WO2002090166A1 - Condition monitoring system - Google Patents
Condition monitoring system Download PDFInfo
- Publication number
- WO2002090166A1 WO2002090166A1 PCT/AU2002/000570 AU0200570W WO02090166A1 WO 2002090166 A1 WO2002090166 A1 WO 2002090166A1 AU 0200570 W AU0200570 W AU 0200570W WO 02090166 A1 WO02090166 A1 WO 02090166A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- parameters
- installation
- sensors
- mode
- condition monitoring
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 60
- 238000009434 installation Methods 0.000 claims abstract description 33
- 238000012545 processing Methods 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 23
- 230000007257 malfunction Effects 0.000 claims abstract description 7
- 230000008859 change Effects 0.000 claims description 15
- 238000006073 displacement reaction Methods 0.000 claims description 7
- 230000003139 buffering effect Effects 0.000 claims description 6
- 230000003750 conditioning effect Effects 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 5
- 238000012423 maintenance Methods 0.000 description 18
- 238000004458 analytical method Methods 0.000 description 16
- 238000005259 measurement Methods 0.000 description 11
- 230000006399 behavior Effects 0.000 description 10
- 238000000513 principal component analysis Methods 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000013144 data compression Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 238000013213 extrapolation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011112 process operation Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 230000005355 Hall effect Effects 0.000 description 1
- 238000003070 Statistical process control Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L23/00—Control, warning or like safety means along the route or between vehicles or trains
- B61L23/04—Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
- B61L23/041—Obstacle detection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L23/00—Control, warning or like safety means along the route or between vehicles or trains
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L23/00—Control, warning or like safety means along the route or between vehicles or trains
- B61L23/04—Control, warning or like safety means along the route or between vehicles or trains for monitoring the mechanical state of the route
- B61L23/042—Track changes detection
- B61L23/048—Road bed changes, e.g. road bed erosion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L25/00—Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
- B61L25/06—Indicating or recording the setting of track apparatus, e.g. of points, of signals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L27/00—Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
- B61L27/50—Trackside diagnosis or maintenance, e.g. software upgrades
- B61L27/53—Trackside diagnosis or maintenance, e.g. software upgrades for trackside elements or systems, e.g. trackside supervision of trackside control system conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61L—GUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
- B61L5/00—Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
- B61L5/06—Electric devices for operating points or scotch-blocks, e.g. using electromotive driving means
Definitions
- the present invention relates to condition monitoring and in particular relates to a system for monitoring condition of a railways installation such as a points machine.
- the system includes a distributed array of sensors adapted to gather data regarding the status of elements of the installation with which the sensors are associated.
- the monitoring system may utilize advanced algorithms to process the data for a variety of purposes including predicting failure of equipment, developing efficient maintenance schedules and managing railway assets in general.
- Prior art monitoring has been of a limited scope and typically has been limited to measurement of displacement to confirm that a switched rail has moved to a position sufficiently close to a stock rail to ensure safe operation.
- Prior art monitoring generally has been useful for detecting faults in infrastructure subsequent to failure of the monitored elements.
- the monitoring system of the present invention may provide reasonably comprehensive monitoring of this mechanical alignment. If a problem occurs, irrespective of the underlying cause (e.g. different types of obstruction, ballast movement, increased slide chair friction, mechanical looseness of various types), it should be visible via one or more sensors; conversely, if the relationship between all sensor signals is normal, this may be strong evidence that the mechanical alignment of the monitored installation is sound.
- the underlying cause e.g. different types of obstruction, ballast movement, increased slide chair friction, mechanical looseness of various types
- a system for monitoring condition of a railways installation such as a points machine
- said system including: a plurality of sensors associated with elements of said installation for monitoring parameters indicative of operating capability of said installation; and means for processing said monitored parameters to determine whether said parameters are changing relative to reference values and to determine whether the changes are indicative of an increased risk of a malfunction in said installation.
- a method of monitoring condition of a railways installation such as a points machine said method including the steps of: monitoring with a plurality of sensors parameters indicative of operating capability of said installation; and processing the monitored parameters to determine whether said parameters are changing relative to reference values and to determine whether the changes are indicative of an increased risk of a malfunction in said installation.
- the condition monitoring system of the present invention includes a plurality of sensors for acquiring trackside data related to a plurality of different parameters and for logging key events.
- the sensors are connected or associated with elements of the installation (eg. points) being monitored.
- the sensors may be adapted to acquire data for several quantities or classes of parameters including force, power, current/voltage, spatial measurements including distance or displacement, electrical noise, temperature and state changes.
- sensors associated with the monitoring system may be adapted to measure one or more of: load force; switch blade position on each side thereof; motor voltage and current during operation; track and points machine temperature; lock and detection blade position on each side thereof; stock rail position on each side thereof; and points machine position (relative to a fixed point).
- the monitoring system may utilize information relating to at least two, and preferably at least three of the aforementioned parameters. Key events to be logged may include time stamping of points operation, opening and closing of case cover associated with a points machine, insertion and removal of a hand-crank, loss of supply current and passage or transit of a train.
- Force measurement may be associated with movement of slide chairs, or may be indicative of an obstruction, clutch slip and/or snow obstruction.
- Sensors for performing force measurement may include a load cell or load pin and/or a strain gauge or gauges.
- Sensors for performing distance or displacement measurements may include inductive analog proximity transducers. At the toe of each point there may be one or more proximity sensors for measuring closed blade gap, stock rail position and machine position. Sensors for monitoring the case cover and hand crank may include a micro switch. Temperature sensors may include thermistors or semiconductor devices. External radiation temperature may be measured directly. Motor current sensors may include Hall Effect instantaneous current transducers. Measurements may be made and monitored in respect of electrical properties associated with a circuit controller, high resistance contacts in relays, high resistance contacts in hand crank cut-out and motor brushes/commutator.
- the monitoring system may include an analog interface for interfacing the sensors to processing means.
- the analog interface may include signal conditioning and buffering circuits.
- the system may include a plurality of analog to digital converters and a logic array for collecting data and forwarding to the processing means.
- the logic array may perform some preliminary processing.
- the processing means may include a suitably programmed digital computer such as a PC system.
- the logic array may be provided in the form of a field programmable gate array (FPGA).
- the FPGA may continuously monitor the plurality of sensors and pass data to the PC system for processing and storage.
- the FPGA may collect data from the plurality of sensors at a relatively low speed in normal mode (eg 500Hz).
- a relatively low speed in normal mode eg 500Hz.
- the FPGA may switch to a relatively high speed mode (eg.2.5KHz) whilst focussing on a subset of the plurality of sensors.
- the subset of sensors selected as a focus for that high speed monitoring may be selected between one of two or more sub-sets having regard to the nature of the detected event.
- the PC system may be provided on a single board (eg. PC104 module).
- the PC system may store a snapshot of the monitored system periodically, typically between every one and fifteen minutes, for example approximately every 4 minutes, and store this locally for use in on-line (ie, real time) trend analysis.
- the PC system may also archive data for later (off line) processing and analysis.
- Off-line or on-line processing and analysis may be conveniently carried out by means of a condition monitoring and fault detection software toolkit.
- a threshold limit mode may detect when a monitored parameter exceeds a threshold value beyond which the points are considered to have failed. On reaching one or more of these threshold values an alarm condition may be triggered.
- a rate of change mode may give consideration to any parameter that is changing in such a way that extrapolation would show that it will exceed a threshold value in a given time period.
- a signature mode may monitor signature of each parameter over time or events.
- the signature may change over time.
- a change in the signature at a rate greater than that expected may be utilized to provide an indication of a potential failure.
- a behaviour mode may make use of a series of models of known behaviours.
- the models may be generated by means of a test site for simulating a range of failures.
- Signatures of the behaviour may be modelled and used to predict such failures or as a tool to assist diagnosis of failures.
- a correlation mode may compare changes in status of parameters from different reference planes.
- the changes in parameters may be expected to move in unison, or other defined relationship, and any departure from this may be interpreted to indicate a possible failure.
- the correlation mode may provide an indication of changes to the mechanical alignment of the monitored installation.
- monitoring parameters before and after maintenance it may be possible to gauge effectiveness of the maintenance and to confirm that the maintenance was necessary. It may also be possible to determine when to perform maintenance.
- the monitoring system is capable of returning numerical data, the system may also act as a measurement tool to assist in maintenance functions. Situations in which detailed observation and analysis of points behaviour can provide additional diagnostic data include post-movement relaxation and train transits.
- the behaviour of the points machine and its associated track during a train passage may provide valuable extra information on how securely the mechanical system is fixed. It is a straightforward matter to set alarm limits on the extent of such shifts, or the standard deviation (extent of rattle) of the signals during a train transit. Trending may also be deployed to see how such parameters vary with time. An important issue is deciding at what level thresholds should be set.
- Stored reference data regarding selected parameters of the plurality of parameters may be updated with detected changes in those parameters (when those changes are within predetermined acceptably limits), such as are for example typical of normal wear or aging. The updated reference data may then be employed as a reference point for monitoring whether subsequent changes or rate of change of those parameters are indicative of the occurrence for a heightened risk of a malfunction.
- the monitoring system may feature use of fixed thresholds or stored reference data for one or some of the parameters, e.g. parameters such as closure gap distance which are potentially safety critical.
- the processing means may include a digital computer programmed with condition monitoring and fault detection software.
- the software may be adapted to monitor behavioural trends. For example it may monitor trends which occur within a defined range of parameters and may provide that changes represented by those trends are used to create an updated reference point relative to which the system may then monitor for any higher rate of change or change of absolute level which would indicate the occurrence of or a heightened risk of a malfunction.
- the system may include an interface to a communications network such as the internet. At least some processing modes as outlined above may be performed on-line via the PC system to provide trend analysis. The numerical data and on- line analysis may be available via the communications network to allow an operator to 'see' what is happening at the points and make value judgements based on that information.
- the monitoring system may provide information through its communication interface and off line reports to the operator to diagnose an event. By providing real time physical data the system may serve as a valuable maintenance tool by providing service adjustment information from the monitored equipment. Moreover, by utilizing analysis tools as described herein the monitoring system may predict possible failure and/or provide suitable warnings of impending failure. A capacity to predict a future condition of the monitored equipment may facilitate determination of when maintenance needs to be performed as well as the type of maintenance to be performed.
- Fig. 1 shows a block diagram of a condition monitoring system according to the present invention
- Fig. 2 shows one embodiment of the condition monitoring system of Fig.1 ;
- Fig. 3 shows the disposition of sensors relative to a points machine; and
- Fig. 4 shows a table of the sensors in Fig. 3.
- Si to SN is associated with elements of a railway infrastructure.
- Sensors Si to SN are adapted to measure plural quantities or classes of parameters including force, displacement, current, voltage, temperature, electrical noise, state changes etc...
- Sensors Si to SN are connected to analog interface module 10.
- Interface module 10 includes signal conditioning and buffering circuits.
- the outputs of analog interface module 10 are connected to Analog to Digital (ADC) converter module 11.
- ADC module 11 is adapted to convert analog data gathered by sensors Si to S to a digital domain. Digital data from ADC module 11 is passed to processing module 12.
- ADC Analog to Digital
- Processing module 12 may include a logical array such as an FPGA for performing preliminary processing of data.
- Processing module 12 may include a digital computer such as a suitably programmed PC system for performing online (ie real time) processing of data. If appropriate, the processing module may be partitioned so that preliminary processing may take place within an FPGA in one location (for example within the railway equipment), while further processing takes place remotely in a separate processor, with data communication taking place over a suitable link between the FPGA and processing module. In one instantiation, a single processing module may be linked up with several FPGA modules, each of which is associated with a separate piece of railway equipment.
- the system includes a storage module 13 for archiving data. Archived data may be processed off-line via suitable analysis software.
- the monitoring system may be connected to a local or wide area network via network interface module 14.
- the system may also include a display/keyboard module 15 for providing a user interface to the monitoring system.
- a laptop or palmtop device may communicate with the monitoring system via its network capability, to act as a local terminal.
- Fig. 2 shows an exemplary embodiment of the monitoring system including an array of sensors 20.
- the array of sensors 20 monitors a variety of parameters and parameter types including displacement, current, voltage, temperature and state changes.
- duplicate sensors may be provided for at least some of the parameters, especially any sensors that are of a less reliable type.
- FIG. 3 A table of the sensors in Fig. 3 is set forth in Fig. 4.
- Analog signals from sensors 20 are connected to analog interface card 21 for providing signal conditioning and buffering of the analog signals.
- the conditioned and buffered signals are passed to FPGA card 22.
- FPGA card 22 includes a plurality of ADCs, local RAM as well as a Xilinx 4085 chip FPGA for controlling and gathering data from the ADC's.
- Each ADC may include a sigma delta analog to digital converter.
- the local RAM may include 256Kx16 SRAM.
- the FPGA averages the data and stores it in the local RAM making it available to PC card 23 upon request.
- the FPGA is a resource of approximately 85,000 logic gates, which can be dynamically configured and connected under software control. Functionality within the FPGA is determined by a configuration file, which must be loaded before the FPGA can perform its desired functions.
- the configuration bitstream which defines the functionality of the FPGA can be loaded under the control of a host, into the FPGA.
- the bitstream for the FPGA originates from a "HandelC" source file. This describes the desired functionality using a C - like syntax, but it is complied into a list of hardware requirements by the HandelC compiler, rather than processor instructions.
- the netlist which results from this compilation is then processed by the Xilinx toolset, into a bitstream suitable for downloading into the FPGA by a host.
- the FPGA continuously monitors sensor array 20 and passes data each second to PC card 23 for further action.
- the FPGA carries out the following functions in the current embodiment:
- PC processor communicates to the PC processor over a PC104 bus, updating the PC on the status of the points machine, accepting and responding to commands from the PC, and sending data to the PC on request.
- ADCs analog-to-digital converters
- AD7731s Analog Devices' AD7731s.
- sigma-delta converters with a high degree of programmability.
- the sampling rate any one of up to 3 input channels can be monitored; the sampling rate, input gain(e.g. multiply the input signal by 1, 2, 4, 8 ...), and output word precision (e.g. 16 or 24 bits) can all be configured.
- the ADCs are used to monitor a total of 18 input channels under FPGA control, each having up to 3 distinct inputs.
- the FPGA monitors all 18 channels in turn.
- the ADCs are continuously reprogrammed in parallel to read each of their 3 input channels in turn. This results in a sampling rate of approximately 500Hz on all channels.
- the FPGA carries out some simple signal conditioning, and saves the resulting data in a compact form so that the PC can read the channel data at a rate of only 1 Hz.
- the FPGA Each time new data is read, the FPGA checks to see whether a new 'event' has begun, such as a points machine movement including post movement relaxation or a train passage or transit. If so, the FPGA indicates to the PC that a new event has begun and reprograms the ADCs to carry out a different data acquisition scheme. For example, during a points machine movement only five channels are sampled, but at 2.5kHz per channel. The data are stored in the local RAM memory for transmission to the PC once the event is completed. If desirable, further data processing (e.g. data compaction) can be carried out to reduce the volume of data sent to the PC. On completion of the event, a normal background pattern of data acquisition is resumed.
- a new 'event' such as a points machine movement including post movement relaxation or a train passage or transit. If so, the FPGA indicates to the PC that a new event has begun and reprograms the ADCs to carry out a different data acquisition scheme. For example, during a points machine movement only five channels are sampled,
- PC card 23 includes a PC104 Form factor PC. This is a complete PC system comprising memory, I/O, etc, in a footprint of ⁇ 90mm x 96mm and is a commercially produced product.
- the operating system used is VXWorks from Windriver.
- the "PC104 expansion bus” is in effect a PC ISA bus in a different form factor, allowing vertical "stacking" of expansion boards, rather than conventional motherboard “slots”.
- PC card 23 stores samples of data every 4 minutes in Local Storage for use in an on line trend analysis. Data is also archived on flash disk 24 for off-line processing and analysis.
- the system includes network access module 25 for interacting with a wide area network such as the internet.
- Console access module 26 including a monitor and a keyboard provides an interface to a human operator.
- a variety of analysis techniques may be used to detect significant changes in equipment behaviour, including the following:
- each of the parameters may have a threshold limit beyond which the points are considered to have failed. On reaching one or more of these values an alarm may be given.
- CMFD condition monitoring and fault detection
- PCA Principal Component Analysis
- a second data compression algorithm is called Partial Least Squares (PLS), and uses Least Squares (LS) type modelling to identify a relationship between inputs and outputs. It too compresses the variables, but unlike PCA it differentiates between inputs and outputs.
- Internal variables known as 'latent variables', are modelled using a variation of LS modelling, and can be monitored in order to detect changes in operation. Cross validation may be included for both these algorithms to aid selection of components and latent variables.
- the CMFD software may be employed to fill-in for missing data to allow process condition monitoring to continue even if individual signals are lost.
- Traditional Model-Based Statistical Process Control indicators such as the T 2 and Q statistics may also been included. These may be derived directly from the PCA and PLS engines, and are established quality measures.
- Two characterisation engines may be included that allow the user to detect abnormal process operation, namely Elliptical Density Estimation (EDE) and Kernel Density Estimation (KDE). Both EDE and KDE may use historical data from the process to form a definition of 'normal' process operation.
- EDE Elliptical Density Estimation
- KDE Kernel Density Estimation
- Both EDE and KDE may use historical data from the process to form a definition of 'normal' process operation.
- condition monitors may be run side-by-side in real-time, or a single condition monitor may support a number of different model sets. In this latter configuration, a degree of automatic process classification may be possible based on the PCA/PLS models and the analysis of clusters.
- the processing analysis may be adapted for detecting abnormal system operation as well as subsequent diagnosis and identification of contributing factors leading to abnormal operation.
- the analysis may provide an indication of the effectiveness of the maintenance and/or whether the maintenance was in fact necessary.
- the analysis may also determine when maintenance is to be performed. Maintenance functions may be assisted because the monitoring system is capable of returning numerical data and may thereby act as a measurement tool.
- the system may provide data through its web interface continuously, it is possible to "see” what is happening at the points and to make value judgements based on the information.
- the monitoring system may provide information to the maintainer to diagnose an event.
- the system may be able to give the maintainer adjustment information for the installation.
- the system may predict possible failure and to provide a suitable pre-warning.
- the system includes an ability to predict a possible future condition of the equipment it is possible to determine when maintenance will be needed and what type of maintenance is to be performed.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Train Traffic Observation, Control, And Security (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/477,222 US7395139B2 (en) | 2001-05-08 | 2002-05-08 | Condition monitoring system |
GB0325744A GB2392987B (en) | 2001-05-08 | 2002-05-08 | Condition monitoring system |
EP02721848.6A EP1390246B1 (en) | 2001-05-08 | 2002-05-08 | Condition monitoring system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPR4832A AUPR483201A0 (en) | 2001-05-08 | 2001-05-08 | Condition monitoring system |
AUPR4832 | 2001-05-08 | ||
GB0203262.1 | 2002-02-12 | ||
GB0203262A GB0203262D0 (en) | 2002-02-12 | 2002-02-12 | Points monitoring system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002090166A1 true WO2002090166A1 (en) | 2002-11-14 |
Family
ID=25646677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AU2002/000570 WO2002090166A1 (en) | 2001-05-08 | 2002-05-08 | Condition monitoring system |
Country Status (4)
Country | Link |
---|---|
US (1) | US7395139B2 (en) |
EP (1) | EP1390246B1 (en) |
GB (1) | GB2392987B (en) |
WO (1) | WO2002090166A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT509241B1 (en) * | 2010-01-14 | 2012-03-15 | Vae Eisenbahnsysteme Gmbh | METHOD FOR CHECKING THE SWITCHES BZW. THE CABLE OF A MONITORING DEVICE FOR DRIVING RAILWAYS AND DEVICE FOR CARRYING OUT THIS METHOD |
CN102785681A (en) * | 2012-07-30 | 2012-11-21 | 北京锦鸿希电信息技术股份有限公司 | Method, equipment and system for monitoring on-road safety condition of train |
NL2010803A (en) * | 2012-10-04 | 2013-06-10 | Volkerrail Nederland B V | SYSTEM FOR MONITORING THE OPERATING FUNCTIONS OF MOVING COMPONENTS OF A RAILWAY. |
ITRM20130404A1 (en) * | 2013-07-11 | 2015-01-12 | Deltatech Di Fondriest Ivan Giovann I | METHOD FOR THE DIAGNOSIS OF FUNCTIONING OF A RAILWAY DEVIATOA, AND ITS DIAGNOSTIC SYSTEM. |
EP3109126A1 (en) * | 2015-06-24 | 2016-12-28 | VolkerRail Nederland BV | Monitoring with a lpwan data logger |
WO2018050807A1 (en) * | 2016-09-19 | 2018-03-22 | Siemens Aktiengesellschaft | System, prediction unit, and method for predicting a failure of at least one unit for monitoring and/or controlling transportation traffic |
EP3305622A1 (en) * | 2016-10-06 | 2018-04-11 | Siemens Schweiz AG | Method for diagnosis of spatially distributed technical components |
IT201700028277A1 (en) * | 2017-03-14 | 2018-09-14 | Comesvil S P A | Monitoring system for a railway infrastructure |
CN109383566A (en) * | 2017-08-10 | 2019-02-26 | 比亚迪股份有限公司 | Train sort method and device |
CN109525416A (en) * | 2017-09-18 | 2019-03-26 | 通用汽车环球科技运作有限责任公司 | Analog-to-digital fault detection, isolation and alleviation to low-voltage communication network |
EP3623255A1 (en) * | 2018-09-17 | 2020-03-18 | Voestalpine Signaling Sainerholz GmbH | Method and assembly for monitoring a final position |
DE102019220447A1 (en) * | 2019-12-20 | 2021-06-24 | Siemens Mobility GmbH | Method for determining a state of a point machine |
EP4279353A1 (en) * | 2022-05-19 | 2023-11-22 | Siemens Mobility GmbH | Point machine and method for operating a point machine |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7304586B2 (en) | 2004-10-20 | 2007-12-04 | Electro Industries / Gauge Tech | On-line web accessed energy meter |
US9080894B2 (en) | 2004-10-20 | 2015-07-14 | Electro Industries/Gauge Tech | Intelligent electronic device for receiving and sending data at high speeds over a network |
US7747733B2 (en) | 2004-10-25 | 2010-06-29 | Electro Industries/Gauge Tech | Power meter having multiple ethernet ports |
US8190381B2 (en) * | 2005-01-27 | 2012-05-29 | Electro Industries/Gauge Tech | Intelligent electronic device with enhanced power quality monitoring and communications capabilities |
US8620608B2 (en) | 2005-01-27 | 2013-12-31 | Electro Industries/Gauge Tech | Intelligent electronic device and method thereof |
US8160824B2 (en) | 2005-01-27 | 2012-04-17 | Electro Industries/Gauge Tech | Intelligent electronic device with enhanced power quality monitoring and communication capabilities |
JP2007250748A (en) * | 2006-03-15 | 2007-09-27 | Omron Corp | Apparatus, method and program of analyzing process abnormality |
DE102007009316B4 (en) * | 2006-04-10 | 2020-06-10 | Schwihag Ag | Device and method for inspecting and / or monitoring a switch system having one or more switches |
DE602006008308D1 (en) * | 2006-09-18 | 2009-09-17 | Bombardier Transp Gmbh | Diagnostic system and method for monitoring a railway system |
US10845399B2 (en) | 2007-04-03 | 2020-11-24 | Electro Industries/Gaugetech | System and method for performing data transfers in an intelligent electronic device |
US11307227B2 (en) | 2007-04-03 | 2022-04-19 | Electro Industries/Gauge Tech | High speed digital transient waveform detection system and method for use in an intelligent electronic device |
US20130275066A1 (en) | 2007-04-03 | 2013-10-17 | Electro Industries/Gaugetech | Digital power metering system |
US7702401B2 (en) * | 2007-09-05 | 2010-04-20 | Fisher-Rosemount Systems, Inc. | System for preserving and displaying process control data associated with an abnormal situation |
US12061218B2 (en) | 2008-03-13 | 2024-08-13 | Ei Electronics Llc | System and method for multi-rate concurrent waveform capture and storage for power quality metering |
CN103129584B (en) * | 2011-11-30 | 2016-02-03 | 国际商业机器公司 | Switch monitor method and system, railway line management method and system |
JP5887651B2 (en) * | 2011-12-06 | 2016-03-16 | 新日鐵住金株式会社 | Vehicle abnormality detection method |
CN102975745B (en) * | 2012-11-30 | 2015-05-27 | 北京交控科技有限公司 | Preventative maintenance system and preventative maintenance method of subway signal system |
US20150158511A1 (en) * | 2013-12-05 | 2015-06-11 | General Electric Company | Points machine monitoring system and method |
GB2537863B (en) * | 2015-04-28 | 2019-06-19 | Thales Holdings Uk Plc | Methods and systems for alerting a user to the presence of a fault in an electromechanical system in a railway infrastructure |
US11397655B2 (en) * | 2017-02-24 | 2022-07-26 | Hitachi, Ltd. | Abnormality diagnosis system that reconfigures a diagnostic program based on an optimal diagnosis procedure found by comparing a plurality of diagnosis procedures |
CA2977933C (en) * | 2017-03-24 | 2023-08-01 | Canadian Pacific Railway Company | Condition based maintenance of railcar roller bearings using predictive wayside alerts based on acoustic bearing detector measurements |
US10589766B2 (en) * | 2017-06-01 | 2020-03-17 | Siemens Mobility, Inc. | Railroad crossing gate monitoring and alarm system |
IT201800006041A1 (en) * | 2018-06-05 | 2019-12-05 | Method and device for the control of railways infrastructure | |
US10977874B2 (en) * | 2018-06-11 | 2021-04-13 | International Business Machines Corporation | Cognitive learning for vehicle sensor monitoring and problem detection |
DE102019218138A1 (en) * | 2018-11-27 | 2020-05-28 | Presenso Ltd. | A proactive and automated system and method thereof for repairing sub-optimal machine operation |
DE102019202631A1 (en) * | 2019-02-27 | 2020-08-27 | Siemens Mobility GmbH | Method for monitoring a switch in a railway track system |
IT202000002818A1 (en) * | 2020-02-12 | 2021-08-12 | Silsud S R L | APPARATUS AND METHOD FOR HANDLING THE NEEDLES OF A RAILWAY SWITCH |
US20230219604A1 (en) * | 2020-05-26 | 2023-07-13 | Konux Gmbh | Railway point managing system and method |
CN113859309B (en) * | 2021-10-27 | 2024-05-31 | 湖南润伟智能机器有限公司 | Car coupler state monitoring system |
US20230286555A1 (en) * | 2022-03-11 | 2023-09-14 | Pillar Innovations, LLC | Railyard Switch Run Through Electronic Detection and Alarm System |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2313611A (en) * | 1996-05-25 | 1997-12-03 | British Railways Board | Monitoring railway point electric operating mechanisms |
GB2335986A (en) * | 1998-04-02 | 1999-10-06 | Strainstall Engineering Servic | A points-actuator linkage to monitor the state of railway points to detect failure |
JPH11348788A (en) * | 1998-06-15 | 1999-12-21 | Nippon Signal Co Ltd:The | Signal facility control device |
JP2000112777A (en) * | 1998-10-07 | 2000-04-21 | Nippon Signal Co Ltd:The | System for information processing and method therefor |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3771119A (en) * | 1972-06-22 | 1973-11-06 | Alden Self Transit Syst | Transit monitoring system |
US4283031A (en) * | 1977-12-14 | 1981-08-11 | Finch Colin M | System controlling apparatus which compares signals from sensors monitoring passing objects with pre-determined parameter information to control the system |
DE2910770C3 (en) * | 1979-03-19 | 1986-11-13 | Siemens AG, 1000 Berlin und 8000 München | Track monitoring device |
DE3330869C2 (en) | 1983-08-26 | 1986-07-03 | Siemens AG, 1000 Berlin und 8000 München | Circuit for the detection of earth faults in the supply circuits of three-phase turnout drives |
DE3511891A1 (en) | 1985-04-01 | 1986-10-16 | Siemens AG, 1000 Berlin und 8000 München | Control, safety and monitoring device on points |
DE3515962C2 (en) | 1985-04-30 | 1987-02-19 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Arrangement for the signal-technically safe control and failure monitoring of AC-fed double filament lamps of a light signal, in particular advance signals in railway signaling systems |
DE3540307A1 (en) | 1985-11-13 | 1987-05-14 | Siemens Ag | Circuit for controlling a set of points with a plurality of compact devices |
DE3608878A1 (en) | 1985-12-17 | 1987-06-19 | Siemens Ag | Circuit for the centralised control and monitoring of a set of points with a plurality of compact devices for setting, securing and monitoring the movable points components |
DE3612652A1 (en) | 1985-12-17 | 1987-10-22 | Siemens Ag | Circuit for centralised control and monitoring of a set of points with a plurality of compact devices whose action is distributed over the movable components of the set of points |
DE3637037A1 (en) | 1986-10-30 | 1988-05-11 | Licentia Gmbh | Set of points with local electrical control |
US4860971A (en) * | 1988-09-09 | 1989-08-29 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Emergency egress fixed rocket package |
FR2645674B1 (en) | 1989-04-07 | 1993-10-01 | Sncf | INSTALLATION OF REMOTE CONTROL AND REMOTE CONTROL OF THE OPENING OR CLOSING STATE OF A CONTACT AMONG A PLURALITY OF CONTACTS |
US5172637A (en) * | 1991-02-01 | 1992-12-22 | Franz Plasser Bahnbaumaschinen-Industriegesellschaft M.B.H. | Track surfacing machine for the controlled lowering of the track |
JPH04260132A (en) | 1991-02-15 | 1992-09-16 | Hitachi Ltd | Problem solving system |
AT399851B (en) * | 1991-05-08 | 1995-08-25 | Vae Ag | METHOD FOR MONITORING THE CONDITION OF RAILS |
DE19606894C2 (en) | 1996-02-13 | 2003-01-23 | Siemens Ag | Device for the signal-safe control and monitoring of electrical consumers in the railway system |
DE19606895C2 (en) | 1996-02-13 | 2001-07-05 | Siemens Ag | Circuit for controlling and monitoring point machines |
FR2745543B1 (en) | 1996-02-29 | 1998-05-22 | Cogifer | RAILWAY NETWORK MONITORING SYSTEM |
AT407983B (en) * | 1996-03-12 | 2001-07-25 | Vae Ag | DEVICE FOR DETECTING THE POSITIONS OF SWIVELABLE PARTS OF A SWITCH |
US5803411A (en) * | 1996-10-21 | 1998-09-08 | Abb Daimler-Benz Transportation (North America) Inc. | Method and apparatus for initializing an automated train control system |
US5806809A (en) * | 1997-03-12 | 1998-09-15 | Danner; Don D. | Railroad switch point position sensing system and method |
DE19747198A1 (en) | 1997-10-25 | 1999-04-29 | Tiefenbach Gmbh | Railway operating method |
JPH11208478A (en) | 1998-01-26 | 1999-08-03 | Mitsubishi Electric Corp | Train travel facility control device and failure information control method for it |
DE19826269C2 (en) | 1998-06-05 | 2003-02-20 | Siemens Ag | Circuit for setting and monitoring a turnout with several three-phase turnout drives |
JP3523203B2 (en) | 1998-08-19 | 2004-04-26 | シーメンス シュヴァイツ アクチエンゲゼルシャフト | Traffic equipment control and monitoring methods |
DE19838672A1 (en) | 1998-08-20 | 2000-03-02 | Siemens Ag | Railway points monitoring and control device |
JP3897910B2 (en) | 1998-08-21 | 2007-03-28 | 日本信号株式会社 | Switching machine monitoring device |
NL1012336C2 (en) * | 1999-06-15 | 2000-12-18 | Strukton Railinfra Elektrotech | Monitoring network for points switches in railway track system, uses computers and current sensors to compare actual motor current characteristics with stored data |
FR2797958B1 (en) * | 1999-08-31 | 2001-10-26 | Alstom | METHOD AND DEVICE FOR TESTING THE OPERATION OF AN ELECTRONIC UNIT BY SIMULATION AND INSTALLATION FOR TESTING UNIT ON BOARD ON RAILWAY EQUIPMENT OR AN ELECTRIC VEHICLE |
-
2002
- 2002-05-08 GB GB0325744A patent/GB2392987B/en not_active Expired - Lifetime
- 2002-05-08 WO PCT/AU2002/000570 patent/WO2002090166A1/en not_active Application Discontinuation
- 2002-05-08 EP EP02721848.6A patent/EP1390246B1/en not_active Expired - Lifetime
- 2002-05-08 US US10/477,222 patent/US7395139B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2313611A (en) * | 1996-05-25 | 1997-12-03 | British Railways Board | Monitoring railway point electric operating mechanisms |
GB2335986A (en) * | 1998-04-02 | 1999-10-06 | Strainstall Engineering Servic | A points-actuator linkage to monitor the state of railway points to detect failure |
JPH11348788A (en) * | 1998-06-15 | 1999-12-21 | Nippon Signal Co Ltd:The | Signal facility control device |
JP2000112777A (en) * | 1998-10-07 | 2000-04-21 | Nippon Signal Co Ltd:The | System for information processing and method therefor |
Non-Patent Citations (2)
Title |
---|
DATABASE WPI Week 200013, Derwent World Patents Index; AN 2000-139719, XP002974586 * |
See also references of EP1390246A4 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT509241B1 (en) * | 2010-01-14 | 2012-03-15 | Vae Eisenbahnsysteme Gmbh | METHOD FOR CHECKING THE SWITCHES BZW. THE CABLE OF A MONITORING DEVICE FOR DRIVING RAILWAYS AND DEVICE FOR CARRYING OUT THIS METHOD |
CN102785681A (en) * | 2012-07-30 | 2012-11-21 | 北京锦鸿希电信息技术股份有限公司 | Method, equipment and system for monitoring on-road safety condition of train |
CN102785681B (en) * | 2012-07-30 | 2016-07-06 | 北京锦鸿希电信息技术股份有限公司 | Train is in way method for monitoring safety status, equipment and system |
NL2010803A (en) * | 2012-10-04 | 2013-06-10 | Volkerrail Nederland B V | SYSTEM FOR MONITORING THE OPERATING FUNCTIONS OF MOVING COMPONENTS OF A RAILWAY. |
NL2011826A (en) * | 2012-10-04 | 2014-04-07 | Volkerrail Nederland B V | SYSTEM AND METHOD FOR MONITORING THE OPERATING FUNCTIONS OF MECHANICALLY MOVED COMPONENTS OF A RAILWAY, BY RELAY SENSORS AND AN ACTUATOR SENSOR. |
EP2716518A1 (en) * | 2012-10-04 | 2014-04-09 | VolkerRail Nederland BV | System to monitor the operational functions of moving components of a railway |
ITRM20130404A1 (en) * | 2013-07-11 | 2015-01-12 | Deltatech Di Fondriest Ivan Giovann I | METHOD FOR THE DIAGNOSIS OF FUNCTIONING OF A RAILWAY DEVIATOA, AND ITS DIAGNOSTIC SYSTEM. |
EP3109126A1 (en) * | 2015-06-24 | 2016-12-28 | VolkerRail Nederland BV | Monitoring with a lpwan data logger |
WO2018050807A1 (en) * | 2016-09-19 | 2018-03-22 | Siemens Aktiengesellschaft | System, prediction unit, and method for predicting a failure of at least one unit for monitoring and/or controlling transportation traffic |
EP3305622A1 (en) * | 2016-10-06 | 2018-04-11 | Siemens Schweiz AG | Method for diagnosis of spatially distributed technical components |
IT201700028277A1 (en) * | 2017-03-14 | 2018-09-14 | Comesvil S P A | Monitoring system for a railway infrastructure |
EP3375691A1 (en) * | 2017-03-14 | 2018-09-19 | Comesvil S.p.A. | Monitoring system for a railway infrastructure |
CN109383566A (en) * | 2017-08-10 | 2019-02-26 | 比亚迪股份有限公司 | Train sort method and device |
CN109383566B (en) * | 2017-08-10 | 2020-11-20 | 比亚迪股份有限公司 | Train sequencing method and device |
CN109525416A (en) * | 2017-09-18 | 2019-03-26 | 通用汽车环球科技运作有限责任公司 | Analog-to-digital fault detection, isolation and alleviation to low-voltage communication network |
EP3623255A1 (en) * | 2018-09-17 | 2020-03-18 | Voestalpine Signaling Sainerholz GmbH | Method and assembly for monitoring a final position |
DE102019220447A1 (en) * | 2019-12-20 | 2021-06-24 | Siemens Mobility GmbH | Method for determining a state of a point machine |
EP4279353A1 (en) * | 2022-05-19 | 2023-11-22 | Siemens Mobility GmbH | Point machine and method for operating a point machine |
Also Published As
Publication number | Publication date |
---|---|
US20040167686A1 (en) | 2004-08-26 |
GB2392987B (en) | 2005-08-31 |
EP1390246A1 (en) | 2004-02-25 |
EP1390246B1 (en) | 2018-08-15 |
US7395139B2 (en) | 2008-07-01 |
GB0325744D0 (en) | 2003-12-10 |
EP1390246A4 (en) | 2015-06-03 |
GB2392987A (en) | 2004-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1390246B1 (en) | Condition monitoring system | |
García et al. | Time series methods applied to failure prediction and detection | |
US6694286B2 (en) | Method and system for monitoring the condition of an individual machine | |
CN110647133B (en) | Rail transit equipment state detection maintenance method and system | |
US7702401B2 (en) | System for preserving and displaying process control data associated with an abnormal situation | |
García Márquez et al. | Railway point mechanisms: condition monitoring and fault detection | |
KR100755955B1 (en) | System for fault diagnosing of receiving and distributing electricity equipment | |
US6782344B2 (en) | Method and apparatus for diagnosing abnormality and estimating degradation in valve apparatus | |
Pedregal et al. | An algorithmic approach for maintenance management based on advanced state space systems and harmonic regressions | |
KR100719138B1 (en) | Method for fault diagnosing of receiving and distributing electricity equipment | |
KR102604708B1 (en) | Switchboard diagnosis system based on artificial intelligence and switchboard diagnosis method based on artificial intelligence | |
Chen et al. | Aircraft maintenance decision system based on real-time condition monitoring | |
WO2011073613A1 (en) | A method, apparatus and computer program for diagnosing a mode of operation of a machine | |
CN117289085A (en) | Multi-line fault analysis and diagnosis method and system | |
Hegedűs et al. | Proactive maintenance of railway switches | |
CN109765033B (en) | Intelligent monitoring system and method for optical measurement measuring equipment lens | |
Zhou et al. | Remote condition monitoring for railway point machine | |
AU785492B2 (en) | Condition monitoring system | |
Bell et al. | Model-based analysis of protection system performance | |
Fararooy et al. | Condition-based maintenance of railway signalling equipment | |
Burton et al. | Condition monitoring system | |
KR101622186B1 (en) | Apparatus for diagnosing machine condition | |
Zhou et al. | Remote condition monitoring and validation of railway points | |
CN117637125A (en) | Surgical robot health state detection method and surgical robot | |
KR0143536B1 (en) | Method and device for diagnoising fault in protective relay system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
ENP | Entry into the national phase |
Ref document number: 0325744 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20020508 Format of ref document f/p: F |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002721848 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2002721848 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10477222 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |