WO2002083296A1 - Fine particles included in ultra-thin membrane in state of primary particles and cosmetic using the same - Google Patents

Fine particles included in ultra-thin membrane in state of primary particles and cosmetic using the same Download PDF

Info

Publication number
WO2002083296A1
WO2002083296A1 PCT/JP2002/003400 JP0203400W WO02083296A1 WO 2002083296 A1 WO2002083296 A1 WO 2002083296A1 JP 0203400 W JP0203400 W JP 0203400W WO 02083296 A1 WO02083296 A1 WO 02083296A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
fine particles
film
ultra
monodispersed
Prior art date
Application number
PCT/JP2002/003400
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Takeda
Masuhiro Kogoma
Chihiro Kaito
Original Assignee
Isi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isi Corporation filed Critical Isi Corporation
Publication of WO2002083296A1 publication Critical patent/WO2002083296A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/11Encapsulated compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0001Post-treatment of organic pigments or dyes
    • C09B67/0004Coated particulate pigments or dyes
    • C09B67/0007Coated particulate pigments or dyes with inorganic coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations

Definitions

  • the present invention relates to fine particles included in a monodispersed ultrathin film, a composite using the same, and a plasma film forming apparatus.
  • Ultra-thin film formation technology has recently been developed mainly in the semiconductor field.
  • the inventors have independently developed a technique for monodispersing fine particles or nanoparticles having a particle diameter of 1 ⁇ m or less on a trial basis.
  • so-called plasma CVD methods are sometimes used to manufacture the particles because the contamination of the vacuum pump is small, (Bayer's paper).
  • the plasma destroys the bonding state of the particles that must be stably included, thermally evaporates, and the film forming material becomes a single particle, which is sufficient. It is known from the research of the present inventors that it is impossible to obtain a dense and highly adhesive ultrathin film in a completely monodispersed state.
  • the present invention is very stable, especially for particles that are difficult to process by the wet or dry method developed by one of the present inventors, and whose effects are attenuated, deteriorated, or decomposed by water absorption.
  • a monodisperse ultrathin film in which at least one layer of dense ultrathin film is deposited, and if necessary, several layers, and cosmetics using the obtained microparticles are provided. It is intended to be.
  • an ultrathin film of 0.5 to 5 nm in which the interface with the group of fine particles is composed of high-purity silica If necessary, a thin film coating of 30 to 40 nm is formed on a single particle, and the surface is treated with plasma to form a high-energy type siloxane bond, and a silanol group is partially added, and the A negative counter-potential is generated at, and a monodispersed state is obtained.
  • the fine particles encapsulated with the monodispersed ultrathin film of the present invention another inorganic oxide thin film, for example, zirconia, titanium oxide, etc., is placed above the high purity silica ultrathin film.
  • the plasma film is formed by overlapping.
  • the fine particles included in the monodisperse thin film of the present invention are agglomerated powder particles coated with a thin film-forming material comprising an organometallic compound that is difficult to hydrolyze and ultrapure water or an organic solvent that prevents hydrolysis.
  • the group is completely monodispersed in each powder particle, and the powder particles are crystallized or broken by an ultra-thin oxide film obtained by cutting and removing the organometallic compound functional group.
  • the coating is formed without crystal transition.
  • the monodisperse thin film refers to a thin film that covers the thin film and disperses the fine particles without agglomeration and coagulation.
  • “monodispersion” of particles in the present invention means that particles do not form secondary particles due to aggregation, coagulation, or the like, and each particle is in a dispersed state.
  • the fine particles encapsulated with the monodispersed thin film according to the present invention are obtained by mixing a thin film-forming material comprising an organic metal compound which is unlikely to be hydrolyzed and ultrapure water or / and an organic solvent which protects against hydrolysis with a dry mixer. After at least 0.1 part by weight of the target powder is uniformly jetted onto the target powder, the precursor is dried and formed without damaging the organometallic compound.
  • Ultra-thin oxide film obtained by irradiating high-energy ultraviolet rays and / or plasma while completely dispersing monodispersely with an ultrasonic horn having a longitudinal amplitude of 40 m or more to cut and remove the organometallic compound functional groups.
  • the fine particles according to claim 1 or 2 are preferably a pigment, an ultraviolet shielding inorganic material, an organic compound, or a lake pigment.
  • the thin film according to claim 4 is preferably composed of a plurality of different laminated films.
  • the cosmetic according to the present invention preferably contains fine particles encapsulated with the monodispersed thin film according to claims 1, 2, 3, 4 or 5. If the compound constituting the core of the present invention shows a very sensitive degradation reaction to humidity, water cannot act on the film-forming material, so that anhydrous ethanol or a hydrocarbon-based organic solvent that prevents hydrolysis is used. After the film-forming materials were diluted and dissolved, they were quickly mixed in a dry-gas-balanced glove box--a vacuum chamber--by a method such as jet injection to form a film-forming precursor.
  • the vertical amplitude is 40 m or more in the same space.
  • the particles during the film formation process are collided with the ultrasonic horn to explode the agglomerates to obtain fine particles that are completely encapsulated with a monodisperse ultrathin film.
  • fine particles encapsulated with the dried monodispersed ultrathin film of the present invention can be mixed with various powders to obtain the above-mentioned multifunctional cosmetics such as foundations.
  • the degree of polymerization of the film is increased, and the bonding property with the core fine particles is enhanced.
  • Ultra-thin oxide films can be produced multiple times from extremely unstable compounds without operating in a vacuum, and materials that are susceptible to deterioration and structural destruction by conventional plasma can be easily handled, and even organic pigments can be processed. It is possible.
  • Silica a thin film forming material that dissolves in alkali, is processed by the plasma method. As well as monodispersed, and the upper layer is coated with a film of insoluble alkali, such as zirconia and titania, to protect multiple layers and to raise the light scattering and reflection effect to an extremely high level. I can.
  • the ultrafine particles included in the monodisperse thin film according to the present invention can be used as an electromagnetic wave shielding material or a material of a display device, particularly as an electronic material such as a phosphor (luminescent pigment).
  • (A) is an overall view of black iron oxide encapsulated by an ultra-thin Si-force ultra-thin film
  • (b) is a phase diagram of a crystal near the interface between an ultra-thin Si force and an iron oxide (high-resolution transmission type). Electron microscope; by Ritsumeikan University). BEST MODE FOR CARRYING OUT THE INVENTION
  • red pure No. 202 (Dainichi Seika Kogyo Co., Ltd.) immediately after production, which is produced without passing through the rosinization process, is used to express high-purity tetraethoxysilane (hereinafter referred to as “ethyl silicate”). They were combined as in 1.
  • the powder was exploded and monodispersed while driving four ultrasonic horns with a diameter of 50 mm or more and a vertical amplitude of 40 m or more installed at the bottom of the chamber for 15 minutes. did.
  • a monodispersed hydrophilic red No. 202 pigment excellent in color was obtained.
  • the pigment was mixed 1.0% in pure water and dispersed with an ultrasonic homogenizer without mixing any dispersing aid. The dispersion was stable for one month for one month.
  • the starting point of the thermal decomposition was increased by 30 to 40 ° C.
  • the thickness of the silica film was 1 to 2 nm in the analysis with a high-resolution transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • Si was clearly detected by X-ray analysis of the membrane using an EDX apparatus.
  • the ethyl silicate was completely decomposed from the Si 2 p data of the silica film, and it was concluded that the bonding state was high-energy silica.
  • Table 2 shows the evaluation results of Red No. 202 to which the above silica monodispersed ultrathin film was applied.
  • Lipstick coloring Bright and very high coloring. Good fluidity and high skin-to-adhesion.
  • Table 3 shows the results of the evaluation of untreated Red No. 202. [Table 3]
  • Test item Red No. 2-0-2 with a monodispersed silica ultra-thin film Flowability and peelability Easy to stick in a pulverization test with agate milk. Peelability from agate is extremely poor.
  • the UV resistance was weak. Visible and UV absorption waveforms are distorted, discolored, dull and poor in fluidity. Lipstick coloring Skin poor adhesion. Color missing. Very light color when stretched.
  • an oxide ultrathin film was formed without using water.
  • zinc oxide manufactured by Sumitomo Osaka Cement Co., Ltd.
  • high-purity tetraethoxysilane hereinafter referred to as “ethyl siligate”.
  • Blended formula Actual blended amount Solid content% by weight
  • neoalkoxy zirconate coupling agent (NZ-44: Genrich Petrochemical Co., USA) is used to form a zirconium film, an alkali-resistant material, on the surface of the silicon film. ) Was surface-coupled as shown in Table 5.
  • Blended formula Actual blended amount Solid content% by weight
  • Zirconium oxide film forming zinc oxide 2 Laminated film forming zinc oxide Out of detection limit Furthermore, after forming an ultra-thin zirconia thin film, a silica thin film was formed on the outermost layer to improve the dispersibility, and a three-layer structure was formed. At this time, the treatment was carried out under the same conditions as those for the red organic pigment No. 202. As a result, the zinc oxide ultrafine particles were able to absorb the entire ultraviolet shielding area of 38 Onm or less, but the prototype powder foundation, which is considered to be the safest, was manufactured and its performance was confirmed.
  • the fine particles included in the monodispersed ultrathin film of the present invention can be mixed with various powders to obtain the above-mentioned multifunctional foundation and other cosmetics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Birds (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Fine particles included in an ultra-thin membrane in the state of primary particles, which is prepared by coating fine particles with a thin film forming material comprising an organic metal compound being less susceptible to hydrolysis and ultra-pure water and/or an organic solvent preventing hydrolysis, and disconnecting and removing the functional groups of the organic metal compound in the resulting coating, to thereby convert the coating to an ultra-thin oxide film; and a cosmetic using such fine particles.

Description

明 細 書  Specification
単分散超薄膜で包接された微粒子とそれを用いた化粧料 技術分野 Fine particles encapsulated with a monodisperse ultrathin film and cosmetics using the same
本発明は、 単分散超薄膜で包接された微粒子とそれを用いた複合 体およびプラズマ製膜装置に関する。 背景技術  The present invention relates to fine particles included in a monodispersed ultrathin film, a composite using the same, and a plasma film forming apparatus. Background art
超薄膜の形成技術は、 半導体分野を中心に近年開発が進められて きている。 しかるに、 粒子径が 1 ^ m以下の微粒子またはナノ粒子 を単分散させる技術は、 試験的には発明者らが独自に開発をしてき た。 また、 数 1 0 以上の粒子に対しては、 真空ポンプの汚染が 少ないためいわゆるプラズマ C V D法を適用して製造する例もある, (バイエル社論文)  Ultra-thin film formation technology has recently been developed mainly in the semiconductor field. However, the inventors have independently developed a technique for monodispersing fine particles or nanoparticles having a particle diameter of 1 ^ m or less on a trial basis. In addition, for particles of several tens or more, so-called plasma CVD methods are sometimes used to manufacture the particles because the contamination of the vacuum pump is small, (Bayer's paper).
しかるに、 工業的規模から見て、 実際の工業に使用できる量産性 と物質工学的な素材の安定性はいまだに開発されていないのが現状 である。  However, from the industrial scale, mass productivity and material engineering material stability that can be used in actual industries have not yet been developed.
さらに、 一般のプラズマ C V D法を適用するとき、 プラズマが、 安定に包接されるべき粒子の結合状態を破壊したり、 熱的に蒸発さ せるほか、 成膜材料が単体で粒子化してしまい十分緻密で密着性が 高い超薄膜を完全に単分散状態で得ることはできないことが本発明 者の研究で知られている。  In addition, when applying the general plasma CVD method, the plasma destroys the bonding state of the particles that must be stably included, thermally evaporates, and the film forming material becomes a single particle, which is sufficient. It is known from the research of the present inventors that it is impossible to obtain a dense and highly adhesive ultrathin film in a completely monodispersed state.
さらに、 成膜物質が、 単層ではなく数層異種物質膜を比較的自由 に設計できる技術は、 半導体ウェハーなど一定の面積をもつ基板以 外には適用する技術がないばかりか、 ジルコニウム化合物のように 非常に化学的に不安定な物質を完全に成膜することは至難の技であ る。 発明の開示 従来の薄膜を形成した粒子にあっては、 その膜が粒子全体を包含 しており、単分散できず、 また、膜の形状や密着状態は乱れており、 さらにその上位に超薄膜を成層させることは不可能に近く、 取り扱 える粒子も 1 0 0 m程度であつたのでさまざまな用途に使用でき る高機能性微粒子を容易に製造でき、 さらに機能性を高めるために 緻密なナノ薄膜を 2層以上成膜しなければならないという問題点が あった。さらに、量産性を高める装置の開発が重要な課題であった。 本発明は、 特に、 本発明者の一が開発した湿式法または乾式法で は処理が困難な、 吸水によって効果を減衰したり変質するかあるい は分解する微粒子群に対して、 非常に安定で緻密な超薄膜少なく と も 1層、 必要に応じて数層堆積させた単分散超薄膜で包接された微 粒子を提供すること、 また得られた微粒子を用いた化粧料を提供す ることを目的としている。 Furthermore, there is no technology that can be used to freely design a heterogeneous film of several layers instead of a single layer as a film-forming substance. There is no technology that can be applied to substrates other than substrates having a certain area, such as semiconductor wafers. It is extremely difficult to completely form a film that is extremely chemically unstable. Disclosure of the invention In the case of particles that have formed a conventional thin film, the film contains the entire particle and cannot be monodispersed, and the shape and adhesion of the film are disturbed. It is almost impossible to do so, and the particles that can be handled are about 100 m, so it is easy to produce highly functional fine particles that can be used for various purposes. There was a problem that two or more layers had to be formed. Further, the development of a device for improving mass productivity was an important issue. The present invention is very stable, especially for particles that are difficult to process by the wet or dry method developed by one of the present inventors, and whose effects are attenuated, deteriorated, or decomposed by water absorption. To provide microparticles covered with a monodisperse ultrathin film, in which at least one layer of dense ultrathin film is deposited, and if necessary, several layers, and cosmetics using the obtained microparticles are provided. It is intended to be.
上記目的を達成するために、 本発明の単分散超薄膜で包接された 微粒子においては、 該微粒子群との境界面を高純度シリカで構成さ れた 0 . 5〜 5 n mの超薄膜、 必要に応じて 3 0〜 4 0 n mの薄膜 コーティ ングを微粒子の単体に形成し、 その表面をプラズマ処理し て高エネルギー型のシロキサン結合を形成させ、 一部にシラノール 基を付与し、 粒子間で負の対抗電位を発生せしめて単分散状態を得 ている。  In order to achieve the above object, in the microparticles covered with the monodispersed ultrathin film of the present invention, an ultrathin film of 0.5 to 5 nm in which the interface with the group of fine particles is composed of high-purity silica, If necessary, a thin film coating of 30 to 40 nm is formed on a single particle, and the surface is treated with plasma to form a high-energy type siloxane bond, and a silanol group is partially added, and the A negative counter-potential is generated at, and a monodispersed state is obtained.
また、 上記目的を達成するために、 本発明の単分散超薄膜で包接 された微粒子においては、 上記高純度シリカ超薄膜の上位に、 他の 無機酸化物薄膜、 たとえばジルコニァ、 酸化チタンなどを重ねてプ ラズマ成膜するものである。  Further, in order to achieve the above object, in the fine particles encapsulated with the monodispersed ultrathin film of the present invention, another inorganic oxide thin film, for example, zirconia, titanium oxide, etc., is placed above the high purity silica ultrathin film. The plasma film is formed by overlapping.
本発明の単分散薄膜で包接された微粒子は、 予め加水分解しにく い有機金属化合物と超純水または および加水分解を防御する有機 溶剤とからなる薄膜形成材料で被覆した凝集粉体粒子群が完全に各 粉体粒子に単分散し、 且つ前記有機金属化合物官能基を切断除去さ せて得た酸化物超薄膜で前記粉体粒子を結晶破壊またはノおよび結 晶転移することなく被覆形成したことを特徴とする。 The fine particles included in the monodisperse thin film of the present invention are agglomerated powder particles coated with a thin film-forming material comprising an organometallic compound that is difficult to hydrolyze and ultrapure water or an organic solvent that prevents hydrolysis. The group is completely monodispersed in each powder particle, and the powder particles are crystallized or broken by an ultra-thin oxide film obtained by cutting and removing the organometallic compound functional group. The coating is formed without crystal transition.
ここで、 本発明において単分散薄膜とは、 その薄膜を被覆し微粒 子を凝集、 凝結させること無く分散させる薄膜をいう。 また、 本発 明における粒子の 「単分散」 とは、 粒子が凝集、 凝結等による二次 粒子を形成せず、 1ケ 1ケが分散状態であることをいう。  Here, in the present invention, the monodisperse thin film refers to a thin film that covers the thin film and disperses the fine particles without agglomeration and coagulation. In addition, “monodispersion” of particles in the present invention means that particles do not form secondary particles due to aggregation, coagulation, or the like, and each particle is in a dispersed state.
また、 本発明に係る単分散薄膜で包接された微粒子は、 加水分解 しにくい有機金属化合物と、 超純水または/および加水分解を防御 する有機溶剤とからなる薄膜形成材料を、 乾式混合機中で少なく と も 0 . 1重量部を標的粉体に均質にジェッ ト噴射させたのち、 有機 金属化合物を損傷しないまま乾燥成膜させてなることを特徴とする 前駆体を、 空間中で、 縦振幅を 4 0 m以上もつ超音波ホーンによ つて完全に単分散させつつ、 高エネルギー紫外線または/およびプ ラズマを照射させ、 当該有機金属化合物官能基を切断除去させて得 た酸化物超薄膜で被覆されたことを特徴とする。 また、 このように 作られた単分散薄膜で包接された微粒子の製造方法をも提案する。 請求項 1又は 2記載の微粒子は、 顔料、 紫外線遮蔽無機材料、 有 機化合物、 レーキ顔料であることが好ましい。  The fine particles encapsulated with the monodispersed thin film according to the present invention are obtained by mixing a thin film-forming material comprising an organic metal compound which is unlikely to be hydrolyzed and ultrapure water or / and an organic solvent which protects against hydrolysis with a dry mixer. After at least 0.1 part by weight of the target powder is uniformly jetted onto the target powder, the precursor is dried and formed without damaging the organometallic compound. Ultra-thin oxide film obtained by irradiating high-energy ultraviolet rays and / or plasma while completely dispersing monodispersely with an ultrasonic horn having a longitudinal amplitude of 40 m or more to cut and remove the organometallic compound functional groups. Characterized by being coated with We also propose a method for producing fine particles encapsulated with the monodisperse thin film thus produced. The fine particles according to claim 1 or 2 are preferably a pigment, an ultraviolet shielding inorganic material, an organic compound, or a lake pigment.
請求項 1 、 2又は 3記載の薄膜が、 M e i n x O y (ここで、 M e は金属元素、 nは金属元素の数 (n =整数) 、 l≤ x , y≤ 9で X , yは整数) よりなり、 媒質によって侵食溶解されない強固な膜厚 4 O n m以上の透明膜、 好ましくは 3 n m以下の透明膜をなし、 包接 される微粒子の変質が防御されるとともに、 好ましくは耐熱性、 耐 酸化性、 発色性、 流動性および機械強度すベての機能特性を備えて いることが好ましい。  The thin film according to claim 1, 2 or 3, is MeinxOy (where Me is a metal element, n is the number of metal elements (n = integer), l≤x, y≤9, and X and y are A transparent film with a thickness of 4 O nm or more, preferably 3 nm or less, which is not eroded and dissolved by the medium. It preferably has all the functional properties such as oxidation resistance, color development, fluidity and mechanical strength.
請求項 4記載の薄膜は、 相互に異なる複数積層膜よりなることが 好ましい。  The thin film according to claim 4 is preferably composed of a plurality of different laminated films.
本発明に係る化粧料は、 請求項 1 、 2 、 3 、 4又は 5記載の単分 散薄膜で包接された微粒子を含有することが好ましい。 本発明の核体をなす化合物が、 非常に湿度に鋭敏な劣化反応を示 す場合には、 成膜材料中に水は作用できないため、 無水エタノール や加水分解を防御する炭化水素系有機溶剤で、 成膜材料を希釈溶解 せしめたのち、 すみやかにドライガスバランスさせたグローブポッ クスゃ真空チャンバ一中でそれらを急激にジエツ ト噴射などの方法 でミキシングさせ、 成膜の前駆体を形成せしめたのち、 乾燥して、 ループ状配管をもつプラズマ装置か高速ミキサー中に導入したブラ ズマを照射させ、 当該有機金属化合物機能基を切断除去させ、 同時 に同空間中で縦振幅を 4 0 m以上もつ超音波ホーンに成膜処理中 の微粒子を激突させて凝集体を爆裂させ完全な単分散超薄膜で包接 された微粒子を得るものである。 The cosmetic according to the present invention preferably contains fine particles encapsulated with the monodispersed thin film according to claims 1, 2, 3, 4 or 5. If the compound constituting the core of the present invention shows a very sensitive degradation reaction to humidity, water cannot act on the film-forming material, so that anhydrous ethanol or a hydrocarbon-based organic solvent that prevents hydrolysis is used. After the film-forming materials were diluted and dissolved, they were quickly mixed in a dry-gas-balanced glove box--a vacuum chamber--by a method such as jet injection to form a film-forming precursor. After that, it is dried and irradiated with plasma introduced into a plasma device or high-speed mixer with loop-shaped piping to cut and remove the functional group of the organometallic compound.At the same time, the vertical amplitude is 40 m or more in the same space. The particles during the film formation process are collided with the ultrasonic horn to explode the agglomerates to obtain fine particles that are completely encapsulated with a monodisperse ultrathin film.
さらに本発明で得た単分散超薄膜で包接された微粒子を、 各種の 目的で使用される中間体あるいは完成組成物に混合分散するのに、 できる限り不必要な添加剤を除去し、 また、 必要に応じて縦振幅が 3 0 m以上ある超音波ホモジナイザーによって前記の多機能性を 有する液状単分散体を製造し、 最終製品製造工程へ導入することが 望ましい。  Further, in order to mix and disperse the fine particles included in the monodispersed ultrathin film obtained in the present invention into an intermediate or a finished composition used for various purposes, unnecessary additives are removed as much as possible. If necessary, it is desirable to produce the multifunctional liquid monodispersion by using an ultrasonic homogenizer having a longitudinal amplitude of 30 m or more, and to introduce it into the final product production process.
また、乾燥した本発明の単分散超薄膜で包接された微粒子は、種々 の粉体と混合して前記の多機能性を有するファンデーションなどの 化粧料を得ることができる。  Further, the fine particles encapsulated with the dried monodispersed ultrathin film of the present invention can be mixed with various powders to obtain the above-mentioned multifunctional cosmetics such as foundations.
本発明は、 以上説明したように構成されているので、 以下に記載 されるような効果を奏する。  Since the present invention is configured as described above, the following effects can be obtained.
酸化物薄膜を、 プラズマを用いて成膜することにより、 膜の重合 度が高まり、 かつ核体微粒子との接合性が強化される。  By forming an oxide thin film using plasma, the degree of polymerization of the film is increased, and the bonding property with the core fine particles is enhanced.
真空中での操作をせずに、 非常に不安定な化合物から酸化物超薄 膜を、 多重製造でき、 従来プラズマで変質 · 構造破壊されやすかつ た素材が容易に取り扱え、 有機顔料でも処理が可能である。  Ultra-thin oxide films can be produced multiple times from extremely unstable compounds without operating in a vacuum, and materials that are susceptible to deterioration and structural destruction by conventional plasma can be easily handled, and even organic pigments can be processed. It is possible.
アルカリ溶解する薄膜形成材料であるシリカを、 プラズマ法で処 理でき、 単分散させることが可能であるばかり力、、 さらにその上位 をアルカリ難溶性のジルコニァ、 チタニアなどの膜で被覆し多重に 防御するとともに、 光の散乱反射効果を極めて高いレベルに引き上 げる。 Silica, a thin film forming material that dissolves in alkali, is processed by the plasma method. As well as monodispersed, and the upper layer is coated with a film of insoluble alkali, such as zirconia and titania, to protect multiple layers and to raise the light scattering and reflection effect to an extremely high level. I can.
超薄膜の膜厚最小単位を 1 n m程度までひきさげピンホールを除 去することにより、 機械強度、 耐磨耗性、 流動特性、 発色性、 耐酸 化性、 耐熱性を同時に付与した微粒子、 特にサブミクロン領域の高 機能性粒子が得られる。  By removing the pinholes to the smallest unit of the ultra-thin film to about 1 nm and removing pinholes, fine particles with the same mechanical strength, abrasion resistance, flow characteristics, color development, oxidation resistance, and heat resistance, Highly functional particles in the micron range can be obtained.
本発明に係る単分散薄膜で包接された超微粒子は、 電磁波シール ド材あるいはディスプレイデバイスの材料、 特に蛍光体 (発光顔料) 等の電子材料として利用することができる。 図面の簡単な説明  The ultrafine particles included in the monodisperse thin film according to the present invention can be used as an electromagnetic wave shielding material or a material of a display device, particularly as an electronic material such as a phosphor (luminescent pigment). BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 プラズマで成膜されたシ リ カ超薄膜で被覆された F e 304 (黒酸化鉄:マグネタイ ト)の高解像度電子顕微鏡写真を示す図 である。 アモルファスシリカ層が、 結晶格子の明確な酸化鉄表面に 連続してピンホールなく形成されている。 本素材は、 1 0 0 °Cで結 晶転移し、 赤色の Qt F e 203 (ベンガラ)に変わるため、 低温処理が必要 であることとプラズマによるダメージを受けるため十分な注意が求 められる。 さらに、 本素材は磁性体であるため、 磁性凝集が強い。 この写真の膜厚(シリカ重量% 8 . 0 )のときは、磁性凝集力はシリ 力の表面電位によって解除されることが判明している。 ( a)はシリ 力単分散超薄膜で包接された黒酸化鉄の全体図であり、(b)はシリ力 超薄膜と酸化鉄との境界面付近の結晶の状態図(高解像度透過型電 子顕微鏡;立命館大学による)を表している。 発明を実施するための最良の形態 1, F e 3 0 4 (Black iron oxide: Magunetai g) coated with shea Li Ca ultra thin film formed by the plasma shows a high-resolution electron micrograph of. Amorphous silica layers are continuously formed without pinholes on the iron oxide surface with a clear crystal lattice. This material is 1 0 0 ° C shall be crystal transition, since the change to red Qt F e 2 0 3 (red iron oxide), Me enough attention for damaged due to the plasma is required low temperature treatment is determined Can be Furthermore, since this material is a magnetic material, it has strong magnetic aggregation. At the film thickness (silica weight% 8.0) in this photograph, it has been found that the magnetic cohesion is released by the surface potential of the silica force. (A) is an overall view of black iron oxide encapsulated by an ultra-thin Si-force ultra-thin film, and (b) is a phase diagram of a crystal near the interface between an ultra-thin Si force and an iron oxide (high-resolution transmission type). Electron microscope; by Ritsumeikan University). BEST MODE FOR CARRYING OUT THE INVENTION
次に本発明の実施例について説明する。  Next, examples of the present invention will be described.
[表面シリカ単分散超薄膜で包接された有機顔料 (赤色 2 0 2号) の 実施例] [Surface of organic pigment (red 202) covered with monodispersed ultra-thin silica film Example]
本顔料は、 製造直後から吸水現像によって変質が始まり、 色の変 化が発生することが顔料の製造元で指摘されていた。 しかるに、 通 常は、 ロジン (松脂) 化工程をへて発色性を発現せしめるため、 本 発明のような表面処理は事実上、 ロジンに妨害されてできない。 そのため、 本発明では、 ロジン化工程を経ないで製造された製造 直後の赤色 2 0 2号 (大日精化工業㈱) を用いて、 それに高純度テ トラエトキシシラン (以下 「ェチルシリゲート」 ) を表 1の通り配 合した。  It has been pointed out by the pigment manufacturer that this pigment begins to deteriorate due to water absorption development immediately after its production, causing color change. However, usually, since the rosin (rosin) is converted to a rosin to develop color, the surface treatment as in the present invention cannot be practically hindered by rosin. Therefore, in the present invention, red pure No. 202 (Dainichi Seika Kogyo Co., Ltd.) immediately after production, which is produced without passing through the rosinization process, is used to express high-purity tetraethoxysilane (hereinafter referred to as “ethyl silicate”). They were combined as in 1.
【表 1】  【table 1】
配合処方 _ _実配合量 同形分重量% Formula _ _ _Actual blending amount Isoform weight%
A, 製造直後の赤色 2 0 2号 5 kg 9 4 0 B , ェチルシリケ一 卜 0 7 kg 6 0 C , 超純水 0 0 kg 0 0 A, Red color just after production No. 202 5 kg 9 40 B, ethyl silicate 0 7 kg 60 C, ultrapure water 0 0 kg 0 0
1 0 0 . 0  1 0 0 .0
Bを Cに混合、 激しく振動させたのち、 高速ミキサ一で 5分間均 質に処理、 均質なエマルシヨ ンを作成し、 上記顔料を小型へンシェ ルミキサーに投入し高速で旋回乱流を起こさせながら、 エアレスガ ンを用いて上記エマルシヨ ンをジェッ ト噴射し、 完全に顔料に漏れ させた。 After mixing B with C and vibrating vigorously, it is uniformly processed with a high-speed mixer for 5 minutes to create a homogeneous emulsion, and the above pigment is poured into a small hen-shell mixer to generate high-speed swirling turbulence. The above emulsion was jet-jetted using an airless gun to completely leak the pigment.
これを、 厚手の大型ビュル袋に投入し、 無触媒で加水分解をおこ させた。  This was put into a thick large bur bag and hydrolyzed without a catalyst.
さらに、 5 2 °Cでおだやかに乾燥させてドライ粉体状成膜用顔料 を得た。 それを逆三角形型パイレックスガラス製チャンバ一に 5 0 0 L/回の比率で投入し、 チャンバ一内において設置した大気圧グロ 一放電プラズマ装置に、 ヘリウム 酸素ガスを通入させながら電力 を 1 0 0 W印加してプラズマ発生させるとともに、 前記ドライ粉体 状成膜用顔料を気体輸送して系内を循環させた。 Furthermore, it was gently dried at 52 ° C to obtain a dry powdery film-forming pigment. It is injected into an inverted triangular Pyrex glass chamber at a rate of 500 L / time, and power is applied to it while passing helium oxygen gas into an atmospheric pressure glow discharge plasma device installed in the chamber. 0 W is applied to generate plasma, and the dry powder The pigment for film formation was transported by gas and circulated through the system.
この際、上記チャンバ一底部に設置された 4基の直径 5 0 mmの、 縦振幅を 4 0 m以上もつ超音波ホーンを駆動させながら上記粉体 を爆裂させ単分散させつつ 1 5分間処理をした。  At this time, the powder was exploded and monodispersed while driving four ultrasonic horns with a diameter of 50 mm or more and a vertical amplitude of 40 m or more installed at the bottom of the chamber for 15 minutes. did.
この結果、発色にすぐれた単分散親水性赤色 2 0 2号顔料を得た。 この顔料を、 純水中に 1. 0 %混合させ、 超音波ホモジナイザー で分散助剤を一切混合せず分散させたところ、 1 力月間安定な単分 散状態であった。  As a result, a monodispersed hydrophilic red No. 202 pigment excellent in color was obtained. The pigment was mixed 1.0% in pure water and dispersed with an ultrasonic homogenizer without mixing any dispersing aid. The dispersion was stable for one month for one month.
また、 耐熱性を熱分析法を用いて測定したところ、 熱分解開始点 が 3 0〜 4 0 °C上昇していた。 また、高解像度透過型電子顕微鏡(T E M) による解折では、 シリカ膜の厚さは、 1〜 2 n mであった。 また、 E D X装置による膜の X線分析によって、 S i が明確に検出 された。 さらに、 E S C A装置による X P S分析で、 シリカ膜の S i 2 pデータから、 ェチルシリケ一トは完全に分解されており、 結 合様態が高エネルギー型シリカであると断定された。  In addition, when the heat resistance was measured by a thermal analysis method, the starting point of the thermal decomposition was increased by 30 to 40 ° C. The thickness of the silica film was 1 to 2 nm in the analysis with a high-resolution transmission electron microscope (TEM). In addition, Si was clearly detected by X-ray analysis of the membrane using an EDX apparatus. Furthermore, in the XPS analysis using the ESC A apparatus, the ethyl silicate was completely decomposed from the Si 2 p data of the silica film, and it was concluded that the bonding state was high-energy silica.
上記シリカ単分散超薄膜が付与された赤色 2 0 2号の評価結果を 表 2に示す。  Table 2 shows the evaluation results of Red No. 202 to which the above silica monodispersed ultrathin film was applied.
【表 2】  [Table 2]
試験項目 ― シ リ カ単分散超薄膜が付与された赤色 2 0 2号 流動性と剥離性 メ ノ ゥ乳鉢での粉砕試験で高い流動性と好適な剥離性が 確認された。  Test item-Red No. 202 with silica monodispersed ultra-thin film Fluidity and peelability High flowability and suitable peelability were confirmed in a grinding test in a mortar.
T E M分析結果 顔料の機械的破断はなく 、 粒子がシ リ カ膜 ( l ~ 2 n m) (機械的破断状況) で全体を被覆、 粒子は薄片状に分散し、 損傷がない。  TEM analysis results No mechanical breakage of pigment, particles covered entirely with silica film (l to 2 nm) (mechanical breakage status), particles dispersed in flakes, no damage.
耐酸化性 · K候性 2 5 3、 3 6 5 η ηι紫外線抵抗力が強かっ た。 可視 · 紫外 吸収に異常みられず。  Oxidation resistance · K weatherability 25 3, 365 5 η ηι UV resistance was strong. No visible abnormality in visible and ultraviolet absorption.
口紅発色性 明る く 非常に高い発色。 流動性よ く 皮厣接着高い。  Lipstick coloring Bright and very high coloring. Good fluidity and high skin-to-adhesion.
未処理赤色 2 0 2号の評価結果を表 3に示す。 【表 3】 Table 3 shows the results of the evaluation of untreated Red No. 202. [Table 3]
試験項目 シ リ カ単分散超薄膜が付与された赤色 2—0 2号 流動性と剥離性 メ ノ ウ乳 での粉砕試験で粘着しやすい。 メ ノ ウからの 剥離性は極めて悪い。  Test item Red No. 2-0-2 with a monodispersed silica ultra-thin film Flowability and peelability Easy to stick in a pulverization test with agate milk. Peelability from agate is extremely poor.
T E M分析結果 焦点が定められに く く 、 顔料の電子線による蒸発が加速 される。  TEM analysis results Focus is difficult to determine and evaporation of the pigment by electron beam is accelerated.
耐酸化性 * 耐侯性 2 5 3、 3 6 5 n m紫外線抵抗力が弱かった。 可視 · 紫外吸収波形が乱れ、 変色く すんだ色で流動性悪い。 口紅発色性 皮腌接着不良。 色抜け有。 のばすと色が非常に薄い。  Oxidation resistance * Weather resistance 25 3, 365 nm The UV resistance was weak. Visible and UV absorption waveforms are distorted, discolored, dull and poor in fluidity. Lipstick coloring Skin poor adhesion. Color missing. Very light color when stretched.
[紫外線遮蔽型酸化亜鉛超微粒子の実施例] [Example of ultraviolet shielding type zinc oxide ultrafine particles]
本粒子は、 水や汗によって高アルカリを呈するため、 通常、 スキ ンケア製品には配合されず、 安価な日焼け止め製剤に応用されてい るが、 F D Aの承認後各種の化粧料応用されている。 しかるに、 そ の製造元企業では、 光化学作用の危険性に対して完全性は求めてい ない。 本発明者らに、 簡便法によって安価な処理を希望されている のが現状で、 特にこれを 2 0 %も配合している日焼け止め製剤では かなりの危険性を伴う ことを十分認識している。 また、 このアル力 リ性のため、 湿式法や半乾式法での単分散酸化物超薄膜は、 相互溶 解反応が起き成功しない。  Since these particles exhibit high alkalinity due to water and sweat, they are not normally used in skin care products and are applied to inexpensive sunscreen preparations, but have been applied to various cosmetics after FDA approval. However, the manufacturer does not require the integrity of the photochemical hazard. At present, the present inventors fully understand that there is a demand for an inexpensive treatment by a simple method, and in particular, a sunscreen formulation containing as much as 20% of this is associated with considerable danger. . In addition, due to this strength, mutual dissolution occurs in a monodispersed oxide ultrathin film by a wet method or a semi-dry method, which is not successful.
そのため、 本発明では水を使用しないで酸化物超薄膜形成した。 まず、 酸化亜鉛 (住友大阪セメント㈱製) を用いて、 それに高純度 テトラエトキシシラン (以下 「ェチルシリゲート」 ) を表 4のとお り配合した。  Therefore, in the present invention, an oxide ultrathin film was formed without using water. First, zinc oxide (manufactured by Sumitomo Osaka Cement Co., Ltd.) was used, and high-purity tetraethoxysilane (hereinafter referred to as “ethyl siligate”) was blended as shown in Table 4.
【表 4】  [Table 4]
配合処方 実配合量 固形分重量% Blended formula Actual blended amount Solid content% by weight
A , 酸化亜鉛超微粒子 5 0 kg 9 5 . 2 B , ェチルシ リ ケ — ト 9 kg 4 . 8 A, zinc oxide ultrafine particles 50 kg 95.2 B, ethyl silicate 9 kg 4.8
0 0 . 0 これを、 同ミキサー内で高速混合させながら、 直流プラズマジェ ッ トを 3 0 まで温度低下させたプラズマガステールを、 同ミキ サ一中に噴射させェチルシリケ一卜のェ卜キシ基を完全に消滅させ た。 0 0. 0 This is mixed at high speed in the same mixer, and a plasma gas tail whose temperature is reduced to 30 DC plasma jet is injected into the same mixer to completely eliminate the ethoxy group of the ethyl silicate. I let it.
次に、 シリ力膜表面に耐ァルカリ性素材であるジルコ二ァ膜を形 成させるため非常に安定なネオアルコキシ · ジルコネートカツプリ ング剤 (N Z— 4 4 : 米国ゲンリ ッチペトロケミカル社製) を表 5 のように表面カップリングした。  Next, a very stable neoalkoxy zirconate coupling agent (NZ-44: Genrich Petrochemical Co., USA) is used to form a zirconium film, an alkali-resistant material, on the surface of the silicon film. ) Was surface-coupled as shown in Table 5.
【表 5】  [Table 5]
配合処方 実配合量 固形分重量% Blended formula Actual blended amount Solid content% by weight
A, シ リ カ膜形成酸化亜鉛超微粒子 5 2. 5 kg 9 8. 0A, Ultrafine zinc oxide particles forming silica film 52.5 kg 9 8.0
B , N Z— 4 4 ジルコネ一 ト 5. 4 kg 2. 0 B, NZ—44 Zirconate 5.4 kg 2.0
1 0 0. 0 これを、 同ミキサー内で高速混合させながら、 直流プラズマジェ ッ トを 3 0 0 °Cまで温度低下させたプラズマガステールを、 同ミキ サ一中に噴射させカツプリ ング剤官能基群をすベて完全に消滅させ ジルコニァ超薄膜をシリカ膜表面に形成した。 この結果、 ジルコ二 ァ膜は干渉色を示した。  10.0 While this was mixed at high speed in the same mixer, a plasma gas tail whose DC plasma jet was lowered to 300 ° C was injected into the same mixer, and the coupling agent function was applied. The entire group was completely annihilated, and an ultra-thin zirconia thin film was formed on the silica film surface. As a result, the zirconium film showed an interference color.
次にこの積層膜を形成した酸化亜鉛を、 生理食塩水中に 5 %投入 しミキサーで 2時間混合攪拌し、 亜鉛イオンの強制溶出試験を行つ た。 この溶液を N o . 5 C東洋ろ紙でろ過した後、 I C Pプラズマ 発光分析を行いイオン溶出を比較した。 結果を表 6 に示す。 【表 6】 Next, 5% of the zinc oxide formed with the laminated film was poured into physiological saline and mixed and stirred for 2 hours with a mixer to perform a forced elution test of zinc ions. After filtering this solution through No. 5C Toyo filter paper, ICP plasma emission analysis was performed to compare ion elution. Table 6 shows the results. [Table 6]
種別 Z n ィォン濃度 ( p p m ) 無処理酸化亜鉛 4 5  Type Zn ion concentration (ppm) Untreated zinc oxide 4 5
シ リ 力膜形成酸化亜鉛 2 積層膜形成酸化亜鉛 検出限界外 さらに、ジルコニァ超薄膜を形成したのち、分散性改善の目的で、 最表層にシリカ薄膜を形成し、 3層構造を形成させた。この時には、 赤色 2 0 2号有機顔料に処方したと同様の条件で処理をした。 この 結果、 酸化亜鉛超微粒子の紫外線遮蔽域は 3 8 O n m以下すベて吸 収できたが、 もっ とも安全であると思われるパウダ一ファンデーシ ヨンを試作して, その性能を確認した。  Zirconium oxide film forming zinc oxide 2 Laminated film forming zinc oxide Out of detection limit Furthermore, after forming an ultra-thin zirconia thin film, a silica thin film was formed on the outermost layer to improve the dispersibility, and a three-layer structure was formed. At this time, the treatment was carried out under the same conditions as those for the red organic pigment No. 202. As a result, the zinc oxide ultrafine particles were able to absorb the entire ultraviolet shielding area of 38 Onm or less, but the prototype powder foundation, which is considered to be the safest, was manufactured and its performance was confirmed.
つまり、 前記の波長を発生する紫外線ランプで、 パウダーファン デーシヨンを照射したのち、 即座にその 5 0 m gを 5 gの高純度ス クワレン中に投入し、 ラジカル反応性を確認した。 その結果は表 7 のとおりである。  That is, after irradiating powder foundation with an ultraviolet lamp generating the above-mentioned wavelength, 50 mg was immediately poured into 5 g of high-purity squalene, and the radical reactivity was confirmed. Table 7 shows the results.
【表 7】  [Table 7]
種別 酸化亜鉛の酸素ラジカルによる発色 _ 積層膜形成酸化亜鉛 ほとんど発色しない。  Type Coloring of zinc oxide due to oxygen radicals _ Zinc oxide forming laminated film Little coloration.
シリ力膜形成酸化亜鉛 薄く ピンク色に発色  Thin film forming zinc oxide Thin pink color
無処理酸化亜鉛 濃いオ レンジ色に長時間発色  Untreated zinc oxide Colors dark orange for a long time
産業上の利用可能性 Industrial applicability
以上説明した通り本発明の単分散超薄膜で包接された微粒子は、 種々の粉体と混合して前記の多機能性を有するファンデーショ ンな どの化粧料を得ることができる。  As described above, the fine particles included in the monodispersed ultrathin film of the present invention can be mixed with various powders to obtain the above-mentioned multifunctional foundation and other cosmetics.

Claims

請 求 の 範 囲 The scope of the claims
1 . 予め加水分解しにくい有機金属化合物と超純水または/および 加水分解を防御する有機溶剤とからなる薄膜形成材料で被覆した凝 集粉体粒子群が完全に各粉体粒子に単分散し、 且つ前記有機金属化 合物官能基を切断除去させて得た酸化物超薄膜で前記粉体粒子を結 晶破壊または/および結晶転移することなく被覆形成したことを特 徴とする単分散薄膜で包接された微粒子。  1. Aggregated powder particles, which are previously coated with a thin film-forming material consisting of an organic metal compound that is difficult to hydrolyze and ultrapure water or / and an organic solvent that prevents hydrolysis, are completely monodispersed in each powder particle. A monodisperse thin film characterized in that the powder particles are coated with an ultra-thin oxide film obtained by cutting and removing the organometallic compound functional group without crystal destruction and / or crystal transition. Microparticles included in.
2 . 加水分解しにくい有機金属化合物と、 超純水または/および加 水分解を防御する有機溶剤とからなる薄膜形成材料を、 乾式混合機 中で少なく とも 0 . 1重量部を標的粉体に均質にジェッ ト噴射させ たのち、 有機金属化合物を損傷しないまま乾燥成膜させてなること を特徴とする前駆体を、 空間中で、 縦振幅を 4 0 m以上もつ超音 波ホーンによって完全に単分散させつつ、 高エネルギー紫外線また は Zおよびプラズマを照射させ、 当該有機金属化合物官能基を切断 除去させて得た酸化物超薄膜で被覆されたことを特徴とする単分散 薄膜で包接された微粒子。 2. At least 0.1 parts by weight of a thin film-forming material consisting of an organic metal compound that is unlikely to be hydrolyzed and ultrapure water or / and an organic solvent that protects from hydrolysis is used as a target powder in a dry mixer. The precursor, which is formed by dry jetting without damaging the organometallic compound after jetting the jet uniformly, is completely produced in space by an ultrasonic horn having a longitudinal amplitude of 40 m or more. While being monodispersed, irradiated with high-energy ultraviolet rays or Z and plasma, the organometallic compound functional group is cut and removed. Fine particles.
3 . 請求項 1又 2記載の微粒子が、 顔料、 紫外線遮蔽無機材料、 有 機化合物、 レーキ顔料であることを特徴とする単分散薄膜で包接さ れた微粒子。 3. The fine particles enclosed with a monodisperse thin film, wherein the fine particles according to claim 1 are pigments, ultraviolet shielding inorganic materials, organic compounds, and lake pigments.
4 .請求項 1、 2又は 3記載の薄膜が、 M e i ^ D x O y (ここで、 M eは金属元素、 nは金属元素の数 (n =整数) 、 l≤ x, y≤ 9で x, yは整数) よりなり、 媒質によって侵食溶解されない強固な膜 厚 4 0 n m以上の透明膜、 好ましくは 3 n m以下の透明膜をなし、 包接される微粒子の変質が防御されるとともに、好ましくは耐熱性、 耐酸化性、 発色性、 流動性および機械強度すベての機能特性を備え ていることを特徴とする単分散薄膜で包接された微粒子。 4. The thin film according to claim 1, 2 or 3, wherein Mei ^ DxOy (where Me is a metal element, n is the number of metal elements (n = integer), l≤x, y≤9 Where x and y are integers). A strong film that is not eroded and dissolved by the medium. A transparent film with a thickness of 40 nm or more, preferably a transparent film of 3 nm or less. Preferably all functional properties such as heat resistance, oxidation resistance, color development, fluidity and mechanical strength Characterized in that the fine particles are enclosed by a monodisperse thin film.
5 . 請求項 4記載の薄膜が、 相互に異なる複数積層膜よりなること を特徴とする単分散薄膜で包接された微粒子。 5. The fine particles enclosed by a monodisperse thin film, wherein the thin film according to claim 4 comprises a plurality of laminated films different from each other.
6 . 請求項 1 、 2 、 3 、 4又は 5記載の単分散薄膜で包接された微 粒子を含有したことを特徴とする化粧料。 6. A cosmetic comprising fine particles included in the monodispersed thin film according to claim 1, 2, 3, 4 or 5.
PCT/JP2002/003400 2001-04-06 2002-04-04 Fine particles included in ultra-thin membrane in state of primary particles and cosmetic using the same WO2002083296A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-145679 2001-04-06
JP2001145679A JP2002308716A (en) 2001-04-06 2001-04-06 Fine particle coated with monodisperse super thin film and cosmetic using the same

Publications (1)

Publication Number Publication Date
WO2002083296A1 true WO2002083296A1 (en) 2002-10-24

Family

ID=18991450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/003400 WO2002083296A1 (en) 2001-04-06 2002-04-04 Fine particles included in ultra-thin membrane in state of primary particles and cosmetic using the same

Country Status (2)

Country Link
JP (1) JP2002308716A (en)
WO (1) WO2002083296A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1412175B1 (en) * 2001-07-18 2009-07-08 The Regents of the University of Colorado Insulating and functionalizing fine metal-containing particles with comformal ultra-thin films
WO2014171322A1 (en) * 2013-04-19 2014-10-23 住友大阪セメント株式会社 Silicon-oxide-coated zinc oxide and method for manufacturing same, silicon-oxide-coated-zinc-oxide-containing composition, and cosmetic
KR102246324B1 (en) 2014-03-31 2021-04-29 스미토모 오사카 세멘토 가부시키가이샤 Silicon oxide-coated zinc oxide, method for producing same, and composition and cosmetic including silicon oxide-coated zinc oxide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260670A (en) * 1991-02-13 1992-09-16 Sumitomo Electric Ind Ltd Production of sintered silicon nitride composite material
JPH08143913A (en) * 1994-11-25 1996-06-04 Kinya Adachi Pulverization and stabilization of magnetic powder of alloy and intermetallic compound
JPH08157747A (en) * 1994-12-08 1996-06-18 Dainippon Printing Co Ltd Composition for forming porous film, porous film, and formation of porous film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59212422A (en) * 1983-05-19 1984-12-01 Shiseido Co Ltd Cosmetic
JPS6216408A (en) * 1985-07-12 1987-01-24 Shiseido Co Ltd Cosmetic
JP3018126B2 (en) * 1992-02-19 2000-03-13 花王株式会社 Composite pigment and cosmetic containing the same
US5806116A (en) * 1996-10-25 1998-09-15 Varian Associates, Inc. Positioning system for a patient support apparatus
JP4615680B2 (en) * 2000-07-31 2011-01-19 日本板硝子株式会社 Flakes glass for cosmetics and cosmetics containing the same
JP2002105354A (en) * 2000-09-29 2002-04-10 Catalysts & Chem Ind Co Ltd Ultramarine composition and method for producing the same
DE10061178A1 (en) * 2000-12-07 2002-06-20 Merck Patent Gmbh Silver-colored gloss pigment
JP2002309173A (en) * 2001-04-06 2002-10-23 Isi:Kk Mildly self-hydrolyzable monodisperse thin film-forming material, and monodisperse pigment coated therewith and cosmetic having incorporated the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260670A (en) * 1991-02-13 1992-09-16 Sumitomo Electric Ind Ltd Production of sintered silicon nitride composite material
JPH08143913A (en) * 1994-11-25 1996-06-04 Kinya Adachi Pulverization and stabilization of magnetic powder of alloy and intermetallic compound
JPH08157747A (en) * 1994-12-08 1996-06-18 Dainippon Printing Co Ltd Composition for forming porous film, porous film, and formation of porous film

Also Published As

Publication number Publication date
JP2002308716A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
AU2006202179B2 (en) Lower-energy process for preparing passivated inorganic nanoparticles
JP5851755B2 (en) Fine particle dispersion method and dispersion
CA2962010C (en) Sio2 coated pvd aluminium effect pigment powder or suspension
EP2072466A1 (en) Core-shell-type cerium oxide microparticle, dispersion solution comprising the microparticle, and process for production of the microparticle or dispersion solution
WO2009099201A1 (en) Core-shell type zinc oxide microparticle or dispersion containing the microparticle, and production process and use of the microparticle or the dispersion
CN107286705B (en) Nano inorganic composite pigment and preparation method thereof
JPH11193354A (en) Silica-coated zinc oxide particle, its preparation, and composition containing it
Tago et al. Synthesis and optical properties of SiO 2-coated CeO 2 nanoparticles
JP2002356625A (en) Organic/inorganic composite particle and its manufacturing method, and pigment composed of the powder, coating material and resin composition pigment dispersion and masterbatch using the pigment
JP2010090002A (en) Production method of monoclinic particulate bismuth oxide, ultraviolet ray shielding dispersion and production method of the same, and ultraviolet ray shielding coating composition
US20080096020A1 (en) Silicate Coating
WO2002083296A1 (en) Fine particles included in ultra-thin membrane in state of primary particles and cosmetic using the same
JP5343604B2 (en) Method for producing titanium oxide photocatalyst thin film
JP2009184884A (en) Core-shell type cobalt oxide fine particles or dispersion containing the same, method for producing them, and their application
JP2002114964A (en) Ultraviolet-protecting agent and its manufacturing method
JPWO2003083008A1 (en) Ultraviolet shielding powder, dispersion containing the powder, ultraviolet shielding film, and ultraviolet shielding container
JPH07315859A (en) Flake-shaped glass containing dispersed fine granule of metal oxide and method for producing the same
JP2010030791A (en) Method for producing silica hollow particle
JP2004124033A (en) Non-cohesive infrared shielding material
KR20070108798A (en) Polymer macroparticle of which surface is modified by mesoparticle and nanoparticle, nanoparticle-polymer composite using the same, and preparation thereof
KR20060102368A (en) Polymer macroparticle of which surface is modified by mesoparticle and nanoparticle, nanoparticle-polymer composite using the same, and preparation thereof
Gasgnier et al. Ultrasound effects on cerium, praseodymium, and terbium oxides
JP2021095301A (en) Powder and dispersion of low order titanium oxide
JP3301690B2 (en) Method for producing ultrafine particle dispersion
KR100324406B1 (en) UV blocking Material and Method of fabricating the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase