WO2002082010A1 - Extensometre a longue base, a fibre optique tendue et reseau de bragg, et procede de fabrication de cet extensometre - Google Patents

Extensometre a longue base, a fibre optique tendue et reseau de bragg, et procede de fabrication de cet extensometre Download PDF

Info

Publication number
WO2002082010A1
WO2002082010A1 PCT/FR2002/001174 FR0201174W WO02082010A1 WO 2002082010 A1 WO2002082010 A1 WO 2002082010A1 FR 0201174 W FR0201174 W FR 0201174W WO 02082010 A1 WO02082010 A1 WO 02082010A1
Authority
WO
WIPO (PCT)
Prior art keywords
extensometer
tube
fiber
end pieces
optical fiber
Prior art date
Application number
PCT/FR2002/001174
Other languages
English (en)
Inventor
Véronique DEWYNTER-MARTY
Stéphane Rougeault
Pierre Ferdinand
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to EP02730338A priority Critical patent/EP1377793B1/fr
Priority to DE60235352T priority patent/DE60235352D1/de
Priority to US10/472,762 priority patent/US6956981B2/en
Priority to CA002443412A priority patent/CA2443412A1/fr
Publication of WO2002082010A1 publication Critical patent/WO2002082010A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/083Testing mechanical properties by using an optical fiber in contact with the device under test [DUT]
    • G01M11/085Testing mechanical properties by using an optical fiber in contact with the device under test [DUT] the optical fiber being on or near the surface of the DUT
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings

Definitions

  • the present invention relates to an extensometer using an optical fiber which comprises at least one Bragg grating and to a method for manufacturing this extensometer. It is increasingly necessary to control the aging of bridges and, more generally, of a large number of civil engineering works and infrastructures. The majority of such concrete and steel structures are subjected to severe environmental conditions (resulting from the climate, chemical attacks and traffic in continuous growth) which explain their premature aging. The presence of precise and reliable surveillance means, the lifespan of which is of course comparable to that of the engineering structures that are being monitored, is therefore necessary, essentially for reasons of maintenance and public safety.
  • Bragg gratings which are writable in the heart
  • Core optical fibers preferably single-mode, and to adapt these fibers by means of mechanical means and original fixing points, so as to use them as as extensometers in various fields, in particular civil engineering, public works and geotechnics.
  • n eff is the effective index of the guided mode.
  • is the longitudinal deformation along the axis of the optical fiber which is generally made of silica
  • p e is the photo-elastic constant of silica
  • Pu and p ⁇ are the elasto-optical coefficients, and v is the Poisson's ratio of silica.
  • the Bragg gratings and the optical fibers have the following properties: the use of optical fibers makes the extensometers insensitive to electromagnetic disturbances, lightning or electromagnetic variations having no effect on light transmission,
  • the deformations are independent of the signal strength and possible losses (for example due to the lack of reproducibility of the connections and the curvatures of optical fibers) on the measurement lines, this which is a very big advantage in long-term monitoring measures.
  • the Bragg gratings are glued on supports serving as test body, or directly on concrete irons or prestressing cables. Metallic test bodies thus instrumented can be inserted into the concrete.
  • the Bragg gratings can be embedded inside composite bars.
  • Bragg grids are also known for interrogation and can be used with the extensometer which is the subject of the invention. These means are based on a spectral demultiplexing.
  • the spectra of the measurement lines (if the sensors are multiplexed) are obtained using components of the genus of Fabry-Perrot scanning cavities and make it possible to analyze, at various frequencies, the spectral shifts of the Bragg gratings and thus , through their sensitivities, to calculate the variations of the parameter or physical parameters considered (for example deformations, temperatures or pressures).
  • the object of the present invention is to remedy the above drawback by proposing an extensometer which comprises an optical fiber provided with at least one Bragg grating, an extensometer whose measurement base is likely to range from a few tens of centimeters to a few meters, even a few tens of meters.
  • the subject of the present invention is an extensometer comprising: - an optical fiber, in which at least one Bragg grating is formed, and - at least one test body which is intended to be rigidly secured to a host material and which surrounds part of the optical fiber containing this Bragg grating, any deformation of the host material being thus transmitted to this Bragg grating via the test body, this Bragg grating then being able to modify a light propagating in the fiber, the deformation of the host material being determined from the modified light,
  • this extensometer being characterized in that the test body comprises a tube in which is disposed the part of the optical fiber containing the Bragg grating, the two ends of this part being respectively fixed to the two ends of this tube and this part being stretched between these two ends of the tube.
  • the test body also comprises two end pieces respectively fixed at the two ends of the tube and the part of the fiber is stretched between these two end pieces.
  • the two end pieces are metallic, the optical fiber is metallized and the two ends of the part of this fiber are respectively welded to the two end pieces.
  • the two ends of the part of the fiber are respectively glued to the two end pieces.
  • the two ends of the tube are respectively welded to the two end pieces.
  • a tube and two metal end pieces are used and the two ends of the tube are then respectively welded to the two end pieces by soldering with tin.
  • test body is intended to be embedded in the host material and the two end pieces are respectively provided with two anchoring means in the host material.
  • test body is intended to be fixed to the surface of the host material and the two end pieces are respectively provided with two means of fixing or bonding to this surface of the host material.
  • the extensometer comprises a plurality of test bodies which are connected in series.
  • the present invention also relates to a method of manufacturing the extensometer which is the subject of the invention, in which the part of the optical fiber is stretched between the two ends of the tube and the two ends of this part are fixed to the two ends of the tube.
  • FIG. 1 is a schematic longitudinal sectional view of a first particular embodiment of the extensometer object of the invention
  • FIG. 2 is a schematic longitudinal section view of a second particular embodiment of the extensometer object of the invention
  • FIG. 3 schematically illustrates the networking of several extensometers in accordance with the invention (four extensometers in this example), and - Figure 4 schematically illustrates an example of a device for mounting an extensometer according to the invention.
  • extensometers according to the invention which are schematically represented in longitudinal section in FIGS. 1, 2 and 3, are intended to measure the deformations (contractions or dilations) of a host material, which in these examples is a work of art in concrete.
  • Each of these extensometers includes an optical fiber containing at least one Bragg grating and, in order to measure both elongation and contraction deformations, the fiber containing the Bragg grating is pre-stretched with an elongation greater than the maximum compression. eligible.
  • the compression dynamic is of the order of 2500 ⁇ deformation
  • this optical fiber is formed (by photo-inscription) at least one network of
  • Bragg (a single Bragg R network in the case of Figures 1 and 2 and four Bragg gratings Ri, R2, R3 and R4 in the case of Figure 3).
  • FIGS. 1 to 3 show measurement means 6 making it possible to “interrogate” the Bragg network or networks and to measure the deformations undergone by the concrete.
  • These measurement means are provided for sending light of a certain wavelength into the optical fiber 4 when there is a single Bragg grating and lights of different wavelengths when there is a plurality of networks of
  • Bragg for example as many wavelengths as there are Bragg gratings.
  • This Bragg grating modifies the light which corresponds to it and this light returns to the measuring means 6 via the optical fiber and the deformation of the concrete is determined by these measuring means from the light thus modified.
  • the measuring means 6 are connected to a single optical fiber, namely the optical fiber 4 carrying the Bragg grating
  • the measuring means 6 may include an optical switch (“switch”) making it possible to address an optical fiber from among N optical fibers (N> 1), so as to connect, at a given instant, the fiber addressed to the measurement means 6.
  • This optical switch therefore makes it possible to alternate the interrogation (sending and recovery of light) of a Bragg grating or lines of sensors to Bragg gratings, this interrogation possibly taking place alternately by one side of the optical fiber then by the other side of this fiber and so on, as shown in FIG. 3.
  • This embodiment makes it more reliable the system with one or more extensometers, allowing this system to remain operational even in the event of accidental cut of the fiber.
  • one or more Bragg gratings can be interrogated by only one side of the optical fiber, the other side being free, that is to say not connected to 1 ′ extensometer.
  • the test body 8 of the extensometer according to the invention that can be seen in FIG. 1 or FIG. 2 comprises a central tube 16 and two end pieces 18 and 20 respectively fixed to the two ends of this tube.
  • the part of the optical fiber 4, in the heart of which the Bragg R network is formed, is free inside this tube 16 and stretched in this tube.
  • Another fiber, not shown, not stretched, can possibly be joined to this fiber 4 so as to measure the temperature.
  • the two ends of the part of the fiber carrying the Bragg grating are respectively fixed inside the two end pieces 18 and 20 and this part of the fiber 4 is stretched between the two end pieces.
  • This tension of the fiber is carried out during the manufacture of the extensometer, allowing the latter to carry out deformation measurements in tension as well as in compression, along its longitudinal axis (axis of the tube 16).
  • the Bragg grating When one tip moves relative to the other, the Bragg grating is subjected to measurable deformation.
  • this part can be welded in the ferrules.
  • a mechanical clamp or capstan system can be provided for fixing the part of the fiber 4 in the tube 16. It is possible to choose the rigidity of the test body 8 and therefore that of the tube 16 as a function of the host material 2 intended to receive the latter.
  • the tube 16 which is a metal tube, for example made of previously nickel-plated stainless steel, is welded by its two ends to the two end pieces which are also made of stainless steel in the example considered.
  • the main function of this weld is to maintain the pre-tension of the fiber during storage of the extensometer and its placement in the structure to be monitored.
  • the pre-tension of the fiber can range from a few grams to a few kilograms. It depends on the desired measurement range. Depending on the welded surface and the amount of material added, it is possible to adapt the mechanical resistance of the tube welds to the end pieces.
  • the extensometer can have a low rigidity, in order not to oppose resistance to the deformations of the structure, or to be more rigid and for example to have an equivalent Young modulus very close to that of the host material.
  • a so-called “flexible” solder is used, preferably a tin solder usually used in electronics.
  • the “massive” or “rigid” extensometers for which the Bragg network is fixed over its entire length on a metal rod, on the one hand have a greater resistance to deformations of the structure to be monitored and therefore are strongly intrusive and, on the other hand, must be sized to avoid buckling of the rod in the case of compression operation: the longer the measurement base, the larger the diameter of the rod under the rules current art in resistance of materials. It therefore seems difficult to envisage, with these “rigid” extensometers, measurement bases greater than twenty centimeters.
  • the bases for possible measurement with an extensometer in accordance with the invention are typically between approximately 0.1 m and a few meters. It suffices to adapt the length of the central tube 16.
  • the extensometer is installed in a structure during the construction of this structure or after coring.
  • an anchoring flange 22 or 24 is added to each endpiece 18 or 20, screwed onto this endpiece with two nuts 26-28 or 30-32 which trap the corresponding flange by means of two washers 34- 36 or 38-40, as seen in Figure 1.
  • two washers 34- 36 or 38-40 as seen in Figure 1.
  • 1 extensometer is installed on the surface of an existing structure, made of concrete 2.
  • the end pieces 18 and 20 are respectively fixed on two jumpers or flanges 42 and 44 by means of two nuts 46 -48 or 50-52 trapping this rider or bridle.
  • the two flanges define the basis for integrating the deformations.
  • the two jumpers or flanges define this integration base.
  • each jumper or flange is provided with holes 54 provided for fixing to the structure by means of appropriate means such as screws symbolized by the dashed lines 56.
  • the two flanges could be glued to the surface of the structure. It is specified that, in the examples of FIGS. 1 and 2, the end of the fiber 4, which is shown not connected, can be free, or connected to another extensometer, or even connected to the measuring means 6.
  • FIG. 3 schematically illustrates the networking of a plurality of extensometers in accordance with the invention.
  • extensometers are used using the same optical fiber 4 and respectively comprising Bragg gratings RI, R2, R3 and R4 registered at different wavelengths on this fiber 4.
  • the first three extensometers are juxtaposed in series, with attachment points common two by two.
  • the fourth extensometer is located further away: a portion of the fiber 4 separates it from the other three extensometers.
  • the three extensometers in series use three test bodies comprising three tubes of different lengths.
  • One of the tubes forming a central tube 58, is connected to the other two tubes 60 and 62 by means of two central end pieces 64 and 65. These two other tubes are also provided, at their ends furthest from the tube 58 , respectively of two end pieces 68 and 66.
  • the fourth extensometer uses a tube 63 provided, at its ends, with two end pieces 67 and 70.
  • the optical fiber 4 passes through the tips 68, 64, 65, 66, 67 and 70 and the tubes 60, 58, 62 and 63.
  • One of the Bragg networks' IR is between the end piece 68 and the central piece 64.
  • the Bragg R2 network is located between the two central end pieces 64 and 65, the third Bragg R3 network is located between the central end piece 65 and the terminal end piece 66.
  • the fourth Bragg R4 network is located between the end pieces 67 and 70.
  • the optical fiber is stretched between the neighboring ends 68-64, 64-65, 66-66 and 67-70 and fixed in these ends.
  • two identical extensometers are mounted in series, corresponding to two measuring bases of 0.5 m each.
  • Two tubes are then used having a common end piece while two end pieces are respectively placed at the other ends of these tubes.
  • An optical fiber carrying two Bragg gratings is then used and this fiber is stretched in the two tubes, between the end pieces.
  • the strain measurement range is defined, for each extensometer, by the application and control of the pre-stress. For example, for an extensometer to operate in compression in the deformation range from -1000 ⁇ m / m to -3000 ⁇ m / m, the pre-tension required is typically greater than 300 g for a silica fiber with a diameter of 125 ⁇ m .
  • the measurement range is adaptable, in particular in compression, as a function of the pre-tension exerted during the manufacture of the extensometer which is the subject of the invention.
  • This assembly bench enables extensometers to be produced with excellent metrological reproducibility, in particular as regards the application of pre-stresses which are necessary for compression measurements.
  • FIG. 4 This example of a mounting bench is schematically represented in FIG. 4 and comprises an assembly rod 72, plates 74 and 76, anchoring ends 78 and 80, a pulley 82, a pulley support 84, and each end piece.
  • anchor 78 or 80 includes an anchor support 86 or 88 as well as an anchor cover 90 or 92.
  • the assembly rod 72 maintains the assembly as well as the coaxiality of the various components as a function of the measurement base chosen.
  • the plates 74-76 or 94 support the anchors or the pulley support. These plates are fixed under the assembly rod 72.
  • a step 2 the exterior surface of the optical fiber is cleaned. To do this, this optical fiber is delicately cleaned with acetone on the portions where it must be glued or welded.
  • a step 3 we mark and mark on the fiber areas outside bonding or welding in the end caps. If we note L b (figure 1) the measurement base of the extensometer and L e the length of each end piece (figure 1), two marks will be written on the fiber at the distances L b / 2 + L e + 1 cm, on either side of the location of the Bragg grating. These marks make it possible to correctly position this Bragg grating in the center of the tube.
  • a step 4 the various elements are threaded onto the fiber. These elements are threaded in order on this fiber, namely the left end piece, the tube and the right end piece, leaving the threads towards the outside.
  • the mounting bench is adapted to the measurement base L b of the extensometers that we want to manufacture and the two plates 74 and 76 secured to the anchor supports are positioned on two heating plates (not shown ).
  • the separate elements of the extensometer are positioned on the assembly bench. The two end pieces are placed in the corresponding supports of the mounting bench and the tube of the extensometer is adjusted so that this tube does not come into abutment in an end piece. The fiber is slid in order to visualize the two marks on this fiber outside the two end caps. The straight end is the one near the pulley. Then, the steps differ depending on whether the optical fiber is metallized or non-metallized.
  • Step 7a is a step of preparing the adhesive intended for bonding. After tests of mechanical resistance and measurements of absence of creep under load at different temperatures, we chose, as an adhesive, a two-component epoxy adhesive for bonding the fiber in its end caps. The weighing and mixing of the two components of this adhesive, namely the resin and the hardener, are carried out in a previously cleaned dish.
  • Step 8a is a step of fluidifying the adhesive.
  • This adhesive is heated to a temperature of 40 ° C in order to fluidize it without however, start the polymerization. It is thus possible to aspirate it with a syringe.
  • Step 11a is a step of welding the metal tube into the left end piece. This nozzle and the tube are heated in the mass to the melting temperature of the weld.
  • the solder used is a tin solder which is known in electronics. Welding is deposited, by melting it, in the hole of the end-piece machined for this purpose and on the end of the tube.
  • Step 12a is a step of welding the metal tube into the straight end piece.
  • the procedure is the same as in step lia.
  • Step 13a is a step of pre-tensioning the fiber. To induce a pre-tension on the fiber, pass the right end of the fiber around the pulley and hang a mass previously calibrated.
  • the optical cladding of which has a diameter of 125 ⁇ m a mass of 100 g typically induces a pre-tension of 1000 ⁇ m / m.
  • the pre-tension is maintained during the following steps.
  • Step 14a is a step of injecting resin into the right end piece. The procedure is the same as in step 9a.
  • step 8b the fiber is pretensioned.
  • the procedure is the same as in step 13a.
  • step 9b the fiber is simultaneously welded in the straight end piece and this end piece in the tube.
  • the basic metallized fiber extensometer is then completed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Extensomètre à longue base, à fibre optique tendue et réseau de Bragg, et procédé de fabrication de cet extensomètre. Selon l'invention, qui s'applique notamment à la surveillance d'ouvrages d'art, on dispose une partie de la fibre optique (4) contenant un réseau de Bragg (R) dans un tube (16); on tend cette partie entre les deux extrémités du tube; on fixe les extrémités de cette partie aux extrémités du tube; ce tube est destiné à être rendu rigidement solidaire d'un matériau-hôte (2).

Description

EXTENSOMETRE A LONGUE BASE, A FIBRE OPTIQUE TENDUE ET RÉSEAU DE BRAGG, ET PROCÉDÉ DE FABRICATION DE CET
EXTENSOMÈTRE DESCRIPTION
DOMAINE TECHNIQUE
La présente invention concerne un extensomètre utilisant une fibre optique qui comporte au moins un réseau de Bragg ainsi qu'un procédé de fabrication de cet extensomètre. II est de plus en plus nécessaire de contrôler le vieillissement des ponts et, plus généralement, d'un grand nombre d'ouvrages et d'infrastructures de génie civil. La majorité de telles structures en béton et acier sont soumises à des conditions environnementales sévères (résultant du climat, des attaques chimiques et d'un trafic en croissance continue) qui expliquent leur vieillissement prématuré. La présence de moyens de surveillance précis et fiables, dont la durée de vie est bien entendu comparable à celle des ouvrages d'art que l'on surveille, est donc nécessaire, essentiellement pour des raisons de maintenance et de sécurité publique.
Plusieurs paramètres physiques, qui sont relatifs au vieillissement ou aux dégradations de ces ouvrages d'art, sont concernés. On peut, par exemple, citer les mesures de pH, de constitution chimique, de déformations et de contraintes, dans les matériaux dont ces ouvrages sont constitués, ainsi que la détection et le suivi des fissurations. Dans le cadre de la présente invention, on s'intéresse plus particulièrement aux mesures de déformations ainsi qu'à la détection et au suivi de l'état de fissuration d'une structure. Les mesures de déformations et d'allongements de grandes structures, du genre de celles que l'on rencontre en génie civil ou en géotechnique (par exemple les mines ou les terrains), sont actuellement faites à l'aide de divers capteurs, par exemple les extensometres à cordes vibrantes ou les extensometres inductifs, qui sont directement installés sur ces structures. D'autres techniques sans contact (utilisant par exemple les ultrasons ou des moyens optiques fonctionnant avec une lumière visible ou laser) sont également cor-nues.
Il convient de noter que les instruments classiques (les capteurs mais aussi les moyens électroniques associés) , qui sont installés sur les ouvrages d'art, sont fréquemment soumis à la foudre. Cette dernière les endommage et les rend inopérants, voire irremplaçables, quand ces capteurs et ces moyens électroniques sont noyés dans les structures surveillées .
Indiquons dès maintenant que l'on propose, dans la présente invention, d'utiliser les propriétés métrologiques des réseaux de Bragg (« Bragg gratings ») qui sont inscriptibles dans le cœur
(« core ») des fibres optiques, de préférence monomodes, et d'adapter ces fibres par l'intermédiaire de moyens mécaniques et de points de fixation originaux, de manière à les utiliser en tant qu ' extensometres dans divers domaines, en particulier le génie civil, les travaux publics et la géotechnique .
La présente invention propose donc un extensomètre original, permettant des mesures de traction et de compression ainsi que la détection et le suivi de fissures.
Les applications et les utilisations de la présente invention concernent 1 ' extensometrie dans les domaines du génie civil, des travaux publics et de la géotechnique, par exemple pour surveiller les ponts ou les viaducs routiers ou ferroviaires, les barrages hydroélectriques, les bâtiments de réacteurs nucléaires et les aéroréfrigérants associés à ces réacteurs, les immeubles ou bâtiments divers, les tunnels et les mines, les mouvements des roches et les avancées de terrains, ou pour contrôler les zones sismiques aériennes ou sous-marines, les canalisations enterrées, les pipelines, les canalisations appelées "risers", les digues et les plates-formes offshore.
ETAT DE LA TECHNIQUE ANTERIEURE
Il est connu de photo-inscrire un réseau de Bragg dans le cœur même d'une fibre optique photosensible, généralement monomode. Ce réseau de Bragg consiste en une modulation spatiale de l'indice optique du cœur de la fibre dont la période Λ, c'est-à-dire le pas ("pitch") du réseau, définit la longueur d'onde spectrale de filtrage en transmission, appelée "longueur d'onde de Bragg" et notée λB, suivant l'accord de phase qui constitue la condition de Bragg et qui s'écrit :
Figure imgf000006_0001
où neff est l'indice effectif du mode guidé. Lorsque le réseau de Bragg est soumis à une déformation, la condition d'accord de Bragg est vérifiée à une longueur d'onde différente. La signature spectrale du réseau de Bragg est modifiée, en fonction d'un allongement, suivant une loi qui est linéaire au premier ordre et obéit à l'équation suivante :
- = ( 1 - pe)ε = (l - ^ (pι2(l - v) - pnv)) ε (2)
où ε est la déformation longitudinale suivant l'axe de la fibre optique qui est généralement en silice, pe est la constante photo-élastique de la silice,
Pu et pι sont les coefficients élasto-optiques , et v est le coefficient de Poisson de la silice.
Dans les extensometres conformes à la présente invention, les réseaux de Bragg et les fibres optiques ont les propriétés suivantes : l'utilisation de fibres optiques rend les extensometres insensibles aux perturbations électromagnétiques, la foudre ou les variations électromagnétiques n'ayant pas d'effet sur la transmission de la lumière,
- les propriétés intrinsèques des réseaux de Bragg, en termes de transmission ou de réflexion spectrale, sont stables au cours du temps dans un environnement tel que les bâtiments et les travaux publics ,
- les réseaux de Bragg restent stables à des températures élevées, de plusieurs centaines de °C, ils peuvent être multiplexes spectralement, en série ou suivant diverses architectures ou topologies de réseaux (« networks ») , permettant de relier de nouveaux extensometres aux systèmes d'acquisition et de mesure,
- en les utilisant avec des instruments faisant des mesures spectrales, les déformations sont indépendantes de la puissance du signal et des pertes éventuelles (par exemple à cause du manque de reproductibilité des connexions et des courbures de fibres optiques) sur les lignes de mesure, ce qui est un très grand avantage dans le cadre de mesures de surveillance à long terme.
On connaît déjà divers extensometres qui utilisent des fibres optiques pourvues de réseaux de Bragg .
Habituellement, les réseaux de Bragg sont collés sur des supports servant de corps d'épreuve, ou directement sur des fers à béton ou des câbles de pré- contraintes. Des corps d'épreuves métalliques ainsi instrumentés peuvent être insérés dans le béton.
A ce sujet, on consultera par exemple le document suivant :
[1] V. Dewynter-Marty, S. Rougeault, P. Ferdinand, D. Chauvel, E. Toppani , M. Leygonie, B. Jarret and P. Fenaux, Concrète strain measurements and crack détection with surface-mounted and embedded
Bragg grating extensometers, 12th International
Conférence on Optical Fiber Sensors, 28-31
Octobre 1997, USA, pages 600-603. Sur le même principe de transducteur massif, les réseaux de Bragg peuvent être noyés à l'intérieur de barreaux composites.
A ce sujet, on consultera par exemple le document suivant : [2] Extensomètre à réseau de Bragg et procédé de fabrication de cet extensomètre, invention de S.
Magne, V. Dewynter-Marty, P. Ferdinand et M.
Bugaud, demande de brevet français n°99 04084 du
1er avril 1999 correspondant à la demande internationale PCT/FR00/00806 du 30 mars 2000.
On connaît aussi des moyens d'interrogation des réseaux de Bragg et l'on peut les utiliser avec 1 ' extensomètre objet de l'invention. Ces moyens sont fondés sur un démultiplexage spectral. Les spectres des lignes de mesure (si les capteurs sont multiplexes) sont obtenus à l'aide de composants du genre des cavités de Fabry-Perrot à balayage et permettent d'analyser, à diverses fréquences, les décalages spectraux des réseaux de Bragg et ainsi, par l'intermédiaire de leurs sensibilités, de calculer les variations du paramètre ou des paramètres physiques considérés (par exemple des déformations, des températures ou des pressions) .
On connaît aussi des moyens qui utilisent des filtres spectraux et permettent le suivi de capteurs à réseaux de Bragg. Les extensometres connus présentent un inconvénient : du fait de la structure de ces extensometres, la longueur de base de ces derniers ne peut guère dépasser un mètre.
EXPOSÉ DE L'INVENTION
La présente invention a pour but de remédier à l'inconvénient précédent en proposant un extensomètre qui comporte une fibre optique munie d'au moins un réseau de Bragg, extensomètre dont la base de mesure est susceptible d'aller de quelques dizaines de centimètres à quelques mètres, voire quelques dizaines de mètres .
De façon précise, la présente invention a pour objet un extensomètre comprenant : - une fibre optique, dans laquelle est formé au moins un réseau de Bragg, et - au moins un corps d'épreuve qui est destiné à être rendu rigidement solidaire d'un matériau-hôte et qui entoure une partie de la fibre optique contenant ce réseau de Bragg, toute déformation du matériau-hôte étant ainsi transmise à ce réseau de Bragg par l'intermédiaire du corps d'épreuve, ce réseau de Bragg étant alors apte à modifier une lumière se propageant dans la fibre, la déformation du matériau-hôte étant déterminée à partir de la lumière modifiée, cet extensomètre étant caractérisé en ce que le corps d'épreuve comprend un tube dans lequel est disposée la partie de la fibre optique contenant le réseau de Bragg, les deux extrémités de cette partie étant respectivement fixées aux deux extrémités de ce tube et cette partie étant tendue entre ces deux extrémités du tube.
Selon un mode de réalisation préféré de 1 ' extensomètre objet de l'invention, le corps d'épreuve comprend en outre deux embouts respectivement fixés aux deux extrémités du tube et la partie de la fibre est tendue entre ces deux embouts.
Selon un premier mode de réalisation particulier de 1 ' extensomètre objet de l'invention, les deux embouts sont métalliques, la fibre optique est métallisée et les deux extrémités de la partie de cette fibre sont respectivement soudées aux deux embouts . Selon un deuxième mode de réalisation particulier, les deux extrémités de la partie de la fibre sont respectivement collées aux deux embouts .
De préférence, les deux extrémités du tube sont respectivement soudées aux deux embouts . De préférence, on utilise un tube et deux embouts métalliques et les deux extrémités du tube sont alors respectivement soudées aux deux embouts par une soudure à l'étain.
Dans un premier mode de réalisation particulier de l'invention, le corps d'épreuve est destiné à être noyé dans le matériau-hôte et les deux embouts sont respectivement pourvus de deux moyens d'ancrage dans le matériau-hôte.
Selon un deuxième mode de réalisation particulier, le corps d'épreuve est destiné à être fixé à la surface du matériau-hôte et les deux embouts sont respectivement pourvus de deux moyens de fixation ou de collage à cette surface du matériau-hôte.
Dans un mode de réalisation particulier de l'invention, 1 ' extensomètre comprend une pluralité de corps d'épreuve qui sont montés en série.
La présente invention concerne aussi un procédé de fabrication de 1 ' extensomètre objet de l'invention, dans lequel on tend la partie de la fibre optique entre les deux extrémités du tube et l'on fixe les deux extrémités de cette partie aux deux extrémités du tube.
BRÈVE DESCRIPTION DES DESSINS
La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés ci-après, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels : la figure 1 est une vue en coupe longitudinale schématique d'un premier mode de réalisation particulier de 1 ' extensomètre objet de 1 ' invention, la figure 2 est une vue en coupe longitudinale schématique d'un deuxième mode de réalisation particulier de 1 ' extensomètre objet de l'invention,
- la figure 3 illustre schématiquement la mise en réseau de plusieurs extensometres conformes à l'invention (quatre extensometres dans cet exemple), et - la figure 4 illustre schématiquement un exemple de dispositif de montage d'un extensomètre conforme à l'invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
Les extensometres conformes à l'invention, qui sont schématiquement représentés en coupe longitudinale sur les figures 1, 2 et 3, sont destinées à mesurer les déformations (contractions ou dilatations) d'un matériau hôte, qui dans ces exemples, est un ouvrage d'art en béton.
Chacun de ces extensometres comprend une fibre optique contenant au moins un réseau de Bragg et, afin de mesurer aussi bien les déformations d'allongement que de contraction, la fibre contenant le réseau de Bragg est pré-tendue avec un allongement supérieur à la compression maximale admissible.
Ainsi, pour le béton, la dynamique en compression est de l'ordre de 2500 μ déformation
(0,2%). On voit qu'une pré-tension de la fibre supérieure à cette valeur (par exemple 0,5%) est tout à fait possible.
On voit sur les figures 1 et 2 la partie en béton 2 de cet ouvrage dont on veut étudier les déformations au moyen de l'un ou l'autre de ces extensometres.
Chaque extensomètre comprend une fibre optique 4 de préférence monomode, par exemple en silice .
Dans le cœur de cette fibre optique est formée (par photo-inscription) au moins un réseau de
Bragg (un seul réseau de Bragg R dans le cas des figures 1 et 2 et quatre réseaux de Bragg Ri, R2 , R3 et R4 dans le cas de la figure 3) .
On voit sur les figures 1 à 3 des moyens de mesure 6 permettant « d'interroger » le ou les réseaux de Bragg et de mesurer les déformations subies par le béton.
Ces moyens de mesure sont prévus pour envoyer dans la fibre optique 4 une lumière d'une certaine longueur d'onde lorsqu'il y a un seul réseau de Bragg et des lumières de longueurs d'onde différentes lorsqu'il y a une pluralité de réseaux de
Bragg (par exemple autant de longueurs d'onde qu'il y a de réseaux de Bragg) .
Toute déformation du béton est transmise à un réseau de Bragg par l'intermédiaire du corps d'épreuve 8 (figures 1 et 2) que comporte
1 ' extensomètre et sur lequel on reviendra par la suite .
Ce réseau de Bragg modifie alors la lumière qui lui correspond et cette lumière retourne aux moyens de mesure 6 par l'intermédiaire de la fibre optique et la déformation du béton est déterminée par ces moyens de mesure à partir de la lumière ainsi modifiée . Dans l'exemple représenté, les moyens de mesure 6 sont reliés à une seule fibre optique, à savoir la fibre optique 4 portant le réseau de Bragg
R.
Néanmoins, les moyens de mesure 6 peuvent comporter un commutateur ("switch") optique permettant d'adresser une fibre optique parmi N fibres optiques (N>1) , de manière à relier, à un instant donné, la fibre adressée aux moyens de mesure 6. Ce commutateur optique permet donc d'alterner l'interrogation (envoi et récupération de lumière) d'un réseau de Bragg ou de lignes de capteurs à réseaux de Bragg, cette interrogation ayant éventuellement lieu alternativement par un côté de la fibre optique puis par l'autre côté de cette fibre et ainsi de suite, comme le montre la figure 3. Ce mode de réalisation rend plus fiable le système à un ou plusieurs extensometres, en permettant à ce système de rester opérationnel même en cas de coupure accidentelle de la fibre .
Cependant, dans un mode de réalisation plus simple (non représenté) , on peut interroger le ou les réseaux de Bragg par un seul côté de la fibre optique, l'autre côté étant libre c'est-à-dire non relié à 1 ' extensomètre .
Dans un autre mode de réalisation non représenté, on peut envoyer la ou les lumières dans le ou les réseaux de Bragg par un côté de la fibre optique et récupérer des lumières éventuellement modifiées par l'autre côté de la fibre optique pour mesurer les déformations du béton. Revenons aux figures 1 et 2. Le corps d'épreuve 8 de 1 ' extensomètre conforme à l'invention que l'on voit sur la figure 1 ou la figure 2 comprend un tube central 16 et deux embouts 18 et 20 respectivement fixé aux deux extrémités de ce tube. La partie de la fibre optique 4, dans le cœur de laquelle est formé le réseau de Bragg R, est libre à l'intérieur de ce tube 16 et tendue dans ce tube .
Une autre fibre non représentée, non tendue, peut éventuellement être jointe à cette fibre 4 de manière à mesurer la température.
Les deux extrémités de la partie de la fibre portant le réseau de Bragg sont respectivement fixées à l'intérieur des deux embouts 18 et 20 et cette partie de la fibre 4 est tendue entre les deux embouts.
Cette tension de la fibre est réalisée lors de la fabrication de 1 ' extensomètre, permettant à ce dernier de réaliser des mesures de déformation en traction ainsi qu'en compression, suivant son axe longitudinal (axe du tube 16) .
Lorsqu'un embout se déplace par rapport à l'autre, le réseau de Bragg est soumis à une déformation mesurable.
Il existe trois possibilités de fixation de la partie de la fibre 4 se trouvant dans le tube :
1) Si la fibre est préalablement métallisée (de façon connue) , on peut souder cette partie dans les embouts.
2) Si la fibre ne comporte qu'une gaine mécanique, ou gaine de protection, généralement en polymère, ou si elle est privée d'une telle gaine, on peut coller la partie de la fibre dans les embouts.
3) Dans un autre mode de réalisation particulier non représenté, on peut prévoir un système de pince mécanique ou de cabestan pour la fixation de la partie de la fibre 4 dans le tube 16. Il est possible de choisir la rigidité du corps d'épreuve 8 et donc celle du tube 16 en fonction du matériau-hôte 2 destiné à recevoir ce dernier.
Le tube 16, qui est un tube métallique, par exemple en acier inoxydable préalablement nickelé, est soudé par ses deux extrémités aux deux embouts qui sont également en acier inoxydable dans l'exemple considéré. Cette soudure a pour fonction essentielle le maintien de la pré-tension de la fibre pendant le stockage de 1 ' extensomètre et sa mise en place dans la structure que l'on veut surveiller.
La pré-tension de la fibre peut aller de quelques grammes à quelques kilogrammes. Elle est fonction de la gamme de mesure souhaitée. En fonction de la surface soudée et de la quantité de matière ajoutée, il est possible d'adapter la résistance mécanique des soudures du tube aux embouts .
L' extensomètre peut présenter une faible rigidité, afin de ne pas opposer de résistance aux déformations de la structure, ou être plus rigide et par exemple avoir un module d'Young équivalent très proche de celui du matériau-hôte. Pour ce faire, on utilise une soudure dite « souple », de préférence une soudure à l'étain utilisée habituellement en électronique .
La faible rigidité du tube 16 de 1 ' extensomètre permet d'envisager des longueurs importantes pour cet extensomètre, qui peuvent aller jusqu'à quelques mètres, voire plus. Il suffit pour cela d'adapter la longueur du tube central 16 (notons qu'une telle base de mesure n'est pas disponible avec les cordes vibrantes pour lesquelles la limite de la base de mesure se situe aujourd'hui vers 20 cm), tout en conservant, contrairement aux extensometres « massifs », une faible intrusivité.
En effet, les extensometres « massifs » ou « rigides » , pour lesquels le réseau ,de Bragg est fixé sur toute sa longueur sur une tige métallique, présentent d'une part une résistance plus importante aux déformations de la structure à surveiller et par conséquent sont fortement intrusifs et, d'autre part, doivent être dimensionnés pour éviter le flambage de la tige dans le cas d'un fonctionnement en compression : plus la base de mesure est longue, plus le diamètre de la tige est élevé en vertu des règles de l'art en vigueur en résistance des matériaux. Il semble donc difficile d'envisager, avec ces extensometres « rigides » , des bases de mesure supérieures à une vingtaine de centimètres .
Au contraire, les bases de mesure possible avec un extensomètre conforme à l'invention sont typiquement comprises entre environ 0,1 m et quelques mètres. Il suffit pour cela d'adapter la longueur du tube central 16.
A partir de la configuration de base que l'on vient de décrire (tube central 16, fibre 4 avec réseau de Bragg R et deux embouts 18 et 20), plusieurs adaptations sont possibles permettant diverses utilisations . Dans l'exemple de la figure 1, 1 ' extensomètre est installé dans une structure lors de la construction de cette structure ou après carottage. Dans ce cas, on ajoute à chaque embout 18 ou 20 un flasque d'ancrage 22 ou 24, vissé sur cet embout grâce à deux écrous 26-28 ou 30-32 qui emprisonnent le flasque correspondant par l'intermédiaire de deux rondelles 34-36 ou 38-40, comme on le voit sur la figure 1. Dans l'exemple de la figure 2,
1 ' extensomètre est installé à la surface d'un ouvrage d'art existant, fait en béton 2. Dans ce cas, les embouts 18 et 20 sont respectivement fixés sur deux cavaliers ou brides 42 et 44 par l'intermédiaire de deux écrous 46-48 ou 50-52 emprisonnant ce cavalier ou bride .
Dans le cas de la figure 1, les deux flasques définissent la base d'intégration des déformations . Dans le cas de la figure 2, les deux cavaliers ou brides définissent cette base d' intégration.
Sur cette figure 2, chaque cavalier ou bride est pourvu de trous 54 prévus pour la fixation à l'ouvrage d'art par l'intermédiaire de moyens appropriés tels que des vis symbolisées par les traits mixtes 56.
Au lieu de cela, on pourrait coller les deux brides à la surface de l'ouvrage d'art. On précise que, dans les exemples des figures 1 et 2, l'extrémité de la fibre 4, qui est représentée non reliée, peut être libre, ou reliée à un autre extensomètre, ou même reliée aux moyens de mesure 6.
L'exemple de la figure 3 illustre schématiquement la mise en réseau d'une pluralité d' extensometres conformes à l'invention.
Dans cet exemple, on utilise quatre extensometres utilisant la même fibre optique 4 et comportant respectivement des réseaux de Bragg RI, R2 , R3 et R4 inscrits à différentes longueurs d'onde sur cette fibre 4.
Les trois premiers extensometres sont juxtaposés en série, avec des points d'accrochage communs deux à deux. Le quatrième extensomètre est situé plus loin : une portion de la fibre 4 le sépare des trois autres extensometres.
Il s'agit alors d'un assemblage permettant de réaliser des mesures distribuées .
Dans l'exemple de la figure 3, les trois extensometres en série utilisent trois corps d'épreuve comprenant trois tubes de différentes longueurs.
L'un des tubes, formant un tube central 58, est relié aux deux autres tubes 60 et 62 par l'intermédiaire de deux embouts centraux 64 et 65. Ces deux autres tubes sont également pourvus, en leurs extrémités les plus éloignées du tube 58, respectivement de deux embouts terminaux 68 et 66.
Le quatrième extensomètre utilise un tube 63 pourvu, en ses extrémités, de deux embouts 67 et 70. La fibre optique 4 traverse les embouts 68, 64, 65, 66, 67 et 70 et les tubes 60, 58, 62 et 63. L'un RI des réseaux de Bragg se trouve entre l'embout terminal 68 et l'embout central 64. Le réseau de Bragg R2 se trouve entre les deux embouts centraux 64 et 65, le troisième réseau de Bragg R3 se trouve entre l'embout central 65 et l'embout terminal 66. Le quatrième réseau de Bragg R4 se trouve entre les embouts 67 et 70. La fibre optique est tendue entre les embouts voisins 68-64, 64-65, 66-66 et 67-70 et fixée dans ces embouts.
Dans un exemple non représenté, on monte deux extensometres identiques en série, correspondant à deux bases de mesure de 0,5 m chacune. On utilise alors deux tubes ayant un embout commun tandis que deux embouts sont respectivement placés aux autres extrémités de ces tubes. On utilise alors une fibre optique portant deux réseaux de Bragg et cette fibre est tendue dans les deux tubes, entre les embouts. La gamme de mesure des déformations se définit, pour chaque extensomètre, par l'application et la maîtrise de la pré-contrainte. Par exemple, pour qu'un extensomètre fonctionne en compression dans la gamme de déformation allant de -1000 μm/m à -3000 μm/m, la pré-tension nécessaire est typiquement supérieure à 300 g pour une fibre en silice de diamètre 125 μm.
En conséquence, la gamme de mesure est adaptable, notamment en compression, en fonction de la pré-tension exercée lors de la fabrication de 1' extensomètre objet de l'invention. On considère maintenant un procédé de fabrication d'un extensomètre conforme à l'invention. On décrit d'abord un exemple de banc de montage de 1 ' extensomètre . Ce banc de montage permet de réaliser des extensometres avec une excellente reproductibilité métrologique, notamment pour ce qui concerne l'application de pré-contraintes qui sont nécessaires aux mesures en compression.
Cet exemple de banc de montage est schématiquement représenté sur la figure 4 et comprend une tige d'assemblage 72, des plaques 74 et 76, des embouts d'ancrage 78 et 80, une poulie 82, un support de poulie 84, et chaque embout d'ancrage 78 ou 80 comprend un support d'ancre 86 ou 88 ainsi qu'un couvercle d'ancre 90 ou 92. on voit aussi une plaque 94 sous le socle de support de poulie. L'axe de cette poulie a la référence 96.
Toutes ces pièces sont assemblées comme on le voit sur la figure 4. La tige d'assemblage 72 assure le maintien de l'ensemble ainsi que la coaxialité des divers composants en fonction de la base de mesure choisie.
Les plaques 74-76 ou 94 supportent les ancres ou le support de la poulie. Ces plaques se fixent sous la tige d'assemblage 72.
Dans les deux supports d'ancre sont déposés les embouts des extensometres lors du montage.
Autour de la poulie, la fibre optique prend place pour être pré-tendue. On décrit maintenant la fabrication d'un extensomètre conforme à l'invention. Dans cet exemple on considère la fabrication d'un extensomètre de base, comprenant une fibre optique contenant un seul réseau de Bragg, un tube et deux embouts . Dans une étape 1, on nettoie les deux embouts métalliques. Pour ce faire, on dégraisse ces embouts avec, par exemple, du trichloro 111 éthane.
Dans une étape 2, on nettoie la surface extérieure de la fibre optique. Pour ce faire, cette fibre optique est délicatement nettoyée avec de l'acétone sur les portions où elle devra être collée ou soudée.
Dans une étape 3, on repère et l'on marque sur la fibre des zones extérieures au collage ou au soudage dans les embouts. Si l'on note Lb (figure 1) la base de mesure de 1 ' extensomètre et Le la longueur de chaque embout (figure 1), deux marques seront inscrites sur la fibre aux distances Lb/2 + Le + 1 cm, de part et d'autre de la localisation du réseau de Bragg. Ces marques permettent de positionner correctement ce réseau de Bragg au centre du tube.
Dans une étape 4, on enfile les divers éléments sur la fibre. Ces éléments sont enfilés dans l'ordre sur cette fibre, à savoir l'embout gauche, le tube et l'embout droit, en laissant les filetages vers 1 ' extérieur .
Dans une étape 5, on adapte le banc de montage à la base de mesure Lb des extensometres que l'on veut fabriquer et l'on positionne les deux plaques 74 et 76 solidaires des supports d'ancre sur deux plaques chauffantes (non représentées) . Dans une étape 6, on positionne les éléments séparés de 1 ' extensomètre sur le banc de montage. On place les deux embouts dans les supports correspondant du banc de montage et l'on ajuste le tube de 1 ' extensomètre afin que ce tube ne soit pas en butée dans un embout. On fait coulisser la fibre afin de visualiser les deux marques sur cette fibre à l'extérieur des deux embouts. L'embout droit est celui qui est à proximité de la poulie. Ensuite, les étapes diffèrent selon que la fibre optique est métallisée ou non métallisée.
Dans le cas où la fibre optique n'a qu'un revêtement en polymère, on décrit maintenant la procédure de collage qui correspond aux étapes 7a à 15a. On verra ensuite la fin du procédé dans le cas où la fibre est métallisée et, dans ce cas, on décrira les étapes correspondantes 7b à 9b.
L'étape 7a est une étape de préparation de l'adhésif destiné au collage. Après des tests de résistance mécanique et des mesures d'absence de fluage sous charge à différentes températures, on a choisi, en tant qu'adhésif, une colle époxy à deux composants pour le collage de la fibre dans ses embouts. Le pesage et le mélange des deux composants de cet adhésif, à savoir la résine et le durcisseur, sont réalisés dans une coupelle préalablement nettoyée .
L'étape 8a est une étape de fluidification de l'adhésif. Cet adhésif est chauffé à une température de 40°C afin de le fluidifier sans toutefois commencer la polymérisation. Il est ainsi possible de l'aspirer avec une seringue.
L'étape 9a est une étape d' injection ^de la résine dans l'embout gauche. On injecte cette résine dans cet embout gauche par le trou 98 (figure 1) qui est usiné à partir de la surface de cet embout, au centre de celui-ci.
Quand la résine commence à apparaître à la sortie de l'embout, on arrête l'injection. L'étape 10a est une étape de polymérisation de la résine. On place sur l'embout un couvercle d'ancre afin d'assurer une bonne conductivité thermique. On positionne une sonde de température dans la partie filetée de l'embout et l'on augmente la température jusqu'à 105°C pendant deux heures puis jusqu'à 175°C pendant 4 heures puis on effectue un recuit à 230°C pendant 16 heures. Le cycle de polymérisation est fonction de la résine utilisée.
L'étape lia est une étape de soudure du tube métallique dans l'embout gauche. On chauffe dans la masse cet embout et le tube à la température de fusion de la soudure. La soudure utilisée est une soudure à l'étain qui est connue en électronique. On dépose, en la faisant fondre, de la soudure dans le trou de l'embout usiné à cet effet et sur l'extrémité du tube .
L'étape 12a est une étape de soudure du tube métallique dans l'embout droit. La procédure est la même qu'à l'étape lia. L'étape 13a est une étape de pré-tension de la fibre. Pour induire une pré-tension sur la fibre, on fait passer l'extrémité droite de la fibre autour de la poulie et on lui suspend une masse préalablement calibrée. Pour une fibre monomode classique, dont la gaine optique (« optical cladding ») a un diamètre de 125 μm, une masse de 100 g induit typiquement une pré-tension de 1000 μm/m.
On maintient la pré-tension pendant les étapes qui suivent .
L'étape 14a est une étape d'injection de résine dans l'embout droit. La procédure est la même qu'à l'étape 9a.
L'étape 15a est une étape de polymérisation de la résine injectée dans l'embout droit. La procédure est la même qu'à l'étape 10a. L' extensomètre de base, dans le cas où le revêtement est un polymère, est alors achevé.
Dans le cas où la fibre est métallisée, la fin du procédé de fabrication comprend les étapes 7b à 10b. Dans l'étape 7b, on soude simultanément la fibre dans l'embout gauche et cet embout dans le tube.
Dans l'étape 8b, on met la fibre en prétension. La procédure est la même qu'à l'étape 13a.
Dans l'étape 9b, on soude simultanément la fibre dans l'embout droit et cet embout dans le tube.
L' extensomètre de base à fibre métallisée est alors achevé.
Une étape 16, utilisable dans le cas où la fibre est métallisée ou non, consiste en la mise en place de câbles de protection 100 de la fibre (figure 1) . Afin de protéger la fibre qui sort de chaque côté des embouts, ces câbles de protection 100 sont enfilés. Chaque câble 100 est fixé sur l'embout correspondant à l'aide d'un presse-étoupe 102 qui se visse à l'intérieur de l'embout sur la partie filetée prévue à cet effet.
Donnons une précision supplémentaire pour le montage d'un extensomètre au moyen du banc de montage de la figure 4. On voit sur cette figure 4 que la tige 72 est pourvue, sur sa longueur, de trous 104 régulièrement espacés les uns des autres . Ces trous 104 servent à adapter la distance entre deux embouts consécutifs conformément à la longueur du tube et à la base de mesure choisie.

Claims

REVENDICATIONS
1. Extensomètre comprenant :
- une fibre optique (4), dans laquelle est formé au moins un réseau de Bragg (R ; RI, R2 , R3 ) , et - au moins un corps d'épreuve (8) qui est destiné à être rendu rigidement solidaire d'un matériau-hôte (2) et qui entoure une partie de la fibre optique contenant ce réseau de Bragg, toute déformation du matériau-hôte étant ainsi transmise à ce réseau de Bragg par l'intermédiaire du corps d'épreuve, ce réseau de Bragg étant alors apte à modifier une lumière se propageant dans la fibre, la déformation du matériau-hôte étant déterminée à partir de la lumière modifiée, cet extensomètre étant caractérisé en ce que le corps d'épreuve comprend un tube (16) dans lequel est disposée la partie de la fibre optique contenant le réseau de Bragg, les deux extrémités de cette partie étant respectivement fixées aux deux extrémités de ce tube et cette partie étant tendue entre ces deux extrémités du tube.
2. Extensomètre selon la revendication 1, dans lequel le corps d'épreuve comprend en outre deux embouts (18, 20) respectivement fixés aux deux extrémités du tube et la partie de la fibre est tendue entre ces deux embouts .
3. Extensomètre selon la revendication 2, dans lequel les deux embouts (18, 20) sont métalliques, la fibre optique (4) est métallisée et les deux extrémités de la partie de cette fibre sont respectivement soudées aux deux embouts.
4. Extensomètre selon la revendication 2, dans lequel les deux extrémités de la partie de la fibre (4) sont respectivement collées aux deux embouts (18, 20) .
5. Extensomètre selon l'une quelconque des revendications 2 à 4, dans lequel les deux extrémités du tube (16) sont respectivement soudées aux deux embouts (18, 20) .
6. Extensomètre selon la revendication 5, dans lequel le tube (16) et les deux embouts (18, 20) sont métalliques et les deux extrémités du tube sont respectivement soudées aux deux embouts par une soudure à l'étain.
7. Extensomètre selon l'une quelconque des revendications 2 à 6, dans lequel le corps d'épreuve
(8) est destiné à être noyé dans le matériau-hôte (2) et les deux embouts sont respectivement pourvus de deux moyens (22, 24) d'ancrage dans le matériau-hôte.
8. Extensomètre selon l'une quelconque des revendications 2 à 6, dans lequel le corps d'épreuve
(8) est destiné à être fixé à la surface du matériau- hôte (2) et les deux embouts sont respectivement pourvus de deux moyens (42, 44) de fixation ou de collage à cette surface du matériau-hôte.
9. Extensomètre selon l'une quelconque des revendications 1 à 8, comprenant une pluralité de corps d'épreuve (58, 60, 62, 63) montés en série.
10. Procédé de fabrication de 1' extensomètre selon l'une quelconque des revendications 1 à 9, dans lequel on tend la partie de la fibre optique (4) entre les deux extrémités du tube (16) et l'on fixe les deux extrémités de cette partie aux deux extrémités du tube.
PCT/FR2002/001174 2001-04-04 2002-04-04 Extensometre a longue base, a fibre optique tendue et reseau de bragg, et procede de fabrication de cet extensometre WO2002082010A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP02730338A EP1377793B1 (fr) 2001-04-04 2002-04-04 Extensometre a longue base, a fibre optique tendue et reseau de bragg, et procede de fabrication de cet extensometre
DE60235352T DE60235352D1 (de) 2001-04-04 2002-04-04 Bragg-gitter-dehnungsmesser mit langer basis und gespanntem optischen faser,sowie verfahren zu dessen herstellung
US10/472,762 US6956981B2 (en) 2001-04-04 2002-04-04 Long base, stretched fiber-optic Bragg network extensometer and production method for same
CA002443412A CA2443412A1 (fr) 2001-04-04 2002-04-04 Extensometre a longue base, a fibre optique tendue et reseau de bragg, et procede de fabrication de cet extensometre

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0104563A FR2823299B1 (fr) 2001-04-04 2001-04-04 Extensometre a longue base, a fibre optique tendue et reseau de bragg, et procede de fabrication de cet extensometre
FR01/04563 2001-04-04

Publications (1)

Publication Number Publication Date
WO2002082010A1 true WO2002082010A1 (fr) 2002-10-17

Family

ID=8861921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/001174 WO2002082010A1 (fr) 2001-04-04 2002-04-04 Extensometre a longue base, a fibre optique tendue et reseau de bragg, et procede de fabrication de cet extensometre

Country Status (6)

Country Link
US (1) US6956981B2 (fr)
EP (1) EP1377793B1 (fr)
CA (1) CA2443412A1 (fr)
DE (1) DE60235352D1 (fr)
FR (1) FR2823299B1 (fr)
WO (1) WO2002082010A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20130135A1 (it) * 2013-03-28 2014-09-29 Filippo Bastianini Sensore di deformazione con reticolo di bragg in fibra ottica termocompensato, resistenze agli urti, con sensibilita¿ registrabile e flangie orientabili
WO2015167340A1 (fr) * 2014-05-01 2015-11-05 Fugro Technology B.V. Ensemble capteur à fibre optique

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2850745B1 (fr) * 2003-01-31 2005-04-01 Commissariat Energie Atomique Extensometre a corps d'epreuve flexible et reseaux de bragg
RU2008131050A (ru) * 2006-02-01 2010-03-10 Афл Телекомьюникэйшнс Ллс (Us) Тензодатчик и способ измерения напряжения
US20070193362A1 (en) * 2006-02-06 2007-08-23 Ferguson Stephen K Fiber optic strain gage
CN101210852B (zh) * 2006-12-31 2010-06-23 中国科学院半导体研究所 一种光纤光栅水听器
US7856888B2 (en) * 2007-11-15 2010-12-28 Micron Optics Inc. Fiber optic strain gage and carrier
GB2456830B (en) * 2008-01-28 2012-03-14 Schlumberger Holdings Structural load monitoring using collars and connecting elements with strain sensors
WO2009121367A1 (fr) 2008-03-31 2009-10-08 Vestas Wind Systems A/S Capteur de déformation à transmission optique pour éoliennes
DE102008020247B4 (de) * 2008-04-22 2012-08-02 Eads Deutschland Gmbh Messanordnung mit einem Faser-Bragg-Gitter zur Erfassung von Dehnungen und/oder Temperaturen
EP2128571B1 (fr) * 2008-05-28 2014-07-23 Smartec SA Jauge de contraint à fibre optique avec couplage de contrainte distribuée
GB2461532A (en) * 2008-07-01 2010-01-06 Vestas Wind Sys As Sensor system and method for detecting deformation in a wind turbine component
GB2461566A (en) * 2008-07-03 2010-01-06 Vestas Wind Sys As Embedded fibre optic sensor for mounting on wind turbine components and method of producing the same.
US7796844B2 (en) * 2008-07-22 2010-09-14 The Hong Kong Polytechnic University Temperature-compensated fibre optic strain gauge
GB2463696A (en) * 2008-09-22 2010-03-24 Vestas Wind Sys As Edge-wise bending insensitive strain sensor system
GB2466433B (en) 2008-12-16 2011-05-25 Vestas Wind Sys As Turbulence sensor and blade condition sensor system
GB2472437A (en) 2009-08-06 2011-02-09 Vestas Wind Sys As Wind turbine rotor blade control based on detecting turbulence
GB2477529A (en) 2010-02-04 2011-08-10 Vestas Wind Sys As A wind turbine optical wind sensor for determining wind speed and direction
CN101915935A (zh) * 2010-07-14 2010-12-15 中国科学院半导体研究所 光纤激光井下检波器
US20120132008A1 (en) * 2010-10-19 2012-05-31 Way Donald R Fiber optic load measurement device
CN102353982B (zh) * 2011-07-12 2013-11-20 中国科学院半导体研究所 推挽式光纤检波器
CN102425994B (zh) * 2011-08-20 2013-08-07 大连理工大学 一种土体封装的光纤光栅土体应变传感器
EP2860489A4 (fr) * 2012-05-30 2016-07-20 Cytroniq Co Ltd Système et procédé de fourniture d'informations sur les économies de carburant, d'exploitation en toute sécurité, et maintenance par une surveillance prédictive en temps réel et un contrôle prédictif de force interne/externe environnementale aérodynamique et hydrodynamique, des contraintes exercées sur la coque, du mouvement avec six degrés de liberté, et de l'emplacement d'une structure maritime
CN102927913B (zh) * 2012-10-10 2015-04-08 哈尔滨工程大学 一种超短基线差分盘式光纤位移传感器及光纤应变仪
US9518882B2 (en) 2013-07-03 2016-12-13 The Cleveland Electric Laboratories Company Optical multi-axis force sensor
CN104567704A (zh) * 2014-12-02 2015-04-29 云南电网公司电力科学研究院 一种光纤Bragg光栅管式应变传感器
KR101790177B1 (ko) * 2015-08-24 2017-10-26 (주)에프비지코리아 광섬유 격자센서를 이용한 내공변위 및 천 단 침하 측정장치
JP5879453B1 (ja) 2015-08-27 2016-03-08 新日鉄住金エンジニアリング株式会社 ケーブル及び光ファイバへの初期引張歪の導入方法
CA3015906A1 (fr) * 2016-02-25 2017-08-31 Cornell University Guides d'ondes destines a etre utilises dans des capteurs ou des dispositifs d'affichage
US10041856B2 (en) 2016-03-01 2018-08-07 Cleveland Electric Laboratories Company Method and apparatus for measuring physical displacement
CN107044829B (zh) * 2017-03-17 2019-07-12 中国地震局地壳应力研究所 一种基于曲边三角形的高精度光纤光栅形变传感器
CN107228653A (zh) * 2017-06-30 2017-10-03 中铁十四局集团有限公司 隧道监测机构和用于隧道的沉降监测方法
CN108613763B (zh) * 2018-05-11 2023-11-03 上海市建筑科学研究院 基于频率法的光纤光栅式拉索索力监测传感器及传感方法
KR101957299B1 (ko) * 2018-10-08 2019-07-04 서현이앤씨 주식회사 구조물의 균열길이 점검을 위한 안전진단장치와 이것에 사용되는 구조물의 균열길이 점검장치
WO2021064685A1 (fr) * 2019-10-02 2021-04-08 Stme-Sistemas De Monitorização De Estruturas Lda Dispositif et procédé de mesure de la forme tridimensionnelle d'une structure, en particulier une pale d'éolienne
FR3104715B1 (fr) 2019-12-16 2021-12-03 Air Liquide Méthode de contrôle non destructif du vieillissement d’un réacteur de reformage.
CN111964600A (zh) * 2020-07-28 2020-11-20 河海大学 基于双向视场分离的高精度双轴光学引伸计及测量方法
CN113125292B (zh) * 2021-04-01 2022-03-04 东北大学 预埋分布式光纤的锚固体制作装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594819A (en) * 1995-07-26 1997-01-14 Electric Power Research Institute Field-mountable fiber optic sensors for long term strain monitoring in hostile environments
WO1999032862A1 (fr) * 1997-12-05 1999-07-01 Optoplan As Capteurs a fibres optiques
US5942750A (en) * 1994-12-16 1999-08-24 Safety-One As Method and device for continuous monitoring of dynamic loads
WO2000060312A1 (fr) * 1999-04-01 2000-10-12 Commissariat A L'energie Atomique Extensometre a reseau de bragg et procede de fabrication de cet extensometre

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5367589A (en) * 1993-10-22 1994-11-22 At&T Bell Laboratories Optical fiber package
US6768825B2 (en) * 1998-05-06 2004-07-27 Weatherford/Lamb, Inc. Optical sensor device having creep-resistant optical fiber attachments
CN1153054C (zh) * 1998-12-04 2004-06-09 塞德拉公司 布拉格光栅压力传感器
US6269207B1 (en) * 1999-09-16 2001-07-31 Corning Incorporated Methods and apparatusses for packaging long-period fiber gratings

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942750A (en) * 1994-12-16 1999-08-24 Safety-One As Method and device for continuous monitoring of dynamic loads
US5594819A (en) * 1995-07-26 1997-01-14 Electric Power Research Institute Field-mountable fiber optic sensors for long term strain monitoring in hostile environments
WO1999032862A1 (fr) * 1997-12-05 1999-07-01 Optoplan As Capteurs a fibres optiques
WO2000060312A1 (fr) * 1999-04-01 2000-10-12 Commissariat A L'energie Atomique Extensometre a reseau de bragg et procede de fabrication de cet extensometre

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBO20130135A1 (it) * 2013-03-28 2014-09-29 Filippo Bastianini Sensore di deformazione con reticolo di bragg in fibra ottica termocompensato, resistenze agli urti, con sensibilita¿ registrabile e flangie orientabili
WO2015167340A1 (fr) * 2014-05-01 2015-11-05 Fugro Technology B.V. Ensemble capteur à fibre optique
NL1040788A (en) * 2014-05-01 2016-02-15 Fugro Tech Bv Optical fiber sensor assembly.

Also Published As

Publication number Publication date
EP1377793B1 (fr) 2010-02-17
DE60235352D1 (de) 2010-04-01
US6956981B2 (en) 2005-10-18
FR2823299A1 (fr) 2002-10-11
EP1377793A1 (fr) 2004-01-07
FR2823299B1 (fr) 2003-09-19
CA2443412A1 (fr) 2002-10-17
US20040114850A1 (en) 2004-06-17

Similar Documents

Publication Publication Date Title
EP1377793B1 (fr) Extensometre a longue base, a fibre optique tendue et reseau de bragg, et procede de fabrication de cet extensometre
US8737774B2 (en) Array temperature sensing method and system
FR2946426B1 (fr) Systeme et procede de detection par fibre optique de multiples parametres d'un systeme de turbomachine.
EP2861959B1 (fr) Dispositif de mesure de la corrosion dans une structure metallique ou comprenant au moins une armature metallique, utilisations et procede associes
FR2867561A1 (fr) Systeme de mesure distribuee des courbures d'une structure
Zhou et al. Development of FBG sensors for structural health monitoring in civil infrastructures
Glišić et al. Integrity monitoring of an old steel bridge using fiber optic distributed sensors based on Brillouin scattering
EP1114300B1 (fr) Capteur de temperature a fibre optique
CN105334221B (zh) 新型钢筋锈蚀光纤传感检测装置
CA2402675A1 (fr) Dispositif a fibre optique pour la mesure de contraintes
EP3757349B1 (fr) Dispositif de maintenance et procédé pour déterminer la position d'un point de blocage d'un élément tubulaire
FR2983812A1 (fr) Support en beton instrumente pour rails de voie ferree
Tjin et al. Application of quasi-distributed fibre Bragg grating sensors in reinforced concrete structures
FR3008788A1 (fr) Systeme de mesure de deformations mecaniques a fibre optique auto-etalonnee et procedes d'etalonnage d'un tel systeme
Epaarachchi et al. The response of embedded NIR (830 nm) fiber Bragg grating sensors in glass fiber composites under fatigue loading
EP1588124B1 (fr) Extensometre a corps d'epreuve flexible et reseaux de bragg
EP1166040B1 (fr) Extensometre a reseau de bragg et procede de fabrication de cet extensometre
EP3548879B1 (fr) Procédé de surveillance d'un ouvrage de génie civil
Png Design and Development of Mach-zehnder Interferometer Fiber Sensor for Structural Health Monitoring
Chik Application of Long-gauge Fiber Optic Measurement System: Long Gauge Fiber Optic Sensor
TWM383742U (en) Axial-compression type switching valve structure applied in high-pressure gas bottle
GB2480933A (en) Temperature sensing method and system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002730338

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2443412

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10472762

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002730338

Country of ref document: EP