WO2002092202A1 - Method of treating filter membrane, filter membrane, and method of rapidly counting number of microorganism with the filter membrane - Google Patents
Method of treating filter membrane, filter membrane, and method of rapidly counting number of microorganism with the filter membrane Download PDFInfo
- Publication number
- WO2002092202A1 WO2002092202A1 PCT/JP2002/004733 JP0204733W WO02092202A1 WO 2002092202 A1 WO2002092202 A1 WO 2002092202A1 JP 0204733 W JP0204733 W JP 0204733W WO 02092202 A1 WO02092202 A1 WO 02092202A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hypoiodite
- hypobromite
- hypochlorite
- filtration membrane
- membrane
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0088—Physical treatment with compounds, e.g. swelling, coating or impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/04—Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
- C12Q1/06—Quantitative determination
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/16—Use of chemical agents
- B01D2321/162—Use of acids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/16—Use of chemical agents
- B01D2321/164—Use of bases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/16—Use of chemical agents
- B01D2321/166—Use of enzymatic agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/16—Use of chemical agents
- B01D2321/168—Use of other chemical agents
Definitions
- the present invention relates to a method for treating a filtration membrane or a water absorption zone. Further, the present invention relates to a method for measuring microorganisms in a sample solution quickly, simply, and with high sensitivity. More specifically, the present invention relates to a method for measuring microorganisms captured on a filtration membrane by using an ATP conversion reaction reagent and a bioluminescent reagent. Background art
- a rapid detection method of bacteria For example, if the number of viable bacteria in the sample solution is sufficiently large, a small amount should be collected in a small test tube. If the number of viable bacteria is slightly small, the sample solution should be filtered through a filtration membrane to capture microorganisms. After the filter membrane is immersed in a very small amount of sterile water or the like and a part of the liquid in which the microorganisms are suspended is collected in a small test tube.
- the present applicants first filtered a sample solution containing microorganisms through a filtration membrane, captured the microorganisms in the sample solution on the filtration membrane, extracted biological components in the microorganisms,
- a membrane filter comprising a number of small hydrophilic filtration membrane sections surrounded by a number of hydrophobic compartment walls described in Patent No. 3133328, and JP-A-6-237793.
- the hydrophobic filter membrane described in the item (1) adheres to the point of attachment of live bacteria in ultrafine particles due to surface tension. It is excellent in that the extracted luminescent component is not diffused but is held in the form of ultrafine particles to emit light.
- An object of the present invention is to provide a rapid, simple, and highly sensitive method for measuring microorganisms captured on a filtration membrane.
- an object of the present invention is to prevent contamination of adenosine phosphates such as AMP, ATP or RNA, which is a cause of noise luminescent spots and background luminescence, appearing on these membranes in the above-described measurement method using a bioluminescence reaction. By eliminating them, the appearance of noise luminescent spots and background luminescence is eliminated, and more accurate and rapid bacterial counts can be measured.
- the present inventors have conducted intensive studies on a rapid, simple, and highly sensitive measurement method of microorganisms captured on filtration membranes, and as a result, the bright spot ⁇ the background of background light emission appearing on these filtration membranes Found that the filtration membrane was contaminated with AMP and ATP. Furthermore, if this contamination is washed or removed by means such as electrophoresis or chemical or enzymatic modification or decomposition, noise luminescent spots and background luminescence will not appear, resulting in a more accurate and rapid bacterial count. They found that measurement was possible, and completed the present invention.
- the present invention is selected from the group consisting of an organic solvent, sterilized water containing an organic solvent, sterilized water, an enzyme solution containing an adenate esterase, an acid, an alkali, a surfactant, and a bleaching agent.
- the organic solvent include ethanol.
- Bleaching agents include hypochlorous acid, hypobromite and hypoiodite, and salts thereof, such as sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, barium hypochlorite, Methyl hypochlorite, Copper hypochlorite, Silver hypochlorite, Sodium hypobromite, Potassium hypobromite, Calcium hypobromite, Barium hypobromite, Methyl hypobromite, Next Copper hypobromite, silver hypobromite, sodium hypoiodite, potassium hypoiodite, calcium hypoiodite, barium hypoiodite, methyl hypoiodite, copper hypoiodite, and And silver iodate. Tween80 is mentioned as a surfactant. Also
- Adenosine phosphates may be removed by combining a bleaching agent and a surfactant and bringing them into contact with a filtration membrane or a water absorption zone.
- the bleaching agent may be hypochlorous acid, hypobromous acid or hypoiodic acid, or a salt thereof (eg, sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, hypochlorous acid) Barium, methyl hypochlorite, copper hypochlorite, silver hypochlorite, sodium hypobromite, potassium hypobromite, calcium hypobromite, barium hypobromite, hypobromite Methyl, copper hypobromite, silver hypobromite, sodium hypoiodite, potassium hypoiodite, calcium hypoiodite, barium hypoiodite, methyl hypoiodite, hypoiodite Copper or silver hypoiodite) or a combination thereof is preferably combined using Tween80 as a surfactant.
- the bleach at a concentration of 00005 to 5% with Tween 80 at a concentration of 0.0001 to 5%. It is particularly preferable to use sodium hypochlorite as a bleaching agent and Tween80 as a surfactant. In this case, the effective chlorine concentration is 0.00000 to 5
- sodium hypochlorite at a concentration of% and Tween 80 at a concentration of 0.0001 to 5% are combined. It is particularly preferable to combine sodium hypochlorite having an effective chlorine concentration of 0.0005 to 0.5% with Tween80 having a 0.0001 to 5% concentration.
- adenosine phosphates may be removed by bringing a bleaching agent into contact with a filtration membrane or a water absorption zone. In this case, it is preferable to use the above-mentioned type of bleaching agent, and it is more preferable to use a bleaching agent having a concentration of 0.0005 to 0.5%.
- the above treatment of the present invention is preferably performed at a temperature of 10 to 150 ° C. During this treatment, it is also preferable to apply autoclaving.
- the present invention is a filtration membrane or a water absorption zone treated by the above treatment method. Furthermore, the present invention is a method for measuring the number of bacteria in a sample, comprising the following steps.
- the filtration membrane to be washed in the present invention is not particularly limited as long as it can capture microorganisms, and includes, for example, a commercially available hydrophilic or hydrophobic filtration membrane.
- hydrophilic filtration membranes include hydrophilic polytetrafluoroethylene, hydrophilic polyvinylidene difluoride, hydrophilic polysulfone, hydrophilic polycarbonate, hydrophilic polyamide, hydrophilic polyethylene, hydrophilic polypropylene, etc.
- a film-like or sheet-like material made of a hydrophilic plastic material or a material such as acetyl cellulose or nitrocellulose is used.
- hydrophobic filtration membrane examples include, for example, PVDF (polyvinylidene difluoride), PTFE (polytetrafluoroethylene), PE (polyethylene), and the like, or a relatively large hydrophilic hydrophobic membrane such as PC (Polycarbonate), PP (polypropylene), PA (polyamide), PS (polysulfone) and the like can be used. Also, RMD Special Membrane Fill Yuichi (PVDF film with hydrophobic lattice) and polycarbonate film manufactured by Nippon Millipore are preferred. Next, the method for cleaning a filtration membrane of the present invention will be described.
- examples of the solution for washing the filtration membrane include organic solvents such as methanol, ethanol, propanol, butanol, isopropanol, acetonitrile, acetone, and dimethyl sulfoxide, or sterilized water containing these organic solvents. Alternatively, only sterilized water may be used. Also optional It is possible to use sterile water in which the above-mentioned buffer or salt is dissolved, or to use a solution in which these are mixed with an organic solvent.
- the concentration and type of these organic solvents are not particularly limited, but preferably 5 to 95% ethanol, particularly preferably 10 to 90% ethanol.
- a surfactant may be further added to these cleaning liquids before use.
- the surfactant include any one selected from Tween, SDS, SPAN, Triton, benzalkonium chloride, benzethonium chloride, and the like, and the concentration used is not particularly limited.
- Tween80 is at least 0.0001% and at most 50%, more preferably at least 0.001% and at most 30%.
- an acid or an alkali may be added to these cleaning liquids before use. Any acid or alkali can be used.
- Any acid or alkali can be used.
- the concentration to be used is 0.1% or more, preferably 1% or more.
- the alkali ammonia, sodium hydroxide, potassium hydroxide and the like are preferable, and the concentration to be used is 0.1% or more, preferably 1% to 30%.
- drying the filtration membrane it is preferable to put it in a petri dish to dry so that dust and the like do not adhere.
- the drying temperature is not particularly limited, but preferably 40 ° C or more, particularly preferably 45 ° C or more. Appropriate.
- the temperature at this time is also not particularly limited, but is preferably 30 ° C or more, and particularly preferably 40 ° C or more.
- the adenosine phosphates of the filtration membrane can be treated by enzymatically or chemically modifying or decomposing them into substances not related to the reaction system.
- the reagent to be used is not particularly limited, but is preferably an acid or an alkali, in addition to an enzyme such as adenosine phosphate deaminase which widely degrades adenosine phosphates.
- acids hydrochloric acid or acetic acid is particularly preferred, and the concentration used is 0.1% or more, preferably
- Potassium hydroxide and the like are preferable, and the concentration to be used is 0.1% or more, preferably 1% or more and 30% or less.
- the temperature during the reaction is not particularly limited, but is 40 ° C or more, especially
- 60 ° C. or higher is preferred. It is also particularly preferable to carry out autoclave treatment at a temperature of 100 ° C or higher (for example, 121 ° C).
- adenosine phosphate esters in the filtration membrane may be decomposed using a bleaching agent or the like.
- Bleaching agents include oxidizing bleaches and reducing bleaches.
- Oxidative bleaching agents include peroxides and chlorine compounds. Examples of the peroxides include hydrogen peroxide, sodium peroxide, sodium perborate, potassium permanganate, and the like.
- Examples of the chlorine compound include salad powder, sodium hypochlorite, sodium chlorite and the like.
- the reducing bleaching agent include iodide, sodium bisulfite, hydrosulfite, and sodium dithionite.
- potassium bisulfite, sodium hyposulfite, potassium pyrosulfite, nitrogen dioxide, benzoyl peroxide, ammonium persulfate, chlorine dioxide and the like can be used.
- the bleaching agent include hypochlorous acid, hypobromite, hypoiodic acid, and salts thereof, such as sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, and hypochlorous acid.
- a bleaching agent having a concentration of 0.0005 to 0.5%.
- an appropriate surfactant may be used in combination.
- the bleaching agent may be hypochlorous acid, hypobromite, hypoiodic acid, or a salt thereof, such as sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, hypochlorous acid.
- sodium hypochlorite and Tween80 in combination, and it is preferable to use sodium hypochlorite having an effective chlorine concentration of 0.00000 to 5% and Tween80 at a concentration of 0.0001 to 5%. .
- a bleaching agent and a surfactant are used in combination, it is preferable to use a bleaching agent having a concentration of 0.0005 to 0.5% and a surfactant having a concentration of 0.0001 to 5%.
- the temperature during the reaction is arbitrary, but is preferably iOt or more, preferably 30: or more, particularly preferably 40 ° C. or more and 150 or less. In this treatment, autoclaving is also preferable.
- an enzyme for example, adenosine phosphate deaminase solution, or adenosine phosphate deaminase and another enzyme (eg, avirase, alkaline phosphatase, acid phosphatase, hexokinase or adenosine triphosphatase, or a combination thereof)
- a mixed solution or the like can be used.
- the final concentration of adenosine phosphate deaminase is at least 0.001 l / ml, preferably at least 0.01 U / ml and at most 10 U / ml.
- the pH during the reaction is preferably from pH 4.5 to pH 8.5, particularly preferably from pH 5 to pH 8.
- the temperature during the reaction is preferably from 25 to 60 ° C, more preferably from 30 to 55 ° C.
- liquid-contacting parts such as the water absorption zone of the sprayer used for measurement, that is, the parts that come into contact with the luminescent reagent and the extraction reagent are contaminated with adenosine phosphates. May cause ground emission. Therefore, it is necessary to remove adenosine phosphates by an enzyme treatment or the like in advance.
- a water absorption zone examples thereof include those used for Matsushita Electric Works ultrasonic sprayer (EW622) and those used for automatic sprayer manufactured by Nippon Millipore.
- the enzyme to be used is, for example, adenosine phosphate deaminase solution or adenosine phosphate deaminase and other enzymes (eg, apyrase, alkaline phosphatase, acid phosphatase, hexokinase, adenosine triphosphatase).
- a mixed solution or the like can be used.
- the final concentration of adenosine phosphate kinase is 0.001 U / ml or more, preferably 0.01 U / ml or more and 10 U / ml or less.
- the pH during the reaction is preferably from pH 4.5 to pH 8.5, and particularly preferably from pH 5 to pH 8.
- the temperature during the reaction is preferably 25 ° C or higher and 60 ° C or lower, but is more preferably 30 ° C or higher and 55 ° C or lower.
- drying the water absorption zone after the above treatment air drying, dry heat, or the like can be used.
- the drying temperature is not particularly limited, but preferably 40 ° C or more, particularly preferably 45 ° C or more. Appropriate.
- a method of drying by blowing a clean wind through a HEPA filter or the like is also preferable.
- the temperature at this time is also not particularly limited, but is preferably 30 ° C or more, and particularly preferably 40 ° C or more.
- the microorganism according to the present invention means yeasts, molds, mushrooms, bacteria, actinomycetes, unicellular algae, viruses, protozoa, animals or non-differentiated cells and tissue cultures.
- the sample liquid is not particularly limited, but examples include the following.
- Beverages peel, wine, juice, etc.
- Body fluid urine, feces, blood, sputum, pus, etc.
- a solution in which the above sample solution is suspended in an appropriate solvent may be used as the sample solution.
- an appropriate solvent for example, distilled water, physiological saline, phosphate buffer solution, Tris buffer solution, sodium acetate buffer solution, etc.
- the sample solution contains a solid content
- the sample solution is suspended in an appropriate solvent (eg, distilled water, physiological saline, phosphate buffer, Tris buffer, acetate buffer, etc.) or a mixer.
- a solution that has been homogenized by, for example, and used as a solution can be used.
- the means for capturing the microorganisms on the filtration membrane is not particularly limited, but, for example, is by adding a sample solution which seems to contain microorganisms to the filtration membrane. In the present invention
- Adding the sample solution to the filtration membrane means applying the sample solution to the filtration membrane, specifically, filtering the sample solution using the filtration membrane, and spotting the sample solution on the filtration membrane.
- a filter membrane after washing by the above method is attached to a cup-shaped filtration container (for example, Milliflex filter unit manufactured by Nippon Millipore Co., Ltd., Sterifil), and the sample solution is suction-filtered
- a cup-shaped filtration container for example, Milliflex filter unit manufactured by Nippon Millipore Co., Ltd., Sterifil
- a method of capturing microorganisms on a filtration membrane is employed. After the filtration is completed, remove the filtration membrane from the filter, and if necessary, wash and air-dry the filtration membrane.
- an isotonic solution such as a physiological saline solution for washing the filtration membrane in order to prevent cell rupture.
- the filter membrane After filtering the sample, the filter membrane may be placed on an agar medium containing adenosine phosphate deminase, cultured for an appropriate time, dried, and sprayed with an extraction reagent. As a result, the amount of luminescence from bacteria can be increased.
- ATP scavenger a reagent containing ATP-degrading enzyme
- background AT ATP other than ATP contained in the microbial cells
- Treating the filtration membrane with an ATP scavenger reduces background luminescence in the bioluminescence reaction and increases the sensitivity of microbial measurement. Is improved.
- ATP scavenger examples include adenosine phosphate deaminase solution, adenosine phosphate deaminase and other enzymes (eg, apyrase, alkaline phosphatase, acid phosphatase, hexokinase or adenosine triphosphase, or a combination thereof). And the like can be used.
- the final concentration of adenosine phosphate kinase in the ATP scavenger is 0.001 U / ml or more, and preferably 0.01 to 10 U / ml.
- the ATP scavenger When the filter membrane is brought into contact with the ATP scavenger, the ATP scavenger may be dropped or sprayed on the filter membrane or the filter membrane may be immersed in the ATP scavenger.
- the ATP scavenger After erasing the backbisd ATP, it is desirable to remove or deactivate the ATP scavenger on the filtration membrane.
- the removal of the ATP scavenger is carried out by washing the filter membrane with ATP-depleted ultrapure water or a buffer solution. Further, the ATP scavenger can be deactivated by acting an inhibitor against the scavenger. .
- coformycin can be used as an inhibitor of the scavenger.
- Coformycin is known as an inhibitor of adenosine phosphate deaminase (THE JOURNAL OF ANTIBI0TI CS, SE. A Vol. 20 No. 4 227-231).
- the inhibitor When an inhibitor of the ATP scavenger is allowed to act, the inhibitor may be dropped or sprayed onto the filtration membrane. More preferably, the inhibitor may be added to the ATP extractant described below and added or sprayed onto the filtration membrane. Next, the biological components in the microorganisms captured on the filtration membrane are extracted.
- the method for extracting the biological component is not particularly limited.
- a known ATP extractant may be dropped or sprayed on the filtration membrane.
- ATP extractants include, for example, a mixture of ethanol and ammonia
- Methanol, ethanol, surfactants benzetonium chloride, benzalcodium chloride, Triton X100, etc.
- trichloroacetic acid perchloric acid, etc.
- a mixed solution of ethanol and ammonia is suitable as an ATP extractant because it is easy to volatilize after the ATP extraction operation and inhibits the activity of the ATPase.
- the ATP extractant is sprayed using, for example, an ultrasonic sprayer (Matsushita Electric Works) for 5 seconds to 5 seconds. It may be done for about a minute. After ATP extraction, if necessary, the filtration membrane is dried to remove the ATP extractant.
- an ultrasonic sprayer Matsushita Electric Works
- the biological component in the microorganism according to the present invention means a substance contained in the microorganism and involved in the ATP conversion reaction or the bioluminescence reaction of the present invention.
- Such substances include, for example, adenosine phosphate (ATP, AMP, ADP, cyclic AMP, RNA, etc.), PPDK, phosphoenolpyruvate, pyrophosphate, luciferin, luciferase, pyruvate kinase, acetate acetate Creatine kinase, or cyclic 3 ', 5'-nucleotide phosphodiesterase.
- the biological component of the present invention substances involved in the production of the above-mentioned biological components are also included in the biological component of the present invention.
- the ATP conversion reagent and the bioluminescent reagent are dropped or sprayed on the filtration membrane from which the biological components in the microorganisms have been extracted.
- the ATP conversion reaction reagent referred to in the present invention is a reagent containing a substance involved in the ATP conversion reaction, for example, pyruvate orthophosphate dikinase (hereinafter, “PPDK”).
- PPDK pyruvate orthophosphate dikinase
- the ATP conversion reaction referred to in the present invention refers to any reaction system in which ATP is generated during the reaction, and includes, for example, a reaction system in which AMP is directly generated from AMP.
- One of the substances that contribute to the ATP conversion reaction is, for example, an enzyme that catalyzes the ATP conversion reaction.
- Enzymes that catalyze this ATP conversion reaction include, for example, pyruvate orthophosphate dikinase (PPDK) and phosphoenol pyruvate synthetase.
- the following ATP conversion reaction can be used by using a substance involved in the ATP conversion reaction.
- ATP is generated by combining AMP phosphotransferase and adenylate kinase (Applied and Environmental Microbiology, May
- a ATP is produced from AMP using a combination of AMP-PolyP phosphotransferase (AMP-Polyphosphate kinase) and Polyphosphate kinase (Polyphosphate kinase).
- AMP-Polyphosphate kinase AMP-Polyphosphate kinase
- Polyphosphate kinase Polyphosphate kinase
- the ATP conversion reaction reagent in the present invention is, for example, a reagent containing the following substances (a) to (2).
- PPDK is a known enzyme that catalyzes the reaction of producing ATP, pyruvate and phosphoric acid by acting on AMP, phosphoenorubyruvic acid and pyrophosphate in the presence of magnesium ion, and also catalyzes the reverse reaction.
- ATP is generated by the reaction between the above reagent and AMP in the reaction system.
- the AMP in the reaction system as referred to herein is that contained as a biological component in the microorganism and that generated with the consumption of ATP in the bioluminescence reaction.
- ATP conversion reaction reagent containing the substances (a) to (2) may be added to the ATP conversion reaction reagent containing the substances (a) to (2).
- substances (a) to (2) For example, when cyclic 3 ', 5'-nucleotide phosphodiesterase is added, ATP is generated not only from AMP but also from cyclic AMP.
- ATP is generated not only from AMP but also from ADP.
- a reagent which is a combination of the above-mentioned substances (a) to (2) and another substance and which contains a substance which participates in the reaction that generates ATP during the reaction is an ATP conversion reaction reagent of the present invention.
- the physicochemical properties and production method of PPDK which is one of the substances involved in the ATP conversion reaction, are known, and their availability is relatively easy.
- Examples of plant-derived PPDK include enzymes derived from corn leaves [Biochemis try 12, 2862-2867 (1973)] and sugarcane leaves [The Biochemical Journal 114, 117-125 (1969)].
- Microbial sources include, for example, Propionibacterium shermanii (Biochemistry 10, 721-729 (1971)), Acetobacter xylinum (Ace tobacter xyl inum) [Journal of Bacteriology (1970)], Bacteroides symbiosus [Me thods in Enzymolog y 42, 199-212 (1975)] and the genus Microbispora [eg Microbispora thermorosea IF0 14047] and the like.
- a natural PPDK purified from the above organism can be used.
- a mutant PPDK in which one or more (eg, one or several) amino acids in the amino acid sequence of the natural PPDK are introduced, deleted, or substituted with a mutation within a range not to lose the enzyme activity can also be used.
- Natural PPDK can also be obtained by genetic engineering techniques. That is, the native PPDK gene may be introduced into an appropriate vector-one host system, and PPDK may be collected from the obtained culture of the recombinant microorganism. In addition, the PPDK gene can be obtained from maize (J. Biol. Chem. 263, 11080-11083 (1988)), Flaveria trinervia (FEBS Let t. 273, 116-121 (1990)), etc. It has already been cloned from living things.
- the PPDK can be obtained from a mutant of the above organism.
- mutant PPM can be obtained by genetic engineering techniques. That is, it is added to one or more (eg, one or several) bases in the base sequence of the natural PPDK gene.
- a mutant PPDK gene into which mutations such as deletion, substitution, etc. have been introduced is prepared and introduced into an appropriate vector-host system, and a mutant PPDK gene is collected from a culture of the obtained recombinant microorganism. I just need.
- Methods for introducing a mutation into a gene include, for example, a natural PPDK gene and a mutagenic agent (hydroxylamine, nitrite, sulfurous acid, 5-promouracil, etc.)
- a site-specific mutagenesis method using a PCR method can be widely used. Furthermore, It is also possible to construct a mutant PPDK gene having a mutation at a desired site by annealing the chemically synthesized DNA.
- the bioluminescent reagent in the present invention is not particularly limited as long as it is a reagent containing a substance involved in a bioluminescent reaction.
- the bioluminescent reagent of the present invention is, for example, a reagent containing a substance involved in a luciferin-luciferase luminescence reaction, and specifically, for example, a reagent containing the following substances (a) to (c) It is.
- a luminescence reaction occurs when the above reagent reacts with ATP in the reaction system. At that time, ATP is consumed and AMP is generated.
- the ATP in the reaction system as referred to herein includes those contained as biological components in microorganisms and those produced by the ATP conversion reaction.
- luciferin and luciferase those derived from, for example, insects (Genji firefly, Heike firefly, North American firefly, Hikarimemushimushi, Tsubotaru) can be used.
- Luciferase is added to or deleted from one or more amino acids in the amino acid sequence of natural luciferase purified from the luminescent tissue of the above organism, natural luciferase prepared by genetic engineering techniques, or natural luciferase. Mutant luciferase into which a mutation such as loss or substitution has been introduced can be used.
- AMP is generated from RNA by adding liponuclease (RNase) to the reaction system, and the AMP becomes ATP in the ATP conversion reaction.
- RNase liponuclease
- a biological component involved in the bioluminescence reaction is mainly ATP, and there is a problem that the amount of luminescence is attenuated with consumption of the ATP.
- ATP is newly generated from various adenosine phosphates (AMP, cyclic AMP, ADP, RNA, etc.) and consumed in the bioluminescence reaction. ATP is also played. As a result, the luminescence amount and the luminescence time are increased, so that microorganisms can be measured quickly, easily and with high sensitivity.
- the conditions of the ATP conversion reaction and the bioluminescence reaction are not particularly limited. What is necessary is just to set suitably. That is, the ATP conversion reaction reagent and the bioluminescent reagent may be used as a mixture, or may be sequentially added to the filtration membrane.
- a mixture of the ATP conversion reaction reagent and the bioluminescent reagent it is preferable to use a mixture of the ATP conversion reaction reagent and the bioluminescent reagent.
- a mixed solution having the following composition can be used.
- Luciferase (F) Luciferase; final concentration 0.1 mg / ml or more, preferably 0.5 to 20 mg / nil
- ATP is regenerated from AMP generated by consumption of ATP in the bioluminescence reaction, so that the luminescence amount and the luminescence time are increased.
- ammonium sulfate, dithiothreitol (DTT), EDTA, HEPES or Tricine is a substance that is preferably added to improve the stability or buffer capacity of the solution.
- DTT dithiothreitol
- EDTA EDTA
- HEPES Tricine
- Tricine is a substance that is preferably added to improve the stability or buffer capacity of the solution.
- perserum albumin, sucrose and the like can be used.
- cyclic AMP which is a biological component in a microorganism
- cyclic 3 ′, 5′-nucleotide phosphodiesterase (0.01 ⁇ l / ml or more, preferably 0.02 to 10 l / ml).
- the ATP conversion reagent and bioluminescent reagent contain adenosine lysate, an ATPase. Acid deaminase may be added. If ATP is contaminated in the above reagent, ATP in the reagent will be eliminated by the addition of adenosine phosphate kinase. In that case, it is preferable to add coformycin to the ATP extractant. In this way, when the above reagent is added to the filtration membrane, decomposition of ATP derived from microorganisms can be prevented.
- adenosine phosphate deaminase When adding adenosine phosphate deaminase to the above mixed solution of the ATP conversion reaction reagent and the bioluminescent reagent, add it so that the concentration is 0.01 l / ml or more, preferably 0.05 to 10 U / ml. do it.
- the amount of luminescence generated on the filtration membrane can be measured by a luminometer, for example, a luminescence reader BLR-201 (improved type) manufactured by Aroka.
- the number of viable bacteria is measured by imaging the bright spots on the filtration membrane using a bioluminescence image analysis system device, for example, ARGUS-50 / CL (with taper fiber: manufactured by Hamamatsu Photonics KK). It is also possible.
- a PPM luminescence reagent (a mixed reagent of an ATP conversion reaction reagent and a bioluminescence reagent) was used as the reagent of the present invention.
- HSLU bioluminescent reagent not containing ATP conversion reagent
- DPPDK from Microbispora thermorosea IF014047
- lOOmM sodium acetate buffer containing lmM EDTA
- pH 5.0 pH 5.0
- the amount of enzyme whose 0D value changes by 2.4 per minute is defined as 1 unit (U).
- the amount of enzyme that releases 1.0 Omol of inorganic phosphoric acid per minute from ATP is defined as 1 unit (U).
- a filtration membrane RMD special membrane filter manufactured by Nippon Millipore Co., Ltd. (with 0.45 ⁇ m hydrophobic lattice, diameter 47mm) was immersed in 70% ethanol. This is set in a filter equipped with a polypropylene pre-filter (0.6 m), manufactured by Nippon Millipore Co., Ltd. and washed with 50 ml of 70% ethanol, and washed with 100 ml of 70% ethanol in advance. did. Thereafter, the membrane was washed twice with 100 ml of 20% ethanol, the membrane filter was removed from the filter, turned over, and set again in the filter.
- the membrane was washed with 30 ml of ultrapure water, removed from the filter, placed in a sterile petri dish, and dried at 50 ° C for 15 hours.
- the PPM luminescent reagent was applied to the membrane before washing by an ultrasonic sprayer manufactured by Matsushita Electric Works (EW622). After setting in a RMDS device manufactured by Millipore Japan, luminescence was integrated for 5 minutes and measured at bit 0-4. The washed membrane was treated in the same manner and compared.
- a filtration membrane RMD special membrane filter manufactured by Nippon Millipore Co., Ltd. (0.45 m with hydrophobic grid, diameter 47 mm) was immersed in 70% ethanol. Then, it was placed in 200 ml of 10% acetic acid and placed in a 200 ml pressure bottle and capped. This was autoclaved at 121 ° C for 200 minutes. After the temperature dropped, the membrane was taken out and rinsed three times with ultrapure water to remove excess acetic acid.
- the membrane before the treatment was sprayed with a PPM luminescent reagent using an ultrasonic atomizer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. After that, the luminescence was integrated for 5 minutes and measured at bit 0-4. The treated film was similarly treated and compared.
- EW622 ultrasonic atomizer
- RMD special membrane filter 1 manufactured by Nippon Millipore, 0.45 Mm with hydrophobic lattice, diameter 471M1 as a filtration membrane was immersed in 70% ethanol. Thereafter, the filter was set on a filter, and 1 Oml of a 10 mM HEPES buffer solution (pH 7.0) containing 1.ml/ml of adenosine phosphate deaminase was passed through to wash out excess 70% ethanol.
- the plate was immersed in 20 ml of lOmM HEPES buffer (pH 7.0) containing 1.0 U / ml adenosine phosphate deaminase in a sterile petri dish and treated at 50 ° C for 6 hours. After the treatment, only the filter membrane was transferred into a new sterile petri dish and dried at 50 ° C overnight.
- lOmM HEPES buffer pH 7.0
- the PPDK luminescence reagent was sprayed on the membrane before the treatment with an ultrasonic sprayer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. After that, the luminescence was integrated for 5 minutes and measured at bit 0-4. The treated film was similarly treated and compared.
- EW622 ultrasonic sprayer manufactured by Matsushita Electric Works
- the film before the treatment emitted light over the entire surface, and 20 noise luminescent spots were observed.
- the film after the treatment showed no noise luminescent spot and no background light emission.
- Nippon Millipore RMD Special Membrane Filter (0.45 m hydrophobic) 100 pieces with a lattice and 47 imn in diameter were immersed in 70% ethanol. Then, the mixture was put in a 200 ml mixed solution of 0.0005% sodium hypochlorite and 0.01% Tween80 with an effective chlorine concentration of 200 ml and sealed in a 200 ml pressure-resistant bottle. This was treated at 60 ° C for 5 hours. After the treatment, the filtration membrane was taken out and rinsed sufficiently with ultrapure water to remove excess sodium hypochlorite.
- the PPDK luminescence reagent was sprayed on the membrane before the treatment with an ultrasonic sprayer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. After that, the luminescence was integrated for 5 minutes and measured at bit 0-4. The treated film was similarly treated and compared.
- EW622 ultrasonic sprayer manufactured by Matsushita Electric Works
- the film before the treatment emitted light from the entire surface, but the film after the treatment did not show any noise luminescent spot or background light emission.
- This method was excellent in that a large number of films could be processed at once.
- the PPDK luminescence reagent was sprayed on the membrane before the treatment with an ultrasonic sprayer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. After that, the luminescence was integrated for 5 minutes and measured at bit 0-4. The treated film was similarly treated and compared.
- EW622 ultrasonic sprayer manufactured by Matsushita Electric Works
- the film before the treatment emitted light from the entire surface, but the film after the treatment did not show any noise luminescent spot or background light emission.
- This method was excellent in that a large number of films could be processed at once.
- Tween80 mixture was placed in 200 ml and placed in a 200 ml pressure bottle and capped. This was treated at 60 ° C for 6 hours. After treatment, remove the filtration membrane, rinse thoroughly with ultrapure water and remove excess Potassium hypochlorite was removed.
- the PPDK luminescence reagent was sprayed on the membrane before the treatment with an ultrasonic sprayer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. After that, the luminescence was integrated for 5 minutes and measured at bit 0-4. The treated film was similarly treated and compared.
- EW622 ultrasonic sprayer manufactured by Matsushita Electric Works
- the film before the treatment emitted light from the entire surface, but the film after the treatment did not show any noise luminescent spot or background light emission.
- This method was excellent in that a large number of films could be processed at once.
- Nippon Millipore RMD Special Membrane Filter (0.45 m with hydrophobic lattice, diameter 47 mm) as filter membrane 100 pieces of effective chlorine concentration 0.05% sodium hypochlorite 200 ml and put in 200 ml pressure bottle I closed the lid. This was treated at room temperature for 6 hours. After the treatment, the filtration membrane was taken out and rinsed sufficiently with ultrapure water to remove excess sodium hypochlorite.
- the membrane before the treatment was sprayed with a PPM luminescent reagent using an ultrasonic atomizer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. After that, the luminescence was integrated for 5 minutes and measured at bit 0-4. The treated film was similarly treated and compared.
- EW622 ultrasonic atomizer
- the film before the treatment emitted light from the entire surface, but the film after the treatment did not show any noise luminescent spot or background light emission.
- This method was excellent in that a large number of films could be processed at once.
- Nihon Millipore RMD Special Membrane Filter (0.45 Mm with hydrophobic lattice, diameter 47 mm) is a filtration membrane. Effective chlorine concentration 0.005% sodium hypochlorite, 0.01% TweenSO mixed solution Put in 200ml, put in a 200ml pressure bottle and capped. This was treated at room temperature for 4 hours. After the treatment, the filtration membrane was taken out and rinsed sufficiently with ultrapure water to remove excess sodium hypochlorite.
- the membrane before the treatment was sprayed with a PPM luminescent reagent using an ultrasonic atomizer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. After that, the light emission is integrated for 5 minutes and bit 0-4 Measured.
- the treated film was similarly treated and compared.
- the film before the treatment emitted light from the entire surface, but the film after the treatment did not show any noise luminescent spot or background light emission.
- This method was excellent in that a large number of films could be processed at once.
- Nippon Millipore RMD Special Membrane Filter (0.45 / m with hydrophobic lattice, diameter 47mm), which is a filtration membrane, put 200 sheets of effective chlorine concentration 0.005% sodium hypochlorite in 200ml and put it in a 200ml pressure bottle I put it in and closed it. This was treated at room temperature for 15 hours. After the treatment, the filtration membrane was taken out and rinsed sufficiently with ultrapure water to remove excess sodium hypochlorite.
- the PPDK luminescence reagent was sprayed on the membrane before the treatment with an ultrasonic sprayer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. Thereafter, luminescence was integrated for 5 minutes and measured at Mt 0-4. The treated film was similarly treated and compared.
- the film before the treatment emitted light from the entire surface, but the film after the treatment did not show any noise luminescent spot or background light emission.
- This method was excellent in that a large number of films could be processed at once.
- the water absorption zone for an ultrasonic atomizer (EW622) manufactured by Matsushita Electric Works was immersed in sterilized ultrapure water containing 0.1 ⁇ g / ml of adenosine phosphate deaminase, and treated with 3rc for 1 hour. This was placed in a sterile petri dish and dried at 50 ° C for 15 hours. This was immersed in 2 ml of ultrapure water and stirred vigorously. The obtained solution 5a1 was added to PPDK luminescence reagent 1001, and the measurement was performed using a Lumitester C-100. The measured value was 520 RLU.
- Example 11 A filtration membrane RMD special membrane filter manufactured by Nippon Millipore Co. (0.45 / 1 m with hydrophobic grid, diameter 47 mni) was immersed in 5% Tween80. Set this in a filter equipped with a polypropylene pre-filter (0.6 / xm) and MF mesh filter AP32, manufactured by Nippon Millipore Co., Ltd., previously washed with 5% Tween80 and 100 ml, and made up to 100 ml with 5% Tween80. After washing twice, the membrane filter was removed from the filter, turned over, and set back in the filter. Further, it was washed with 30 ml of ultrapure water to remove excess Tween80, removed from the filter, placed in a sterile petri dish, and dried at 50 ° C for 15 hours.
- the membrane before washing was sprayed with a PPDK luminescent reagent using an ultrasonic atomizer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. After that, the luminescence was integrated for 5 minutes and measured at bit 0-4. The washed membrane was treated in the same manner and compared.
- EW622 ultrasonic atomizer
- the film before the treatment emitted light on the entire surface, but the film after the treatment did not show any noise luminescent spots or background emission.
- the membrane before washing was sprayed with a PPDK luminescent reagent using an ultrasonic atomizer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. After that, the luminescence was integrated for 5 minutes and measured at bit 0-4. The washed membrane was treated in the same manner and compared.
- EW622 ultrasonic atomizer
- the film before cleaning emitted light over the entire surface, and 24 noise luminescent spots were observed.
- the film after cleaning showed no noise luminescent spot and no background light emission.
- Nippon Millipore RMD special membrane filter (0.45 m hydrophobic) A grid with a diameter of 47 mm) was immersed in 70% ethanol. This was set in a filter equipped with Nippon Millipore's polypropylene prefill Yuichi (0.6 m) and MF mesh spacer AP32 previously washed with 100% 70% ethanol and 50 ml of 70% ethanol. And washed. After that, the membrane was washed twice with 100 ml of 20% ethanol, the membrane filter was removed from the filter, turned over, and set again in the filter. Further, the membrane was washed with 30 ml of ultrapure water, removed from the filter, placed in a sterile petri dish, and dried at 50 ° C for 15 hours.
- HSLU was sprayed on the membrane before washing with an ultrasonic atomizer (EW622, manufactured by Matsushita Electric Works). Then, it was set on a RMDS device manufactured by Japan Millipore. After that, the luminescence was integrated for 5 minutes and measured at bit 0-4. The washed membrane was treated in the same manner and compared.
- the membrane filter prepared in Example 5 was set on a filter, and washed twice with 20 ml of ultrapure water. Then, add 10 ml of the washing solution (0.05% glucose, 0.05% fructose, 1 mM HEPES pH 7.0), and add the bacterial dilution (5% sucrose, 0.05% glucose, 0.05% fructose, 10% HEPES, 10 mM HEPES). Escherichia coli ATCC25922 appropriately diluted with pH 7.0) was added. Next, the plate was washed twice with 10 ml of a washing solution, and then washed with 10 ml of a washing solution containing 0.1 mg / ml adenosine phosphate deaminase.
- the washing solution 0.05% glucose, 0.05% fructose, 1 mM HEPES pH 7.0
- the bacterial dilution 5% sucrose, 0.05% glucose, 0.05% fructose, 10% HEPES, 10 mM
- the membrane was removed from the filter, set in a holder, placed in a petri dish, opened slightly, and air-dried. After drying, the ATP extractant was sprayed with a Matsushita Electric Works ultrasonic sprayer (EW622) for 5 seconds and air-dried. Thereafter, a PPDK luminescence reagent was sprayed for 5 seconds with an ultrasonic atomizer (EW622) manufactured by Matsushita Electric Works, and set on an RMDS device to integrate the luminescence amount for 5 minutes. The number of appearing bright spots was measured with bitO-4. On the other hand, the number of bacteria (Colony Forming Unit) (CFU) measured by pour culture on a standard agar medium was measured and shown in Table 1.
- CFU Coldy Forming Unit
- the present invention (piece) pour culture method (GFU)
- the membrane was removed from the filter, set in a holder, placed in a petri dish, opened slightly, and air-dried. After drying, the ATP extractant was sprayed with a Matsushita Electric Works ultrasonic sprayer (EW622) for 5 seconds and air-dried. Then, the PPDK luminescent reagent was sprayed for 5 seconds with an ultrasonic atomizer (EW622) manufactured by Matsushita Electric Works, set on an RMDS device, and the luminescence was integrated for 5 minutes. The number of bright spots was measured using MtO-4. On the other hand, the number of bacteria (CFU) measured by pour culture on a standard agar medium was measured and shown in Table 2.
- a method for washing a filtration membrane, and a method for measuring the number of bacteria using the washed filtration membrane are provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biotechnology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
A method of treating a filter membrane or water-absorbing zone, characterized by contacting the membrane or zone with at least one member selected from the group consisting of an organic solvent, sterilized water containing an organic solvent, sterilized water, enzyme solution containing an adenosine phosphatase, acid, alkali, surfactant, and bleaching agent to remove the adenosine phosphate adherent to the filter membrane or water-absorbing zone.
Description
明 細 書 濾 ϋ膜の処理方法、 濾過膜及びその濾過膜を利用した Description Filtration membrane treatment method, filtration membrane and use of the filtration membrane
菌数の迅速測定方法 技術分野 Method for rapid measurement of bacterial count
本発明は、 濾過膜又は吸水帯の処理方法に関する。 また、 本発明は、 試料液中 の微生物を迅速、 簡便かつ高感度に測定する方法に関する。 さらに詳しくは、 AT P変換反応試薬と生物発光試薬により、 濾過膜上に捕捉された微生物を測定する 方法に関する。 背景技術 The present invention relates to a method for treating a filtration membrane or a water absorption zone. Further, the present invention relates to a method for measuring microorganisms in a sample solution quickly, simply, and with high sensitivity. More specifically, the present invention relates to a method for measuring microorganisms captured on a filtration membrane by using an ATP conversion reaction reagent and a bioluminescent reagent. Background art
食品、 製薬、 化粧品等の分野では、 使用される水、 原料、 中間体及び製品中の 生菌の管理が極めて重要である。 また、 電子工業でも使用する水の品質管理は重 要であり、 その中の細菌数は常に把握しておく必要がある。 そのため、 それらの 工業分野においては生菌数の測定が必須となっている。 In the fields of food, pharmaceuticals, cosmetics, etc., the control of viable bacteria in the water, raw materials, intermediates and products used is very important. Also, quality control of water used in the electronics industry is important, and it is necessary to keep track of the number of bacteria in it. Therefore, measurement of viable cell count is essential in these industrial fields.
このため、 菌の迅速検出方法に関する種々の提案がなされている。 例えば、 検 体液中の生菌数が充分に多い場合は、 少量を小試験管に採取した後、 また、 生菌 数がやや少ない場合は、 検体液を濾過膜で濾過して微生物を捕捉し、 該濾過膜を 極少量の無菌水等に浸漬して微生物を懸濁した液の一部を小試験管に採取した後 For this reason, various proposals have been made regarding a rapid detection method of bacteria. For example, if the number of viable bacteria in the sample solution is sufficiently large, a small amount should be collected in a small test tube.If the number of viable bacteria is slightly small, the sample solution should be filtered through a filtration membrane to capture microorganisms. After the filter membrane is immersed in a very small amount of sterile water or the like and a part of the liquid in which the microorganisms are suspended is collected in a small test tube.
、 バイオミルネッセンス法により測定する方法が知られている (特開平 2- 57197 号、 特開平 2-163098号等、 春田三佐夫他 「食品微生物検査の簡易化、 自動化、 迅 速化」 第 58頁、 サイエンスフォーラム (1985) 日本) 。 A method of measuring by the biomillescence method is known (Japanese Unexamined Patent Publication No. 2-57197, Japanese Unexamined Patent Publication No. 2-163098, etc., Misao Haruta et al. P. 58, Science Forum (1985) Japan.
しかしながら、 これらの方法は、 生菌数が少ない検体液の場合 (例えば 103〜1 04個/ ml以下) では ATP量がルミノメーターの測定限界以下のため検出が極めて困 難である。 However, these methods, when the viable count is less sample solution (e.g. 10 3 to 1 0 4 / ml or less) in the detected amount of ATP for the following measurement limit luminometer is extremely difficult.
そこで、 本出願人等は、 先に、 微生物を含む試料液を濾過膜で濾過して、 試料 液中の微生物を濾過膜上に捕捉した後、 該微生物中の生体成分を抽出し、 次いで Therefore, the present applicants first filtered a sample solution containing microorganisms through a filtration membrane, captured the microorganisms in the sample solution on the filtration membrane, extracted biological components in the microorganisms,
ATP変換反応試薬と生物発光試薬を加えて、 濾過膜上に生じる発光を測定する微
生物の測定法に関する 「微生物の測定方法」 (特開平 11- 69994号) を出願した。 この方法において使用される濾過膜、 例えば、 特許第 3133328号に記載されて いる多数の疎水性区画壁で囲まれた多数の小さな親水性濾過膜区画からなるメン プレンフィルター、 及び特開平 6- 237793号に記載された疎水性の濾過膜は、 液状 抽出試薬及び液状発光試薬を霧状にスプレーした時、 表面張力によりそれらの試 薬が超微粒子状のまま生菌の付着点に付着し、 更に抽出された発光成分が拡散し ないで超微粒子状で保持されて発光するという点で優れている。 Add the ATP conversion reagent and bioluminescent reagent, and measure the luminescence generated on the filtration membrane. We have filed an application for "Method for Measuring Microorganisms" (Japanese Patent Application Laid-Open No. H11-69994) regarding the method for measuring organisms. The filtration membrane used in this method, for example, a membrane filter comprising a number of small hydrophilic filtration membrane sections surrounded by a number of hydrophobic compartment walls described in Patent No. 3133328, and JP-A-6-237793. When the liquid extraction reagent and the liquid luminescent reagent are sprayed in a mist, the hydrophobic filter membrane described in the item (1) adheres to the point of attachment of live bacteria in ultrafine particles due to surface tension. It is excellent in that the extracted luminescent component is not diffused but is held in the form of ultrafine particles to emit light.
しかし、 菌が存在しない場合でもノイズ輝点又はバックグランド発光が生じる 場合もある。 従って、 そのようなノイズ輝点又はパックグランド発光を抑えるこ とができれば、 上記濾過膜上に生じる発光をより高感度に検出することが期待さ れる。 発明の開示 However, even in the absence of bacteria, noise luminescent spots or background luminescence may occur. Therefore, if such noise luminescent spots or packed ground emission can be suppressed, it is expected that emission generated on the filtration membrane will be detected with higher sensitivity. Disclosure of the invention
本発明の目的は、 濾過膜上に捕捉された微生物の迅速、 簡便かつ高感度な測定 法を提供することにある。 特に本発明の目的は、 生物発光反応を用いる上記の測 定法において、 これらの膜に出現するノイズ輝点やバックグランド発光の原因で ある AMP、 ATP又は RNAなどのアデノシンリン酸エステル類の汚染を除去すること により、 ノイズ輝点やバックグランド発光の出現をなくし、 より正確で迅速な菌 数の測定をできるようにすることである。 An object of the present invention is to provide a rapid, simple, and highly sensitive method for measuring microorganisms captured on a filtration membrane. In particular, an object of the present invention is to prevent contamination of adenosine phosphates such as AMP, ATP or RNA, which is a cause of noise luminescent spots and background luminescence, appearing on these membranes in the above-described measurement method using a bioluminescence reaction. By eliminating them, the appearance of noise luminescent spots and background luminescence is eliminated, and more accurate and rapid bacterial counts can be measured.
そこで、 本発明者等は、 濾過膜上に捕捉された微生物の迅速、 簡便かつ高感度 な測定法について鋭意研究を重ねた結果、 これらの濾過膜に出現する、 輝点ゃバ ックグランド発光の原因は、 濾過膜が AMPや ATPで汚染されているためであること を見出した。 さらにこの汚染を洗浄するか、 あるいは電気泳動や化学的、 酵素的 に修飾又は分解する等の手段によって除去すれば、 ノイズ輝点やバックグランド 発光が出現しなくなり、 より正確で迅速な菌数の測定ができることを見出し、 本 発明を完成させた。 Thus, the present inventors have conducted intensive studies on a rapid, simple, and highly sensitive measurement method of microorganisms captured on filtration membranes, and as a result, the bright spot 原因 the background of background light emission appearing on these filtration membranes Found that the filtration membrane was contaminated with AMP and ATP. Furthermore, if this contamination is washed or removed by means such as electrophoresis or chemical or enzymatic modification or decomposition, noise luminescent spots and background luminescence will not appear, resulting in a more accurate and rapid bacterial count. They found that measurement was possible, and completed the present invention.
すなわち、 本発明は、 有機溶剤、 有機溶剤を含有する滅菌水、 滅菌水、 アデノ ン酸エステル類分解酵素を含有する酵素液、 酸、 アルカリ、 界面活性剤及 び漂白剤からなる群から選択される少なくとも 1つと、 濾過膜又は吸水帯とを接
触させて、 濾過膜又は吸水帯上に付着しているアデノシンリン酸エステル類を除 去することを特徴とする濾過膜又は吸水帯の処理方法である。 有機溶剤としては 、 例えばエタノールが挙げられる。 漂白剤としては次亜塩素酸、 次亜臭素酸及び 次亜ヨウ素酸、 並びにそれらの塩、 例えば次亜塩素酸ナトリウム、 次亜塩素酸力 リウム、 次亜塩素酸カルシウム、 次亜塩素酸バリウム、 次亜塩素酸メチル、 次亜 塩素酸銅、 次亜塩素酸銀、 次亜臭素酸ナトリウム、 次亜臭素酸カリウム、 次亜臭 素酸カルシウム、 次亜臭素酸バリウム、 次亜臭素酸メチル、 次亜臭素酸銅、 次亜 臭素酸銀、 次亜ヨウ素酸ナトリウム、 次亜ヨウ素酸カリウム、 次亜ヨウ素酸カル シゥム、 次亜ヨウ素酸バリウム、 次亜ヨウ素酸メチル、 次亜ヨウ素酸銅、 及び次 亜ヨウ素酸銀等が挙げられる。 界面活性剤としては Tween80が挙げられる。 またThat is, the present invention is selected from the group consisting of an organic solvent, sterilized water containing an organic solvent, sterilized water, an enzyme solution containing an adenate esterase, an acid, an alkali, a surfactant, and a bleaching agent. At least one filter membrane or water absorption zone. A method for treating a filtration membrane or a water absorption zone, comprising removing adenosine phosphate attached to the filtration membrane or the water absorption zone by touching the filter membrane or the water absorption zone. Examples of the organic solvent include ethanol. Bleaching agents include hypochlorous acid, hypobromite and hypoiodite, and salts thereof, such as sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, barium hypochlorite, Methyl hypochlorite, Copper hypochlorite, Silver hypochlorite, Sodium hypobromite, Potassium hypobromite, Calcium hypobromite, Barium hypobromite, Methyl hypobromite, Next Copper hypobromite, silver hypobromite, sodium hypoiodite, potassium hypoiodite, calcium hypoiodite, barium hypoiodite, methyl hypoiodite, copper hypoiodite, and And silver iodate. Tween80 is mentioned as a surfactant. Also
、 漂白剤と界面活性剤とを組み合わせて濾過膜又は吸水帯と接触させることによ り、 アデノシンリン酸エステル類を除去してもよい。 この場合、 漂白剤としては 次亜塩素酸、 次亜臭素酸若しくは次亜ヨウ素酸、 若しくはそれらの塩 (例えば次 亜塩素酸ナトリウム、 次亜塩素酸カリウム、 次亜塩素酸カルシウム、 次亜塩素酸 バリウム、 次亜塩素酸メチル、 次亜塩素酸銅、 次亜塩素酸銀、 次亜臭素酸ナトリ ゥム、 次亜臭素酸カリウム、 次亜臭素酸カルシウム、 次亜臭素酸バリウム、 次亜 臭素酸メチル、 次亜臭素酸銅、 次亜臭素酸銀、 次亜ヨウ素酸ナトリウム、 次亜ョ ゥ素酸カリウム、 次亜ヨウ素酸カルシウム、 次亜ヨウ素酸バリウム、 次亜ヨウ素 酸メチル、 次亜ヨウ素酸銅若しくは次亜ヨウ素酸銀) 又はそれらの組合せを、 界 面活性剤としては Tween80を用いて、 組み合わせることが好ましい。 このとき 0. 0Adenosine phosphates may be removed by combining a bleaching agent and a surfactant and bringing them into contact with a filtration membrane or a water absorption zone. In this case, the bleaching agent may be hypochlorous acid, hypobromous acid or hypoiodic acid, or a salt thereof (eg, sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, hypochlorous acid) Barium, methyl hypochlorite, copper hypochlorite, silver hypochlorite, sodium hypobromite, potassium hypobromite, calcium hypobromite, barium hypobromite, hypobromite Methyl, copper hypobromite, silver hypobromite, sodium hypoiodite, potassium hypoiodite, calcium hypoiodite, barium hypoiodite, methyl hypoiodite, hypoiodite Copper or silver hypoiodite) or a combination thereof is preferably combined using Tween80 as a surfactant. At this time, 0.0
00005〜 5 %濃度の前記漂白剤と 0. 0001〜 5 %濃度の Tween80とを組み合わせるこ とが好ましい。 漂白剤として次亜塩素酸ナトリウム、 界面活性剤として Tween80 を用いて組み合わせることが特に好ましい。 この場合有効塩素濃度 0. 000005〜5It is preferred to combine the bleach at a concentration of 00005 to 5% with Tween 80 at a concentration of 0.0001 to 5%. It is particularly preferable to use sodium hypochlorite as a bleaching agent and Tween80 as a surfactant. In this case, the effective chlorine concentration is 0.00000 to 5
%濃度の次亜塩素酸ナトリゥムと 0. 0001〜 5 %濃度の Tween80とを組み合わせる ことがより好ましい。 また、 有効塩素濃度 0. 00005〜0. 5 %濃度の次亜塩素酸ナト リゥムと 0. 0001~ 5 %濃度の Tween80とを組み合わせることが特に好ましい。 さ らに、 漂白剤と濾過膜又は吸水帯とを接触させることにより、 アデノシンリン酸 エステル類を除去してもよい。 この場合、 漂白剤としては、 上記の種類のものを 用いることが好ましく、 0. 00005〜0. 5 %濃度のものを用いることがさらに好まし
い。 また本発明の上記処理は、 1 0〜1 5 0 °Cの温度で行うことが好ましい。 こ の処理の際に、 オートクレープをかけることも好ましい。 More preferably, sodium hypochlorite at a concentration of% and Tween 80 at a concentration of 0.0001 to 5% are combined. It is particularly preferable to combine sodium hypochlorite having an effective chlorine concentration of 0.0005 to 0.5% with Tween80 having a 0.0001 to 5% concentration. Further, adenosine phosphates may be removed by bringing a bleaching agent into contact with a filtration membrane or a water absorption zone. In this case, it is preferable to use the above-mentioned type of bleaching agent, and it is more preferable to use a bleaching agent having a concentration of 0.0005 to 0.5%. No. Further, the above treatment of the present invention is preferably performed at a temperature of 10 to 150 ° C. During this treatment, it is also preferable to apply autoclaving.
さらに、 本発明は、 上記処理方法により処理された濾過膜又は吸水帯である。 さらに、 本発明は、 以下の工程を含む、 試料中の菌数の測定方法である。 Furthermore, the present invention is a filtration membrane or a water absorption zone treated by the above treatment method. Furthermore, the present invention is a method for measuring the number of bacteria in a sample, comprising the following steps.
(1) 試料を請求項 3記載の濾過膜に添加することにより、 試料中の菌体を濾過膜 上に捕捉する第 1工程 (1) The first step of capturing the cells in the sample on the filtration membrane by adding the sample to the filtration membrane according to claim 3.
(2) 濾過膜上に捕捉された菌体に含まれるアデノシンリン酸エステル類を検出す る第 2工程 以下、 本発明を詳細に説明する。 (2) Second Step of Detecting Adenosine Phosphate Esters Contained in Bacteria Captured on Filtration Membrane Hereinafter, the present invention will be described in detail.
本願は、 優先権の基礎となる特願 2001-146474号を包含するものである。 This application is intended to cover Japanese Patent Application No. 2001-146474, which is a priority document.
まず本発明において洗浄の対象となる濾過膜としては、 微生物を捕捉できるも のであれば特に限定されず、 例えば、 市販の親水性又は疎水性の濾過膜が挙げら れる。'親水性濾過膜としては、 例えば、 親水性ポリテトラフルォロエチレン、 親 水性ポリビニリデンジフルオライド、 親水性ポリスルフォン、 親水性ポリカーボ ネート、 親水性ポリアミド、 親水性ポリエチレン、 親水性ポリプロピレン等の親 水性のプラスチック系材料、 又はァセチルセルローズ若しくはニトロセルローズ 等の材料を用いて製造されたフィルム状若しくはシート状のものが使用される。 また、 疎水性濾過膜としては、 例えば PVDF (ポリビニリデンジフルオライド) 、 PTFE (ポリテトラフルォロエチレン) 、 PE (ポリエチレン) 等、 あるいは、 疎 水性の比較的大きい親水性濾過膜、 例えば PC (ポリカーボネート) 、 PP (ポリプ ロピレン) 、 PA (ポリアミド) 、 PS (ポリスルフォン) 等を使用することができ る。 また、 日本ミリポア社製の RMD特殊メンブレンフィル夕一 (疎水性格子入り P VDF膜) やポリカーボネート膜は好ましい。 次に、 本発明の濾過膜の洗浄方法を説明する。 まず、 濾過膜を洗浄する液とし てはメタノール、 エタノール、 プロパノール、 ブタノール、 イソプロパノ一ル、 ァセトニトリル、 アセトン、 ジメチルスルホキシド等の有機溶剤、 又はこれらの 有機溶剤を含有する滅菌水が挙げられる。 また滅菌水だけでも良い。 また、 任意
の緩衝液又は塩を溶解した滅菌水を使用することも、 これらを有機溶媒と混合し た溶液を使用することもできる。 これらの有機溶剤の濃度及び種類は特に限定さ れないが、 好ましくは 5〜95 %のエタノール、 特に好ましくは 10〜90%のェタノ ールが適当である。 First, the filtration membrane to be washed in the present invention is not particularly limited as long as it can capture microorganisms, and includes, for example, a commercially available hydrophilic or hydrophobic filtration membrane. '' Examples of hydrophilic filtration membranes include hydrophilic polytetrafluoroethylene, hydrophilic polyvinylidene difluoride, hydrophilic polysulfone, hydrophilic polycarbonate, hydrophilic polyamide, hydrophilic polyethylene, hydrophilic polypropylene, etc. A film-like or sheet-like material made of a hydrophilic plastic material or a material such as acetyl cellulose or nitrocellulose is used. Examples of the hydrophobic filtration membrane include, for example, PVDF (polyvinylidene difluoride), PTFE (polytetrafluoroethylene), PE (polyethylene), and the like, or a relatively large hydrophilic hydrophobic membrane such as PC (Polycarbonate), PP (polypropylene), PA (polyamide), PS (polysulfone) and the like can be used. Also, RMD Special Membrane Fill Yuichi (PVDF film with hydrophobic lattice) and polycarbonate film manufactured by Nippon Millipore are preferred. Next, the method for cleaning a filtration membrane of the present invention will be described. First, examples of the solution for washing the filtration membrane include organic solvents such as methanol, ethanol, propanol, butanol, isopropanol, acetonitrile, acetone, and dimethyl sulfoxide, or sterilized water containing these organic solvents. Alternatively, only sterilized water may be used. Also optional It is possible to use sterile water in which the above-mentioned buffer or salt is dissolved, or to use a solution in which these are mixed with an organic solvent. The concentration and type of these organic solvents are not particularly limited, but preferably 5 to 95% ethanol, particularly preferably 10 to 90% ethanol.
また、 これらの洗浄液にさらに界面活性剤を添加して使用しても良い。 界面活 性剤としては Tween、 SDS、 SPAN, Tr i ton, 塩化ベンザルコニゥム、 塩化べンゼト ニゥム等から選ばれる任意のものが挙げられ、 使用する濃度も特に限定されない 。 好ましくは、 Tween80を 0. 0001%以上 50%以下、 より好ましくは、 0. 001%以上、 30%以下が適当である。 Further, a surfactant may be further added to these cleaning liquids before use. Examples of the surfactant include any one selected from Tween, SDS, SPAN, Triton, benzalkonium chloride, benzethonium chloride, and the like, and the concentration used is not particularly limited. Preferably, Tween80 is at least 0.0001% and at most 50%, more preferably at least 0.001% and at most 30%.
さらに、 これらの洗浄液に酸又はアルカリを添加して使用しても良い。 酸又は アルカリとしては任意のものを使用することができる。 例えば、 酸では、 塩酸や 酢酸が特に好ましく、 使用する濃度は 0. 1 %以上、 好ましくは 1 %以上が適当で ある。 アルカリでは、 アンモニア、 水酸化ナトリウム、 水酸化カリウム等が好ま しく、 使用する濃度は 0. 1 %以上、 好ましくは 1 %以上 30%以下が適当である。 濾過膜を洗浄する際は、 プレフィルターやメッシュのスぺ一サ一等を使用して 、 埃などで汚染されないようにすることが望ましい。 また、 このプレフィルター やスぺ一サーもあらかじめ有機溶剤またはこれらの有機溶剤を含有する滅菌水等 で洗浄しておくことが望ましい。 Further, an acid or an alkali may be added to these cleaning liquids before use. Any acid or alkali can be used. For example, among acids, hydrochloric acid and acetic acid are particularly preferred, and the concentration to be used is 0.1% or more, preferably 1% or more. As the alkali, ammonia, sodium hydroxide, potassium hydroxide and the like are preferable, and the concentration to be used is 0.1% or more, preferably 1% to 30%. When cleaning the filtration membrane, it is desirable to use a pre-filter or a mesh spacer to prevent contamination by dust and the like. It is also desirable that the pre-filter and spacer be washed in advance with an organic solvent or sterile water containing these organic solvents.
次に、 上記洗浄後、 濾過膜を乾燥させる方法としては、 風乾や乾熱等が挙げら れる。 濾過膜を乾燥させる際は、 埃などが付着しないようにシャーレ中に入れて 乾燥させることが好ましく、 乾燥させる温度は特に限定されないが、 好ましくは 40°C以上、 特に好ましくは 45°C以上が適当である。 Next, as a method for drying the filtration membrane after the above-mentioned washing, air drying, dry heat and the like can be mentioned. When drying the filtration membrane, it is preferable to put it in a petri dish to dry so that dust and the like do not adhere.The drying temperature is not particularly limited, but preferably 40 ° C or more, particularly preferably 45 ° C or more. Appropriate.
また、 HEPAフィルターなどを通したきれいな風を吹き付けて乾燥させる方法も 好ましい。 この時の温度も特に限定されないが好ましくは 30°C以上、 特に好まし くは 40°C以上が適当である。 Further, a method of drying by blowing a clean wind through a HEPA filter or the like is also preferable. The temperature at this time is also not particularly limited, but is preferably 30 ° C or more, and particularly preferably 40 ° C or more.
また、 濾過膜のアデノシンリン酸エステル類を酵素的又は化学的に修飾し又は 分解して、 反応系に関係しない物質にすることで処理することもできる。 使用す る試薬は特に限定されないが、 アデノシンリン酸デアミナーゼなどの広くアデノ シンリン酸エステル類を分解する酵素などのほか、 酸又はアルカリが好ましい。
酸では、 塩酸又は酢酸が特に好ましく、 使用する濃度は 0. 1 %以上、 好ましくはIn addition, the adenosine phosphates of the filtration membrane can be treated by enzymatically or chemically modifying or decomposing them into substances not related to the reaction system. The reagent to be used is not particularly limited, but is preferably an acid or an alkali, in addition to an enzyme such as adenosine phosphate deaminase which widely degrades adenosine phosphates. Among acids, hydrochloric acid or acetic acid is particularly preferred, and the concentration used is 0.1% or more, preferably
1 %以上 30 %以下が適当である。 アルカリでは、 アンモニア、 水酸化ナトリウム1% or more and 30% or less is appropriate. For alkali, ammonia, sodium hydroxide
、 水酸化カリウム等が好ましく、 使用する濃度は 0. 1 %以上、 好ましくは 1 %以 上 30 %以下が適当である。 反応時の温度も特に限定されないが、 40°C以上、 特に, Potassium hydroxide and the like are preferable, and the concentration to be used is 0.1% or more, preferably 1% or more and 30% or less. The temperature during the reaction is not particularly limited, but is 40 ° C or more, especially
60°C以上が好ましい。 100°C以上の温度 (例えば 121°C ) でオートクレープ処理す ることも特に好ましい。 60 ° C. or higher is preferred. It is also particularly preferable to carry out autoclave treatment at a temperature of 100 ° C or higher (for example, 121 ° C).
また、 化学的な方法として、 漂白剤等を用いて濾過膜のアデノシンリン酸エス テル類を分解してもよい。 漂白剤としては、 酸化漂白剤と還元漂白剤が挙げられ る。 酸化漂白剤としては、 過酸化物系及ぴ塩素化合物系が挙げられる。 過酸化物 系としては、 過酸化水素、 過酸化ナトリウム、 ペルォクソ硼酸ナトリウム、 過マ ンガン酸カリウム等が挙げられる。 塩素化合物系としては、 サラシ粉、 次亜塩素 酸ナトリウム、 亜塩素酸ナトリウム等が挙げられる。 還元漂白剤としては、 二酸 化ィォゥ、 亜硫酸水素ナトリウム、 ハイドロサルファイト、 亜ニチオン酸ナトリ ゥム等が挙げられる。 また、 亜硫酸水素カリウム、 次亜硫酸ナトリウム、 ピロ亜 硫酸カリウム、 二酸化窒素、 過酸化べンゾィル、 過硫酸アンモニゥム、 二酸化塩 素なども使用できる。 漂白剤としては特に、 次亜塩素酸、 次亜臭素酸、 次亜ヨウ 素酸、 又はそれらの塩、 例えば次亜塩素酸ナトリウム、 次亜塩素酸カリウム、 次 亜塩素酸カルシウム、 次亜塩素酸バリウム、 次亜塩素酸メチル、 次亜塩素酸銅、 次亜塩素酸銀、 次亜臭素酸ナトリウム、 次亜臭素酸カリウム、 次亜臭素酸カルシ ゥム、 次亜臭素酸バリウム、 次亜臭素酸メチル、 次亜臭素酸銅、 次亜臭素酸銀、 次亜ヨウ素酸ナトリウム、 次亜ヨウ素酸カリウム、 次亜ヨウ素酸カルシウム、 次 亜ヨウ素酸バリウム、 次亜ヨウ素酸メチル、 次亜ヨウ素酸銅若しくは次亜ヨウ素 酸銀を使用することが好ましく、 次亜塩素酸ナ卜リゥムを使用することがより好 ましい。 これらの漂白剤を作用させる場合の濃度、 温度、 時間、 pHなどは特に限 定されない。 漂白剤を単独で用いて濾過膜のアデノシンリン酸エステル類を分解 してもよい。 その場合の漂白剤は 0. 00005〜0. 5 %濃度のものを使用することが好 ましい。 また適当な界面活性剤を併用しても良い。 その場合には漂白剤として、 次亜塩素酸、 次亜臭素酸、 次亜ヨウ素酸、 又はそれらの塩、 例えば次亜塩素酸ナ トリウム、 次亜塩素酸カリウム、 次亜塩素酸カルシウム、 次亜塩素酸バリウム、
次亜塩素酸メチル、 次亜塩素酸銅、 次亜塩素酸銀、 次亜臭素酸ナトリウム、 次亜 臭素酸カリウム、 次亜臭素酸カルシウム、 次亜臭素酸バリウム、 次亜臭素酸メチ ル、 次亜臭素酸銅、 次亜臭素酸銀、 次亜ヨウ素酸ナトリウム、 次亜ヨウ素酸カリ ゥム、 次亜ヨウ素酸カルシウム、 次亜ヨウ素酸バリウム、 次亜ヨウ素酸メチル、 次亜ヨウ素酸銅若しくは次亜ヨウ素酸銀を使用することが好ましいが、 次亜塩素 酸ナトリウムを用いることがより好ましく、 有効塩素濃度 0. 000005〜 5 %濃度の 次亜塩素酸ナトリウムを用いることがさらに好ましく、 有効塩素濃度 0. 00005〜0 . 5 %濃度の次亜塩素酸ナトリウムを用いることが特に好ましい。 さらには、 次亜 塩素酸ナトリゥムと Tween80を併用することが好ましく、 有効塩素濃度 0. 000005 〜 5 %濃度の次亜塩素酸ナトリゥムと 0. 0001〜 5 %濃度の Tween80を組み合わせ て用いることが好ましい。 特に、 有効塩素濃度 0. 00005〜0. 5%濃度の次亜塩素酸 ナトリゥムと 0. 0001〜 5 %濃度の Tween80を組み合わせて用いることが好ましい 。 漂白剤と界面活性剤を組み合わせて用いる場合には、 0. 00005〜0. 5%濃度の漂 白剤と、 0. 0001〜5 %濃度の界面活性剤を用いることが好ましい。 反応時の温度 は任意であるが、 iOt以上、 好ましくは 30 :以上、 特に好ましくは 40°C以上、 15 0 以下である。 この処理において、 オートクレーブをかけることも好ましい。 酵素を使用する場合は、 例えば、 アデノシンリン酸デアミナーゼ溶液、 又はァ デノシンリン酸デアミナーゼとその他の酵素 (例えば、 アビラーゼ、 アルカリホ スファターゼ、 酸性ホスファタ一ゼ、 へキソキナーゼ若しくはアデノシントリホ スファターゼ又はこれらの組合せ) との混合溶液等が使用できる。 アデノシンリ ン酸デアミナーゼの終濃度としては、 0. 001 ϋ/ml以上、 好ましくは 0. 01 U/ml以 上、 10 U/ml以下が適当である。 Further, as a chemical method, adenosine phosphate esters in the filtration membrane may be decomposed using a bleaching agent or the like. Bleaching agents include oxidizing bleaches and reducing bleaches. Oxidative bleaching agents include peroxides and chlorine compounds. Examples of the peroxides include hydrogen peroxide, sodium peroxide, sodium perborate, potassium permanganate, and the like. Examples of the chlorine compound include salad powder, sodium hypochlorite, sodium chlorite and the like. Examples of the reducing bleaching agent include iodide, sodium bisulfite, hydrosulfite, and sodium dithionite. Also, potassium bisulfite, sodium hyposulfite, potassium pyrosulfite, nitrogen dioxide, benzoyl peroxide, ammonium persulfate, chlorine dioxide and the like can be used. Examples of the bleaching agent include hypochlorous acid, hypobromite, hypoiodic acid, and salts thereof, such as sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, and hypochlorous acid. Barium, methyl hypochlorite, copper hypochlorite, silver hypochlorite, sodium hypobromite, potassium hypobromite, calcium hypobromite, barium hypobromite, hypobromite Methyl, copper hypobromite, silver hypobromite, sodium hypoiodite, potassium hypoiodite, calcium hypoiodite, barium hypoiodite, methyl hypoiodite, copper hypoiodite or It is preferable to use silver hypoiodite, and it is more preferable to use sodium hypochlorite. The concentration, temperature, time, pH, etc., when these bleaching agents are applied are not particularly limited. The bleaching agent may be used alone to degrade adenosine phosphates in the filtration membrane. In this case, it is preferable to use a bleaching agent having a concentration of 0.0005 to 0.5%. Further, an appropriate surfactant may be used in combination. In that case, the bleaching agent may be hypochlorous acid, hypobromite, hypoiodic acid, or a salt thereof, such as sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, hypochlorous acid. Barium chlorate, Methyl hypochlorite, copper hypochlorite, silver hypochlorite, sodium hypobromite, potassium hypobromite, calcium hypobromite, barium hypobromite, methyl hypobromite, next Copper hypobromite, silver hypobromite, sodium hypoiodite, potassium hypoiodite, calcium hypoiodite, barium hypoiodite, methyl hypoiodite, copper hypoiodite or Although it is preferable to use silver iodate, it is more preferable to use sodium hypochlorite, and it is more preferable to use a sodium hypochlorite having an effective chlorine concentration of 0.00000 to 5%. It is particularly preferred to use sodium hypochlorite at a concentration of 0.0005-0.5%. Further, it is preferable to use sodium hypochlorite and Tween80 in combination, and it is preferable to use sodium hypochlorite having an effective chlorine concentration of 0.00000 to 5% and Tween80 at a concentration of 0.0001 to 5%. . In particular, it is preferable to use sodium hypochlorite having an effective chlorine concentration of 0.0005 to 0.5% in combination with Tween80 having a 0.0001 to 5% concentration. When a bleaching agent and a surfactant are used in combination, it is preferable to use a bleaching agent having a concentration of 0.0005 to 0.5% and a surfactant having a concentration of 0.0001 to 5%. The temperature during the reaction is arbitrary, but is preferably iOt or more, preferably 30: or more, particularly preferably 40 ° C. or more and 150 or less. In this treatment, autoclaving is also preferable. When an enzyme is used, for example, adenosine phosphate deaminase solution, or adenosine phosphate deaminase and another enzyme (eg, avirase, alkaline phosphatase, acid phosphatase, hexokinase or adenosine triphosphatase, or a combination thereof) A mixed solution or the like can be used. The final concentration of adenosine phosphate deaminase is at least 0.001 l / ml, preferably at least 0.01 U / ml and at most 10 U / ml.
反応時の pHは PH4. 5から pH8. 5が好ましく、 特に好ましくは pH5から pH8が適当で ある。 反応時の温度は 25で以上、 60°C以下が好ましいが、 30°C以上、 55°C以下が 特に好ましい。 The pH during the reaction is preferably from pH 4.5 to pH 8.5, particularly preferably from pH 5 to pH 8. The temperature during the reaction is preferably from 25 to 60 ° C, more preferably from 30 to 55 ° C.
また、 測定に使用する噴霧器の吸水帯などの接液部、 即ち、 発光試薬や抽出試 薬が接触する部分はアデノシンリン酸エステル類で汚染されているために、 その まま使用すると測定時のバックグランド発光の原因になる。 よって、 あらかじめ 酵素処理などでアデノシンリン酸エステル類を除去する必要がある。 吸水帯とし
ては例えば、 松下電工製超音波式噴霧器 (EW622)に使用するもの、 又は日本ミリ ポア社製自動噴霧器に使用するものが挙げられる。 吸水帯の処理法は先述した濾 過膜の処理法と同様、 洗浄する方法、 化学的又は酵素的に修飾又は分解する方法 など、 様々な方法が可能であるが、 酵素処理が好ましい。 使用する酵素は、 例え ば、 アデノシンリン酸デァミナーゼ溶液、 又はアデノシンリン酸デァミナ一ゼと その他の酵素 (例えば、 ァピラーゼ、 アルカリホスファタ一ゼ、 酸性ホスファタ ーゼ、 へキソキナーゼ、 アデノシントリホスファターゼ) との混合溶液等が使用 できる。 アデノシンリン酸デァミナ一ゼの終濃度としては、 0. 001 U/ml以上、 好 ましくは 0. 01 U/ml以上、 10 U/ml以下が適当である。 反応時の pHは pH4. 5から pH8 . 5が好ましく、 特に好ましくは pH5から pH8が適当である。 反応時の温度は 25°C以 上、 60°C以下が好ましいが、 30°C以上、 55°C以下が特に好ましい。 In addition, the liquid-contacting parts such as the water absorption zone of the sprayer used for measurement, that is, the parts that come into contact with the luminescent reagent and the extraction reagent are contaminated with adenosine phosphates. May cause ground emission. Therefore, it is necessary to remove adenosine phosphates by an enzyme treatment or the like in advance. As a water absorption zone Examples thereof include those used for Matsushita Electric Works ultrasonic sprayer (EW622) and those used for automatic sprayer manufactured by Nippon Millipore. Various methods are available for treating the water-absorbing zone, such as a washing method, a method of chemically or enzymatically modifying or decomposing the same as in the above-described treatment method of the filtration membrane, but enzymatic treatment is preferred. The enzyme to be used is, for example, adenosine phosphate deaminase solution or adenosine phosphate deaminase and other enzymes (eg, apyrase, alkaline phosphatase, acid phosphatase, hexokinase, adenosine triphosphatase). A mixed solution or the like can be used. The final concentration of adenosine phosphate kinase is 0.001 U / ml or more, preferably 0.01 U / ml or more and 10 U / ml or less. The pH during the reaction is preferably from pH 4.5 to pH 8.5, and particularly preferably from pH 5 to pH 8. The temperature during the reaction is preferably 25 ° C or higher and 60 ° C or lower, but is more preferably 30 ° C or higher and 55 ° C or lower.
次に、 上記処理後、 吸水帯を乾燥させる方法としては、 風乾や乾熱等が挙げら れる。 吸水帯を乾燥させる際は、 埃などが付着しないようにシャーレ中に入れて 乾燥させることが好ましく、 乾燥させる温度は特に限定されないが、 好ましくは 40°C以上、 特に好ましくは 45°C以上が適当である。 Next, as a method for drying the water absorption zone after the above treatment, air drying, dry heat, or the like can be used. When drying the water absorption zone, it is preferable to put it in a petri dish and dry it so that dust etc. do not adhere.The drying temperature is not particularly limited, but preferably 40 ° C or more, particularly preferably 45 ° C or more. Appropriate.
また、 HEPAフィルターなどを通したきれいな風を吹き付けて乾燥させる方法も 好ましい。 この時の温度も特に限定されないが好ましくは 30°C以上、 特に好まし くは 40°C以上が適当である。 次に、 上記濾過膜を用いた菌数の迅速測定方法について説明する。 本発明にお いては、 まず初めに、 試料液中の微生物を濾過膜上に捕捉する。 Further, a method of drying by blowing a clean wind through a HEPA filter or the like is also preferable. The temperature at this time is also not particularly limited, but is preferably 30 ° C or more, and particularly preferably 40 ° C or more. Next, a method for quickly measuring the number of bacteria using the above-mentioned filtration membrane will be described. In the present invention, first, microorganisms in a sample solution are captured on a filtration membrane.
本発明でいう微生物とは、 酵母、 カビ、 キノコ、 細菌、 放線菌、 単細胞藻類、 ウィルス、 原生動物、 動物又は植物の分化していない細胞及び組織培養物等を意 味する。 The microorganism according to the present invention means yeasts, molds, mushrooms, bacteria, actinomycetes, unicellular algae, viruses, protozoa, animals or non-differentiated cells and tissue cultures.
試料液は、 特に限定されないが、 例えば以下のものが挙げられる。 The sample liquid is not particularly limited, but examples include the following.
飲料: ピール、 ワイン、 ジュースなど Beverages: peel, wine, juice, etc.
食品:肉、 魚、 野菜など Food: meat, fish, vegetables, etc.
工業製品:医薬品、 化粧品等若しくはその半製品、 又はこれらの原料 Industrial products: Pharmaceuticals, cosmetics, semi-finished products, or raw materials for these
海水、 河川水、 工業用水、 製薬用水、 下水、
土壌 Seawater, river water, industrial water, pharmaceutical water, sewage, soil
体液:尿、 糞便、 血液、 喀痰、 膿汁等 Body fluid: urine, feces, blood, sputum, pus, etc.
上記微生物の培養物等 Cultures of the above microorganisms, etc.
また、 上記の試料液を適当な溶媒 (例えば、 蒸留水、 生理的食塩水、 リン酸緩 衝液、 トリス緩衝液、 酢酸ナトリウム緩衝液等) に懸濁した溶液を試料液として もよい。 試料液が固形分を含む場合には、 該試料液を適当な溶媒 (例えば、 蒸留 水、 生理的食塩水、 リン酸緩衝液、 トリス緩衝液、 酢酸緩衝液等) に懸濁するか 、 ミキサーなどでホモジナイズして溶液状にしたものを使用することができる。 微生物を濾過膜上に捕捉する手段は特に限定されないが、 例えば、 微生物を含 むと思われる試料液を濾過膜に添加することによるものである。 本発明において Further, a solution in which the above sample solution is suspended in an appropriate solvent (for example, distilled water, physiological saline, phosphate buffer solution, Tris buffer solution, sodium acetate buffer solution, etc.) may be used as the sample solution. When the sample solution contains a solid content, the sample solution is suspended in an appropriate solvent (eg, distilled water, physiological saline, phosphate buffer, Tris buffer, acetate buffer, etc.) or a mixer. A solution that has been homogenized by, for example, and used as a solution can be used. The means for capturing the microorganisms on the filtration membrane is not particularly limited, but, for example, is by adding a sample solution which seems to contain microorganisms to the filtration membrane. In the present invention
「試料液を濾過膜に添加する」 とは、 濾過膜に試料液を適用することを意味し、 具体的には、 濾過膜を用いて試料液を濾過すること、 試料液を濾過膜にスポット“Adding the sample solution to the filtration membrane” means applying the sample solution to the filtration membrane, specifically, filtering the sample solution using the filtration membrane, and spotting the sample solution on the filtration membrane.
(滴下) すること、 試料液を濾過膜に塗布又は噴霧すること、 及び試料液に濾過 膜を浸漬すること等が含まれる。 試料液を濾過膜に添加する際には、 これらのい ずれの方法を用いてもよく、 またこれらの方法のいくつかを組み合わせて用いて もよい。 (Dropping), applying or spraying the sample liquid on the filter membrane, and immersing the filter membrane in the sample liquid. When a sample solution is added to the filtration membrane, any of these methods may be used, or some of these methods may be used in combination.
試料液の濾過法としては、 例えば、 カップ状濾過容器 (例えば、 日本ミリポア 社製ミリフレックスフィルターユニット、 ステリフィル) などに上記方法による 洗浄後の濾過膜を装着して、 試料液を吸引濾過し、 微生物を濾過膜上に捕捉する 方法が採用される。 濾過終了後は濾過器から濾過膜を取り外し、 必要により濾過 膜の洗浄、 風乾を行なう。 微生物が、 動物細胞、 プロトプラスト等である場合、 細胞の破壌を防ぐため、 濾過膜の洗净には生理食塩水等の等張液を使用すること が望ましい。 サンプルを濾過後、 濾過膜をアデノシンリン酸デァミナ一ゼを含有 する寒天培地にのせて、 適当な時間培養して、 これを乾燥して抽出試薬を噴霧し てもよい。 これによつて、 菌由来の発光量を高めることができる。 As a method for filtering a sample solution, for example, a filter membrane after washing by the above method is attached to a cup-shaped filtration container (for example, Milliflex filter unit manufactured by Nippon Millipore Co., Ltd., Sterifil), and the sample solution is suction-filtered A method of capturing microorganisms on a filtration membrane is employed. After the filtration is completed, remove the filtration membrane from the filter, and if necessary, wash and air-dry the filtration membrane. When the microorganism is an animal cell, protoplast, or the like, it is preferable to use an isotonic solution such as a physiological saline solution for washing the filtration membrane in order to prevent cell rupture. After filtering the sample, the filter membrane may be placed on an agar medium containing adenosine phosphate deminase, cultured for an appropriate time, dried, and sprayed with an extraction reagent. As a result, the amount of luminescence from bacteria can be increased.
微生物を捕捉した濾過膜は、 ATP分解酵素を含む試薬 (以下 「ATP消去剤」 とい う) と接触させ、 微生物菌体に含まれる ATP以外の ATP (以下 「バックグランド AT The filtration membrane capturing the microorganisms is brought into contact with a reagent containing ATP-degrading enzyme (hereinafter referred to as “ATP scavenger”), and ATP other than ATP contained in the microbial cells (hereinafter referred to as “background AT
PJ という) を分解しておくことが望ましい。 濾過膜を ATP消去剤で処理すること により、 生物発光反応におけるバックグランド発光が低下し、 微生物の測定感度
が向上するという効果が得られる。 It is desirable to disassemble PJ). Treating the filtration membrane with an ATP scavenger reduces background luminescence in the bioluminescence reaction and increases the sensitivity of microbial measurement. Is improved.
ATP消去剤としては、 例えば、 アデノシンリン酸デアミナーゼ溶液、 アデノシ ンリン酸デァミナーゼとその他の酵素 (例えば、 ァピラーゼ、 アルカリホスファ ターゼ、 酸性ホスファターゼ、 へキソキナーゼ若しくはアデノシントリホスファ 夕一ゼ、 又はこれらの組合せ) との混合溶液等が使用できる。 ATP消去剤中のァ デノシンリン酸デァミナ一ゼの終濃度としては、 0. 001U/ml以上、 好ましくは 0. 0 l〜10U/mlが適当である。 Examples of the ATP scavenger include adenosine phosphate deaminase solution, adenosine phosphate deaminase and other enzymes (eg, apyrase, alkaline phosphatase, acid phosphatase, hexokinase or adenosine triphosphase, or a combination thereof). And the like can be used. The final concentration of adenosine phosphate kinase in the ATP scavenger is 0.001 U / ml or more, and preferably 0.01 to 10 U / ml.
濾過膜と ATP消去剤を接触させる場合、 ATP消去剤を濾過膜上に滴下又は噴霧す るか、 ATP消去剤に濾過膜を浸漬すればよい。 When the filter membrane is brought into contact with the ATP scavenger, the ATP scavenger may be dropped or sprayed on the filter membrane or the filter membrane may be immersed in the ATP scavenger.
バックダランド ATPを消去した後は、 濾過膜上の ATP消去剤を除去又は失活させ ることが望ましい。 ATP消去剤の,除去は、 濾過膜を ATP消^ ¾済みの超純水又は緩衝 液で洗浄することにより実施される。 また、 ATP消去剤は、 該消去剤に対する阻 害剤を作用させることにより失活させることができる。 . After erasing the backdarand ATP, it is desirable to remove or deactivate the ATP scavenger on the filtration membrane. The removal of the ATP scavenger is carried out by washing the filter membrane with ATP-depleted ultrapure water or a buffer solution. Further, the ATP scavenger can be deactivated by acting an inhibitor against the scavenger. .
ATP消去剤がアデノシンリン酸デアミナ一ゼ溶液である場合、 該消去剤の阻害 剤としては、 例えば、 コホルマイシンが使用できる。 コホルマイシンはアデノシ ンリン酸デァミナーゼの阻害剤として知られている (THE JOURNAL OF ANTIBI0TI CS, SE . A Vol20 No. 4 227-231) 。 When the ATP scavenger is an adenosine phosphate deaminase solution, for example, coformycin can be used as an inhibitor of the scavenger. Coformycin is known as an inhibitor of adenosine phosphate deaminase (THE JOURNAL OF ANTIBI0TI CS, SE. A Vol. 20 No. 4 227-231).
ATP消去剤の阻害剤を作用させる場合は、 該阻害剤を濾過膜上に滴下又は噴霧 すればよい。 さらに好ましくは、 該阻害剤を次に記載する ATP抽出剤に添加して 濾過膜上に滴下あるいは噴霧すればよい。 次に、 濾過膜上に捕捉された微生物中の生体成分を抽出する。 生体成分の抽出 法は特に限定されないが、 例えば、 公知の ATP抽出剤を濾過膜上に滴下又は噴霧 すればよい。 ATP抽出剤としては、 例えば、 エタノールとアンモニアとの混合液 When an inhibitor of the ATP scavenger is allowed to act, the inhibitor may be dropped or sprayed onto the filtration membrane. More preferably, the inhibitor may be added to the ATP extractant described below and added or sprayed onto the filtration membrane. Next, the biological components in the microorganisms captured on the filtration membrane are extracted. The method for extracting the biological component is not particularly limited. For example, a known ATP extractant may be dropped or sprayed on the filtration membrane. ATP extractants include, for example, a mixture of ethanol and ammonia
、 メタノール、 エタノール、 界面活性剤 (塩化べンゼトニゥム、 塩化ベンザルコ 二ゥム、 トリトン X100等) 、 トリクロル酢酸、 過塩素酸等が使用できる。 特にェ 夕ノールとアンモニアとの混合液は、 ATP抽出操作後の揮発が容易である点、 及 び前記 ATP分解酵素の活性を阻害するという点で、 ATP抽出剤として好適である。, Methanol, ethanol, surfactants (benzetonium chloride, benzalcodium chloride, Triton X100, etc.), trichloroacetic acid, perchloric acid, etc. can be used. In particular, a mixed solution of ethanol and ammonia is suitable as an ATP extractant because it is easy to volatilize after the ATP extraction operation and inhibits the activity of the ATPase.
ATP抽出剤の噴霧は、 例えば超音波式噴霧機 (松下電工製) 等を用い、 5秒〜 5
分間程度行えばよい。 ATP抽出後は、 必要により、 濾過膜の乾燥を行い、 ATP抽出 剤を除去する。 The ATP extractant is sprayed using, for example, an ultrasonic sprayer (Matsushita Electric Works) for 5 seconds to 5 seconds. It may be done for about a minute. After ATP extraction, if necessary, the filtration membrane is dried to remove the ATP extractant.
本発明でいう微生物中の生体成分とは、 微生物に含まれ、 本発明の ATP変換反 応又は生物発光反応に関与する物質を意味する。 そのような物質としては、 例え ば、 アデノシンリン酸エステル (ATP、 AMP、 ADP、 サイクリック AMP、 RNA等) 、 P PDK、 ホスホェノールピルビン酸、 ピロリン酸、 ルシフェリン、 ルシフェラーゼ 、 ピルビン酸キナーゼ、 酢酸キナーゼ、 クレアチンキナーゼ、 又はサイクリック 3' , 5' -ヌクレオチドホスホジエステラーゼ等が挙げられる。 その他、 上記生体成 分の生成に関与する物質も、 本発明でいう生体成分に含まれる。 次に、 微生物中の生体成分を抽出した濾過膜上に、 ATP変換反応試薬と生物発 光試薬を滴下又は噴霧する。 抽出した生体成分の流出を防止するため、 上記試薬 は松下電工製超音波式噴霧機等を用いて噴霧することが好ましい。 The biological component in the microorganism according to the present invention means a substance contained in the microorganism and involved in the ATP conversion reaction or the bioluminescence reaction of the present invention. Such substances include, for example, adenosine phosphate (ATP, AMP, ADP, cyclic AMP, RNA, etc.), PPDK, phosphoenolpyruvate, pyrophosphate, luciferin, luciferase, pyruvate kinase, acetate acetate Creatine kinase, or cyclic 3 ', 5'-nucleotide phosphodiesterase. In addition, substances involved in the production of the above-mentioned biological components are also included in the biological component of the present invention. Next, the ATP conversion reagent and the bioluminescent reagent are dropped or sprayed on the filtration membrane from which the biological components in the microorganisms have been extracted. In order to prevent the extracted biological component from flowing out, it is preferable to spray the reagent using an ultrasonic sprayer manufactured by Matsushita Electric Works.
本発明で言う ATP変換反応試薬とは、 ATP変換反応に関与する物質、 例えば、 ピ ルベートオルトホスフェートジキナーゼ(以下 「PPDK」 )を含む試薬である。 本発 明で言う ATP変換反応とは、 反応時に ATPが生成される任意の反応系を指し、 例え ば AMPから直接 ΑΊΤを生成する反応系が含まれる。 The ATP conversion reaction reagent referred to in the present invention is a reagent containing a substance involved in the ATP conversion reaction, for example, pyruvate orthophosphate dikinase (hereinafter, “PPDK”). The ATP conversion reaction referred to in the present invention refers to any reaction system in which ATP is generated during the reaction, and includes, for example, a reaction system in which AMP is directly generated from AMP.
ATP変換反応に闋与する物質の 1つとして、 例えば ATP変換反応を触媒する酵素 が挙げられる。 この ATP変換反応を触媒する酵素としては、 例えばピルべートォ ルトホスフエ一トジキナーゼ (PPDK)、 ホスホェノールピルべ一トシンセターゼが 挙げられる。 One of the substances that contribute to the ATP conversion reaction is, for example, an enzyme that catalyzes the ATP conversion reaction. Enzymes that catalyze this ATP conversion reaction include, for example, pyruvate orthophosphate dikinase (PPDK) and phosphoenol pyruvate synthetase.
本発明では、 ATP変換反応に関与する物質を用いて、 例えば以下のような ATP変 換反応を利用することができる。 In the present invention, for example, the following ATP conversion reaction can be used by using a substance involved in the ATP conversion reaction.
① アデ二レートキナーゼとピルべ一トキナーゼを組み合わせて用いて、 AMPか ら ATPを生成する。 ① Generate ATP from AMP using a combination of adenylate kinase and pyruvate kinase.
② ポリホスフェート: AMPホスホトランスフェラ一ゼとアデ二レートキナーゼと を組み合わせて ATPを生成する (Appl ied and Envi ronmental Microbiology, May ② Polyphosphate: ATP is generated by combining AMP phosphotransferase and adenylate kinase (Applied and Environmental Microbiology, May
2000, 2045-2051) 。 2000, 2045-2051).
③ ADP-依存性 (AMP-Forniing) ダルコキナーゼを用いて ADPから AMPを生成して
、 さらにピルべ一トオル卜ホスフェートジキナーゼを用いて、 AMPから ATPを生成 する (Journal of Biochemis try 128, 1079-1085 2000) 。 ③ ADP-dependent (AMP-Forniing) Generating AMP from ADP using darcokinase ATP is generated from AMP using pyruvate orthophosphate dikinase (Journal of Biochemis try 128, 1079-1085 2000).
④ ポリリン酸キナーゼ(Po lyphosphate kinase)とアデ二レートキナーゼ (Aden ylate kinase, EC 2. 7. 4. 3) を組み合わせて用いて、 AMPから ATPを生成する (特 開 2001- 211900) A Generating ATP from AMP using a combination of polyphosphate kinase and adenylate kinase (EC 2.7.4.3) (Patent 2001- 211900)
⑤ AMP- PolyP ホスホトランスフェラーゼ (AMP- Polyphosphate phosphot rans fe rase, ) とポリリン酸キナーゼ(Polyphosphate kinase, )を組み合わせて用いて 、 AMPから ATPを生成する。 A ATP is produced from AMP using a combination of AMP-PolyP phosphotransferase (AMP-Polyphosphate kinase) and Polyphosphate kinase (Polyphosphate kinase).
本発明における ATP変換反応試薬は、 具体的は、 例えば次の (ィ) 〜 (二) の 物質を含む試薬である。 Specifically, the ATP conversion reaction reagent in the present invention is, for example, a reagent containing the following substances (a) to (2).
(ィ) PPM (Ii) PPM
(口) ホスホェノールピルビン酸 (Mouth) Phosphoenolpyruvate
(八) ピロリン酸 (8) Pyrophosphate
(二) マグネシウムイオン又は他の金属イオン (Ii) Magnesium ions or other metal ions
PPDKは、 マグネシウムイオン存在下で、 AMP、 ホスホエノ一ルビルビン酸及び ピロリン酸に作用して、 ATP、 ピルビン酸及びリン酸を生じる反応を触媒し、 そ の逆の反応も触媒する公知酵素である。 PPDK is a known enzyme that catalyzes the reaction of producing ATP, pyruvate and phosphoric acid by acting on AMP, phosphoenorubyruvic acid and pyrophosphate in the presence of magnesium ion, and also catalyzes the reverse reaction.
上記の試薬と、 反応系中の AMPとが反応することにより、 ATPが生成する。 ここ でいう反応系中の AMPとは、 微生物中の生体成分として含まれているもの、 およ び生物発光反応における ATPの消費に伴って生成したものである。 ATP is generated by the reaction between the above reagent and AMP in the reaction system. The AMP in the reaction system as referred to herein is that contained as a biological component in the microorganism and that generated with the consumption of ATP in the bioluminescence reaction.
また、 本発明では、 上記 (ィ) 〜 (二) の物質を含む ATP変換反応試薬に、 他 の物質を加えてもよい。 例えば、 サイクリック 3' , 5' -ヌクレオチドホスホジエス テラーゼを加えた場合は、 AMPのみならず、 サイクリック AMPからも ATPが生成す る。 Further, in the present invention, other substances may be added to the ATP conversion reaction reagent containing the substances (a) to (2). For example, when cyclic 3 ', 5'-nucleotide phosphodiesterase is added, ATP is generated not only from AMP but also from cyclic AMP.
また、 上記 (ィ) 〜 (二) の物質を含む ATP変換反応試薬に、 ピルビン酸キナ ーゼを加えた場合は、 AMPのみならず、 ADPからも ATPが生成する。 In addition, when pyruvate kinase is added to the ATP conversion reaction reagent containing the substances (a) to (2), ATP is generated not only from AMP but also from ADP.
この他、 上記 (ィ) 〜 (二) の物質と、 それ以外の物質との組み合わせであつ て、 反応時に ATPが生成する反応に閧与する物質を含む試薬は、 本発明の ATP変換 反応試薬に含まれる。
ATP変換反応に関与する物質の 1つである PPDKの理化学的性質及び製法は公知 であり、 その入手は比較的に容易である。 植物由来の PPDKとしては、 例えばトウ モロコシ葉由来 [Biochemis try 12、 2862-2867 (1973) ]及びサトウキビ葉由来 [The Biochemical Journal 114、 117-125 (1969) ]の酵素が挙げられる。 In addition, a reagent which is a combination of the above-mentioned substances (a) to (2) and another substance and which contains a substance which participates in the reaction that generates ATP during the reaction is an ATP conversion reaction reagent of the present invention. include. The physicochemical properties and production method of PPDK, which is one of the substances involved in the ATP conversion reaction, are known, and their availability is relatively easy. Examples of plant-derived PPDK include enzymes derived from corn leaves [Biochemis try 12, 2862-2867 (1973)] and sugarcane leaves [The Biochemical Journal 114, 117-125 (1969)].
また、 微生物由来のものとしては、 例えばプロピオ二バクテリウム ·シェルマ 二(Prop ionibacteriumshermani i) [Biochemis t ry 10, 721-729 (1971) ] , ァセトバ クタ一 ·キシリナム (Ace tobac ter xyl inum) [Journal of Bacteriology (1970) ] , ノ^クテロイデス ·シンビ才サス (Bacteroides symbiosus) [Me thods in Enzymolog y 42, 199- 212 (1975) ]及びミクロビスポーラ属 [例えばミクロビスポーラ ·サー モローザ (Microbispora thermorosea) IF0 14047]等に属する微生物の生産する酵 素が挙げられる。 Microbial sources include, for example, Propionibacterium shermanii (Biochemistry 10, 721-729 (1971)), Acetobacter xylinum (Ace tobacter xyl inum) [Journal of Bacteriology (1970)], Bacteroides symbiosus [Me thods in Enzymolog y 42, 199-212 (1975)] and the genus Microbispora [eg Microbispora thermorosea IF0 14047] and the like.
本発明の PPDKとしては、 例えば、 上記の生物から精製した天然型 PPDKが使用で きる。 また、 酵素活性を失わない範囲で、 天然型 PPDKのアミノ酸配列中の 1また は複数 (例えば 1個又は数個) のアミノ酸に付加、 欠失、 置換等の変異が導入さ れた変異型 PPDKを使用することもできる。 As the PPDK of the present invention, for example, a natural PPDK purified from the above organism can be used. In addition, a mutant PPDK in which one or more (eg, one or several) amino acids in the amino acid sequence of the natural PPDK are introduced, deleted, or substituted with a mutation within a range not to lose the enzyme activity. Can also be used.
天然型 PPDKは、 遺伝子工学的手法により得ることもできる。 すなわち、 天然型 PPDK遺伝子を適当なベクタ一一宿主系に導入し、 得られた組換え微生物の培養物 から PPDKを採取すればよい。 なお、 PPDK遺伝子は、 トウモロコシ (J. B iol. Chem. 263, 11080-11083 (1988) ) 、 フラベリア · トリネルビア (F laveria t rinervia :FE BS Let t. 273, 116-121 (1990) )等の生物から既にクロ一ニングされている。 Natural PPDK can also be obtained by genetic engineering techniques. That is, the native PPDK gene may be introduced into an appropriate vector-one host system, and PPDK may be collected from the obtained culture of the recombinant microorganism. In addition, the PPDK gene can be obtained from maize (J. Biol. Chem. 263, 11080-11083 (1988)), Flaveria trinervia (FEBS Let t. 273, 116-121 (1990)), etc. It has already been cloned from living things.
変異型 PPDKを用いる場合、 該 PPDKは、 上記生物の変異株から得ることができる When a mutant PPDK is used, the PPDK can be obtained from a mutant of the above organism.
。 また変異型 PPMは、 遺伝子工学的手法により得ることができる。 すなわち天然 型 PPDK遺伝子の塩基配列中の 1または複数 (例えば 1個又は数個) の塩基に付加. In addition, mutant PPM can be obtained by genetic engineering techniques. That is, it is added to one or more (eg, one or several) bases in the base sequence of the natural PPDK gene.
、 欠失、 置換等の変異を導入した変異型 PPDK遺伝子を調製し、 これを適当なべク 夕一-宿主系に導入し、 得られた組換え微生物の培養物から変異型 PPDKを採取す ればよい。 遺伝子に変異を導入する方法としては、 例えば、 天然型 PPDK遺伝子と 変異原となる薬剤 (ヒドロキシルァミン、 亜硝酸、 亜硫酸、 5 -プロモウラシル等A mutant PPDK gene into which mutations such as deletion, substitution, etc. have been introduced is prepared and introduced into an appropriate vector-host system, and a mutant PPDK gene is collected from a culture of the obtained recombinant microorganism. I just need. Methods for introducing a mutation into a gene include, for example, a natural PPDK gene and a mutagenic agent (hydroxylamine, nitrite, sulfurous acid, 5-promouracil, etc.)
) とを接触させる方法が使用できる。 この他、 紫外線照射法、 カセット変異法、) Can be used. In addition, UV irradiation, cassette mutation,
PCR法を用いた部位特異的変異導入法等を広く用いることができる。 更には、 化
学合成した DNAをァニーリングして、 所望の部位に変異を有する変異型 PPDK遺伝 子を構築することも可能である。 A site-specific mutagenesis method using a PCR method can be widely used. Furthermore, It is also possible to construct a mutant PPDK gene having a mutation at a desired site by annealing the chemically synthesized DNA.
本発明でいう生物発光試薬は、 生物発光反応に関与する物質を含む試薬であれ ば特に限定されない。 本発明の生物発光試薬とは、 例えば、 ルシフェリン-ルシ フェラ一ゼ発光反応に関与する物質を含む試薬であり、 具体的には、 例えば、 次 の (ィ) 〜 (ハ) の物質を含む試薬である。 The bioluminescent reagent in the present invention is not particularly limited as long as it is a reagent containing a substance involved in a bioluminescent reaction. The bioluminescent reagent of the present invention is, for example, a reagent containing a substance involved in a luciferin-luciferase luminescence reaction, and specifically, for example, a reagent containing the following substances (a) to (c) It is.
(ィ) マグネシウムイオン又は他の金属イオン (B) Magnesium ions or other metal ions
(口) ルシフェリン (Mouth) Luciferin
(八) リレシフェラ一ゼ (8) Rireshifera Ize
上記の試薬と、 反応系中の ATPとが反応することにより、 発光反応が生じる。 その際に、 ATPが消費され、 AMPが生成する。 ここでいう反応系中の ATPとは、 微 生物中の生体成分として含まれているもの、 および ATP変換反応により生成され たものである。 A luminescence reaction occurs when the above reagent reacts with ATP in the reaction system. At that time, ATP is consumed and AMP is generated. The ATP in the reaction system as referred to herein includes those contained as biological components in microorganisms and those produced by the ATP conversion reaction.
本発明において、 ルシフェリンおよびルシフェラーゼとしては、 例えば、 昆虫 (ゲンジボタル、 ヘイケボタル、 北米産ホタル、 ヒカリコメツキムシ、 ツチボタ ル等) を由来とするものが使用できる。 In the present invention, as the luciferin and luciferase, those derived from, for example, insects (Genji firefly, Heike firefly, North American firefly, Hikarimemushimushi, Tsubotaru) can be used.
ルシフェラ一ゼは、 上記生物の発光組織から精製した天然型ルシフェラーゼ、 遺伝子工学的手法により調製した天然型ルシフェラ一ゼ、 さらには天然型ルシフ エラーゼのアミノ酸配列中の 1または複数のアミノ酸に付加、 欠失、 置換等の変 異を導入した変異型ルシフェラーゼを使用することができる。 Luciferase is added to or deleted from one or more amino acids in the amino acid sequence of natural luciferase purified from the luminescent tissue of the above organism, natural luciferase prepared by genetic engineering techniques, or natural luciferase. Mutant luciferase into which a mutation such as loss or substitution has been introduced can be used.
生体成分が RNAである場合は、 反応系にリポヌクレアーゼ (RNase)を加えること により RNAから AMPが生成し、 該 AMPが ATP変換反応において ATPとなる。 When the biological component is RNA, AMP is generated from RNA by adding liponuclease (RNase) to the reaction system, and the AMP becomes ATP in the ATP conversion reaction.
生物発光試薬を用いる従来の測定法では、 生物発光反応に関与する生体成分は 主に ATPであり、 該 ATPの消費に伴って発光量が減衰してしまうという問題があつ た。 一方、 本発明では ATP変換反応を利用することにより、 種々のアデノシンリ ン酸エステル類 (AMP、 サイクリック AMP、 ADP、 RNA等) から ATPが新たに生成さ れ、 かつ生物発光反応において消費された ATPも再生される。 その結果、 発光量 及び発光時間が増大するので、 迅速、 簡便かつ高感度な微生物の測定が可能とな る。
ATP変換反応及び生物発光反応の条件 (試薬に含まれる各成分の終濃度、 反応 時間、 温度等) 、 上記試薬の滴下又は噴霧の順序等は特に限定されず、 微生物や 濾過膜等の状態に応じて適宜設定すればよい。 すなわち、 ATP変換反応試薬と生 物発光試薬は、 混合して使用してもよく、 順次濾過膜上に加えてもよい。 In the conventional measurement method using a bioluminescent reagent, a biological component involved in the bioluminescence reaction is mainly ATP, and there is a problem that the amount of luminescence is attenuated with consumption of the ATP. On the other hand, in the present invention, by utilizing the ATP conversion reaction, ATP is newly generated from various adenosine phosphates (AMP, cyclic AMP, ADP, RNA, etc.) and consumed in the bioluminescence reaction. ATP is also played. As a result, the luminescence amount and the luminescence time are increased, so that microorganisms can be measured quickly, easily and with high sensitivity. The conditions of the ATP conversion reaction and the bioluminescence reaction (final concentration of each component contained in the reagent, reaction time, temperature, etc.), the order of dropping or spraying the above reagents are not particularly limited. What is necessary is just to set suitably. That is, the ATP conversion reaction reagent and the bioluminescent reagent may be used as a mixture, or may be sequentially added to the filtration membrane.
操作の簡便化という点から、 ATP変換反応試薬と生物発光試薬とを混合して用 いることが好ましい。 その場合、 例えば以下の組成の混合溶液を使用することが できる。 From the viewpoint of simplification of the operation, it is preferable to use a mixture of the ATP conversion reaction reagent and the bioluminescent reagent. In that case, for example, a mixed solution having the following composition can be used.
(ィ) PPDK; 0. 001 ϋ/ml以上、 好ましくは 0. 002〜 100U/ml (B) PPDK; 0.001 l / ml or more, preferably 0.002 to 100 U / ml
(口) ホスホェノールピルビン酸;終濃度 0. ImM以上、 好ましくは 0. 5〜8. OmM (ハ) ピロリン酸;終濃度 1. O M以上、 好ましくは 5· 0〜5000 Mとなる濃度 (二) マグネシウムイオン;終濃度 1. OmM以上、 好ましくは 5. 0〜100mM (Mouth) Phosphoenolpyruvate; final concentration of 0. ImM or more, preferably 0.5 to 8. OmM (c) Pyrophosphoric acid; final concentration of 1. OM or more, preferably 50 to 5000 M Magnesium ion; final concentration 1. OmM or more, preferably 5.0 to 100 mM
(ホ) ルシフェリン;終濃度 5. O ^ M以上、 好ましくは 50. 0〜10000 M (E) Luciferin; final concentration 5. O ^ M or more, preferably 50.0 to 10000 M
(へ) ルシフェラーゼ;終濃度 0. lmg/ml以上、 好ましくは 0. 5〜20mg/nil (ト) 硫酸アンモニゥム;終濃度 0. ImM以上、 好ましくは 0. 5〜100mM (F) Luciferase; final concentration 0.1 mg / ml or more, preferably 0.5 to 20 mg / nil (g) Ammonium sulfate; final concentration 0.5 ImM or more, preferably 0.5 to 100 mM
(チ) ジチオスレィトール;終濃度 0. O lmM以上、 好ましくは 0. 05〜10mM (リ) EDTA;終濃度 0. ImM以上、 好ましくは 0. 5〜 10mM (H) dithiothreitol; final concentration 0.5 O lmM or more, preferably 0.05 to 10 mM (ii) EDTA; final concentration 0. ImM or more, preferably 0.5 to 10 mM
(ヌ) HEPESまたは Tr ic ine緩衝液(ρΗ7· 0〜8. 5) ;終濃度 1 OmM以上、 好ましくは 20〜200mM (N) HEPES or Tricine buffer (ρΗ7 · 0-8.5); final concentration 1 OmM or more, preferably 20-200 mM
上記の混合溶液を用いることにより、 生物発光反応における ATPの消費により 生じた AMPから ATPが再生されるので、 発光量及び発光時間が増大する。 By using the above mixed solution, ATP is regenerated from AMP generated by consumption of ATP in the bioluminescence reaction, so that the luminescence amount and the luminescence time are increased.
なお、 上記の混合溶液において、 硫酸アンモニゥム、 ジチオスレィトール (DT T) 、 EDTA、 HEPESまたは Tr ic ineは、 溶液の安定性又は緩衝能の向上のために添 加することが好ましい物質である。 そのような物質としては、 ゥシ血清アルブミ ン、 シユークロース等が使用できる。 In the above-mentioned mixed solution, ammonium sulfate, dithiothreitol (DTT), EDTA, HEPES or Tricine is a substance that is preferably added to improve the stability or buffer capacity of the solution. . As such a substance, perserum albumin, sucrose and the like can be used.
本発明において、 微生物中の生体成分であるサイクリック AMPから ATPを生成さ せる場合は、 上記混合溶液にサイクリック 3' , 5' -ヌクレオチドホスホジエステラ ーゼ(0. 01 ϋ/ml以上、 好ましくは 0. 02〜10 ϋ/ml)を添加すればよい。 In the present invention, when ATP is generated from cyclic AMP, which is a biological component in a microorganism, cyclic 3 ′, 5′-nucleotide phosphodiesterase (0.01 μl / ml or more, preferably 0.02 to 10 l / ml).
なお、 ATP変換反応試薬と生物発光試薬には、 ATP分解酵素であるアデノシンリ
ン酸デァミナーゼを添加してもよい。 上記試薬中に ATPが混入している場合は、 アデノシンリン酸デァミナ一ゼの添加により、 試薬中の ATPが消去される。 その 場合、 ATP抽出剤中にコホルマイシンを添加しておくことが好ましい。 こうする ことにより、 濾過膜上に上記試薬を加えた場合に、 微生物由来の ATPの分解が防 止できる。 The ATP conversion reagent and bioluminescent reagent contain adenosine lysate, an ATPase. Acid deaminase may be added. If ATP is contaminated in the above reagent, ATP in the reagent will be eliminated by the addition of adenosine phosphate kinase. In that case, it is preferable to add coformycin to the ATP extractant. In this way, when the above reagent is added to the filtration membrane, decomposition of ATP derived from microorganisms can be prevented.
上記の ATP変換反応試薬と生物発光試薬の混合溶液にアデノシンリン酸デアミ ナ一ゼを添加する場合は、 0. 01 ϋ/ml以上、 好ましくは 0. 05〜10 U/mlとなるよう に添加すればよい。 When adding adenosine phosphate deaminase to the above mixed solution of the ATP conversion reaction reagent and the bioluminescent reagent, add it so that the concentration is 0.01 l / ml or more, preferably 0.05 to 10 U / ml. do it.
次に、 濾過膜上に生じる発光を測定することにより、 試料液中の微生物の有無 の判定、 あるいは生菌数の測定が可能となる。 濾過膜上に生じる発光の発光量は 、 ルミノメ一ター、 例えばァロカ社製ルミネッセンスリーダー BLR- 201 (改良型 ) により測定することができる。 また、 生物発光画像解析システム装置、 例えば ARGUS-50/CL 〔テーパーファイバ一付:浜松ホトニクス (株) 社製〕 を用いて濾 過膜上の輝点を撮像することにより、 生菌数を測定することも可能である。 発明を実施するための最良の形態 Next, by measuring the luminescence generated on the filtration membrane, it becomes possible to determine the presence or absence of microorganisms in the sample solution or to measure the viable cell count. The amount of luminescence generated on the filtration membrane can be measured by a luminometer, for example, a luminescence reader BLR-201 (improved type) manufactured by Aroka. In addition, the number of viable bacteria is measured by imaging the bright spots on the filtration membrane using a bioluminescence image analysis system device, for example, ARGUS-50 / CL (with taper fiber: manufactured by Hamamatsu Photonics KK). It is also possible. BEST MODE FOR CARRYING OUT THE INVENTION
次に、 以下実施例を挙げて本発明を詳細に説明するが、 本発明はこれら実施例 に限定されるものではない。 Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
実施例では、 本発明の試薬として、 PPM発光試薬 (ATP変換反応試薬と生物発 光試薬の混合試薬) を使用した。 また、 従来法の試薬として、 HSLU (ATP変換反 応試薬を含まない生物発光試薬) を使用した。 In the examples, a PPM luminescence reagent (a mixed reagent of an ATP conversion reaction reagent and a bioluminescence reagent) was used as the reagent of the present invention. In addition, HSLU (bioluminescent reagent not containing ATP conversion reagent) was used as a reagent of the conventional method.
1 . 使用する試薬の組成 1. Composition of reagent used
(1) ATP抽出剤 (1) ATP extractant
コホルマイシン (St reptomyces属由来) を 0. OlmMで含有する日本ミリポア社製 ATP放出用試薬 ATP release reagent containing coformycin (derived from St reptomyces genus) at 0.1 OlmM, manufactured by Nippon Millipore
(2) PPDK発光試薬 (2) PPDK luminescence reagent
ルシフェリン 0. 75mM Luciferin 0.75 mM
ルシフェラーゼ 3. 6mg/ml
PPDK 0.47U/ml Luciferase 3.6 mg / ml PPDK 0.47U / ml
EDTA 2Na lmM EDTA 2Na lmM
DTT 0.2mM DTT 0.2mM
酢酸マグネシウム lOmM Magnesium acetate lOmM
BSA 0.2% BSA 0.2%
シユークロース 0.4% Sucrose 0.4%
ピロリン酸カリウム塩 0.3mM Potassium pyrophosphate 0.3mM
PEPカリウム塩 1. lmM PEP potassium salt 1.lmM
アデノシンリン酸デアミナーゼ 0· 2U/ml Adenosine phosphate deaminase 0.2U / ml
Tricine 25mM (pH7.8) ■ Tricine 25mM (pH7.8) ■
(3) HSLU (3) HSLU
ルシフェリン 0.5mM Luciferin 0.5mM
ゲンジポ夕ルルシフェラーゼ 0.5mg/ml Genzipo Luciferase 0.5mg / ml
硫酸マグネシウム 10mM Magnesium sulfate 10mM
EDTA 1. OmM EDTA 1. OmM
DTT 1. OmM DTT 1. OmM
シユークロース 0.37% Sucrose 0.37%
HEPES 50mM(pH7.5) HEPES 50mM (pH7.5)
2. 酵素活性の測定法 2. Method for measuring enzyme activity
実施例において使用する酵素の活性測定法を以下に示す。 The method for measuring the activity of the enzyme used in the examples is shown below.
(DPPDK (Microbispora t ermorosea IF014047由来) (DPPDK (from Microbispora thermorosea IF014047)
3mM 硫酸マグネシウム、 25mM 硫酸アンモニゥム、 2mM 2-メルカプトエタノー ル、 2mM ピロリン酸、 2 ホスホエノ一ルピルビン酸及び 0. lmM AMPを含む 50mM 50 mM with 3 mM magnesium sulfate, 25 mM ammonium sulfate, 2 mM 2-mercaptoethanol, 2 mM pyrophosphate, 2 phosphoenolpyruvate and 0.1 lmM AMP
BIS-TRIS PROPANE緩衝液(pH6.8) 180 1をマイクロチューブにとり、 温度平衡を 3BIS-TRIS PROPANE buffer (pH 6.8) 180 1
7°Cに到達させた後、 適当な活性を有する酵素溶液 20/xlを加え、 15分間反応させAfter reaching 7 ° C, add 20 / xl of enzyme solution with appropriate activity and let react for 15 minutes.
、 沸騰水中で 3分間煮沸し反応を止める。 この反応液を適当に希釈したものBoil for 3 minutes in boiling water to stop the reaction. Appropriate dilution of this reaction solution
1を試験管にとり、 そこに 「ルシフェール 250」 (キッコーマン社製) 溶液を 50
1滴下し、 発光量を測定する。 別に予め既知濃度の ATP標準溶液を用いて、 その発 光量との関係を調べたグラフを用意する。 このグラフを用いて、 37°Cで 1分間当 たりに生成される ATPの molを計算し、 この数値を使用酵素液中の活性単位とす る。 なお、 37でで 1分当たりに 1 molの ATPを生成する酵素量を 1単位(U)とする 1 into a test tube, and add 50 Lucifer 250 (Kikkoman) solution to it. Add 1 drop and measure the amount of luminescence. Separately, prepare a graph in which the relationship between the ATP standard solution of a known concentration and the amount of emitted light is examined. Using this graph, calculate the moles of ATP generated per minute at 37 ° C, and use this value as the activity unit in the enzyme solution used. The amount of enzyme that produces 1 mol of ATP per minute in 37 is 1 unit (U)
(2)アデノシンリン酸デアミナーゼ (Aspergi l lus属由来) (2) Adenosine phosphate deaminase (from Aspergillus genus)
lOOmM酢酸ナトリウム緩衝液(lmM EDTAを含む) (pH5. 0)に ATPを 80 となるよう に溶解したものを基質溶液とする。 基質液 3mlに酵素溶液液 100 i lを添加し、 30 °Cで 30分間反応させる。 その後 60%過塩素酸 100 を添加して反応を停止し、 26 5nmの吸光度 0Dを測定する。 0D値が 1分間当り 2. 4変化する酵素量を 1ュニット(U) とする。 Dissolve ATP to 80 in lOOmM sodium acetate buffer (containing lmM EDTA) (pH 5.0) to obtain a substrate solution. Add 100 l of the enzyme solution to 3 ml of the substrate solution, and react at 30 ° C for 30 minutes. Thereafter, the reaction is stopped by adding 60% perchloric acid 100, and the absorbance 0D at 265 nm is measured. The amount of enzyme whose 0D value changes by 2.4 per minute is defined as 1 unit (U).
(3)アビラ一ゼ grade VI I I (ジャガイモ由来) (シグマ社) (3) Avila Ize grade VI I I (from potato) (Sigma)
PH6. 5、 30°Cにおいて、 ATPから 1分間当り 1. O molの無機リン酸を遊離する酵 素量を 1ュニット(U)とする。 At 6.5 and 30 ° C, the amount of enzyme that releases 1.0 Omol of inorganic phosphoric acid per minute from ATP is defined as 1 unit (U).
〔実施例 1〕 (Example 1)
濾過膜である日本ミリポア社製 RMD特殊メンブレンフィルタ一(0. 45 ^ m疎水性 格子入り、 直径 47mm)を 70 %エタノ一ルに浸した。 これを、 あらかじめ 70%エタ ノール 100mlで洗浄した日本ミリポア社製、 ポリプロピレンプレフィルター(0. 6 m)と MFメッシュスぺ一サー AP32を装着した濾過器にセットし、 70%エタノール 50mlにて洗浄した。 その後 20 %エタノール 100mlで 2回洗浄し、 濾過器からメンブ レンフィルターを外し裏返して、 濾過器にセットし直した。 さらに超純水 30mlに て洗浄して濾過器から外し、 滅菌シャーレ中に入れて、 50°Cで 15時間乾燥させた 洗浄前の膜に PPM発光試薬を松下電工製超音波式噴霧器 (EW622)で噴霧し、 日 本ミリポア社製 RMDS装置にセットした後、 5分間発光を積算させて bi t 0-4で計 測した。 洗浄済みの膜も同様に処理し比較を行った。 A filtration membrane RMD special membrane filter manufactured by Nippon Millipore Co., Ltd. (with 0.45 ^ m hydrophobic lattice, diameter 47mm) was immersed in 70% ethanol. This is set in a filter equipped with a polypropylene pre-filter (0.6 m), manufactured by Nippon Millipore Co., Ltd. and washed with 50 ml of 70% ethanol, and washed with 100 ml of 70% ethanol in advance. did. Thereafter, the membrane was washed twice with 100 ml of 20% ethanol, the membrane filter was removed from the filter, turned over, and set again in the filter. Further, the membrane was washed with 30 ml of ultrapure water, removed from the filter, placed in a sterile petri dish, and dried at 50 ° C for 15 hours. The PPM luminescent reagent was applied to the membrane before washing by an ultrasonic sprayer manufactured by Matsushita Electric Works (EW622). After setting in a RMDS device manufactured by Millipore Japan, luminescence was integrated for 5 minutes and measured at bit 0-4. The washed membrane was treated in the same manner and compared.
その結果、 洗浄前の膜は全面が発光したが、 洗浄後の膜はノイズ輝点もバック :発光も認められなかった。
〔実施例 2〕 As a result, the film before cleaning emitted light over the entire surface, but the film after washing did not show any noise luminescent spots or back light emission. (Example 2)
濾過膜である日本ミリポア社製 RMD特殊メンブレンフィルタ一(0. 45 m疎水性 格子入り、 直径 47mm)を 70%エタノールに浸した。 その後、 10%酢酸 200mlに入れ て 200mlの耐圧瓶に入れてふたをした。 これを 121°Cで 200分間ォ一トクレーブ処 理した。 温度が低下後メンブレンを取り出し、 超純水で 3回すすいで余分な酢酸 を除去した。 A filtration membrane RMD special membrane filter manufactured by Nippon Millipore Co., Ltd. (0.45 m with hydrophobic grid, diameter 47 mm) was immersed in 70% ethanol. Then, it was placed in 200 ml of 10% acetic acid and placed in a 200 ml pressure bottle and capped. This was autoclaved at 121 ° C for 200 minutes. After the temperature dropped, the membrane was taken out and rinsed three times with ultrapure water to remove excess acetic acid.
処理前の膜に PPM発光試薬を松下電工製超音波式噴霧器 (EW622)で噴霧し、 日 本ミリポア社製 RMDS装置にセットした。 その後 5分間発光を積算させ bi t 0-4で 計測した。 処理済みの膜も同様に処理し比較を行った。 The membrane before the treatment was sprayed with a PPM luminescent reagent using an ultrasonic atomizer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. After that, the luminescence was integrated for 5 minutes and measured at bit 0-4. The treated film was similarly treated and compared.
その結果、 処理前の膜は全面が発光したが、 処理後の膜はノイズ輝点もバック グランド発光も認められなかつた。 As a result, the entire surface of the film before the treatment emitted light, but no noise luminescent spot and no background emission were observed in the film after the treatment.
〔実施例 3〕 (Example 3)
濾過膜である日本ミリポア社製 RMD特殊メンブレンフィルタ一(0. 45 M m疎水性 格子入り、 直径 471M1)を 70%エタノールに浸した。 その後、 濾過器にセットし、 1 . Οϋ/mlのアデノシンリン酸デアミナーゼを含有する 10mM HEPES緩衝液 (pH7. 0)を 1 Oml通液して余分な 70%エタノールを洗い流した。 次に、 滅菌シャーレ中で 1. 0U/ mlのアデノシンリン酸デアミナーゼを含有する lOmM HEPES緩衝液 (pH7. 0) 20mlに 浸して、 50°Cで 6時間処理した。 処理後、 濾過膜だけを新たな滅菌シャーレ中に 移して、 50°Cで一晩乾燥させた。 RMD special membrane filter 1 (manufactured by Nippon Millipore, 0.45 Mm with hydrophobic lattice, diameter 471M1) as a filtration membrane was immersed in 70% ethanol. Thereafter, the filter was set on a filter, and 1 Oml of a 10 mM HEPES buffer solution (pH 7.0) containing 1.ml/ml of adenosine phosphate deaminase was passed through to wash out excess 70% ethanol. Next, the plate was immersed in 20 ml of lOmM HEPES buffer (pH 7.0) containing 1.0 U / ml adenosine phosphate deaminase in a sterile petri dish and treated at 50 ° C for 6 hours. After the treatment, only the filter membrane was transferred into a new sterile petri dish and dried at 50 ° C overnight.
処理前の膜に PPDK発光試薬を松下電工製超音波式噴霧器 (EW622)で噴霧し、 日 本ミリポア社製 RMDS装置にセットした。 その後 5分間発光を積算させ bi t 0-4で 計測した。 処理済みの膜も同様に処理し比較を行った。 The PPDK luminescence reagent was sprayed on the membrane before the treatment with an ultrasonic sprayer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. After that, the luminescence was integrated for 5 minutes and measured at bit 0-4. The treated film was similarly treated and compared.
その結果、 処理前の膜は全面が発光し 20個のノイズ輝点も認められたが、 処理 後の膜はノィズ輝点もバックグランド発光も認められなかつた。 As a result, the film before the treatment emitted light over the entire surface, and 20 noise luminescent spots were observed. However, the film after the treatment showed no noise luminescent spot and no background light emission.
〔実施例 4〕 (Example 4)
濾過膜である日本ミリポア社製 RMD特殊メンプレンフィルター(0. 45 m疎水性
格子入り、 直径 47imn) 100枚を 70%エタノールに浸した。 その後、 有効塩素濃度 0. 0005%次亜塩素酸ナトリウム、 0. 01% Tween80 の混合液 200mlに入れて 200mlの耐 圧瓶に入れてふたをした。 これを 60°Cで 5時間処理した。 処理後、 濾過膜を取り 出し、 超純水で十分にすすいで余分な次亜塩素酸ナトリゥムを除去した。 Nippon Millipore RMD Special Membrane Filter (0.45 m hydrophobic) 100 pieces with a lattice and 47 imn in diameter were immersed in 70% ethanol. Then, the mixture was put in a 200 ml mixed solution of 0.0005% sodium hypochlorite and 0.01% Tween80 with an effective chlorine concentration of 200 ml and sealed in a 200 ml pressure-resistant bottle. This was treated at 60 ° C for 5 hours. After the treatment, the filtration membrane was taken out and rinsed sufficiently with ultrapure water to remove excess sodium hypochlorite.
処理前の膜に PPDK発光試薬を松下電工製超音波式噴霧器 (EW622)で噴霧し、 日 本ミリポア社製 RMDS装置にセットした。 その後 5分間発光を積算させ bi t 0-4で 計測した。 処理済みの膜も同様に処理し比較を行った。 The PPDK luminescence reagent was sprayed on the membrane before the treatment with an ultrasonic sprayer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. After that, the luminescence was integrated for 5 minutes and measured at bit 0-4. The treated film was similarly treated and compared.
その結果、 処理前の膜は全面が発光したが、 処理後の膜はノイズ輝点もバック グランド発光も認められなかった。 本方法では一度に大量の膜を処理できる点で 優れていた。 As a result, the film before the treatment emitted light from the entire surface, but the film after the treatment did not show any noise luminescent spot or background light emission. This method was excellent in that a large number of films could be processed at once.
〔実施例 5〕 (Example 5)
濾過膜である日本ミリポア社製 RMD特殊メンブレンフィルタ一(0. 45 z in疎水性 格子入り、 直径 47mm) 100枚を有効塩素濃度 0. 0005 %次亜塩素酸ナトリウム、 0. 01 % Tween80 の混合液 200mlに入れて 200mlの耐圧瓶に入れてふたをした。 これを 60 °Cで 6時間処理した。 処理後、 濾過膜を取り出し、 超純水で十分にすすいで余分 な次亜塩素酸ナトリゥムを除去した。 Mixing 100 filter membranes made by Nippon Millipore RMD special membrane filter (0.45 z in hydrophobic grid, diameter 47 mm) with effective chlorine concentration 0.0005% sodium hypochlorite and 0.01% Tween80 The solution was placed in 200 ml and placed in a 200 ml pressure bottle and capped. This was treated at 60 ° C for 6 hours. After the treatment, the filtration membrane was taken out and rinsed sufficiently with ultrapure water to remove excess sodium hypochlorite.
処理前の膜に PPDK発光試薬を松下電工製超音波式噴霧器 (EW622)で噴霧し、 日 本ミリポア社製 RMDS装置にセットした。 その後 5分間発光を積算させ bi t 0-4で 計測した。 処理済みの膜も同様に処理し比較を行った。 The PPDK luminescence reagent was sprayed on the membrane before the treatment with an ultrasonic sprayer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. After that, the luminescence was integrated for 5 minutes and measured at bit 0-4. The treated film was similarly treated and compared.
その結果、 処理前の膜は全面が発光したが、 処理後の膜はノイズ輝点もバック グランド発光も認められなかった。 本方法では一度に大量の膜を処理できる点で 優れていた。 As a result, the film before the treatment emitted light from the entire surface, but the film after the treatment did not show any noise luminescent spot or background light emission. This method was excellent in that a large number of films could be processed at once.
〔実施例 6〕 (Example 6)
濾過膜である日本ミリポア社製 RMD特殊メンブレンフィルタ一(0. 45 m疎水性 格子入り、 直径 47mm) 100枚を有効塩素濃度 0. 0005 %次亜塩素酸カリウム、 0. 01% 100 filter membranes made by Nippon Millipore RMD special membrane filter (0.45 m with hydrophobic lattice, diameter 47 mm) Effective chlorine concentration 0.0005% Potassium hypochlorite, 0.011%
Tween80 の混合液 200mlに入れて 200mlの耐圧瓶に入れてふたをした。 これを 60°C で 6時間処理した。 処理後、 濾過膜を取り出し、 超純水で十分にすすいで余分な
次亜塩素酸力リウムを除去した。 Tween80 mixture was placed in 200 ml and placed in a 200 ml pressure bottle and capped. This was treated at 60 ° C for 6 hours. After treatment, remove the filtration membrane, rinse thoroughly with ultrapure water and remove excess Potassium hypochlorite was removed.
処理前の膜に PPDK発光試薬を松下電工製超音波式噴霧器 (EW622)で噴霧し、 日 本ミリポア社製 RMDS装置にセットした。 その後 5分間発光を積算させ bi t 0-4で 計測した。 処理済みの膜も同様に処理し比較を行った。 The PPDK luminescence reagent was sprayed on the membrane before the treatment with an ultrasonic sprayer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. After that, the luminescence was integrated for 5 minutes and measured at bit 0-4. The treated film was similarly treated and compared.
その結果、 処理前の膜は全面が発光したが、 処理後の膜はノイズ輝点もバック グランド発光も認められなかった。 本方法では一度に大量の膜を処理できる点で 優れていた。 As a result, the film before the treatment emitted light from the entire surface, but the film after the treatment did not show any noise luminescent spot or background light emission. This method was excellent in that a large number of films could be processed at once.
〔実施例 7〕 (Example 7)
濾過膜である日本ミリポア社製 RMD特殊メンブレンフィルター(0. 45 m疎水性 格子入り、 直径 47mm) 100枚を有効塩素濃度 0. 05%次亜塩素酸ナトリゥム 200mlに 入れて 200mlの耐圧瓶に入れてふたをした。 これを室温で 6時間処理した。 処理後 、 濾過膜を取り出し、 超純水で十分にすすいで余分な次亜塩素酸ナトリウムを除 去した。 Nippon Millipore RMD Special Membrane Filter (0.45 m with hydrophobic lattice, diameter 47 mm) as filter membrane 100 pieces of effective chlorine concentration 0.05% sodium hypochlorite 200 ml and put in 200 ml pressure bottle I closed the lid. This was treated at room temperature for 6 hours. After the treatment, the filtration membrane was taken out and rinsed sufficiently with ultrapure water to remove excess sodium hypochlorite.
処理前の膜に PPM発光試薬を松下電工製超音波式噴霧器 (EW622)で噴霧し、 日 本ミリポア社製 RMDS装置にセットした。 その後 5分間発光を積算させ bi t 0-4で 計測した。 処理済みの膜も同様に処理し比較を行った。 The membrane before the treatment was sprayed with a PPM luminescent reagent using an ultrasonic atomizer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. After that, the luminescence was integrated for 5 minutes and measured at bit 0-4. The treated film was similarly treated and compared.
その結果、 処理前の膜は全面が発光したが、 処理後の膜はノイズ輝点もバック グランド発光も認められなかった。 本方法では一度に大量の膜を処理できる点で 優れていた。 As a result, the film before the treatment emitted light from the entire surface, but the film after the treatment did not show any noise luminescent spot or background light emission. This method was excellent in that a large number of films could be processed at once.
〔実施例 8〕 (Example 8)
濾過膜である日本ミリポア社製 RMD特殊メンブレンフィルター(0. 45 M m疎水性 格子入り、 直径 47mm) 100枚を有効塩素濃度 0. 005%次亜塩素酸ナトリウム、 0. 01% TweenSO の混合液 200mlに入れて 200mlの耐圧瓶に入れてふたをした。 これを室 温で 4時間処理した。 処理後、 濾過膜を取り出し、 超純水で十分にすすいで余分 な次亜塩素酸ナトリゥムを除去した。 Nihon Millipore RMD Special Membrane Filter (0.45 Mm with hydrophobic lattice, diameter 47 mm) is a filtration membrane. Effective chlorine concentration 0.005% sodium hypochlorite, 0.01% TweenSO mixed solution Put in 200ml, put in a 200ml pressure bottle and capped. This was treated at room temperature for 4 hours. After the treatment, the filtration membrane was taken out and rinsed sufficiently with ultrapure water to remove excess sodium hypochlorite.
処理前の膜に PPM発光試薬を松下電工製超音波式噴霧器 (EW622)で噴霧し、 日 本ミリポア社製 RMDS装置にセットした。 その後 5分間発光を積算させ bi t 0-4で
計測した。 処理済みの膜も同様に処理し比較を行った。 The membrane before the treatment was sprayed with a PPM luminescent reagent using an ultrasonic atomizer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. After that, the light emission is integrated for 5 minutes and bit 0-4 Measured. The treated film was similarly treated and compared.
その結果、 処理前の膜は全面が発光したが、 処理後の膜はノイズ輝点もバック グランド発光も認められなかった。 本方法では一度に大量の膜を処理できる点で 優れていた。 As a result, the film before the treatment emitted light from the entire surface, but the film after the treatment did not show any noise luminescent spot or background light emission. This method was excellent in that a large number of films could be processed at once.
〔実施例 9〕 (Example 9)
濾過膜である日本ミリポア社製 RMD特殊メンブレンフィルター(0. 45 / m疎水性 格子入り、 直径 47mm) 100枚を有効塩素濃度 0. 005%次亜塩素酸ナトリゥム 200mlに 入れて 200mlの耐圧瓶に入れてふたをした。 これを室温で 15時間処理した。 処理 後、 濾過膜を取り出し、 超純水で十分にすすいで余分な次亜塩素酸ナトリウムを 除去した。 Nippon Millipore RMD Special Membrane Filter (0.45 / m with hydrophobic lattice, diameter 47mm), which is a filtration membrane, put 200 sheets of effective chlorine concentration 0.005% sodium hypochlorite in 200ml and put it in a 200ml pressure bottle I put it in and closed it. This was treated at room temperature for 15 hours. After the treatment, the filtration membrane was taken out and rinsed sufficiently with ultrapure water to remove excess sodium hypochlorite.
処理前の膜に PPDK発光試薬を松下電工製超音波式噴霧器 (EW622)で噴霧し、 日 本ミリポア社製 RMDS装置にセットした。 その後 5分間発光を積算させ M t 0-4で 計測した。 処理済みの膜も同様に処理し比較を行った。 The PPDK luminescence reagent was sprayed on the membrane before the treatment with an ultrasonic sprayer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. Thereafter, luminescence was integrated for 5 minutes and measured at Mt 0-4. The treated film was similarly treated and compared.
その結果、 処理前の膜は全面が発光したが、 処理後の膜はノイズ輝点もバック グランド発光も認められなかった。 本方法では一度に大量の膜を処理できる点で 優れていた。 As a result, the film before the treatment emitted light from the entire surface, but the film after the treatment did not show any noise luminescent spot or background light emission. This method was excellent in that a large number of films could be processed at once.
〔実施例 1 0〕 (Example 10)
松下電工製超音波式噴霧器 (EW622)用吸水帯を 0. Ιϋ/mlのアデノシンリン酸デァ ミナーゼ入り滅菌超純水に浸し、 3rcで 1時間処理した。 これを、 滅菌シャーレ に入れ、 50°Cで 15時間乾燥させた。 これを 2mlの超純水に浸して強く攪拌し、 得 られた液 5 a 1を PPDK発光試薬 100 1に添加して、 ルミテスター C-100で測定し た。 測定値は 520RLUであった。 一方、 未処理の吸水帯を同様に測定したところ、 測定値は 146838RLUであった。 吸水帯をアデノシンリン酸デアミナーゼで処理す ることにより、 バックグランド発光を十分に下げることができたのでこれを以下 の実験で使用した。 The water absorption zone for an ultrasonic atomizer (EW622) manufactured by Matsushita Electric Works was immersed in sterilized ultrapure water containing 0.1 μg / ml of adenosine phosphate deaminase, and treated with 3rc for 1 hour. This was placed in a sterile petri dish and dried at 50 ° C for 15 hours. This was immersed in 2 ml of ultrapure water and stirred vigorously. The obtained solution 5a1 was added to PPDK luminescence reagent 1001, and the measurement was performed using a Lumitester C-100. The measured value was 520 RLU. On the other hand, when the untreated water absorption zone was measured in the same manner, the measured value was 146838 RLU. Background luminescence was sufficiently reduced by treating the water-absorbing zone with adenosine phosphate deaminase. This was used in the following experiments.
〔実施例 1 1〕
濾過膜である日本ミリポァ社製 RMD特殊メンブレンフィルター(0. 45 /1 m疎水性 格子入り、 直径 47mni)を 5% Tween80に浸した。 これを、 あらかじめ 5% Tween80 、 100mlで洗浄した日本ミリポア社製、 ポリプロピレンプレフィルター(0. 6 /xm) と MFメッシュスぺ一サー AP32を装着した濾過器にセットし、 5% Tween80で 100ml にて 2回洗浄し、 濾過器からメンプレンフィルターを外し裏返して、 濾過器にセ ッ卜し直した。 さらに超純水 30mlにて洗浄して余分な Tween80を除去してから濾 過器から外し、 滅菌シャーレ中に入れて、 50°Cで 15時間乾燥させた。 (Example 11) A filtration membrane RMD special membrane filter manufactured by Nippon Millipore Co. (0.45 / 1 m with hydrophobic grid, diameter 47 mni) was immersed in 5% Tween80. Set this in a filter equipped with a polypropylene pre-filter (0.6 / xm) and MF mesh filter AP32, manufactured by Nippon Millipore Co., Ltd., previously washed with 5% Tween80 and 100 ml, and made up to 100 ml with 5% Tween80. After washing twice, the membrane filter was removed from the filter, turned over, and set back in the filter. Further, it was washed with 30 ml of ultrapure water to remove excess Tween80, removed from the filter, placed in a sterile petri dish, and dried at 50 ° C for 15 hours.
洗浄前の膜に PPDK発光試薬を松下電工製超音波式噴霧器 (EW622)で噴霧し、 日 本ミリポア社製 RMDS装置にセットした。 その後 5分間発光を積算させ bi t 0-4で 計測した。 洗浄済みの膜も同様に処理し比較を行った。 The membrane before washing was sprayed with a PPDK luminescent reagent using an ultrasonic atomizer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. After that, the luminescence was integrated for 5 minutes and measured at bit 0-4. The washed membrane was treated in the same manner and compared.
その結果、 処理前の膜は全面が発光したが、 処理後の膜はノイズ輝点もパック グランド発光も認められなかつた。 As a result, the film before the treatment emitted light on the entire surface, but the film after the treatment did not show any noise luminescent spots or background emission.
〔実施例 1 2〕 (Example 12)
濾過膜である日本ミリポア社製ポリカーポネ一ト膜(0. 45 xm)を 70%エタノー ルに浸した。 これを、 あらかじめ 70%エタノール 100mlで洗浄した日本ミリポア 社製、 ポリプロピレンプレフィルター(0. 6 /ζ πι) .と MFメッシュスぺーサー AP32を装 着した濾過器にセットし、 70%エタノール 50mlにて洗浄した。 その後 20%ェタノ ール 100mlで 2回洗浄し、 濾過器からメンブレンフィルターを外し裏返して、 濾過 器にセットし直した。 さらに超純水 30mlにて洗浄して濾過器から外し、 滅菌シャ ーレ中に入れて、 で 15時間乾燥させた。 A filtration membrane, a polycarbonate membrane (0.45 xm) manufactured by Nippon Millipore Co., Ltd., was immersed in 70% ethanol. This is set in a filter equipped with a polypropylene pre-filter (0.6 / ζπι), manufactured by Nippon Millipore Co., Ltd., and MF mesh spacer AP32, which has been washed with 100 ml of 70% ethanol. And washed. Thereafter, the membrane was washed twice with 100 ml of 20% ethanol, the membrane filter was removed from the filter, turned over, and set again in the filter. Further, it was washed with 30 ml of ultrapure water, removed from the filter, placed in a sterile dish, and dried with for 15 hours.
洗浄前の膜に PPDK発光試薬を松下電工製超音波式噴霧器 (EW622)で噴霧し、 日 本ミリポア社製 RMDS装置にセットした。 その後 5分間発光を積算させ bi t 0-4で 計測した。 洗浄済みの膜も同様に処理し比較を行った。 The membrane before washing was sprayed with a PPDK luminescent reagent using an ultrasonic atomizer (EW622) manufactured by Matsushita Electric Works, and set on a RMDS device manufactured by Millipore Japan. After that, the luminescence was integrated for 5 minutes and measured at bit 0-4. The washed membrane was treated in the same manner and compared.
その結果、 洗浄前の膜は全面が発光し、 24個のノイズ輝点も認められたが、 洗 浄後の膜はノイズ輝点もバックグランド発光も認められなかった。 As a result, the film before cleaning emitted light over the entire surface, and 24 noise luminescent spots were observed. However, the film after cleaning showed no noise luminescent spot and no background light emission.
〔実施例 1 3〕 (Example 13)
濾過膜である日本ミリポア社製 RMD特殊メンブレンフィルタ一(0. 45 m疎水性
格子入り、 直径 47mm)を 70%エタノールに浸した。 これを、 あらかじめ 70 %エタ ノール 100mlで洗浄した日本ミリポア社製、 ポリプロピレンプレフィル夕一(0. 6 m)と MFメッシュスぺーサ一 AP32を装着した濾過器にセットし、 70%エタノール 50mlにて洗浄した。 その後 20%エタノール 100mlで 2回洗浄し、 濾過器からメンブ レンフィルターを外し裏返して、 濾過器にセットし直した。 さらに超純水 30mlに て洗浄して濾過器から外し、 滅菌シャーレ中に入れて、 50°Cで 15時間乾燥させた 洗浄前の膜に HSLUを松下電工製超音波式噴霧器 (EW622)で噴霧し、 日本ミリポ ァ社製 RMDS装置にセットした。 その後 5分間発光を積算させ bi t 0-4で計測した 。 洗浄済みの膜も同様に処理し比較を行った。 Nippon Millipore RMD special membrane filter (0.45 m hydrophobic) A grid with a diameter of 47 mm) was immersed in 70% ethanol. This was set in a filter equipped with Nippon Millipore's polypropylene prefill Yuichi (0.6 m) and MF mesh spacer AP32 previously washed with 100% 70% ethanol and 50 ml of 70% ethanol. And washed. After that, the membrane was washed twice with 100 ml of 20% ethanol, the membrane filter was removed from the filter, turned over, and set again in the filter. Further, the membrane was washed with 30 ml of ultrapure water, removed from the filter, placed in a sterile petri dish, and dried at 50 ° C for 15 hours. HSLU was sprayed on the membrane before washing with an ultrasonic atomizer (EW622, manufactured by Matsushita Electric Works). Then, it was set on a RMDS device manufactured by Japan Millipore. After that, the luminescence was integrated for 5 minutes and measured at bit 0-4. The washed membrane was treated in the same manner and compared.
その結果、 洗浄前の膜は 5個のノイズ輝点も検出されたが、 洗浄後の濾過膜は ノィズ輝点もバックグランド発光も認められなかった。 As a result, five noise bright spots were detected in the membrane before washing, but no noise bright spot and no background emission were observed in the filtered membrane after washing.
〔実施例 1 4〕 (Example 14)
実施例 5で作製したメンブレンフィルターを濾過器にセットし、 超純水 20mlに て 2回洗浄した。 その後、 洗浄液(0. 05 % グルコース, 0. 05 % フルクトース, 1 mM HEPES pH7. 0) 10mlを入れて、 菌希釈液(5 % スクロース, 0. 05 % グルコース, 0. 05 % フルクトース, 10mM HEPES pH7. 0)で適宜希釈した大腸菌 (Escherichia col i) ATCC25922を添加した。 次に、 洗浄液 10mlで 2回洗浄し、 0. Ιϋ/mlアデノ シンリン酸デアミナーゼを含有する洗浄液 10mlで洗浄した。 濾過器からメンブレ ンをはずし、 ホルダ一にセットして、 シャーレに入れてふたを少し開いて風乾し た。 乾燥後、 ATP抽出剤を松下電工製超音波式噴霧器 (EW622)で 5秒間噴霧して風 乾した。 その後 PPDK発光試薬を松下電工製超音波式噴霧器 (EW622)で 5秒間噴霧 して、 RMDS装置にセットして 5分間発光量を積算した。 出現した輝点数を bi tO - 4 で計測した。 一方、 標準寒天培地にて混釈培養で測定した菌数 (Colony Forming Uni t) (CFU)を計測し表 1に示した。 The membrane filter prepared in Example 5 was set on a filter, and washed twice with 20 ml of ultrapure water. Then, add 10 ml of the washing solution (0.05% glucose, 0.05% fructose, 1 mM HEPES pH 7.0), and add the bacterial dilution (5% sucrose, 0.05% glucose, 0.05% fructose, 10% HEPES, 10 mM HEPES). Escherichia coli ATCC25922 appropriately diluted with pH 7.0) was added. Next, the plate was washed twice with 10 ml of a washing solution, and then washed with 10 ml of a washing solution containing 0.1 mg / ml adenosine phosphate deaminase. The membrane was removed from the filter, set in a holder, placed in a petri dish, opened slightly, and air-dried. After drying, the ATP extractant was sprayed with a Matsushita Electric Works ultrasonic sprayer (EW622) for 5 seconds and air-dried. Thereafter, a PPDK luminescence reagent was sprayed for 5 seconds with an ultrasonic atomizer (EW622) manufactured by Matsushita Electric Works, and set on an RMDS device to integrate the luminescence amount for 5 minutes. The number of appearing bright spots was measured with bitO-4. On the other hand, the number of bacteria (Colony Forming Unit) (CFU) measured by pour culture on a standard agar medium was measured and shown in Table 1.
その結果、 出現した輝点数と、 混釈培養法で測定した CFUは少ない菌数におい てもよく一致した。
表 1 洗浄後の濾過膜を使用した時の菌数検出結果 実施例 As a result, the number of bright spots that appeared and the CFU measured by the pour culture method were in good agreement even with a small number of bacteria. Table 1.Results of bacterial count detection when using the membrane after washing Example
本発明 (個)混釈培養法 (GFU) The present invention (piece) pour culture method (GFU)
0 0 0 0
2 2 twenty two
5 5 5 5
8 8
10 10 10 10
15 16 15 16
21 20 21 20
26 28 26 28
36 35 36 35
51 53 51 53
66 67 66 67
76 75 76 75
〔比較例〕 (Comparative example)
未洗浄の膜を濾過器にセットし、 その後、 洗浄液(0. 05 % グルコース, 0. 05 % フルクトース, ImM HEPES pH7. 0) 10mlを入れて、 菌希釈液 (5 % スクロース, 0. 05 % グルコース, 0. 05 % フルク 1 ^一ス, lOmM HEPES pH7. 0) で適宜希釈した 大腸菌(Escherichi a col i) ATCC25922を添加した。 次に、 洗浄液 10mlで 2回洗浄 し、 0. lU/mlアデノシンリン酸デァミナーゼを含有する洗浄液 10mlで洗浄した。 濾過器からメンプレンをはずし、 ホルダーにセットして、 シャーレに入れてふた を少し開いて風乾した。 乾燥後、 ATP抽出剤を松下電工製超音波式噴霧器 (EW622) で 5秒間噴霧して風乾した。 その後松下電工製超音波式噴霧器 (EW622)で PPDK発 光試薬を 5秒間噴霧して、 RMDS装置にセットして 5分間発光量を積算した。 出現 した輝点数を M tO- 4で計測した。 一方、 標準寒天培地にて混釈培養で測定した菌 数(CFU)を計測し表 2に示した。 Set the unwashed membrane in the filter, and then add 10 ml of the washing solution (0.05% glucose, 0.05% fructose, ImM HEPES pH 7.0), and add the bacterial dilution (5% sucrose, 0.05% Escherichia coli ATCC25922, appropriately diluted with glucose, 0.05% fruc 1 ^ 1 +, lOmM HEPES pH 7.0) was added. Next, the plate was washed twice with 10 ml of a washing solution and then with 10 ml of a washing solution containing 0.1 lU / ml adenosine phosphate deaminase. The membrane was removed from the filter, set in a holder, placed in a petri dish, opened slightly, and air-dried. After drying, the ATP extractant was sprayed with a Matsushita Electric Works ultrasonic sprayer (EW622) for 5 seconds and air-dried. Then, the PPDK luminescent reagent was sprayed for 5 seconds with an ultrasonic atomizer (EW622) manufactured by Matsushita Electric Works, set on an RMDS device, and the luminescence was integrated for 5 minutes. The number of bright spots was measured using MtO-4. On the other hand, the number of bacteria (CFU) measured by pour culture on a standard agar medium was measured and shown in Table 2.
その結果、 出現した輝点数はノイズ輝点も含むため、 混釈培養法で測定した CF Uと一致しなかった。
表 2 未洗浄の濾過膜を使用した時の菌数検出結果 比較例 As a result, the number of bright spots appeared also included noise bright spots, and did not match the CFU measured by the pour culture method. Table 2 Results of detection of bacterial count when using unwashed filtration membrane Comparative example
比較例 (個)混釈培養法 (CFU) Comparative example (piece) Pour culture method (CFU)
13 0 13 0
19 2 19 2
27 5 27 5
24 8 24 8
36 10 36 10
30 16 30 16
28 20 28 20
43 28 43 28
49 35 49 35
82 53 82 53
80 67 80 67
86 75 86 75
本明細書に引用した全ての刊行物、 特許及び特許出願は、 その全文を参照によ り本明細書に組み入れるものとする。 産業上の利用可能性 All publications, patents and patent applications cited herein are hereby incorporated by reference in their entirety. Industrial applicability
本発明により、 濾過膜の洗浄方法、 及び洗浄された濾過膜を用いた菌数の測定 方法が提供される。 According to the present invention, a method for washing a filtration membrane, and a method for measuring the number of bacteria using the washed filtration membrane are provided.
従来法では、 膜に付着した ATP、 AMP等由来のバックグランド発光や、 ノイズ輝 点により正確な菌数の測定は困難であつたが、 本発明では実質的に ATP、 AMPを含 有しない膜を使用することにより、 ノイズ輝点が出ない状態で測定ができる。 そ の結果、 迅速、 簡便かつ高感度に正確な微生物の数の測定が可能となる。
In the conventional method, it was difficult to accurately measure the number of bacteria due to background luminescence derived from ATP, AMP, etc. attached to the membrane and noise spots, but in the present invention, a membrane substantially free of ATP and AMP was used. By using, measurement can be performed without noise luminescent spots. As a result, it is possible to measure the number of microorganisms quickly, simply, and with high sensitivity and accuracy.
Claims
(1) 試料を請求項 3記載の濾過膜に添加することにより、 試料中の菌体を濾 過膜上に捕捉する第 1工程 ' (1) The first step of adding the sample to the filtration membrane according to claim 3 to capture the cells in the sample on the filtration membrane.
(2) 濾過膜上に捕捉された菌体に含まれるアデノシンリン酸エステル類を検 出する第 2工程
(2) The second step of detecting adenosine phosphates contained in the cells captured on the filtration membrane
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001146474 | 2001-05-16 | ||
JP2001-146474 | 2001-05-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002092202A1 true WO2002092202A1 (en) | 2002-11-21 |
Family
ID=18992124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/004733 WO2002092202A1 (en) | 2001-05-16 | 2002-05-16 | Method of treating filter membrane, filter membrane, and method of rapidly counting number of microorganism with the filter membrane |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2002092202A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105617869A (en) * | 2014-11-07 | 2016-06-01 | 珠海格力电器股份有限公司 | Simple cleaning method of ultrafiltration membrane filter element |
JPWO2017170973A1 (en) * | 2016-03-30 | 2019-02-07 | 東レ株式会社 | Filtration method of microorganism culture solution by membrane module |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61209007A (en) * | 1985-03-12 | 1986-09-17 | Nitto Electric Ind Co Ltd | Selective separation of coenzyme |
JPH10309446A (en) * | 1997-03-13 | 1998-11-24 | Nok Corp | Purification device |
JPH1169994A (en) * | 1997-06-17 | 1999-03-16 | Kikkoman Corp | Assay of microorganism |
JP2000189197A (en) * | 1998-12-25 | 2000-07-11 | Kikkoman Corp | Atp eliminant, atp elimination and measurement of atp in cell |
-
2002
- 2002-05-16 WO PCT/JP2002/004733 patent/WO2002092202A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61209007A (en) * | 1985-03-12 | 1986-09-17 | Nitto Electric Ind Co Ltd | Selective separation of coenzyme |
JPH10309446A (en) * | 1997-03-13 | 1998-11-24 | Nok Corp | Purification device |
JPH1169994A (en) * | 1997-06-17 | 1999-03-16 | Kikkoman Corp | Assay of microorganism |
JP2000189197A (en) * | 1998-12-25 | 2000-07-11 | Kikkoman Corp | Atp eliminant, atp elimination and measurement of atp in cell |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105617869A (en) * | 2014-11-07 | 2016-06-01 | 珠海格力电器股份有限公司 | Simple cleaning method of ultrafiltration membrane filter element |
JPWO2017170973A1 (en) * | 2016-03-30 | 2019-02-07 | 東レ株式会社 | Filtration method of microorganism culture solution by membrane module |
EP3438243A4 (en) * | 2016-03-30 | 2019-11-06 | Toray Industries, Inc. | Method for filtering microbial culture solution using membrane module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Schottroff et al. | Sublethal injury and viable but non-culturable (VBNC) state in microorganisms during preservation of food and biological materials by non-thermal processes | |
Chen et al. | Characterization of mixed-species biofilm formed by Vibrio parahaemolyticus and Listeria monocytogenes | |
Al-Juboori et al. | Biofouling in RO system: Mechanisms, monitoring and controlling | |
Josset et al. | Numeration methods for targeting photoactive materials in the UV-A photocatalytic removal of microorganisms | |
AU2014238200B2 (en) | Biological indicator for oxidative sterilants | |
CN101040054A (en) | System for the extraction and detection of microbial atp | |
Bouteleux et al. | Escherichia coli behavior in the presence of organic matter released by algae exposed to water treatment chemicals | |
JPS624120B2 (en) | ||
EP2789692B1 (en) | Method for measuring cells, and reagent for cell measurement | |
JP2022028905A (en) | Method for rapid detection of bacterial spores in industrial process | |
Satoh et al. | ATP amplification for ultrasensitive bioluminescence assay: detection of a single bacterial cell | |
FR2940805A1 (en) | METHOD FOR AMPLIFYING AND / OR DETECTING NUCLEIC ACIDS, KITS AND USES THEREOF | |
Czieborowski et al. | A two-step bioluminescence assay for optimizing antibacterial coating of hollow-fiber membranes with polydopamine in an integrative approach | |
WO2002092202A1 (en) | Method of treating filter membrane, filter membrane, and method of rapidly counting number of microorganism with the filter membrane | |
JP3773151B2 (en) | Analysis of intracellular components | |
JP2000157295A (en) | Measurement of number of live cells | |
JP4162187B2 (en) | Method and apparatus for quantifying pyrophosphate and nucleic acid | |
JP3599979B2 (en) | Microbial assay | |
JP4431334B2 (en) | Improved ATP amplification method and use thereof | |
US20080014607A1 (en) | Atp-metry based on intracellular adenyl nucleotides for detecting and counting cells, use and implementing method for determining bacteria in particular devoid of atp | |
WO2005073399A1 (en) | Method of qualitatively/quantatively determining phosphate ion and phosphate ion sensor | |
WO2002092843A1 (en) | Method of counting microbial cells | |
WO2024019166A1 (en) | Method and kit for detecting microorganism, cell, microorganism-related substance or cell-related substance in solution | |
Mariscal et al. | A fluorescent method for assessing the antimicrobial efficacy of disinfectant against Escherichia coli ATCC 35218 biofilm | |
TWI463015B (en) | Method and agent for detecting microorganisms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |