WO2002092809A1 - Novel hexenuronidase, gene coding for the same, and use of these - Google Patents

Novel hexenuronidase, gene coding for the same, and use of these Download PDF

Info

Publication number
WO2002092809A1
WO2002092809A1 PCT/JP2002/004390 JP0204390W WO02092809A1 WO 2002092809 A1 WO2002092809 A1 WO 2002092809A1 JP 0204390 W JP0204390 W JP 0204390W WO 02092809 A1 WO02092809 A1 WO 02092809A1
Authority
WO
WIPO (PCT)
Prior art keywords
hexeneduronidase
enzyme
pulp
activity
acid
Prior art date
Application number
PCT/JP2002/004390
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiya Izumi
Makoto Sakaino
Akira Tsukamoto
Original Assignee
Oji Paper Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co., Ltd. filed Critical Oji Paper Co., Ltd.
Publication of WO2002092809A1 publication Critical patent/WO2002092809A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • D21C5/005Treatment of cellulose-containing material with microorganisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/1063Bleaching ; Apparatus therefor with compounds not otherwise provided for, e.g. activated gases

Definitions

  • the present invention relates to a novel hexeneduronidase, a method for producing the same, and uses thereof, a hexeneduronidase gene, and a microorganism that produces hexeneduronidase.
  • hemicelluloses Polysaccharides other than cellulose, so-called hemicelluloses, are present in plant cell walls, both hardwood and coniferous. In particular, these hemicelluloses are essential components in living cells for binding between lignin and cellulose, which are components of the cell wall, to form a strong cell wall.
  • hemicellulose One of the most abundant and famous hemicellulose is xylane.
  • the xylan backbone is a homopolysaccharide in which xylose is linked to jS 1 ⁇ 4, and is called universal hemicellulose, which is contained not only in all terrestrial higher plants but also in the cell walls of seaweeds and other algae in general. Good.
  • Xylan has recently attracted attention as a biomass as a raw material for xylooligosaccharide xylitol.
  • lignocellulose derived from plant cells. Furthermore, the content of hemicellulose in this lignocellulose is said to be about 30%, and the proportion of hemicellulose in biomass present on the whole earth is about 15%.
  • This xylan is rarely present as a single chain as a homopolysaccharide, and xylose, which is the main chain in the cell wall, is a) arabinose side chain with a1 ⁇ 3 bond from the polysaccharide chain with 31 ⁇ 4 bond, ⁇ 1 ⁇ It exists in the form of having 2-linked 4--0-methylglucin chain on the side chain, and it is estimated that these heteropolysaccharides have various physiological activities in living cells.
  • the xylan which is a polysaccharide
  • it also re-adsorbs while disturbing coloring substances such as lignin and furan derivatives which are to be bleached in a later step.
  • pulp is treated with xylanase (EC 3.2.1.8) to remove the re-adsorbed xylan as a pretreatment before bleaching the pulp and to improve the efficiency of the subsequent bleaching process.
  • xylanase EC 3.2.1.8
  • Some factories have introduced a process to decompose the re-adsorbed xylan and remove colored substances.
  • xylan has an arabinose side chain with ⁇ 1 ⁇ 3 bond and a 4 ⁇ 0-methyldalcuronic acid with 1 ⁇ 2 bond as side chains in addition to the main chain.
  • 4-0-methyldalcuronic acid has a methylated hydroxyl group at the 4-position, so under high-temperature and high-pressure conditions, which are the conditions for pulping chips, the 4-methoxy methoxy group undergoes --elimination and is desorbed to methanol.
  • Hexeneduronic acid is present not only as a side chain in xylan re-adsorbed to pulp, but also in a xylan side chain present in the cell wall of pulp fibers.
  • Hexeneduronic acid reacts with the oxidizing chemicals used in the pulp bleaching process, such as ozone, chlorine and chlorine dioxide, to retain double bonds in its molecule. These bleaching reagents should react with compounds derived from lignin, which is a coloring component, or sugars derivatized with furan.However, hexeneduronic acid, which is not a coloring component, has a double bond in the molecule. The reaction of the bleaching chemicals means that these bleaching chemicals are wasted and reduce the efficiency of the bleaching process. Kappa monovalent is an index that determines the rate of bleaching chemical addition during pulp bleaching.
  • kappa monovalent may be considered as a numerical value of the consumption of permanganate power lime, and more specifically, compounds present in the pulp that may react with oxidizing bleaching chemicals May be considered to indicate the amount of Hula generated from lignin and sugar Colored substances such as butane derivatives have been described as monovalent kappa.
  • Hexeneduronic acid is not a coloring substance, but is counted as a power value because the double bond in the molecule reacts with potassium permanganate. Hexeneduronic acid is also an acidic sugar having a carbonyl group in the molecule.
  • the hexoxyperonic acid group has a negatively charged lipoxyl group, and a heavy metal is chelated to the hexeneduronic acid molecule in the pulp.
  • the heavy metal compound reacts with the bleaching chemicals, so that the chemicals are wasted and the bleaching efficiency deteriorates.
  • the L0KP pulp which has been subjected to oxygen bleaching after the digestion step in the pulp bleaching step, has a cutoff value of about 10 points, of which about 5 points are said to be derived from hexeneduronic acid. If this hexeneduronic acid can be removed in advance before bleaching with an oxidizing bleaching chemical, it can be easily analogized that the bleaching chemicals in the subsequent stage can be reduced.
  • a common method for removing hexeneduronic acid is to treat the pulp with an acid (WO096 / 12063 pamphlet).
  • an acid WO096 / 12063 pamphlet
  • hexene and oxalic acid are mainly hydrolyzed due to the hydrolysis of glycosidic bonds between them and xylan. It can be removed from the chain and removed.
  • An object of the present invention is to provide a novel hexeneduronidase useful for pulp bleaching, a method for producing the same, and uses thereof.
  • the present inventors conducted intensive research based on the above-mentioned problems, searched for hexenduronidase-producing bacteria, and conducted extensive screening, and as a result, produced hexenduronidase from soil in Shinonome, Koto-ku, Tokyo.
  • the present invention has found a novel microorganism and a novel enzyme that degrades hexenduronic acid from a culture of the microorganism, and has succeeded in cloning and highly expressing the gene encoding hexenduronidase. Was completed.
  • Hexenduronidase wherein the enzyme activity is enhanced by 2-mercaptoethanol or dithiothreitol.
  • the microorganism is Paenibacillus sp. 7_5, (6) Hexeneperoni
  • (11) A method for culturing a microorganism belonging to the genus Paenibacillus which produces hexeneduronidase in any one of (1) to (10) in a medium, and collecting hexeneduronidase from the resulting culture.
  • Paenibacillus sp. 7-5 capable of producing hexeneduronidase (Accession No. FERM P-18225).
  • (16) A host cell transformed by the expression vector of (15).
  • (17) A method for producing a genetically modified hexenduronidase, comprising culturing the host cell of (16) in a medium, and collecting hexenduronidase from the resulting culture.
  • a bleach containing the hexeneduronidase of any one of (1) to (10) as an active ingredient is provided.
  • a method for bleaching pulp comprising treating pulp with the bleaching agent according to (18) or (19).
  • FIG. 1 is a diagram showing the optimal ⁇ of hexene peronidase of the present invention.
  • FIG. 2 is a diagram showing the stable ⁇ range of hexene peronidase of the present invention.
  • FIG. 3 is a graph showing the optimal temperature of hexeneduronidase of the present invention.
  • FIG. 4 is a diagram showing the temperature stability of hexeneduronidase of the present invention. Description of Sequence Listing
  • SEQ ID NO: 7 is a primer.
  • SEQ ID NO: 8 is a primer.
  • Hexenduronidase activity refers to hexeneduronate (4-deoxy-i3 -L-threo-hex-4-enopyranosyluronic acid) and 5-glycolyl by hydrolyzing between the glycoside-linked aglycone via the aldehyde group at position 1.
  • Enzyme activity that produces 2-furancarboxylic acid or 2-fruit acid. Specifically, the activity is
  • Action 1 Hexeneduronic acid bound as a side chain to the xylan main chain; activity of hydrolyzing hexeneduronic acid to form 5-formyl-2-furancarboxylic acid or 2-fluoroic acid Or
  • Action 2 Hydroxide of hexeneduronic acid, which is produced when mucopolysaccharide, hyaluronic acid, and acidic polysaccharides containing dalc hexonic acid as constituent sugars such as vectin and gellan are degraded by lyase that degrades them.
  • Action 3 Hydrogenation of a synthetic substrate in which hexeneduronic acid and a substance such as a fluorescent substance, a chemiluminescent substance or a sugar are glycosidically bonded, to form 5-formyl-2-furancarboxylic acid or 2-floica. An activity that produces a seed,
  • the enzyme of the present invention is produced by decomposing acidic polysaccharides containing glucuronic acid as constituent sugars such as mucopolysaccharide, hyaluronic acid, and pectin and geran by lyase which degrades them.
  • the enzyme of the present invention has, in addition to having the above-mentioned enzyme activity, a molecular weight of about 40,000 to about 45,000, and the presence of a 2-mercaptoethanol or dithiosyl 1 reducing agent.
  • the activity is enhanced.
  • the degree of enhancement is usually 1.2 times or more, preferably 1.5 times or more, more preferably 1.7 times or more, most preferably 2 times or more, and still more preferably, compared to the activity in the absence of a reducing agent. Is more than 2.5 times.
  • the enzyme of the present invention can have at least one or all of the following properties.
  • Isoelectric point It is around pH 4.5.
  • stable pH means a pH capable of maintaining an enzyme reaction activity of 70 to 100% of the enzyme reaction activity at the optimum pH.
  • the enzyme of the present invention may be directly isolated from a microorganism, or may be obtained by a gene recombination method.
  • the microorganism include microorganisms belonging to the genus Paenibacillus which produce the above hexeneduronidase. Specifically, Paenibacillus sp. 7_5 (indication for identification: # 7-5) or a mutant derived from this microorganism is preferred.
  • This microorganism is a new microorganism, Deposited on February 23, 2001 at the National Institute of Advanced Industrial Science and Technology (new name: National Institute of Advanced Industrial Science and Technology (AIST) ⁇ Patent Organism Depositary Center 1, Higashi 1-chome 1-Chuo 6th, Tsukuba-shi, Ibaraki Pref. Deposit number FEO P-18225) and transferred to the deposit based on the Budapest Treaty on March 22, 2002 by the original deposit, and given the deposit number FERM BP-7972.
  • microbiological properties of Paenibacillus sp. 7-5 are as follows.
  • Strain # 7_5 shows swelling of bacterial cells due to spores and is negative for anaerobic growth positive, ONPG positive, casein hydrolysis, arginine hydrolase, indole, gelatinase, nitrate reduction, etc. It is considered to be a microorganism belonging to the genus Baenibacillus (Paenibaci11us). This strain is presumed to be Paenibacillus lus lautus or its closest relative, since acid production from carbohydrates does not involve gas evolution.
  • the microorganism that produces the enzyme of the present invention is not limited to the exemplified microorganisms as long as it has an enzyme having the above-mentioned properties, and is preferably a microorganism belonging to the genus Paenibacillus, more preferably a strain # 7-5 and a strain thereof. Induced strain.
  • Such derived strains can be obtained by using conventional techniques such as mutagenesis by irradiation with ultraviolet rays or mutagenic substances, or by mutagenesis by genetic modification of the microorganism genome. it can.
  • the enzyme of the present invention When the enzyme of the present invention is produced from a microorganism, the enzyme can be obtained by a method comprising culturing a microorganism producing the enzyme in a medium and recovering hexeneduronidase from the resulting culture. .
  • the microorganism is Paenibacillus sp. 7-5 capable of producing hexeneduronidase
  • the enzyme produced by the microorganism has the amino acid sequence represented by SEQ ID NO: 1.
  • the invention also encompasses variants of the enzyme, specifically one or more, preferably in the amino acid sequence of SEQ ID NO: 1, Is a hexeneduronidase having an amino acid sequence containing deletion, substitution, insertion or addition of one or several amino acids and having hexeneduronidase activity.
  • several means usually 2 to 9, preferably 2 to 7, and more preferably 2 to 5.
  • the variant has a homology of 70% or more, preferably 80% or more, more preferably 90% or more, most preferably 95% or more, with the amino acid sequence shown in SEQ ID NO: 1. Even more preferably hexeneduronidase which is at least 98%.
  • any source capable of producing hexeneduronidase can be used.
  • the carbon source agricultural waste such as wheat bran, pulp, bagasse, corn fiber, rice straw or plant fiber containing xylan or xylan, or plant fiber can be used.
  • nitrogen compounds such as yeast extract, peptone, various amino acids, soybean, corn steep liquor, and various inorganic nitrogen can be used.
  • various salts, vitamins, minerals, and the like can be appropriately used.
  • the culture temperature and pH may be any as long as the bacteria grow and produce hekinperonidase.
  • the culture temperature may be 20 to 50, and the pH may be 5 to 9. If the bacteria are thermotolerant, the temperature may exceed 50 ° C.
  • the cells are separated and the cells are treated enzymatically or physicochemically to obtain hexene-nidase present in the cells.
  • Hexeneduronidase can be concentrated or solidified by dialysis, salting out, ultrafiltration, lyophilization or the like. Furthermore, hexeneduronidase can be purified by appropriately combining the culture filtrate with ammonium sulfate fractionation, molecular weight fractionation by gel filtration, various ion exchange resins, hydroxyapatite, isoelectric focusing, etc., and repeating the same. .
  • the present invention includes the amino acid sequence represented by SEQ ID NO: 1, or the nucleotide sequence of SEQ ID NO: 2 or the amino acid sequence encoded by the target DNA sequence contained in E. coli JM109 / pUC19 (7-5). It also includes recombinant hexenduronidase or a mutant thereof.
  • E. col i JM109 / pUC 19 (7-5) is a registered trademark of the National Institute of Advanced Industrial Science and Technology (AIST) (new name: National Institute of Advanced Industrial Science and Technology) Was deposited on February 23, 2001 at Tsukuba East 1-chome, 1-Chome No.
  • Ibaraki Prefecture (Accession No.FE-18182), and by the original deposit on March 22, 2002 It has been transferred to a deposit under the Pust Treaty and has been assigned the accession number FERM BP-7973.
  • the mutant has the above-mentioned meaning.
  • an expression vector containing the hexene peronidase gene is prepared, an appropriate host cell is transformed with the vector, the obtained host cell is cultured in a medium, and a system is prepared from the obtained culture.
  • the enzyme can be obtained by a method including collecting hexendronidase.
  • the hexeneduronidase gene is a gene (DNA or cDNA) encoding an enzyme having the above-mentioned properties, and specifically, a gene encoding the amino acid sequence of SEQ ID NO: 1 or homology to the amino acid sequence. Is 70% or more, preferably 80% or more, more preferably 90% or more, even more preferably 95% or more, and even more preferably 98% or more. . Specifically, it is a gene consisting of the nucleotide sequence shown in SEQ ID NO: 2, or a gene containing the nucleotide sequence shown in SEQ ID NO: 2.
  • Cloning of the hexeneduronidase gene of the present invention from a bacterial source can be carried out by a method commonly used in the art (for example, Sambrook et al., Molecular Cloning A Laboratory Manual, Second edition, Coll. Spring Harbor Laboratory Press, 1989). Specifically, after preparing a genomic library or a cDNA library from a bacterial source, chemically synthesizing DNA capable of encoding an appropriate partial sequence in the amino acid sequence of SEQ ID NO: 1 (for example, automated DNA synthesis). However, the target gene can be screened by using this as a probe, or the target gene can be screened by hybridization with DNA having the nucleotide sequence of SEQ ID NO: 2 or a fragment thereof.
  • Hybridization is performed under low, medium or high stringency conditions and then at relatively high temperature and relatively low ionic strength.
  • hybridization is performed in an appropriately diluted SSC at an appropriate temperature. The higher the temperature (eg, about 5 to 10 ° C below the normal melting temperature (Tm)) and the lower the ionic strength (eg, 0.1 to 1 x SSC), the higher the stringency Become.
  • Tm normal melting temperature
  • ionic strength eg, 0.1 to 1 x SSC
  • Examples of hybridization conditions are, for example, Ausbel et al., Short Pro tocols In. It is described in Molecular Biology (third edition), John Wiley & Sons, Inc., and its disclosure can be used.
  • the gene is amplified by polymerase chain reaction (PCR) using a primer (usually 10 to 30 bases) derived from the nucleotide sequence of SEQ ID NO: 2, or Into a suitable cloning vector such as plasmid phage and introduced into a bacterium such as Escherichia coli to amplify the gene of interest (Sambrook et al., Supra).
  • PCR polymerase chain reaction
  • An expression vector generally contains a promoter, and can optionally contain an origin of replication, a terminator, a ribosome binding site, a signal sequence, an enhancer, and the like. Examples of expression vectors include commercially available vectors and those described in the literature.
  • bacterial vectors such as pQE (Qiagen), pET (Novagen), pBluescript II SK (Stratagene), Vectors for yeast such as pUC118 (Takara Shuzo), pHS19, pHS15, pG-1, XTl (Stratagene), BPV, pMSG (Pharmacia), etc.
  • pcDNAI, pcDM8 (Funakoshi) as vector for animal cells , PREP4 (Invitrogen) and the like.
  • Promoter is selected depending on the host, in the case of a bacterial host trp promoter, lac promoter, P L promoter, is illustrated and P R promoter and foremost, Myu05 promoter if a yeast host, PGK promoter Isseki one, GAP promoter mono-, Examples include ADH promoter, GPD promoter, heatshock, and oocyte polypeptide promoters.>
  • examples include cytomegalovirus immediate early gene promoter, SV40 early promoter, retrovirus promoter, heat shock promoter, etc.
  • Hosts include bacteria such as E.
  • the expressed enzyme can be purified from the medium or the cells in the same manner as described above.
  • Culture medium If necessary, after concentration, salting out, solvent extraction, precipitation, various chromatographies (ion exchange, gel filtration, affinity, hydrophobic interaction, etc.), HPLC, electrophoresis, chromatofocusing, Etc. can be performed alone or in combination as appropriate.
  • the enzyme can be purified by the same method as described above after mechanically destroying the cells using a mill or the like or chemically using a hypotonic solution.
  • the present invention also relates to an antibody that recognizes the above hexeneduronidase protein.
  • the antibody is an antibody that specifically recognizes the protein of the present invention.
  • the term "specifically” means that the enzyme reacts immunologically with the enzyme of the present invention but does not react with other related enzyme proteins.
  • the antibody is a monoclonal or polyclonal antibody, or an antibody fragment thereof (eg, Fab, Fab ', F (ab') 2 , Fv, etc.).
  • Antibodies can be prepared by conventional techniques.
  • a polyclonal antibody can be obtained, for example, by immunizing an animal (eg, a heron) with the protein or a fragment thereof, and obtaining an antibody from blood collected from the animal by a known method.
  • Monoclonal antibodies are obtained by immunizing mice and rats with the protein, removing spleen cells, fusing the spleen cells with myeloma cells, screening for hybridomas producing the desired antibody, and implanting them into the animal's peritoneal cavity. Later, antibodies from the eyes ⁇ ) can be obtained from the ascites. Antibodies can be used, for example, to detect hexendocynidase from various microbial sources.
  • the present invention relates to a culture obtained by culturing a microorganism belonging to the genus Paenibacillus producing the hexeneduronidase or the transformant in a medium, or a hexeneduronidase or a recombinant having the above-mentioned properties.
  • a bleach containing hexeneduronidase as an active ingredient is disclosed.
  • the present invention also provides a pulp bleaching method, comprising treating pulp with the bleaching agent.
  • a pulp bleaching method comprising treating pulp with the bleaching agent.
  • chemical bleaching and / or alkali extraction can be performed either before, after or during the pulp treatment.
  • the definition of enzyme activity was defined as the decrease in the absorption per unit time ( ⁇ 232) of the double bond in the hexeneduronic acid molecule due to the degradation of hexeneduronic acid.
  • Hashimoto et al. Have separated and purified hexeneduronidase from Bacillus sp. GL1 using oligosaccharides containing unsaturated sugars, which are generated when geland-xanthan gum is degraded by lyase, as a substrate. (Archives of Biochemistry and Biophysics Vol. 368, No. 2, August 15, pp. 367-374, 1999).
  • the method of measuring enzyme activity by Hashimoto et al. Is exactly the same as that of Peter et al., Utilizing the fact that the double bond of the unsaturated sugar has an absorption near 232 nm. The decrease is measured by an absorption spectrophotometer and the enzyme activity is defined.
  • Buhyat et al Have proposed hexeneduronidase treatment of kraft pulp to enzymatically remove hexeneduronic acid generated during kraft cooking of hardwood chips and to efficiently perform pulp bleaching in the subsequent stage. (W095 / 33883). Buhyat et al. Decompose xylan containing hexene and oxalic acid in the side chain of pulp hemicellulose, which is produced when cooking and pulping wood chips, using xylan-degrading enzymes such as xylanase and xylosidase.
  • the activity of hexene mouth nidase is measured by using a xylo-oligosaccharide containing hexeneduronic acid as a substrate.
  • Their method for measuring the activity of hexene peroxidase utilizes the fact that aglycone, which is glycosidically bound to hexenduronic acid, is liberated by hexenduronidase.
  • the xylobiose or xylotriose at the non-reducing end It is stated that the reaction between hexeneduronic acid and hexeneduronidase, which is / 3-linked to the loose, hydrolyzes the bond between hexeneduronic acid and xylo-oligosaccharide, and that xylobiose or xylotriose is generated at this time. ing.
  • the enzyme activity was measured, and the enzyme was not purified. Therefore, the existence of the enzyme as a protein has not been proved.
  • Hexenduronidase has a background in which the method for measuring enzyme activity is extremely difficult and research has been slow.
  • a method that utilizes the fact that the absorption of 232 ⁇ of unsaturated sugars is reduced by an enzymatic reaction is also used in the enzyme sample. It is difficult to measure the decrease in absorption around 232 nm because it contains compounds with absorption around 25 ⁇ .
  • the method using an unsaturated saccharide bonded to a xylo-oligosaccharide as a substrate also cannot rule out the possibility that other enzymes such as xylanase entrapped in an enzyme sample will produce xyloligosaccharide if the purification of the substrate is insufficient. Therefore, it is not practical as a true enzyme activity method. Therefore, the present inventors have been required to develop a substrate for enzyme activity with sufficient specificity and detection sensitivity of the enzyme activity.
  • a hexeneduronic acid derivative is a synthetic substrate for the hexeneduronidase enzyme, and forms a glycosidic bond between the hydroxyl group at position 1 of hexeneduronic acid and a group on a fluorescent substance, a chemiluminescent substance, or a coloring substance.
  • a compound represented by the following formula (I) obtained by When the derivative is subjected to the action of hexeneduronidase, it is cleaved at this glycosidic bond to be decomposed into hexeneduronic acid and a fluorescent, chemiluminescent or chromogenic substance.
  • Z represents 0 (oxygen) or S (sulfur)
  • X represents a fluorophore group, a chemiluminescence group, or a chromophore group.
  • the X group in the above formula (I) is a fluorophore group, a chemiluminescence group or a chromophore group.
  • fluorophore groups include, but are not limited to, substituted or unsubstituted cumaryl, fluoresynyl, naphthyl (eg, i3-naphthyl) and the like.
  • substitution group examples include a group capable of forming a glycosyl bond with the hydroxyl group at position 1 of hexeneduronic acid (preferably a hydroxyl group and a -SH group), which substantially affect the enzymatic action of hexeneduronidase. Any substituent may be used as long as it has no effect on the group, and the like.
  • X is a cumaryl group, a fluoresynyl group, or a naphthyl group, a glycosidic bond with hexeneduronic acid is formed via a hydroxyl group of these groups.
  • chemiluminophore group is luciferin derived from fireflies or mushrooms.Enzymatically released luciferin can detect the light emitted when luciferase is oxidized to oxyluciferin by the action of luciferase. it can.
  • a chromophore group is p-nitrophenoxy group.
  • p-nitrophenoxy group yellow-yellow to yellow because p-ditrophenol dissociates as a result of the action of hexene ⁇ -nidase
  • the degree of brown coloring can be measured spectroscopically.
  • Hexeneduronic acid derivatives containing a fluorophore group as the X group in the above formula (I) are preferred.
  • the fluorophore group is preferably a substituted coumaryl group, ie, a derivatized phenyl derivative group.
  • an example of a preferred hexeneduronic acid derivative is umbelliferyl-14-dexoxy-1-hex-14-enopyranoside hydroic acid represented by the following formula (II).
  • the hexeneduronic acid derivative can be produced or synthesized according to the following steps.
  • the hydroxyl group of which is substituted or unsubstituted alkanol group eg, acetyl group, acetyl group substituted with 1 to 3 halogen atoms (eg, monochloroacetyl group, Trialkylsilyl group [for example, tri-lower alkyl
  • a protective group such as an aryl group (eg, a trimethylsilyl group, a triethylsilyl group, etc.), an arylalkyl group (eg, a substituted or unsubstituted phenyl lower alkyl group, eg, a substituted or unsubstituted benzyl group), or a similar protecting group.
  • the carboxyl group can be substituted with a substituted or unsubstituted alkyl ester (eg, methyl ester, ethyl ester, etc.), arylalkyl ester (eg, benzyl ester, P-methoxybenzyl ester, etc.), or a similar compound.
  • Protect in ester form Preferably, the hydroxyl group is protected in the form of an acetyl group and the hydroxyl group in the form of a methyl ester.
  • the lower alkyl used herein refers to Cj-( ⁇ alkyl, preferably methyl and ethyl.
  • the halogen atom used in the present specification is fluorine, chlorine, bromine or It means an iodine atom.
  • a glycosylation reaction can be carried out in the presence of a silver salt or a mercury salt according to the known Koenigs-Knorr method.
  • the protected glycosylated compound is subjected to deoxylation at the 4-position of the protected ⁇ _ galactovilanosidonic acid moiety to convert it to a protected hexeneduronic acid moiety.
  • the protecting group of the protected hexeneduronic acid moiety of the glycosylated compound is deprotected and converted to the hexeneduronic acid moiety.
  • the basic principle of measuring the enzyme activity of hexeneduronidase is that a hexeneduronic acid derivative to which a fluorophore group, a chemiluminescent group or a chromophore group is bound causes hexeneduronidase to act, thereby breaking the glycosidic bond.
  • a hexeneduronic acid derivative to which a fluorophore group, a chemiluminescent group or a chromophore group is bound causes hexeneduronidase to act, thereby breaking the glycosidic bond.
  • a fluorescent, chemiluminescent or chromogenic substance and the intensity of that signal is measured directly or indirectly by physicochemical methods
  • the enzyme activity of the hexeneduronidase can be measured. That is, the hexeneduronic acid derivative produced or synthesized as described above can be used as a substrate for measuring the activity of a hexeneduronidase enzyme.
  • the amount of the enzyme that releases l / mol of hexeneduronic acid per minute in the reaction system can be defined as 1 unit.
  • the reaction may be prepared so that the substrate is prepared at an appropriate concentration (for example, about 100 M) in the reaction system, and reacted with various sample solutions to measure the activity of hexene-nidase.
  • a substrate solution is prepared in a buffer such as a phosphate buffer or Tris-HCl (for example, at a pH of about 6 to about 8), and an enzyme solution is added to the substrate solution at an enzyme to substrate ratio of about 1 : 10 to about 1: 100 and incubate for about 1 to 30 minutes, for example at room temperature to 55. Thereafter, the enzyme reaction is stopped by a method such as adding an alkaline buffer such as glycine-NaOH buffer (pH about 10) to the reaction system.
  • an alkaline buffer such as glycine-NaOH buffer (pH about 10)
  • the fluorescence, chemiluminescence or chromogenic signal generated at this time can be measured using a fluorimeter or an absorptiometer.
  • the excitation wavelength, emission wavelength, or absorbance are appropriately selected depending on the characteristics of the signal. For example, in the case of fluorescent 4-methyl-7-hydroxycoumarin released as a result of an enzymatic reaction, the excitation wavelength is about 355 nm and the emission wavelength is about 455 nm.
  • the enzyme of hexeneduronidase can be directly concentrated without concentrating the sample solution from various bacterial cultures or cultured cells of multicellular organisms. Activity can be measured.
  • concentration of the synthesized hexeneduronidase measurement substrate was adjusted to 100 M in the reaction system, and it was set to react with various sample solutions to measure hexeneduronidase activity. Specifically, a 200 M substrate solution was added to a phosphate buffer.
  • the optimal pH and pH stability of the enzyme were determined using acetate buffer (pH 5.0 or less), phosphate buffer (pH 6.0-7.0), Tris-HC1 (pH 7.0-8.5), glycine-NaOH
  • the enzyme activity was measured using a buffer (pH 9.0 to 10.5) (Fig. 1).
  • a buffer pH 9.0 to 10.5
  • FIG. 1 it was found that the optimum pH for hexeneduronidase activity was in the range of 6 to 8, especially 6.5 to 7.5.
  • the enzyme activity was measured in a phosphate buffer at pH 6.5 after each enzyme was kept in a predetermined buffer of 50 mM at 4 ° C. for 24 hours (FIG. 2).
  • the enzyme was stable in the range of pH 5.0 to 10.0.
  • the optimal temperature for the enzymatic reaction was measured in a pH 6.5 50 phosphate buffer ( Figure 3). All enzyme reaction times were 30 minutes. As can be seen from Fig. 3, the optimum temperature was found to be around 50 ° C.
  • the temperature stability was measured at 37 ° C in a pH 6.5, 50 mM phosphate buffer after maintaining at a predetermined temperature for 30 minutes in a pH 6.5, 50 mM phosphate buffer (Fig. 4). As shown in FIG. 4, the stability of the enzyme was about 80% or more after 45 minutes of treatment at 45 ° C.
  • the isoelectric point was measured using Amersham-Pharmacia Ampholine.
  • the equipment used was a Lottopher (Piorad), and a pH gradient was created from around pH 2.0 to around pH 11 and the activity at each pH was measured.
  • the isoelectric point of hexene peronidase was PH 4.5. there were. ⁇ Measurement of molecular weight of enzyme>
  • the molecular weight of the purified hexeneduronidase was measured by polyacrylamide gel electrophoresis. As a result, the molecular weight of the enzyme was about 40,000.
  • Strain # 7-5 is a new species of the genus Paenibacillus, named Baenibacillus sp. 7-5, and deposited at the National Institute of Advanced Industrial Science and Technology, Patent Organism Depositary under the accession number FERM BP-7972. I have.
  • DM Library One is Paenibacill It can be prepared by extracting chromosome ⁇ A from SP7-5, treating it with an appropriate restriction enzyme, ligating it into an appropriate vector, and introducing it into a compatible host. Conventional methods can be used to extract chromosomal DNA (eg, Sambrook et al., Molecular Cloning; Cold Spring Harbor Laboratory Press (1989) Vol. 1, Blin and Stafford).
  • a gene fragment of an appropriate size is inserted into a cloning vector having a similar cut surface.
  • the vector containing the gene fragment any vector such as a pUC system can be used, but a phage vector or a cosmid vector may be used.
  • a vector containing these gene fragments is transformed into a host such as Escherichia coli or yeast. After the transformed host is cultured on a normal plate plate on which the host can grow, colony hybridization is performed to select a host containing the fragment of the target gene.
  • a probe for performing colony hybridization a probe prepared based on amino acid information of the enzyme protein is used. The nucleotide sequence of the gene fragment thus cloned can be analyzed by the dideoxy method using a radioactive label or a fluorescent label, the maxam Gilbert method, or the like.
  • Hexeneduronidase can be produced by culturing Paenibacillus sp. 7-5. 7-5 strains can be used as carbon and nitrogen sources for cultivation. Any of these can be used.
  • the carbon source xylan or xylan-containing wheat bran, pulp, bagasse, corn fiber, agricultural waste such as rice straw, plant fiber, or the like can be used.
  • nitrogen compounds such as yeast extract, peptone, various amino acids, soybean, corn steep liquor, and various inorganic nitrogen can be used.
  • Various salts, minerals, minerals, and the like can be used as appropriate.
  • the cultivation temperature and pH may be any as long as the bacteria grow and produce hexene-nidase, and the cultivation temperature is 20 to 50 ° C, preferably 35 to 45 ° C, and the pH is 5 to 50 ° C. 9, preferably 6-8.
  • the cells are separated, and the cells are treated enzymatically or physicochemically to obtain hexenduronidase present in the cells.
  • Such a crude hexeneduronidase enzyme solution has an optimal reaction temperature of about 35 to about 55 ° C, preferably about 40 to about 50 ° C, and an optimum pH of about 5.5 to about 8.5, preferably about 6 ° C. 0 to about 1.5.
  • Hexeneduronidase can be concentrated or solidified by dialysis, salting out, ultrafiltration, lyophilization or the like. Furthermore, hexeneduronidase can be purified by appropriately combining the culture filtrate with ammonium sulfate fractionation, molecular weight fractionation by gel filtration, various ion exchange resins, hydroxyapatite, isoelectric point fractionation, and the like, and repeating the same. The specific purification method is described in Examples.
  • the hexeneduronidase of the present invention can also be purified by expressing a cloned gene.
  • an enzyme obtained by expressing a gene is referred to as “recombinant hexeneduronidase”.
  • high production can be achieved by expressing the hexeneduronidase gene obtained by an appropriate method using an appropriate host vector.
  • a vector used for expression a plasmid vector, a phage vector and the like are mainly used. Escherichia coli, Bacillus subtilis, yeast and the like are mainly used as hosts.
  • any source that can assimilate and produce thermostable xylanase can be used.
  • the carbon source agricultural waste such as wheat bran, pulp, bacas, corn fiber, rice straw, or plant fiber can be used.
  • the nitrogen source nitrogen compounds such as yeast extract, peptone, various amino acids, soybean, corn steep liquor, various inorganic nitrogen, and the like can be used.
  • various salts, vitamins, minerals, and the like can be appropriately used.
  • the culture temperature and pH may be any as long as the bacteria produce heat-resistant xylanase.
  • the culture temperature is preferably 37 ° C, and the pH is preferably 7.
  • the enzyme can be purified by appropriately combining and repeating ammonium sulfate fractionation, molecular weight fractionation by gel filtration, various ion exchange resins, hydroxyapatite, isoelectric point fractionation, and the like.
  • the molecular weight, optimum pH, optimum temperature, N-terminal amino acid sequence, etc. of the obtained purified enzyme were determined by the production of Paenibacillus sp. It can be determined by comparing with hexeneduronidase. Specific examples of obtaining enzymes will be described in Examples.
  • pulp is bleached by chemical bleaching and Z or alkali extraction before, during or after the enzyme treatment.
  • the reaction conditions are a reaction temperature of about 40 to about 70 ° C. and a pH of about 5 to about 8 for the culture filtrate (crude enzyme solution), and a reaction temperature of about 40 to about 7 (TC, pH
  • the reaction time is about 0.2 to about 24 hours, preferably about 0.5 to about 8 hours.
  • the reagents used for chemical bleaching include chlorine, chlorine dioxide, and nitrogen dioxide. , Hypochlorite, oxygen, hydrogen peroxide, ozone, etc. Many alkaline compounds known to those skilled in the art can be used for alkali extraction. Alkali treatment can be performed while adding oxygen, hydrogen peroxide, etc. using an alcohol of about 0.5 to about 3% (vs. dry pulp).
  • One loopful of Paenibacillus sp. 7-5 was inoculated with this, and cultured with reciprocal shaking at 37 C (amplitude: 25, 300 reciprocations: Z minutes).
  • the cells were separated by centrifugation (10, OOOrpm X 10 minutes), and the cells were suspended in 10 ml of 50-pass phosphate buffer.
  • the solution was treated on ice using an ultrasonic crusher (S0NIFIER 450, manufactured by Branson) at an output of 10 kHz for 5 minutes to obtain a crude enzyme solution of hexeneduronidase.
  • a 200 M synthetic substrate solution was prepared with phosphate buffer (pH 7.0: 100 mM).
  • the enzyme solution was added to the substrate solution 10 ⁇ 1, and the mixture was incubated at 37 ° C for 30 minutes.
  • the substrate is umberyphryl-4-dexoxy-hex-4_enopyrazidou humic acid (see Example 6).
  • 100 Hi of glycine-NaOH buffer ( ⁇ 5: 500 mM) was added to the reaction system to stop the enzyme reaction.
  • the calibration curve was prepared using a known concentration of 4-0-methylbenbelliferone (manufactured by Sigma).
  • the hexeneduronidase activity was defined as 1 unit (Unit) of the enzyme producing 1 mol of hexeneduronic acid per minute under the above conditions.
  • the hexene peronidase activity in the crude enzyme solution was 0.05 U / ml.
  • steam sterilization was performed at 121 ° C for 15 minutes.
  • 1 ml of the culture solution obtained in Example 1 was added, and the mixture was reciprocally shake-cultured (amplitude 10 cm, 100 reciprocations // minute) at 37 for 1 day. After completion of the culture, the culture supernatant was obtained by centrifugation (8, OOOrpmX10 minutes).
  • the culture supernatant was subjected to ammonium sulfate fractionation, and a 20-60% fraction was collected by centrifugation (20, OOOrpm X 10 minutes). Then, a 20 ⁇ phosphate buffer containing 0.9M ammonium sulfate ( ⁇ 7.0 ) was used as an external solution for dialysis. 20 mM phosphate buffer containing ammonium sulfate Hydrophobic chromatography was performed using Petiltoyopearl 650-M (Tosoichi, diameter 2.5 cm ⁇ 30 cm) equilibrated with — (pH 7.0).
  • the adsorbed fraction is eluted with a concentration gradient that reduces the concentration of ammonium sulfate in the phosphate buffer from 0.9M to 0M. Fractionated. As a result, hexeneduronidase activity eluted in one peak.
  • the active fraction was collected, dialyzed against phosphate buffer (pH 7.0) as an external solution, and equilibrated with the same buffer.
  • DEAE Toyopearl 650-M Tosoichi, diameter 2.5cm x 30cm) ) To perform anion exchange chromatography. After washing with the same buffer, the adsorbed fraction was eluted by applying a gradient to raise the NaC1 concentration in the buffer between 0 M and 0.5 M, and fractionated in 3.0 ml portions. Hexeneduronidase was recovered as a single peak.
  • Hexene peronidase fraction was concentrated to a volume of 2. Oml with Centricon (Amicon). Hexane peronidase was applied to a column of Sephacryl S-200 (2.5 cm x 95 cm) (Pharmacia) equilibrated with phosphate buffer (pH 7.0), and 50 mM phosphate buffer (pH 7.0. Gel filtration was performed using (0). The flow rate was 30 ml / hr, and 5 ml was collected. Hexeneduronidase was recovered as a single peak.
  • the recovered hexene peronidase fraction was concentrated to 1. Oil using Centricon (Amicon).
  • the concentrated enzyme sample was desalted and subjected to polyacrylamide gel electrophoresis.
  • electrophoresis was performed at 4.5 mA on a concentration gel 4.5% and electrophoresis gel 10% at 50 mA, and electrophoresis was performed until the tip of the electrophoresis was 5 mm from the end of the gel.
  • the polyacrylamide gel was immersed in phosphate buffer (PH 7.0) containing 100 zM synthetic substrate, kept at 40 for 15 minutes, and the enzyme in the gel was reacted with the synthetic substrate.
  • the target enzyme On the electrophoresis, the target enzyme was moved to a position having a molecular weight of about 40,000.
  • the yield of purified hexenduronidase relative to the crude enzyme solution was 0.28%, and the specific activity was 3.59 U / mg.
  • steam sterilization was performed at 12 C for 15 minutes.
  • One loopful of Paenibacillus sp. 7-5 strain was inoculated into this, and cultured at 37 ° C overnight with reciprocal shaking (amplitude 10 cm, 100 reciprocal Z minutes). After completion of the culture, cells were obtained by centrifugation (10,000 rpm ⁇ 10 minutes).
  • the cells were suspended in 5 ml of a glucose-lysozyme solution (50 mM glucose, 10 mM EDTA, 25 mM Tris-HCl buffer (pH 8.0), 4 mg / ml lysozyme) and allowed to stand at room temperature for 15 minutes.
  • 5 ml of an alkaline solution (0.2 N Na0H, 1% SDS) was added, mixed gently, and cooled on ice for 15 minutes. Thereafter, phenol extraction and black-mouthed form extraction were performed, and the extracted aqueous layer was dialyzed at 4 ° C against an iOmM TE solution containing 5mMEMi to obtain genomic DNA.
  • hexeneduronidase was purified by the method of Example 2.
  • the amino acid sequence at the N-terminal side of the purified protein was determined by Edman degradation using a gas-phase sequencer 1000A, Hewlett Packard), and this was designated as HEX3 (SEQ ID NO: 3).
  • Purified hexopenidase was digested with lysylendopeptidase (Acryromobacter Protease I), and the digested peptide fragments were separated and purified by polyacrylamide gel electrophoresis.
  • HEX4 SEQ ID NO: 4
  • HEX5 SEQ ID NO: 5
  • HEX6 SEQ ID NO: 6
  • Example 5 Cloning of DNA fragment containing hexeneduronidase gene Equivalent to genomic DNA xOO xg prepared in Example 3 was treated with 100 units of each restriction enzyme of BamHI and KpnL Sal L Pstl at 37 units for 18 hours each. After digestion, the reaction was continued for an additional 6 hours with an additional 100 units of restriction enzyme. An amount equivalent to 10 zg of the amount of DNA fragmented from this reaction solution was subjected to 0.8 agarose gel electrophoresis.
  • a primer for PCR was designed. Chemical synthesis is performed based on the designed primer,
  • R is G or A
  • I is inosine
  • H is A or C or T
  • is ⁇ or C
  • N is A or C or G or T, respectively.
  • the double-stranded DM PCR fragment was cloned using a TA cloning kit (manufactured by INVITROGEN).
  • the base sequence of the cloned PCR fragment was analyzed using a DNA sequencer (Model 310, manufactured by ABI). As a result, a DNA sequence encoding the amino acid of SEQ ID NO: 3 was found 32 bp or less from the 5 'end. did. From this, the PCR fragment is a DM fragment that is complementary to the 221 bp gene fragment from the N-terminal side of hexeneduronidase.
  • DNA-labeled kit (Gene Images TM, manufactured by Amersham-Pharmacia) the DNA fragment was randomly introduced with a nucleic acid labeled with fluorescein into the DNA strand, and the DM strand itself was labeled.
  • a nylon membrane for gene cloning prepared in advance is placed in a hybridization bag, and a church phosphate buffer (Clmrch and Gilbert, Pro Natl. Acad. Sc. USA 81: 1991-) is used at 60 ° C. 1995 (1984)). Thereafter, 10 ng of a randomly labeled PCR DNA fragment was added thereto and hybridized at 60 ° C. for 24 hours.
  • washing buffer 40 mM church phosphate buffer containing 1% SDS
  • the washing buffer was discarded, and the same method was repeated four times.
  • detection was performed using a labeled nucleic acid detection kit (Gene Images TM).
  • An approximately 4000 bp DM fragment in the BamHI digest was selected as an appropriately sized DNA fragment in the probe signal.
  • Complete digestion of genomic DNA from # 7-5 with BamHI (Takara Shuzo) was performed, followed by 0.8% agarose gel electrophoresis, staining with Cyber Green I, and electrophoresis on the same gel.
  • the DNA of about 4000 bp was extracted by slicing the gel using a marker of Lambda HindIII (manufactured by Toyobo) as a mark to obtain a DNA fragment containing the gene for hexendronidase. At this time, DNA fragments were extracted from the gel using an easy trap (Takara Shuzo).
  • the pUC19 cloning vector (Takara Shuzo) was digested with BamHI in advance, and the ends were dephosphorylated with alkaline phosphatase, and ligated to this vector.
  • the ligation was performed using the ligation kit Ver. II (Takara Shuzo) and the host was JM109.
  • a positive clone having a hexeneduronidase gene was selected.
  • the PCR fragment used in Southern hybridization was fluorescently labeled and used.
  • two positive clones were obtained in about 800 libraries. These are called B15 and B26.
  • the plasmid was recovered, and the hexeneduronidase gene present on the insert in PUC19 carried by B15 was sequenced. Since the hexeneduronidase gene did not have a BamHI site in its sequence, the full length of the structural gene could be obtained and the sequence could be read.
  • the hexenduronidase gene contained in its sequence an internal sequence peptide obtained when purified hexenduronidase was treated with lysyl endopeptidase.
  • the molecular weight of the protein estimated from the nucleotide sequence of 1125 bp of the gene was 43410, which almost coincided with about 40,000, which was obtained from SDS-PAGE of the purified enzyme.
  • the determined amino acid sequence of hexeneduronidase and the nucleotide sequence of the gene are shown as SEQ ID NO: 1 and SEQ ID NO: 2, respectively.
  • the plasmid pUC19 (7-5) containing the DNA encoding the hexeneduronidase of the present invention was introduced into the E. coli JM109 strain, and was named E. coli JM109 / pUC19 (7-5). Deposited with the National Institute of Advanced Industrial Science and Technology ⁇ Patent Organism Depositary under the accession number FERM BP-7973.
  • Kraft pulp (hereinafter referred to as L0KP) is 60 g in absolute dry weight, ion exchange The pulp concentration was adjusted to 10.0% by dilution with water.
  • a phosphate buffer was added to the pulp slurry to a concentration of 50 mM in the reaction system, the pH was adjusted to 7.0, and 0.5 g of the hexeneduronidase obtained in Example 2 was added to 1 g of L0KP absolute dry weight. The mixture was added at a ratio of U and kept at 45 ° C for 2 hours.
  • the pulp slurry after the above-mentioned hexeneduronidase treatment was added with 0.8% of chlorine dioxide to pulp adjusted to a pulp concentration of 10% and PH8.1, and kept at a pulp concentration of 70 ° C for 2 hours. H was 5.4 at the end of the chlorine dioxide treatment.
  • NaOH was added to a pH of 8.0, and after the extraction operation, the obtained pulp was washed with ion-exchanged water to obtain a finished bleached pulp.
  • Comparative Example 1 was the same as Example 7 except that the hexene peronidase treatment was not performed.
  • Comparative Example 2 is the same as Example 7 except that the hexeneduronidase treatment was not performed and the chlorine dioxide bleaching amount was 1.2% in chlorine dioxide bleaching.
  • Table 2 shows the whiteness of the pulp measured in the above Examples and Comparative Examples. [Table 2] As can be seen from the table, the use of the hexeneduronidase enzyme of the present invention can improve pulp whiteness without increasing the amount of chlorine-based chemicals. Industrial applicability

Abstract

A novel hexenuronidase characterized in that it has hexenuronidase activity and a molecular weight of about 40,000 to 45,000 and the enzymatic activity is enhanced by 2-mercaptoethanol or dithiothreitol; a process for producing the hexenuronidase; a use of the hexenuronidase; a hexenuroidase gene; and a microorganism which yields the hexenuroidase. This enzymatic protein is useful in bleaching a pulp.

Description

明 細 書 新規へキセンゥロニダーゼ、 それをコードする遺伝子、 およびそれらの使用 技術分野  Description New hexeneduronidase, genes encoding it, and technical fields of their use
本発明は、 新規のへキセンゥロニダーゼ、 その製造方法及びその用途、 へキセ ンゥロニダーゼ遺伝子、並びにへキセンゥ口ニダーゼを生産する微生物に関する。  TECHNICAL FIELD The present invention relates to a novel hexeneduronidase, a method for producing the same, and uses thereof, a hexeneduronidase gene, and a microorganism that produces hexeneduronidase.
背景技術 Background art
広葉樹、 針葉樹を問わず、 植物細胞壁中にはセルロース以外の多糖いわゆるへ ミセルロースが存在する。 特にこれらのへミセルロースは生細胞中では細胞壁の 構成成分であるリグニンとセルロースとの間を結合し強固な細胞壁を構成するた めの必須成分である。 へミセルロースの中で最も存在量が多く有名なものにキシ ランがある。 キシラン主鎖はキシロースが jS 1→4結合したホモ多糖であり、 す ベての陸上高等植物のみならず、 海藻をはじめとする藻類一般の細胞壁にも含ま れる普遍的なへミセルロースといってよい。 またキシランはキシロオリゴ糖ゃキ シリ トールの原料として最近ではバイオマスとしても注目を集めている。  Polysaccharides other than cellulose, so-called hemicelluloses, are present in plant cell walls, both hardwood and coniferous. In particular, these hemicelluloses are essential components in living cells for binding between lignin and cellulose, which are components of the cell wall, to form a strong cell wall. One of the most abundant and famous hemicellulose is xylane. The xylan backbone is a homopolysaccharide in which xylose is linked to jS 1 → 4, and is called universal hemicellulose, which is contained not only in all terrestrial higher plants but also in the cell walls of seaweeds and other algae in general. Good. Xylan has recently attracted attention as a biomass as a raw material for xylooligosaccharide xylitol.
地球上のバイオマスの約 50%は植物細胞に由来するリグノセルロースであると 考えてよい。 更にこのリグノセルロース中のへミセルロース含量は約 30%と言わ れており、 全地球上に存在するバイオマス中に占めるへミセルロースの比率は約 15%にもなる。このキシランはホモ多糖として一本鎖で存在することは希で細胞壁 中では主鎖であるキシロースが )3 1→ 4結合した多糖鎖から側鎖として a 1→3 結合したァラビノース側鎖、 α 1→ 2結合した 4 -0-メチルグルク口ン鎖を側鎖に 持つ形で存在し、 これらへテロ多糖は生細胞中で色々な生理活性を有することが 推測されている。  About 50% of the earth's biomass can be considered to be lignocellulose derived from plant cells. Furthermore, the content of hemicellulose in this lignocellulose is said to be about 30%, and the proportion of hemicellulose in biomass present on the whole earth is about 15%. This xylan is rarely present as a single chain as a homopolysaccharide, and xylose, which is the main chain in the cell wall, is a) arabinose side chain with a1 → 3 bond from the polysaccharide chain with 31 → 4 bond, α1 → It exists in the form of having 2-linked 4--0-methylglucin chain on the side chain, and it is estimated that these heteropolysaccharides have various physiological activities in living cells.
現在木質系バイオマスのうち最も利用が進んでいるのはセルロースをパルプと して利用する製紙業界である。 紙の原料であるパルプを作るためには、 木材チッ プを高温、 高アルカリ条件下で処理する工程が必要である。 この工程でセルロー ス以外のリグニンやへミセルロースの一部を除去しパルプ化することで後段での パルプ漂白工程を有利に運ぶことが出来る。 チップはパルプ化する際、 高温高ァ ルカリ条件下で処理された時にリグニンを除去すると同時にキシランをも溶解さ せられるが、 この溶解したキシランは温度が低下するにつれセルロースの表面に 再吸着する。 多糖であるキシランが再吸着する際には着色物質であるリグニンや フラン誘導体といった後の工程で漂白するべき邪魔な着色物質も巻き込みつつ再 吸着する。 製紙業界ではパルプを漂白する前処理としてこの再吸着キシランをあ らかじめ除去し後段での漂白工程の効率をアップするためにパルプをキシラナ一 ゼ (EC 3. 2. 1. 8) で処理し、 再吸着キシランを分解し、 着色物質を取り除く工程 を取り入れている工場もある。 Currently, the most widely used wood-based biomass is in the paper industry, which uses cellulose as pulp. In order to make pulp, a raw material for paper, it is necessary to process wood chips under high temperature and high alkali conditions. In this step, a part of lignin and hemicellulose other than cellulose is removed and pulping is performed. The pulp bleaching process can be carried advantageously. Chips, when treated under high temperature and high alkali conditions, can remove lignin and dissolve xylan at the same time, but the dissolved xylan re-adsorbs to the cellulose surface as the temperature decreases. When the xylan, which is a polysaccharide, is re-adsorbed, it also re-adsorbs while disturbing coloring substances such as lignin and furan derivatives which are to be bleached in a later step. In the paper industry, pulp is treated with xylanase (EC 3.2.1.8) to remove the re-adsorbed xylan as a pretreatment before bleaching the pulp and to improve the efficiency of the subsequent bleaching process. Some factories have introduced a process to decompose the re-adsorbed xylan and remove colored substances.
パルプを製造する場合に起こるもう一つの重要な問題にへキセンゥロン酸の問 題がある。 前述したようにキシランは主鎖の他に側鎖として α 1→3結合したァ ラビノース側鎖、 1→2結合した 4 -0-メチルダルクロン酸を側鎖にもつ。特に 4-0-メチルダルクロン酸は 4位の水酸基がメチル化されているためチップのパル プ化条件である高温高アル力リ条件下では 4位のメトキシは -エリミネーショ ンを起こし脱離しメタノールを生成する。 このときグルクロン酸の 4位の炭素と 5位の炭素の間に二重結合が導入され、 4-0-メチルダルクロン酸はいわゆるへキ センゥロン酸へと変換される。 へキセンゥロン酸はパルプに再吸着しているキシ ランに側鎖として存在するだけでなく、 パルプ繊維の細胞壁中に存在するキシラ ン側鎖にも存在する。  Another important problem that arises when making pulp is that of hexeneduronic acid. As described above, xylan has an arabinose side chain with α 1 → 3 bond and a 4 → 0-methyldalcuronic acid with 1 → 2 bond as side chains in addition to the main chain. In particular, 4-0-methyldalcuronic acid has a methylated hydroxyl group at the 4-position, so under high-temperature and high-pressure conditions, which are the conditions for pulping chips, the 4-methoxy methoxy group undergoes --elimination and is desorbed to methanol. Generate At this time, a double bond is introduced between the carbon at the 4-position and the carbon at the 5-position of glucuronic acid, and 4-0-methyldalcuronic acid is converted into so-called hexeneduronic acid. Hexeneduronic acid is present not only as a side chain in xylan re-adsorbed to pulp, but also in a xylan side chain present in the cell wall of pulp fibers.
へキセンゥロン酸はその分子内に二重結合を保持するためパルプの漂白工程で 使用される酸化系薬品、 たとえば、 オゾン、 塩素、 二酸化塩素といった漂白試薬 と反応する。 これらの漂白試薬は本来は着色成分であるリグニン由来の化合物や 糖がフランに誘導体化したものと反応するべきであるが、 着色成分ではないへキ センゥロン酸が分子内に保有する二重結合と漂白薬品が反応することはこれらの 漂白薬品を無駄に消費し、 漂白工程の効率を悪化させていることを意味する。 パ ルプ漂白時における漂白薬品の添加率を決定する指標にカッパ一価がある。 一般 に、カッパ一価は過マンガン酸力リゥムの消費量を数値化したものと考えてよく、 更に具体的にはパルプ中に存在する化合物のうち酸化系漂白薬品と反応する可能 性がある化合物の量を示していると考えてよい。 リグニンや糖から生成したフラ ン誘導体等の着色物がカッパ一価として表されてきた。 へキセンゥロン酸は着色 性の物質ではないが分子内の二重結合が過マンガン酸力リウムと反応するため力 ッパー価としてカウントされる。 更にへキセンゥロン酸は分子内に力ルポキシル 基を有する酸性糖でもある。 へキセンゥロン酸がもつ力ルポキシル基は負に帯電 し、 パルプ中のへキセンゥロン酸の分子に重金属がキレート結合する。 上記酸化 系の漂白薬品を用いた漂白工程ではこの重金属化合物 (錯体) が漂白薬品と反応 するため薬品を無駄に消費してしまい、 漂白効率を悪化させる。 Hexeneduronic acid reacts with the oxidizing chemicals used in the pulp bleaching process, such as ozone, chlorine and chlorine dioxide, to retain double bonds in its molecule. These bleaching reagents should react with compounds derived from lignin, which is a coloring component, or sugars derivatized with furan.However, hexeneduronic acid, which is not a coloring component, has a double bond in the molecule. The reaction of the bleaching chemicals means that these bleaching chemicals are wasted and reduce the efficiency of the bleaching process. Kappa monovalent is an index that determines the rate of bleaching chemical addition during pulp bleaching. In general, kappa monovalent may be considered as a numerical value of the consumption of permanganate power lime, and more specifically, compounds present in the pulp that may react with oxidizing bleaching chemicals May be considered to indicate the amount of Hula generated from lignin and sugar Colored substances such as butane derivatives have been described as monovalent kappa. Hexeneduronic acid is not a coloring substance, but is counted as a power value because the double bond in the molecule reacts with potassium permanganate. Hexeneduronic acid is also an acidic sugar having a carbonyl group in the molecule. The hexoxyperonic acid group has a negatively charged lipoxyl group, and a heavy metal is chelated to the hexeneduronic acid molecule in the pulp. In the bleaching process using the oxidizing bleaching chemicals, the heavy metal compound (complex) reacts with the bleaching chemicals, so that the chemicals are wasted and the bleaching efficiency deteriorates.
パルプ漂白工程において蒸解工程後に酸素漂白を行った L0KP パルプではカツ パー価が約 1 0ポイント前後であるがこのうち約 5ポイント前後はへキセンゥロ ン酸に由来するものであると言われている。 酸化系漂白薬品で漂白する前にこの へキセンゥロン酸をあらかじめ除去できれば、 後段での漂白薬品が削減できるこ とは容易に類推できる。  The L0KP pulp, which has been subjected to oxygen bleaching after the digestion step in the pulp bleaching step, has a cutoff value of about 10 points, of which about 5 points are said to be derived from hexeneduronic acid. If this hexeneduronic acid can be removed in advance before bleaching with an oxidizing bleaching chemical, it can be easily analogized that the bleaching chemicals in the subsequent stage can be reduced.
これらのパルプ漂白におけるへキセンゥロン酸の弊害は大きなものがあるため 製紙会社ではパルプ中よりへキセンゥロン酸を除去する方法について腐心してい る。 へキセンゥロン酸を除去する一般的な方法はパルプを酸で処理する方法であ る(国際公開第 W096/12063号パンフレツト)。パルプスラリーの p Hを酸性にし、 温度を 80で〜 120°C程度にコントロールしつつ 1〜 2時間保持するとへキセンゥ 口ン酸はキシランとの間のグリコシド結合が加水分解されることでキシラン主鎖 からはずれ、 除去することが可能である。  Because the harms of hexeneduronic acid in pulp bleaching can be significant, paper companies are eager to remove hexeneduronic acid from the pulp. A common method for removing hexeneduronic acid is to treat the pulp with an acid (WO096 / 12063 pamphlet). When the pH of the pulp slurry is acidified and the temperature is maintained at 80 to 120 ° C for 1 to 2 hours, hexene and oxalic acid are mainly hydrolyzed due to the hydrolysis of glycosidic bonds between them and xylan. It can be removed from the chain and removed.
しかし、 これらの試みではパルプを酸で処理するためパルプ自身も加水分解さ れダメージを受ける。 特にセルロースの加水分解によつてパルプの強度が低下す るごとは大きな問題であり、 このような強度の低いパルプでの抄紙は現在のぺー パーマシンによる高速抄紙には不適格なパルプであると考えられる。 また、 酸に よる加水分解はパルプの収率を低下させ工場のパルプ生産性を悪化させる。 実際 にへキセンゥロン酸を希酸処理により除去した場合にパルプ重量ベースで数%の 収率の低下が認められる。 また、 希酸処理によってへキセンゥロン酸を除去した 場合の問題点として、 希酸でリグニンが縮合し、 後段の漂白工程で漂白性されに くいリグニンに変換してしまうという点も挙げられる。  However, in these attempts, the pulp itself is hydrolyzed and damaged because the pulp is treated with acid. In particular, if the strength of the pulp decreases due to hydrolysis of cellulose, it is a serious problem, and papermaking with such low strength pulp is considered to be unsuitable for high-speed papermaking with current paper machines. Can be In addition, hydrolysis by acid reduces pulp yield and deteriorates pulp productivity in mills. When hexeneduronic acid is actually removed by dilute acid treatment, a decrease in yield of several percent based on pulp weight is observed. Another problem when hexeneduronic acid is removed by dilute acid treatment is that lignin is condensed with dilute acid and converted into lignin that is not easily bleached in the subsequent bleaching step.
以上のように希酸でのへキセンゥロン酸の除去はいくつかの問題を含んでいる ために酵素によるへキセンゥロン酸の除去が注目を集めている。 As mentioned above, removal of hexeneduronic acid with dilute acid involves several problems Therefore, the removal of hexeneduronic acid by an enzyme has attracted attention.
酸を特異的に分解する酵素を用いるへキセンゥロン酸除去法 (国際公開Hexeneduronic acid removal method using an enzyme that specifically decomposes acids (International publication
W095/33883号パンフレット、 W. Hashimotoら, Arch. Biochem. Biophys. (1999) 368 (2) : 367-374)が提唱されているが、国際公開 W095/33883号パンフレツトにお いては酵素活性の測定方法に問題があり、 酵素の単離がなされていないため精製 酵素の性質が明らかでない。 また、 精製酵素が存在しないためパルプの精製酵素 による漂白実験が行われていない。 このためへキセンゥロン酸を分解する酵素が パルプに対して本当に効果を発揮しているのかも明細書から判断できない。 一方 W. Hashimoto ら (上記) が単離したへキセンゥロニダーゼは、 バチルス ·エスピ 一 · GL 1 由来の酵素であり、 分子量 4 2 k Da (SDS-PAGE) , 至適 p H6. 0〜6. 5、 至 適温度 4 5 °C前後、 p H7. 0であり、 また 6 0 °Cで 1 0分間のインキュベーション で完全に失活すること、 ジチオスレィ 1 ルもしくは 2—メルカプトエタノール が酵素活性に有意の影響を与えないこと、 などの性質を有するが、 パルプの漂白 効果については不明である。 発明の開示 W095 / 33883 pamphlet, W. Hashimoto et al., Arch.Biochem.Biophys. (1999) 368 (2): 367-374) has been proposed. There is a problem with the measurement method, and the nature of the purified enzyme is not clear because the enzyme has not been isolated. Bleaching experiments with pulp purified enzymes have not been conducted because there is no purified enzyme. For this reason, it is impossible to judge from the specification whether the enzyme that degrades hexeneduronic acid is really effective for pulp. On the other hand, hexeneduronidase isolated by W. Hashimoto et al. (Above) is an enzyme derived from Bacillus espii GL1 and has a molecular weight of 42 kDa (SDS-PAGE), optimal pH 6.0- 6.5, Optimum temperature around 45 ° C, pH 7.0, complete inactivation by incubation at 60 ° C for 10 minutes, dithiothreyl or 2-mercaptoethanol activity Has no significant effect on the pulp, but the bleaching effect of pulp is unknown. Disclosure of the invention
本発明は、パルプの漂白に有用な新規なへキセンゥロニダーゼ、その製造方法、 及びその用途を提供することを目的とする。  An object of the present invention is to provide a novel hexeneduronidase useful for pulp bleaching, a method for producing the same, and uses thereof.
本発明者らは上記課題に基づいて鋭意研究を行い、 へキセンゥロニダ一ゼ生産 菌を求め、 鋭意広範なスクリーニングを行なった結果、 東京都江東区東雲の土壌 中からへキセンゥロニダーゼを生産する新規の微生物を見い出し、 かつ該微生物 の培養物中からへキセンゥロン酸を分解する新規の酵素を見い出し、 更に該へキ センゥロニダーゼをコードする遺伝子をクローニングし、 高発現させることに成 功し、 本発明を完成するに至った。  The present inventors conducted intensive research based on the above-mentioned problems, searched for hexenduronidase-producing bacteria, and conducted extensive screening, and as a result, produced hexenduronidase from soil in Shinonome, Koto-ku, Tokyo. The present invention has found a novel microorganism and a novel enzyme that degrades hexenduronic acid from a culture of the microorganism, and has succeeded in cloning and highly expressing the gene encoding hexenduronidase. Was completed.
したがって、 本発明は以下のとおり要約される。  Therefore, the present invention is summarized as follows.
( 1 ) へキセンゥロニダーゼ活性を有し、 分子量約 40, 000〜約 45, 000であり、 (1) having hexeneduronidase activity, having a molecular weight of about 40,000 to about 45,000,
2 -メルカプトエタノールまたはジチオスレィトールによって該酵素活性が亢進さ れることを特徴とするへキセンゥロニダーゼ。 Hexenduronidase, wherein the enzyme activity is enhanced by 2-mercaptoethanol or dithiothreitol.
( 2 ) 至適 p Hが ρΗ6. 0〜8· 0である、 (1 ) のへキセンゥロニダ一ゼ。 (3) 酵素反応における安定 pH範囲が pH5.0〜10.0である、 (1) のへキセンゥ □ニダーゼ。 (2) The hexene peronidase according to (1), wherein the optimal pH is ρΗ6.0 to 8.0 · 0. (3) The hexene □□ nidase according to (1), wherein the stable pH range in the enzymatic reaction is pH 5.0 to 10.0.
(4) 至適温度が 35° ( 〜 55°Cである、 (1), のへキセンゥロニダーゼ。  (4) An optimal temperature of 35 ° (~ 55 ° C, (1), hexeneduronidase.
(5) 45°Cにて 30分の熱処理で約 80 以上の活性を保持し、 60°Cにて 30分の熱 処理で約 30%の残存活性を示す、 (1) のへキセンゥロニダーゼ。  (5) The hexene peroni of (1), which retains about 80 or more activity by heat treatment at 45 ° C for 30 minutes and shows about 30% residual activity by heat treatment at 60 ° C for 30 minutes. Daze.
( 6 )パェニバチルス(Paenibacillus)属に属する微生物に由来する、( 1 )〜( 5 ) のいずれかのへキセンゥロニダ一ゼ。  (6) The hexene peronidase according to any one of (1) to (5), which is derived from a microorganism belonging to the genus Paenibacillus.
(7)微生物がパェニバチルス 'エスピー 7 _ 5である、 (6) のへキセンゥロニ  (7) The microorganism is Paenibacillus sp. 7_5, (6) Hexeneperoni
(8)遺伝子組換え酵素である、 (1)〜 (5) のいずれかのへキセンゥロニダ一 ゼ。 (8) The hexene peronidase according to any one of (1) to (5), which is a recombinant enzyme.
(9) 配列番号 1に示されるアミノ酸配列からなるか、 あるいは、 該配列番号 1 のアミノ酸配列において 1または複数のアミノ酸の欠失、 置換、 揷入もしくは付 加を含むアミノ酸配列を有しかつへキセンゥロニダ一ゼ活性を有する、 (1) 〜 (9) consisting of the amino acid sequence of SEQ ID NO: 1, or having an amino acid sequence containing deletion, substitution, insertion or addition of one or more amino acids in the amino acid sequence of SEQ ID NO: 1; Has xenoperonidase activity, (1)-
(5) のいずれかのへキセンゥロニダ一ゼ。 (5) Any of the hexene peroxidases.
(10) 配列番号 1に示されるアミノ酸配列との相同性が 70%以上、 好ましく は 80 %以上、 さらに好ましくは 90 %以上である、 (9) のへキセンゥロニダ一 ゼ。  (10) The hexeneduronidase of (9), which has 70% or more, preferably 80% or more, more preferably 90% or more homology with the amino acid sequence shown in SEQ ID NO: 1.
(11) (1)〜(10) のいずれかのへキセンゥロニダ一ゼを生産するパェニバ チルス (Paenibacillus)属に属する微生物を培地に培養し、 得られる培養物から へキセンゥロニダ一ゼを採取することを含む、へキセンゥロニダ一ゼの製造方法。 (11) A method for culturing a microorganism belonging to the genus Paenibacillus which produces hexeneduronidase in any one of (1) to (10) in a medium, and collecting hexeneduronidase from the resulting culture. A method for producing hexene peronidase.
(12) へキセンゥロニダーゼ生産能を有するパェニバチルス ·エスピー 7— 5 (受託番号 FERM P- 18225)。 (12) Paenibacillus sp. 7-5 capable of producing hexeneduronidase (Accession No. FERM P-18225).
(13) (1) ~ (10) のいずれかのへキセンゥロニダーゼをコードするへキセ ンゥロニダーゼ遺伝子。  (13) A hexeneduronidase gene encoding the hexeneduronidase of any one of (1) to (10).
(14)配列番号 2で示される塩基配列を含む、 (13)のへキセンゥロニダーゼ 遺伝子。  (14) The hexeneduronidase gene according to (13), comprising the nucleotide sequence represented by SEQ ID NO: 2.
(15) (13)又は(14)のへキセンゥロニダーゼ遺伝子を含む発現べクタ一。 (15) An expression vector containing the hexeneduronidase gene of (13) or (14).
(16) (15) の発現ベクターによって形質転換された宿主細胞。 (17) (16) の宿主細胞を培地に培養し、 得られる培養物からへキセンゥロニ ダーゼを採取することを含む、 遺伝子組換えへキセンゥロニダ一ゼの製造方法。(16) A host cell transformed by the expression vector of (15). (17) A method for producing a genetically modified hexenduronidase, comprising culturing the host cell of (16) in a medium, and collecting hexenduronidase from the resulting culture.
(18) (1)〜 (10) のいずれかのへキセンゥロニダーゼを有効成分として含 む漂白剤。 (18) A bleach containing the hexeneduronidase of any one of (1) to (10) as an active ingredient.
(19) へキセンゥロニダーゼが (17) の方法によって得られるものである、 (18) の漂白剤。  (19) The bleach according to (18), wherein hexeneduronidase is obtained by the method according to (17).
(20) (18) 又は (19) の漂白剤を用いてパルプを処理することを含む、 ノ\° ルプの漂白方法。  (20) A method for bleaching pulp, comprising treating pulp with the bleaching agent according to (18) or (19).
(21) 漂白剤を用いてパルプを処理するにあたり、 化学漂白及び Zまたはアル カリ抽出を、 パルプ処理前、 処理後又は処理中のいずれかに行なうことを含む、 (20) の方法。  (21) The method according to (20), wherein treating the pulp with the bleaching agent comprises performing chemical bleaching and Z or alkali extraction either before, after or during the pulp treatment.
(22) (1) 〜 (10) のいずれかのへキセンゥロニダーゼを認識する抗体。 本明細書は本願の優先権の基礎である日本国特許出願 20(Π- 142019号の明細書 及び/または図面に記載される内容を包含する。 図面の簡単な説明  (22) An antibody that recognizes hexeneduronidase according to any one of (1) to (10). This description includes part or all of the contents as disclosed in the description and / or drawings of Japanese Patent Application No. 20 (Π-142019), which is a priority document of the present application.
図 1は、 本発明のへキセンゥロニダ一ゼの至適 ρΗを示す図である。  FIG. 1 is a diagram showing the optimal ρΗ of hexene peronidase of the present invention.
図 2は、 本発明のへキセンゥロニダ一ゼの安定 ρΗ範囲を示す図である。  FIG. 2 is a diagram showing the stable ρ range of hexene peronidase of the present invention.
図 3は、 本発明のへキセンゥロニダ一ゼの至適温度を示す図である。  FIG. 3 is a graph showing the optimal temperature of hexeneduronidase of the present invention.
図 4は、 本発明のへキセンゥロニダーゼの温度安定性を示す図である。 配列表の説明  FIG. 4 is a diagram showing the temperature stability of hexeneduronidase of the present invention. Description of Sequence Listing
配列番号 7はプライマーである。  SEQ ID NO: 7 is a primer.
配列番号 8はプライマ一である。 発明を実施するための形態  SEQ ID NO: 8 is a primer. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 以下に本発明について詳細に説明する。  Next, the present invention will be described in detail below.
本明細書中で使用するへキセンゥロニダーゼ活性とは、 へキセンゥロン酸 (4-deoxy- i3 -L-threo-hex-4-enopyranosyluronic ac id) と、 その 1位のァルデ ヒド基を介してグリコシド結合しているァグリコンとの間を加水分解して 5 -ホ ルミル- 2 -フランカルボン酸もしくは 2 -フロイツクアシッドを生成する酵素活 性をいう。 具体的には、 該活性は、 Hexenduronidase activity as used herein refers to hexeneduronate (4-deoxy-i3 -L-threo-hex-4-enopyranosyluronic acid) and 5-glycolyl by hydrolyzing between the glycoside-linked aglycone via the aldehyde group at position 1. Enzyme activity that produces 2-furancarboxylic acid or 2-fruit acid. Specifically, the activity is
作用 1 ) :キシラン主鎖に側鎖として ;3 1→2結合しているへキセンゥロン酸を加 水分解して、 5 -ホルミル- 2 -フランカルボン酸もしくは 2 -フロイックァシッド を生成する活性;または Action 1): Hexeneduronic acid bound as a side chain to the xylan main chain; activity of hydrolyzing hexeneduronic acid to form 5-formyl-2-furancarboxylic acid or 2-fluoroic acid Or
作用 2 ) :ムコ多糖、 ヒアルロン酸、 並びにべクチン、 ゲランといった構成糖とし てダルク口ン酸を含む酸性多糖がそれらを分解するリァーゼによつて分解された 際に生成されるへキセンゥロン酸を加水分解して、 5 -ホルミル- 2-フランカルポ ン酸もしくは 2 -フロイックァシッドを生成する活性;または Action 2): Hydroxide of hexeneduronic acid, which is produced when mucopolysaccharide, hyaluronic acid, and acidic polysaccharides containing dalc hexonic acid as constituent sugars such as vectin and gellan are degraded by lyase that degrades them. Activity to decompose to form 5-formyl-2-furancarponic acid or 2-froic acid; or
作用 3 ):へキセンゥロン酸と蛍光性物質、化学発光物質または糖などの物質がグ リコシド結合した合成基質を加水分解して、 5-ホルミル- 2-フランカルボン酸もし くは 2 -フロイックァシッドを生成する活性、 Action 3): Hydrogenation of a synthetic substrate in which hexeneduronic acid and a substance such as a fluorescent substance, a chemiluminescent substance or a sugar are glycosidically bonded, to form 5-formyl-2-furancarboxylic acid or 2-floica. An activity that produces a seed,
のいずれかをいう。 Means any of
したがって本発明の酵素は、 ムコ多糖、 ヒアルロン酸、 並びにべクチン、 ゲラ ンといった構成糖としてグルクロン酸を含む酸性多糖がそれらを分解するリア一 ゼによって分解された際に生成される 4-deoxy- hexuronic ac idを含む糖鎖、植物 細胞壁中における 4 -0-メチルダルク口ノキシランが高温高アル力リ条件下で β - エリミネ一シヨンした際に生成されるへキセンゥロン酸を側鎖として含むキシラ ンなどの基質に作用する。  Therefore, the enzyme of the present invention is produced by decomposing acidic polysaccharides containing glucuronic acid as constituent sugars such as mucopolysaccharide, hyaluronic acid, and pectin and geran by lyase which degrades them. Sugar chains containing hexuronic acid, xylane containing hexeneduronic acid as a side chain, which is produced when 4-0-methyldarc oxylan in plant cell wall undergoes β-elimination under high temperature and high temperature conditions Acts on substrates such as
本発明の酵素は、 上記のような酵素活性を有することに加えて、 分子量約 40, 000〜約 45, 000であること、2-メルカプトエタノールまたはジチオスレィ 1 ルの還元剤の存在下で該酵素活性が亢進されることを特徴とする。亢進の程度は、 還元剤が不在下での活性と比べて、 通常 1. 2倍以上、 好ましくは 1. 5倍以上、 より好ましくは 1. 7倍以上、 最も好ましくは 2倍以上、 さらに好ましくは 2. 5 倍以上である。  The enzyme of the present invention has, in addition to having the above-mentioned enzyme activity, a molecular weight of about 40,000 to about 45,000, and the presence of a 2-mercaptoethanol or dithiosyl 1 reducing agent. The activity is enhanced. The degree of enhancement is usually 1.2 times or more, preferably 1.5 times or more, more preferably 1.7 times or more, most preferably 2 times or more, and still more preferably, compared to the activity in the absence of a reducing agent. Is more than 2.5 times.
さらに本発明の酵素は下記の性質の少なくとも 1つまたは全部を有することが できる。 ( 1 ) 至適 pH及び安定 pH範囲:酵素反応における至適 pH範囲は pH6.0〜8.0 であり、 酵素反応における安定 pH範囲は pH5.0〜10.0である。 Further, the enzyme of the present invention can have at least one or all of the following properties. (1) Optimum pH and stable pH range: The optimum pH range for enzyme reaction is pH 6.0 to 8.0, and the stable pH range for enzyme reaction is pH 5.0 to 10.0.
(2) 作用適温の範囲: 35°C〜55°Cの範囲にある。  (2) Suitable operating temperature range: 35 ° C to 55 ° C.
( 3) 熱安定性: 45°Cにて 30分の処理で約 90%以上の活性を保持し、 60°Cにて 30 分の処理では約 30%程度の残存活性を残す。  (3) Thermal stability: Maintains about 90% or more activity at 30 ° C for 30 minutes, and about 30% residual activity at 60 ° C for 30 minutes.
(4) 等電点: pH4. 5付近である。  (4) Isoelectric point: It is around pH 4.5.
( 5) 阻害: Cu Zn2+, SDSで強く活性を阻害される。 EDTAは酵素活性を阻害し ない。 (5) Inhibition: The activity is strongly inhibited by Cu Zn 2+ and SDS. EDTA does not inhibit enzyme activity.
なお、 本明細書において、 安定 pHとは、 至適 pHにおける酵素反応活性に対し て 70〜100%の酵素反応活性を維持し得る pHを意味する。  As used herein, the term “stable pH” means a pH capable of maintaining an enzyme reaction activity of 70 to 100% of the enzyme reaction activity at the optimum pH.
本発明の酵素は微生物から直接単離されたものであってもよいし、 あるいは遺 伝子組換え法によって得られたものであってもよい。 微生物として、 例えば上記 へキセンゥロニダ一ゼを生産するパェニバチルス(Paenibacillus)属に属する微 生物が挙げられる。具体的にはパェニバチルス ·エスピー 7 _ 5 (識別のための表 示: #7-5)またはこの微生物から誘導される変異体が好ましく、 この微生物は新 規であり、産業技術総合研究所生命工学工業技術研究所(新名称:独立行政法人産 業技術総合研究所 ·特許生物寄託センタ一、 茨城県つくば市東 i丁目 1番地 1中 央第 6)に 2001年 2月 23日付けで寄託され (受託番号 FE應 P- 18225)、 さらに、 平成 2002年 3月 22日付けで原寄託によりブダぺスト条約に基づく寄託へ移管さ れ、 受託番号 FERM BP- 7972が付与されている。  The enzyme of the present invention may be directly isolated from a microorganism, or may be obtained by a gene recombination method. Examples of the microorganism include microorganisms belonging to the genus Paenibacillus which produce the above hexeneduronidase. Specifically, Paenibacillus sp. 7_5 (indication for identification: # 7-5) or a mutant derived from this microorganism is preferred. This microorganism is a new microorganism, Deposited on February 23, 2001 at the National Institute of Advanced Industrial Science and Technology (new name: National Institute of Advanced Industrial Science and Technology (AIST) · Patent Organism Depositary Center 1, Higashi 1-chome 1-Chuo 6th, Tsukuba-shi, Ibaraki Pref. Deposit number FEO P-18225) and transferred to the deposit based on the Budapest Treaty on March 22, 2002 by the original deposit, and given the deposit number FERM BP-7972.
パェニバチルス .エスピー 7— 5の菌学的性質は以下のとおりである。  The microbiological properties of Paenibacillus sp. 7-5 are as follows.
細胞形態 桿菌 (0.5X2.0〜3. O^m) Cell morphology Bacillus (0.5X2.0-3.O ^ m)
グラム染色 不定 Gram stain indefinite
胞子 +:端立、 膨化あり コロニー形成 円形、 全縁滑らか、 低凸状、 光沢あり、 半透明 Spores +: edge, swollen, colony forming Round, whole edge smooth, low convex, glossy, translucent
力タラ—ゼ + Power tarase +
才干シターゼ + Saito Sitase +
0/F試験 炭水化物からの酸産生 0 / F test Acid production from carbohydrates
グリセロール + エリスリ トール  Glycerol + erythritol
D -ァラビノース + L -ァラビノース + リポース + D-キシロース + L -キシロース  D-arabinose + L -arabinose + report + D-xylose + L-xylose
ァドニトール  Adnitol
一メチル一D—キシロース + ガラク卜ース + グルコース + フラク I ス + マンノース + ソルポース  Mono-methyl-D-xylose + galactose + glucose + fruc I + mannose + sorbose
ラムノース  Rhamnose
ズルシ ) ル  Sulsi)
イノシトール  Inositol
マンニト一リレ + ソルビトール  Mannitto lille + sorbitol
α—メチルー D—マンノース α—メチルー D—グルコース + Ν—ァセチルダルコサミン + アミグダリン +  α-methyl-D-mannose α-methyl-D-glucose + Ν-acetyldarcosamine + amygdalin +
+ エスクリン + サリシン + セロビオース + マルトース + 乳糖 + メリビオース + 白糖 + 卜レハロース + ィヌリン + メレチ] ^一ス + ラフイノース + 澱粉 + グリコーゲン + キシリ トール 一 ゲンチオビオース ++ Esculin + Salicin + Cellobiose + Maltose + Lactose + melibiose + sucrose + trehalose + inulin + melechi] ^ ones + raffinose + starch + glycogen + xylitol gentiobiose +
D—ッラノース +D—llah North +
D—リキソース 一D—Lyxose one
D—夕ガトース 一D—Evening Gateau
D—フコ一ス 一D—Fuco One
Lーフコース 一L-Four Course I
D—ァラビトール 一D-arabitol one
L—ァラビトール 一 ダルコネ一ト -L-arabitol-darconet-
2—ケトグルコン酸 一2-ketogluconic acid
5—ケトグルコン酸 ― iQ—ガラクトシダーゼ (O N P G) + アルギニンジヒドロラーゼ - リシンデカルポキシラーゼ 一 オル二チンデカルボキシラーゼ 一 クェン酸の利用性 一 硫化水素産生 一 ゥレアーゼ ― トリプトファンデァミナ一ゼ 一 インドール産生 5-ketogluconic acid-iQ-galactosidase (ONPG) + arginine dihydrolase-lysine decarboxylase 1 ordinine decarboxylase 1 availability of citrate 1 hydrogen sulfide production 1 protease-tryptophan deaminase 1 Indole production
ァセ卜イン産生 (V P ) + Acetin production (VP) +
ゼラチナーゼ Gelatinase
硝酸塩還元 Nitrate reduction
生育性 Viability
+  +
5 0。C 一  5 0. C one
1 0 % N a C 1 一  1 0% N a C 1
加水分解性 Hydrolysable
カゼイン 一  Casein I
馬尿酸塩 一  Hippurate
# 7 _ 5株は、芽胞による菌体の膨化を示し、嫌気的生育陽性、 O N P G陽性、 カゼイン加水分解、 アルギニンヒドロラ一ゼ、 インドール、 ゼラチナ一ゼ、 硝酸 塩還元などで陰性を示すことから、バエ二バチルス(P aen i bac i 11 u s)属に属する微 生物と考えられる。 炭水化物からの酸産生にガスの発生を伴わないことから、 こ の株は Paenibac i l lus lautusかまたはそれと最も近縁の菌であると推定される。 本発明においては、 本発明の酵素を産生する微生物として、 上記の特性の酵素 を有する限り例示の微生物に限定されないものとし、 好ましくはパェニバチルス 属に属する微生物、 より好ましくは # 7— 5株およびその誘導株である。 このよ うな誘導株は、 紫外線等の照射線や変異原性物質による突然変異誘発によるか、 あるいは、 微生物ゲノムの遺伝子組換えによる突然変異誘発によるなどの慣用技 術を利用することによって得ることができる。  Strain # 7_5 shows swelling of bacterial cells due to spores and is negative for anaerobic growth positive, ONPG positive, casein hydrolysis, arginine hydrolase, indole, gelatinase, nitrate reduction, etc. It is considered to be a microorganism belonging to the genus Baenibacillus (Paenibaci11us). This strain is presumed to be Paenibacillus lus lautus or its closest relative, since acid production from carbohydrates does not involve gas evolution. In the present invention, the microorganism that produces the enzyme of the present invention is not limited to the exemplified microorganisms as long as it has an enzyme having the above-mentioned properties, and is preferably a microorganism belonging to the genus Paenibacillus, more preferably a strain # 7-5 and a strain thereof. Induced strain. Such derived strains can be obtained by using conventional techniques such as mutagenesis by irradiation with ultraviolet rays or mutagenic substances, or by mutagenesis by genetic modification of the microorganism genome. it can.
微生物から本発明の酵素を製造する場合、 該酵素を産生する微生物を培地に培 養し、 得られる培養物からへキセンゥロニダ一ゼを回収することを含む方法によ つて該酵素を得ることができる。  When the enzyme of the present invention is produced from a microorganism, the enzyme can be obtained by a method comprising culturing a microorganism producing the enzyme in a medium and recovering hexeneduronidase from the resulting culture. .
本発明の実施形態では、 該微生物はへキセンゥロニダーゼの生産能を有するパ ェニバチルス ·エスピー 7— 5であり、 この微生物が産生する酵素は、 配列番号 1で表されるアミノ酸配列を有する。 本発明はまた、 該酵素の変異体も包含し、 それは、 具体的には配列番号 1のアミノ酸配列において 1または複数、 好ましく は 1または数個のアミノ酸の欠失、 置換、 挿入もしくは付加を含むアミノ酸配列 を有しかつへキセンゥロニダーゼ活性を有するへキセンゥロニダーゼである。 こ こで、 数個とは通常 2〜 9個、 好ましくは 2〜 7個、 さらに好ましくは 2〜 5個 を意味する。 あるいは、 該変異体は配列番号 1に示されるアミノ酸配列との相同 性が 7 0 %以上、 好ましくは 8 0 %以上、 さらに好ましくは 9 0 %以上、 最も好 ましくは 9 5 %以上、, さらに最も好ましくは 9 8 %以上であるへキセンゥロニダ —ゼである。 In an embodiment of the present invention, the microorganism is Paenibacillus sp. 7-5 capable of producing hexeneduronidase, and the enzyme produced by the microorganism has the amino acid sequence represented by SEQ ID NO: 1. The invention also encompasses variants of the enzyme, specifically one or more, preferably in the amino acid sequence of SEQ ID NO: 1, Is a hexeneduronidase having an amino acid sequence containing deletion, substitution, insertion or addition of one or several amino acids and having hexeneduronidase activity. Here, several means usually 2 to 9, preferably 2 to 7, and more preferably 2 to 5. Alternatively, the variant has a homology of 70% or more, preferably 80% or more, more preferably 90% or more, most preferably 95% or more, with the amino acid sequence shown in SEQ ID NO: 1. Even more preferably hexeneduronidase which is at least 98%.
培養のための炭素源、 窒素源には、 へキセンゥロニダ一ゼを生産することので きるものであればいずれも用いることができる。 例えば、 炭素源としては、 キシ ラン若しくはキシランを含む小麦ふすま、 パルプ、 バガス、 コーンファイバ一、 稲わら等の農産廃棄物又は植物繊維等を使用することができる。窒素源としては、 酵母エキス、 ペプトン、 各種アミノ酸、 大豆、 コーンスティープリカ一、 各種無 機窒素等の窒素化合物を用いることができる。 また、 各種の塩類やビタミン、 ミ ネラル等を適宜用いることができる。  As a carbon source and a nitrogen source for culturing, any source capable of producing hexeneduronidase can be used. For example, as the carbon source, agricultural waste such as wheat bran, pulp, bagasse, corn fiber, rice straw or plant fiber containing xylan or xylan, or plant fiber can be used. As a nitrogen source, nitrogen compounds such as yeast extract, peptone, various amino acids, soybean, corn steep liquor, and various inorganic nitrogen can be used. In addition, various salts, vitamins, minerals, and the like can be appropriately used.
培養温度および p Hは、 菌が生育してへキ ンゥロニダーゼを生産する範囲で あればいずれでもよく、 培養温度は 20〜50で、 p Hは 5〜9でありうる。 菌が耐 熱性菌である場合、 50°Cを超えることもある。本発明の微生物を培養した後、菌体 を分離し、 菌体を酵素的または物理化学的に処理し菌体内に存在するへキセンゥ 口ニダ一ゼを得ることができる。  The culture temperature and pH may be any as long as the bacteria grow and produce hekinperonidase. The culture temperature may be 20 to 50, and the pH may be 5 to 9. If the bacteria are thermotolerant, the temperature may exceed 50 ° C. After culturing the microorganism of the present invention, the cells are separated and the cells are treated enzymatically or physicochemically to obtain hexene-nidase present in the cells.
また、 透析、 塩析、 限外濾過、 凍結乾燥等により、 へキセンゥロニダ一ゼを濃 縮又は固体化することができる。 さらに、 培養濾液を硫安分画、 ゲル濾過による 分子量分画や各種イオン交換樹脂、 ハイドロキシアパタイト、 等電点分画等を適 宜組み合わせ、 また繰り返すことによりへキセンゥロニダーゼを精製することが できる。  Hexeneduronidase can be concentrated or solidified by dialysis, salting out, ultrafiltration, lyophilization or the like. Furthermore, hexeneduronidase can be purified by appropriately combining the culture filtrate with ammonium sulfate fractionation, molecular weight fractionation by gel filtration, various ion exchange resins, hydroxyapatite, isoelectric focusing, etc., and repeating the same. .
本発明は、 配列番号 1で表されるアミノ酸配列、 あるいは配列番号 2のヌクレ ォチド配列または E. col i JM109/pUC19 (7- 5)中に含まれる目的 DNA配列によって コードされるアミノ酸配列を含む組換えへキセンゥロニダーゼまたはその変異体 をも包含する。 なお、 E. col i JM109/pUC 19 (7- 5)は、 産業技術総合研究所生命ェ 学工業技術研究所 (新名称:独立行政法人産業技術総合研究所 ·特許生物寄託セン ター、茨城県つくば巿東 1丁目 1番地 1中央第 6)に 2001年 2月 23日付けで寄託 され (受託番号 FE履 P- 18226)、 さらに、 2002年 3月 22日付けで原寄託によりプ ダぺスト条約に基づく寄託へ移管され、受託番号 FERM BP- 7973が付与されている。 ここで変異体とは上記の意味を有する。 組換え酵素を製造する場合、 へキセンゥ ロニダーゼ遺伝子を含む発現ベクターを作製し、 該ベクタ一によって適当な宿主 細胞を形質転換し、 得られた宿主細胞を培地に培養し、 得られる培養物から組換 えへキセンゥロニダーゼを採取することを含む方法によって該酵素を得ることが できる。 へキセンゥロニダ一ゼ遺伝子は上記の特性を有する酵素をコードする遺 伝子 (DNAまたは c DNA) であり、 具体的には配列番号 1のアミノ酸配列をコード する遺伝子、あるいは該アミノ酸配列との相同性が 7 0 %以上、好ましくは 8 0 % 以上、 さらに好ましくは 9 0 %以上、 もっと好ましくは 9 5 %以上、 さらにもつ と好ましくは 9 8 %以上であるへキセンゥロニダ一ゼをコードする遺伝子である。 具体的には配列番号 2に示される塩基配列からなる遺伝子、 あるいは該配列番号 2に示される塩基配列を含む遺伝子である。 The present invention includes the amino acid sequence represented by SEQ ID NO: 1, or the nucleotide sequence of SEQ ID NO: 2 or the amino acid sequence encoded by the target DNA sequence contained in E. coli JM109 / pUC19 (7-5). It also includes recombinant hexenduronidase or a mutant thereof. E. col i JM109 / pUC 19 (7-5) is a registered trademark of the National Institute of Advanced Industrial Science and Technology (AIST) (new name: National Institute of Advanced Industrial Science and Technology) Was deposited on February 23, 2001 at Tsukuba East 1-chome, 1-Chome No. 6), Ibaraki Prefecture (Accession No.FE-18182), and by the original deposit on March 22, 2002 It has been transferred to a deposit under the Pust Treaty and has been assigned the accession number FERM BP-7973. Here, the mutant has the above-mentioned meaning. In the case of producing a recombinant enzyme, an expression vector containing the hexene peronidase gene is prepared, an appropriate host cell is transformed with the vector, the obtained host cell is cultured in a medium, and a system is prepared from the obtained culture. Alternatively, the enzyme can be obtained by a method including collecting hexendronidase. The hexeneduronidase gene is a gene (DNA or cDNA) encoding an enzyme having the above-mentioned properties, and specifically, a gene encoding the amino acid sequence of SEQ ID NO: 1 or homology to the amino acid sequence. Is 70% or more, preferably 80% or more, more preferably 90% or more, even more preferably 95% or more, and even more preferably 98% or more. . Specifically, it is a gene consisting of the nucleotide sequence shown in SEQ ID NO: 2, or a gene containing the nucleotide sequence shown in SEQ ID NO: 2.
細菌源から本発明のへキセンゥロニダーゼ遺伝子をクローニングする場合、 当 業界で慣用の手法により行うことができる (たとえば Sambrook ら, Mol ecu l ar C loning A Laboratory Manual, Second ed i t ion, Co ld Spring Harbor Laborat ory Press, 1989)。 具体的には、 細菌源からゲノムライプラリーまたは c DNA ライプ ラリーを調製したのち、 配列番号 1のァミノ酸配列中の適当な部分配列をコード することが可能な DNAを化学合成 (例えば自動 DNA合成) し、 これをプローブと して目的の遺伝子をスクリーニングするか、 あるいは配列番号 2のヌクレオチド 配列からなる DNAまたはその断片とのハイブリダィゼーションによって目的の遺 伝子をスクリーニングすることができる。 ハイブリダイゼーシヨンは低ストリン ジェント、 中ストリンジェントまたは高ス卜リンジェントの条件で行った後、 比 較的高い温度、 比較的低いイオン強度の洗浄条件下で洗浄する。 一般に適当に希 釈された SSC中、 適する温度にてハイブリダィゼーシヨンを行う。 温度はより高 いほど (たとえば通常融解温度 (Tm) より約 5〜1 0 °C低い温度)、 またイオン強 度がより低いほど (たとえば 0. 1〜1 X SSC)、 ストリンジエンシーが高くなる。 ハイブリダィゼ一シヨン条件の例は、 例えば Ausbe l ら, Short Pro toco l s In Mol ecul ar Biology (thi rd edi t ion) , John Wi ley &Sons, Inc.に記載されており、 その開示を利用できる。 目的の遺伝子をスクリーニングした後、 配列番号 2のヌ クレオチド配列から誘導されたプライマ一(通常 1 0〜3 0塩基)を用いるポリメ ラーゼ連鎖反応(PCR) によって該遺伝子を増幅するか、 あるいは該遺伝子を適当 なプラスミドゃファージなどのクローニングベクターに組み込み、 大腸菌等の細 菌に導入して目的遺伝子を増幅することができる (Sambrookら、 上掲)。 Cloning of the hexeneduronidase gene of the present invention from a bacterial source can be carried out by a method commonly used in the art (for example, Sambrook et al., Molecular Cloning A Laboratory Manual, Second edition, Coll. Spring Harbor Laboratory Press, 1989). Specifically, after preparing a genomic library or a cDNA library from a bacterial source, chemically synthesizing DNA capable of encoding an appropriate partial sequence in the amino acid sequence of SEQ ID NO: 1 (for example, automated DNA synthesis). However, the target gene can be screened by using this as a probe, or the target gene can be screened by hybridization with DNA having the nucleotide sequence of SEQ ID NO: 2 or a fragment thereof. Hybridization is performed under low, medium or high stringency conditions and then at relatively high temperature and relatively low ionic strength. In general, hybridization is performed in an appropriately diluted SSC at an appropriate temperature. The higher the temperature (eg, about 5 to 10 ° C below the normal melting temperature (Tm)) and the lower the ionic strength (eg, 0.1 to 1 x SSC), the higher the stringency Become. Examples of hybridization conditions are, for example, Ausbel et al., Short Pro tocols In. It is described in Molecular Biology (third edition), John Wiley & Sons, Inc., and its disclosure can be used. After screening the gene of interest, the gene is amplified by polymerase chain reaction (PCR) using a primer (usually 10 to 30 bases) derived from the nucleotide sequence of SEQ ID NO: 2, or Into a suitable cloning vector such as plasmid phage and introduced into a bacterium such as Escherichia coli to amplify the gene of interest (Sambrook et al., Supra).
増幅された遺伝子は次に、 必要に応じて制限酵素処理したのち、 適当な発現べ クタ一中に挿入し、 適当な宿主細胞に導入し、 該宿主細胞を適する培地にて培養 し、培地中から、または培養細胞内から、本発明の酵素を取り出すことができる。 発現ベクターは一般にプロモータ一を含み、 必要に応じて複製開始点、 ターミネ —ター、 リボソーム結合部位、 シグナル配列、 ェンハンサーなどを含むことがで きる。 発現べクタ一の例は市販のベクター、 文献記載のベクターのいずれも使用 可能であり、 たとえば細菌用ベクターとして pQE (キアゲン社)、 pET (ノバジェ ン社)、 pBluescript I I SK (ストラタジーン社)、 pUC118 (宝酒造社)など、 酵母用 ベクターとして pHS19、 pHS15、 pG - 1、 XTl (ストラタジーン社)、 BPV, pMSG (フ アルマシア社) など、 動物細胞用べクタ一として pcDNAI、 pcDM8 (フナコシ社)、 PREP4 (インビトロジェン社) などが挙げられる。 プロモーターは宿主に応じて選 択され、細菌宿主の場合 trpプロモーター、 lacプロモーター、 PLプロモーター、 PRプロモータ一などが例示され、 酵母宿主の場合 Μ05プロモーター、 PGKプロモ 一夕一、 GAPプロモータ一、 ADHプロモー夕一、 GPDプロモーター、 ヒートシ,ョッ クポリぺプチドプロモーターなどが例示され >動物細胞宿主の場合サイトメガロ ウィルスの即時型初期遺伝子プロモーター、 SV40初期プロモーター、 レトロウイ ルスプロモーター、 ヒートショックプロモーターなどが例示される。 宿主は大腸 菌、 バチルス属細菌、 ブレビパクテリゥム細菌、 コリネバクテリゥム属細菌、 シ ユードモナス属細菌などの細菌類、 サッカロミセス属、 ピチア属、 カンジダ属な どの酵母類に加えて、 菌類 (担子菌、 糸状菌など)、 昆虫細胞、 植物細胞、 動物細 胞なども使用可能である。 発現ベクターの構築、 形質転換については Sambrook ら (上掲) に記載の方法が使用できる。 The amplified gene is then treated with a restriction enzyme, if necessary, and then inserted into an appropriate expression vector, introduced into an appropriate host cell, and the host cell is cultured in an appropriate medium. Or the enzyme of the present invention can be extracted from cultured cells. An expression vector generally contains a promoter, and can optionally contain an origin of replication, a terminator, a ribosome binding site, a signal sequence, an enhancer, and the like. Examples of expression vectors include commercially available vectors and those described in the literature. For example, bacterial vectors such as pQE (Qiagen), pET (Novagen), pBluescript II SK (Stratagene), Vectors for yeast such as pUC118 (Takara Shuzo), pHS19, pHS15, pG-1, XTl (Stratagene), BPV, pMSG (Pharmacia), etc. pcDNAI, pcDM8 (Funakoshi) as vector for animal cells , PREP4 (Invitrogen) and the like. Promoter is selected depending on the host, in the case of a bacterial host trp promoter, lac promoter, P L promoter, is illustrated and P R promoter and foremost, Myu05 promoter if a yeast host, PGK promoter Isseki one, GAP promoter mono-, Examples include ADH promoter, GPD promoter, heatshock, and oocyte polypeptide promoters.> For animal cell hosts, examples include cytomegalovirus immediate early gene promoter, SV40 early promoter, retrovirus promoter, heat shock promoter, etc. You. Hosts include bacteria such as E. coli, Bacillus, Brevipacterium, Corynebacterium, Pseudomonas, and other yeasts such as Saccharomyces, Pichia, Candida, and fungi (basidiomycetes). Fungi, filamentous fungi, etc.), insect cells, plant cells, animal cells, and the like. For construction and transformation of an expression vector, the methods described in Sambrook et al. (Supra) can be used.
発現された酵素は上記と同様の方法で培地または細胞内から精製できる。 培地 から回収する場合、 必要に応じて濃縮後に、 塩析、 溶媒抽出、 沈殿、 種々のクロ マトグラフィー (イオン交換、 ゲルろ過、 親和性、 疎水性相互作用など)、 H P L C , 電気泳動、 クロマトフォーカシング、 などを単独で、 または適宜組み合わせ て行うことができる。 細胞から回収する場合、 ミルなどを用いて機械的にまたは 低張液を用いて化学的に細胞を破壊したあと、 上記と同様の手法にかけて酵素を 精製することができる。 The expressed enzyme can be purified from the medium or the cells in the same manner as described above. Culture medium If necessary, after concentration, salting out, solvent extraction, precipitation, various chromatographies (ion exchange, gel filtration, affinity, hydrophobic interaction, etc.), HPLC, electrophoresis, chromatofocusing, Etc. can be performed alone or in combination as appropriate. When recovering from cells, the enzyme can be purified by the same method as described above after mechanically destroying the cells using a mill or the like or chemically using a hypotonic solution.
本発明はまた、 上記のへキセンゥロニダーゼ蛋白を認識する抗体に関する。 好 ましくは、該抗体は本発明の蛋白を特異的に認識する抗体である。特異的にとは、 本発明の酵素と免疫学的に反応するが、それ以外の関連酵素蛋白とは反応しない、 ことを意味する。 該抗体はモノクローナルまたはポリクロ一ナル抗体、 あるいは それらの抗体断片(例えば Fab、 Fab'、 F (ab' ) 2、 Fvなど)である。 抗体の作製は慣 用の手法で行いうる。 ポリクローナル抗体はたとえば、 該蛋白またはその断片を 動物 (ゥサギなど) に免疫し、 該動物から取った血液から公知の方法で抗体を得 ることができる。 モノクローナル抗体は、 マウスゃラットに該蛋白を免疫し脾臓 細胞を取り出したあと、 該脾臓細胞とミエローマ細胞とを融合させ、 目的の抗体 を産生するハイブリド一マをスクリーニングし、 動物の腹腔内に移植後、 その腹 水から目^)の抗体を得ることができる。 抗体は種々の微生物源からのへキセンク 口ニダーゼの検出などに使用できる。 The present invention also relates to an antibody that recognizes the above hexeneduronidase protein. Preferably, the antibody is an antibody that specifically recognizes the protein of the present invention. The term "specifically" means that the enzyme reacts immunologically with the enzyme of the present invention but does not react with other related enzyme proteins. The antibody is a monoclonal or polyclonal antibody, or an antibody fragment thereof (eg, Fab, Fab ', F (ab') 2 , Fv, etc.). Antibodies can be prepared by conventional techniques. A polyclonal antibody can be obtained, for example, by immunizing an animal (eg, a heron) with the protein or a fragment thereof, and obtaining an antibody from blood collected from the animal by a known method. Monoclonal antibodies are obtained by immunizing mice and rats with the protein, removing spleen cells, fusing the spleen cells with myeloma cells, screening for hybridomas producing the desired antibody, and implanting them into the animal's peritoneal cavity. Later, antibodies from the eyes ^) can be obtained from the ascites. Antibodies can be used, for example, to detect hexendocynidase from various microbial sources.
さらに、 本発明は、 前記へキセンゥロニダーゼを生産するパェニバチルス属に 属する微生物又は前記形質転換体を培地に培養して得られる培養物、 あるいは上 記の性質を有するへキセンゥロニダ一ゼ若しくは組換えへキセンゥロニダーゼを 有効成分として含む漂白剤を提供する。  Further, the present invention relates to a culture obtained by culturing a microorganism belonging to the genus Paenibacillus producing the hexeneduronidase or the transformant in a medium, or a hexeneduronidase or a recombinant having the above-mentioned properties. Disclosed is a bleach containing hexeneduronidase as an active ingredient.
本発明はまた、 前記漂白剤を用いてパルプを処理することを特徴とするパルプ の漂白方法を提供する。 この方法において、 前記漂白剤を用いてパルプを処理す るにあたり、 化学漂白及び またはアルカリ抽出を、 パルプ処理前、 処理後又は 処理中のいずれかに行なうことができる。  The present invention also provides a pulp bleaching method, comprising treating pulp with the bleaching agent. In this method, in treating the pulp with the bleaching agent, chemical bleaching and / or alkali extraction can be performed either before, after or during the pulp treatment.
以下、 本発明をさらにパェニバチルス属由来、 特にパェニバチルス ·エス · ピ — 7— 5由来のへキセンゥロニダーゼについて具体的に説明する。  Hereinafter, the present invention will be described in more detail with respect to hexeneduronidase derived from the genus Paenibacillus, in particular, derived from Paenibacillus sp. 7-5.
1 . へキセンゥロニダーゼの理化学的性質 (酵素活性の測定法) 1. Physicochemical properties of hexeneduronidase (Method for measuring enzyme activity)
へキセンゥロニダーゼについて初めてその存在可能性が示された文献はビータ The first document showing possible presence of hexeneduronidase is Beata
—とアルフレッドによる報告である。 (Biochem. J. (1977) 165, 287-293)。 このとき 彼らはコンドロイチン硫酸やへパリン、 へパラン、 ィズロン酸を基質とするリア ーゼにより消化した時に生成するオリゴ糖の非還元末端側に存在する不飽和糖を 加水分解する酵素を発見している。 彼らはこれをダリクロニダーゼと呼んでいる が酵素反応自体はへキセンゥロニダーゼと全く同一であり、 この酵素は完全に精 製されていないものの、 へキセンゥロン酸を特異的に加水分解する反応を触媒す る酵素といってよい。彼らはバクテリァの Flavobacterimn liepariiiuiiiを培養しそ の培養液から分離し精製を試みている。 酵素活性の定義をへキセンゥロン酸の分 解に伴うへキセンゥロン酸分子内の 2重結合の吸収 (Δ Α232) の単位時間当たり の減少、 として定義していた。 — And Alfred. (Biochem. J. (1977) 165, 287-293). At this time, they discovered an enzyme that hydrolyzes unsaturated sugars on the non-reducing terminal side of oligosaccharides produced when digested with lyases using chondroitin sulfate, heparin, heparan, and iduronic acid as substrates. I have. They call this dalicuronidase, but the enzymatic reaction itself is exactly the same as hexenduronidase, and although this enzyme is not completely purified, it catalyzes a reaction that specifically hydrolyzes hexenduronic acid. It can be called a smooth enzyme. They are cultivating the bacterial Flavobacterim liepariiiuiii and trying to isolate and purify it from the culture. The definition of enzyme activity was defined as the decrease in the absorption per unit time (ΔΔ232) of the double bond in the hexeneduronic acid molecule due to the degradation of hexeneduronic acid.
近年、 橋本らは、 ゲランゃキサンタンガムをリア一ゼにより分解した際に生成 される不飽和糖を持つオリゴ糖を基質として Baci l lus sp. GL 1よりへキセンゥロ ニダーゼを分離精製、 遺伝子のクロ一ニングを行っている (Archives of Biochemis t ry and Biophys ics Vo l. 368, No. 2, Augus t 15, pp. 367-374, 1999)。 橋 本らによる酵素活性の測定法はピーターらの方法と全く同じであり、 不飽和糖の もつ二重結合が 232nm近傍に吸収をもつことを利用し、 酵素分解でこの 232mn近 傍の吸収が減少することを吸光光度系で測定し酵素活性を定義している。  In recent years, Hashimoto et al. Have separated and purified hexeneduronidase from Bacillus sp. GL1 using oligosaccharides containing unsaturated sugars, which are generated when geland-xanthan gum is degraded by lyase, as a substrate. (Archives of Biochemistry and Biophysics Vol. 368, No. 2, August 15, pp. 367-374, 1999). The method of measuring enzyme activity by Hashimoto et al. Is exactly the same as that of Peter et al., Utilizing the fact that the double bond of the unsaturated sugar has an absorption near 232 nm. The decrease is measured by an absorption spectrophotometer and the enzyme activity is defined.
一方、 ブヒヤートらは広葉樹チップのクラフト蒸解時に生成されるへキセンゥ ロン酸を酵素的に除去し、 後段のパルプ漂白を効率的に行うためにクラフトパル プのへキセンゥロニダ一ゼ処理を提唱している(W095/33883)。ブヒヤートらは木 材チップを蒸解しパルプ化する際生成するパルプへミセルロース中のへキセンゥ 口ン酸を側鎖に含むキシランをキシラナーゼ、 キシロシダーゼといったキシラン 分解酵素群を用いて低分子化し、 その後、 へキセンゥロン酸を含むキシロオリゴ 糖を基質として用いることでへキセンゥ口ニダーゼの活性を測定している。 彼ら のへキセンゥ口ニダーゼの活性測定法はへキセンゥロン酸とグリコシド結合して いるァグリコンがへキセンゥロニダーゼにより遊離生成することを利用したもの である。 具体的には、 キシロビオースやキシロトリオースの非還元末端側のキシ ロースに /3結合したへキセンゥロン酸をへキセンゥロニダーゼと反応させること でへキセンゥロン酸とキシロオリゴ糖間の結合が加水分解され、 このときキシロ ビオース、 もしくはキシロトリオースが生成する、 と記載している。 しかし、 こ の特許文献中には酵素活性を測定した実施例が存在せず、 また酵素の精製も行わ れていないためタンパク質としての酵素の存在は証明されてはいない。 On the other hand, Buhyat et al. Have proposed hexeneduronidase treatment of kraft pulp to enzymatically remove hexeneduronic acid generated during kraft cooking of hardwood chips and to efficiently perform pulp bleaching in the subsequent stage. (W095 / 33883). Buhyat et al. Decompose xylan containing hexene and oxalic acid in the side chain of pulp hemicellulose, which is produced when cooking and pulping wood chips, using xylan-degrading enzymes such as xylanase and xylosidase. The activity of hexene mouth nidase is measured by using a xylo-oligosaccharide containing hexeneduronic acid as a substrate. Their method for measuring the activity of hexene peroxidase utilizes the fact that aglycone, which is glycosidically bound to hexenduronic acid, is liberated by hexenduronidase. Specifically, the xylobiose or xylotriose at the non-reducing end It is stated that the reaction between hexeneduronic acid and hexeneduronidase, which is / 3-linked to the loose, hydrolyzes the bond between hexeneduronic acid and xylo-oligosaccharide, and that xylobiose or xylotriose is generated at this time. ing. However, in this patent document, there is no example in which the enzyme activity was measured, and the enzyme was not purified. Therefore, the existence of the enzyme as a protein has not been proved.
へキセンゥロニダーゼは酵素活性の測定方法が非常に難しく研究がなかなか進 まなかつたという背景がある。 不飽和糖が有する 232ηπιの吸収が酵素反応により 減少することを利用した方法も、酵素サンプル中に 23 Οηπ!〜 25 Οηπι付近の吸収をも つ化合物が含まれているため 232nm付近の吸収の減少を測定することは難しい。 キシロオリゴ糖に結合した不飽和糖を基質として用いた方法も、 基質の精製が不 十分であれば酵素サンプル中に挟雑するキシラナーゼなどの他の酵素でキシロォ リゴ糖が生成する可能性が否定できず、真の酵素活性法としては実用的ではない。 そこで本発明者らは酵素活性の特異性、 検出感度ともに十分な酵素活性用基質の 開発を行う必要に迫られた。  Hexenduronidase has a background in which the method for measuring enzyme activity is extremely difficult and research has been slow. A method that utilizes the fact that the absorption of 232ηπι of unsaturated sugars is reduced by an enzymatic reaction is also used in the enzyme sample. It is difficult to measure the decrease in absorption around 232 nm because it contains compounds with absorption around 25 Οηπι. The method using an unsaturated saccharide bonded to a xylo-oligosaccharide as a substrate also cannot rule out the possibility that other enzymes such as xylanase entrapped in an enzyme sample will produce xyloligosaccharide if the purification of the substrate is insufficient. Therefore, it is not practical as a true enzyme activity method. Therefore, the present inventors have been required to develop a substrate for enzyme activity with sufficient specificity and detection sensitivity of the enzyme activity.
(へキセンゥロニダーゼ測定用合成基質の作製)  (Preparation of synthetic substrate for hexene peronidase measurement)
グリコシダーゼの活性測定用基質を検討し、 4 -0-メチルゥンベリフエロンを利 用した新規な活性測定用基質へキセンゥロン酸誘導体を作製した。  Substrates for measuring the activity of glycosidase were studied, and a new xenperonic acid derivative was prepared using 4-0-methylpumbelliferone.
へキセンゥロン酸誘導体は、 へキセンゥロニダーゼ酵素の合成基質であり、 へ キセンゥロン酸の 1位の水酸基と、 蛍光物質、 化学発光物質又は発色物質上の基 との間でグリコシド結合を形成することにより得られた下記の式(I)で表される 化合物である。 該誘導体は、 へキセンゥロニダーゼの作用を受けるとき、 このグ リコシド結合部分で切断されてへキセンゥロン酸と蛍光、 化学発光又は発色物質 とに分解される。 この酵素作用に伴って遊離する蛍光、 化学発光又は発色物質が 直接もしくは間接的に発するシグナルを物理化学的方法により検出することによ つて、 へキセンゥロニダーゼの酵素活性を測定することが可能である。  A hexeneduronic acid derivative is a synthetic substrate for the hexeneduronidase enzyme, and forms a glycosidic bond between the hydroxyl group at position 1 of hexeneduronic acid and a group on a fluorescent substance, a chemiluminescent substance, or a coloring substance. A compound represented by the following formula (I) obtained by When the derivative is subjected to the action of hexeneduronidase, it is cleaved at this glycosidic bond to be decomposed into hexeneduronic acid and a fluorescent, chemiluminescent or chromogenic substance. It is possible to measure the enzyme activity of hexenduronidase by detecting the fluorescence, chemiluminescence, or the signal directly or indirectly emitted by the coloring substance released by the enzymatic action by a physicochemical method. It is.
【化 1】  [Formula 1]
〔式中、 Zは 0 (酸素) 又は S (硫黄) を表し、 Xは発蛍光団基、 化学発光団基又 は発色団基を表す〕 上記式(I) 中の X基は、 発蛍光団基、 化学発光団基又は発色団基である。 発蛍 光団基の例は、 置換された又は未置換のクマリル基、 フルォロセィニル基、 ナフ チル基 (例えば i3 -ナフチル基) などを含むが、 これらの基に限定されない。 該置 換基としては、 へキセンゥロン酸の 1位の水酸基とグリコシル結合を形成するこ とができる基 (好ましくは水酸基、 - SH基)、 へキセンゥロニダーゼの酵素作用に 実質的に影響を及ぼさない基、 などであればいかなる置換基であってもよい。 X がクマリル基、 フルォロセィニル基、 ナフチル基の場合には、 これらの基がもつ 水酸基を介してへキセンゥロン酸とのグリコシド結合が形成される。 [In the formula, Z represents 0 (oxygen) or S (sulfur), and X represents a fluorophore group, a chemiluminescence group, or a chromophore group.] The X group in the above formula (I) is a fluorophore group, a chemiluminescence group or a chromophore group. Examples of fluorophore groups include, but are not limited to, substituted or unsubstituted cumaryl, fluoresynyl, naphthyl (eg, i3-naphthyl) and the like. Examples of the substitution group include a group capable of forming a glycosyl bond with the hydroxyl group at position 1 of hexeneduronic acid (preferably a hydroxyl group and a -SH group), which substantially affect the enzymatic action of hexeneduronidase. Any substituent may be used as long as it has no effect on the group, and the like. When X is a cumaryl group, a fluoresynyl group, or a naphthyl group, a glycosidic bond with hexeneduronic acid is formed via a hydroxyl group of these groups.
化学発光団基の例は、 ホタル又はゥミシィタケ由来のルシフェリンであり、 酵 素的に遊離したルシフェリンはルシフェラーゼを作用させてォキシルシフェリン に酸化される際に発する光を分光学的に検出することができる。  An example of a chemiluminophore group is luciferin derived from fireflies or mushrooms.Enzymatically released luciferin can detect the light emitted when luciferase is oxidized to oxyluciferin by the action of luciferase. it can.
発色団基の例は、 p—二トロフエノキシ基などであり、 例えば p—ニトロフエ ノキシ基の場合、 へキセンゥ口ニダ一ゼの作用の結果 p—二トロフエノ一ルが遊 離するので、 黄色〜黄褐色の着色の程度を分光学的に測定することができる。 上記式(I)中 X基として発蛍光団基を含むへキセンゥロン酸誘導体が好ましい。 また発蛍光団基としては、 置換クマリル基であるゥンベリフエ口ン誘導体基が好 ましく、 そのような基としては、 7—ヒドロキシクマリル基 (ゥンベリフェリル 基ともいう)、 4—メチル— 7—ヒドロキシクマリル基(4ーメチルゥンベリフエ リル基ともいう) などが挙げられる。 したがって、 好ましいへキセンゥロン酸誘 導体の例は、 下記式 (I I) で表されるゥンベリフェリル一 4—デォキシ一へキス 一 4—エノピラノシドウ口ン酸である。  An example of a chromophore group is p-nitrophenoxy group.For example, in the case of p-nitrophenoxy group, yellow-yellow to yellow because p-ditrophenol dissociates as a result of the action of hexene ゥ -nidase The degree of brown coloring can be measured spectroscopically. Hexeneduronic acid derivatives containing a fluorophore group as the X group in the above formula (I) are preferred. The fluorophore group is preferably a substituted coumaryl group, ie, a derivatized phenyl derivative group. Examples of such a group include a 7-hydroxycoumaryl group (also referred to as a deumbelliferyl group) and a 4-methyl-7-hydroxy group. And a coumaryl group (also referred to as a 4-methylumberiphenyl group). Accordingly, an example of a preferred hexeneduronic acid derivative is umbelliferyl-14-dexoxy-1-hex-14-enopyranoside hydroic acid represented by the following formula (II).
【化 2】 へキセンゥロン酸誘導体は、 以下の工程にしたがって製造又は合成できる。 最初に、 出発物質として ーガラク卜ピラノシドウロン酸を用い、 その水酸基 を、 置換されたもしくは未置換のアルカノィル基 〔例えばァセチル基、 1 ~ 3個 のハロゲン原子で置換されたァセチル基 (例えばモノクロロアセチル基、 ジクロ ロアセチル基など)、 など〕、 トリアルキルシリル基 〔例えばトリ低級アルキルシ リル基 (例えばトリメチルシリル基、 トリェチルシリル基など)、 など〕、 ァリー ルアルキル基 (例えば置換もしくは未置換フエニル低級アルキル基、 例えば置換 · もしくは未置換べンジル基)、又はそれらと同様の保護基で保護し、 またカルボキ シル基を、 置換されたもしくは未置換のアルキルエステル (例えばメチルエステ ル、ェチルエステルなど)、ァリ一ルアルキルエステル(例えばべンジルエステル、 P—メトキシベンジルエステルなど)、又はそれらと同様のエステルの形態で保護 する。 .好ましくは、 水酸基はァセチル基で、 また力ルポキシル基はメチルエステ ルの形態で保護される。 本明細書中で使用する低級アルキルとは、 Cj〜(^アルキ ルを指し, 好ましくはメチル及びェチルである。 また、 本明細書中で使用するハ ロゲン原子とは、 フッ素、 塩素、 臭素又はヨウ素原子を意味する。 The hexeneduronic acid derivative can be produced or synthesized according to the following steps. First, using -galactopyranosideuronic acid as a starting material, the hydroxyl group of which is substituted or unsubstituted alkanol group (eg, acetyl group, acetyl group substituted with 1 to 3 halogen atoms (eg, monochloroacetyl group, Trialkylsilyl group [for example, tri-lower alkyl A protective group such as an aryl group (eg, a trimethylsilyl group, a triethylsilyl group, etc.), an arylalkyl group (eg, a substituted or unsubstituted phenyl lower alkyl group, eg, a substituted or unsubstituted benzyl group), or a similar protecting group. The carboxyl group can be substituted with a substituted or unsubstituted alkyl ester (eg, methyl ester, ethyl ester, etc.), arylalkyl ester (eg, benzyl ester, P-methoxybenzyl ester, etc.), or a similar compound. Protect in ester form. Preferably, the hydroxyl group is protected in the form of an acetyl group and the hydroxyl group in the form of a methyl ester. The lower alkyl used herein refers to Cj-(^ alkyl, preferably methyl and ethyl. The halogen atom used in the present specification is fluorine, chlorine, bromine or It means an iodine atom.
上記のように保護された i3—ガラクトビラノシドウロン酸の 1位の水酸基を、 例えばハロゲン原子 (フッ素、 塩素又は臭素原子)、 -S (=0) R、 -0-P (NR2) Γ -0-Ρ (=The hydroxyl group at the 1-position of i3-galactobilanosiduronic acid protected as described above is replaced with, for example, a halogen atom (fluorine, chlorine or bromine atom), -S (= 0) R, -0-P (NR 2 ) Γ -0-Ρ (=
0) (OP ) Γ _SR、 -S-P (=NPh) (NR2) 2 (ここで、 Rはメチル、 ェチル、 プロピルなどの 低級アルキルであり、 Ph はフエニルなどのァリールを表す。) などによって選択 的に置換する。 ハロゲン原子が臭素原子の場合、 臭素化は例えば臭素酸 ·酢酸溶 液中で行うことができる。 次いで、 この置換体と、 水酸基をもつ蛍光物質、 化学 発光物質又は発色物質との間でグリコシル化反応を行う (例えば Toshinia, K. ら, Chem. Rev. 93 : 1503-1531, 1993;橋本俊一及び中島誠,フアルマシア 32: 1375-1 380, 1996など)。 臭素置換体の場合、 公知の Koenigs- Knorr法に従って銀塩また は水銀塩の存在下でグリコシル化反応を行うことができる。 0) (OP) Γ _SR, -SP (= NPh) (NR 2) 2 ( where, R is a lower alkyl such as methyl, Echiru, propyl, Ph is selected such as by representing.) The Ariru such phenyl Replace. When the halogen atom is a bromine atom, the bromination can be performed, for example, in a bromic acid / acetic acid solution. Next, a glycosylation reaction is performed between the substituted product and a fluorescent substance, a chemiluminescent substance or a coloring substance having a hydroxyl group (for example, Toshinia, K. et al., Chem. Rev. 93: 1503-1531, 1993; Shunichi Hashimoto) And Makoto Nakajima, Fulmasia 32: 1375-1 380, 1996). In the case of a bromine-substituted product, a glycosylation reaction can be carried out in the presence of a silver salt or a mercury salt according to the known Koenigs-Knorr method.
次に、 得られたグリコシル化化合物について、 その保護《_ガラクトビラノシ ドウ口ン酸部分の 4位をデォキシ化して保護へキセンゥロン酸部分に変換する。 最後に、 グリコシル化化合物の保護へキセンゥロン酸部分の保護基を脱保護し てへキセンゥロン酸部分に変換する。  Next, the protected glycosylated compound is subjected to deoxylation at the 4-position of the protected << _ galactovilanosidonic acid moiety to convert it to a protected hexeneduronic acid moiety. Finally, the protecting group of the protected hexeneduronic acid moiety of the glycosylated compound is deprotected and converted to the hexeneduronic acid moiety.
(酵素の力価の測定方法)  (Method of measuring enzyme titer)
へキセンゥロニダーゼの酵素活性測定の基本原理は、 発蛍光団基、 化学発光団 基又は発色団基を結合したへキセンゥロン酸誘導体にへキセンゥロニダ一ゼを作 用させ、 それによりグリコシド結合が切断されて蛍光、 化学発光又は発色物質が 生じ、 そしてそのシグナルの強度を直接又は間接的に物理化学的方法で測定する ことによって、 該へキセンゥロニダ一ゼの酵素活性を測定することができる。 す なわち、 上記のように製造又は合成されたへキセンゥロン酸誘導体をへキセンゥ ロニダーゼ酵素の活性測定用の基質として使用しうる。 該基質にへキセンゥロニ ダーゼを作用させて生じたシグナルが蛍光である場合、 遊離した蛍光物質を特定 の波長で励起させ、 該励起により放出される発光波長によりその蛍光強度を測定 する。 このとき、反応系内で 1分間に l / molのへキセンゥロン酸を遊離させる酵 素量を 1ュニットとして定義することができる。 The basic principle of measuring the enzyme activity of hexeneduronidase is that a hexeneduronic acid derivative to which a fluorophore group, a chemiluminescent group or a chromophore group is bound causes hexeneduronidase to act, thereby breaking the glycosidic bond. To produce a fluorescent, chemiluminescent or chromogenic substance, and the intensity of that signal is measured directly or indirectly by physicochemical methods Thereby, the enzyme activity of the hexeneduronidase can be measured. That is, the hexeneduronic acid derivative produced or synthesized as described above can be used as a substrate for measuring the activity of a hexeneduronidase enzyme. When the signal generated by the action of hexeneduronidase on the substrate is fluorescence, the released fluorescent substance is excited at a specific wavelength, and the fluorescence intensity is measured based on the emission wavelength emitted by the excitation. At this time, the amount of the enzyme that releases l / mol of hexeneduronic acid per minute in the reaction system can be defined as 1 unit.
反応は、 該基質を反応系内で適切な濃度 (例えば約 100 ^ M) となるように調製 し、 各種のサンプル溶液と反応させへキセンゥ口ニダ一ゼの活性を測定できるよ うに設定しうる。具体的に説明すると、基質溶液をリン酸バッファー、 トリスー H C1などのバッファー(例えば pH約 6〜約 8)にて調製し、 この基質溶液に対して酵 素液を例えば酵素対基質比約 1 : 10〜約 1: 100で添加し、 例えば約 1分〜 30分 間、 例えば室温〜 55 の温度にてインキュベートする。 その後グリシン—NaOHバ ッファー(pH約 10)などのアルカリ域のバッファーを反応系に添加するなどの方 法によって酵素反応を停止させる。  The reaction may be prepared so that the substrate is prepared at an appropriate concentration (for example, about 100 M) in the reaction system, and reacted with various sample solutions to measure the activity of hexene-nidase. . More specifically, a substrate solution is prepared in a buffer such as a phosphate buffer or Tris-HCl (for example, at a pH of about 6 to about 8), and an enzyme solution is added to the substrate solution at an enzyme to substrate ratio of about 1 : 10 to about 1: 100 and incubate for about 1 to 30 minutes, for example at room temperature to 55. Thereafter, the enzyme reaction is stopped by a method such as adding an alkaline buffer such as glycine-NaOH buffer (pH about 10) to the reaction system.
このとき生じた蛍光、 化学発光又は発色シグナルは、 蛍光光度計又は吸光光度 計を用いて測定することができる。 励起波長や発光波長、 あるいは吸光度、 はシ グナルの特性によって適宜選択される。 例えば、 酵素反応の結果遊離する蛍光性 4ーメチルー 7—ヒドロキシクマリンの場合、 励起波長は約 355nm、 発光波長は 約 455nmである。  The fluorescence, chemiluminescence or chromogenic signal generated at this time can be measured using a fluorimeter or an absorptiometer. The excitation wavelength, emission wavelength, or absorbance are appropriately selected depending on the characteristics of the signal. For example, in the case of fluorescent 4-methyl-7-hydroxycoumarin released as a result of an enzymatic reaction, the excitation wavelength is about 355 nm and the emission wavelength is about 455 nm.
化学発光団基として例えばホ夕ル又はゥミシィ夕ケ由来ルシフェリンを使用す る場合には、 酵素的に遊離したルシフェリンにルシフェラーゼ酵素を Mg2tの存在 下で作用させ、 ォキシルシフェリンに酸化される際に発する光を分光学的に検出 することができる。 As in the case for example that use e Yuru or Umishii Yuke derived luciferin chemiluminescers group, when enzymatically liberated luciferin luciferase enzyme is allowed to act in the presence of Mg 2t, is oxidized to O carboxymethyl luciferin The light emitted from the light can be detected spectroscopically.
このへキセンゥロン酸誘導体をへキセンゥロニダーゼ測定用合成基質として用 いることにより、 各種細菌の培養液または多細胞生物の培養細胞などからサンプ ル溶液を濃縮することなく直接へキセンゥロニダ一ゼの酵素活性を測定すること ができる。 以下に具体的な測定方法の一例を説明する (実施例 6参照)。 合成されたへキセンゥロニダーゼ測定用基質を反応系内で 100 M となるよう に濃度を調整し各種のサンプル溶液と反応させへキセンゥロニダーゼの活性を測 定出来るように設定した。 具体的には 200 M の基質溶液をリン酸バッファーBy using this hexeneduronic acid derivative as a synthetic substrate for hexeneduronidase measurement, the enzyme of hexeneduronidase can be directly concentrated without concentrating the sample solution from various bacterial cultures or cultured cells of multicellular organisms. Activity can be measured. An example of a specific measurement method will be described below (see Example 6). The concentration of the synthesized hexeneduronidase measurement substrate was adjusted to 100 M in the reaction system, and it was set to react with various sample solutions to measure hexeneduronidase activity. Specifically, a 200 M substrate solution was added to a phosphate buffer.
(pH7. 0: lOOniM) にて作製した。 この基質溶液 10 / 1に対し酵素液 を添加 し、 30 分間、 37°Cにてインキュベートした。 その後グリシン- NaOHバッファ一 (ρΗΙΟ. 5 : 500mM)を 100 1を反応系に添加し酵素反応を停止させた。 4 - 0 -メチル ゥンベリフエロンの蛍光強度は 355nmで励起させ、 455nmにて測定した。 反応系 内で 1分間に 1マイク口モルのへキセンゥロン酸を分解する酵素量を 1ュニット と定義した。 '(pH 7.0: lOOniM). An enzyme solution was added to 10/1 of the substrate solution, and the mixture was incubated at 37 ° C for 30 minutes. Thereafter, 100 1 of glycine-NaOH buffer (ρΗΙΟ: 5: 500 mM) was added to the reaction system to stop the enzyme reaction. The fluorescence intensity of 4-0-Methyl Pumbelliferone was excited at 355 nm and measured at 455 nm. The amount of enzyme that decomposes 1 micole mole of hexeneduronic acid per minute in the reaction system was defined as 1 unit. '
(至適 pH及び安定 pH範囲) (Optimal pH and stable pH range)
酵素の反応至適 pH及び pH安定性を酢酸バッファー (pH5. 0以下)、 リン酸バッ ファー (pH6. 0〜7. 0)、 トリス- HC1 (pH7. 0〜8. 5)、グリシン- NaOHバッファー (pH9. 0 〜10. 5) を用いて酵素活性を測定した (図 1 )。 図 1を見て分かるようにへキセン ゥロニダーゼ活性の至適 pHは 6〜 8、 特に 6. 5〜7. 5にあることがわかった。 ま た、 酵素をそれぞれ 50mMの所定のバッファ一中に 4°Cにて 24時間保持した後に 酵素活性を pH6. 5のリン酸パッファー中にて測定した(図 2 )。図 2の結果らわか るように酵素は PH5. 0〜10. 0の範囲で安定であった。  The optimal pH and pH stability of the enzyme were determined using acetate buffer (pH 5.0 or less), phosphate buffer (pH 6.0-7.0), Tris-HC1 (pH 7.0-8.5), glycine-NaOH The enzyme activity was measured using a buffer (pH 9.0 to 10.5) (Fig. 1). As can be seen from FIG. 1, it was found that the optimum pH for hexeneduronidase activity was in the range of 6 to 8, especially 6.5 to 7.5. The enzyme activity was measured in a phosphate buffer at pH 6.5 after each enzyme was kept in a predetermined buffer of 50 mM at 4 ° C. for 24 hours (FIG. 2). As can be seen from the results in FIG. 2, the enzyme was stable in the range of pH 5.0 to 10.0.
(至適温度及び温度安定性)  (Optimum temperature and temperature stability)
酵素反応の至適温度を PH6. 5の 50 リン酸バッファー中にて測定した(図 3 )。 酵素反応の時間はすべて 3 0分とした。図 3を見てわかるように至適温度は 50°C 近辺にあることが判明した。 また、 温度安定性については、 所定の温度で pH6. 5 の 50mMリン酸バッファ一中で 3 0分保持した後に pH6. 5、 50mMリン酸バッファー 中で 37°C測定した (図 4 )。 図 4より酵素の安定性は 45°Cにて、 3 0分の処理で 約 80%以上の残存活性を示した。  The optimal temperature for the enzymatic reaction was measured in a pH 6.5 50 phosphate buffer (Figure 3). All enzyme reaction times were 30 minutes. As can be seen from Fig. 3, the optimum temperature was found to be around 50 ° C. In addition, the temperature stability was measured at 37 ° C in a pH 6.5, 50 mM phosphate buffer after maintaining at a predetermined temperature for 30 minutes in a pH 6.5, 50 mM phosphate buffer (Fig. 4). As shown in FIG. 4, the stability of the enzyme was about 80% or more after 45 minutes of treatment at 45 ° C.
〈酵素の等電点〉  <Isoelectric point of enzyme>
アマシャム-フアルマシア社製のアンホラインを用いて等電点を測定した。機材 はロトファー (パイォラッド社) を用い、 PH2. 0付近から pHl l. 5付近までの pH 勾配を作製し各 pHでの活性を測定した結果、 へキセンゥロニダ一ゼの等電点は PH4. 5であった。 〈酵素の分子量の測定〉 The isoelectric point was measured using Amersham-Pharmacia Ampholine. The equipment used was a Lottopher (Piorad), and a pH gradient was created from around pH 2.0 to around pH 11 and the activity at each pH was measured. As a result, the isoelectric point of hexene peronidase was PH 4.5. there were. <Measurement of molecular weight of enzyme>
精製したへキセンゥロニダーゼの分子量はポリアクリルアミドゲル電気泳動法 で測定した。 その結果、 酵素の分子量は約 40, 000であった。  The molecular weight of the purified hexeneduronidase was measured by polyacrylamide gel electrophoresis. As a result, the molecular weight of the enzyme was about 40,000.
(酵素活性に及ぼす金属塩等の影響)  (Effect of metal salts etc. on enzyme activity)
種々の金属塩等を ImMになるように酵素液に添加し、 4°Cにて 24時間保持した 後、 反応液にも同種の金属塩等を ImMになるように添加して酵素の活性を測定し た (表 1 )。  After adding various metal salts and the like to the enzyme solution so as to be ImM, and keeping at 4 ° C for 24 hours, the same type of metal salts and the like are also added to the reaction solution so as to be ImM to increase the enzyme activity. It was measured (Table 1).
【表 1】 本酵素は Cu2+で強く阻害された。 また、 本酵素は Zn2+、 SDSでも強く阻害され た(添加物なしの場合の活性を 100 %としたとき、 SDSを含有させたときの相対酵 素活性は 19. 9%であった。)。 EDTAは酵素活性を阻害しなかった。また意外なこと に、 2—メルカプトエタノール(2— ME)は活性を約 2倍以上亢進させることが判明 した。 具体的には、 2 または lOmM 2 _メルカプトエタノールの存在下におけ る本発明のへキセンゥロニダーゼの相対活性は、 2一 MEの不在(対照)の場合と比 ベてそれぞれ 2. 0倍、 2. 7倍亢進した。 [Table 1] This enzyme was strongly inhibited by Cu 2+ . This enzyme was also strongly inhibited by Zn 2+ and SDS (relative enzyme activity when SDS was contained was 19.9% when the activity without additives was 100%). ). EDTA did not inhibit enzyme activity. Surprisingly, it has been found that 2-mercaptoethanol (2-ME) enhances the activity about two-fold or more. Specifically, the relative activity of the hexeneduronidase of the present invention in the presence of 2 or lOmM 2 _mercaptoethanol is 2.0 times higher than that in the absence of 21 ME (control). 2.7 times higher.
2 . へキセンゥロニダーゼを生産する微生物 2. Microorganisms that produce hexeneduronidase
へキセンゥロニダ一ゼを生産するバクテリアとして東京都江東区東雲の土壌よ り 7— 5株を分離した。 7— 5株はグラム陰性の桿菌であり 1 6 S rRNAの塩基配 列の解析により既存のどの菌株とも 100%—致するものがなかった。最も近縁種と しては Paenibaci l lus l au tusが 1 6 S rRNAの塩基配列相違性 0. 58%で最も近縁 な種類のバクテリ アであった (M. Heyndrickx et al., Int. J. Sys t. Bacterio l. (1996) 46 : 988-1003)。 なお、 この菌の菌学的性質は上記のとおりであ る。 菌株 # 7— 5はパェニバチルス属の新種であり、 バエ二バチルス ·エスピー 7 - 5と命名され、 独立行政法人産業技術総合研究所 ·特許生物寄託センタ一に 受託番号 FERM BP-7972で寄託されている。  7-5 strains of hexene peronidase producing bacteria were isolated from the soil of Shinonome, Koto-ku, Tokyo. Seven to five strains were Gram-negative rods, and the analysis of the base sequence of 16 S rRNA revealed that none of the existing strains matched 100%. As the most closely related species, Paenibaci llus l autus was the most closely related bacterium with a difference in nucleotide sequence of 16 S rRNA of 0.58% (M. Heyndrickx et al., Int. J. Syst. Bacterio l. (1996) 46: 988-1003). The microbiological properties of this bacterium are as described above. Strain # 7-5 is a new species of the genus Paenibacillus, named Baenibacillus sp. 7-5, and deposited at the National Institute of Advanced Industrial Science and Technology, Patent Organism Depositary under the accession number FERM BP-7972. I have.
3 - へキセンゥロニダーゼ遺伝子のクロ一ニング 3-Cloning of the hexeneduronidase gene
へキセンゥロニダーゼ遺伝子をクローニングするためにパェニバチルス ·エス ピー 7— 5の DNAライプラリーを製作する。 DMライブラリ一は、 パェニバチル ス ·エスピー 7— 5から染色体丽 Aを抽出し、 適当な制限酵素で処理したものを 適当なベクターに連結後、 適合する宿主に導入することで作製できる。 染色体 D N Aを抽出するには、 通常の方法を用いることができる (例えば、 Sambrook ら, Molecul arCloning; Cold SpringHarbor Laboratory Press (1989) Vol. 1の Bl in と St af fordの方法) 。 Produce a DNA library of Paenibacillus sp. 7-5 to clone the hexeneduronidase gene. DM Library One is Paenibacill It can be prepared by extracting chromosome 丽 A from SP7-5, treating it with an appropriate restriction enzyme, ligating it into an appropriate vector, and introducing it into a compatible host. Conventional methods can be used to extract chromosomal DNA (eg, Sambrook et al., Molecular Cloning; Cold Spring Harbor Laboratory Press (1989) Vol. 1, Blin and Stafford).
すでに精製されたパェニバチルス ·エスピー 7 - 5由来のへキセンゥロニダ一 ゼの構成アミノ酸に基づく情報を用いてプローブ作ることが可能である。 酵素遺 伝子の発現が非常に少ないタンパク質であったり、 導入されたタンパク質が宿主 である大腸菌に毒性を与える場合は DNAライブラリ一からの形質転換大腸菌での ショットガンクロ一ニングは困難である。 このため DNAライブラリ一から直接目 的蛋白質をコードする遺伝子を取得するために酵素タンパク質を構成するアミノ 酸の情報を基にして遺伝子をつり上げるためのプローブを作製した。 プローブは タンパク質の N末端側のアミノ酸の配列とタンパク質分解酵素であるリジルェン ドぺプチダーゼでの消化物のアミノ酸の配列を用いて作製した。  It is possible to make a probe using information based on the constituent amino acids of hexeneduronidase which is already purified from Paenibacillus sp. 7-5. If the expression of the enzyme gene is very low, or if the introduced protein causes toxicity to the host Escherichia coli, shotgun cloning of the transformed Escherichia coli from the DNA library is difficult. For this reason, in order to obtain the gene encoding the target protein directly from the DNA library, a probe was prepared for lifting the gene based on information on the amino acids constituting the enzyme protein. The probe was prepared using the amino acid sequence of the N-terminal side of the protein and the amino acid sequence of the digested product with the proteolytic enzyme lysylendopeptidase.
適当なサイズの遺伝子断片は同様の切断面を持つクローニングベクターに揷入 される。 この遺伝子断片を含むベクタ一としては例えば、 pUC 系等の任意のべク ターを用いることができるが、 ファージベクターやコスミドベクターであっても よい。 これらの遺伝子断片を含むベクタ一は宿主である大腸菌や酵母といった宿 主に形質転換される。 形質転換された宿主は宿主が生育できる通常の平板プレー ト上で培養後、 コロニーハイプリダイゼーシヨンを行い目的遺伝子の断片を含む 宿主を選抜する。 コロニーハイブリダィゼ一シヨンを行う際のプローブは酵素夕 ンパク質のアミノ酸情報に基づいて作製したプロ一プが用いられる。 このように してクロ一ニングした遺伝子断片の塩基配列は、 放射性標識、 蛍光標識を用いる ジデォキシ法、 マクサムギルバート法等により解析可能である。  A gene fragment of an appropriate size is inserted into a cloning vector having a similar cut surface. As the vector containing the gene fragment, any vector such as a pUC system can be used, but a phage vector or a cosmid vector may be used. A vector containing these gene fragments is transformed into a host such as Escherichia coli or yeast. After the transformed host is cultured on a normal plate plate on which the host can grow, colony hybridization is performed to select a host containing the fragment of the target gene. As a probe for performing colony hybridization, a probe prepared based on amino acid information of the enzyme protein is used. The nucleotide sequence of the gene fragment thus cloned can be analyzed by the dideoxy method using a radioactive label or a fluorescent label, the maxam Gilbert method, or the like.
4 . 酵素の製造方法 4. Enzyme production method
次に、 本発明の酵素の製造方法について説明する。  Next, a method for producing the enzyme of the present invention will be described.
(天然へキセンゥロニダーゼの精製)  (Purification of natural hexeneduronidase)
パェニバチルススピー 7— 5を培養することによりへキセンゥロニダ一ゼを生 産することができる。 培養のための炭素源、 窒素源には、 7— 5株が資化するこ とのできるものであればいずれも用いることができる。例えば、炭素源としては、 キシラン若しくはキシランを含む小麦ふすま、 パルプ、 バガス、 コーンファイバ 一、 稲わら等の農産廃棄物又は植物繊維等を使用することができる。 窒素源とし ては、 酵母エキス、 ペプトン、 各種アミノ酸、 大豆、 コーンスティープリカ一、 各種無機窒素等の窒素化合物を用いることができる。 また、 各種の塩類やビ夕ミ ン、 ミネラル等を適宜用いることができる。 Hexeneduronidase can be produced by culturing Paenibacillus sp. 7-5. 7-5 strains can be used as carbon and nitrogen sources for cultivation. Any of these can be used. For example, as the carbon source, xylan or xylan-containing wheat bran, pulp, bagasse, corn fiber, agricultural waste such as rice straw, plant fiber, or the like can be used. As a nitrogen source, nitrogen compounds such as yeast extract, peptone, various amino acids, soybean, corn steep liquor, and various inorganic nitrogen can be used. Various salts, minerals, minerals, and the like can be used as appropriate.
培養温度および p Hは、 菌が生育してへキセンゥ口ニダ一ゼを生産する範囲で あればいずれでも良く、 培養温度は 20〜50°C、 好ましくは 35〜45°C、 p FH 5〜 9、 好ましくは 6〜8である。 本発明の微生物を培養した後、 菌体を分離し、 菌 体を酵素的または物理化学的に処理し菌体内に存在するへキセンゥロニダーゼを 得ることが出来る。 かかるへキセンゥロニダ一ゼ粗酵素液は、 反応至適温度約 35 〜約 55°C、好ましくは約 40〜約 50°C、至適 p H約 5. 5〜約 8. 5、好ましくは約 6. 0 〜約 1. 5である。  The cultivation temperature and pH may be any as long as the bacteria grow and produce hexene-nidase, and the cultivation temperature is 20 to 50 ° C, preferably 35 to 45 ° C, and the pH is 5 to 50 ° C. 9, preferably 6-8. After culturing the microorganism of the present invention, the cells are separated, and the cells are treated enzymatically or physicochemically to obtain hexenduronidase present in the cells. Such a crude hexeneduronidase enzyme solution has an optimal reaction temperature of about 35 to about 55 ° C, preferably about 40 to about 50 ° C, and an optimum pH of about 5.5 to about 8.5, preferably about 6 ° C. 0 to about 1.5.
また、 透析、 塩析、 限外濾過、 凍結乾燥等により、 へキセンゥロニダ一ゼを濃 縮又は固体化することができる。 さらに、 培養濾液を硫安分画、 ゲル濾過による 分子量分画や各種イオン交換樹脂、 ハイドロキシアパタイト、 等電点分画等を適 宜組み合わせ、 また繰り返すことによりへキセンゥロニダ一ゼを精製することが できる。 具体的な精製方法については、 実施例に示す。  Hexeneduronidase can be concentrated or solidified by dialysis, salting out, ultrafiltration, lyophilization or the like. Furthermore, hexeneduronidase can be purified by appropriately combining the culture filtrate with ammonium sulfate fractionation, molecular weight fractionation by gel filtration, various ion exchange resins, hydroxyapatite, isoelectric point fractionation, and the like, and repeating the same. The specific purification method is described in Examples.
(遺伝子工学的手法による遺伝子組換え型へキセンゥロニダ一ゼの精製) 本発明のへキセンゥロニダ一ゼは、 クローニングされた遺伝子を発現させるこ とにより精製することもできる。 本明細書において、 遺伝子を発現させて得られ た酵素を 「遺伝子組換え型へキセンゥロニダーゼ」 という。 その手法は、 適当な 方法によって得られたへキセンゥロニダーゼ遺伝子を、 適当な宿主 ·ベクタ一を 用いて発現することにより高生産することができる。 発現に用いられるベクター としては、 プラスミドベクター、 ファージベクタ一等が主に使われる。 宿主とし て、大腸菌、枯草菌、酵母等が主に使われる。培養のための炭素源、窒素源には、 資化して耐熱性キシラナーゼを生産することができるものであればいずれも用い ることができる。 例えば、 炭素源としては、 小麦ふすま、 パルプ、 バカス、 コー ンファイバ一、 稲わら等の農業廃棄物又は植物繊維等を使用することができる。 窒素源としては、 酵母エキス、 ペプトン、 各種アミノ酸、 大豆、 コーンスティ一 プリカ一、各種無機窒素等の窒素化合物を用いることができる。また、各種塩類、 ビタミン、 ミネラル等を適宜用いることができる。 培養温度及び pHは、 菌が耐熱 性キシラナ一ゼを生産する範囲であればいずれでも良く、 培養温度は好ましくは 37°C、 pHは好ましくは 7である。 酵素の精製方法としては、 硫安分画、 ゲル濾過 による分子量分画や各種イオン交換樹脂、 ハイドロキシアパタイト、 等電点分画 等を適宜組み合わせ、 また繰り返すことにより精製することができる。 得られた 精製酵素が求めるキシラナ一ゼであるかの確認は、 得られた精製酵素の分子量、 至適 pH、 至適温度、 N末端アミノ酸配列等をパェニバチルスエスピー 7 _ 5株の 生産したへキセンゥロニダーゼと比較することにより判断できる。 具体的な酵素 の取得については、 実施例に示す。 (Purification of Recombinant Hexeneduronidase by Genetic Engineering) The hexeneduronidase of the present invention can also be purified by expressing a cloned gene. In the present specification, an enzyme obtained by expressing a gene is referred to as “recombinant hexeneduronidase”. According to this technique, high production can be achieved by expressing the hexeneduronidase gene obtained by an appropriate method using an appropriate host vector. As a vector used for expression, a plasmid vector, a phage vector and the like are mainly used. Escherichia coli, Bacillus subtilis, yeast and the like are mainly used as hosts. As the carbon source and the nitrogen source for cultivation, any source that can assimilate and produce thermostable xylanase can be used. For example, as the carbon source, agricultural waste such as wheat bran, pulp, bacas, corn fiber, rice straw, or plant fiber can be used. As the nitrogen source, nitrogen compounds such as yeast extract, peptone, various amino acids, soybean, corn steep liquor, various inorganic nitrogen, and the like can be used. In addition, various salts, vitamins, minerals, and the like can be appropriately used. The culture temperature and pH may be any as long as the bacteria produce heat-resistant xylanase. The culture temperature is preferably 37 ° C, and the pH is preferably 7. The enzyme can be purified by appropriately combining and repeating ammonium sulfate fractionation, molecular weight fractionation by gel filtration, various ion exchange resins, hydroxyapatite, isoelectric point fractionation, and the like. To confirm whether the obtained purified enzyme is the xylanase required, the molecular weight, optimum pH, optimum temperature, N-terminal amino acid sequence, etc. of the obtained purified enzyme were determined by the production of Paenibacillus sp. It can be determined by comparing with hexeneduronidase. Specific examples of obtaining enzymes will be described in Examples.
5 - パルプの漂白方法 5-how to bleach pulp
次に、 本発明の酵素を用いたパルプの漂白方法について説明する。 化学パルプ 製造工程において、 本発明のへキセンゥロニダ一ゼ (遺伝子組換え型を含む) パ ェニバチルス (Paenibac i l lus)属に属する菌株パェニバチルス ·エスピー 7— 5 の培養物でパルプを処理することで漂白を行なうことができる。 さらに酵素処理 の前後、 あるいは途中に化学漂白及び Zまたはアルカリ抽出を行なうことでパル プの漂白を行なうことができる。  Next, a method for bleaching pulp using the enzyme of the present invention will be described. In the chemical pulp manufacturing process, bleaching is performed by treating the pulp with a culture of a strain of Paenibacillus sp 7-5 belonging to the hexene peronidase (including a recombinant type) Paenibacillus genus of the invention. Can do it. In addition, pulp can be bleached by chemical bleaching and Z or alkali extraction before, during or after the enzyme treatment.
パルプに処理する培養物又は酵素量については、 へキセンゥロニダーゼ単位と してパルプの絶乾重量 1 gあたり約 0. 1〜約 5 U、好ましくは約 0. 5〜約 3 U添 加すればよい。反応条件は培養濾液(粗酵素液)の場合、反応温度約 40〜約 70°C、 p H約 5〜約 8であり、精製酵素の場合は反応温度約 40〜約 7(TC、 p H約 5〜約 8である。 反応時間は、 約 0. 2〜約 24時間、 好ましくは約 0. 5〜約 8時間であ る。 化学漂白に用いる試薬としては、 塩素、 二酸化塩素、 二酸化窒素、 次亜塩素 酸塩、 酸素、 過酸化水素、 オゾン等が挙げられる。 またアルカリ抽出には、 当業 者として公知の多くのアルカリ性化合物を用いることができる。 アルカリ抽出に は、水酸化ナトリゥム換算で約 0. 5〜約 3 % (対絶乾パルプ)のアル力リを用い、 酸素や過酸化水素等を添加しながらアルカリ処理を行うことができる。  Regarding the amount of culture or enzyme to be processed into the pulp, about 0.1 to about 5 U, preferably about 0.5 to about 3 U, is added as a hexeneduronidase unit per gram of the absolute dry weight of the pulp. do it. The reaction conditions are a reaction temperature of about 40 to about 70 ° C. and a pH of about 5 to about 8 for the culture filtrate (crude enzyme solution), and a reaction temperature of about 40 to about 7 (TC, pH The reaction time is about 0.2 to about 24 hours, preferably about 0.5 to about 8 hours.The reagents used for chemical bleaching include chlorine, chlorine dioxide, and nitrogen dioxide. , Hypochlorite, oxygen, hydrogen peroxide, ozone, etc. Many alkaline compounds known to those skilled in the art can be used for alkali extraction. Alkali treatment can be performed while adding oxygen, hydrogen peroxide, etc. using an alcohol of about 0.5 to about 3% (vs. dry pulp).
【実施例】 以下、 実施例により本発明を更に具体的に説明する。 但し、 本発明はこれら実 施例に限定されない。 【Example】 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these embodiments.
〔実施例 1〕 粗酵素液の調製  Example 1 Preparation of Crude Enzyme Solution
グルコース 1. 0%、 ペプトン 0. 5 %、 酵母抽出物 0· 5 %、 K2HP04 0. 1 %、 MgS04 - 7¾0 0. 02 %を含む液体培地 10ml ( p H7. 0 ) を、 内径 25讓試験管に採り、 紙栓 をした後 121°Cで 15分間蒸気滅菌した。 これにパェニバチルス ·エスピー 7— 5 を 1白金耳植菌し、 37 Cで往復振盪培養した (振幅 25雇、 300往復 Z分)。 上記条 件にて 24時間の培養終了後、遠心分離(10, OOOrpm X 10分) して菌体を分離し、 菌体を 10mlの 50通リン酸バッファーに懸濁した、 菌体の懸濁液は氷上で超音波 破碎機(S0NIFIER 450、 ブランソン社製)を用いて出力 10kHzにて 5分処理し、 へ キセンゥロニダ一ゼの粗酵素液を得た。 Glucose 1.0%, peptone 0.5%, yeast extract 0 · 5%, K 2 HP0 4 0. 1%, MgS0 4 - 7¾0 0. 02% liquid containing medium 10ml of (p H7 0.), It was taken in a test tube with an inner diameter of 25%, sealed with a paper stopper, and then steam-sterilized at 121 ° C for 15 minutes. One loopful of Paenibacillus sp. 7-5 was inoculated with this, and cultured with reciprocal shaking at 37 C (amplitude: 25, 300 reciprocations: Z minutes). After culturing for 24 hours under the above conditions, the cells were separated by centrifugation (10, OOOrpm X 10 minutes), and the cells were suspended in 10 ml of 50-pass phosphate buffer. The solution was treated on ice using an ultrasonic crusher (S0NIFIER 450, manufactured by Branson) at an output of 10 kHz for 5 minutes to obtain a crude enzyme solution of hexeneduronidase.
200 Mの合成基質溶液をリン酸バッファ一 (pH7. 0: 100mM) にて作製した。 こ の基質溶液 10 ^ 1に対し酵素液 ΙΟ を添加し、 30分間、 37°Cにてインキュベー トした。基質はゥンべリフエリル- 4-デォキシ-へキス- 4_エノピラシドウ口ン酸で ある (実施例 6参照)。 その後グリシン- NaOHバッファー(ρΗΙΟ. 5: 500mM)を 100 H iを反応系に添加し酵素反応を停止させた。 検量線は既知濃度の 4-0-メチルゥ ンべリフエロン (シグマ社製) を用いて作製した。  A 200 M synthetic substrate solution was prepared with phosphate buffer (pH 7.0: 100 mM). The enzyme solution was added to the substrate solution 10 ^ 1, and the mixture was incubated at 37 ° C for 30 minutes. The substrate is umberyphryl-4-dexoxy-hex-4_enopyrazidou humic acid (see Example 6). Thereafter, 100 Hi of glycine-NaOH buffer (ρΗΙΟ5: 500 mM) was added to the reaction system to stop the enzyme reaction. The calibration curve was prepared using a known concentration of 4-0-methylbenbelliferone (manufactured by Sigma).
へキセンゥロニダーゼ活性は、 上記の条件で 1分間に 1 mol のへキセンゥロ ン酸を生成する酵素量を 1ユニット (Uni t) とした。 その結果、 粗酵素液中のへ キセンゥロニダ一ゼ活性は、 0. 05U/mlであった。  The hexeneduronidase activity was defined as 1 unit (Unit) of the enzyme producing 1 mol of hexeneduronic acid per minute under the above conditions. As a result, the hexene peronidase activity in the crude enzyme solution was 0.05 U / ml.
〔実施例 2〕 へキセンゥロニダーゼの精製  [Example 2] Purification of hexeneduronidase
グルコース 1. 0 %、 ペプトン 0. 5 %、 酵母抽出物 0. 5 %、 K2HP04 0. 1 %、 MgS04 · 7H20 0. 02 %、 p H7. 0 の液体培地 50mlを 500 ml容坂ロフラスコに取り綿栓を した後、 121 °Cで 15分間蒸気滅菌した。 これに実施例 1で得られた培養液を l ml 加え、 37で、 1日往復振盪培養 (振幅 10cm、 100 往復 //分) した。 培養終了後、 遠心分離 (8, OOOrpmX lO 分) により培養上清を得た。 この培養上清を硫安分画 し、 20〜60 %画分を遠心分離(20, OOOrpm X 10分) にて回収した後、 0. 9M硫酸ァ ンモニゥムを含む 20ηιΜリン酸バッファー(ρ Η7. 0)を外液として透析を行った。 得られた粗酵素液について、 0.纏硫酸アンモニゥムを含む 20mMリン酸バッファ — ( p H7. 0)で平衡化したプチルトヨパール 650- M (東ソ一、直径 2. 5cm X 30cm) を用いて疎水クロマトグラフィーを行った。 平衡化に用いたバッファ一を使って 十分に力ラムを洗浄したのち、 リン酸バッファ一中の硫酸アンモニゥム濃度を 0. 9Mから 0Mまで落とす濃度勾配で吸着画分を溶出し、 3. 5mlずつ分画した。その 結果、 へキセンゥロニダ一ゼ活性は 1つのピークで溶出した。 Glucose 1.0%, peptone 0.5%, yeast extract 0. 5%, K 2 HP0 4 0. 1%, MgS0 4 · 7H 2 0 0. 02%, a p H7. 0 of the liquid medium 50 ml 500 After being placed in a ml volumetric flask and covered with a cotton plug, steam sterilization was performed at 121 ° C for 15 minutes. To this, 1 ml of the culture solution obtained in Example 1 was added, and the mixture was reciprocally shake-cultured (amplitude 10 cm, 100 reciprocations // minute) at 37 for 1 day. After completion of the culture, the culture supernatant was obtained by centrifugation (8, OOOrpmX10 minutes). The culture supernatant was subjected to ammonium sulfate fractionation, and a 20-60% fraction was collected by centrifugation (20, OOOrpm X 10 minutes). Then, a 20ηιΜ phosphate buffer containing 0.9M ammonium sulfate (ρ 7.0 ) Was used as an external solution for dialysis. 20 mM phosphate buffer containing ammonium sulfate Hydrophobic chromatography was performed using Petiltoyopearl 650-M (Tosoichi, diameter 2.5 cm × 30 cm) equilibrated with — (pH 7.0). After thoroughly washing the buffer using the buffer used for equilibration, the adsorbed fraction is eluted with a concentration gradient that reduces the concentration of ammonium sulfate in the phosphate buffer from 0.9M to 0M. Fractionated. As a result, hexeneduronidase activity eluted in one peak.
次に、 活性画分を回収し、 リン酸バッファー (pH7. 0) を外液として透析し、 同 バッファ一にて平衡化された DEAE トヨパール 650- M (東ソ一、直径 2. 5cm X 30cm) にて陰イオン交換クロマトグラフィーを行った。 同バッファーで洗浄後、 バッフ ァ一中の NaC 1濃度を 0Mから 0. 5M間で上昇させるグラジェントをかけて吸着画分 を溶出し、 3. 0ml ずつ分画した。 へキセンゥロニダーゼは一つのピークとして回 収された。  Next, the active fraction was collected, dialyzed against phosphate buffer (pH 7.0) as an external solution, and equilibrated with the same buffer. DEAE Toyopearl 650-M (Tosoichi, diameter 2.5cm x 30cm) ) To perform anion exchange chromatography. After washing with the same buffer, the adsorbed fraction was eluted by applying a gradient to raise the NaC1 concentration in the buffer between 0 M and 0.5 M, and fractionated in 3.0 ml portions. Hexeneduronidase was recovered as a single peak.
回収したへキセンゥロニダ一ゼ画分をセントリコン (アミコン) にて容量を 2. Omlにまで濃縮した。 リン酸バッファー (pH7. 0) を用いて平衡化されたセファ クリル S-200 (2. 5cmX 95cm) (フアルマシア) のカラムにへキセンゥロニダーゼ をアプライし NaC150mMを含む 50mMリン酸バッファー(pH7. 0)を用いてゲル濾過 を行った。 流速は 30ml/hrとし 5mlずつ回収した。 へキセンゥロニダーゼは一本 のピークとして回収された。  The collected hexene peronidase fraction was concentrated to a volume of 2. Oml with Centricon (Amicon). Hexane peronidase was applied to a column of Sephacryl S-200 (2.5 cm x 95 cm) (Pharmacia) equilibrated with phosphate buffer (pH 7.0), and 50 mM phosphate buffer (pH 7.0. Gel filtration was performed using (0). The flow rate was 30 ml / hr, and 5 ml was collected. Hexeneduronidase was recovered as a single peak.
回収したへキセンゥロニダ一ゼ画分はセントリコン (アミコン) にて容量を 1. Oilにまで濃縮した。  The recovered hexene peronidase fraction was concentrated to 1. Oil using Centricon (Amicon).
次に濃縮された酵素サンプルを脱塩し、 ポリアクリルアミドゲル電気泳動を行 つた。電気泳動は濃縮ゲル 4. 5%、 泳動ゲル 10%にて 50mAにて泳動し、 泳動の先端 がゲル末端から 5mmの位置に来るまで泳動した。 泳動後、 ポリアクリルアミドゲ ルを 100 zMの合成基質を含むリン酸バッファ一 (PH7. 0) 中に浸し、 40 にて 15 分保持し、 ゲル中の酵素と合成基質を反応させた。 UV ランプ (CHR0MAT0-VUE CABINET MODEL CC-60, UVP, INC. ) にてバンドを照らすとゲルの中央より少し下側 に酵素活性を示す青白い蛍光を発するタンパク質のバンドが確認された。 この蛍 光を発するタンパク質を含むゲルを切り出し、 4 °Cにて 24時間保持し、3mlの 50mM リン酸バッファ一(PH7. 0)にて酵素蛋白を抽出した。酵素を含む抽出液は脱塩後、 SDS ポリアクリルアミドゲル電気泳動を行いタンパク質の純度を検定した。 泳動 は濃縮ゲルが 4. 5%、 泳動ゲルが 10%の濃度で行い、 酵素蛋白が均一に精製されて いることを確認した。該電気泳動上、 目的の酵素は分子量約 40, 000のところに移 動した。 粗酵素液に対する精製へキセンゥロニダーゼの収率は 0. 28%であり、 比 活性は 3. 59U/mgであった。 Next, the concentrated enzyme sample was desalted and subjected to polyacrylamide gel electrophoresis. For electrophoresis, electrophoresis was performed at 4.5 mA on a concentration gel 4.5% and electrophoresis gel 10% at 50 mA, and electrophoresis was performed until the tip of the electrophoresis was 5 mm from the end of the gel. After the electrophoresis, the polyacrylamide gel was immersed in phosphate buffer (PH 7.0) containing 100 zM synthetic substrate, kept at 40 for 15 minutes, and the enzyme in the gel was reacted with the synthetic substrate. When the band was illuminated with a UV lamp (CHR0MAT0-VUE CABINET MODEL CC-60, UVP, INC.), A pale fluorescent protein band showing enzyme activity was confirmed slightly below the center of the gel. The gel containing the fluorescent protein was cut out, kept at 4 ° C. for 24 hours, and the enzyme protein was extracted with 3 ml of 50 mM phosphate buffer (PH 7.0). After desalting, the extract containing the enzyme was subjected to SDS polyacrylamide gel electrophoresis to test the purity of the protein. Electrophoresis Was performed at a concentration of 4.5% for the concentrated gel and 10% for the electrophoresis gel, and it was confirmed that the enzyme protein was uniformly purified. On the electrophoresis, the target enzyme was moved to a position having a molecular weight of about 40,000. The yield of purified hexenduronidase relative to the crude enzyme solution was 0.28%, and the specific activity was 3.59 U / mg.
〔実施例 3〕 パェニバチルス ·エスピー 7 _ 5染色体 DNAの調製  [Example 3] Preparation of Paenibacillus sp. 7_5 chromosomal DNA
グルコース 1. 0 %.、ペプトン 0. 5 %、酵母抽出物 0. 5 %、 K2HP04 0. 1 %、 MgS04 · 7H20 0. 02% , p H7. 0の液体培地 50mlを 500ml容坂ロフラスコに取り綿栓をし た後、 12 Cで 15分間蒸気滅菌した。 これにパェニバチルス 'エスピー 7— 5株 を 1白金耳植菌し、 37°Cで一晩往復振盪培養 (振幅 10cm、 100 往復 Z分) した。 培養終了後、 遠心分離 (10, 000 rpmX lO分) により菌体を得た。 Glucose 1.0%., Peptone 0.5%, yeast extract 0. 5%, K 2 HP0 4 0. 1%, MgS0 4 · 7H 2 0 0. 02%, a p H7. 0 of the liquid medium 50ml After taking a cotton plug in a 500 ml capacity flask, steam sterilization was performed at 12 C for 15 minutes. One loopful of Paenibacillus sp. 7-5 strain was inoculated into this, and cultured at 37 ° C overnight with reciprocal shaking (amplitude 10 cm, 100 reciprocal Z minutes). After completion of the culture, cells were obtained by centrifugation (10,000 rpm × 10 minutes).
本菌体を 5 mlのグルコースーリゾチーム溶液 (50mMグルコース、 10mM EDTA 、 25mM Tris-HCl 緩衝液 (pH8. 0 )、 4 mg/ml リゾチーム) に懸濁し、 室温で 15分 放置した。 5 mlのアルカリ溶液(0. 2 N Na0H、 1 % SDS) を加え、穏やかに混ぜ、 氷中にて 15分間冷却した。この後、フエノール抽出,、クロ口ホルム抽出を行ない、 抽出した水層部分を 5mMEMi を含む iOmMの T E溶液に対して 4°Cにて透析を行い ゲノム DNAを得た。  The cells were suspended in 5 ml of a glucose-lysozyme solution (50 mM glucose, 10 mM EDTA, 25 mM Tris-HCl buffer (pH 8.0), 4 mg / ml lysozyme) and allowed to stand at room temperature for 15 minutes. 5 ml of an alkaline solution (0.2 N Na0H, 1% SDS) was added, mixed gently, and cooled on ice for 15 minutes. Thereafter, phenol extraction and black-mouthed form extraction were performed, and the extracted aqueous layer was dialyzed at 4 ° C against an iOmM TE solution containing 5mMEMi to obtain genomic DNA.
〔実施例 4〕 へキセンゥロニダーゼの内部ァミノ酸配列の決定  [Example 4] Determination of internal amino acid sequence of hexeneduronidase
まず、 実施例 2の方法でへキセンゥロニダーゼを精製した。 次に、 この精製夕 ンパク質の N末端側のァミノ酸配列をエドマン分解法により気相シーケンサー 1000A 、 Hewlet t Packrd) を用いて決定した、 これを HEX3 (配列番号 3 ) とする。 精製へキセンゥ口ニダ一ゼをリジルェンドぺプチダーゼ (Acliromobac ter Protease I) にて消化し、 消化されたペプチドフラグメントはポリアクリルアミ ドゲル電気泳動にて分離し精製した。 分離精製されたペプチドフラグメントを気 相シーケンサ一にて分析し、 内部アミノ酸配列 HEX4 (配列番号 4 )、 HEX5 (配列 番号 5 )、 HEX6 (配列番号 6 ) をそれぞれ決定した。 HEX3, HEX4, HEX5および HEX6 は以下の配列を有する。  First, hexeneduronidase was purified by the method of Example 2. Next, the amino acid sequence at the N-terminal side of the purified protein was determined by Edman degradation using a gas-phase sequencer 1000A, Hewlett Packard), and this was designated as HEX3 (SEQ ID NO: 3). Purified hexopenidase was digested with lysylendopeptidase (Acryromobacter Protease I), and the digested peptide fragments were separated and purified by polyacrylamide gel electrophoresis. The separated and purified peptide fragments were analyzed using a gas phase sequencer, and the internal amino acid sequences HEX4 (SEQ ID NO: 4), HEX5 (SEQ ID NO: 5), and HEX6 (SEQ ID NO: 6) were determined. HEX3, HEX4, HEX5 and HEX6 have the following sequences.
HEX3 : HEX3:
へキセンゥロニダーゼの N末端からのアミノ酸配列 Amino acid sequence from N-terminus of hexeneduronidase
Met-Trp-Glu-Gln-Ala-I le-Met-Asp-Ala-Val-Glu-Lys-T r-Lys-Arg-Asii-Yal-Gly- Leu-Phe-Pro-Me t-Lys-P e-Pro-Hi s-11 e-Thr-Al a (配列番号 3 ) Met-Trp-Glu-Gln-Ala-Ile-Met-Asp-Ala-Val-Glu-Lys-Tr-Lys-Arg-Asii-Yal-Gly- Leu-Phe-Pro-Me t-Lys-P e-Pro-His-11 e-Thr-Al a (SEQ ID NO: 3)
HEX4 : HEX4:
へキセンゥロニダーゼの内部アミノ酸配列 Internal amino acid sequence of hexene peronidase
Gly-Leu-Leu-Thr-Asp-Al a-Val-Glu-Lys (配列番号 4 ) Gly-Leu-Leu-Thr-Asp-Ala-Val-Glu-Lys (SEQ ID NO: 4)
HEX5 : HEX5:
へキセンゥロニダ一ゼの内部アミノ酸配列 Internal amino acid sequence of hexene peronidase.
Asp-T r-Ala-I le-Ala-Gln-Leu-Glu-Asp-Tyr-Lys (配列番号 5 ) Asp-Tr-Ala-Ile-Ala-Gln-Leu-Glu-Asp-Tyr-Lys (SEQ ID NO: 5)
HEX6 : HEX6:
へキセンゥロニダーゼの内部アミノ酸配列 Internal amino acid sequence of hexene peronidase
Lys-Met-I le-Ser-Leu-Val-Asn-Arg-Tyr-Ser (配列番号 6 ) Lys-Met-Ile-Ser-Leu-Val-Asn-Arg-Tyr-Ser (SEQ ID NO: 6)
〔実施例 5〕 へキセンゥロニダーゼ遺伝子を含む DNA断片のクローニング 実施例 3で調製したゲノム DNAlOO x g相当分を BamHI、 KpnL Sal L Ps t lの各 制限酵素 100ュニットにて各 37 にて 18時間消化し、 更に 100ュニッ卜の制限 酵素を追加して更に 6時間反応させた。 この反応液からフラグメント化した DNA 量で 10 z g相当分を 0. 8 ァガロースゲル電気泳動にかけた。電気泳動後サイバー グリーン I (BMA社製) にて泳動された DNA断片を染色し、 泳動を確認後、 サザン ブロット法により、 ナイロンメンプレン (ハイポンド N + :アマシャム社製) に DNAをトランスファ一した。  [Example 5] Cloning of DNA fragment containing hexeneduronidase gene Equivalent to genomic DNA xOO xg prepared in Example 3 was treated with 100 units of each restriction enzyme of BamHI and KpnL Sal L Pstl at 37 units for 18 hours each. After digestion, the reaction was continued for an additional 6 hours with an additional 100 units of restriction enzyme. An amount equivalent to 10 zg of the amount of DNA fragmented from this reaction solution was subjected to 0.8 agarose gel electrophoresis. After electrophoresis, the DNA fragments electrophoresed with Cyber Green I (manufactured by BMA) were stained, and after confirming electrophoresis, the DNA was transferred to nylon membrane (High Pond N +: manufactured by Amersham) by Southern blotting. .
(サザンハイプリダイゼ一ション用プローブの作製)  (Preparation of probe for Southern hybridization)
実施例 4で得られた N末端アミノ酸配列 HEX3 (配列番号 3 ) と内部アミノ酸配 列 HEX4 (配列番号 4 ) を基にして PC R用プライマ一を設計した。 設計したプライ マ一に基づき化学合成を行い、  Based on the N-terminal amino acid sequence HEX3 (SEQ ID NO: 3) obtained in Example 4 and the internal amino acid sequence HEX4 (SEQ ID NO: 4), a primer for PCR was designed. Chemical synthesis is performed based on the designed primer,
プライマー 1 : Primer 1:
5' -ATGTGGGARCARGCIATHATGGAYGCNGTNG-3' (配列番号 7 )  5'-ATGTGGGARCARGCIATHATGGAYGCNGTNG-3 '(SEQ ID NO: 7)
(ここで、 Rは Gまたは A、 Iはイノシン、 Hは Aまたは Cまたは T、 Υは Τまたは C、 Nは Aまたは Cまたは Gまたは Tをそれぞれ示す。)  (Where R is G or A, I is inosine, H is A or C or T, Υ is Τ or C, and N is A or C or G or T, respectively.)
プライマー 2 : Primer 2:
5' -TTRTARTCYTC I AGYTGI GCDATNG-3 ' (配列番号 8 )  5'-TTRTARTCYTC I AGYTGI GCDATNG-3 '(SEQ ID NO: 8)
(ここで、 Rは Gまたは A、 Iはイノシン、 Hは Aまたは Cまたは T、 Υは Τまたは C, Nは Aまたは Cまたは Gまたは T、 Dは Aまたは Gまたは Tをそれぞれ示す。) を得た。 この 2本のプライマーを用い、 サ一マルサイクラ一 (パ一キンエルマ一 社製) を使って PCRを行い、 全長 221bpの PCRフラグメントを得た。 PCR法の手 順は一般的な仕方で問題ないが、 唯一指定されるべき条件としてはァニーリング の条件として 55. 5°Cを指定する。 (Where R is G or A, I is inosine, H is A or C or T, Υ is Τ or C and N represent A or C or G or T, and D represents A or G or T, respectively. ) Got. Using these two primers, PCR was carried out using a thermal cycler (manufactured by Pakinkin Elma) to obtain a PCR fragment with a total length of 221 bp. The PCR procedure is performed in a general manner, but the only condition that should be specified is 55.5 ° C as the annealing condition.
二本鎖 DM PCRフラグメントを TAクローニングキット (INVITROGEN社製) を 用いてクロ一ニングした。 クロ一ニングされた PCRフラグメントは DNAシーケン サー (Model 310、 ABI社製) を用い、 その塩基配列を解読したところ、 5'末端側 から 32bp以降に配列番号 3のアミノ酸をコードする DNA配列が存在した。このこ とから PCRフラグメントはへキセンゥロニダーゼの N末端側から 221bpの遺伝子 断片と相補する DM断片である。 この DNA断片をフルォレセィンによるラベルキ ット (Gene Images™, アマシャム-フアルマシア社製) を用いて、 その DNA鎖に ランダムにフルォロセインで標識された核酸を導入し DM鎖自体を標識した。 あらかじめ準備された遺伝子クローニング用のナイロンメンブレンをハイブリ ダイゼ―シヨン用のバッグに入れて 60°Cにてチャーチリン酸バッファー(Clmrch および Gi lbert, Pro Nat l. Acad. Sc i. USA 81 : 1991-1995 (1984) ) に浸し、 なじませておく。 その後ランダムに標識した PCR DNAフラグメント 10 n gをこれ に添加し、 60°Cにて 24時間ハイプリダイズさせた。次に洗浄バッファー( 1 % SDS を含む 40mMチャーチリン酸バッファー) を用いて 6 O t:にて 5分洗浄、洗浄バッ ファーを捨てて同一の方法を 4回繰り返した。 余分な液を除いた後、 標識核酸検 出キット (Gene Images™) を用いて検出した。  The double-stranded DM PCR fragment was cloned using a TA cloning kit (manufactured by INVITROGEN). The base sequence of the cloned PCR fragment was analyzed using a DNA sequencer (Model 310, manufactured by ABI). As a result, a DNA sequence encoding the amino acid of SEQ ID NO: 3 was found 32 bp or less from the 5 'end. did. From this, the PCR fragment is a DM fragment that is complementary to the 221 bp gene fragment from the N-terminal side of hexeneduronidase. Using a DNA-labeled kit (Gene Images ™, manufactured by Amersham-Pharmacia), the DNA fragment was randomly introduced with a nucleic acid labeled with fluorescein into the DNA strand, and the DM strand itself was labeled. A nylon membrane for gene cloning prepared in advance is placed in a hybridization bag, and a church phosphate buffer (Clmrch and Gilbert, Pro Natl. Acad. Sc. USA 81: 1991-) is used at 60 ° C. 1995 (1984)). Thereafter, 10 ng of a randomly labeled PCR DNA fragment was added thereto and hybridized at 60 ° C. for 24 hours. Next, using a washing buffer (40 mM church phosphate buffer containing 1% SDS) at 6 Ot: for 5 minutes, the washing buffer was discarded, and the same method was repeated four times. After removing excess liquid, detection was performed using a labeled nucleic acid detection kit (Gene Images ™).
プローブのシグナルの中で適当なサイズの DNAフラグメントとして BamHI消化 物の中の約 4000bpの DMフラグメントを選択した。 #7-5由来のゲノム DNAを 20 に対して BamHI (宝酒造製) を用い完全消化後 0 . 8 %のァガロースゲル電気 泳動を行い、 サイバーグリーン Iを用いて染色後、 同一ゲル上にて泳動したラム ダ Hindl l lのマーカー(東洋紡製) を目印に約 4000bp付近の DNAをゲルをスライ スして抽出し、 へキセンゥロニダ一ゼの遺伝子を含む DNAフラグメントを得た。 また、 この時ゲルからの DNAフラグメントの抽出はイージートラップ(宝酒造製) を用いた。 抽出した約 4000bpのフラグメントは両端が BamHIサイトであるため pUC 19のク ローニングベクター (宝酒造) をあらかじめ BamHIで消化後末端をアルカリフォ スファタ一ゼで脱リン酸化し、 このベクターにライゲーシヨンした。 ライゲ一シ ヨンはライゲーシヨンキット Ver. I I (宝酒造製) を用いた、 またホストに JM109An approximately 4000 bp DM fragment in the BamHI digest was selected as an appropriately sized DNA fragment in the probe signal. Complete digestion of genomic DNA from # 7-5 with BamHI (Takara Shuzo) was performed, followed by 0.8% agarose gel electrophoresis, staining with Cyber Green I, and electrophoresis on the same gel. The DNA of about 4000 bp was extracted by slicing the gel using a marker of Lambda HindIII (manufactured by Toyobo) as a mark to obtain a DNA fragment containing the gene for hexendronidase. At this time, DNA fragments were extracted from the gel using an easy trap (Takara Shuzo). Since the extracted fragment of about 4000 bp has BamHI sites at both ends, the pUC19 cloning vector (Takara Shuzo) was digested with BamHI in advance, and the ends were dephosphorylated with alkaline phosphatase, and ligated to this vector. The ligation was performed using the ligation kit Ver. II (Takara Shuzo) and the host was JM109.
(宝酒造製) を使用し、 へキセンゥロニダーゼの遺伝子を持つ陽性クローンを選 抜した。 選抜にはサザンハイプリダイゼーシヨンに用いた PCRフラグメントを蛍 光標識し使用したところ、 約 8 0 0個のライブラリ一中に 2個の陽性クローンを 得た。 これを B15、 B26と呼ぶ。 B15を培養後プラスミドを回収し、 この B 15が保 有する PUC19内のィンサート上に存在するへキセンゥロニダーゼ遺伝子を配列決 定した。 へキセンゥロニダ一ゼ遺伝子はその配列中に BamHIサイトをもたなかつ たため結果として構造遺伝子の全長を得ることが出来、配列も読むことが出来た。 へキセンゥロニダーゼ遺伝子はその配列中に精製へキセンゥロニダ一ゼをリジル エンドべプチダーゼ処理した時に得られた内部配列のぺプチドが存在していた。 また遺伝子の塩基配列 1125bpから想定されるタンパク質の分子量は 43410であり、 これも精製酵素の SDS- PAGEから得られたデータである約 40000とほぼ一致した。 決定されたへキセンゥロニダーゼのアミノ酸配列およびその遺伝子のヌクレオチ ド配列はそれぞれ、 配列番号 1、配列番号 2として示した。 (Manufactured by Takara Shuzo), and a positive clone having a hexeneduronidase gene was selected. For selection, the PCR fragment used in Southern hybridization was fluorescently labeled and used. As a result, two positive clones were obtained in about 800 libraries. These are called B15 and B26. After culturing B15, the plasmid was recovered, and the hexeneduronidase gene present on the insert in PUC19 carried by B15 was sequenced. Since the hexeneduronidase gene did not have a BamHI site in its sequence, the full length of the structural gene could be obtained and the sequence could be read. The hexenduronidase gene contained in its sequence an internal sequence peptide obtained when purified hexenduronidase was treated with lysyl endopeptidase. The molecular weight of the protein estimated from the nucleotide sequence of 1125 bp of the gene was 43410, which almost coincided with about 40,000, which was obtained from SDS-PAGE of the purified enzyme. The determined amino acid sequence of hexeneduronidase and the nucleotide sequence of the gene are shown as SEQ ID NO: 1 and SEQ ID NO: 2, respectively.
なお、 本発明のへキセンゥロニダーゼをコードする DNA を含むプラスミ ド pUC19 (7- 5)は、 大腸菌 JM109株に導入されて、 E. col i JM109/pUC19 (7- 5)の名称 で、 独立行政法人産業技術総合研究所 ·特許生物寄託センターに受託番号 FERM BP- 7973で寄託されている。  The plasmid pUC19 (7-5) containing the DNA encoding the hexeneduronidase of the present invention was introduced into the E. coli JM109 strain, and was named E. coli JM109 / pUC19 (7-5). Deposited with the National Institute of Advanced Industrial Science and Technology · Patent Organism Depositary under the accession number FERM BP-7973.
〔実施例 6〕 へキセンゥロニダ一ゼ用基質としての蛍光性へキセンゥロン酸誘導 体の合成  [Example 6] Synthesis of fluorescent hexeneduronic acid derivative as a substrate for hexeneduronidase
1 . (トリー 0—ァセチル— α _ガラクトピラノシルブロミド)ゥロン酸メチルェ ステル ( I ) の合成  1. Synthesis of (tree 0-acetyl-α-galactopyranosyl bromide) peronate methyl ester (I)
【化 3】  [Formula 3]
(テトラー Ο—ァセチル一 —ガラク卜ピラノシド) ゥロン酸メチルエステル 3. 76 g (10應 ol)を窒素下 0 °Cで 30%臭素酸 ·酢酸溶液(25mg) に溶解し、 1時間攪 拌した後、 さらに室温で 1時間攪拌した。反応終了後、 ジクロロメタン(100m l ) を加え、 氷水および冷重曹水で各 5回抽出した。 有機層を分離し、 無水硫酸ナト リウム上で乾燥し、 溶媒を留去し、 表題化合物 (I ) 4. Og (収率 100%)を得た。(Tetra-acetyl-galactopyranoside) 3.76 g (10 ol) of peronic acid methyl ester are dissolved in a 30% bromic acid / acetic acid solution (25 mg) at 0 ° C under nitrogen and stirred for 1 hour. After stirring, the mixture was further stirred at room temperature for 1 hour. After completion of the reaction, dichloromethane (100 ml) was added, and the mixture was extracted five times with ice water and cold sodium bicarbonate water. The organic layer was separated, dried over anhydrous sodium sulfate, and the solvent was distilled off to obtain 4. Og (100% yield) of the title compound (I).
2 . (ゥンベリフェリルトリー O—ァセチルーガラクトピラノシド)ゥロン酸メチ ルエステル (Π) の合成 2. Synthesis of (Umbelliferyl Tree O-Acetyl-galactopyranoside) peronic acid methyl ester (II)
【化 4】  [Formula 4]
(トリー〇—ァセチルーガラクトピラノシルブロミド) ゥロン酸メチルエステル(Tree-acetyl-galactopyranosyl bromide) peronic acid methyl ester
3. 0g (7. 5mmol) , ゥンベリフエロン 1. 32g (7. 5匪 ol)、 4A モレキュラーシープズ 10g、 無水ァセトニトリル 20mlを窒素下、 室温で 1時間攪拌した。 次に、 炭酸銀 9. 0g (3. 2mmol)を加え、一昼夜攪拌した。反応終了後、反応液をセライトでろ過し、 ジクロロメ夕ンで溶出した。ジクロロメ夕ン溶出液は、飽和重炭酸ナトリゥム水溶 液で 5回抽出し、 有機層を分離し、 無水硫酸ナトリウム上で乾燥した。 溶媒を留 去した後、 反応生成物をシリカゲルクロマトグラフィーで処理し、 ジクロロメ夕 ンーメタノール (97 : 3) の画分から表題化合物 (I I) 2. 92g (収率 79%)を得た。3.0 g (7.5 mmol), umbelliferone 1.32 g (7.5 bandol ol), 4A molecular sheep 10 g, and anhydrous acetonitrile 20 ml were stirred under nitrogen at room temperature for 1 hour. Next, 9.0 g (3.2 mmol) of silver carbonate was added, and the mixture was stirred overnight. After completion of the reaction, the reaction solution was filtered through celite, and eluted with dichloromethane. The dichloromethane eluate was extracted five times with a saturated aqueous solution of sodium bicarbonate, and the organic layer was separated and dried over anhydrous sodium sulfate. After evaporating the solvent, the reaction product was subjected to silica gel chromatography to obtain 2.92 g (yield 79%) of the title compound (II) from the fraction of dichloromethane-methanol (97: 3).
3 . (ゥンベリフェリルージー O—ァセチルー 4—デォキシ一へキスー 4一エノピ ラノシド) ゥロン酸メチルエステル (I I I) の合成 3. Synthesis of (Umbelliferi L-O-Acetyl-4-Doxy-1-hexyl-4-enopyranoside) Peronic Acid Methyl Ester (I I I)
【化 5】  [Formula 5]
(ゥンベリフェリルトリー〇一ァセチルーガラクトビラノシド) ゥロン酸メチ ルエステル 200mg (0. 4匪 ol)の無水 T H F 5 ml 中の溶液に窒素下、 室温で D B U (1, 8-diazabicyclo [5. 4. 0] undec-7-ene) を 200 1 (4当量) 添加し、 30分攪拌 した。 反応終了後、 反応液を酢酸ェチルで希釈し、 蒸留水で洗浄後、 無水硫酸ナ トリウム上で乾燥した。 溶媒留去後、 粗生成物 153mgをシリカゲルクロマトダラ フィ一で精製し、 ジクロロメタン画分から表題化合物 (II I) 132mg (収率 76%)を 得た。 (Umbelliferyl tri-acetyl-galactovyranoside) A solution of methyluronic acid ester 200 mg (0.4 ol) in 5 ml of anhydrous THF under nitrogen at room temperature under DBU (1, 8-diazabicyclo [ 5.4.0] undec-7-ene) was added to 200 1 (4 equivalents) and stirred for 30 minutes. After completion of the reaction, the reaction solution was diluted with ethyl acetate, washed with distilled water, and dried over anhydrous sodium sulfate. After evaporating the solvent, 153 mg of the crude product was purified by silica gel chromatography to obtain 132 mg (76% yield) of the title compound (III) from the dichloromethane fraction.
4 . ゥンベリフェリル一 4ーデォキシ一へキスー 4一エノビラノシドウロン酸 (IV)の合成  4. Emberbelliferyl 4-deoxy-1-hexyl 4-Synthesis of enoviranoside uronic acid (IV)
【化 6】 (ゥンベリフェリルージー O—ァセチルー 4ーデォキシ—へキスー 4一エノビラ ノシド) ゥロン酸メチルエステル 86mg(0.2imnol)の水一メタノール (1:2) 9mlの 溶液に窒素下、 0°Cで 2NNaOHlmlを加えて、 1時間攪拌した。 反応終了後、 反応 液を陽イオン交換樹脂でろ過し、 メタノールで溶出した。 溶出液を濃縮後、 0DS 逆相クロマトグラフィーを用いて 30%メタノールで溶出し、 表題化合物 (IV) 43mg (収率 64%)を得た。 (6) (Umbelliferi Rouge O-Acetyl- 4-Doxy-Hex-41-enoviranoside) ゥ Methyl ester 86 mg (0.2 imnol) of water-methanol (1: 2) 9 ml of a solution of 2NNaOHlml In addition, the mixture was stirred for 1 hour. After completion of the reaction, the reaction solution was filtered with a cation exchange resin and eluted with methanol. After the eluate was concentrated, it was eluted with 30% methanol using 0DS reverse phase chromatography to obtain 43 mg (yield: 64%) of the title compound (IV).
表題化合物は非常に不安定であり分解する速度が速いため、 へキセンゥロニダ ーゼの活性測定には表題化合物を精製することなく用いる。 基質を保存する場合 はへキセンゥロン酸の部分に存在する水酸基はァセチル化したまま保存しておく c 活性測定時にあらかじめ基質は反応系で INの NaOH を用いてアイスバス中反応 を行うことで脱ァセチル化し、その後所定の濃度にバッファ一で希釈し使用する。 実施例 7 本発明のへキセンゥロニダーゼを使用するパルプの漂白 Since the title compound is very unstable and decomposes rapidly, the title compound is used without purification in measuring the activity of hexeneduronidase. Hydroxyl groups present in the portion of the Kisenuron acid to case to store the substrate by performing an ice bath the reaction with IN of NaOH in advance substrate reaction system during c activity measurement to store while Asechiru of de Asechiru Then, it is diluted with a buffer to a predetermined concentration and used. Example 7 Bleaching of pulp using hexeneduronidase of the present invention
(1) 前処理(アルカリ酸素漂白)  (1) Pretreatment (alkali oxygen bleaching)
白色度 50. 0%、 カッパ一価 U. 2、 パルプ粘度 19. 7mPa - sのブナ主体の広葉 樹酸素脱リグニン後クラフトパルプ(以下、 L0KPという) を絶乾重量で 60 g、 ィ オン交換水で希釈してパルプ濃度 10. 0%に調整した。  Whiteness 50.0%, Kappa monovalent U.2, Pulp viscosity 19.7mPa-s Beech-based broadleaf Trees After delignification of oxygen, Kraft pulp (hereinafter referred to as L0KP) is 60 g in absolute dry weight, ion exchange The pulp concentration was adjusted to 10.0% by dilution with water.
(2) へキセンゥロニダーゼによるパルプ処理  (2) Pulp treatment with hexeneduronidase
前記パルプスラリーにリン酸バッファーを反応系内で 50mMとなるように添加 し、 pHを 7. 0に調整し、 L0KP絶乾重量 1 gに対して実施例 2で得られたへキセ ンゥロニダーゼを 0.5Uの比率で添加し、 45°Cにて 2時間保持した。  A phosphate buffer was added to the pulp slurry to a concentration of 50 mM in the reaction system, the pH was adjusted to 7.0, and 0.5 g of the hexeneduronidase obtained in Example 2 was added to 1 g of L0KP absolute dry weight. The mixture was added at a ratio of U and kept at 45 ° C for 2 hours.
( 3) 二酸化塩素漂白  (3) Bleaching chlorine dioxide
前記したへキセンゥロニダーゼ処理後のパルプスラリーを、 パルプ濃度 10%、 PH8.1に調整したパルプに二酸化塩素を 0. 8%加え、 パルプ濃度 70°Cで 2時間 保持した。 二酸化塩素処理終了時の; Hは 5. 4であった。 漂白後のパルプを蒸留 水で洗浄後、 PH力 8. 0になるように NaOHを加え、 抽出操作終了後、得られたパ ルプについてイオン交換水で洗浄し、 完成漂白パルプを得た。  The pulp slurry after the above-mentioned hexeneduronidase treatment was added with 0.8% of chlorine dioxide to pulp adjusted to a pulp concentration of 10% and PH8.1, and kept at a pulp concentration of 70 ° C for 2 hours. H was 5.4 at the end of the chlorine dioxide treatment. After the bleached pulp was washed with distilled water, NaOH was added to a pH of 8.0, and after the extraction operation, the obtained pulp was washed with ion-exchanged water to obtain a finished bleached pulp.
(比較例 1 )  (Comparative Example 1)
実施例 7において、 へキセンゥロニダ一ゼ処理を行わなかったものを比較例 1 とする。 Comparative Example 1 was the same as Example 7 except that the hexene peronidase treatment was not performed. And
(比較例 2 )  (Comparative Example 2)
実施例 7において、 へキセンゥロニダーゼ処理を行わず、 二酸化塩素漂白にお いて二酸化塩素の添加量を 1. 2 %としたものを比較例 2とする。  Comparative Example 2 is the same as Example 7 except that the hexeneduronidase treatment was not performed and the chlorine dioxide bleaching amount was 1.2% in chlorine dioxide bleaching.
以上の実施例、比較例において測定されたパルプの白色度を表 2に記載する。 【表 2】 表から判るように、本発明のへキセンゥロニダーゼ酵素を使用することにより、 塩素系薬品を増加しないでパルプ白色度を向上することができる。 産業上の利用性  Table 2 shows the whiteness of the pulp measured in the above Examples and Comparative Examples. [Table 2] As can be seen from the table, the use of the hexeneduronidase enzyme of the present invention can improve pulp whiteness without increasing the amount of chlorine-based chemicals. Industrial applicability
本発明によるへキセンゥロニダ一ゼ酵素をパルプ漂白の工程に用いることによ り、 従来使用していた二酸化塩素等の酸化系薬品の量を増加させることなく、 白 色度を向上させたパルプを生産することができ、 パルプ漂白において非常に有用 である。 本明細書で引用した全ての刊行物、 特許及び特許出願をそのまま参考として本 明細書にとり入れるものとする。  By using the hexeneduronidase enzyme according to the present invention in the pulp bleaching process, it is possible to produce pulp with improved whiteness without increasing the amount of oxidizing chemicals such as chlorine dioxide used conventionally. It is very useful in pulp bleaching. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety.

Claims

請 求 の 範 囲 The scope of the claims
1 . へキセンゥロニダーゼ活性を有し、 分子量約 40, 000〜約 45, 000であり、 2 -メルカプトエタノールまたはジチオスレィトールによって該酵素活性が亢進さ れることを特徴とするへキセンゥロニダーゼ。 1. A hexene peroxidase having hexeneduronidase activity, a molecular weight of about 40,000 to about 45,000, and an enzyme activity of which is enhanced by 2-mercaptoethanol or dithiothreitol. Ronidase.
2 . 至適 p Hが pH6. 0〜8. 0である、 請求項 1記載のへキセンゥロニダーゼ。 2. The hexeneduronidase according to claim 1, wherein the optimal pH is pH 6.0 to 8.0.
3 . 酵素反応における安定 pH範囲が pH5. 0〜 0である、請求項 1記載のへキ センゥロニダーゼ。 3. The hexenduronidase according to claim 1, wherein the stable pH range in the enzymatic reaction is pH 5.0 to 0.
4 . 至適温度が 35°C〜55°Cである、 請求項 1記載のへキセンゥロニダーゼ。 4. The hexeneduronidase according to claim 1, wherein the optimum temperature is 35 ° C to 55 ° C.
5 . 45°Cにて 30分の熱処理で約 80%以上の活性を保持し、 60 にて 30分の熱 処理で約 30%の残存活性を示す、 請求項 1記載のへキセンゥロニダーゼ。 5. The hexeneduronidase according to claim 1, which retains about 80% or more of the activity by a heat treatment at 45 ° C for 30 minutes and shows about 30% of a residual activity by a heat treatment at 60 ° C for 30 minutes. .
6 . パェニバチルス(Paenibac i l lus)属に属する微生物に由来する、請求項 1〜 5のいずれか一項に記載のへキセンゥロニダーゼ。 6. The hexeneduronidase according to any one of claims 1 to 5, which is derived from a microorganism belonging to the genus Paenibacillus.
7 . 微生物がパェニバチルス ·エスピー 7— 5である請求項 6記載のへキセン ゥ Πニダ一ゼ。 7. The hexene-tinidase according to claim 6, wherein the microorganism is Paenibacillus sp. 7-5.
8 . 遺伝子組換え酵素である、 請求項 1〜 5のいずれか一項に記載のへキセン ゥロニダーゼ。 8. The hexeneduronidase according to any one of claims 1 to 5, which is a genetically modified enzyme.
9 . 配列番号 1に示されるアミノ酸配列からなるか、 あるいは、 該配列番号 1 のアミノ酸配列において 1または複数のアミノ酸の欠失、 置換、 挿入もしくは付 加を含むアミノ酸配列を有しかつへキセンゥロニダーゼ活性を有する、 請求項 1 〜 5のいずれか一項に記載のへキセンゥロニダーゼ。 9. It consists of the amino acid sequence of SEQ ID NO: 1, or has an amino acid sequence containing a deletion, substitution, insertion or addition of one or more amino acids in the amino acid sequence of SEQ ID NO: 1, and The hexeneduronidase according to any one of claims 1 to 5, which has lonidase activity.
10. 配列番号 1に示されるアミノ酸配列との相同性が 70%以上、 好ましく は 80%以上、 さらに好ましくは 90%以上であるアミノ酸配列からなる、 請求 項 9記載のへキセンゥロニダ一ゼ。 10. The hexeneduronidase according to claim 9, which comprises an amino acid sequence having a homology of 70% or more, preferably 80% or more, more preferably 90% or more with the amino acid sequence shown in SEQ ID NO: 1.
11. 請求項 1〜10のいずれか一項に記載のへキセンゥロニダ一ゼを生産す るパェニバチルス (Paenibacillus)属に属する微生物を培地に培養し、 得られる 培養物からへキセンゥロニダ一ゼを採取することを含む、 へキセンゥロニダーゼ の製造方法。 11. Culturing a microorganism belonging to the genus Paenibacillus which produces the hexeneduronidase according to any one of claims 1 to 10 in a medium, and collecting hexeneduronidase from the resulting culture. A method for producing hexeneduronidase, comprising:
12. へキセンゥロニダ一ゼ生産能を有するパェニバチルス ·エスピー 7— 5 (受託番号 FERM P- 18225)。 12. Paenibacillus sp. 7-5 capable of producing hexene peronidase (Accession No. FERM P-18225).
13. 請求項 1〜10のいずれか一項に記載のへキセンゥロニダ一ゼをコード するへキセンゥロニダーゼ遺伝子。 13. A hexeneduronidase gene encoding hexeneduronidase according to any one of claims 1 to 10.
14. 配列番号 2で示される塩基配列を含む、 請求項 13記載のへキセンゥロ ニダ一ゼ遺伝子。 14. The hexeneduronidase gene according to claim 13, which comprises the nucleotide sequence represented by SEQ ID NO: 2.
15. 請求項 13又は 14に記載のへキセンゥロニダ一ゼ遺伝子を含む発現べ クタ一。 15. An expression vector comprising the hexeneduronidase gene according to claim 13 or 14.
16. 請求項 15記載の発現べクタ一によって形質転換された宿主細胞。 16. A host cell transformed by the expression vector of claim 15.
17. 請求項 16記載の宿主細胞を培地に培養し、 得られる培養物からへキセ ンゥロニダーゼを回収することを含む、 遺伝子組換えへキセンゥロニダ一ゼの製 造方法。 17. A method for producing a genetically modified hexoperonidase, comprising culturing the host cell according to claim 16 in a medium and recovering hexendronidase from the obtained culture.
18. 請求項 1〜10のいずれか一項記載のへキセンゥロニダ一ゼを有効成分 として含む漂白剤。 18. The hexene peronidase according to any one of claims 1 to 10 as an active ingredient Including bleach.
19. へキセンゥロニダ一ゼが請求項 17記載の方法によって得られるもので ある、 請求項 1 8記載の漂白剤。 19. The bleach according to claim 18, wherein the hexeneduronidase is obtained by the method according to claim 17.
20. 請求項 18又は 1 9記載の漂白剤を用いてパルプを処理することを含む、 パルプの漂白方法。 20. A method for bleaching pulp, comprising treating pulp with the bleaching agent according to claim 18 or 19.
2 1. 漂白剤を用いてパルプを処理するにあたり、 化学漂白及び/またはアル カリ抽出を、 パルプ処理前、 処理後又は処理中のいずれかに行なうことを含む、 請求項 20記載の方法。 21. The method of claim 20, wherein treating the pulp with a bleaching agent comprises performing chemical bleaching and / or alkali extraction either before, after, or during the pulp treatment.
22. 請求項 1〜10のいずれか一項記載のへキセンゥロニダ一ゼを認識する 抗体。 22. An antibody that recognizes hexeneduronidase according to any one of claims 1 to 10.
PCT/JP2002/004390 2001-05-11 2002-05-02 Novel hexenuronidase, gene coding for the same, and use of these WO2002092809A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-142019 2001-05-11
JP2001142019A JP4556344B2 (en) 2001-05-11 2001-05-11 Novel hexene uronidase, gene encoding it, and use thereof

Publications (1)

Publication Number Publication Date
WO2002092809A1 true WO2002092809A1 (en) 2002-11-21

Family

ID=18988389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004390 WO2002092809A1 (en) 2001-05-11 2002-05-02 Novel hexenuronidase, gene coding for the same, and use of these

Country Status (2)

Country Link
JP (1) JP4556344B2 (en)
WO (1) WO2002092809A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109810157A (en) * 2018-12-03 2019-05-28 广东省微生物研究所(广东省微生物分析检测中心) A kind of beta-glucuronidase enzyme sedimentation type fluorogenic substrate synthetic method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006219767A (en) * 2005-02-08 2006-08-24 Univ Of Tsukuba Method for removing unsaturated uronic acid in chemical pulp for papermaking
JP4750068B2 (en) * 2007-04-16 2011-08-17 王子製紙株式会社 Method for measuring hexeneuronic acid content in bleached pulp, method for producing bleached pulp, and method for producing paper
JP5733711B2 (en) * 2008-09-17 2015-06-10 国立大学法人 筑波大学 Hexeneuronic acid-specific free enzyme and microorganism producing this enzyme
CN104926898B (en) * 2015-05-14 2018-09-28 广东省微生物研究所 A method of a variety of glucosides of synthesis based on 4-methyl umbelliferone
CN106946959B (en) * 2017-03-29 2020-05-05 昆药集团股份有限公司 Synthesis of related substances of 5,6, 4' -trihydroxyflavone-7-0-D-glucuronic acid and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0355831A2 (en) * 1988-08-24 1990-02-28 Seikagaku Kogyo Co., Ltd. Purification of glycosaminoglycan degrading enzymes
WO1993011296A1 (en) * 1991-12-05 1993-06-10 Valtion Teknillinen Tutkimuskeskus Method and enzymatic preparation for treatment of cellulose pulps
WO1995033883A1 (en) * 1994-06-03 1995-12-14 Valtion Teknillinen Tutkimuskeskus Method and enzymatic preparation for treatment of cellulose pulps

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7938294A (en) * 1993-10-18 1995-05-08 Degussa A.G. Method for controlled modification of enzymes, enzymes modified in this way and the use of such enzymes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0355831A2 (en) * 1988-08-24 1990-02-28 Seikagaku Kogyo Co., Ltd. Purification of glycosaminoglycan degrading enzymes
WO1993011296A1 (en) * 1991-12-05 1993-06-10 Valtion Teknillinen Tutkimuskeskus Method and enzymatic preparation for treatment of cellulose pulps
WO1995033883A1 (en) * 1994-06-03 1995-12-14 Valtion Teknillinen Tutkimuskeskus Method and enzymatic preparation for treatment of cellulose pulps

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHENG F. ET AL.: "Variations in the chondroitin sulfate-protein linkage region of aggrecans from bovine nasal and human articular cartilages", J. BIOL. CHEM., vol. 271, no. 45, 1996, pages 28572 - 28580, XP002956618 *
HASHIMOTO W. ET AL.: "Unsaturated glucuronyl hydrolase of Bacillus sp.GL1: Novel enzyme prerequisite for metabolism of unsaturated oligosaccharides produced by polysaccharide lyases", ARCH. BIOCHEM. BIOPHYS., vol. 368, no. 2, 1999, pages 367 - 374, XP002956617 *
HOVINGH P. ET AL.: "Specificity of flavobacterial glycuronidases acting on disaccharides derived from glycosaminoglycans", BIOCHEM. J., vol. 165, no. 2, 1977, pages 287 - 293, XP002956619 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109810157A (en) * 2018-12-03 2019-05-28 广东省微生物研究所(广东省微生物分析检测中心) A kind of beta-glucuronidase enzyme sedimentation type fluorogenic substrate synthetic method
CN109810157B (en) * 2018-12-03 2021-05-25 广东省微生物研究所(广东省微生物分析检测中心) Synthesis method of beta-glucuronidase precipitation type fluorogenic substrate

Also Published As

Publication number Publication date
JP4556344B2 (en) 2010-10-06
JP2002345472A (en) 2002-12-03

Similar Documents

Publication Publication Date Title
Dilokpimol et al. Diversity of fungal feruloyl esterases: updated phylogenetic classification, properties, and industrial applications
EP0851914B1 (en) Purified mannanase from bacillus amyloliquefaciens and method of preparation
AU649703B2 (en) A method for enzymatically treating pulp with an enzyme system from thermomonospora fusca
CN102482665B (en) Novel protein having beta-glucosidase activity, and use thereof
US5202249A (en) Xylanase for biobleaching
FI95607B (en) Process and enzyme preparations for treating cellulose pulp
Lachke 1, 4-β-d-Xylan xylohydrolase of Sclerotium rolfsii
FI118010B (en) Actinomadura xylanase sequences and methods of use
CN102286447B (en) Novel endoxylanase and coding gene and use thereof
US5834301A (en) Method of removing color from kraft wood pulps
CN104371988A (en) Novel endoxylanase, and its encoding gene and application
US7226772B2 (en) Recombinant xylanases derived from anaerobic fungi, and the relevant sequences, expression vectors and hosts
WO2002092809A1 (en) Novel hexenuronidase, gene coding for the same, and use of these
AU2015344324A2 (en) Endoxylanase mutant, enzyme composition for biomass decomposition, and method for producing sugar solution
WO2006104448A1 (en) Thermostable alkaline xylanase
US5183753A (en) Preparation of xylanase by cultivating thermomyces lanuginosus dsm 5826 in a medium containing corn cobs
JPH07508415A (en) Novel cellobiose oxidase, enzyme agent and paper pulp processing method
JP3769655B2 (en) Thermostable xylanase
JP5777128B2 (en) Novel cellulase
KR102549630B1 (en) METHOD FOR AGAROSE LIQUEFACTION AND NA4/NA6 PRODUCTION USING THERMOSTABLE GH6B β-AGARASE DERIVED FROM A NOVEL AGAR-DEGRADING BACTERIUM
JP2014168417A (en) β-XYLOSIDASE AND GENE ENCODING THE SAME
JP3022962B2 (en) Novel xylanase, method for producing the same, pulp treatment method using the xylanase, and method for producing xylo-oligosaccharide
JP4392488B2 (en) Novel xylanase, genus Frigobacterium that produces the xylanase, and method for producing the xylanase
JP3070290B2 (en) Microorganism producing thermostable alkaline xylanase and its use
JP5733711B2 (en) Hexeneuronic acid-specific free enzyme and microorganism producing this enzyme

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase