WO2002077545A1 - High and low pressure gas selector valve of refrigerator - Google Patents

High and low pressure gas selector valve of refrigerator Download PDF

Info

Publication number
WO2002077545A1
WO2002077545A1 PCT/JP2002/001165 JP0201165W WO02077545A1 WO 2002077545 A1 WO2002077545 A1 WO 2002077545A1 JP 0201165 W JP0201165 W JP 0201165W WO 02077545 A1 WO02077545 A1 WO 02077545A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure gas
rotor
housing
low pressure
refrigerator
Prior art date
Application number
PCT/JP2002/001165
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiro Koyama
Alphons De Waele
Original Assignee
Sumitomo Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries, Ltd. filed Critical Sumitomo Heavy Industries, Ltd.
Priority to US10/415,350 priority Critical patent/US20040040315A1/en
Priority to DE10296590T priority patent/DE10296590T5/en
Priority to JP2002575553A priority patent/JPWO2002077545A1/en
Publication of WO2002077545A1 publication Critical patent/WO2002077545A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K39/00Devices for relieving the pressure on the sealing faces
    • F16K39/06Devices for relieving the pressure on the sealing faces for taps or cocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/076Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with sealing faces shaped as surfaces of solids of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • F16K11/085Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug
    • F16K11/0856Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug having all the connecting conduits situated in more than one plane perpendicular to the axis of the plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/006Gas cycle refrigeration machines using a distributing valve of the rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1413Pulse-tube cycles characterised by performance, geometry or theory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • F25B2309/14181Pulse-tube cycles with valves in gas supply and return lines the valves being of the rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves

Definitions

  • the present invention relates to a high-low pressure gas switching valve of a refrigerator, and in particular, has a long life, high efficiency, small size, and light weight suitable for use in a pulse tube refrigerator or a giant-fed McMahon cycle (GM) refrigerator.
  • the present invention relates to a high-low pressure gas switching valve for a refrigerator that does not wear and does not generate dust. Background technology
  • a high-low pressure gas switching valve is used to periodically switch between high-pressure gas and low-pressure gas generated by the compressor 10 and send it to the refrigerator 12 14 are used.
  • 12A is a pulse tube
  • 12B is a regenerative tube
  • 12C is a cooling stage
  • 16 is an orifice
  • 18 is a buffer tank.
  • a conventional high / low pressure gas switching valve is, as described in, for example, Japanese Patent No. 2617681, a valve housing with a pin 22 having a shape as shown in FIG. Valve body 20, which is stopped by 26 and is urged in the direction of valve plate 30 by coil spring 24, valve housing 26 for accommodating valve body 20, and a shape as shown in FIG. 4
  • a space 26 b on the left side of the valve body 20 is connected to a high-pressure gas side of a compressor (not shown) via a high-pressure gas flow path 26 a of the valve housing 26.
  • the space 3 4 b on the right side of the compressor is connected to the low-pressure gas side of the compressor via the low-pressure gas flow path 34 a of the motor casing 34, and due to the difference between these pressures and the action of the spring 24, the valve
  • the main body 20 is pressed against the valve plate 30 and the valve main body high-pressure gas flow path 20a, the valve plate high-pressure gas flow path 30a, the valve plate low-pressure gas flow path 30b, and the valve main body refrigerator are located on both sides.
  • the side gas flow path 20 b Rules are provided to a side gas flow path 20 b Rules.
  • reference numeral 36 denotes a bearing that rotatably supports the valve plate 30.
  • valve body 20 and the valve plate 30 is rotated by the drive motor 32 (here, the valve plate 30), and the other (here, the valve body 20) is prevented from rotating, and is formed on the contact surface.
  • the gas is switched at the timing and opening according to the pattern shown in Fig. 5 (when supplying high pressure) and Fig. 6 (when recovering low pressure), and the flow path or space 26a 26 b ⁇ 20 a ⁇ 30 a ⁇ 20 b ⁇ 26 c (when supplying high pressure) or flow path or space 26 c ⁇ 20 b ⁇ 30 b ⁇ 34 b- ⁇ 34 a (shown in Fig.
  • valve body 20 is pressed against the valve plate 30 to slide and seal, so that the valve body 20 and the valve plate 30 are worn out and require periodic replacement.
  • the sliding resistance is large, and it is necessary to use a large high-torque motor for the drive motor 32, which leads to an increase in the size of the unit itself.
  • the flow path formed in the valve body 20 and the valve plate 30 has a complicated shape, causing a large pressure loss, leading to a reduction in the capacity of the refrigerator.
  • Japanese Patent Application Laid-Open No. 2001-91078 discloses a rotor 101 having a circular horizontal cross section that rotates about an axis, and the rotor 101 is rotatably incorporated.
  • a plurality of ports 105 to 112 are provided on the outer peripheral surface of the rotor 101, and the ports 105 to 112 are provided on the inner peripheral surface of the housing 102.
  • a plurality of ports 1 1 1 to 1 2 corresponding to 1 1 2 are provided, and by rotation of the rotor 101, predetermined ports 105 to 1 08 of the rotor 101 and the above Match ports 1 17, 1 18, 1 20, 1 2 2 of housing 102 with both ports 105-108, 1 17, 1 18, 1 20, 1 Rotary to switch between the state where 2 2 is connected and the state where the above mates are removed and both ports 105-: L 08, 1 17, 1 18, 120 and 1 '2 2 are not connected
  • 103 is a bearing and 104 is a motor A.
  • each port is formed asymmetrically with respect to the axis of the rotor 101, it cannot be balanced when pressure is applied, and the leakage from high pressure to low pressure increases, causing the problem that it does not work well. Had.
  • An object of the present invention is to provide a high-low pressure gas switching valve which has a long life, high efficiency, can be reduced in size and weight, does not wear, and does not generate dust. Make it an issue.
  • the present invention relates to a high / low pressure gas switching valve of a refrigerator for periodically switching between a high pressure gas and a low pressure gas from a compressor and sending the gas to the refrigerator, and a housing having a substantially cylindrical inner peripheral surface;
  • a housing passage including a high-pressure gas passage and a low-pressure gas passage formed on the wall of the housing; and a bearing supported by a bearing, and separated from the inner peripheral surface of the housing by a small gap to rotate without contacting the housing.
  • a high-pressure gas supply port and a low-pressure gas recovery port of the housing comprising: a substantially cylindrical rotor; and a rotor flow path formed in the rotor and through which the gas flows through the housing flow path and the opening at a combined timing.
  • the low-pressure gas recovery port of the housing is provided in the same plane as the high-pressure gas supply port so that a harmful moment does not act on the rotor rotating shaft due to the supplied high-pressure gas and low-pressure gas pressure. It is.
  • the high-pressure gas or the low-pressure gas flowing into the rotor flow path is supplied to the refrigerator through a flow path formed on the center axis of the rotor and the end face of the housing.
  • the flow path formed in the center axis of the rotor is opened at both end faces of the rotor, and the same pressure is applied to both sides of the rotor to cancel the load in the direction of the center axis of the rotor and maintain the position of the rotor appropriately.
  • the load on the motor has been reduced.
  • At least one of the nosing or the rotor is provided with a slit for timing adjustment.
  • the present invention also provides a refrigerator using the high / low pressure gas switching valve.
  • the present invention further provides a low-temperature device using the refrigerator.
  • FIG. 1 is a block diagram showing an overall configuration of an example of a pulse tube refrigerator to which the present invention is applied.
  • Fig. 2 is a longitudinal sectional view showing the overall configuration of an example of a conventional high / low pressure gas switching valve.
  • Fig. 3 is a perspective view showing the shape of the valve body.
  • Fig. 4 is a perspective view showing the shape of the pulp plate.
  • Fig. 5 is a front view showing the relative relationship between the valve body and the valve plate when high-pressure gas is supplied.
  • Fig. 6 is a front view showing the relative relationship between the pulp body and the valve plate when the low-pressure gas is supplied.
  • FIG. 7 is a longitudinal sectional view showing a configuration of a conventional rotary valve described in Japanese Patent Application Laid-Open No. 2001-91078.
  • FIG. 8 is a longitudinal sectional view showing the entire configuration of the embodiment of the high / low pressure gas switching valve according to the present invention.
  • FIG. 9 is a transverse sectional view showing the same high pressure gas supply state.
  • FIG. 10 is a cross-sectional view showing the same low-pressure gas supply state.
  • FIG. 11 is a perspective view showing a valve housing used in the embodiment.
  • FIG. 12 is a perspective view showing the same rotor.
  • FIG. 13 is a pipeline diagram showing an example in which the present invention is applied to a 4-valve type, loess tube refrigerator.
  • FIG. 14 is an example in which the present invention is applied to an active buffer type pulse tube refrigerator.
  • FIGS. 8 longitudinal section
  • FIG. 9 cross section in a state where high pressure gas is supplied to the refrigerator
  • FIG. 10 low pressure gas is supplied to the refrigerator
  • a valve housing 42 having a substantially cylindrical inner peripheral surface and having a shape as shown in FIG. 11 is formed axially symmetrically on the wall surface of the valve housing 42.
  • the pair of high-pressure gas passages 42a and the pair of low-pressure gas passages 42b (housing flow
  • the bearing is supported by bearings 44, 45, and rotates without contacting the valve housing 42 with a small gap 43 between the inner peripheral surface of the housing 42.
  • a substantially cylindrical rotor 46 as shown in FIG.
  • a switching gas passage 46a through which the gas flows, and a refrigerator-side gas passage 46b (collectively referred to as a rotor passage).
  • the size of the small gap 43 can be set to, for example, 5 to 100 m. That is, it is required to be 5 ⁇ m or more to prevent contact, and is preferably 100 ⁇ m or less to prevent the adverse effect on the performance of the refrigerator.
  • 50 is a drive motor for rotating the rotor 46 via a coupling 52
  • 54 is a casing of the drive motor 50
  • 54a is inside the casing 54. Space.
  • the rotor 46 supported by the two bearings 44, 45 rotates without contacting the housing 42.
  • a flow path is formed in the rotor 46 and the housing 42, and gas flows into the rotor flow path at the combined timing of the respective openings. That is, as shown in FIG. 9, when the high-pressure gas flow path 42a of the valve housing 42 and the switching flow path 46a of the rotor 46 face each other, the high-pressure gas flow path or space 42a ⁇ 46 It is supplied to the refrigerator via a ⁇ 46 b ⁇ 42 c.
  • FIG. 9 shows that shows that is, as shown in FIG. 9, when the high-pressure gas flow path 42a of the valve housing 42 and the switching flow path 46a of the rotor 46 face each other, the high-pressure gas flow path or space 42a ⁇ 46 It is supplied to the refrigerator via a ⁇ 46 b ⁇ 42 c.
  • the high-pressure gas supply port 42 a from the compressor is provided in two systems at positions axially symmetric with respect to the rotor 46, each of which is connected to the rotor shaft in the vertical direction. Since there are two systems at axisymmetric positions, the load in the vertical direction of the rotating shaft of the rotor 46 due to the supplied high-pressure gas pressure is canceled, and the gap 43 between the rotor 46 and the housing 42 is properly maintained.
  • the low pressure gas supply port 42b from the compressor has the same structure as the high pressure gas side, while preventing gaps and uneven wear of the shaft, and reducing the load on the motor 50.
  • the flow path is formed at the same angle as 90 ° on the same plane as the supply passage and the high-pressure gas flow path 42a.
  • the space 54a in the casing in which the drive motor 50 is installed is communicated with the space 42c supplied to the refrigerator by the rotor flow path 46b, and by always having the same pressure, The axial load on the rotor 46 is canceled, and the position of the rotor 46 is maintained at a proper position to prevent the gap from being offset and the rotor to wear unevenly, and to reduce the load on the drive motor 50.
  • the rotational resistance of the rotor 46 is reduced as much as possible, and the load on the drive motor 50 is reduced, so that a small motor can be used, and the unit can be reduced in size and weight. Power consumption can be reduced.
  • the slits 42 s and 46 s are provided in both the housing 42 and the rotor 46, so that the valve switching timing can be easily changed.
  • the slits 42 s and 46 s can be either only one or can be omitted.
  • valve rotor 46 total length 24 mm, gas flow path 42 & ⁇ 42 ⁇ :, inner diameter of 46 a, 46 b 3 mm, minute gap for sealing 43 spacing 15 ⁇ m, drive motor 5 Q, drive voltage 1 to 24 V, DC drive current 5 mA (when driving 3 V DC), 1 to; by switching drive voltage; switching frequency is variable to about LOH z
  • the bearings 44 and 45 were made to be a standard product. The loss due to leakage from the sealing small gap 43 in the high and low pressure gas switching valve was about 40 W, Since it was about 0.5% with respect to the compressor input, it was within a negligible range.
  • the valve unit of the present invention can be used not only for various pulse tubes, but also for a phase control mechanism of a pulse tube refrigerator as shown in the following examples.
  • two openable valves 61 and 62 are used to control the phase of the high-temperature end of the pulse tube 12 A instead of the knocker.
  • One end of the two valves 61, 62 is connected to the hot end of the pulse tube 12A through a common orifice 16.
  • the ⁇ ya ends are connected to the high pressure gas and low pressure gas supply lines of the compressor 10, respectively.
  • the two valves open and close periodically according to a predetermined timing chart to optimize the phase of the pressure change and the gas displacement inside the Norse tube, and bring out a predetermined refrigeration performance.
  • phase control valve is essentially the same as that of the high / low pressure switching valve cutout 14 between the regenerator 12 and the compressor 10. Can also be used for this phase control valve.
  • the pulse tube 12 ⁇ phase control at the high temperature end is performed by one or more buffers instead of the alignment of one buffer and the orifice. It is performed in combination with the same number of open / close valves 61, 62 as 18 and 19. These buffers 18 and 19 are maintained at an intermediate pressure between the high and low pressures of the compressor, but the pressure in each buffer is different.
  • Each buffer is connected to the hot end of the pulse tube via its own switching valve.
  • Each open / close valve periodically opens and closes according to a predetermined timing 'chart, thereby optimizing the phase between the pressure change of the pulse tube portion and the gas displacement, and brings out a predetermined refrigeration performance.
  • phase control valve is essentially the same as that of the high / low pressure switching valve unit 14 between the regenerator 12 B and the compressor 10.
  • This phase control valve can also be used.
  • the present invention can be used for a high-low pressure gas switching valve of a cryogenic refrigerator such as a GM refrigerator or a pulse tube refrigerator.
  • the balance of the load of the axial direction of a rotor rotating shaft and a perpendicular direction is balanced.
  • the gap between the rotor and the housing can be appropriately maintained, and the load on the motor can be reduced. Therefore, it is possible to make the high / low pressure gas switching valve long life, high efficiency, small size and light weight, and not to wear and generate dust. Power saving can be achieved.

Abstract

A high and low pressure gas selector valve of a refrigerator, comprising a housing having a generally cylindrical inner peripheral surface, a housing flow passages having a high pressure gas flow passage and a low pressure gas flow passage formed in the wall surface of the housing, a generally cylindrical rotor supported on bearings and rotated through a minute clearance from the inner peripheral surface of the housing and without coming into contact with the housing, and a rotor flow passage formed in the rotor to allow gas to flow at a timing for aligning the housing flow passage with an opening part, wherein a plurality of high pressure gas inlets and low pressure gas inlets are provided in the housing at the positions symmetrical with respect to the axis of the rotating shaft of the rotor to cancel a vertical load by a gas pressure fed to the valve on the rotor rotating shaft so as to properly maintain the clearance between the rotor and the housing.

Description

明細書  Specification
冷凍機の高低圧ガス切換弁 技術分野  High / low pressure gas switching valve for refrigerator
本発明は、 冷凍機の高低圧ガス切換弁に係り、 特に、 パルス管冷凍機やギフォ 一ドマクマホンサイクル (GM) 冷凍機に用いるのに好適な、 長寿命、 高効率、 小型、 軽量化可能で、 摩耗せず、 ダストを発生しない冷凍機の高低圧ガス切換弁 に関する。 背景の技術  The present invention relates to a high-low pressure gas switching valve of a refrigerator, and in particular, has a long life, high efficiency, small size, and light weight suitable for use in a pulse tube refrigerator or a giant-fed McMahon cycle (GM) refrigerator. The present invention relates to a high-low pressure gas switching valve for a refrigerator that does not wear and does not generate dust. Background technology
パルス管冷凍機や GM冷凍機においては、 図 1に示す如く、 圧縮機 1 0で発生 された高圧ガスと低圧ガスを周期的に切り換えて、 冷凍機 1 2に送るために高低 圧ガス切換弁 1 4が用いられている。 図において、 1 2 Aはパルス管、 1 2 Bは 蓄冷管、 1 2 Cは冷却ステージ、 1 6はオリフィス、 1 8はバッファタンクであ る。  In a pulse tube refrigerator or GM refrigerator, as shown in Fig. 1, a high-low pressure gas switching valve is used to periodically switch between high-pressure gas and low-pressure gas generated by the compressor 10 and send it to the refrigerator 12 14 are used. In the figure, 12A is a pulse tube, 12B is a regenerative tube, 12C is a cooling stage, 16 is an orifice, and 18 is a buffer tank.
従来の高低圧ガス切換弁は、 例えば特許第 2 6 1 7 6 8 1号に記載されている ように、 図 2に示す如く、 図 3に示すような形状の、 ピン 2 2でバルブハウジン グ 2 6に回り止めされ、 コィルばね 2 4でバルププレート 3 0方向に付勢される バルブ本体 2 0と、 該バルブ本体 2 0を収容するバルブノヽウジング 2 6と、 図 4 に示すような形状のバルブプレート 3 0と、 該バルブプレート 3 0を回転する駆 動モータ 3 2と、 該駆動モータ 3 2を収容するモータケ一シング 3 4とにより構 成されている。  A conventional high / low pressure gas switching valve is, as described in, for example, Japanese Patent No. 2617681, a valve housing with a pin 22 having a shape as shown in FIG. Valve body 20, which is stopped by 26 and is urged in the direction of valve plate 30 by coil spring 24, valve housing 26 for accommodating valve body 20, and a shape as shown in FIG. 4 A motor plate 32 for rotating the valve plate 30, and a motor casing 34 for accommodating the drive motor 32.
前記バルブ本体 2 0の左側の空間 2 6 bは、 バルブハウジング 2 6の高圧ガス 流路 2 6 aを介して、 圧縮機 (図示省略) の高圧ガス側と接続され、 一方、 バル ププレート 3 0の右側の空間 3 4 bは、 モータケ一シング 3 4の低圧ガス流路 3 4 aを介して圧縮機の低圧ガス側と接続されており、 これらの圧力差とばね 2 4 の作用により、 バルブ本体 2 0をバルブプレート 3 0に押し付け、 両者にあるバ ルブ本体高圧ガス流路 2 0 a、 バルブプレート高圧ガス流路 3 0 a、 バルブプレ 一ト低圧ガス流路 3 0 b、 バルブ本体冷凍機側ガス流路 2 0 bを流れるガスのシ ールをするようにされている。 A space 26 b on the left side of the valve body 20 is connected to a high-pressure gas side of a compressor (not shown) via a high-pressure gas flow path 26 a of the valve housing 26. The space 3 4 b on the right side of the compressor is connected to the low-pressure gas side of the compressor via the low-pressure gas flow path 34 a of the motor casing 34, and due to the difference between these pressures and the action of the spring 24, the valve The main body 20 is pressed against the valve plate 30 and the valve main body high-pressure gas flow path 20a, the valve plate high-pressure gas flow path 30a, the valve plate low-pressure gas flow path 30b, and the valve main body refrigerator are located on both sides. Of gas flowing through the side gas flow path 20 b Rules.
図 2において、 3 6は、 バルブプレート 30を回転自在に支持するベアリング である。  In FIG. 2, reference numeral 36 denotes a bearing that rotatably supports the valve plate 30.
前記バルブ本体 20又はバルブプレート 30は、 どちらか一方 (ここではバル ブプレート 3 0) 力 駆動モータ 3 2により回転され、 もう一方 (ここではバル ブ本体 20) が回り止めされて、 接触面に形成される図 5 (高圧供給時) 及び図 6 (低圧回収時) に示したようなパターンに従ったタイミング、 開度でガスの切 換えを行い、 内部に形成された流路又は空間 26 a— 2 6 b→20 a→3 0 a→ 20 b→26 c (高圧供給時) 、 又は、 流路又は空間 2 6 c→20 b→30 b→ 34 b-→34 a (図 2に示した低圧回収時) をガスが流れ、 バルブハゥジング冷 凍機側ガス流路 2 6 c を介して冷凍機側に供給又は回収される。 しかしながら、 このような高低圧ガス切換弁では、 バルブ本体 20をバルブプ レート 30に押しつけて摺動シールしているため、 バルブ本体 20とバルブプレ ート 3 0が摩耗し、 定期交換が必要となる。 又、 摺動抵抗が大きく、 駆動モータ 3 2は、 大型の高トルクモータを使用する必要があり、 ユニット自体の大型化に つながる。 更に、 バルブ本体 20とバルブプレート 30に形成される流路が複雑 な形状となり、 圧力損失が大きく、 冷凍機の能力低下につながる等の問題点を有 していた。  One of the valve body 20 and the valve plate 30 is rotated by the drive motor 32 (here, the valve plate 30), and the other (here, the valve body 20) is prevented from rotating, and is formed on the contact surface. The gas is switched at the timing and opening according to the pattern shown in Fig. 5 (when supplying high pressure) and Fig. 6 (when recovering low pressure), and the flow path or space 26a 26 b → 20 a → 30 a → 20 b → 26 c (when supplying high pressure) or flow path or space 26 c → 20 b → 30 b → 34 b- → 34 a (shown in Fig. 2) The gas flows during low pressure recovery, and is supplied or recovered to the refrigerator through the valve housing refrigerator-side gas flow path 26c. However, in such a high- and low-pressure gas switching valve, the valve body 20 is pressed against the valve plate 30 to slide and seal, so that the valve body 20 and the valve plate 30 are worn out and require periodic replacement. In addition, the sliding resistance is large, and it is necessary to use a large high-torque motor for the drive motor 32, which leads to an increase in the size of the unit itself. In addition, the flow path formed in the valve body 20 and the valve plate 30 has a complicated shape, causing a large pressure loss, leading to a reduction in the capacity of the refrigerator.
又、 特開 20 0 1— 9 1 0 78には、 図 7に示す如く、 軸心を中心として回転 する水平断面円形の回転子 1 0 1と、 この回転子 1 0 1を回転自在に内蔵するハ ウジング 1 0 2とからなり、 上記回転子 1 0 1の外周面に複数のポート 1 0 5〜 1 1 2を設けると共に、 ハウジング 1 0 2の内周面に、 上記ポート 1 0 5〜 1 1 2に対応する複数のポート 1 1 7〜 1 22を設け、 上記回転子 1 0 1の回転によ り、 回転子 1 0 1の所定のポート 1 0 5〜 1 0 8とこれに対する上記ハウジング 1 0 2のポ^ "ト 1 1 7、 1 1 8、 1 20、 1 2 2とを合致させて両ポート 1 0 5 〜1 0 8、 1 1 7、 1 1 8、 1 20、 1 2 2を連通させる状態と、 上記合致を外 して両ポート 1 0 5〜: L 0 8、 1 1 7、 1 1 8、 1 20、 1 '2 2を非連通にする 状態とに切り替えるロータリ弁が提案されている。 図において、 1 03は軸受、 1 04はモータである。 しかしながら、 各ポートが回転子 1 0 1の軸心に関して非対称に形成されてい るため、 圧力がかかった時にバランスがとれず、 高圧から低圧への洩れが大きく なって、 うまく作動しないという問題点を有していた。 As shown in FIG. 7, Japanese Patent Application Laid-Open No. 2001-91078 discloses a rotor 101 having a circular horizontal cross section that rotates about an axis, and the rotor 101 is rotatably incorporated. A plurality of ports 105 to 112 are provided on the outer peripheral surface of the rotor 101, and the ports 105 to 112 are provided on the inner peripheral surface of the housing 102. A plurality of ports 1 1 1 to 1 2 corresponding to 1 1 2 are provided, and by rotation of the rotor 101, predetermined ports 105 to 1 08 of the rotor 101 and the above Match ports 1 17, 1 18, 1 20, 1 2 2 of housing 102 with both ports 105-108, 1 17, 1 18, 1 20, 1 Rotary to switch between the state where 2 2 is connected and the state where the above mates are removed and both ports 105-: L 08, 1 17, 1 18, 120 and 1 '2 2 are not connected In the figure, 103 is a bearing and 104 is a motor A. However, since each port is formed asymmetrically with respect to the axis of the rotor 101, it cannot be balanced when pressure is applied, and the leakage from high pressure to low pressure increases, causing the problem that it does not work well. Had.
発明の開示 Disclosure of the invention
本発明は、 前記従来の問題点を解消するべくなされたもので、 長寿命、 高効率、 小型、 軽量化可能で、 摩耗せず、 ダストが発生しない高低圧ガス切換弁を提供す ることを課題とする。  An object of the present invention is to provide a high-low pressure gas switching valve which has a long life, high efficiency, can be reduced in size and weight, does not wear, and does not generate dust. Make it an issue.
本発明は、 圧縮機からの高圧ガスと低圧ガスを周期的に切換えて冷凍機に送る ための冷凍機の高低圧ガス切換弁において、 略円筒状の内周面を有するハウジン グと、 該ハウジングの壁面に形成された高圧ガス流路及び低圧ガス流路を含むハ ウジング流路と、 ベアリングに支持され、 前記ハウジングの内周面と微少な隙間 を隔てて、 該ハウジングに接触することなく回転する、 略円柱状のロータと、 該 ロータ内に形成された、 前記ハゥジング流路と開口部が合ぅタイミングでガスが 流れるロータ流路とを備え、 前記ハウジングの高圧ガス供給口及び低圧ガス回収 口を、 それぞれ、 前記ロータの回転軸に関して軸対称の位置に複数設けることに より、 前記課題を解決したものである。  The present invention relates to a high / low pressure gas switching valve of a refrigerator for periodically switching between a high pressure gas and a low pressure gas from a compressor and sending the gas to the refrigerator, and a housing having a substantially cylindrical inner peripheral surface; A housing passage including a high-pressure gas passage and a low-pressure gas passage formed on the wall of the housing; and a bearing supported by a bearing, and separated from the inner peripheral surface of the housing by a small gap to rotate without contacting the housing. A high-pressure gas supply port and a low-pressure gas recovery port of the housing, comprising: a substantially cylindrical rotor; and a rotor flow path formed in the rotor and through which the gas flows through the housing flow path and the opening at a combined timing. This problem has been solved by providing a plurality of ports at positions that are axially symmetric with respect to the rotation axis of the rotor.
又、 前記ハウジングの低圧ガス回収口を、 前記高圧ガス供給口と同一平面内に 設けることにより、 供給される高圧ガスと低圧ガス圧力によりロータ回転軸に有 害なモーメントが働かないようにしたものである。  Further, the low-pressure gas recovery port of the housing is provided in the same plane as the high-pressure gas supply port so that a harmful moment does not act on the rotor rotating shaft due to the supplied high-pressure gas and low-pressure gas pressure. It is.
又、 前記ロータ流路に流入した高圧ガス又は低圧ガスが、 ロータの中心軸及び ハウジングの端面に形成された流路を通って、 冷凍機に供給されるようにしたも のである。  Further, the high-pressure gas or the low-pressure gas flowing into the rotor flow path is supplied to the refrigerator through a flow path formed on the center axis of the rotor and the end face of the housing.
又、 前記ロータの中心軸に形成された流路が、 ロータの両端面に開口するよう にし、 ロータの両側を同じ圧力として、 ロータの中心軸方向荷重をキャンセルし、 ロータの位置を適正に保つと共に、 モータへの負荷を低減したものである。  Also, the flow path formed in the center axis of the rotor is opened at both end faces of the rotor, and the same pressure is applied to both sides of the rotor to cancel the load in the direction of the center axis of the rotor and maintain the position of the rotor appropriately. In addition, the load on the motor has been reduced.
又、 前記ノヽウジング又はロータの少なくとも一方に、 タイミング調整用のスリ ットを設けたものである。  Further, at least one of the nosing or the rotor is provided with a slit for timing adjustment.
本発明は、 又、 前記の高低圧ガス切換弁を用いた冷凍機を提供するものである。 本発明は、 更に、 前記冷凍機を用いた低温装置を提供するものである。 図面の簡単な説明 The present invention also provides a refrigerator using the high / low pressure gas switching valve. The present invention further provides a low-temperature device using the refrigerator. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の適用対象であるパルス管冷凍機の一例の全体構成を示すプロ ック図  FIG. 1 is a block diagram showing an overall configuration of an example of a pulse tube refrigerator to which the present invention is applied.
図 2は、 従来の高低圧ガス切換弁の一例の全体構成を示す縦断面図  Fig. 2 is a longitudinal sectional view showing the overall configuration of an example of a conventional high / low pressure gas switching valve.
図 3は、 同じくバルブ本体の形状を示す斜視図  Fig. 3 is a perspective view showing the shape of the valve body.
図 4は、 同じくパルププレートの形状を示す斜視図  Fig. 4 is a perspective view showing the shape of the pulp plate.
図 5は、 同じく高圧ガス供給時のバルブ本体とバルブプレートの相対関係を示 す正面図  Fig. 5 is a front view showing the relative relationship between the valve body and the valve plate when high-pressure gas is supplied.
図 6は、 同じく低圧ガス供給時のパルプ本体とバルブプレートの相対関係を示 す正面図  Fig. 6 is a front view showing the relative relationship between the pulp body and the valve plate when the low-pressure gas is supplied.
図 7は、 特開 2 0 0 1— 9 1 0 7 8に記載された従来のロータリ弁の構成を示 す縦断面図  FIG. 7 is a longitudinal sectional view showing a configuration of a conventional rotary valve described in Japanese Patent Application Laid-Open No. 2001-91078.
図 8は、 本発明に係る高低圧ガス切換弁の実施形態の全体構成を示す縦断面図 図 9は、 同じく高圧ガス供給状態を示す横断面図  FIG. 8 is a longitudinal sectional view showing the entire configuration of the embodiment of the high / low pressure gas switching valve according to the present invention. FIG. 9 is a transverse sectional view showing the same high pressure gas supply state.
図 1 0は、 同じく低圧ガス供給状態を示す横断面図  FIG. 10 is a cross-sectional view showing the same low-pressure gas supply state.
図 1 1は、 前記実施形態で用いられているバルブハウジングを示す斜視図 図 1 2は、 同じくロータを示す斜視図 .  FIG. 11 is a perspective view showing a valve housing used in the embodiment.FIG. 12 is a perspective view showing the same rotor.
図 1 3は、 本発明を 4バルプ型ノ、レス管冷凍機に適用した例を示す管路図 図 1 4は、 本発明をァクティブバッファ型パルス管冷凍機に適用した例を示す  FIG. 13 is a pipeline diagram showing an example in which the present invention is applied to a 4-valve type, loess tube refrigerator. FIG. 14 is an example in which the present invention is applied to an active buffer type pulse tube refrigerator.
発明を実施するための最良の形態 ' BEST MODE FOR CARRYING OUT THE INVENTION ''
以下図面を参照して、 本発明の実施形態を詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
本実施形態の高低圧ガス切換弁は、 図 8 (縦断面図) 及び図 9 (高圧ガスが冷 凍機に供給される状態の横断面図) 及び図 1 0 (低圧ガスが冷凍機に供給される 状態の横断面図) に示す如く、 略円筒状の内周面を有する、 図 1 1に示すような 形状のバルブハウジング 4 2と、 該バルブハウジング 4 2の壁面に軸対称に形成 された一対の高圧ガス流路 4 2 a及び一対の低圧ガス流路 4 2 b (ハウジング流 路と総称する) と、 ベアリング 4 4、 4 5に支持され、 前記ハウジング 4 2の内 周面と微少な隙間 4 3を隔てて、 該バルブハウジング 4 2に接触することなく回 転する、 図 1 2に示すよ な略円柱状のロータ 4 6と、 該ロータ 4 6内に形成さ れた、 前記バルブハゥジング 4 2の流路 4 2 a又は 4 2 bと開口部が合ぅタイミ ングでガスが流れる切換ガス流路 4 6 a及ぴ冷凍機側ガス流路 4 6 b (ロータ流 路と総称する) とを備えたものである。 The high / low pressure gas switching valve of this embodiment is shown in FIGS. 8 (longitudinal section), FIG. 9 (cross section in a state where high pressure gas is supplied to the refrigerator), and FIG. 10 (low pressure gas is supplied to the refrigerator). As shown in FIG. 11, a valve housing 42 having a substantially cylindrical inner peripheral surface and having a shape as shown in FIG. 11 is formed axially symmetrically on the wall surface of the valve housing 42. The pair of high-pressure gas passages 42a and the pair of low-pressure gas passages 42b (housing flow The bearing is supported by bearings 44, 45, and rotates without contacting the valve housing 42 with a small gap 43 between the inner peripheral surface of the housing 42. A substantially cylindrical rotor 46 as shown in FIG. 12 and a flow passage 42 a or 42 b of the valve housing 42 formed in the rotor 46 and an opening are combined. And a switching gas passage 46a through which the gas flows, and a refrigerator-side gas passage 46b (collectively referred to as a rotor passage).
ガスのシーノレは、 ロータ 4 6とハウジング 4 2間の ί敷少な隙間 4 3により行わ れる。 従って、 該 ί敷少隙間 4 3の寸法は、 例えば 5〜 1 0 0 mとすることがで きる。 即ち、 接触を防止するためには 5〃 m以上必要であり、 冷凍機の性能に対 する悪影響を防ぐためには 1 0 0〃m以下であることが望ましい。  The gas is sealed by a small gap 43 between the rotor 46 and the housing 42. Therefore, the size of the small gap 43 can be set to, for example, 5 to 100 m. That is, it is required to be 5 μm or more to prevent contact, and is preferably 100 μm or less to prevent the adverse effect on the performance of the refrigerator.
図 8において、 5 0は、 カップリング 5 2を介して前記ロータ 4 6を回転する ための駆動モータ、 5 4は該駆動モータ 5 0のケーシング、 5 4 aは、 該ケーシ. ング 5 4内の空間である。  8, 50 is a drive motor for rotating the rotor 46 via a coupling 52, 54 is a casing of the drive motor 50, and 54a is inside the casing 54. Space.
本実施形態においては、 2個のベアリング 4 4、 4 5により支持されたロータ 4 6力 ハウジング 4 2に接触することなく回転する。 前記ロータ 4 6及びハウ ジング 4 2には流路が形成されており、 それぞれの開口部が合ぅタイミングで、 ガスがロータ流路に流れる。 即ち、 図 9に示す如く、 バルブハウジング 4 2の高 圧ガス流路 4 2 aとロータ 4 6の切換流路 4 6 aが向き合った時には、 高圧ガス 力 流路又は空間 4 2 a→4 6 a→4 6 b→4 2 cを介して冷凍機に供給される 。 一方、 図 1 0に示す如く、 バルブハゥジング 4 2の低圧ガス流路 4 2 bとロー タ 4 6の切換流路 4 6 aが向き合った時には、 低圧ガスが、 流路又は空間 4 2 c →4 6 b→4 6 a→4 2 bを介して冷凍機から回収される。  In the present embodiment, the rotor 46 supported by the two bearings 44, 45 rotates without contacting the housing 42. A flow path is formed in the rotor 46 and the housing 42, and gas flows into the rotor flow path at the combined timing of the respective openings. That is, as shown in FIG. 9, when the high-pressure gas flow path 42a of the valve housing 42 and the switching flow path 46a of the rotor 46 face each other, the high-pressure gas flow path or space 42a → 46 It is supplied to the refrigerator via a → 46 b → 42 c. On the other hand, as shown in FIG. 10, when the low-pressure gas flow path 42b of the valve housing 42 and the switching flow path 46a of the rotor 46 face each other, the low-pressure gas flows into the flow path or space 42c. → 46 b → 46 a → 42 b.
圧縮機からの高圧ガス供給口 4 2 aは、 ロータ 4 6の軸対称の位置に 2系統設 置され、 それぞれがロータ軸に垂直方向に接続される。 軸対称の位置に 2系統あ るので、 供給される高圧ガス圧力によるロータ 4 6の回転軸の垂直方向への荷重 がキャンセルされ、 ロータ 4 6とハウジング 4 2間の隙間 4 3を適正に保って、 隙間の片寄りや軸の偏摩耗を防止すると共に、 モータ 5 0への負荷が軽減される 圧縮機からの低圧ガス供給口 4 2 bも高圧ガス側と同様な構造であり、 高圧ガ ス供給ロ及ぴ高圧ガス流路 4 2 aと同一平面上に 9 0 ° の角度をもって流路を形 成している。 The high-pressure gas supply port 42 a from the compressor is provided in two systems at positions axially symmetric with respect to the rotor 46, each of which is connected to the rotor shaft in the vertical direction. Since there are two systems at axisymmetric positions, the load in the vertical direction of the rotating shaft of the rotor 46 due to the supplied high-pressure gas pressure is canceled, and the gap 43 between the rotor 46 and the housing 42 is properly maintained. The low pressure gas supply port 42b from the compressor has the same structure as the high pressure gas side, while preventing gaps and uneven wear of the shaft, and reducing the load on the motor 50. The flow path is formed at the same angle as 90 ° on the same plane as the supply passage and the high-pressure gas flow path 42a.
駆動モータ 5 0が設置されたケーシング内空間 5 4 aは、 ロータ流路 4 6 bに よって、 冷凍機に供給される空間 4 2 cと連通しており、 常に同じ圧力とするこ とによって、 ロータ 4 6への軸方向荷重をキャンセルし、 ロータ 4 6の位置を適. 正に保って、 隙間の片寄りやロータの偏摩耗を防止すると共に、 駆動モータ 5 0 への負荷を低減する。  The space 54a in the casing in which the drive motor 50 is installed is communicated with the space 42c supplied to the refrigerator by the rotor flow path 46b, and by always having the same pressure, The axial load on the rotor 46 is canceled, and the position of the rotor 46 is maintained at a proper position to prevent the gap from being offset and the rotor to wear unevenly, and to reduce the load on the drive motor 50.
このような構成により、 ロータ 4 6とハウジング 4 2が非接触でシールを行つ ているため、 摺動部がなく、 ダストを発生せず定期的な部品交換が不要となる。 なお、 非接触であるため、 多少の洩れは存在するが、 高低圧ガス切換弁を流れる ガスの流量に比べれば無視できる。  With such a configuration, since the rotor 46 and the housing 42 seal without contact, there is no sliding portion, no dust is generated, and periodic component replacement is unnecessary. Although there is some leakage due to non-contact, it is negligible compared to the flow rate of gas flowing through the high / low pressure gas switching valve.
又、 圧力のバランスをとることで、 ロータ 4 6の回転抵抗を限り無く小として 、 駆動モータ 5 0への負荷を小さくさせているので、 小型のモータを採用でき、 ュニットの小型軽量化、 低消費電力化が可能となる。  In addition, by balancing the pressure, the rotational resistance of the rotor 46 is reduced as much as possible, and the load on the drive motor 50 is reduced, so that a small motor can be used, and the unit can be reduced in size and weight. Power consumption can be reduced.
更に、 圧力のバランスをとつているので、 シールのための微少隙間 4 3を安定 的に確保することができる。 更に、 流路形状が単純であるため、 圧力損失が少な い、 高効率の運転が可能となる。  Further, since the pressure is balanced, a minute gap 43 for sealing can be stably secured. Furthermore, since the flow path shape is simple, pressure loss is small and high efficiency operation is possible.
本実施形態においては、 ハウジング 4 2とロータ 4 6の双方にスリット 4 2 s と 4 6 sを設けているので、 バルブの切換タイミングを容易に変更できる。 なお 、 スリット 4 2 sと 4 6 sを、 いずれか一方のみとしたり、 あるいは、 省略する ことも可能である。  In the present embodiment, the slits 42 s and 46 s are provided in both the housing 42 and the rotor 46, so that the valve switching timing can be easily changed. The slits 42 s and 46 s can be either only one or can be omitted.
バルブロータ 4 6の^ g 2 O mm、 全長 2 4 mm、 ガス流路4 2 &〜4 2 <:、 4 6 a、 4 6 bの内径 3 mm、 シール用微少隙間 4 3の間隔 1 5〃 m、 駆動モー タ 5 Qとして、 駆動電圧 1〜 2 4 V、 直流駆動電流 5 mA (直流 3 V駆動時) 、 駆動電圧を変化させることによって、 1〜; L O H z程度まで切換周波数が可変の 減速機付小型直流モータを使用し、 ベアリング 4 4、 4 5は一般規格品とした所 、 高低圧ガス切換弁におけるシール用微少隙間 4 3からのリークによる損失は約 4 0 Wであり、 圧縮機の入力に対して約 0 . 5 %のため、 無視できる範囲であつ た。 本発明のバルブュニットは、 種々なパルス管に使えるだけでなく、 以下の例に 示す如く、パルス管冷凍機の位相制御機構に用いることもできる。 ^ G 2 O mm of valve rotor 46, total length 24 mm, gas flow path 42 & ~ 42 <:, inner diameter of 46 a, 46 b 3 mm, minute gap for sealing 43 spacing 15 〃 m, drive motor 5 Q, drive voltage 1 to 24 V, DC drive current 5 mA (when driving 3 V DC), 1 to; by switching drive voltage; switching frequency is variable to about LOH z Using a small DC motor with a reducer, the bearings 44 and 45 were made to be a standard product.The loss due to leakage from the sealing small gap 43 in the high and low pressure gas switching valve was about 40 W, Since it was about 0.5% with respect to the compressor input, it was within a negligible range. The valve unit of the present invention can be used not only for various pulse tubes, but also for a phase control mechanism of a pulse tube refrigerator as shown in the following examples.
4バルブ型パルス管冷凍機の場合、 図 1 3に示す如く、 ノ ッファの代りに、 二 つの開閉式バルブ 6 1、 6 2によってパルス管 1 2 Aの高温端の位相制御を行う 。 この二つのバルブ 6 1、 6 2の一端は、 共通のオリフィス 1 6を介してパルス 管 1 2 Aの高温端に連結する。 ί也端は、 それぞれ圧縮機 1 0の高圧ガスと低圧ガ ス供給ラインに連結する。 二つのバルブは、 ある決められたタイミング 'チヤ一 トに従い、 周期的に開閉することによって、 ノルス管内部の圧力変化とガスの変 位との位相を最適化し、 所定の冷凍性能を引き出す。  In the case of a four-valve pulse tube refrigerator, as shown in FIG. 13, two openable valves 61 and 62 are used to control the phase of the high-temperature end of the pulse tube 12 A instead of the knocker. One end of the two valves 61, 62 is connected to the hot end of the pulse tube 12A through a common orifice 16. The ίya ends are connected to the high pressure gas and low pressure gas supply lines of the compressor 10, respectively. The two valves open and close periodically according to a predetermined timing chart to optimize the phase of the pressure change and the gas displacement inside the Norse tube, and bring out a predetermined refrigeration performance.
従って、 この位相制御バルブの動作状況は、 蓄冷器 1 2 Βと圧縮機 1 0との間 にある高低圧切換バルブュ^ツト 1 4の動作状況が本質的に同じであるため、 本 発明のバルブュニットは、 この位相制御バルブにも用いることができる。  Accordingly, the operation state of the phase control valve is essentially the same as that of the high / low pressure switching valve cutout 14 between the regenerator 12 and the compressor 10. Can also be used for this phase control valve.
又、 ァクティブバッファ型パルス管冷凍機の場合、 図 1 4に示す如く、パルス 管 1 2 Α高温端の位相制御は、 一つのバッファとオリフィスとの糸且合せではなく 、 一つ以上のバッファ 1 8、 1 9と同数の開閉バルブ 6 1、 6 2との組合せで行 う。 これらのバッファ 1 8、 1 9は、 圧縮機の高圧と低圧との間にある、 中間圧 の状態に保たれるが、 各バッファの圧力は異なる。 各バッファが各自の開閉バル ブを介してパルス管の高温端に連結する。 各開閉バルブは、 ある決められたタイ ミング'チャートに従い、 周期的に開閉することによって、 パルス管內部の圧力 変ィ匕とガスの変位との位相を最適化し、 所定の冷凍性能を引き出す。  Further, in the case of an active buffer type pulse tube refrigerator, as shown in FIG. 14, the pulse tube 12 位相 phase control at the high temperature end is performed by one or more buffers instead of the alignment of one buffer and the orifice. It is performed in combination with the same number of open / close valves 61, 62 as 18 and 19. These buffers 18 and 19 are maintained at an intermediate pressure between the high and low pressures of the compressor, but the pressure in each buffer is different. Each buffer is connected to the hot end of the pulse tube via its own switching valve. Each open / close valve periodically opens and closes according to a predetermined timing 'chart, thereby optimizing the phase between the pressure change of the pulse tube portion and the gas displacement, and brings out a predetermined refrigeration performance.
従って、 この位相制御バルブの動作状況は、 蓄冷器 1 2 Bと圧縮機 1 0との間 にある高低圧切換バルブュニット 1 4の動作状況が本質的に同じであるため、 本 発明のバルブュニットは、 この位相制御バルブにも用いることができる。  Accordingly, the operation state of the phase control valve is essentially the same as that of the high / low pressure switching valve unit 14 between the regenerator 12 B and the compressor 10. This phase control valve can also be used.
更に、 摩耗が無いので、 低温にも使える。 産業上の利用可能性  Furthermore, there is no wear, so it can be used at low temperatures. Industrial applicability
本発明は、 GM冷凍機やパルス管冷凍機等、 極低温冷凍機の高低圧ガス切換弁 に用いることができる。  INDUSTRIAL APPLICABILITY The present invention can be used for a high-low pressure gas switching valve of a cryogenic refrigerator such as a GM refrigerator or a pulse tube refrigerator.
本発明によれば、 ロータ回転軸の軸方向及び垂直方向への荷重のバランスをと つて、 ロータとハウジング間の隙間を適正に保つと共に、 モータへの負荷を低減 することができる。 従って、 高低圧ガス切換弁を長寿命、 高効率、 小型、 軽量化 すると共に、 摩耗せず、 ダストを発生しないようにすることが可能となり、 長期 間の安定的な運転と駆動モータの小型、 省電力化が可能となる。 ADVANTAGE OF THE INVENTION According to this invention, the balance of the load of the axial direction of a rotor rotating shaft and a perpendicular direction is balanced. Thus, the gap between the rotor and the housing can be appropriately maintained, and the load on the motor can be reduced. Therefore, it is possible to make the high / low pressure gas switching valve long life, high efficiency, small size and light weight, and not to wear and generate dust. Power saving can be achieved.

Claims

請求の範囲 The scope of the claims
1 . 圧縮機からの高圧ガスと低圧ガスを周期的に切換えて冷凍機に送るための冷 凍機の高低圧ガス切換弁において、 1. In the high / low pressure gas switching valve of the refrigerator, which periodically switches between high pressure gas and low pressure gas from the compressor and sends it to the refrigerator.
略円筒状の内周面を有するハウジングと、  A housing having a substantially cylindrical inner peripheral surface;
該ハウジングの壁面に形成された高圧ガス流路及び低圧ガス流路を含むハウジ ング流路と、  A housing flow path including a high-pressure gas flow path and a low-pressure gas flow path formed on a wall surface of the housing;
ベアリングに支持され、 前記ハウジングの内周面と微少な隙間を隔てて、 該ハ ウジングに接触することなく回転する、 略円柱状のロータと、  A substantially cylindrical rotor that is supported by bearings and rotates without contacting the housing with a small gap from the inner peripheral surface of the housing;
該ロータ内に形成された、 前記ノヽゥジング流路と開口部が合うタイミングでガ スが流れるロータ流路とを備え、  A rotor flow path formed in the rotor, through which gas flows at a timing at which the nosing flow path and the opening match.
前記ハウジングの高圧ガス供給口及び低圧ガス供給口が、 それぞれ、 前記ロー タの回転軸に関して軸対称の位置に複数設けられていることを特徴とする冷凍機 の高低圧ガス切換弁。  A high-low pressure gas switching valve for a refrigerator, wherein a plurality of high-pressure gas supply ports and a plurality of low-pressure gas supply ports of the housing are provided at positions symmetrical with respect to the rotation axis of the rotor.
2 . 前記ハウジングの低圧ガス供給口が、 前記高圧ガス供給口と同一平面内に設 けられていることを特徴とする請求項 1に記載の冷凍機の高低圧ガス切換弁。  2. The high / low pressure gas switching valve for a refrigerator according to claim 1, wherein the low pressure gas supply port of the housing is provided in the same plane as the high pressure gas supply port.
3 . 前記ロータ流路に流入した高圧ガス又は低圧ガスが、 ロータの中心軸及びノヽ ウジングの端面に形成された流路を通って、 7令凍機に供給されることを特徴とす る請求項 1又は 2に記載の冷凍機の高低圧ガス切換弁。 3. The high-pressure gas or the low-pressure gas flowing into the rotor flow path is supplied to a seventh-stage freezer through a flow path formed on a central axis of the rotor and an end face of the nozzle. Item 3. A high / low pressure gas switching valve for a refrigerator according to Item 1 or 2.
4 . 前記ロータの中心軸に形成された流路が、 ロータの両端面に開口しているこ とを特徴とする請求項 3に記載の冷凍機の高低圧ガス切換弁。 4. The high / low pressure gas switching valve for a refrigerator according to claim 3, wherein a flow path formed on a center axis of the rotor is open at both end faces of the rotor.
5 . 前記ノヽウジング又はロータの少なくとも一方に、 タイミング調整用のスリッ トが設けられていることを特徴とする請求項 1乃至 4のいずれかに記載の冷凍機 の高低圧ガス切換弁。 5. The high / low pressure gas switching valve for a refrigerator according to any one of claims 1 to 4, wherein a slit for timing adjustment is provided on at least one of the nozzle or the rotor.
6 . 請求項 1乃至 5のいずれかに記載の冷凍機の高低圧ガス切換弁を用いた冷凍 機。 6. A refrigerator using the high-low pressure gas switching valve of the refrigerator according to any one of claims 1 to 5.
7 . 請求項 6に記載の冷凍機を用いた低温装置。  7. A low-temperature device using the refrigerator according to claim 6.
PCT/JP2002/001165 2001-03-27 2002-02-12 High and low pressure gas selector valve of refrigerator WO2002077545A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/415,350 US20040040315A1 (en) 2001-03-27 2002-02-12 High and low pressure gas selector valve of refrigerator
DE10296590T DE10296590T5 (en) 2001-03-27 2002-02-12 High-low pressure gas directional control valve for cooling device
JP2002575553A JPWO2002077545A1 (en) 2001-03-27 2002-02-12 High and low pressure gas switching valve of refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001090627 2001-03-27
JP2001-090627 2001-03-27

Publications (1)

Publication Number Publication Date
WO2002077545A1 true WO2002077545A1 (en) 2002-10-03

Family

ID=18945389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001165 WO2002077545A1 (en) 2001-03-27 2002-02-12 High and low pressure gas selector valve of refrigerator

Country Status (4)

Country Link
US (1) US20040040315A1 (en)
JP (1) JPWO2002077545A1 (en)
DE (1) DE10296590T5 (en)
WO (1) WO2002077545A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007518956A (en) * 2004-01-20 2007-07-12 住友重機械工業株式会社 Low torque valve for cryogenic refrigerator
CN101839356B (en) * 2010-05-14 2011-08-17 南京柯德超低温技术有限公司 Non-wear gas distributing valve for low-temperature refrigerator
CN102661409A (en) * 2012-05-10 2012-09-12 南京普鲁卡姆电器有限公司 Dual-air source integrated valve and air-outlet pressure adaptive regulation method
CN105016032A (en) * 2014-04-15 2015-11-04 藤原酿造机械株式会社 Vertical type rotary valve
US9739389B2 (en) 2011-04-08 2017-08-22 David Deng Heating system
US9752782B2 (en) 2011-10-20 2017-09-05 David Deng Dual fuel heater with selector valve
CN107449171A (en) * 2016-05-31 2017-12-08 住友重机械工业株式会社 Ultra-low temperature refrigerating device
US10073071B2 (en) 2010-06-07 2018-09-11 David Deng Heating system
US10222057B2 (en) 2011-04-08 2019-03-05 David Deng Dual fuel heater with selector valve

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003217905A1 (en) * 2002-03-05 2003-09-22 Shi-Apd Cryogenics, Inc. Fast warm up pulse tube
CA2559201C (en) * 2004-03-10 2009-10-06 Praxair Technology, Inc. Low frequency pulse tube with oil-free drive
KR100811857B1 (en) * 2006-11-21 2008-03-10 한국과학기술원 Buffered rotary valve
US9644867B2 (en) * 2009-10-27 2017-05-09 Sumitomo Heavy Industries, Ltd. Rotary valve and a pulse tube refrigerator using a rotary valve
JP5599766B2 (en) * 2011-09-30 2014-10-01 住友重機械工業株式会社 Cryogenic refrigerator
CN102494164B (en) * 2011-12-02 2013-04-24 南京普鲁卡姆电器有限公司 Gas adaptive integration valve with double air sources
JP5893510B2 (en) * 2012-05-28 2016-03-23 公益財団法人鉄道総合技術研究所 Pulse tube refrigerator
DE102013216208A1 (en) * 2012-08-17 2014-02-20 Behr Gmbh & Co. Kg Inlet valve for regulating cooling medium flow in cooling device for cooling high-voltage battery in e.g. hybrid car, has cooling medium line for circulating cooling medium, and volume distribution device arranged within cooling medium line
CN103233786A (en) * 2013-04-27 2013-08-07 陈银轩 Valve for ejector
JP6188946B2 (en) 2014-07-18 2017-08-30 三菱電機株式会社 Heat medium flow switching device and air conditioner equipped with the same
EP3171097B1 (en) 2014-07-18 2019-11-06 Mitsubishi Electric Corporation Air conditioner
DE102014214819B3 (en) * 2014-07-29 2015-08-20 Bruker Biospin Gmbh Pulse tube cooler system with force-compensated rotary valve line
CN106574731B (en) * 2014-08-22 2019-12-10 三菱电机株式会社 Combination valve
JP2017120162A (en) * 2015-12-28 2017-07-06 住友重機械工業株式会社 Cryogenic refrigeration machine and rotary valve mechanism
CN108345029A (en) * 2018-04-28 2018-07-31 天津开发区长城石油机械配件有限公司 A kind of earthquake-capturing marine high-pressure gas cylinders group
CN108825841B (en) * 2018-07-02 2019-08-30 广东省新材料研究所 A kind of G-M type Cryo Refrigerator rotary valve and preparation method thereof
DE102021122193B4 (en) * 2021-08-27 2023-11-09 Audi Aktiengesellschaft Valve arrangement with simultaneously adjustable valve functions, refrigeration system with such a valve arrangement and motor vehicle with refrigeration system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986871A (en) * 1982-11-10 1984-05-19 株式会社日立製作所 Expander for refrigerator
JPH062972A (en) * 1992-06-22 1994-01-11 Daikin Ind Ltd Cryogenic refrigerator
JP2000161802A (en) * 1998-11-30 2000-06-16 Aisin Seiki Co Ltd Multi-type pulse tube refrigerating machine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2312941A (en) * 1941-07-30 1943-03-02 Hydraulie Dev Corp Inc Rotary valve
US3421331A (en) * 1968-01-26 1969-01-14 Webb James E Refrigeration apparatus
US3692041A (en) * 1971-01-04 1972-09-19 Gen Electric Variable flow distributor
JPS55106872A (en) * 1979-02-09 1980-08-16 Kayaba Ind Co Ltd Rotary valve
US4294600A (en) * 1979-10-29 1981-10-13 Oerlikon-Buhrle U.S.A. Inc. Valves for cryogenic refrigerators
US4430863A (en) * 1982-06-07 1984-02-14 Air Products And Chemicals, Inc. Apparatus and method for increasing the speed of a displacer-expander refrigerator
GB8816193D0 (en) * 1988-07-07 1988-08-10 Boc Group Plc Improved cryogenic refrigerator
US4986307A (en) * 1989-08-02 1991-01-22 The United States Of America As Represented By The United States Department Of Energy Rotary pneumatic valve
WO1993010407A1 (en) * 1991-11-18 1993-05-27 Sumitomo Heavy Industries, Ltd. Cryogenic refrigerating device
US5513498A (en) * 1995-04-06 1996-05-07 General Electric Company Cryogenic cooling system
US5901737A (en) * 1996-06-24 1999-05-11 Yaron; Ran Rotary valve having a fluid bearing
JP2877094B2 (en) * 1996-09-13 1999-03-31 ダイキン工業株式会社 Cryogenic refrigerator and control method thereof
JPH10132404A (en) * 1996-10-24 1998-05-22 Suzuki Shiyoukan:Kk Pulse pipe freezer
US6050496A (en) * 1998-12-17 2000-04-18 Caterpillar Inc. Rotational actuation fluid control valve for a hydraulically actuated fuel injector
US6050497A (en) * 1998-12-17 2000-04-18 Caterpillar, Inc. Rotational actuation fluid control valve for a hydraulically actuated fuel injector
JP2000205960A (en) * 1998-12-23 2000-07-28 Csp Cryogenic Spectrometers Gmbh Detector apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986871A (en) * 1982-11-10 1984-05-19 株式会社日立製作所 Expander for refrigerator
JPH062972A (en) * 1992-06-22 1994-01-11 Daikin Ind Ltd Cryogenic refrigerator
JP2000161802A (en) * 1998-11-30 2000-06-16 Aisin Seiki Co Ltd Multi-type pulse tube refrigerating machine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7654096B2 (en) 2004-01-20 2010-02-02 Sumitomo Heavy Industries, Ltd. Reduced torque valve for cryogenic refrigerator
JP4684239B2 (en) * 2004-01-20 2011-05-18 住友重機械工業株式会社 Low torque valve for cryogenic refrigerator
JP2007518956A (en) * 2004-01-20 2007-07-12 住友重機械工業株式会社 Low torque valve for cryogenic refrigerator
CN101839356B (en) * 2010-05-14 2011-08-17 南京柯德超低温技术有限公司 Non-wear gas distributing valve for low-temperature refrigerator
US10073071B2 (en) 2010-06-07 2018-09-11 David Deng Heating system
US9739389B2 (en) 2011-04-08 2017-08-22 David Deng Heating system
US10222057B2 (en) 2011-04-08 2019-03-05 David Deng Dual fuel heater with selector valve
US9752782B2 (en) 2011-10-20 2017-09-05 David Deng Dual fuel heater with selector valve
CN102661409A (en) * 2012-05-10 2012-09-12 南京普鲁卡姆电器有限公司 Dual-air source integrated valve and air-outlet pressure adaptive regulation method
CN102661409B (en) * 2012-05-10 2013-12-11 南京普鲁卡姆电器有限公司 Dual-air source integrated valve and air-outlet pressure adaptive regulation method
CN105016032A (en) * 2014-04-15 2015-11-04 藤原酿造机械株式会社 Vertical type rotary valve
CN105016032B (en) * 2014-04-15 2018-07-20 藤原酿造机械株式会社 Vertical rotating valve
CN107449171A (en) * 2016-05-31 2017-12-08 住友重机械工业株式会社 Ultra-low temperature refrigerating device
CN107449171B (en) * 2016-05-31 2020-03-10 住友重机械工业株式会社 Cryogenic refrigerator

Also Published As

Publication number Publication date
JPWO2002077545A1 (en) 2004-07-15
DE10296590T5 (en) 2004-04-22
US20040040315A1 (en) 2004-03-04

Similar Documents

Publication Publication Date Title
WO2002077545A1 (en) High and low pressure gas selector valve of refrigerator
US6460349B1 (en) Rotary valve unit in a pulse tube refrigerator
KR101300597B1 (en) Scroll fluid machine
JP5025643B2 (en) Multiple rotary valve for pulse tube refrigerator
KR101498348B1 (en) Rotary valve and cryogenic refrigerator using same
US4890987A (en) Scroll type compressor with seal supporting anti-wear plate portions
US20070107442A1 (en) Wearless valve for cryorefrigerator
JP4065316B2 (en) Expander and heat pump using the same
JP2000097144A (en) Two-stage rotary vane motor
GB2474950A (en) Rotary valve and a pulse tube refrigerator using a rotary valve
JP3584185B2 (en) Refrigerator and rotary valve used therefor
JP2018151128A (en) Pulse pipe refrigerator and rotary valve unit for pulse pipe refrigerator
WO2006075981A1 (en) Hybrid spool valve for multi-port pulse tube
JP4682795B2 (en) Expander-integrated compressor and refrigeration cycle apparatus
JP5613912B2 (en) Scroll fluid machinery
JP2003262417A (en) High/low pressure selector valve of refrigerator
JP2004061031A (en) Pulse tube refrigerator
JP2007255796A (en) Pulse tube type heat engine
JP2004053157A (en) Pressure switching valve
JP2004163083A (en) Rotary valve for refrigerator and refrigerator
JP3993835B2 (en) Rotary valves and refrigerators for refrigerators
JP2005207633A (en) Rotary valve and refrigerator using the same
JP2001241793A (en) Pulse tube refrigerating machine
JP3704491B2 (en) Pulse tube expander with rotary valve
JPS59158960A (en) Cryogenic refrigerator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10415350

Country of ref document: US

122 Ep: pct application non-entry in european phase