molded body having a side of more than 2 meters, since a large external material injection pressure is not applied to the molding dies 41 and 42, a molding die composed of a thin FRP molded body is sufficient. In time, the mold cost burden can be reduced. Naturally, with the reduction in the weight of the mold, large-scale equipment for work is not required, and workability is improved.
本発明方法においては、 前述のように、 配合樹脂は、 外圧をかけて型内に 圧入させるのではなく、 極端には、 バケツやホースで水を入れるように直に 無加圧で成形型内に入れる事ができるので、 材投入の時間は、 極めて短時間 ですむ。  In the method of the present invention, as described above, the compounded resin is not pressed into the mold by applying an external pressure. The time for material injection is extremely short.
加えて、 型合わせをして、 低圧で減圧をさせる事によって、 成形型は自然 に締り、 必然的に樹脂をプレスするので、 大かがかりな設備や、 わずらわし い作業を必要としなくなつた。  In addition, by adjusting the mold and reducing the pressure at a low pressure, the mold is naturally tightened and inevitably presses the resin, eliminating the need for large-scale equipment and cumbersome work.
ここまでは、 プリホ一ム繊維を使用する成形について記述してあるが、 本 発明は、 繊維強化材 (クロス ·マット等) を成形型内に配設する F R P式、 前述の配合樹脂を含着させた軟質多孔芯材並びに繊維強化材を使用しない、 熱硬化性樹脂材を使用する成形の全てにも適用する事ができる。 すなわち、 例えば人造代理石の成形、 ウレタン注入成形、 などについても、 無加圧樹脂 注入、 型締めプレス機無しの成形をすることができる。  Up to this point, molding using preform fibers has been described. However, the present invention relates to an FRP type in which a fiber reinforcing material (such as a cloth mat) is disposed in a molding die, including the above-mentioned compounded resin. The present invention can be applied to any molding using a thermosetting resin material without using a soft porous core material and a fiber reinforced material. That is, for example, molding of artificial proxy stone, urethane injection molding, and the like can be performed without injection of resin under pressure and molding without a mold clamping press.
図 2 8は、 本発明の樹脂成形体を適用した風力発電機などに用いる風車の 羽根の実施形態を示している。 この羽根 5 1は、 筒状に形成した外殻 5 2と 、 その内部に嵌合固定された補強リブ 5 3とからなる。 外殻 5 2は幅が狭い 後端 5 4から始まって、 前端 5 5で湾曲し、 再び後端 5 4に戻る閉ループ状 の断面を有する。 外殻 5 2は図 2 9に示すように、 軟質の多孔性のシ一ト状 の芯材 5 6と、 その芯材 5 6の上下面に一体に成形した補強シート 5 7と、 芯材 5 6および補強シート 5 7の空隙に充填した硬化性樹脂とから構成され ている。 芯材 5 6は前述のダブルラッセル亀甲紋立体編布などを使用しうる 。 硬化性樹脂としては、 エポキシ樹脂などの二液性硬化樹脂、 あるいはフエ ノール樹脂、 尿素樹脂、 メラミン樹脂などの熱硬化性樹脂が用いられる。 補 強シートとしては、 ガラス繊維、 カーボン繊維、 ケブラ一繊維などの補強繊 維からなるストランドマッ ト、 ロービング、 などが好ましい。 補強シート 5 7は芯材 5 6の片面のみに用いてもよい。 FIG. 28 shows a wind turbine used in a wind power generator or the like to which the resin molded article of the present invention is applied. 4 shows an embodiment of a blade. The blade 51 includes a cylindrical outer shell 52 and a reinforcing rib 53 fitted and fixed inside the outer shell 52. The outer shell 52 has a closed-loop cross-section, starting at the narrow rear end 54, curving at the front end 55, and returning to the rear end 54 again. As shown in FIG. 29, the outer shell 52 has a soft porous sheet-like core material 56, a reinforcing sheet 57 integrally formed on the upper and lower surfaces of the core material 56, and a core material. 5 and the curable resin filled in the voids of the reinforcing sheet 57. The core material 56 may use the above-mentioned double rassel turtle pattern solid knitted fabric or the like. As the curable resin, a two-part curable resin such as an epoxy resin, or a thermosetting resin such as a phenol resin, a urea resin, or a melamine resin is used. The reinforcing sheet is preferably a strand mat or roving made of reinforcing fibers such as glass fiber, carbon fiber, and Kevlar fiber. The reinforcing sheet 57 may be used only on one side of the core material 56.
前記補強リブ 5 3は、 図 3 0 aに示すように、 合成樹脂発泡体からなる断 面 I字状の立体的な芯材 5 9と、 その周囲に設けられるシ一ト状の芯材 5 6 と、 その芯材 5 6の周囲に設けられた補強シート 6 0と、 芯材 5 6および補 強シート 6 0の空隙に充填した硬化性樹脂とから構成されている。 なお、 シ 一ト状の芯材 5 6と立体的な芯材 5 9の間に補強シートを介在させてもよい 。 とくに硬化性樹脂と立体的な芯材 5 9とが互いに反応する樹脂の場合は、 気密性を有する補強シートを介在させるのが好ましい。 シ一ト状の芯材 5 6 、 補強シート 6 0および硬化性樹脂については、 前記の外殻 5 2に用いられ るものと同じものを使用しうる。 立体的な芯材 5 9は、 軽量で圧縮荷重に耐 えるものであれば他の材料も使用しうるが、 合成樹脂発泡体、 とくに発泡ス チロールなどが好ましい。 また、 断面形状は I字状に限らず、 矩形状、 C字 状など、 種々の断面形状を採用しうる。  As shown in FIG. 30a, the reinforcing rib 53 includes a cross-sectional I-shaped core material 59 made of a synthetic resin foam, and a sheet-shaped core material 5 provided around the core. 6, a reinforcing sheet 60 provided around the core material 56, and a curable resin filled in the voids of the core material 56 and the reinforcing sheet 60. A reinforcing sheet may be interposed between the sheet-like core material 56 and the three-dimensional core material 59. In particular, in the case where the curable resin and the three-dimensional core material 59 react with each other, it is preferable to interpose a reinforcing sheet having airtightness. As the sheet-like core material 56, the reinforcing sheet 60, and the curable resin, the same materials as those used for the outer shell 52 can be used. As the three-dimensional core material 59, other materials may be used as long as they are lightweight and can withstand a compressive load, but synthetic resin foams, particularly styrene foam, are preferred. Further, the cross-sectional shape is not limited to the I-shape, and various cross-sectional shapes such as a rectangular shape and a C-shape can be adopted.
なお、 図 3 O bのように、 2本あるいはそれ以上の補強リブ 5 3を並べ、 それらの外側の全体を 1枚の補強シー卜 6 0で囲んだ複合的な補強リブ 6 1 とすることもできる。 その場合は、 各補強リブ 5 6ごとに補強シートを設け ず、 全体の補強シート 6 0のみとすることもできる。 As shown in Fig. 3 Ob, two or more reinforcing ribs 53 are arranged, and the entire outside of them is a composite reinforcing rib 61 surrounded by a single reinforcing sheet 60. Can also. In that case, provide a reinforcing sheet for each reinforcing rib 56. Instead, only the entire reinforcing sheet 60 may be used.
前記羽根 5 1は、 外殻 5 2と補強リブ 5 3とを別個に成形し、 その後に組 み合わせることもできるが、 通常はまず補強リブを成形しておき、 その後、 外殻 5 3を構成する積層シートを卷き付けて、 一体に成形する。 すなわち、 補強リブ 5 3については、 立体的な芯材 5 9の周囲に、 あらかじめ硬化性樹 脂材料と硬化剤とを混合させた配合樹脂材料を含浸させたシート状の芯材 5 6を巻き付け、 さらにその周囲に補強シート 6 0を巻き付けて補強リブ中間 体を準備しておく。 ついでその補強リブ中間体を、 金型内に収容し、 所定の 形状に維持しながら硬化性樹脂を硬化させる。 熱硬化性樹脂の場合は、 加熱 しながら硬化させる。 金型は通常は図 3 0 aの左右に分割した割り型である 他方、 外殻 5 2については、 まず柔軟なシート状の芯材 5 6に液状ないし 糊状の硬化性樹脂材料を含浸させ、 ついで補強シ一ト 5 7を重ねて外殻中間 体を準備する。 この状態では中間体である積層シートは柔軟である。 ただし あらかじめヒートセッ 卜などでプリフォームしておいてもよい。 そして外殻 中間体と、 前記成形した補強リブとを金型内に収容し、 所定の形状に維持し ながら硬化性樹脂を硬化させる。 金型は羽根の後端 5 4と前端 5 5とにパー ティングラインを有する上下の割り型が用いられる。 成形には、 前述の負圧 成形法で成形するのが好ましい。 ただし加圧式の成型法でも可能である。 上記のごとく構成される羽根 5 1は、 輪郭に位置する外殻 5 2が引っ張り 荷重および圧縮荷重を担うため、 軽量で強度が高い。 また、 閉じたループ状 の外殻 5 2を有するので、 捻りに対する強度も高い。 さらに補強リブ 5 3を 備えているので、 一層強度が高い。 また補強リブ 5 3は、 周縁部が強度メン バーになるので断面二次モーメン卜が高く、 曲げ応力に対して強度が高い。 また、 内部の合成樹脂発泡体製の立体的な芯材 5 9は圧縮荷重を担うので、 座屈強度が高い。 そのため、 たとえば、 幅が数十センチから 2〜3メートル 、 長さが数メートルから数十メートルの羽根を製造することができ、 風力発 電用の風車の羽根として好適に用いられる。 The blade 51 can be formed by separately forming the outer shell 52 and the reinforcing rib 53 and then combining them.However, usually, the reinforcing rib is first formed, and then the outer shell 53 is formed. The laminated sheet to be formed is wound and molded integrally. That is, for the reinforcing rib 53, a sheet-like core material 56 impregnated with a compounded resin material obtained by mixing a curable resin material and a hardening agent in advance is wound around a three-dimensional core material 59. Then, a reinforcing sheet 60 is wound therearound to prepare a reinforcing rib intermediate. Next, the reinforcing rib intermediate body is housed in a mold, and the curable resin is cured while maintaining a predetermined shape. In the case of thermosetting resin, it is cured while heating. The mold is usually a split mold divided into left and right in Fig. 30a.On the other hand, as for the outer shell 52, first, a flexible sheet-like core material 56 is impregnated with a liquid or paste-like curable resin material. Then, a reinforcing sheet 57 is overlaid to prepare an outer shell intermediate. In this state, the laminated sheet as an intermediate is flexible. However, it may be preformed with a heat set or the like in advance. Then, the outer shell intermediate body and the molded reinforcing rib are accommodated in a mold, and the curable resin is cured while maintaining a predetermined shape. Upper and lower split dies having parting lines at the rear end 54 and the front end 55 of the blade are used. The molding is preferably performed by the negative pressure molding method described above. However, a pressing molding method is also possible. The blade 51 configured as described above is light in weight and high in strength because the outer shell 52 positioned on the contour carries a tensile load and a compressive load. In addition, since the outer shell 52 has a closed loop shape, it has high strength against torsion. Further, since the reinforcing ribs 53 are provided, the strength is further enhanced. Further, the reinforcing rib 53 has a high secondary moment of cross-section because the peripheral portion becomes a strength member, and has high strength against bending stress. In addition, the three-dimensional core material 59 made of synthetic resin foam inside has a high buckling strength because it bears a compressive load. So, for example, it is possible to manufacture blades with a width of several tens of centimeters to 2-3 meters and a length of several meters to several tens of meters, It is suitably used as a blade of an electric windmill.
なお、 成形の金型の制約や、 運搬との関係で、 図 3 1に示すように、 印簟 接手 6 2、 6 3で途中で継ぐことができる部品として製造するのが好ましい 。 その場合は、 風車の建設現場で接着剤などを用いて組み立てることができ る。 その場合、 前述の補強リブは連続する長いものを用い、 外殻 5 2は短い ものを継いで構成することもできる  In addition, as shown in FIG. 31, it is preferable to manufacture the part as a part that can be joined on the way with the seal joints 62 and 63 as shown in FIG. 31 in relation to the limitation of the molding die and the transportation. In that case, it can be assembled at the construction site of the wind turbine using an adhesive or the like. In such a case, the above-mentioned reinforcing ribs may be continuous and long, and the outer shell 52 may be constructed by joining short ones.
図 3 2に示す羽根 6 5は、 図 3 0 aの補強リブ 5 3と同様のプロ、ソク 6 6 を複数個結合したものである。 各ブロック 6 6の構成および製造法は、 図 3 0 aの場合と同様であるので、 同じ符号を付して説明を省略する。 それぞれ のブロック 6 6は、 並列状に配置し、 それらの周囲を図 2 9に示す外殻 5 2 で一体に囲んでいる。 この外殻 5 2の構成および製造法も、 図 2 8、 図 2 9 に示すものと同様であるので、 同じ符号を付して説明を省略する。  The blade 65 shown in FIG. 32 is obtained by combining a plurality of pros and hooks 66 similar to the reinforcing rib 53 of FIG. 30a. Since the configuration and manufacturing method of each block 66 are the same as those in FIG. 30a, the same reference numerals are given and the description is omitted. The blocks 66 are arranged in parallel, and their surroundings are integrally surrounded by an outer shell 52 shown in FIG. Since the structure and manufacturing method of the outer shell 52 are the same as those shown in FIGS. 28 and 29, the same reference numerals are given and the description is omitted.
この羽根 6 5では、 隣接するプロック 6 6の間にくる縦方向の補強シ一ト 6 7が上下の外殻 5 2を連結する補強リブとなる。 さらに各ブロック 6 6の 内部に詰まっている合成樹脂発泡体製の立体的な芯材 5 9は軽量で圧縮荷重 に対する強度が高い。 そのため、 全体として軽量で強度が高い羽根 5 0とな る。 このものも図 3 1に示すように、 分割して製造し、 風車の設置現場で組 み立てるようにするのが好ましい。 '  In the blade 65, the vertical reinforcing sheet 67 between the adjacent blocks 66 serves as a reinforcing rib connecting the upper and lower outer shells 52. Further, the three-dimensional core material 59 made of a synthetic resin foam filled in the interior of each block 66 is lightweight and has high strength against a compressive load. Therefore, the blades 50 are lightweight and high in strength as a whole. As shown in Fig. 31, it is also preferable to manufacture this product separately and assemble it at the wind turbine installation site. '
なお、 図 2 8の実施形態では、 外殻 5 2の内部は補強リブ 5 3を除いて空 洞にしているが、 図 3 2の場合と同様に、 合成樹脂発泡体を空洞部に設けて もよい。 その場合、 合成樹脂発泡体の材料を空洞部に充填し、 その後、 発泡 させるようにしてもよく、 また、 あらかじめ所定の形状に発泡させたブロッ クを組み込んで羽根 5 1を組み立てるようにしてもよい。 また図 2 8の実施 形態では、 補強リブ 5 3は羽根 5 1の長手方向に延びるように配置されてい る。 しかし羽根 5 1を横断する方向や、 斜め方向に延びるように配置するこ ともできる。 また、 図 3 0 a、 図 3 0 bの補強リブ 5 3は、 風車の羽根の補 強リブとしてだけでなく、 自動車のシャーシ、 自動車の他の強度メンバー、 建築物の梁、 その他の強度メンバーなど、 軽量化が望まれる強度メンバーと して適用することができる。 In the embodiment of FIG. 28, the inside of the outer shell 52 is a cavity except for the reinforcing rib 53, but as in the case of FIG. 32, a synthetic resin foam is provided in the cavity. Is also good. In this case, the material of the synthetic resin foam may be filled in the hollow portion and then foamed, or the blade 51 may be assembled by incorporating a block foamed in a predetermined shape in advance. Good. In the embodiment of FIG. 28, the reinforcing ribs 53 are arranged so as to extend in the longitudinal direction of the blade 51. However, they may be arranged so as to extend in a direction crossing the blade 51 or in an oblique direction. In addition, the reinforcing ribs 53 in FIGS. 30a and 30b are not only used as reinforcing ribs for wind turbine blades, but also in a chassis of a car, other strength members of a car, It can be applied as a strength member where weight reduction is desired, such as building beams and other strength members.
図 3 3 a〜cは前述の風車の羽根の製造方法の他の実施形態を示している 。 この製造方法では、 まず、 図 3 3 aに示すように、 羽根の上面側および下 面側を形成する上型 7 0 aおよび下型 7 0 bを準備しておく。 さらに図 3 3 bに示すように、 いくつかに分割した合成樹脂発泡体のブロック 7 1 a、 7 l b、 7 1 Gと、 プリフォームしたいくつかの繊維シート 7 2 a〜gを準備 する。 ブロックは図 2 8の補強リブ 5 3の立体的な芯材 5 9と同じもの、 た とえば発泡スチロールなどが用いられる。 この実施形態では羽根の前側用の プロヅク 7 1 a、 中央部のプロヅク 7 1 bおよび後部側のプロック 7 1 cの 3個のブロックを用いている。  FIGS. 33a to 33c show another embodiment of the method for manufacturing the above-described wind turbine blade. In this manufacturing method, first, as shown in FIG. 33a, an upper mold 70a and a lower mold 70b that form the upper surface side and the lower surface side of the blade are prepared. Further, as shown in FIG. 33b, blocks 71a, 71b, 71G of the synthetic resin foam divided into several parts and several preformed fiber sheets 72a to g are prepared. The block is the same as the three-dimensional core 59 of the reinforcing rib 53 in FIG. 28, for example, styrene foam. In this embodiment, three blocks are used: a front block 71a for the blade, a center block 71b and a block 71c on the rear side.
プリフォームした繊維シート (プリフォーム繊維) 7 2 a ~ gは、 繊維強 化材 (ガラス、 カーボンその他繊維) を樹脂と共に型面に吹付け、 あるいは 手作業によって付着させて、 所定の形状にあらかじめ成形してある繊維をい う。 また、 繊維強化材を単にヒートセッ トで所定の形状に成形するだけでも よい。 なお、 図 2 8のシート状の芯材 5 6と同様な柔軟な多孔性のシート状 の芯材、 たとえばダブルラッセル立体編布を、 所定の形状に切断し、 所定の 形状にヒートセッ トしたものを用いることもできる。 ζの実施形態では、 プ リフォームした芯材は、 羽根の前側を構成する断面 V字状ないし U字状の繊 維シート 7 2 aと、 後側を構成する断面 V字状の繊維シート 7 2 bと、 羽根 の上面側を構成する緩く湾曲した繊維シート 7 2 cと、 下面を構成する緩く 湾曲した繊維シート 7 2 dと、 補強リブを構成する上下端を折り曲げた 3枚 の繊維シート 7 2 e〜gとからなる。  The preformed fiber sheet (preform fiber) 72 ag can be prepared by spraying a fiber reinforcing material (glass, carbon or other fiber) together with the resin onto the mold surface, or by manually attaching it to a predetermined shape. A molded fiber. Further, the fiber reinforced material may be simply formed into a predetermined shape by a heat set. Note that a flexible porous sheet-like core material similar to the sheet-like core material 56 in FIG. 28, for example, a double-rasel three-dimensional knitted fabric, is cut into a predetermined shape and heat-set into a predetermined shape. Can also be used. In the embodiment of ζ, the preformed core material is a fiber sheet 72 a having a V-shaped or U-shaped cross section constituting the front side of the blade and a fiber sheet 72 having a V-shaped cross section constituting the rear side. b, a loosely curved fiber sheet 7 2 c forming the upper surface side of the blade, a loosely curved fiber sheet 7 2 d forming the lower surface, and three fiber sheets 7 whose upper and lower ends are bent to form the reinforcing ribs 7 2 e to g.
ついで図 3 3 cに示すように、 発泡体のプロツク 7 1 a〜cの間および周 囲にプリフォームした繊維シート 7 2 a〜gを組み合わせる。 そのとき、 接 着剤を用いてもよく、 粘着テープゃステープラなどで貼り合わせてもよい。 また、 あらかじめ結合せず、 金型内に順番に入れてセッ トするだけでもよい ついで図 3 3 dのように、 セッ トした材料 7 3を金型 7 0 、 7 0 bに入 れて、 配合樹脂を注入し、 型成形する。 配合樹脂とは、 F R P成形その他成 形に必要かつ充分な各種素材を配合させてある軟性飴状樹脂をいう。 それに より配合樹脂は、 プリフォームした繊維シート 7 2 a〜gの隙間に充填され 、 金型 7 0 a、 7 0 bのキヤビティの形状に成形される。 ついで脱型してバ リをトリミングすれば、 羽根 7 4が完成する。 Then, as shown in Fig. 33c, the preformed fiber sheets 72a-g are combined between and around the foam blocks 71a-c. At that time, an adhesive may be used, or the adhesive may be stuck with an adhesive tape or a stapler. Also, it is only necessary to put them in the mold in order and set them without joining them in advance. Next, as shown in FIG. 33d, the set material 73 is put into dies 70 and 70b, and the compounded resin is injected and molded. The compounded resin refers to a soft candy resin in which various materials necessary and sufficient for FRP molding and other moldings are compounded. As a result, the compounded resin is filled in the gaps between the preformed fiber sheets 72a to 72g, and is molded into cavities of molds 70a and 70b. Then, remove the mold and trim the burr to complete the blade 74.
図 3 4 a〜bは、 図 2 8の場合と同様の補強リブを用いた一体成形法の実 施形態を示している。 すなわちこのものは図 3 3 bにおける中央のプロック 7 l bと、 それを囲むプリフォームした繊維シート 7 2 e〜gに代えて、 あ らかじめブロック 7 1 bの周囲に軟質多孔性芯材 7 5を巻き、 金型内にセッ 卜し、 配合樹脂を注入して形成した補強リブ (骨) 7 6を用いる。 他の点、 すなわち前後のブロック 7 1 a、 7 1 b、 前後のプリフォームした繊維シー h 7 2 a , 7 2 bおよび上下のプリフォームした繊維シート 7 2 c、 7 2 d を用いる点は同じである。 そしてそれらの部品を図 3 4 bのように組み立て て金型内に入れ、 配合樹脂を注入して型成形し、 脱型してバリをトリミング する点は図 3 3の場合と同様である。  FIGS. 34a and 34b show an embodiment of an integral molding method using the same reinforcing ribs as in the case of FIG. In other words, instead of the central block 7 lb in Fig. 33 b and the preformed fiber sheet 72 en to surrounding it, a soft porous core material 7 was previously set around the block 71 b. 5 is wound and set in a mold, and a reinforcing rib (bone) 76 formed by injecting a compounding resin is used. The other point is that the front and rear blocks 7 1a and 7 1b, the front and rear preformed fiber sheets h 7 2a and 7 2b and the upper and lower preformed fiber sheets 7 2c and 7 2d are used. Is the same. These parts are assembled as shown in Fig. 34b, put into a mold, injected with compounded resin, molded, demolded, and trimmed with burrs as in Fig. 33.
図 3 3および図 3 4のように一体成形すると、 あらかじめ各パーツを配合 樹脂で硬化させた状態に成形し、 それらを接着して組み立てて完成品とする 場合に比して、 容易に、 かつ高精度で製造することができる。 すなわちパ一 ッ組み立てをすると精度のパラツキ、 重量のバラツキがあるため、 品質管理 が大変であり、 作業者の能力で完成品の品質がばらつく。 しかし図 3 3、 図 3 4のように一体成形することで、 製品の組み立て工数も少なく、 精度、 重 量も安定させることができる。 さらに作業者の管理も楽になる。 またつなぎ 目のない一体成形品となるため、 強度も上がり、 剥離するところも発生しな い。 そして品質が一定し、 作業管理も楽になり、 作業工数が少なく、 出来強 度も上がる。 なお、 金型内に発泡性樹脂の材料を注入して金型内で発泡させて一体成形 する場合は、 発泡体の成形が出来る大きさものしか製造できないが、 上記の ようにあらかじめプロックを成形した後、 全体を一体成形することにより、 数十メートルの大きさのものも一体成形することが出来る。 また図 3 3の製 造方法の場合は、 発泡体のブロックはつないで構成し、 補強リブ 7 6だけを あらかじめ成形した長いものを用い、 それらを一体成形をすることにより、 さらに強度をあげることができる。 When integrally molded as shown in Fig. 33 and Fig. 34, compared to the case where each part is molded in a state where it has been cured with a compounded resin in advance, and these parts are bonded and assembled to make a finished product, It can be manufactured with high precision. In other words, when assembled in a package, there is variation in accuracy and variation in weight, so quality control is difficult, and the quality of the finished product varies depending on the capabilities of the workers. However, by integrally molding as shown in Fig. 33 and Fig. 34, the man-hour for assembling the product is small, and the accuracy and weight can be stabilized. In addition, the management of workers becomes easier. In addition, since it is an integral molded product with no seams, the strength is increased and there is no place to peel off. In addition, the quality is constant, work management becomes easier, the number of man-hours is reduced, and the performance is increased. In the case where a foamable resin material is injected into a mold and foamed in the mold to be integrally molded, only a size that can mold the foam can be manufactured, but the block is molded in advance as described above. After that, by integrally molding the whole, it is possible to integrally mold the one with a size of several tens of meters. In addition, in the case of the manufacturing method shown in Fig. 33, the strength should be further increased by connecting the foam blocks together, using a long one in which only the reinforcing ribs 76 are pre-formed, and integrally forming them. Can be.
上記のように構成されたこの発明の樹脂成形体は、 次のような優れた効果 を有している。  The resin molded article of the present invention configured as described above has the following excellent effects.
(1 ) 柔軟性と浸透性のある素材の表裏に貫通する多数の透孔が形成されて 肉厚のハニカム状に形成された多孔芯材に、 配合樹脂を含浸させたものは、 柔軟性があるので、 任意な形状に成形させることができる。 そのため用途部 分に合った形状の樹脂ハニカム成形体を得ることができる。  (1) A porous core material formed into a thick honeycomb with many through-holes formed on the front and back of a flexible and permeable material, impregnated with a compounded resin, Because it is, it can be molded into any shape. Therefore, it is possible to obtain a resin honeycomb formed body having a shape suitable for the application.
(2) 多孔芯材に配合樹脂を含浸させたものを成形型において部分的に肉厚 の厚薄部分を成形させる場合は、 一層用途に適した樹脂ハニカム成形体を得 ることができる。  (2) In the case where the porous core material impregnated with the compounded resin is partially molded into a thick and thin portion in a molding die, a resin honeycomb molded body more suitable for use can be obtained.
(3) 多孔芯材に配合樹脂を含浸させたものを型または手作業により平坦部 から立上り部のある函状の三次元形状に形成して成形、 硬化させたることに より、 函状でハニカム構造が一体になつた脂ハニカム成形体を得ることがで きる。  (3) The porous core material impregnated with the compounded resin is formed into a box-shaped three-dimensional shape with a rising part from a flat part by a mold or by hand, and then molded and cured to form a box-shaped honeycomb. It is possible to obtain a fat honeycomb formed body having an integrated structure.
(4) 多孔芯材に配合樹脂を含浸させたものを、 上下二枚重ねの中間に、 配 合樹脂を含着した布を挟み一体に成形、 硬化させる場合は、 更に剛性が高い 樹脂成形体を得ることができる。  (4) In the case where the porous core material impregnated with the compounded resin is sandwiched between the upper and lower two layers with a cloth impregnated with the compounded resin sandwiched and molded and cured, a more rigid resin molded body is obtained. be able to.
(5) 多孔芯材に配合樹脂を含浸させたものを型面に表層材層が形成されて いる型面に重ねて一体に成形、 硬化させた樹脂ハニカム成形体は、 平滑な表 面を持つ。  (5) A resin honeycomb molded body in which a porous core material impregnated with a compounded resin is superimposed on a mold surface having a surface material layer formed on the mold surface and integrally molded and cured, has a smooth surface. .
(6) 配合樹脂を含着させた軟質多孔芯材を管状にして硬化させることに よって、 管状のハニカム成形体を容易に得ることができる。 (6) Making the soft porous core material impregnated with the compounded resin into a tube and curing it Therefore, a tubular honeycomb formed body can be easily obtained.
(7) 前記軟質多孔芯材がダブルラ、ソセル亀甲紋立体編布である樹脂ハニカ ム成形体は、 立体編布に配合樹脂を含着させるだけで製造することができる (8) 前記軟質多孔芯材が発泡樹脂板にパンチングにより透孔が形成された ものである樹脂ハニカム構造は、 発泡樹脂板に透孔を開孔させるものなので 、 孔の大きさ、 位置などを自由に選択することができ、 剛性を調節すること ができる。  (7) The resin honeycomb molded body in which the soft porous core material is a double-layered, soselled creature pattern three-dimensional knitted fabric can be manufactured by simply impregnating the three-dimensional knitted fabric with a compounded resin. The resin honeycomb structure, in which the through holes are formed by punching the foamed resin plate, is used to open the through holes in the foamed resin plate, so that the size and position of the holes can be freely selected. The rigidity can be adjusted.
(9 ) 厚味方向に伸縮する樹脂ハニカム構造を容易に得ることができる。 (10)前記軟質多孔芯材が繊維質多孔板に多数の透孔が形成されたものであ る樹脂ハニカム構造は、 古紙などを利用することができる。  (9) A resin honeycomb structure that expands and contracts in the thickness direction can be easily obtained. (10) For the resin honeycomb structure in which the soft porous core material is a fibrous porous plate in which a large number of through holes are formed, waste paper or the like can be used.
(11 )用途が広く使用することができ、 並びにリサイクルできる。  (11) Can be widely used and recyclable.
( 12)孔の大小に関係なく、 容易にハニカム構造を得ることができる。 (12) A honeycomb structure can be easily obtained regardless of the size of the holes.
(13)管状のハニカム構造を容易に形成することができる。 (13) A tubular honeycomb structure can be easily formed.
上記のように構成された本発明の多孔芯材は、 次のような優れた効果を有 する。  The porous core material of the present invention configured as described above has the following excellent effects.
(1 ) 前記すぐれた樹脂ハニカム成形体を容易に製造することができる。 (1) The excellent resin honeycomb formed body can be easily manufactured.
(2) 配合樹脂を含着させた状態で柱状の型に卷着させることができるので 、 樹脂ハニカム構造の管体を容易に短時間で形成することができる。 (2) Since it can be wound around a columnar mold in a state where the compounded resin is impregnated, a resin honeycomb structure tube can be easily formed in a short time.
(3) 型内に、 配合樹脂を含着させた繊維強化材層を形成し、 その上に配合 樹脂を含着させた軟質多孔芯材を重ねて成形させることによって、 F R P部 分とハニカム部分の合体した成形体を容易に形成することができる。  (3) In the mold, a fiber reinforced material layer impregnated with the compounded resin is formed, and a soft porous core material impregnated with the compounded resin is stacked on top of this to form the FRP portion and the honeycomb portion. Can easily be formed.
(4) 型内に、 既成の成形体を配置して置き、 この上に配合樹脂を含着させ た軟質多孔芯材を重ねて成形させることによって、 例えば F R P部分とハニ カム部分の合体した樹脂ハニカム成形体を容易に形成することができる。  (4) An existing molded body is placed and placed in a mold, and a soft porous core material impregnated with a compounded resin is laminated on top of this, and molded, for example, by combining a FRP part and a honeycomb part. A honeycomb formed body can be easily formed.
(5) F R P成形体の浴槽の外槽と内槽の間に、 配合樹脂を含着させた軟質 多孔芯材を挟み、 加圧して一体に成形、 硬化させることによって、 内外槽の 中間にハニカム構造の形成された、 保温性、 剛性に優れた浴槽としての樹脂 ハニカム成形体を形成することができる効果がある。 また、 浴槽の場合、 内 槽の底に下のハニカム構造を連通する気孔を形成し、 外部から送気するよう にして、 浴槽内に気泡を生じさせるような構造に容易にすることができる。 (5) A soft porous core material impregnated with a compounded resin is sandwiched between the outer and inner tanks of the FRP molded bathtub, and the inner and outer tanks are formed by pressing and molding and curing together. There is an effect that a resin honeycomb molded body as a bathtub having an excellent heat retaining property and rigidity having a honeycomb structure formed in the middle can be formed. In the case of a bathtub, pores communicating with the lower honeycomb structure are formed at the bottom of the inner bath, so that air is supplied from the outside, so that a structure that generates air bubbles in the bathtub can be easily achieved.
(6) 前記軟質多孔芯材がダブルラ、ソセル亀甲紋立体編布である樹脂ハニカ ム構造は、 表裏組織を繋ぐ接結糸に太めの単糸を使用することによって、 配 合樹脂を含着させて成形するとき、 表裏組織は硬質で、 肉厚方向においては 接結糸の弾性によって、 可橈性のある樹脂ハニカム成形体を得ることができ る。 (6) The resin honeycomb structure, in which the soft porous core material is a double-layered, sosel turtle-patterned three-dimensional knitted fabric, uses a thick single yarn as a binding yarn that connects the front and back tissues, thereby impregnating the mixed resin. When formed by molding, the front and back structures are hard, and the elasticity of the binding yarn in the thickness direction makes it possible to obtain a flexible resin honeycomb molded body.
(7) F R P部分とハニカム構造部分の合体成形体を容易に形成することが できるので、 用途の広がりが期待される。  (7) Since a united molded body of the FRP portion and the honeycomb structure portion can be easily formed, a wide range of applications is expected.
上記のように構成されたこの発明の製造方法は、 次のような優れた効果を 有している。  The manufacturing method of the present invention configured as described above has the following excellent effects.
(1) 樹脂ハニカム成形体用の軟質多孔芯材は、 ダブルラッセル立体編布か らなり、 表組織と裏組織の間に肉厚を設定する接結糸が直交状に介在して表 裏組織を一体に接結して二重編組織が形成されているため、 肉厚のある八二 カム構造を持っており、 配合樹脂を含着させて硬化させるだけで樹脂ハニカ ム成形体を容易に形成することができる。 また前記表裏組織は合成繊維束糸 から構成されているので、 配合樹脂を含着性に優れており、 接結糸は合成繊 維単糸と鉱物繊維束糸が混用されているとき、 配合樹脂を含着を確実にさせ ることができると同時に合成繊維単糸の弾性を利用した、 成形体の肉厚方向 に弾性を保持させた樹脂ハニカム成形体を容易に得ることができる。  (1) The soft porous core material for the resin honeycomb formed body is made of a double raschel three-dimensional knitted fabric, and a binding yarn that sets the thickness between the front and back textures intersects perpendicularly to make the front and back texture. Since the double knitted structure is formed by joining together, it has a thick 82-cam structure, and the resin honeycomb molded body can be easily formed simply by impregnating the compounded resin and curing. Can be formed. Further, since the front and back textures are composed of bundles of synthetic fibers, the compounded resin is excellent in impregnating property, and the binding yarns are mixed resin when single yarns of synthetic fibers and bundles of mineral fibers are mixed. It is possible to obtain a resin honeycomb molded body using the elasticity of the synthetic fiber single yarn and maintaining the elasticity in the thickness direction of the molded body, while at the same time utilizing the elasticity of the synthetic fiber single yarn.
(2) 前記表裏組織は、 合成繊維、 鉱物繊維の単体もしくは混用体の繊維束 糸の中から選択される 1種から構成されているとき、 目的に合わせて表裏組 織の剛性を任意に設定することができる。  (2) When the front and back tissues are composed of one selected from a single or mixed fiber bundle of synthetic fibers and mineral fibers, the rigidity of the front and back tissues is set arbitrarily according to the purpose. can do.
(3) 前記合成繊維がポリエステル、 ケプラー繊維などの高分子合成繊維で あるとき、 配合樹脂との接合性に優れ、 また接結糸に単糸が使用される時は 、 弾性に優れている。 (3) The synthetic fiber is a high-molecular synthetic fiber such as polyester and Kepler fiber. At one time, it has excellent bondability with the compounded resin, and when a single yarn is used for the binding yarn, it has excellent elasticity.
(4) 前記鉱物繊維が、 カーボン繊維、 ガラス繊維の単体、 複合体から選択 されるとき、 配合樹脂との適応性に優れ、 成形体の剛性が向上する。  (4) When the mineral fiber is selected from carbon fiber, glass fiber simple substance, and composite, it is excellent in adaptability to the compounded resin and the rigidity of the molded body is improved.
(5) 前記接結糸における合成繊維と鉱物繊維の混用は、 合撚、 引揃えから 選択される時、 目的に合わせて所望の弾性、 剛性を設定することができる。  (5) When the mixing of synthetic fibers and mineral fibers in the binding yarn is selected from ply twisting and drawing, desired elasticity and rigidity can be set according to the purpose.
(6) 前記接結糸における合成繊維と鉱物繊維の混用が、 太編部並びに細編 部の長手方向に沿って交互に配列されるとき、 目的に合わせて部分的な弾性 、 剛性を設定させることができる。 (6) When the mixture of synthetic fibers and mineral fibers in the binding yarn is alternately arranged along the longitudinal direction of the thick knit portion and the thin knit portion, the partial elasticity and rigidity are set according to the purpose. be able to.
(7 ) 前記接結糸における合成繊維に対する鉱物繊維の混用割合は、 2 0容 積%〜5 0容積%であるとき、 剛性と弾性を調節して設定させることができ る。  (7) When the mixing ratio of the mineral fiber to the synthetic fiber in the binding yarn is from 20% by volume to 50% by volume, the rigidity and the elasticity can be adjusted and set.
(8) ダブルラッセル立体編布からなり、 表組織と裏組織の間に肉厚を設定 する接結糸が直交状に介在して表裏組織を一体に接結して二重編組織が形成 され、 接結糸は合成繊維単糸と鉱物繊維束糸が混用され、 ヒートセッ トによ り立体形状が固定されている軟質多孔芯材に、 軟性水飴状配合樹脂を含着さ せて硬化させ、 接結糸の弾性により、 成形体の肉厚方向に弾性を具備させて なる樹脂ハニカム成形体は、 肉厚方向で弾性に優れ、 特に角部においては弾 性を持たせることができる。  (8) The double knitted fabric is formed from a double Russell three-dimensional knitted fabric, and a binding yarn that sets the thickness between the front and back textures intersects orthogonally and bonds the front and back tissues together. As the binding yarn, a synthetic fiber single yarn and a mineral fiber bundle yarn are mixed, and a soft porous core material, whose three-dimensional shape is fixed by a heat set, is impregnated with a soft syrup-like compounded resin and cured. A resin honeycomb molded body having elasticity in the thickness direction of the molded body due to the elasticity of the binding yarn has excellent elasticity in the thickness direction, and can have elasticity particularly at corners.
(9) 前記成形体が、 雌雄型成形により、 肉厚が部分的に厚薄に変化してい るとき、 目的の成形体の厚薄部分に合わせて肉厚を変化させて成形すること ができる。  (9) When the thickness of the molded body is partially changed to be thin by the male and female molding, the thickness can be changed according to the thickness of the target molded body.
(10)前記成形体が、 成形型の成形面にあらかじめ形成した表層材層が一体 に結合されるとき、 賞通孔のないハニカム構造を形成することができる。  (10) When the molded body is integrally joined with a surface layer formed in advance on a molding surface of a molding die, a honeycomb structure without prize holes can be formed.
(11) 表組織と裏組織間に接結糸を直交させたダブルラッセル立体編布か らなる軟質多孔芯材の、 複数のそれぞれの合間に、 配合樹脂を含着させた介 在布層を挟んで一体に結合してダブルハ二カムが形成され、 該ダブルハ二力 ムの表裏面に、 配合樹脂を含着させた介在布層をそれぞれ重ねて一体に結合 成形した成形体は、 接結糸の弾性により、 成形体の肉厚方向に弾性を具備し て、 衝撃を受けても破裂しない。 (11) A soft porous core material made of a double Russell three-dimensional knitted fabric in which the binding yarns are perpendicular to the front and back textures, with the compounded resin impregnated between each of the multiple pieces. A double honeycomb is formed integrally by sandwiching the cloth layer, and an interposed cloth layer impregnated with a compounded resin is overlapped on the front and back surfaces of the double honeycomb, and integrally formed. Due to the elasticity of the binding yarn, the molded body has elasticity in the thickness direction and does not burst even when subjected to an impact.
( 12 ) 表組織と裏組織間に接結糸を直交させたダブルラ、ソセル立体編布か らなる軟質多孔芯材の、 複数のそれぞれの合間に、 既成成形体を挟んで一体 に結合してダブルハニカムが形成され、 該ダブルハニカムの表裏面に、 既成 成形体をそれぞれ重ねて一体に結合成形した成形体は、 接結糸の弾性により 、 成形体の肉厚方向に弾性を具備しており、 成形が容易で成形精度を高くす ることができる。  (12) A soft porous core made of double ply and sosell three-dimensional knitted fabric in which the binding yarns are perpendicular to the front and back textures. A formed body in which a double honeycomb is formed, and a preformed formed body is overlapped on the front and back surfaces of the double honeycomb and integrally bonded and formed, has elasticity in a thickness direction of the formed body due to elasticity of a binding yarn. The molding is easy and the molding accuracy can be increased.
( 13) 表組織と裏組織間に接結糸を直交させたダブルラッセル立体編布か らなる軟質多孔芯材の複数のそれぞれの合間に、 配合樹脂を含着させた介在 布層を挟んで一体に成形してダブルハニカムを形成する工程と、 該ダブルハ 二カムの表裏面に、 配合樹脂を含着させた介在布層をそれぞれ重ねて成形型 により一体に成形する工程とからなる樹脂ハニカム成形体の製造方法は、 軟 質多孔芯材の接結糸の弾性により、 成形体の肉厚方向に弾性を具備させるこ とができるので、 簡易な工程で容易に、 弾性を具備した樹脂ハニカム成形体 を高精度に製造する事ができる。  (13) A soft porous core material consisting of a double Russell three-dimensional knitted fabric in which binding yarns are perpendicular to the front and back textures, with an intervening fabric layer impregnated with the compounded resin interposed between each of the soft porous cores. A resin honeycomb forming step of integrally forming a double honeycomb, and a step of laminating an interposed cloth layer impregnated with a compounded resin on the front and back surfaces of the double honeycomb and forming them integrally with a forming die. The method of manufacturing the body is such that the elasticity of the binding thread of the soft porous core material allows the molded body to have elasticity in the thickness direction, so that the resin honeycomb molding having elasticity can be easily performed in a simple process. The body can be manufactured with high precision.
( 14)全体として、 早く、 容易に変化した形状のものでも、 安価に製造する ことができる。  (14) As a whole, it is possible to inexpensively manufacture even those having shapes that change quickly and easily.
上記のように構成された発明の減圧式成形方法は、 次のような優れた効果 を有している。  The decompression molding method of the invention configured as described above has the following excellent effects.
( 1 ) 低圧減圧機と簡単な成形型で、 大きな成形体を成形する事ができるの で、 大がかりな設備、 煩雑な作業を要することなく小工場で容易に実施する 事ができる効果がある。  (1) Since a large compact can be molded with a low-pressure decompressor and a simple mold, there is an effect that it can be easily carried out in a small factory without requiring large-scale facilities and complicated operations.
(2) 2, 5 = Hg〜2 0 = Hgの範囲の低圧減圧で行う樹脂成形体の製造方法 は、 低圧なので、 小型の減圧機で充分であり、 また低圧なので、 成形型に大 きな剛性を必要としないため、 大型製品の成形についても軽量簡素な成形型 で間に合う。 (2) The method of manufacturing a resin molded body at a low pressure in the range of 2,5 = Hg to 20 = Hg is low pressure, so a small decompressor is sufficient. Since it does not require rigidity, it can be used for molding large products with a lightweight and simple mold.
(3) 雌型に繊維強化材をセ、ソ トする工程と、 その雌型に配合樹脂を無加圧 で投入する工程と、 雄型を雌型に配設して軽く型締めする工程と、 雌雄型内 の減圧をする工程と、 減圧孔に配合樹脂が溢れた時点で、 減圧孔を閉ざして 養生、 硬化させる工程との結合からなる樹脂成形体の製造方法は、 繊維強化 材のセッ トされた雌型に、 配合樹脂を無加圧で投入するだけなので、 どのよ うな大きなものであっても、 極めて短時間で配合樹脂の充填をすることがで きる。 次に低圧の減圧をすることによって型締めをするので、 繊維強化材の 繊維間の気泡も完全に吸い出して、 複雑な形状の隅部分にも配合樹脂を均一 に完全に充填させることができる。  (3) A process of inserting and reinforcing the fiber reinforced material in the female mold, a process of introducing the compounded resin into the female mold without applying pressure, and a process of arranging the male mold in the female mold and lightly clamping the mold. The method of manufacturing a resin molded body, which comprises a step of reducing the pressure in the male and female molds and a step of closing and curing and curing the reduced pressure hole when the compounded resin overflows in the reduced pressure hole, comprises a fiber reinforced material set. Since the compounded resin is simply injected into the female mold without pressure, no matter how large the resin is, the compounded resin can be filled in an extremely short time. Next, the mold is clamped by reducing the pressure to a low pressure, so that the bubbles between the fibers of the fiber reinforced material are completely sucked out, and the compounded resin can be evenly and completely filled even in the corners of the complicated shape.
(4) 雌型に繊維強化材をセッ トする工程と、 雄型を配設して軽く型締めす る工程と、 型の材注孔から無加圧で配合樹脂を注入する工程と、 雌雄型内の 減圧をする工程と、 減圧孔に配合樹脂が溢れた時点で減圧孔を閉ざして養生 、 硬化させる工程との結合からなる樹脂成形体の製造方法は、 成形部に余分 の空間が空いている時点で、 配合樹脂を無加圧で注入するので、 極めて短時 間で必要量の配合樹脂を注入する事ができ、 作業性を向上させることができ る。  (4) A step of setting the fiber reinforced material in the female mold, a step of arranging the male mold and lightly clamping the mold, a step of injecting the compounded resin from the mold material injection hole without pressure, and In the method for manufacturing a resin molded body, which includes a step of reducing the pressure in the mold and a step of closing and curing and curing the compounded resin when the compounded resin overflows in the reduced pressure hole, an extra space is formed in the molding portion. At this point, the compounded resin is injected without pressure, so that the required amount of the compounded resin can be injected in a very short time, and the workability can be improved.
(5) 雌雄型の組合せからなり、 雌型は、 配合樹脂を直接無加圧で投入する よう構成され、 雄型は、 シールより内側の型合面から型外方へ向けて減圧孔 が形成され、 該減圧孔には減圧手段が連結される成形型は、 雌型内に配合榭 脂を直接、 無加圧で短時間に投入することができる効果がある。 また、 減圧 孔から減圧させるだけで、 大気圧と大きい面積に基づく加圧力が得られる 9 そのため大ががりな型締め装置や作業を要することなく、 繊維間に樹脂を完 全に充填させて、 成形することができる。 (5) Consists of a combination of male and female molds.The female mold is configured to directly charge the compounded resin under no pressure, while the male mold has a decompression hole from the mating surface inside the seal to the outside of the mold. In addition, the mold in which the decompression means is connected to the decompression hole has an effect that the compounded resin can be directly poured into the female mold without pressurization in a short time. Further, only by reduced pressure from the depressurization hole, 9 therefor pressure based on a large area as the atmospheric pressure is obtained without requiring a large is rising, such mold clamping devices and work, and the resin is filled completely between the fibers, Can be molded.
(6) 雌雄型の組合せからなり、 雄型は、 シールより内側の型合面から型外 方へ向けて減圧孔が形成され、 該減圧孔には減圧手段が連結され、 該雄型に は、 外部から成形型にかけて賞通する無加圧式材注孔が形成されている成形 型には、 配合樹脂を無加圧で短時間に充填させることができ、 減圧によって 、 大がかりな型締装置や作業を要する ζとなく、 繊維間に樹脂を完全均一に 充填させて成形することができる。 (6) The male mold has a combination of a male and a male. The male mold has a decompression hole formed from the mating surface inside the seal to the outside of the mold, and a decompression means is connected to the decompression hole. The molding die, which has a non-pressurized material injection hole that passes from the outside to the molding die, can be filled with the compounded resin in a short time without pressurization. The resin can be completely and uniformly filled between the fibers and molded without any additional work.
(7) 前記シールが、 雌雄型それぞれに対向状に配設され、 雌型のシール嵌 凹部に上面に凹部を形成したシールが、 嵌装されている樹脂成形型は、 上下 シールの密着面積が大きくなり密着性に優れ、 減圧作用を向上させる事がで きる。  (7) The resin molding die in which the seals are disposed opposite to the male and female molds, respectively, and the seals in which the concaves are formed on the upper surfaces of the female seal fitting concaves, are fitted. It becomes large and has excellent adhesion, and can improve the decompression effect.
(8) 前記方法並びに成形型においては、 樹脂の投入の圧力を使用しないの で、 成形型を簡略化することが出来、 型コスト負担を低減させ、 軽量化によ るクレーンなどの不必要、 大がかりな型締め装置並びに作業の不必要など、 大がかりな設備を要せず、 大きな成形体を小工場でも簡単に製造することが 可能である。  (8) In the above method and the molding die, since the pressure for charging the resin is not used, the molding die can be simplified, the cost of the die can be reduced, and the necessity of a crane or the like due to weight reduction is eliminated. Large moldings can be easily manufactured even in small factories without the need for extensive equipment, such as the need for large mold clamping equipment and work.
(9) 樹脂充填に加圧を必要としないので、 樹脂の投入が極めて短時間で、 かつ複雑な形状でも確実に樹脂の均一充填が可能となったため、 成形時間を 著しく短縮させ、 生産性を向上させることができる。 同時に製品の品質が平 均的に向上する。  (9) Since no pressure is required for filling the resin, it is possible to charge the resin in an extremely short time and to ensure the uniform filling of the resin even in a complicated shape, significantly reducing the molding time and improving productivity. Can be improved. At the same time, product quality is improved on average.

Claims

請求の範囲 The scope of the claims
1 . 柔軟性と浸透性のある素材の表裏に貫通する多数の透孔が形成されて 肉厚のハニカム状に形成された軟質多孔芯材に、 配合樹脂を含浸させ、 これ を型において成形、 硬化させた樹脂成形体。 1. A large number of through-holes are formed on the front and back of a flexible and permeable material, and a thick honeycomb-shaped soft porous core material is impregnated with the compounded resin, which is then molded into a mold. A cured resin molded body.
2 . 部分的に肉厚の厚薄部分を形成している請求項 1記載の樹脂成形体。 2. The resin molded product according to claim 1, wherein the resin molded product partially forms a thick portion.
3 . 平坦部から立上り部のある三次元形状に形成している請求頊 1記載の 樹脂成形体。 3. The resin molded article according to claim 1, which is formed in a three-dimensional shape having a rising portion from a flat portion.
4 . 配合樹脂を含浸させた軟質多孔芯材を、 上下二枚重ねとした中間に、 配合樹脂を含着した前記介在布を挟み、 一体に成形、 硬化させた請求項 1記 載の樹脂成形体。  4. The resin molded article according to claim 1, wherein the interposed cloth impregnated with the compounded resin is sandwiched between two upper and lower soft porous core materials impregnated with the compounded resin, and integrally molded and cured.
5 . 配合樹脂を含浸させた軟質多孔芯材を、 型面に表層材層が形成されて いる型面に重ねて一体に成形、 硬化させた請求項 1記載の樹脂成形体。  5. The resin molded article according to claim 1, wherein the soft porous core material impregnated with the compounded resin is laminated and integrally molded on a mold surface having a surface material layer formed on the mold surface and cured.
6 . 管状に成形、 硬化させている請求項 1記載の樹脂成形体。  6. The resin molded article according to claim 1, wherein the resin molded article is molded and cured.
7 . 前記軟質多孔芯材がダブルラッセル亀甲紋立体編布である請求項 1、 2、 3、 4、 5または 6のいずれかに記載された樹脂成形体。  7. The resin molded article according to any one of claims 1, 2, 3, 4, 5 and 6, wherein the soft porous core material is a double-rassel sculpture three-dimensional knitted fabric.
8 . 前記軟質多孔芯材が耐熱耐溶剤性発泡樹脂板にパンチングにより透孔 が形成されたものである請求項 1、 2、 3、 4、 5または 6のいずれかに記 載された樹脂成形体。  8. The resin molding according to any one of claims 1, 2, 3, 4, 5, and 6, wherein the soft porous core material is formed by punching holes in a heat-resistant and solvent-resistant foamed resin plate. body.
9 . 柔軟性と浸透性のある素材の表裏に賞通する多数の透孔が形成されて 、 肉厚のハニカム状に形成された軟質多孔芯材の、 中間を除く表裏組織に配 合樹脂を含浸させ、 これを成形、 硬化させ、 厚味方向に弾性を具有させた請 求項 1、 2、 3、 4、 5、 6、 7または 8のいずれかに記載された樹脂成形 体。  9. A large number of perforated holes are formed on the front and back of the flexible and permeable material, and the composite resin is applied to the front and back of the thick porous soft core material except for the middle. The resin molded article according to any one of claims 1, 2, 3, 4, 5, 6, 7, or 8, wherein the resin molded article is impregnated, molded, and cured to have elasticity in a thickness direction.
1 0 . 柔軟性と浸透性のある板状素材の表裏に貫通する多数の透孔を有 する、 厚肉のハニカム状の軟質多孔芯材を準備する工程と、 該軟質多孔芯材 に、 配合樹脂を含着させる工程と、 型の成形面に表層材層を形成する工程と 、 前記軟質多孔芯材を表層材層の上に重ねて一体に成形、 硬化させる工程と からなる樹脂成形体の製造方法。 10. A step of preparing a thick honeycomb-shaped soft porous core material having a large number of through-holes penetrating on the front and back of a flexible and permeable plate-like material; A step of impregnating the resin, and a step of forming a surface layer on the molding surface of the mold. A process in which the soft porous core material is superposed on a surface material layer, integrally molded, and cured.
1 1 . 前記成形、 硬化させる工程の前に、 型の成形面に表層材層を形成す る工程を有し、 その表層材層の上に前記軟質多孔芯材を重ねる請求項 1 0記 載の樹脂成形体の製造方法。  11. The method according to claim 10, further comprising a step of forming a surface layer on the molding surface of the mold before the step of molding and curing, and laminating the soft porous core material on the surface layer. Method for producing a resin molded article.
1 2 . 前記成形、 硬化させる工程で、 雌雄型内において部分的に肉厚の厚 薄部分を形成する請求項 1 0記載の樹脂成形体の製造方法。  12. The method for producing a resin molded article according to claim 10, wherein the thickening and thinning portions are partially formed in the male and female molds in the molding and curing steps.
1 3 . 前記表層材層の上に軟質多孔芯材を重ねる工程において、 前記軟質 多孔芯材を表層材層に貼着させて、 部分的に引き延ばしあるいは引き縮めて 、 平坦部から立上り部のある三次元形状に形成し、 ついて一体に成形、 硬化 させる請求項 1 1記載の樹脂成形体の製造方法。  13. In the step of laminating the soft porous core material on the surface material layer, the soft porous core material is adhered to the surface material layer, partially stretched or contracted, and has a rising portion from a flat portion. 21. The method for producing a resin molded article according to claim 11, wherein the resin molded article is formed into a three-dimensional shape, and then integrally molded and cured.
1 4 . 前記軟質多孔芯材の複数を重ねたそれぞれの中間に、 配合樹脂を含 着させた介在布を挟み、 それらを表層材層の上に配置する請求項 1 1記載の 樹脂成形体の製造方法。  14. The resin molded article according to claim 11, wherein an intervening cloth impregnated with a compounded resin is sandwiched between each of the plurality of the soft porous core materials stacked one on another, and they are arranged on the surface layer. Production method.
1 5 . 柔軟性と浸透性のある素材の表裏に貫通する多数の透孔を有する、 厚肉のハニカム状の軟質多孔芯材を準備する工程と、 該軟質多孔芯材に、 配 合樹脂を含着させる工程と、 雌雄型の成形面に表層材層を形成する工程と、 柱状雄型の周面の表層材層上に前記軟質多孔芯材を巻着し、 その周囲に雌型 を被着させて管状に一体成形、 硬化させる工程とからなる樹脂成形体の製造 方法。  15 5. A step of preparing a thick honeycomb-shaped soft porous core material having a large number of through-holes penetrating the front and back of a flexible and permeable material, and adding a compound resin to the soft porous core material. Impregnating, forming a surface layer on the male and female molding surfaces, winding the soft porous core material on the surface layer on the peripheral surface of the columnar male die, and covering the female die around the soft porous core. A method for producing a resin molded article, comprising: a step of integrally forming the resin molded article into a tube, followed by curing.
1 6 . 雌雄型の成形面に表層材層を形成する工程と、 雌型の表層材層の上 に配合樹脂の含着された繊維強化材層を形成する工程と、 軟質多孔芯材に配 合樹脂を含浸させる工程と、 繊維強化材層の上に配合樹脂の含着された軟質 多孔芯材を重ね合わせて型締め一体に成形、 硬化させる工程とからなる樹脂 成形体の製造方法。  16. A step of forming a surface layer on the molding surface of the male and female molds, a step of forming a fiber reinforcement layer impregnated with the compounded resin on the surface layer of the female mold, and distributing the soft porous core material. A method for producing a resin molded body, comprising: a step of impregnating a composite resin; and a step of laminating a soft porous core material impregnated with a compounded resin on a fiber reinforced material layer, and integrally molding and curing the mold.
1 7 . 柔軟性と浸透性のある素材の表裏に貫通する多数の透孔を有する、 肉厚のハニカム状の軟質多孔芯材を準備する工程と、 該軟質多孔芯材に、 配 合樹脂を含着させる工程と、 雌型の成形面に既成の成形体を配置する工程と 、 既成の成形体上に前記軟質多孔芯材を配置し、 型締め一体に成形、 硬化さ せる工程とからなる樹脂成形体の製造方法。 17. A step of preparing a thick honeycomb-shaped soft porous core material having a large number of through-holes penetrating the front and back of a flexible and permeable material; A step of impregnating a synthetic resin, a step of arranging an existing molded body on the molding surface of the female mold, a step of arranging the soft porous core material on the existing molded body, and molding and curing integrally with the mold clamp A method for producing a resin molded article comprising:
1 8 . 合わせ目に空間を有する外成形体と内成形体を個別に成形する工程 と、 軟質多孔芯材に配合樹脂を含着させる工程と、 該軟質多孔芯材を外成形 体の内面に配設する工程と、 その上に内成形体を配置、 加圧して一 に成型 、 硬化させる工程とからなる樹脂成形体の製造方法。 '  18. The step of individually molding the outer molded body and the inner molded body having a space at the joint, the step of impregnating the soft porous core material with the compounded resin, and the step of applying the soft porous core material to the inner surface of the outer molded body. A method for producing a resin molded body, comprising a step of arranging, a step of arranging an inner molded body thereon, and pressing and molding and curing the molded body at a time. '
1 9 . ダブルラッセル亀甲紋立体編布の接結糸を太い単糸として軟質多孔 芯材を形成する工程と、 該軟質多孔芯材の表裏組織に配合樹脂を含着させる 工程と、 型の成形面に前記軟質多孔芯材を配置して成形、 硬化させる工程と により、 表裏組織部分は硬質で、 接結糸の弾性により肉厚方向へ可橈性を保 持させる樹脂成形体の製造方法。  1 9. A step of forming a soft porous core material using the binding yarn of the double Russell turtle pattern three-dimensional knitted fabric as a thick single yarn, a step of impregnating the mixed resin into the front and back tissues of the soft porous core material, and forming a mold. A method for producing a resin molded body in which the soft porous core material is arranged on a surface, molded and hardened, whereby the front and back texture portions are hard, and the elasticity of the binding yarn maintains the flexibility in the thickness direction.
2 0 . ダブルラッセル立体編布からなり、 表組織と裏組織の間に肉厚を設 定する接結糸が直交状に介在して表裏組織を一体に接結して二重編組織が形 成され、 表裏組織は、 それぞれが細編部と、 左右の細編部が結合した太編部 とで構成されて、 太編部は間欠的に直列し、 かつ隣接の太編部は縦方向で 1 ピッチ位相を違差させ、 細編部は太編部が左右に二分岐して形成されて、 左 右の細編部が結合して隣の太編部を形成する連続により編目が形成され、 前 記表裏組織は繊維束糸から構成され、 接結糸は合成繊維単糸を主用して選択 的に鉱物繊維束糸が混用され、 ヒートセッ トにより立体形状が固定されてい る樹脂ハニカム成形体用の軟質多孔芯材。  20. The double knitted fabric is formed from a double Russell three-dimensional knitted fabric, and a binding yarn that sets the thickness between the front and back fabrics intersects perpendicularly to join the front and back fabrics together. The front and back tissues are each composed of a thin knit part and a thick knit part where the left and right thin knit parts are joined. The thick knit parts are intermittently connected in series, and the adjacent thick knit parts are in the vertical direction. The fine knitted part is formed by branching the left and right thin knitted parts together to form the next thick knitted part. The front and back texture is composed of fiber bundle yarn, and the binding yarn is mainly made of synthetic fiber single yarn, mineral fiber bundle yarn is selectively mixed, and the three-dimensional shape is fixed by heat setting. Soft porous core material for molded articles.
2 1 . 前記鉱物繊維は、 カーボン繊維、 ガラス繊維の単体、 複合体から選 択される 1 つである請求項 2 0に記載された軟質多孔芯材。  21. The soft porous core material according to claim 20, wherein the mineral fiber is one selected from a carbon fiber, a glass fiber simple substance, and a composite.
2 2 . 前記接結糸における合成繊維と鉱物繊維の混用は、 合機、 引揃え、 あるいは合成維維と鉱物繊維の交互配列から選択される、 のいずれかから選 択されるものである請求項 2 0、 2 1のいずれかに記載された軟質多孔芯材 22. The blending of synthetic fibers and mineral fibers in the binding yarn is selected from the group consisting of synthesizing, aligning, and alternate arrangement of synthetic fibers and mineral fibers. Item 20. The soft porous core material according to any one of Items 20 and 21
2 3 . 前記接結糸における合成繊維に対する鉱物繊維の混用割合は、 2 0 容積%〜5 0容積%である請求項 2 0、 2 1、 2 2のいずれかに記載された 軟質多孔芯材。 23. The soft porous core material according to any one of claims 20, 21 and 22, wherein a mixing ratio of the mineral fiber to the synthetic fiber in the binding yarn is from 20% by volume to 50% by volume. .
2 4 . ダブルラッセル立体編布からなり、 表組織と裏組織の間に肉厚を設 定する接結糸が直交状に介在して表裏組織を一体に接結して二重編組織が形 成され、 表裏組織は、 それぞれが細編部と、 左右の細編部が結合した太編部 とで構成されて、 太編部は間欠的に直列し、 かつ隣接の太編部は縦方向で 1 ピッチ位相を違差させ、 細編部は太編部が左右に二分岐して形成されて、 左 右の細編部が結合して隣の太編部を形成する連続により編目が形成され、 前 記表裏組織は繊維束糸から構成され、 接結糸は合成繊維単糸を主用し、 選択 的に鉱物繊維束糸が混用され、 ヒートセ、ソ トにより立体形状が固定されてい る軟質多孔芯材に、 軟性水飴状配合樹脂を含着させて硬化させ、 接結糸の弾 性により、 成形体の肉厚方向に弾性を具備させてなる樹脂成形体。  2 4. A double woven structure formed by a double Russell three-dimensional knitted fabric, and a binding yarn that sets the thickness between the front and back structures intersects perpendicularly and bonds the front and back structures together. The front and back tissues are each composed of a thin knit part and a thick knit part where the left and right thin knit parts are joined. The thick knit parts are intermittently connected in series, and the adjacent thick knit parts are in the vertical direction. The fine knitted part is formed by branching the left and right thin knitted parts together to form the next thick knitted part. The front and back texture is composed of fiber bundle yarns, the binding yarns are mainly synthetic fiber single yarns, mineral fiber bundle yarns are selectively mixed, and the three-dimensional shape is fixed by heat treatment and software The soft porous core material is impregnated with the soft syrup-like compound resin and cured, and the elasticity of the molded body is provided in the thickness direction by the elasticity of the binding yarn. Comprising Te resin molding.
2 5 . 表組織と裏組織間に接結糸を直交させたダブルラッセル立体編布か らなる軟質多孔芯材の、 複数のそれぞれの合間に、 配合樹脂を含着させた介 在布を挟んで一体に結合してダブルハニカムが形成され、 該ダブルハニカム の表裏面に、 配合樹脂を含着させた介在布層をそれぞれ重ねて一体に結合成 形してなり、 接結糸の弾性により、 成形体の肉厚方向に弾性を具備させてな る樹脂成形体。  25. A soft porous core material consisting of a double Russell three-dimensional knitted fabric in which the binding yarns are perpendicular to the front and back tissues, sandwiches the interposed cloth impregnated with the compounded resin between each of the multiple soft core materials. To form a double honeycomb, and interposed fabric layers impregnated with a compound resin are formed on the front and back surfaces of the double honeycomb, respectively, and integrally formed. A resin molded article having elasticity in the thickness direction of the molded article.
2 6 . 表組織と裏組織間に接桔糸を直交させたダブルラッセル立体編布か らなる軟質多孔芯材の、 複数のそれぞれの合間に、 あらかじめ成形した成形 体を挟んで一体に結合してダブルハニカムが形成され、 該ダブルハニカムの 表裏面に、 あらかじめ成形された既成成形体をそれぞれ重ねて一体に結合成 形してなり、 接結糸の弾性により、 肉厚方向に弾性を具備させてなる樹脂成 形体。  26. A soft porous core material consisting of a double Russell three-dimensional knitted fabric in which the connecting yarns are perpendicular to the surface structure and the back structure. A double honeycomb is formed on the front and back surfaces of the double honeycomb, and each of the preformed preformed bodies is overlapped and integrally formed. The elasticity of the binding yarn provides elasticity in the thickness direction. Resin molded body.
2 7 . 表組織と裏組織間に接結糸を直交させたダブルラッセル立体編布か らなる軟質多孔芯材の複数のそれぞれの合間に、 配合樹脂を含着させた介在 布層を挟んで一体に成形してダブルハニカムを形成する工程と、 該ダブルハ 二カムの表裏面に、 配合樹脂を含着させた介在布層をそれぞれ重ねて成形型 により一体に成形する工程とからなる樹脂成形体の製造方法。 2 7. Intermediate material impregnated with a compound resin between each of a plurality of soft porous cores made of double Russell three-dimensional knitted fabric with binding yarns perpendicular to the front and back textures A step of forming a double honeycomb by forming the honeycomb integrally with the cloth layer interposed therebetween; and a step of integrally forming an interposed cloth layer impregnated with the compounded resin on each of the front and back surfaces of the double honeycomb by a molding die. A method for producing a resin molded article comprising:
2 8 . 熱硬化性樹脂材を使用する成形方法において、 成形型内に熱硬化性 樹脂材を無加圧で投入して、 型合わせをすると共に、 外圧による型締めプレ スをせずに、 型内の減圧をすることによって型締めして成形する樹脂成形体 の製造方法。  28. In the molding method using a thermosetting resin material, the thermosetting resin material is put into the mold without pressure, and the molds are aligned and the mold is not pressed by external pressure. A method of manufacturing a resin molded article which is molded by clamping the mold by reducing the pressure in the mold.
2 9 . 熱硬化性樹脂材を使用する成形方法において、 型合わせをすると共 に、 成形型内に熱硬化性樹脂材を無加圧で投入して、 外圧による型締めプレ スをせずに、 型内の減圧をすることによって型締めして成形する樹脂成形体 の製造方法。  29. In the molding method using thermosetting resin material, the mold is set and the thermosetting resin material is put into the molding die without pressurization. A method for producing a resin molded article which is molded by clamping the mold by reducing the pressure in the mold.
3 0 . 前記減圧は、 2 . 5 c m H g〜 2 0 c m H gの範囲の低圧で行う請 求頊 2 8、 2 9のいずれかに記載された樹脂成形体の製造方法。  30. The method for producing a resin molded product according to any one of claims 28 and 29, wherein the reduced pressure is performed at a low pressure in a range of 2.5 cmHg to 20 cmHg.
3 1 . 雌型に繊維強化材をセ、ソ 卜する工程と、 その雌型に配合樹脂を無加 圧で投入する工程と、 雄型を雌型に配設して軽く型締めする工程と、 雌雄型 内の減圧をする工程と、 減圧孔に配合樹脂が溢れた時点で、 減圧孔を閉ざし て養生、 硬化させる工程とからなる樹脂成形体の製造方法。  3 1. A process of inserting and reinforcing the fiber reinforced material into the female mold, a process of introducing the compounded resin into the female mold without applying pressure, and a process of arranging the male mold in the female mold and lightly clamping the mold. A method for producing a resin molded article, comprising: a step of reducing the pressure in the male and female molds; and a step of closing and curing and curing the reduced pressure hole when the compounded resin overflows in the reduced pressure hole.
3 2 . 雌型に繊維強化材をセッ トする工程と、 雄型を配設して軽く型締め する工程と、 型の材注孔から無加圧で配合樹脂を注入する工程と、 材注孔を 閉ざして雌雄型内の減圧をする工程と、 減圧孔に配合樹脂が溢れた時点で減 圧孔を閉ざして養生、 硬化させる工程とからなる樹脂成形体の製造方法。  3 2. A process of setting the fiber reinforced material in the female mold, a process of arranging the male mold and lightly clamping the mold, a process of injecting the compound resin through the mold material injection holes without pressure, and a process of material injection. A method for producing a resin molded product, comprising: a step of closing the holes to reduce the pressure in the male and female molds; and a step of closing, curing, and curing the reduced pressure holes when the compounded resin overflows in the reduced pressure holes.
3 3 . 雌雄型の組合わせからなり、 雌型は、 配合樹脂を無加圧で直接投入 するよう構成され、 雄型は、 シールより内側の型合面から型外方へ向けて減 圧孔が形成され、 該減圧孔には、 減圧手段が連結される樹脂成形型。  3 3. Composed of male and female molds, female molds are configured to directly charge the compounded resin without pressure, and male molds have pressure reduction holes from the mating surface inside the seal to the outside of the mold. A resin mold in which a pressure reducing means is connected to the pressure reducing hole.
3 4 . 雌雄型の組合わせからなり、 雄型は、 シールより内側の型合面から 型外方へ向けて減圧孔が形成され、 該減圧孔には減圧手段が連結され、 該雄 型には、 外部から成形部にかけて貫通する、 無加圧式材注孔が形成されてい る樹脂成形型。 3 4. Composed of male and female molds, the male mold is formed with a decompression hole from the mating surface inside the seal to the outside of the mold, a decompression means is connected to the decompression hole, Has a non-pressurized material injection hole that penetrates from the outside to the molding Resin mold.
3 5 . 前記シールは、 雌雄型それぞれに対向状に配設され、 雌型のシール は、 上面に凹部を形成したシールが、 雌型のシール嵌凹部に嵌装されている 請求項 3 3、 3 4のいずれかに記載された樹脂成形型。  35. The seal, wherein the seal is disposed to face each of the male and female molds, and the female seal has a seal formed with a recess on the upper surface fitted in the female seal fitting recess. 34. The resin mold according to any one of 4.
3 6 . 前記減圧手段は、 2 . 5 c m H g〜2 0 c m H gの範囲の低圧減圧 機である請求項 3 3、 3 4のいずれかに記載された樹脂成形型。  36. The resin mold according to any one of claims 33 and 34, wherein the decompression means is a low pressure decompression device in a range of 2.5 cmHg to 20 cmHg.
3 7 . 筒状に形成した外殻と、 その内部に嵌合固定された補強リブとから 構成され、  37. It is composed of a cylindrical outer shell and reinforcing ribs fitted and fixed inside the outer shell.
前記外殻が、 軟質の多孔性のシート状の芯材と、 その芯材の上下面に設けた 補強シートと、 芯材および補強シートの空隙に充填した硬化性樹脂とからな り、 The outer shell comprises a soft porous sheet-shaped core material, reinforcing sheets provided on the upper and lower surfaces of the core material, and a curable resin filled in voids of the core material and the reinforcing sheet,
前記補強リブが、 合成樹脂発泡体からなる立体的な芯材と、 その周囲に設け られるシート状の芯材と、 その芯材の周囲に設けられた補強シートと、 芯材 および補強シートの空隙に充填した硬化性樹脂とからなる、 The reinforcing ribs include a three-dimensional core made of a synthetic resin foam, a sheet-shaped core provided around the core, a reinforcing sheet provided around the core, and a gap between the core and the reinforcing sheet. Consisting of a curable resin filled into
風車用の羽根。 Blades for windmills.
3 8 . 合成樹脂発泡体からなる立体的な芯材と、 その周囲に設けられるシ ート状の芯材と、 その芯材の周囲に設けられた補強シートと、 芯材および補 強シートの空隙に充填した硬化性樹脂とからなる補強部材。  38. A three-dimensional core material made of synthetic resin foam, a sheet-shaped core material provided around the core material, a reinforcing sheet provided around the core material, and a core material and a reinforcing sheet. A reinforcing member made of a curable resin filled in the gap.
3 9 . 請求項 3 8の補強部材を 1本または複数本配置し、 その外側を補強 シートで囲み、 一体成形した複合部材。  39. A composite member in which one or more reinforcing members according to claim 38 are arranged, the outside of which is surrounded by a reinforcing sheet, and which is integrally molded.
4 0 . 補強部材と補強シートの間に 泡樹脂製のブロックを設けている請 求項 3 9記載の複合部材。  40. The composite member according to claim 39, wherein a block made of foam resin is provided between the reinforcing member and the reinforcing sheet.
4 1 . 請求項 3 8の補強部材を複数本並べ、 その外側を補強シートで囲み 、 一体成形した風車用の羽根。  41. A windmill blade integrally formed with a plurality of reinforcing members according to claim 38, the outside of which is surrounded by a reinforcing sheet.
4 2 . 補強部材と補強シートの間に発泡樹脂製のプロ、ソクを設けている請 求項 4 1記載の風車用の羽根。  42. The blade for a windmill according to claim 41, wherein a professional and a rubber made of foamed resin are provided between the reinforcing member and the reinforcing sheet.
4 3 . 発泡材からなるブロックと、 柔軟なシート状の多孔性の芯材とを組 み合わせて金型内に入れ、 ついで配合樹脂を充填して一体成形する風車用の 羽根の成形方法。 4 3. A block made of foam material and a flexible sheet-like porous core A method for forming blades for wind turbines, which is put together in a mold, then filled with a compounded resin and integrally molded.
PCT/JP2001/004340 2001-05-23 2001-05-23 Resin form, method for preparing the same, and core material and mold using the same WO2002094553A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/004340 WO2002094553A1 (en) 2001-05-23 2001-05-23 Resin form, method for preparing the same, and core material and mold using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/004340 WO2002094553A1 (en) 2001-05-23 2001-05-23 Resin form, method for preparing the same, and core material and mold using the same

Publications (1)

Publication Number Publication Date
WO2002094553A1 true WO2002094553A1 (en) 2002-11-28

Family

ID=11737341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004340 WO2002094553A1 (en) 2001-05-23 2001-05-23 Resin form, method for preparing the same, and core material and mold using the same

Country Status (1)

Country Link
WO (1) WO2002094553A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106863923A (en) * 2017-03-01 2017-06-20 联想(北京)有限公司 Plate construction with grid laminboard layer and the product casing including the plate construction

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269899A (en) * 1992-03-27 1993-10-19 Unitika Ltd Composite material
JPH06126908A (en) * 1992-10-21 1994-05-10 Unitika Ltd Composite material
JPH06182912A (en) * 1992-12-21 1994-07-05 Unitika Ltd Solid rein composite
JP2001145966A (en) * 1999-11-18 2001-05-29 Fjc:Kk Resin honeycomb structure
JP2001150530A (en) * 1999-11-25 2001-06-05 Fjc:Kk Method of manufacturing for resin honeycomb structure
JP2001164445A (en) * 1999-12-09 2001-06-19 Fjc:Kk Soft porous core material, formed body and method for producing the formed body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269899A (en) * 1992-03-27 1993-10-19 Unitika Ltd Composite material
JPH06126908A (en) * 1992-10-21 1994-05-10 Unitika Ltd Composite material
JPH06182912A (en) * 1992-12-21 1994-07-05 Unitika Ltd Solid rein composite
JP2001145966A (en) * 1999-11-18 2001-05-29 Fjc:Kk Resin honeycomb structure
JP2001150530A (en) * 1999-11-25 2001-06-05 Fjc:Kk Method of manufacturing for resin honeycomb structure
JP2001164445A (en) * 1999-12-09 2001-06-19 Fjc:Kk Soft porous core material, formed body and method for producing the formed body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106863923A (en) * 2017-03-01 2017-06-20 联想(北京)有限公司 Plate construction with grid laminboard layer and the product casing including the plate construction

Similar Documents

Publication Publication Date Title
US5429066A (en) Composite structures and method of making composite structures
US8663791B2 (en) Composite reinforced cores and panels
US4090002A (en) Reinforced fiber structures and method of making the same
US20110244213A1 (en) Core for composite laminated article and manufacture thereof
WO2000048830A1 (en) Frp structure body and production method therefor
JP3631994B2 (en) Long fiber reinforced thermoplastic resin sheet and composite molded body reinforced by the sheet
US3996084A (en) Lock core panel
WO2016054607A1 (en) Composite structural panel and method of fabrication
JP2020157770A (en) Method for manufacturing fiber-reinforced resin structure
US3658612A (en) Method of fabricating cellular foam core structure assembly
US3626044A (en) Process for manufacturing a curved composite foamed panel
EP0293612A2 (en) Composite load-bearing structural element, particularly for vehicle bodies, and relative manufacturing process
EP1937468B1 (en) Formable core material
WO2002094553A1 (en) Resin form, method for preparing the same, and core material and mold using the same
JP2001007625A (en) Radome for antenna and forming method
WO2021111661A1 (en) Method for manufacturing fiber-reinforced resin structure
RU2719527C1 (en) Method for making beam of u-shaped profile of ship hull from polymer composite materials
US20030196581A1 (en) Multi-beam panel structures
JP3113881B2 (en) Composite substrate for resin reinforcement and fiber reinforced resin using the composite substrate
WO2010022547A1 (en) A paper-based composite material
JP2001164445A (en) Soft porous core material, formed body and method for producing the formed body
JP2001150530A (en) Method of manufacturing for resin honeycomb structure
JPH11151772A (en) High strength frp laminated material and its production
JP2022029571A (en) Manufacturing method of interior core material for vehicle, and interior material for vehicle using interior core material for vehicle manufactured by the same
JP2021194886A (en) Method for manufacturing fiber-reinforced resin structure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP