WO2002077606A2 - Electrochemical sensor and method thereof - Google Patents
Electrochemical sensor and method thereof Download PDFInfo
- Publication number
- WO2002077606A2 WO2002077606A2 PCT/US2002/008703 US0208703W WO02077606A2 WO 2002077606 A2 WO2002077606 A2 WO 2002077606A2 US 0208703 W US0208703 W US 0208703W WO 02077606 A2 WO02077606 A2 WO 02077606A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrodes
- reaction zone
- sensor
- fluid sample
- electrochemical device
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/327—Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
- G01N27/3271—Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
- G01N27/3272—Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
Definitions
- the present invention generally relates to electrochemical sensors and, in particular, to molded electrochemical sensors for detection or measurement of analytes in test samples, such as fluids and dissolved solid materials, and the methods of making and using these sensors.
- Electrochemical sensors are used to determine the concentrations of various analytes in testing samples such as fluids and dissolved solid materials. For instance, electrochemical sensors have been made for measuring glucose in human blood. Such sensors have been used by diabetics and health care professionals for monitoring blood glucose levels. The sensors are usually used in conjunction with a meter, which measures light reflectance, if the strip is designed for photometric detection of a die, or which measures some electrical property, such as electrical current, if the strip is designed for detection of an electroactive compound.
- electrochemical sensors are manufactured using an electrically insulating base upon which conductive inks such as carbon and silver are printed by screen printing to form conductive electrode tracks or thin strips of metal are unrolled to form the conductive electrode tracks.
- the electrodes are the sensing elements of the sensor generally referred to as a transducer.
- the electrodes are covered with a reagent layer comprising a hydrophilic polymer in combination with an oxidoreductase or a dehydrogenase enzyme specific for the analyte. Further, mounted over a portion of the base and the electrodes is an insulating layer.
- the present invention is an electrochemical sensor that provides for the determination of various analyte concentrations in a testing sample such as fluids and dissolved solid materials.
- the sensor is designed to facilitate production in large quantities using reliable and cost effective injection molding manufacturing methods.
- the present invention includes an injection molded plastic strip or body, at least two electrodes, an enzyme, and if desired, an electron transfer mediator.
- the body includes a cavity or reaction zone for receiving a fluid sample.
- the electrodes are at least partially embedded within the plastic body and extend into the reaction zone where they are exposed to a test sample. Also contained within the reaction zone is an enzyme capable of catalyzing a reaction involving a compound within the fluid sample.
- the device cooperates with an electronic meter capable of measuring the difference between the electrical properties of the electrically conductive electrodes within the device.
- the device includes at least two, and preferably three, spaced apart electrically conductive electrodes, a body having two ends of insulative material molded about and housing the electrodes, means for connecting the meter to the housing, means for receiving a fluid sample, and means for treating one or more electrodes with one or more chemicals to change the electrical properties of the treated electrodes upon contact with the fluid sample.
- One end of the housing has the means for connecting the meter and the opposite end of the housing has the means for receiving the fluid sample.
- the means for connecting the meter is a plug formed in the housing exposing the electrodes outside the body.
- the sensor is molded and can be a single, unitary piece or two pieces.
- an end cap is attached to the body.
- the body pivots about a hinge and connects onto itself. Protuberances formed in a portion of the body cooperate with troughs to ensure proper alignment.
- a capillary inlet is constructed at one end of the sensor to draw the fluid sample into the body upon contact with the fluid sample.
- the capillary inlet is molded into the end of the body and is in communications with a reaction zone.
- This reaction zone is a channel formed in the body about the electrodes and is adapted for reacting with the fluid drawn into the body by the capillary force. While the reaction zone may be formed above or below the electrodes, the preference has been to construct it above the electrodes.
- the capillary has a vent for relieving pressure.
- the electrodes are molded into the plastic.
- the electrodes are conductive wires.
- the electrodes are constructed from a metal plate.
- the electrodes may be coated with a different conductive material to enhance their performance.
- Apertures are formed in the body of the sensor to permit the holding of the electrodes during the molding process. Apertures may also be formed in the body to chemically treat one or more electrodes in the reaction zone before or after the molding process. Adding chemicals (e.g., reagents with and without enzymes) changes the electrical properties of the treated electrodes upon contact with the fluid sample.
- the enzyme is applied to the outer surface of one of the electrodes.
- An antibody may also be applied to another of the electrodes.
- An electron mediator may further be applied to the outer surface of one or more of the electrodes.
- the sensor provides fill detection.
- the fluid comes in contact with the last electrode in the capillary space, it closes an open circuit in the electrochemical cell causing current to flow through the cell.
- the flow of current in the cell triggers the meter, signaling that the capillary chamber is filled with fluid.
- the vent could also be used for a visual detection of fluid fill.
- the methods of making and using the electrochemical sensor are also disclosed.
- the method of making the device includes the steps of positioning at least two spaced apart electrically conductive electrodes in a mold, before or after molding treating at least one of the electrodes with one or more chemicals to change the electrical properties of the treated electrode upon contact with a fluid sample, and molding a body of insulative material with two ends around the electrodes with one end having therein means for receiving a fluid sample.
- the body is molded in two pieces, with a body and end cap for attaching to one another after the molding is completed, or in a single, unitary piece.
- Figure 1 is an enlarged top plan view of a first embodiment of an electrochemical sensor made in accordance with the teachings of the present invention
- Figure 2 is a sectional end view of the electrochemical sensor of Figure 1 taken along plane 2-2;
- Figure 3 is a sectional end view of the electrochemical sensor of Figure 1 taken along plane 3-3;
- Figure 4 is a sectional end view of the electrochemical sensor of Figure 1 taken along plane 4-4;
- Figure 5 is a sectional end view of the electrochemical sensor of Figure 1 taken along plane 5-5;
- Figure 6 is a sectional side view of the electrochemical sensor of Figure 1 taken along plane 6-6;
- Figure 7 is an enlarged top plan view of a second embodiment of an electrochemical sensor made in accordance with the teachings of the present invention;
- Figure 8 is an end elevation view of the electrochemical sensor of Figure 7;
- Figure 9 is a side elevation view of the electrochemical sensor of Figure 7;
- Figure 10 is a bottom plan view of the electrochemical sensor of Figure 7;
- Figure 11 is a sectional end view of the electrochemical sensor of Figure 7 taken along plane 11-11;
- Figure 12 is a sectional end view of the electrochemical sensor of Figure 7 taken along plane 12-12;
- Figure 13 shows an enlarged top plan view of a third embodiment of an electrochemical sensor made in accordance with the teachings of the present invention.
- Figure 14 shows an enlarged bottom plan view of the electrochemical sensor of Figure 13;
- Figure 15 is a sectional side view of the electrochemical sensor of Figure 13 taken along plane 15-15;
- Figure 16 is a sectional end view of the electrochemical sensor of Figure 13 taken along plane 16-16;
- Figure 17 shows a top plan view of a third embodiment of an electrochemical sensor made in accordance with the teachings of the present invention.
- Figure 18 shows an enlarged bottom view of the electrochemical sensor of Figure 17;
- Figure 19 shows a sectional side view of the electrochemical sensor of Figure 17 taken along plan 19-19;
- Figures 20a,b show a magnified view of the terminal end portion of the sensor of Figure 17 having the end cap (a) extended away from the body and (b) secured to the body.
- FIG. 1 shows the sensor 10 as though it were made out of clear plastic, permitting one to look inside it.
- the internal components and hidden external components would not normally be visible looking down on the sensor 10. This rendition would be similar to a view taken along plane x-x in Figure 2.
- the sensor or test strip of the first embodiment 10 includes an injection molded plastic body 12, opaque or preferably translucent, having a meter attachment end or plug end 14 and a fluid sample receiving end 16.
- the body has a bottom surface 13, a top surface 15 and a tapered portion 20 connecting a first top surface 15a to a second top surface 15b, the first top surface being lower than the second top surface, and a third top surface 15c, also lower than the second top surface.
- the body 12 contains three spaced apart electrodes 30,31,32.
- the plug end 14 of the body 12 includes a pair of tapered side edges 18,19 and a wedge shaped top portion 20. The tapered side edges 18,19 facilitate a user inserting the sensor's plug end 14 into the socket cavity of a conventional meter (not shown).
- the wedged portion 20 of the sensor serves as a stop, and frictionally holds the sensor 10 within the socket cavity of the meter.
- the fluid sample receiving end 16 of the sensor 10 includes an electrochemical reaction zone 24 adjacent the terminal end 16 of the body.
- This reaction zone 24 is a channel formed in the third top surface 15c and about/adjacent the electrodes 30,31,32 in the body 12 for analyzing the fluid drawn into the body 12 for a particular analyte. While the reaction zone may be formed above or below the electrodes, the preference has been to construct it above the electrodes.
- An end cap 27 is welded [by ultrasonics or adhesive] over the reaction zone 24 and onto the third top surface 15c. The top of the end cap 27 aligns with the top 15,15b of the body 12.
- the end cap 27 is preferably made of the same material as the molded body 12 and attached thereto by ultrasonic welding or gluing.
- the cap 27 is shown as a separate piece, it can also be constructed as part of the body 12 and hingeably connected to the body such that it can be pivoted onto the third top surface 15c and attached [e.g., see The Second Embodiment]. In this manner, the entire sensor can be made at one time and as one molded, unitary piece.
- a capillary opening 28 is formed in the terminal end 16 of the sensor 10 when the cap 27 is welded (or folded) to the body 12. This capillary opening leads to the reaction zone 24.
- the sensor 10 is a capillary fill device, that is, the reaction zone 24 is small enough to draw a fluid sample into the zone when the capillary opening or inlet 28 is placed in contact with the fluid being tested, such as a drop of blood.
- a plurality of electrically conductive leads or electrodes 30,31,32 are encased within the injection molded body 12 .
- the body 12 is molded about these leads 30,31,32.
- these leads are spaced from one another. They 30,31,32 are primarily encased in the body 12 and run from the plug end 14 to the reaction zone 24, just before the terminal end 16.
- the leads' 30,31,32 ends 26 are positioned just before the terminal end 16 of the sensor.
- the conductive leads 30,31,32 consist of an electrically conductive material like metal or metal alloy such as platinum, palladium, gold, silver, nickel, nickel-chrome, stainless steel, copper or the like. Moreover, each lead preferably consists of a single wire, or in an alternative preferred embodiment (See The Second Embodiment), a stamped metal member plated with gold or the like. In the first embodiment, the outer leads 30 and 32 are equally spaced from the inner lead 31 with the spacing of the leads at the fluid sample receiving end 16 of the body 12 being closer together than at the meter attachment end 14.
- Segments 33 of the leads 30,31,32 are exposed about the plug end 14 of the body 12 to provide contact surface areas 34,35,36 respectively with the meter (not shown).
- the exposed contact surface areas 34,35,36 extend from the tapered top portion 20 of the body 12 to the plug end 14 of the body 12 on or partially embedded into the first top surface 15 a.
- the body 12 may be molded such that the segments 33 of the leads 31,31,32 are embedded (partially molded into the first top surface 15a) and held by the body 12 opposite the contact surface areas 34,35,36. In this manner, the leads are exposed for contact with the meter and maintained in a position without the use of adhesives or welding.
- the body 12 is constructed of an electrically insulating injection moldable plastic.
- Certain structural support components are molded within the body 12 of the sensor 10 to hold and maintain the leads 30,31,32 within the body, in spaced relationship to one another, during and after the molding process.
- guide blocks 42 and alignment pins 44 are molded within the body 12 for proper mounting of the leads 30,31,32.
- Apertures are also formed in the top surface 15 and bottom surface 13 of the body 12 for permitting the ingress and egress of fingers into the mold during the molding process (to be discussed below).
- a first aperture 46 is molded into the second top surface 15b and a second aperture 48 and third aperture 50 are formed into the bottom surface 13 of the body 12.
- each of these apertures 46,48,50 is covered up or sealed with plastic (e.g., the same plastic used in the molding process) or left open.
- plastic e.g., the same plastic used in the molding process
- Their 46,48,50 sizes are relatively small; leaving them open should not cause any safety issues or affect the sensor's ability. Fingers cannot fit into the apertures and debris from the outside will likely be unable to enter the apertures and contact the leads 30,31,32.
- one lead 30 serves as a primary working electrode 52
- a second lead 31 acts as a reference or counter electrode 53
- the third lead 32 serves as an auxiliary, secondary or second working electrode 54.
- the conductive leads 30,31,32 are the only leads (electrodes) coming into contact with the test sample of fluid entering the sensor 10.
- the electrodes 52,53,54 are electrically insulated from the rest of the sensor 10 by molded plastic to ensure a signal carried by the leads arises only from that portion exposed to the test sample in the electrochemical reaction zone 24.
- an enzyme 56 is applied to the outer surface of the primary working electrode 52 and, if desired, an electron transfer mediator.
- the enzyme can consist of, for instance, flavo-proteins, pqq-enzymes, haem-containing enzymes, oxidoreductase, or the like.
- an antibody 57 can be applied to the outer surface of the secondary working electrode 54.
- the reaction zone 24 can contain antibodies, enzyme-antibody conjugates, enzyme-analyte conjugates, and the like.
- an enzyme 56 can also be applied to the second working electrode 54 and an antibody can be applied to the outer surface of the primary working electrode 52.
- the enzyme 56 is specific for the test to be performed by the sensor 10.
- the working electrode 52, or secondary working electrode 54, or both can be coated with an enzyme 56 such as glucose oxidase or glucose dehydrogenase formulated to react at different levels or intensities for the measurement of glucose in a human blood sample.
- an enzyme 56 such as glucose oxidase or glucose dehydrogenase formulated to react at different levels or intensities for the measurement of glucose in a human blood sample.
- the glucose sensor is used with a meter to measure the electrochemical signal, such as electrical current, arising from oxidation or reduction of the enzymatic turnover product(s). The magnitude of the signal is directly proportional to the glucose concentration or any other compound for which a specific enzyme has been coated on the electrodes.
- the enzyme 56 can be applied to the entire exposed surface area of the primary electrode 52 (or secondary electrode 54).
- the entire exposed area of the electrode may not need to be covered with the enzyme as long as a well defined area of the electrode is covered with the enzyme.
- an enzyme 57 can be applied to all the electrodes 52,53,54 in the reaction zone 24 and measures can be taken by a meter.
- one of the working electrodes (52 or 54) is selectively coated with the enzyme 57 carrying a reagent with the enzyme and the other working electrode (54 or 52) is coated with a reagent lacking the respective enzyme.
- the potential or current between the reference and the electrode without the enzyme can be compared with the potential or current between the reference and the electrode with the enzyme. The measuring and comparing of the potential and current differences are well known to those skilled in the art.
- the senor 10 is used in conjunction with a meter capable of measuring an electrical property of the fluid sample after the addition of the fluid sample into the reaction zone 24.
- the electrical property being measured may be, for example, electrical current, electrical potential, electrical charge, or impedance.
- An example of measuring changes in electrical potential to perform an analytical test is illustrated by U.S. Patent No. 5,413,690, the disclosure of which is hereby incorporated by reference.
- the plug end 14 of the sensor 10 can be inserted and connected to a meter, which includes a power source (a battery). Improvements in such meters and a sensor system are found in U.S. Patent Nos. 4,999,632; 5,243,516; 5,366,609; 5,352,351; 5,405,511; and 5,438,271, the disclosures of which are hereby incorporated by reference.
- analyte-containing fluids can be analyzed by the electrochemical sensor of the present invention.
- analytes in human and animal body fluids such as whole blood, blood serum and plasma, urine and cerebrospinal fluid may all be measured.
- analytes found in fermentation products, food and agricultural products, and in environmental substances, which potentially contain environmental contaminants, may be measured.
- the mold has the shape of the body 12.
- the conductive wires 30,31,32 for the electrodes are first molded into the product. Specifically, the wire leads are fed into the mold and placed on or between figures [not shown] projecting into the mold through the openings in the mold (corresponding to the apertures 46,48,50) to hold the wires in place and level during the set-up and molding process.
- the bottom apertures permit the fingers projecting into the mold to support the wires and the top apertures permit the fingers projecting into the mold to hold the wires.
- the liquid plastic is injected into the mold where it fills the mold. The plastic is then cooled.
- the fingers are pulled from and exit the mold through the openings (apertures 46,48,50).
- the molded sensor 12 is next ejected from the mold.
- the reagents are next applied to the electrodes after the molding process is finished.
- the cap is treated with a surfactant that facilitates pulling or drawing the fluid (e.g., test blood) into the capillary gap at the end of the sensor.
- the reagents including the enzyme are applied to the electrodes.
- the end cap 27 is thereafter connected to the main body 12 and any undesirable openings in the sensor can be sealed closed by the same plastic used for the mold.
- the chemicals can be applied to the wires after the end cap is married to the body. Any extraneous wire(s) projecting from the sensor can be cut and removed. Then, any desired writings on the sensor (e.g., manufacturing codes, product name, etc.) can then be applied to the sensor by conventional means.
- FIG. 7-12 an electrochemical sensor in accordance with the present invention, second embodiment, is depicted.
- components similar to those in the first embodiment (10) will be identified with the same reference numbers, but in the 100 series.
- Figure 7 shows the sensor 110 as though it were made out of clear plastic, permitting one to look inside it.
- the sensor of the second embodiment 110 includes a molded plastic body 112 having a meter attachment end or plug end 114 and a fluid sample receiving end 116.
- the body has a bottom surface 113 and a top surface 115.
- An end cap 127 is integral to the body 112 and molded with the body.
- a hinge 227 permits the pivoting of the end cap onto the main body as will be explained.
- the top surface 115 of the sensor 110 has three top surfaces 115a,115b,115c.
- the first top surface 115a runs most of the length of the body and terminates at a ledge 215; the second top surface 115b is positioned below or is lower than the first 115a; and, the third top surface 115c is separated from the other two top surfaces 115a,l 15b by the hinge 227.
- the end cap 127 is rotated about the hinge such that the third top surface 115c abuts the second top surfacell5b, face-to-face, and rests adjacent the ledge 215 of the top surface 115a.
- the bottom surface 13a of the cap 127 thus becomes the top surface adjacent the first top surface 115a. See Figure 8.
- a pair of tapered protuberances 125 formed in the end cap 127 and a pair of tapered troughs 122 formed in the main body 112 align and mate when the cap is folded into place. This facilitates and ensures correct alignment of the hinged parts.
- the body 112 contains three spaced apart electrodes 130,131,132.
- the plug end 114 of the body 112 includes a pair of tapered side edges 118,119 to facilitate a user inserting the sensor's plug end 114 into the socket cavity of a conventional meter (not shown).
- the fluid sample receiving end 116 of the sensor 110 includes an electrochemical reaction zone 124 adjacent the terminal end 116 of the body.
- This reaction zone 124 is a channel formed in the second top surface 115b and about/adjacent the electrodes 130,131,132 in the body 112 for reacting with the fluid drawn into the body 112. While this reaction zone may be formed above or below the electrodes, the preference has been to construct it above the electrodes.
- a ridge 327 is formed on the top surface (third top surface 115c) of the end cap. This ridge prevents any fluid from leaving the reaction zone 124 or debris from entering the reaction zone once the end cap 127 is welded [by ultrasonics or adhesive] onto the second top surface 115b.
- An optional channel 327a may be constructed in the third top surface 115c to increase the height of the reaction zone 124.
- a capillary opening 128 is formed in the terminal end 116 of the sensor 110 when the cap 127 is folded and welded into place. This capillary opening leads to the reaction zone 124.
- the width of the opening 128 is approximately the same as the length of the sensing electrodes 130,131,132 exposed to the test fluid in the reaction zone 124.
- the sensor 110 of the second embodiment is also a capillary fill device, that is, the reaction zone 124 is small enough to draw a fluid sample into the zone when the capillary opening 128 is placed in contact with the fluid being tested.
- a vent 129 provided in the cap 127 is in communication with the reaction zone 124 to release pressure as the reaction zone 124 draws and fills with fluid.
- the bottom or base of the capillary inlet is flush with the top surface of electrodes 130,131,132.
- an electrically conductive plate (stamped or cast) having leads or electrodes 130,131,132.
- the body 112 is molded around the plate and these leads 130,131,32.
- the conductive plate is a single piece of material; it includes the leads 130,131,132 and connecting segments 230 and 231. When the sensor is made, the segments are connecting the leads. After molding, the segments 230,231 are cut and/or removed so that the leads are distinct and separated from one another. If they were connected, the system would short circuit.
- the electrodes 130,131,132 are primarily encased in the body 112 and run from the plug end 114 into the reaction zone 124, just before the terminal end 116.
- the leads 130,131,132 may be widened if desired in the reaction zone to expose more surface area to the fluid and chemicals contacting one another in the zone.
- the leads 130,131,132 can be as wide as the sensing parts.
- These leads 130,131,132 are an electrically conductive material like metal or metal alloy such as platinum, palladium, gold, silver, nickel, nickel- chrome, stainless steel, copper or the like. To enhance their performance and sensitivity, they may also be coated, e.g., made of copper and coated with gold.
- the leads 130,131,132 are spaced from and parallel to one another.
- Segments 133 of the leads 130,131,132 extend outwardly from the body 112 from the plug end 114 of the sensor 110 and are exposed to provide contact surface areas 134,135,136 respectively with the meter (not shown). These leads can also be embedded in the molded plastic such that their upper surfaces are exposed in portions.
- the portion of the leads 130,131,132 between the sensor plug end 114 and the fluid sample receiving end 116 are embedded, or encased, within the plastic injection molded body 112; the body 112 is constructed of an electrically insulating injection moldable plastic.
- Apertures are formed in the top surface 115 and bottom surface 113 of the body 112 for permitting the ingress and egress of fingers into the mold during the molding process.
- a set (3) of first apertures 146 and a set (3) of second apertures 147 are molded into the top surface 15a;
- a third aperture 148 and fourth aperture 150 and a set (3) of fifth apertures 160,161,162 are formed into the bottom surface 113 of the body 112.
- one outer lead 130 serves as a primary working electrode 152
- the center lead 131 acts as a reference or counter electrode 153
- the other outer lead 132 serves as an auxiliary or secondary or second working electrode 154.
- These conductive leads 130,131,132 are the only leads (electrodes) coming into contact with the test sample of fluid entering the sensor 110.
- the electrodes 152,153,154 are electrically insulated from the rest of the sensor 110 by molded plastic to ensure a signal carried by the leads arises only from that portion exposed to the test sample in the electrochemical reaction zone 124.
- an enzyme 156 is applied to the outer surface of the primary working electrode 152 and, if desired, an electron transfer mediator.
- An antibody 157 may also be applied to the outer surface of the secondary working electrode 154.
- An enzyme 156 can also be applied the second working electrode 154 and an antibody to the outer surface of the primary working electrode 52.
- the enzyme 156 can be applied to the entire exposed surface area of the primary electrode 152 (or secondary electrode 154). Alternatively, the entire exposed area of the electrode may not need to be covered with the enzyme as long as a well defined area of the electrode is covered with the enzyme. Or, an enzyme can be applied to all the electrodes 152,153,154 in the reaction zone 124 and measurements can be taken by a meter. Preferably, one of the working electrodes (152 or 154) is selectively coated with the enzyme carrying a reagent with the enzyme and the other working electrode (154 or 152) is coated with a reagent lacking the respective enzyme.
- the sensor 110 is used in conjunction with a meter capable of measuring an electrical property of the fluid sample after the addition of the fluid sample into the reaction zone 124.
- the plug end 114 of the sensor 110 is inserted and connected to a meter, as before with the first embodiment.
- the mold has the shape of the body 112.
- the conductive 130,131,132 leads/electrodes (in the form of a plate with the joining extensions 230,231 for the electrodes) are first treated with any coatings (metal).
- the chemicals/reagents may also be applied before molding; or, they can be applied after the molding.
- the plate is fed into the mold and placed on or between fingers (not shown) projecting into the mold through the openings in the mold (corresponding to the apertures 146,147,148,150) to hold the plate in place and level during the set-up and molding process.
- Knives or punches (not shown) are also inserted through the top surface of the mold (outline of opening formed by the knives/punches 170).
- the fingers are drawn from the mold through the openings (apertures 146,147,148,150,160,161,162).
- the knives/punches are drawn through the upper surface openings 170. Once the knives/punches are removed, the cut or skived extensions 230,231 disposed between the leads 130,131 and 131,132 ensures the leads are kept separate.
- the molded sensor 112 is then ejected from the mold and any undesirable openings in the sensor can be sealed closed by the same plastic used for the mold.
- the critical reagents are applied to the sensors in the reaction zone 124 above the leads.
- a surfactant can be used to treat the capillary inlet to facilitate the capillary function. Any extraneous metal projecting from the sensor can be cut and removed. Then, any desired writings on the sensor (e.g., manufacturing codes, product name, etc.) can then be applied to the sensors by conventional means.
- Figures 13-20 Shown in Figures 13-20 is a third embodiment of an electrochemical sensor in accordance with the present invention. These figures use the same reference numbers, but in the 300 series, to identify components that are similar to those in the previous embodiments. Figures 13 and 17, respectively, depict the sensor 310,310' in its entirety, including its internal components not normally visible when looking down on the sensor 310,310'.
- sensor 310, 310' is used in conjunction with a meter capable of measuring an electrochemical property of the fluid sample after the fluid sample is drawn into the reaction zone 324,324'.
- the sensor 310,310' includes a molded plastic body 312,312' having a meter attachment end or plug end 314,314' and a fluid sample receiving end 316,316'.
- the plug end 314,314' is insertable or connectable to a meter, as with the two prior embodiments.
- the body also has a bottom surface 313,313' and a top surface 315,315'.
- the body 312,312' is molded as a unitary, single piece having two portions - (a) an electrode-encasing housing 317,317' and (b) an end cap 327,327' pivotably attached to the electrode housing 317,317' at the fluid sample receiving end 316,316' at hinge 427,427'.
- the electrode housing and the end cap may be separate pieces that are securedly attachable to one another.
- the side edges 318,319,318',319' near the plug end 314,314' of the body 312,312' are tapered so the plug end 314,314' inserts more easily into the socket cavity of a conventional meter (not shown).
- the end cap 327,327' may have a "notch" 326,326' formed into the outermost edge opposite the body to facilitate molding.
- Figure 15 shows a longitudinal sectional side view of sensor 310.
- the top surface 315 has three sections or surfaces including 315a,315b,315c.
- the first top surface 315a accounts for a predominate portion of the body, as it extends from the plug end 314 to a ledge 415.
- the second top surface 315b runs from the ledge 415 to the hinge 427, on a plane lower than 315a.
- the third top surface 315c extends across one surface of the end cap 327, from the hinge 427 to the outermost edge of the end cap.
- the hinge 427 allows the end cap to be folded onto the body so that the third top surface 315c abuts the second top surface 315b, face-to-face, and the edge of the end cap rests substantially adjacent the ledge 415, as in the second embodiment discussed above.
- the bottom surface 313a of the end cap 327 becomes part of the top surface of the body and rests adjacent the first top surface 315a, in essentially the same plane, as shown in Figure 15.
- the end cap When the end cap is folded onto the second top surface 315b of the body, adjacent the terminal end 316 of the body, a channel termed the "electrochemical reaction zone" 324 forms in the body.
- the reaction zone 324 is bound on one side by the second top surface 315b and, on the opposite side, by top surface of the end cap 327.
- the reaction zone has a volume defined by the shape of the body.
- the cap may be shaped so that when it is pivoted onto the body, the cap defines the volume of the reaction zone; or the shape of both the cap and the body may form the volume of the reaction zone.
- FIG. 17-19 show a sensor in accordance with the invention having two electrodes 330',331'.
- the leads are not entirely embedded in the insulative material of the body.
- the leads In the reaction zone 324, at least a portion of the leads - e.g., the tips, sides, or other portion - is exposed therein as sensing electrodes 330,331,332 for contacting fluid sample drawn into the body 312.
- the reaction zone 324 lies primarily in the bottom lengthwise portion of the detector. Although the reaction zone may be formed above or below the electrodes, it is preferably constructed below the electrodes.
- the cap 327 is folded onto the body and securedly affixed to the body to form a substantially tight seal.
- a capillary opening 328 forms in the terminal end 316 of the sensor 310.
- the capillary opening 328 leads to the reaction zone 324 where the edges of the sensing electrodes 330,331,332 are exposed to the test fluid.
- the width of the capillary opening 328 is approximately the same as that of the sensing electrodes 330,331,332.
- Body 312 may also have proturberances to ensure correct alignment of the surfaces when folded about the hinge.
- the protuberances are typically disposed on at least one of (a) the surface of the end cap that folds onto the body and (b) the top third surface of the body onto which the end cap folds that is covered by the end cap when folded onto the body.
- the protuberances may appear on both the end cap and the upper surface 315b of the body.
- the protuberance comprises a ridge 527 and a recessed surface 528 that mate when the cap is folded onto the body, to form the reaction zone.
- the ridge 527 may be formed on the second top surface 315b along the periphery of the reaction zone 324, and the recessed surface may be formed on the cap 327, or vice versa.
- the ridge 527 may also sit in and be substantially aligned with a secondary ridge (not shown), which increases the height of ridge 527.
- the ridge 527 mates with recessed surface 528 to form a seal, enclosing the reaction zone 324 within the body.
- the ridge 527 and recessed surface 528 may be further welded together by, e.g., ultrasonic energy, adhesive, or any other suitable techniques.
- the seal, so formed prevents the reaction zone 324 from losing fluid or accepting debris.
- the ridge 527 fuses into the recessed surface 528 without affecting the performance of the sensor.
- the proturberance is an energy director 529' formed on at least one of the end cap and the upper surface 315b' of the body.
- the energy director 529' typically comprises at least one protruding ridge extending preferably along the periphery of the end cap.
- the energy director extends along the three unattached sides of the end cap, although it may extend across portions of the sides.
- the energy director 529' begins at hinge 427' and extends on the end cap 327' directionally away from the hinge 427' and across the end farthest from the hinge.
- the energy director 529' is generally melted by, e.g., ultrasonic energy or other conventional means, to induce formation of a strong, leak-free joint bond between the bottom surface and cap surface.
- the bond so formed seals the fluid within the chamber, preventing fluid from diffusing out from the reaction zone.
- a seal may be formed by the application of adhesives.
- the sensor of the third embodiment is also a capillary fill device; i.e., when the capillary opening 328' is placed in contact with the fluid being tested, the reaction zone 324' draws the fluid sample into the zone.
- sample fill vent 368' Included in cap 327' is sample fill vent 368'.
- cap 327' is folded onto body 312', at least a portion of the sample fill vent 368' is in communication with the reaction zone to form a depressurization vent 378' for releasing air from the reaction zone as the zone fills with fluid.
- the depressurization vent 378' extends between one edge of the sample fill vent 368' and the ledge 415' of the reaction zone, which is the back wall of the reaction zone farthest from the terminal end 316'.
- Figures 20a,b show a magnified view of the terminal end portion of the sensor 310' of Figure 17.
- Figure 20a shows the cap 327' extended away from the body
- Figure 20b shows the cap 327' folded onto the
- the depressurization vent 378' provides for fill detection in the third embodiment.
- Fluid drawn through the capillary opening 328' travels along the capillary, preferably in the lower portion of the body 312', to the reaction zone 324' where it contacts the electrodes 331',332' of sensor 310' (or electrodes 330,331,332 of sensor 330,331,332).
- the surface of the electrodes facing the upper surface 315' of the body is flush with the bottom periphery of the capillary inlet 328'.
- sample fluid enters the reaction zone 324' it travels toward the end of the reaction zone farthest from the capillary inlet until it reaches the depressurization vent 378'.
- the injection molded body 312 is constructed of an electrically insulating injection moldable plastic. The body 312 is molded around the electrically conductive plate (stamped or cast) with its leads 330,331,332 so that the conductive plate is encased primarily within the body 312.
- the conductive plate is a single piece of material; it includes the leads 330,331,332 (330', 331' in Figure 18) and the connecting segments 430 and 431 (reference no. 432 in sensor 310'). After the sensor is made, the segments 430 and 431 interconnecting the leads are cut and/or removed to separate the leads from one another. If the interconnecting segments remained intact during operation of the sensor, the system would short circuit.
- the body may have a plurality of guides molded therein with at least one of the guides abutting against at least one of the leads.
- the leads 330,331,332 extend longitudinally through the body 312 from the plug end 314 to the reaction zone 324, terminating just before the terminal end 316.
- the leads 330,331,332 are encased, or embedded, in the body 312 at a pre-determined distance from each other; they are generally parallel to one another though this is not necessary for operation of the sensor.
- a sufficient portion of the leads are exposed for contacting the fluid sample; the exposed portion includes, e.g., at least the tips, ends, or sides of the electrodes.
- the electrodes 330,331,332 are an electrically conductive material such as metal or metal alloy; e.g., platinum, palladium, gold, silver, nickel, nickel-chrome, stainless steel, copper or the like. For enhanced performance and sensitivity, they may also be coated with a metal different from that composing the lead; e.g., a lead made of copper may be coated with gold. If desired, the width of the leads 330,331,332 may be widened or narrowed in the reaction zone 324 to expose more or less surface area to the fluid and chemicals therein.
- the leads 330,331,332 extending through the body can be as wide as the exposed portion within the reaction zone, which comprises the electrodes 330, 331, 332.
- Each of the leads 330,331,332 terminates in a segment 333a,b,c that may extend outside the body 312 from the plug end 314 where the leads provide surface areas 334,335,336, respectively, for contact with the meter (not shown).
- the leads can be embedded in the molded plastic such that only a portion of each lead is exposed outside the body at the plug end 314; or the top surface of the leads comes in contact with the meter electrical contact leads.
- the top surface 315a has two sets of apertures - first apertures 346 and second apertures 347 - each having three individual openings or apertures.
- each of these apertures 346,347,348,350 is preferably left open.
- the apertures are closed to prevent accidental contact of the fluid with areas other than the electrodes in the reaction zone.
- the apertures may, alternatively, be covered such as with the same or a different material used in the molding process.
- conductive electrodes 330, 331, 332 include a primary working electrode 352, a reference or counter electrode 353, and a secondary working electrode 354.
- the conductive electrodes 330, 331, 332 contact the test sample, in fluid form, as it enters the sensor 310.
- the signal carried by the electrodes arises in the reaction zone 324 from contact made by the exposed portion of the electrode with the test sample.
- one electrode, preferably the center electrode is a reference electrode.
- the reaction zone may also have one or, alternatively, two working electrodes; e.g., primary working electrode 352 and secondary electrode 354.
- an enzyme, conjugated to another moiety, such as an antibody or antigen or an analyte, is applied to the outer surface of the primary working electrode 352, and if desired, an electron transfer mediator may be applied to the same electrode 352.
- An antibody may also be applied to the outer surface of the secondary working electrode 354 or otherwise present in the reaction zone.
- the reaction zone 324 can contain antibodies, enzyme-antibody conjugates, enzyme-analyte conjugates, and the like.
- the enzyme can be applied to the entire exposed surface of the primary electrode 352 or the secondary electrode 354. Alternatively, the enzyme is applied to a particular, defined portion of a working electrode. Or, an enzyme can be applied to all the electrodes 352,353,354 in the reaction zone 324. Preferably, one of the working electrodes (352 or 354) is selectively coated with the enzyme carrying a reagent with the enzyme, and the other working electrode (354 or 352) is coated with a reagent lacking the respective enzyme.
- the reaction zone or cavity 324 may itself be coated with a substance - such as a reagent, an antibody, or an enzyme - that reacts with certain constituents in the fluid sample to change the electrochemical properties of the sample. The resulting change is readily detected by the electrodes and measured by the meter.
- the mold has the shape of the body 312.
- the conductive 330,331,332 leads (in the form of a composite plate with the joining extensions 430,431 for interconnecting the electrodes) are first treated or coated with a substance, which may be an enzyme, an antibody, or a chemical reagent, as examples.
- the chemicals/reagents (with and without enzymes) are generally applied after the molding.
- the plate is fed into the mold and placed on or between fingers (not shown) that project into the mold through the openings in the mold, which correspond to the apertures 346,347,348,350, 360,361,362.
- the fingers hold the plate in place, keeping it level during the set-up and molding process.
- Knives or punches are inserted through the top surface of the mold (outline of opening formed by the knives/punches 370). These knives punch and sever the joining extensions 430,431 and hold the bent portions in place during molding, as shown in Figure 15.
- the bottom apertures allow the fingers to be projected into the mold to support the plate with leads; similarly, the top apertures allow the fingers to be projected into the mold to hold the plate in place with the leads.
- Liquid plastic is injected into the mold, filling it. The plastic is then cooled.
- the fingers are removed from the mold through the openings; i.e., apertures 346,347,348,350,360,361,362.
- the knives/punches are drawn through and removed from the upper surface openings 370, leaving the cut or skived extensions 430,431 disposed between the leads 330,331 and 331,332. These cut extension keep the leads separated.
- the molded sensor 312 is then ejected from the mold, and any undesirable openings in the sensor can be sealed closed with the same plastic used for the mold.
- the critical reagents are applied to the sensor in the reaction zone 324 above the leads.
- a surfactant can also be applied to the capillary opening 328 to facilitate the capillary function. Any extraneous metal projecting from the sensor can be cut and removed.
- any desired writings or other designations on the sensor e.g., manufacturing codes, product name, etc.
- any desired writings or other designations on the sensor can be applied to the sensors by conventional means.
- a sensor is designed for use with a light reflectance measuring meter for photometric detection of a dye contained within a fluid sample receiving well.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Hematology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2002248674A AU2002248674A1 (en) | 2001-03-23 | 2002-03-22 | Electrochemical sensor and method thereof |
JP2002575610A JP2005503536A (en) | 2001-03-23 | 2002-03-22 | Electrochemical sensor and method thereof |
CA002442017A CA2442017A1 (en) | 2001-03-23 | 2002-03-22 | Electrochemical sensor and method thereof |
BR0208343-4A BR0208343A (en) | 2001-03-23 | 2002-03-22 | Electrochemical sensor and process for its production |
MXPA03008609A MXPA03008609A (en) | 2001-12-07 | 2002-03-22 | Electrochemical sensor and method thereof. |
EP02717688A EP1379861A4 (en) | 2001-03-23 | 2002-03-22 | Electrochemical sensor and method thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/820,372 | 2001-03-23 | ||
US09/820,372 US6576102B1 (en) | 2001-03-23 | 2001-03-23 | Electrochemical sensor and method thereof |
US10/017,751 | 2001-12-07 | ||
US10/017,751 US6572745B2 (en) | 2001-03-23 | 2001-12-07 | Electrochemical sensor and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002077606A2 true WO2002077606A2 (en) | 2002-10-03 |
WO2002077606A3 WO2002077606A3 (en) | 2003-02-06 |
Family
ID=26690266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/008703 WO2002077606A2 (en) | 2001-03-23 | 2002-03-22 | Electrochemical sensor and method thereof |
Country Status (8)
Country | Link |
---|---|
US (4) | US6572745B2 (en) |
EP (1) | EP1379861A4 (en) |
JP (1) | JP2005503536A (en) |
CN (1) | CN100380116C (en) |
AU (1) | AU2002248674A1 (en) |
BR (1) | BR0208343A (en) |
CA (1) | CA2442017A1 (en) |
WO (1) | WO2002077606A2 (en) |
Families Citing this family (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6036924A (en) | 1997-12-04 | 2000-03-14 | Hewlett-Packard Company | Cassette of lancet cartridges for sampling blood |
US6391005B1 (en) | 1998-03-30 | 2002-05-21 | Agilent Technologies, Inc. | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US8641644B2 (en) | 2000-11-21 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US6572745B2 (en) * | 2001-03-23 | 2003-06-03 | Virotek, L.L.C. | Electrochemical sensor and method thereof |
DE60234597D1 (en) | 2001-06-12 | 2010-01-14 | Pelikan Technologies Inc | DEVICE AND METHOD FOR REMOVING BLOOD SAMPLES |
US8337419B2 (en) | 2002-04-19 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
JP4209767B2 (en) | 2001-06-12 | 2009-01-14 | ペリカン テクノロジーズ インコーポレイテッド | Self-optimized cutting instrument with adaptive means for temporary changes in skin properties |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
US7981056B2 (en) | 2002-04-19 | 2011-07-19 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
AU2002348683A1 (en) | 2001-06-12 | 2002-12-23 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
AU2002344825A1 (en) | 2001-06-12 | 2002-12-23 | Pelikan Technologies, Inc. | Method and apparatus for improving success rate of blood yield from a fingerstick |
DE60238119D1 (en) | 2001-06-12 | 2010-12-09 | Pelikan Technologies Inc | ELECTRIC ACTUATOR ELEMENT FOR A LANZETTE |
US7041068B2 (en) | 2001-06-12 | 2006-05-09 | Pelikan Technologies, Inc. | Sampling module device and method |
US10022078B2 (en) | 2004-07-13 | 2018-07-17 | Dexcom, Inc. | Analyte sensor |
US7497827B2 (en) | 2004-07-13 | 2009-03-03 | Dexcom, Inc. | Transcutaneous analyte sensor |
US7901362B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8360992B2 (en) | 2002-04-19 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7297122B2 (en) | 2002-04-19 | 2007-11-20 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7909778B2 (en) * | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7491178B2 (en) | 2002-04-19 | 2009-02-17 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7331931B2 (en) | 2002-04-19 | 2008-02-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8221334B2 (en) | 2002-04-19 | 2012-07-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7291117B2 (en) | 2002-04-19 | 2007-11-06 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7547287B2 (en) | 2002-04-19 | 2009-06-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8267870B2 (en) | 2002-04-19 | 2012-09-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling with hybrid actuation |
US7717863B2 (en) | 2002-04-19 | 2010-05-18 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7198606B2 (en) * | 2002-04-19 | 2007-04-03 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with analyte sensing |
US7371247B2 (en) | 2002-04-19 | 2008-05-13 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
US7892183B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7674232B2 (en) | 2002-04-19 | 2010-03-09 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7232451B2 (en) | 2002-04-19 | 2007-06-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7976476B2 (en) | 2002-04-19 | 2011-07-12 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US8579831B2 (en) | 2002-04-19 | 2013-11-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8372016B2 (en) | 2002-04-19 | 2013-02-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling and analyte sensing |
US7648468B2 (en) * | 2002-04-19 | 2010-01-19 | Pelikon Technologies, Inc. | Method and apparatus for penetrating tissue |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US8784335B2 (en) | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
US7175642B2 (en) | 2002-04-19 | 2007-02-13 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US9795334B2 (en) | 2002-04-19 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7229458B2 (en) | 2002-04-19 | 2007-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US6743635B2 (en) | 2002-04-25 | 2004-06-01 | Home Diagnostics, Inc. | System and methods for blood glucose sensing |
US6964871B2 (en) | 2002-04-25 | 2005-11-15 | Home Diagnostics, Inc. | Systems and methods for blood glucose sensing |
US6946299B2 (en) | 2002-04-25 | 2005-09-20 | Home Diagnostics, Inc. | Systems and methods for blood glucose sensing |
US20080112852A1 (en) * | 2002-04-25 | 2008-05-15 | Neel Gary T | Test Strips and System for Measuring Analyte Levels in a Fluid Sample |
US20040099531A1 (en) * | 2002-08-15 | 2004-05-27 | Rengaswamy Srinivasan | Methods and apparatus for electrochemically testing samples for constituents |
JP4352152B2 (en) * | 2002-12-02 | 2009-10-28 | アークレイ株式会社 | Analysis tool |
US7265881B2 (en) * | 2002-12-20 | 2007-09-04 | Hewlett-Packard Development Company, L.P. | Method and apparatus for measuring assembly and alignment errors in sensor assemblies |
US8574895B2 (en) | 2002-12-30 | 2013-11-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
US7144485B2 (en) * | 2003-01-13 | 2006-12-05 | Hmd Biomedical Inc. | Strips for analyzing samples |
US20070023283A1 (en) * | 2003-01-30 | 2007-02-01 | Chun-Mu Huang | Method for manufacturing electrochemical sensor and structure thereof |
US20040149578A1 (en) * | 2003-01-30 | 2004-08-05 | Chun-Mu Huang | Method for manufacturing electrochemical sensor and structure thereof |
WO2004093784A2 (en) * | 2003-04-21 | 2004-11-04 | Home Diagnostics, Inc. | Systems and methods for blood glucose sensing |
ATE416948T1 (en) * | 2003-04-30 | 2008-12-15 | Inergy Automotive Systems Res | FILLING LINE WHICH ASSOCIATES AN ADDITIVE TANK FOR A FUEL SYSTEM AND METHOD FOR MANUFACTURING THIS UNIT |
WO2004107975A2 (en) | 2003-05-30 | 2004-12-16 | Pelikan Technologies, Inc. | Method and apparatus for fluid injection |
WO2004107964A2 (en) | 2003-06-06 | 2004-12-16 | Pelikan Technologies, Inc. | Blood harvesting device with electronic control |
WO2006001797A1 (en) | 2004-06-14 | 2006-01-05 | Pelikan Technologies, Inc. | Low pain penetrating |
US7920906B2 (en) | 2005-03-10 | 2011-04-05 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
US8282576B2 (en) | 2003-09-29 | 2012-10-09 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US9351680B2 (en) | 2003-10-14 | 2016-05-31 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a variable user interface |
US7655119B2 (en) * | 2003-10-31 | 2010-02-02 | Lifescan Scotland Limited | Meter for use in an improved method of reducing interferences in an electrochemical sensor using two different applied potentials |
CA2543961A1 (en) | 2003-10-31 | 2005-05-19 | Lifescan Scotland Limited | Electrochemical test strip for reducing the effect of direct and mediated interference current |
DE10353938A1 (en) * | 2003-11-18 | 2005-06-23 | Fresenius Medical Care Deutschland Gmbh | Sensor card for the determination of analytes in liquid or gas samples and method for producing such a sensor card |
US9247900B2 (en) | 2004-07-13 | 2016-02-02 | Dexcom, Inc. | Analyte sensor |
US20050125162A1 (en) * | 2003-12-03 | 2005-06-09 | Kiamars Hajizadeh | Multi-sensor device for motorized meter and methods thereof |
US20050147741A1 (en) * | 2003-12-31 | 2005-07-07 | Chung Yuan Christian University | Fabrication of array PH sensitive EGFET and its readout circuit |
US7822454B1 (en) | 2005-01-03 | 2010-10-26 | Pelikan Technologies, Inc. | Fluid sampling device with improved analyte detecting member configuration |
WO2005065414A2 (en) | 2003-12-31 | 2005-07-21 | Pelikan Technologies, Inc. | Method and apparatus for improving fluidic flow and sample capture |
US20060013731A1 (en) * | 2004-03-26 | 2006-01-19 | Phil Stout | Microfluidic system with feedback control |
US20050266571A1 (en) * | 2004-03-26 | 2005-12-01 | Phil Stout | Method for feedback control of a microfluidic system |
US20050221504A1 (en) * | 2004-04-01 | 2005-10-06 | Petruno Patrick T | Optoelectronic rapid diagnostic test system |
US8128871B2 (en) | 2005-04-22 | 2012-03-06 | Alverix, Inc. | Lateral flow assay systems and methods |
US8792955B2 (en) | 2004-05-03 | 2014-07-29 | Dexcom, Inc. | Transcutaneous analyte sensor |
EP1776574B1 (en) | 2004-05-04 | 2018-11-14 | Polymer Technology Systems, Inc. | Mechanical cartridge with test strip fluid control features for use in a fluid analyte meter |
EP1751546A2 (en) | 2004-05-20 | 2007-02-14 | Albatros Technologies GmbH & Co. KG | Printable hydrogel for biosensors |
JP5215661B2 (en) | 2004-05-21 | 2013-06-19 | アガマトリックス インコーポレーテッド | Electrochemical cell and method for making an electrochemical cell |
US9820684B2 (en) | 2004-06-03 | 2017-11-21 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US9775553B2 (en) * | 2004-06-03 | 2017-10-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US8886272B2 (en) | 2004-07-13 | 2014-11-11 | Dexcom, Inc. | Analyte sensor |
GB2417323A (en) * | 2004-08-17 | 2006-02-22 | Oxford Biosensors Ltd | A method of operating an electrochemical sensor by applying a time variable potential between the electrodes. |
US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
US9891217B2 (en) | 2005-04-22 | 2018-02-13 | Alverix, Inc. | Assay test strips with multiple labels and reading same |
US20060275890A1 (en) * | 2005-06-06 | 2006-12-07 | Home Diagnostics, Inc. | Method of manufacturing a disposable diagnostic meter |
US7846311B2 (en) * | 2005-09-27 | 2010-12-07 | Abbott Diabetes Care Inc. | In vitro analyte sensor and methods of use |
US7955484B2 (en) * | 2005-12-14 | 2011-06-07 | Nova Biomedical Corporation | Glucose biosensor and method |
US7887682B2 (en) * | 2006-03-29 | 2011-02-15 | Abbott Diabetes Care Inc. | Analyte sensors and methods of use |
US7598091B2 (en) | 2006-04-04 | 2009-10-06 | Micropoint Bioscience, Inc. | Micromachined diagnostic device with controlled flow of fluid and reaction |
WO2009032760A2 (en) | 2007-08-30 | 2009-03-12 | Pepex Biomedical Llc | Electrochmical sensor and method for manufacturing |
WO2009051901A2 (en) * | 2007-08-30 | 2009-04-23 | Pepex Biomedical, Llc | Electrochemical sensor and method for manufacturing |
EP2265324B1 (en) | 2008-04-11 | 2015-01-28 | Sanofi-Aventis Deutschland GmbH | Integrated analyte measurement system |
US8506740B2 (en) | 2008-11-14 | 2013-08-13 | Pepex Biomedical, Llc | Manufacturing electrochemical sensor module |
WO2010056878A2 (en) | 2008-11-14 | 2010-05-20 | Pepex Biomedical, Llc | Electrochemical sensor module |
US8951377B2 (en) | 2008-11-14 | 2015-02-10 | Pepex Biomedical, Inc. | Manufacturing electrochemical sensor module |
US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
JP4927969B2 (en) * | 2010-03-31 | 2012-05-09 | 富山県 | Biosensor chip assembly kit, biosensor chip manufacturing method, and biosensor chip |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
JP5698085B2 (en) * | 2010-07-12 | 2015-04-08 | アークレイ株式会社 | Biosensor and manufacturing method thereof |
EP2661616B1 (en) | 2011-01-06 | 2015-11-18 | Pepex Biomedical, Inc. | Sensor module with enhanced capillary flow |
US9504162B2 (en) | 2011-05-20 | 2016-11-22 | Pepex Biomedical, Inc. | Manufacturing electrochemical sensor modules |
US11224367B2 (en) | 2012-12-03 | 2022-01-18 | Pepex Biomedical, Inc. | Sensor module and method of using a sensor module |
BR112016028536B1 (en) | 2014-06-04 | 2021-11-30 | Pepex Biomedical, Inc | SENSOR COMPRISING A SKIN DRILLING MEMBER AND A BLOOD SAMPLE ANALYSIS ZONE |
CN106226379A (en) * | 2016-07-10 | 2016-12-14 | 浙江亿联健医疗器械有限公司 | A kind of biosensor eliminating sample introduction process influence and method of testing |
US20180177644A1 (en) * | 2016-12-22 | 2018-06-28 | Raja Singh Tuli | Diaper Attachment Pod |
WO2020186118A1 (en) * | 2019-03-12 | 2020-09-17 | The Regents Of The University Of California | Systems, devices and methods for sensing biomarkers using enzymatic and immunosensing electrochemical detection techniques |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4474183A (en) * | 1983-01-17 | 1984-10-02 | Kuraray Co., Ltd. | Gas sensor |
US5985129A (en) * | 1989-12-14 | 1999-11-16 | The Regents Of The University Of California | Method for increasing the service life of an implantable sensor |
US6129823A (en) * | 1997-09-05 | 2000-10-10 | Abbott Laboratories | Low volume electrochemical sensor |
EP1098000A2 (en) * | 1999-11-03 | 2001-05-09 | Roche Diagnostics Corporation | Embedded metallic deposits forming an electrode set for an electrochemical sensor strip |
Family Cites Families (154)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH559912A5 (en) | 1971-09-09 | 1975-03-14 | Hoffmann La Roche | |
US3925183A (en) | 1972-06-16 | 1975-12-09 | Energetics Science | Gas detecting and quantitative measuring device |
CH585907A5 (en) | 1973-08-06 | 1977-03-15 | Hoffmann La Roche | |
US3979274A (en) | 1975-09-24 | 1976-09-07 | The Yellow Springs Instrument Company, Inc. | Membrane for enzyme electrodes |
US4137495A (en) | 1976-03-27 | 1979-01-30 | Brown David M B | Oil detector |
US4053381A (en) | 1976-05-19 | 1977-10-11 | Eastman Kodak Company | Device for determining ionic activity of components of liquid drops |
JPS5912135B2 (en) | 1977-09-28 | 1984-03-21 | 松下電器産業株式会社 | enzyme electrode |
US4321123A (en) | 1978-04-21 | 1982-03-23 | Matsushita Electric Industrial Co., Ltd. | Coenzyme immobilized electrode |
DE2823485C2 (en) | 1978-05-30 | 1986-03-27 | Albert Prof. Dr. 3550 Marburg Huch | Trough electrode |
US4254083A (en) | 1979-07-23 | 1981-03-03 | Eastman Kodak Company | Structural configuration for transport of a liquid drop through an ingress aperture |
JPS584982B2 (en) | 1978-10-31 | 1983-01-28 | 松下電器産業株式会社 | enzyme electrode |
US4225410A (en) | 1978-12-04 | 1980-09-30 | Technicon Instruments Corporation | Integrated array of electrochemical sensors |
US4169779A (en) | 1978-12-26 | 1979-10-02 | Catalyst Research Corporation | Electrochemical cell for the detection of hydrogen sulfide |
US4301414A (en) * | 1979-10-29 | 1981-11-17 | United States Surgical Corporation | Disposable sample card and method of making same |
US4285657A (en) | 1979-12-03 | 1981-08-25 | Ryder Leonard B | Injection blow molding apparatus |
US4239471A (en) | 1979-12-06 | 1980-12-16 | The Continental Group, Inc. | Thermal alignment of cores and cavities in multi-cavity injection molds |
US4413407A (en) | 1980-03-10 | 1983-11-08 | Eastman Kodak Company | Method for forming an electrode-containing device with capillary transport between electrodes |
US4356074A (en) | 1980-08-25 | 1982-10-26 | The Yellow Springs Instrument Company, Inc. | Substrate specific galactose oxidase enzyme electrodes |
US4407959A (en) | 1980-10-29 | 1983-10-04 | Fuji Electric Co., Ltd. | Blood sugar analyzing apparatus |
US4420564A (en) | 1980-11-21 | 1983-12-13 | Fuji Electric Company, Ltd. | Blood sugar analyzer having fixed enzyme membrane sensor |
JPS57118152A (en) | 1981-01-14 | 1982-07-22 | Matsushita Electric Ind Co Ltd | Enzyme electrode |
GB2096825A (en) | 1981-04-09 | 1982-10-20 | Sibbald Alastair | Chemical sensitive semiconductor field effect transducer |
AT369254B (en) | 1981-05-07 | 1982-12-27 | Otto Dipl Ing Dr Tech Prohaska | MEDICAL PROBE |
DE3278334D1 (en) | 1981-10-23 | 1988-05-19 | Genetics Int Inc | Sensor for components of a liquid mixture |
GB2111215A (en) | 1981-10-31 | 1983-06-29 | Alastair Sibbald | Electrochemical sensor assembly |
US4418148A (en) | 1981-11-05 | 1983-11-29 | Miles Laboratories, Inc. | Multilayer enzyme electrode membrane |
JPS5886083A (en) | 1981-11-12 | 1983-05-23 | Wako Pure Chem Ind Ltd | Stabilizing agent for glycerol-3-phosphoric acid oxidase |
US4432366A (en) * | 1981-11-27 | 1984-02-21 | Cordis Corporation | Reference electrode catheter |
US4473457A (en) | 1982-03-29 | 1984-09-25 | Eastman Kodak Company | Liquid transport device providing diversion of capillary flow into a non-vented second zone |
EP0096095B1 (en) | 1982-06-14 | 1988-11-09 | Corporation Ohmicron | Semiconductor device, sensor and method for determining the concentration of an analyte in a medium |
US4634366A (en) | 1982-11-08 | 1987-01-06 | Electra Form, Inc. | Injection molding machine |
US4738812A (en) * | 1982-11-12 | 1988-04-19 | Teleco Oilfield Services Inc. | Method of forming an electrode structure |
US4490216A (en) | 1983-02-03 | 1984-12-25 | Molecular Devices Corporation | Lipid membrane electroanalytical elements and method of analysis therewith |
DE3483761D1 (en) | 1983-03-11 | 1991-01-31 | Matsushita Electric Ind Co Ltd | Biosensor. |
GB8308389D0 (en) | 1983-03-26 | 1983-05-05 | Cambridge Life Sciences | Assay technique |
GB2154003B (en) | 1983-12-16 | 1988-02-17 | Genetics Int Inc | Diagnostic aid |
CA1218704A (en) | 1983-05-05 | 1987-03-03 | Graham Davis | Assay systems using more than one enzyme |
US5682884A (en) | 1983-05-05 | 1997-11-04 | Medisense, Inc. | Strip electrode with screen printing |
CA1219040A (en) | 1983-05-05 | 1987-03-10 | Elliot V. Plotkin | Measurement of enzyme-catalysed reactions |
US5509410A (en) | 1983-06-06 | 1996-04-23 | Medisense, Inc. | Strip electrode including screen printing of a single layer |
CA1226036A (en) | 1983-05-05 | 1987-08-25 | Irving J. Higgins | Analytical equipment and sensor electrodes therefor |
US4477403A (en) * | 1983-05-26 | 1984-10-16 | Teledyne Industries, Inc. | Method of making an electrochemical sensor |
JPS6036949A (en) | 1983-08-09 | 1985-02-26 | Ngk Insulators Ltd | Oxygen sensor element |
SE8305704D0 (en) | 1983-10-18 | 1983-10-18 | Leo Ab | Cuvette |
US4579643A (en) | 1983-11-18 | 1986-04-01 | Ngk Insulators, Ltd. | Electrochemical device |
US4502660A (en) | 1983-11-21 | 1985-03-05 | Luther Leroy D | Mold including side walls with locking projections |
US4591550A (en) | 1984-03-01 | 1986-05-27 | Molecular Devices Corporation | Device having photoresponsive electrode for determining analytes including ligands and antibodies |
US4810633A (en) | 1984-06-04 | 1989-03-07 | Miles Inc. | Enzymatic ethanol test |
US5141868A (en) | 1984-06-13 | 1992-08-25 | Internationale Octrooi Maatschappij "Octropa" Bv | Device for use in chemical test procedures |
DE3577748D1 (en) | 1984-06-13 | 1990-06-21 | Unilever Nv | DEVICES FOR USE IN CHEMICAL ANALYSIS. |
US4820399A (en) | 1984-08-31 | 1989-04-11 | Shimadzu Corporation | Enzyme electrodes |
AU581690B2 (en) | 1984-10-12 | 1989-03-02 | Medisense Inc. | Chemical sensor |
US5171689A (en) | 1984-11-08 | 1992-12-15 | Matsushita Electric Industrial Co., Ltd. | Solid state bio-sensor |
GB8504521D0 (en) | 1985-02-21 | 1985-03-27 | Genetics Int Inc | Electrochemical assay |
US4786374A (en) * | 1985-02-22 | 1988-11-22 | University Patents, Inc. | Electro-chemical sensors and methods for their manufacture and use |
GB8508053D0 (en) | 1985-03-28 | 1985-05-01 | Genetics Int Inc | Graphite electrode |
US4717113A (en) | 1985-06-18 | 1988-01-05 | Eee Co., Inc. | Segmented injection mold system |
WO1986007632A1 (en) | 1985-06-21 | 1986-12-31 | Matsushita Electric Industrial Co., Ltd. | Biosensor and method of manufacturing same |
US5030310A (en) | 1985-06-28 | 1991-07-09 | Miles Inc. | Electrode for electrochemical sensors |
US4938860A (en) | 1985-06-28 | 1990-07-03 | Miles Inc. | Electrode for electrochemical sensors |
US5140393A (en) | 1985-10-08 | 1992-08-18 | Sharp Kabushiki Kaisha | Sensor device |
CA1254616A (en) | 1985-11-11 | 1989-05-23 | Calum J. Mcneil | Electrochemical enzymic assay procedures |
US4935106A (en) | 1985-11-15 | 1990-06-19 | Smithkline Diagnostics, Inc. | Ion selective/enzymatic electrode medical analyzer device and method of use |
GB8531755D0 (en) | 1985-12-24 | 1986-02-05 | Genetics Int Inc | Assay for cholestrol & derivatives |
GB8608700D0 (en) | 1986-04-10 | 1986-05-14 | Genetics Int Inc | Measurement of electroactive species in solution |
US4757022A (en) * | 1986-04-15 | 1988-07-12 | Markwell Medical Institute, Inc. | Biological fluid measuring device |
US4994167A (en) * | 1986-04-15 | 1991-02-19 | Markwell Medical Institute, Inc. | Biological fluid measuring device |
GB8612861D0 (en) | 1986-05-27 | 1986-07-02 | Cambridge Life Sciences | Immobilised enzyme biosensors |
US4959305A (en) | 1986-06-18 | 1990-09-25 | Miles Inc. | Reversible immobilization of assay reagents in a multizone test device |
JPS636451A (en) | 1986-06-27 | 1988-01-12 | Terumo Corp | Enzyme sensor |
GB8618022D0 (en) | 1986-07-23 | 1986-08-28 | Unilever Plc | Electrochemical measurements |
US5049487A (en) | 1986-08-13 | 1991-09-17 | Lifescan, Inc. | Automated initiation of timing of reflectance readings |
US4894137A (en) | 1986-09-12 | 1990-01-16 | Omron Tateisi Electronics Co. | Enzyme electrode |
EP0274215B1 (en) | 1986-11-28 | 1993-07-21 | Unilever Plc | Electrochemical measurement devices |
GB2201248B (en) | 1987-02-24 | 1991-04-17 | Ici Plc | Enzyme electrode sensors |
US4765585A (en) | 1987-02-27 | 1988-08-23 | Superior Die Set Corporation | Slide retainer for injection molds |
GB2204408A (en) | 1987-03-04 | 1988-11-09 | Plessey Co Plc | Biosensor device |
US4952300A (en) | 1987-03-19 | 1990-08-28 | Howard Diamond | Multiparameter analytical electrode structure and method of measurement |
US4796014A (en) | 1987-03-24 | 1989-01-03 | Chia Jack T | Device for detecting urine in diapers |
US4900405A (en) | 1987-07-15 | 1990-02-13 | Sri International | Surface type microelectronic gas and vapor sensor |
US4768747A (en) | 1987-07-31 | 1988-09-06 | Williams John B | Slide clip |
USRE36268E (en) | 1988-03-15 | 1999-08-17 | Boehringer Mannheim Corporation | Method and apparatus for amperometric diagnostic analysis |
US5128015A (en) | 1988-03-15 | 1992-07-07 | Tall Oak Ventures | Method and apparatus for amperometric diagnostic analysis |
WO1989009397A1 (en) | 1988-03-31 | 1989-10-05 | Matsushita Electric Industrial Co., Ltd. | Biosensor and process for its production |
CA1327110C (en) | 1988-04-28 | 1994-02-22 | Tatsuzi Nakagawa | Mold assembly, and methods of mounting and removing insert thereof, and ejecting the insert |
JPH0229894A (en) * | 1988-07-20 | 1990-01-31 | Adoin Kenkyusho:Kk | Abnormal diagnosis informing system |
US4832307A (en) | 1988-09-15 | 1989-05-23 | Toshiba Kikai Kabushiki Kaisha | Injection mold |
US4995402A (en) | 1988-10-12 | 1991-02-26 | Thorne, Smith, Astill Technologies, Inc. | Medical droplet whole blood and like monitoring |
US4959005A (en) | 1989-02-23 | 1990-09-25 | Primtec | Self-aligning mold for injection molding of hollow plastic products |
US5015426A (en) | 1989-05-18 | 1991-05-14 | Galic Maus Ventures | Precision single cavity and multicavity plastic injection molding via an adaptive mold process |
US4965933A (en) * | 1989-05-22 | 1990-10-30 | The Cherry Corporation | Process for making insert molded circuit |
US5236567A (en) | 1989-05-31 | 1993-08-17 | Nakano Vinegar Co., Ltd. | Enzyme sensor |
DE3934299C1 (en) | 1989-10-13 | 1990-10-25 | Gesellschaft Fuer Biotechnologische Forschung Mbh (Gbf), 3300 Braunschweig, De | |
US4999582A (en) | 1989-12-15 | 1991-03-12 | Boehringer Mannheim Corp. | Biosensor electrode excitation circuit |
US5243516A (en) * | 1989-12-15 | 1993-09-07 | Boehringer Mannheim Corporation | Biosensing instrument and method |
US5508171A (en) | 1989-12-15 | 1996-04-16 | Boehringer Mannheim Corporation | Assay method with enzyme electrode system |
JP3171444B2 (en) | 1989-12-15 | 2001-05-28 | ロシュ・ダイアグノスティックス・コーポレイション | Redox mediators and biosensors |
US5286362A (en) | 1990-02-03 | 1994-02-15 | Boehringer Mannheim Gmbh | Method and sensor electrode system for the electrochemical determination of an analyte or an oxidoreductase as well as the use of suitable compounds therefor |
DE4003194A1 (en) | 1990-02-03 | 1991-08-08 | Boehringer Mannheim Gmbh | Electrochemical determn. of analytes - using oxido-reductase and substance of being reduced, which is re-oxidised on the electrode |
US5040963A (en) | 1990-04-24 | 1991-08-20 | Devtech Labs, Inc. | Apparatus for coinjection molding of preforms for multi-layer containers |
US5192415A (en) | 1991-03-04 | 1993-03-09 | Matsushita Electric Industrial Co., Ltd. | Biosensor utilizing enzyme and a method for producing the same |
US5593852A (en) | 1993-12-02 | 1997-01-14 | Heller; Adam | Subcutaneous glucose electrode |
US5139714A (en) | 1991-06-03 | 1992-08-18 | Siebolt Hettinga | Process for injection molding a hollow plastic article |
CA2072311A1 (en) | 1991-06-26 | 1992-12-27 | Ronald E. Betts | Integrated circuit hydrated sensor apparatus with electronic wiring substrate with electrochemical sensor storage devic and fluid sample analyte collector and calibration assemblyand multiple use module |
JP3135959B2 (en) | 1991-12-12 | 2001-02-19 | アークレイ株式会社 | Biosensor and separation and quantification method using the same |
US6143576A (en) | 1992-05-21 | 2000-11-07 | Biosite Diagnostics, Inc. | Non-porous diagnostic devices for the controlled movement of reagents |
US6156270A (en) | 1992-05-21 | 2000-12-05 | Biosite Diagnostics, Inc. | Diagnostic devices and apparatus for the controlled movement of reagents without membranes |
US5346659A (en) | 1992-11-23 | 1994-09-13 | S. C. Johnson & Son, Inc. | Method for producing a weld-line free injection molded plastic container body portion |
US5547555A (en) | 1993-02-22 | 1996-08-20 | Ohmicron Technology, Inc. | Electrochemical sensor cartridge |
US5405511A (en) * | 1993-06-08 | 1995-04-11 | Boehringer Mannheim Corporation | Biosensing meter with ambient temperature estimation method and system |
US5366609A (en) * | 1993-06-08 | 1994-11-22 | Boehringer Mannheim Corporation | Biosensing meter with pluggable memory key |
WO1994029705A1 (en) * | 1993-06-08 | 1994-12-22 | Boehringer Mannheim Corporation | Biosensing meter which detects proper electrode engagement and distinguishes sample and check strips |
US5407344A (en) | 1993-07-12 | 1995-04-18 | Lake Center Industries, Inc. | Single direction cam for insert molding machine |
US5427912A (en) | 1993-08-27 | 1995-06-27 | Boehringer Mannheim Corporation | Electrochemical enzymatic complementation immunoassay |
US5762770A (en) | 1994-02-21 | 1998-06-09 | Boehringer Mannheim Corporation | Electrochemical biosensor test strip |
US5437999A (en) | 1994-02-22 | 1995-08-01 | Boehringer Mannheim Corporation | Electrochemical sensor |
US5527173A (en) | 1994-04-18 | 1996-06-18 | Husky Injection Molding Systems Ltd. | Apparatus for producing plastic articles with inserts |
JP3027306B2 (en) | 1994-06-02 | 2000-04-04 | 松下電器産業株式会社 | Biosensor and manufacturing method thereof |
US5595771A (en) | 1994-11-04 | 1997-01-21 | Foltuz; Eugene L. | Modular mold for injection molding and method of use thereof |
US5651869A (en) * | 1995-02-28 | 1997-07-29 | Matsushita Electric Industrial Co., Ltd. | Biosensor |
US5582697A (en) | 1995-03-17 | 1996-12-10 | Matsushita Electric Industrial Co., Ltd. | Biosensor, and a method and a device for quantifying a substrate in a sample liquid using the same |
US5665653A (en) * | 1995-03-29 | 1997-09-09 | Unifet, Incorporated | Method for encapsulating an electrochemical sensor |
US5695949A (en) | 1995-04-07 | 1997-12-09 | Lxn Corp. | Combined assay for current glucose level and intermediate or long-term glycemic control |
US5653934A (en) | 1995-05-05 | 1997-08-05 | Electra Form, Inc. | Molded part take-out apparatus |
US5639672A (en) | 1995-10-16 | 1997-06-17 | Lxn Corporation | Electrochemical determination of fructosamine |
US5707662A (en) | 1995-11-01 | 1998-01-13 | Electra Form, Inc. | Parison molding and cooling apparatus |
AUPN661995A0 (en) * | 1995-11-16 | 1995-12-07 | Memtec America Corporation | Electrochemical cell 2 |
DE19602861C2 (en) * | 1996-01-28 | 1997-12-11 | Meinhard Prof Dr Knoll | Sampling system for analytes contained in carrier liquids and method for its production |
US6241862B1 (en) | 1996-02-14 | 2001-06-05 | Inverness Medical Technology, Inc. | Disposable test strips with integrated reagent/blood separation layer |
US5736173A (en) | 1996-04-24 | 1998-04-07 | Zygo Mold Limited | Preform injection mould with slide taper locks |
EP1579814A3 (en) | 1996-05-17 | 2006-06-14 | Roche Diagnostics Operations, Inc. | Methods and apparatus for sampling and analyzing body fluid |
US5833824A (en) * | 1996-11-15 | 1998-11-10 | Rosemount Analytical Inc. | Dorsal substrate guarded ISFET sensor |
US6027459A (en) | 1996-12-06 | 2000-02-22 | Abbott Laboratories | Method and apparatus for obtaining blood for diagnostic tests |
US6059946A (en) | 1997-04-14 | 2000-05-09 | Matsushita Electric Industrial Co., Ltd. | Biosensor |
US5798031A (en) | 1997-05-12 | 1998-08-25 | Bayer Corporation | Electrochemical biosensor |
US5997817A (en) | 1997-12-05 | 1999-12-07 | Roche Diagnostics Corporation | Electrochemical biosensor test strip |
DE69819775T2 (en) | 1997-12-19 | 2004-09-23 | Amira Medical, Scotts Valley | EMBOSSED TEST STRIP SYSTEM |
US6101791A (en) | 1998-04-03 | 2000-08-15 | Louviere; Kent A. | Method of making a plurality of interconnected vials |
US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
US6117292A (en) * | 1998-05-06 | 2000-09-12 | Honeywell International Inc | Sensor packaging having an integral electrode plug member |
DE69902265T2 (en) | 1998-06-01 | 2003-03-27 | Roche Diagnostics Corp., Indianapolis | REDOX REVERSIBLE IMIDAZOLE OSMIUM COMPLEX CONJUGATES |
US6084660A (en) * | 1998-07-20 | 2000-07-04 | Lifescan, Inc. | Initiation of an analytical measurement in blood |
US6360888B1 (en) * | 1999-02-25 | 2002-03-26 | Minimed Inc. | Glucose sensor package system |
US6315956B1 (en) * | 1999-03-16 | 2001-11-13 | Pirelli Cables And Systems Llc | Electrochemical sensors made from conductive polymer composite materials and methods of making same |
CA2305922C (en) * | 1999-08-02 | 2005-09-20 | Bayer Corporation | Improved electrochemical sensor design |
US6616819B1 (en) | 1999-11-04 | 2003-09-09 | Therasense, Inc. | Small volume in vitro analyte sensor and methods |
US20020092612A1 (en) | 2000-03-28 | 2002-07-18 | Davies Oliver William Hardwicke | Rapid response glucose sensor |
TW548095B (en) | 2000-06-01 | 2003-08-21 | Chih-Hui Lee | Electrochemical electrode test piece and method for producing the same |
EP1162453A1 (en) | 2000-06-07 | 2001-12-12 | Asulab S.A. | Electrochemical sensor with improved reproducibility |
JP2002055076A (en) | 2000-09-08 | 2002-02-20 | Nec Corp | Electrochemical sensor |
US6540890B1 (en) * | 2000-11-01 | 2003-04-01 | Roche Diagnostics Corporation | Biosensor |
CA2697026A1 (en) * | 2000-12-12 | 2002-06-12 | Bayer Healthcare Llc | Method of making a capillary channel |
US6576102B1 (en) * | 2001-03-23 | 2003-06-10 | Virotek, L.L.C. | Electrochemical sensor and method thereof |
US6572745B2 (en) * | 2001-03-23 | 2003-06-03 | Virotek, L.L.C. | Electrochemical sensor and method thereof |
-
2001
- 2001-12-07 US US10/017,751 patent/US6572745B2/en not_active Expired - Lifetime
-
2002
- 2002-03-22 JP JP2002575610A patent/JP2005503536A/en active Pending
- 2002-03-22 EP EP02717688A patent/EP1379861A4/en not_active Withdrawn
- 2002-03-22 BR BR0208343-4A patent/BR0208343A/en not_active IP Right Cessation
- 2002-03-22 AU AU2002248674A patent/AU2002248674A1/en not_active Abandoned
- 2002-03-22 CN CNB02808201XA patent/CN100380116C/en not_active Expired - Fee Related
- 2002-03-22 WO PCT/US2002/008703 patent/WO2002077606A2/en active Application Filing
- 2002-03-22 CA CA002442017A patent/CA2442017A1/en not_active Abandoned
-
2003
- 2003-04-21 US US10/419,503 patent/US20030201178A1/en not_active Abandoned
- 2003-04-21 US US10/419,581 patent/US6849216B2/en not_active Expired - Lifetime
-
2004
- 2004-11-19 US US10/993,317 patent/US20050067737A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4474183A (en) * | 1983-01-17 | 1984-10-02 | Kuraray Co., Ltd. | Gas sensor |
US5985129A (en) * | 1989-12-14 | 1999-11-16 | The Regents Of The University Of California | Method for increasing the service life of an implantable sensor |
US6129823A (en) * | 1997-09-05 | 2000-10-10 | Abbott Laboratories | Low volume electrochemical sensor |
EP1098000A2 (en) * | 1999-11-03 | 2001-05-09 | Roche Diagnostics Corporation | Embedded metallic deposits forming an electrode set for an electrochemical sensor strip |
Non-Patent Citations (1)
Title |
---|
See also references of EP1379861A2 * |
Also Published As
Publication number | Publication date |
---|---|
US20030201178A1 (en) | 2003-10-30 |
AU2002248674A1 (en) | 2002-10-08 |
WO2002077606A3 (en) | 2003-02-06 |
CN100380116C (en) | 2008-04-09 |
CN1503905A (en) | 2004-06-09 |
US20050067737A1 (en) | 2005-03-31 |
US6849216B2 (en) | 2005-02-01 |
EP1379861A2 (en) | 2004-01-14 |
US20020157947A1 (en) | 2002-10-31 |
US6572745B2 (en) | 2003-06-03 |
BR0208343A (en) | 2005-05-10 |
CA2442017A1 (en) | 2002-10-03 |
EP1379861A4 (en) | 2008-06-18 |
US20030201176A1 (en) | 2003-10-30 |
JP2005503536A (en) | 2005-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6849216B2 (en) | Method of making sensor | |
US6576102B1 (en) | Electrochemical sensor and method thereof | |
US9766198B2 (en) | Oxidizable species as an internal reference in control solutions for biosensors | |
EP1747450B1 (en) | Connector configuration for electrochemical cells and meters for use in combination therewith | |
EP1960771B1 (en) | Sensors | |
US8211379B2 (en) | Test strip with slot vent opening | |
US7604775B2 (en) | Fluid collecting and monitoring device | |
US8038860B2 (en) | Biosensor | |
US20070056858A1 (en) | In vitro analyte sensor, and methods | |
US7543481B2 (en) | Fluid testing sensor having vents for directing fluid flow | |
EP2490014A2 (en) | Electrochemical biosensor structure and method of fabricating the same | |
JP2004506178A (en) | Biosensor and manufacturing method thereof | |
WO2022100617A1 (en) | Biosensor | |
US20240302312A1 (en) | Electrochemical test strip for testing multiple indicators, and testing method thereof | |
US20050121826A1 (en) | Multi-sensor device for motorized meter and methods thereof | |
US20050125162A1 (en) | Multi-sensor device for motorized meter and methods thereof | |
US20080169799A1 (en) | Method for biosensor analysis | |
CN219245429U (en) | Biological sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002575610 Country of ref document: JP Ref document number: 2442017 Country of ref document: CA Ref document number: 01519/DELNP/2003 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2003/008609 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002717688 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 02808201X Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2002717688 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |